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1. Introduction

Semiconductor surface nanostructures induced by ion beam erosion such as corrugations

and dots have been well known phenomena since the 1960’s [1, 2]. Controlled ripple

pattern structures can be routinely produced and even decorated with metals [3] so that

nanowire structures can be formed. Thus ripple pattern formation on semiconductor

surfaces under low energy ion beam impact is an established experimental technique in

nanotechnology but the basic formation mechanism is still not fully understood. There

have been many models put forward to explain this pattern formation and these are

discussed below but especially for covalent materials such as Si where amorphisation

occurs after ion bombardment and where, low sputter yields and few diffusion processes

are expected, a model, different from those considered previously, would be useful.

Recently, the importance of surface mass current for the initial pattern formation on

flat surface has been reported [4, 5, 6] and a fluid mechanical nonlinear approach to the

ion-inducing surface pattern formation reproduces the pattern evolution successfully

through numerical integration of several second order nonlinear equations of motion

[7, 8, 9]. These results suggest that an important driving force is the atomic movement

evoked by the ion impingement in the bulk system and the sputter erosion as well as

the surface self-diffusion.

In this paper, we examine some previous approaches and explore in detail the

contribution of each dynamical factor. Especially, we show that the nonlinear mechanism

of the near surface mass current induced by an ion beam, the associated atomic

relocation and corresponding density change can be described by a relatively simple

mass conservation law. In this case elastic momentum transfer induced by nuclear

collisions differs from the hydrodynamical approach considering the disturbed material

as a highly viscous fluid [10].

Our mathematical model considers the surface modification resulting from

infinitesimal atomic relocation induced by ion bombardment in the highly energetic

range, i.e. in the early stage of a collision cascade. The equations of motion are derived

and a travelling wave solution has been found which agrees excellently with experimental

observation. The Lyapunov stability of this solution is also shown. The initial pattern

formation on a flat surface is however not stable in the context of this relocation model

solely. In order to describe the pattern evolution process from the linear regime to

the steady state, the contributions of thermally activated surface diffusion and sputter

erosion are discussed. With appropriate contributions of these factors depending on the

temperature and ion beam energy range, the periodic pattern formation predicted by

this theory also agrees nicely with various experimental observations.

2. Previous models

Previous work considered the 3D development of surface topography during ion beam

erosion [11, 12]. For the target surface h = h(t, x, y), the substrate atomic density ρ0,
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the mean ion flux φ in the direction of the ion beam, (see Fig. 1 a), the ion incident

angle ϕ with respect to the surface normal, and the angular dependent sputtering yield

Y0(ϕ), the surface evolution is described as (see also Fig. 1 c)

∂h

∂t
= −

√

1 + (∇h)2
φ

ρ0
Y0(ϕ) cosϕ. (1)

This non-linear model could also be applied to the case of a spatially and time varying

flux φ(x, y, t) and also the case where the sputtering yield could depend on the azimuthal

angle such as in crystals. The model was applied to show how smooth surfaces could

develop edges under erosion and some example structures evaluated using the method

of characteristics. However for typical experimentally measured sputtering yields the

net effect was that surface features were smoothed out as a result of the erosion process

and the formation of ripple structures was not possible.

Later, Bradley and Harper proposed a linear surface evolution model assuming

a surface curvature dependent ion energy deposition from Sigmund’s sputter theory

[13, 14, 15], and Mullins-Herring diffusion [16]. We will refer to this further as the BH

theory [17]. A basic assumption of the model is that surface height varies only slowly

compared to the penetration depth of the ion beam so that a linearisation is possible.

∂

∂t
h = −v0(θ) + v′0(θ)

∂h

∂x
+ Sx(θ)

∂2h

∂x2
+ Sy(θ)

∂2h

∂y2
−B∇2(∇2h) (2)

where the ion incident angle θ is defined with respect to the mean surface normal (see

Fig. 1 a), v0(θ) is the planar surface erosion speed and Sx,y are angular dependent

erosion coefficients.

The curvature dependent surface diffusion term is derived by Mullins from physical

relations concerning the local curvature dependent chemical potential variation by

Herring [18] as well as the average velocity of drifting surface atoms varying with the

change of chemical potential along the arc length (the Nernst-Einstein relation [19]).

The coefficient B is given by

B =
Dsγν

ρ20kBT
(3)

for the surface diffusion coefficient Ds > 0, surface free energy per unit area γ > 0,

and the areal density of diffusing atom ν > 0. Here kB is Boltzmann’s constant and

T is temperature. The driving force for ripple formation is therefore assumed to be a

combination of the energetic sputter process and thermally activated surface smoothing.

The BH equation was solved by using a Fourier integral transformation and it

was shown that the dominant ripple wavelength λ is given by λ−1 ∝
√

Smin/B ∝
(φT )1/2eEd/2kBT , where Smin := min{Sx, Sy}. and Ed is the activation energy Ed for

surface diffusion, reported as ∼ 1.2 ± 0.1 eV for Si by Erlebacher et al [20] at high

temperatures (500-650 ◦C). The linear analysis can explain ripple pattern rotation due

to the relative magnitude of the terms Sx and Sy.

This formulation is only valid under the slowly varying surface topography

assumption. Moreover this theory predicts the continuous evolution of ripple amplitude
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but in reality there is a saturation of the height of ripples [20, 21, 22]. However, under

low energy (≤1 keV) ion bombardment [21, 22], and also at low temperatures, 100

K [23], 140 K [24], ripple-like nanostructures are observed. Thus a model that would

explain these observations in the absence of diffusion would also be useful.

As a result, over the past two decades, much effort was dedicated to deriving

nonlinear extensions of the BH equation in order to overcome these problems [25, 7,

23, 26, 8, 27]. Cueruno and Barabási considered the surface elevation due to the ion

beam erosion assuming a local curvature depending energy deposition as [7]

∂

∂t
h(t, x, y) = −vs(ϕ,Rx, Ry)

√

1 + (∇h)2, (4)

where vs is the normal erosion velocity and Rx, Ry are the principle radii of curvature.

Neglecting third and higher order terms in the Taylor expansion and adding a Gaussian

noise term η(t, x, y) with mean zero and variance proportional to the flux φ yields

∂

∂t
h(t, x, y) = − v0 + v′0

∂h

∂x
+ νx

∂2h

∂x2
+ νy

∂2h

∂y2

+
λx

2

(

∂h

∂x

)2

+
λy

2

(

∂h

∂y

)2

− B∇2(∇2h) + η,

with the coefficients νx,y and λx,y consistent with the expansion of eq. (4). This equation

is called a Kuramoto-Sivashinsky type equation which is originally derived by Kuramoto

[28] and Sivashinsky [29] for reaction-diffusion systems and flame-front instability

respectively and arises in various physical phenomena [30]. This nonlinear PDE can

be further extended by adding a damping term −αh with in order to suppress spatio-

temporal chaos (Facsko et al [26]) and reforming the nonlinear terms to account for the

aeolian sand dune like kinetic process with the excavation and addition of surface atoms.

This “hydrodynamic” description of near surface atomic flow formulated by Castro et al

[8]; Castro and Cuerno [10]) and Muñoz-Garćıa et al [31, 27, 9] reproduced experimental

observations by numerical integration of the nonlinear equations of motion. The velocity

field of atoms in the hydrodynamic model is derived from the conservation of mass

and momentum as the gradient of the stress tensor induced by ion bombardment by

assuming the amorphous layer as a highly viscous fluid [10] with boundary conditions at

the amorphous-vacuum interface and the amorphous-crystalline interface. Remarkably,

they showed that by assuming the “shallow-water” approximation, i.e. the amorphous

layer thickness is much smaller than the wavelength, the wave component evolution is

stabilised by the stress relaxation in the linear regime. Their formulation is consequently

similar to the fourth order expansion of eq. (4) in (5) except that the diffusion term is

given by ζ
∑

i,j=x,y λij∂ii(hj)
2 with the coefficients ζ, λij instead of B∇2(∇2h).

A linear model of mass redistribution was developed by Carter and Vishnyakov [23]

based on their experimental observation that ripple patterns can be produced at 100K

by Xe+ 40 keV bombardment. They added the gradient of the atomic flux term to the

BH model. For a one-dimensional surface, their formulation is

∂

∂t
h(t, x) = − v0(θ) + v′0(θ)

∂h

∂x
+

γ

µ

∣

∣

∣

∣

∂h

∂x

∣

∣

∣

∣

+
φa

ρ0
Y0(θ)

[

Γ1(θ)
∂2h

∂x2

]
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+
1

ρ0

∂

∂x
Φ(u)−B∇2(∇2h) + η(x, t),

where µ is the viscosity, Φ(u) is the atomic flux along the local coordinate u, and η

is a noise term. The term γ/µ|∂h/∂x| is due to the viscous relaxation in frequency

space as suggested by Chason et al [25]. The atomic flux Φ is given by Φ(u) =

φk(E)ǫ
4ED

sin
(

2
[

θ − tan−1
(

∂h
∂x

)])

with the effective energy deposition k(E), mean atomic

displacement distance ǫ, and displacement energy ED. Interestingly, they obtained a

clearly defined ripple formation at the ion incident angle of 45◦ where an unstable initial

surface behaviour is expected.

Finally it should be mentioned that Keller et al [22] found experimentally an ion

fluence, φ, dependency of the ripple morphology under 300-500 eV Ar+ irradiation at

room temperature (RT) whereas a flux dependency in agreement with the BH theory at

high substrate temperatures (800-900 K) is also reported [21, 20]. Ripple topography has

not been observed under low energy ion bombardment of metals where it has recently

been shown that recovery and recrystallisation occurs between impact events when

metals are subjected to ion bombardment [32], whereas Si is known to amorphise.

Thus from these results one could suppose that a main driving force to determine

the ripple configuration on Si during the sequential ion bombardment is likely to be

the accumulation of local surface modification induced by ion irradiation as much

as any contribution of the global surface atomic diffusion. In the initial stage of

ripple formation, the conflict between the surface destabilisation induced by the mass

current as well as the erosion and the stabilisation by the self-diffusion and the stress

relaxation promotes the pattern evolution. However, once the size of the pattern

becomes sufficiently large so that the linear approximation does not hold, then the

contribution of these factors may change. In the following section, we construct a

nonlinear atomic relocation model to consider the effect of the mass current.

3. A nonlinear atomic relocation model

In this section, a mathematical model is considered in which the processes of defect

production, relaxation and amorphisation are merged. It is assumed that each ion

impact induces infinitesimal atomic relocation as in a pseudo-compressible medium

and the temporary density change in the near surface region leads to surface evolution

locally driven by mass conservation and momentum transfer induced by elastic nuclear

collisions. The model is essentially independent from the surface topography changes

induced by both sputtering and surface diffusion.

3.1. Equations of motion

Let (u, v, w) be the local coordination system with (u, v) spanning the tangent space of

the surface manifold M := {(x, y, h(t, x, y)) : x, y ∈ R}. Moreover, let ~eu, ~ev, ~ew be the

corresponding unit vectors associated with these directions, i.e. ~ew defines the outward

surface normal vector; the unit vector oriented to the mean direction of incoming ions is
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FIG. 1. A schematic description of single ion impact. a Vectors describing the ion

incidence ~i, surface normal ~ew, surface tangent ~eu, surface atomic flow ~f and the ion

incidence angle θ are defined. b The local angle dependence of the flow in the affected

region δV . c The (two-dimensional) surface swelling process around the impact point.

denoted by ~i. Here, the directions of the components u and v of the coordinate system

are defined by ~i and the normal vector ~ew as

~eu =
~i× ~ew

|~i× ~ew|
× ~ew, ~ev = ~ew × ~eu. (5)

The movement of atoms in the small region δV around the impact point is now

considered. Figure 1 a illustrates this condition for the case when ~i is parallel to the

(x, z)-plane.

Let N = N(E, a) be the number of displaced atoms due to the collision cascade

[14, 15, 23] for a effective penetration depth a and ion energy E. Note that this effective

penetration depth a is related to the mobile atom region, considered as the thickness

of amorphous layer in the hydrodynamic model. Due to the recoil energy transfer, this

depth a may be order of the maximal ion projected range Rp when the mass of ion is
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larger than the target atoms, i.e.,

a ∼ Rmax
p , (6)

where Rmax
p is the effective maximal depth of the ion penetration depending on both the

energy E and the type of ion and can be estimated by a Monte Carlo simulation, such

as SRIM code [33]. The model assumes an atomic motion induced by ion impact in δV ,

considered as a fast atomic relocation. Let N eff be the rate of atoms contributing to

this effective relocation in δV . The energy density deposited may depend on the number

of atoms in δV (figure 1 b). Set

N eff
loc := N effρ0|δV |, (7)

where |δV | indicates the volume of δV . Let ~vi be the individual relocation vector of

atoms i = 1, ..., N eff
loc . Let m,m0 be the mass of ion and surface atoms respectively, and

∆v be the magnitude of the velocity loss during the effective collision process evoking

the relocation. Then due to elastic collisions

m0

Neff
loc
∑

i=1

~vi = m∆v(−~i). (8)

Thus the average velocity ~v of atoms is

~v =
m∆v

m0N
eff
loc

(−~i). (9)

For the effective quenching time tq, let ǫ := |~v|tq be the mean displacement distance.

Then from (9) we have

m0(ǫ/tq) =
m∆v

N eff
loc

. (10)

The quenching time tq of the motion is effectively the ballistic phase of a collision cascade

predicted as a few ps by MD simulations of low energy ion impact [34]. The displacement

distances ǫu, ǫv and ǫw projected in the direction of (u, v, w) are thus ǫj = ǫ(−~i ·~ej), for
j = u, v, w respectively. The local atomic flow vector ~floc is now represented by

~floc = ρ0
∑

j=u,v,w

(ǫj/tq)~ej = −ρ0ǫ

tq
~i. (11)

For a typical ion flux φ, the mean time interval between two ion impacts per unit square

is much longer than the quenching time tq. Let Sf = |δV |
a~i·~ew

be the surface area where the

atomic relocation occurs. Then this time interval td is given by

td =
1

Sfφ
=

a~i · ~ew
|δV |φ . (12)

Denote

rt :=
tq
td

=
tq|δV |φ
a~i · ~ew

(13)
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the ratio of these two times. Note that the time interval td decreases with increasing

flux. From (7), (10), (11) and (12) the global atomic relocation vector ~f is then given

by

~f = (~i · ~ew)rt ~floc = −ρ0u~i, (14)

where

u =
φtqm∆v

aρ0m0N eff
(15)

is a positive constant with the dimension of velocity independent from the local

topography.

Now, the mass current ~f and the atomic density ρ satisfy the conservation of mass

equation
∫

δv

∂ρ

∂t
dV +

∫

∂δv
~f · ~nsdS = 0. (16)

This describes the fast defect creation process. Note that this relocation vector ~f is the

sum of all vectors describing atomic movements from eqs. (8) and (14). Moreover, from

the statistical point of view, some lateral relocations may occur due to the deviation

of the individual impact event. However, if the magnitude of each relocation event is

sufficiently small and the noise is symmetric with respect to the ion beam direction, these

lateral relocations are offset during sequential ion impingements. Therefore we simply

consider the atomic relocation behaviour with ~f to describe the surface evolution process

under the continuous ion irradiation.

The volume of δV is approximately |δV | ≈ δuδva(~i·~ew). The mean height evolution

due to the relaxation of defects can be evaluated as (figure 1 c)

〈∂h
∂t

〉 ≈ <
√

1 + (∇h)2 >

ρ0δuδv

∫

δv

∂ρ

∂t
dV. (17)

In the model, surface swelling, or shrinking is allowed only in the surface normal

direction where the resistance is considered to be least. Thus the volume variation

δρ is proportional to the variation of local surface height relaxation δH (figure 1 c).

Let S±
u , S

±
v and S±

w be the surfaces of δV (see figure2 a). Since ~f is parallel to ~i

by (14), it follows from (5) ~f · ~ev ∝~i · ~ev = ~i · (~ew × ~eu) = ~eu · (~i× ~ew) = 0. Thus from

eq.(16) (see also figure 2 b)

−
∫

δV

∂ρ

∂t
dV

=

∫

∂δV

~f · ~nsdS

=

∫

S+
u

~f · ~eudS −
∫

S−

u

~f · ~eudS +

∫

S+
w

~f · ~ewdS −
∫

S−

w

~f · ~ewdS

= a~i · ~ew(u0 + δu, v0)δv ~f · ~eu(u0 + δu, v0)

− a(~i · ~ew(u0, v0))δv ~f · ~eu(u0, v0) +

∫

S+
w

~f · ~ewdS −
∫

S−

w

~f · ~ewdS. (18)
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FIG. 2. Schematic description of δV with respect to the local coordinate system

(u, v, w) and relevant vectors.

The third and the fourth term give the flow components oriented to the surface normal.

The third term is negative since ~i · ~ew > 0, but there are no atoms flowing into the

surface from the vacuum region, hence
∫

S+
w

~f · ~ewdS = 0. (19)

The fourth term giving the normal flow into the bulk is offset by the swelling process.

It follows that
∫

S−

w

~f · ~ewdS = 0. (20)

Accounting for the recoil flow in the normal direction, we assume a constant sputtering

rate Y in the direction of the w, for the atoms flowing out from S+
w proportional to the

energy deposition ∝ |~f · ~ew|. This rate Y may also depend on the surface curvature

as well as the incident angle. Here, however, we ignore these dependencies and simply

eliminate atoms from this impact region corresponding to a loss of material given by
∫

S+
w
Y |~f · ~ew|dS. For small δu and δv, this term is approximately

∫

S+
w

Y |~f · ~ew|dS ≈ Y δuδv|~f · ~ew|. (21)

Hence, for the macroscopic view, as δu, δv → 0, it follows from eq. (16)-(21)

∂h

∂t
= lim

δu,δv→0

<
√

1 + (∇h)2 >

ρ0δuδv

∫

δV

∂ρ

∂t
dV

=

√

1 + (∇h)2

ρ0

{

auρ0
∂

∂u
(~i · ~ew)(~i · ~eu)− uY ρ0(~i · ~ew)

}
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= u
√

1 + (∇h)2
(

a
∂

∂u
{(~i · ~ew)(~i · ~eu)} − Y~i · ~ew

)

. (22)

The sputtering term of (22) is consistent with eq. (1) when the beam is incident in the

z direction and Y varies with incidence angle. Here Y is the rate of sputtered atoms

flowing perpendicular to the surface of δV and Y0 is simply the mean number of atoms

sputtered by single ion impact. A more accurate description accounting for the angular

dependency of Y will be discussed in section 4.2. Similar forms to (17) as well as for

the derivative along the local coordinates in (22) appear in the calculation of Cuerno

and Barabási [7] as well as the model of Carter and Vishnyakov [23], respectively. Our

fluid model differs from these due to the direction of surface elevation resulting in the

pseudo-compressibility of the fluid atoms. Consequently, the derived equation of motion

(22) can be thought of as lying somewhere between those in their models. The partial

derivative of the inner product with respect to the local coordinate u in eq. (22) delivers

the second derivative along the direction parallel to the ion track as well as the surface

normal. Thus, in our model the evolution is influenced by both this second derivative

and the gradient of the surface height. In the initial stage, at least, this equation may

require the diffusion term in order to avoid the instability of surface roughening inherent

in the linear dispersion relation of the BH theory.

3.2. A travelling wave solution

Once the total ion fluence reaches a certain level, it has been observed experimentally

that surface roughening is saturated and the ripple periodicity is stable [22]. This

fact suggests that there may exist a travelling wave solution satisfying the continuum

equation (22). Now assume the surface height varies only with x (hy ≡ 0) and ignore

the y-component as observed in experiments. For the counter vector ~i of the radiation

direction, let θ be the angle between z-axis and ~i (see figure 1 a). Then ~i =

(

sin θ

cos θ

)

and the surface tangent vector is ~eu = −1√
1+h2

x

(

1

hx

)

. The outward normal vector is

~ew = 1√
1+h2

x

(

−hx

1

)

. After a straightforward calculation the time evolution of h from

(22) is

∂h

∂t
= ua

hxx

(1 + h2
x)

2
{−2hx sin 2θ+(1−h2

x) cos 2θ}+uY (hx sin θ−cos θ).(23)

Thus for the specific incident angle θ = 45◦, eq. (23) is simply

∂h

∂t
= u

[

−2a
hxxhx

(1 + h2
x)

2
+

Y√
2
(hx − 1)

]

. (24)

Set h = h̃− (uY/
√
2)t, then eq. (24) is equivalent to

∂h̃

∂t
= u

[

−2a
h̃xxh̃x

(1 + h2
x)

2
+

Y√
2
h̃x

]

. (25)
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Set the travelling wave assumption τ ≡ x+ σt for the wave velocity σ. Then (25) is

σh̃τ = u

[

−2a
h̃ττ h̃τ

(1 + h̃2
τ )

2
+

uY√
2
h̃τ

]

. (26)

A solution to this equation exists in the form of a parametric representation h̃ = h̃(τ)

as

τ = a(p + sin p), h̃ = a cos p (27)

The function h̃(τ) is simply a cycloid function and is differentiable almost everywhere.

Calculating with the chain rule yields

h̃ττ = − 1

4a
(1 + h̃2

τ )
2. (28)

Hence, from (26), (27) and (28), the function

h(t, x) = h̃(x+ σt)− uY√
2
t (29)

satisfies the equation of motion (24) with the specific wave velocity σ given by σ =

u
(

1
2
+ Y√

2

)

. The wave moves in the negative x direction and the velocity increases with

the sputtering rate. Thus the direction of wave movement agrees with experimental

observations by Habenicht et al [35] in contrast to the BH prediction induced by the

angular dependent sputtering rate [36]. From eq. (15), the velocity of the ripple wave

is proportional to the flux φ, the quenching time tq, the mass of ion m, and the velocity

loss of ion ∆v during the effective collision process evoking the flow and in inverse

proportion to the effective penetration depth a, the density of substrate ρ0, the mass

of target atoms m0, and the effective number of those atoms flowing in the impact

region. The sputtering rate Y contributes to the acceleration of the wave velocity. One

remarkable point is that this wave solution requires neither sputtering nor diffusion. A

similar nonlinear term with the coefficient factor cos 2θ in eq. (23) appears in the linear

approximation process of surface current by Davidovitch et al [4]. However, the shape

of the specific solution given above is not of small variation since the height and the

wavelength can be of the same magnitude so the linear theory is invalid.

Recently, Macko et al reported ripple formation on an Fe co-deposited Si surface

by 2 keV Kr+ irradiation at 140 K - 440 K [24]. A typical incident angle where ripples

appeared was around θloc ≈ 50◦, close to the angle given in our solution.

3.3. Lyapunov stability

Now consider the Lyapunov stability of the solution. Let g(x) ∈ C2
b (R) be an arbitrary

disturbance and g̃ = g + h be the perturbed solution. Here, Cn
b (R) denotes the class

of all functions defined on the real space R that are n times continuously differentiable

and bounded. Then from (24)
∣

∣

∣

∣

g̃t − u

[

−2a
g̃xxg̃x

(1 + g̃2x)
2
+

Y√
2
(g̃x − 1)

]
∣

∣

∣

∣

≤ u

2

∣

∣

∣

∣

h̃τ +
4ag̃xxg̃x
(1 + g̃2x)

2

∣

∣

∣

∣

+
uY√
2
|gx| .
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Thus the stability of
∣

∣

∣

∣

h̃τ +
4ag̃xxg̃x
(1 + g̃2x)

2

∣

∣

∣

∣

(∗)

has to be shown. In fact, (∗) is bounded by a polynomial function of ‖g‖ converging to

0 for ‖g‖ → 0 in C2
b (R). It can be seen, for example, the bound of (∗) is

(∗) ≤ 32

9
(|gx|4 + 5|gx|3 + 6|gx|2 + 10|gx|+ 8a|gx||gxx|+ 4a|gxx|). (30)

Hence the solution satisfies Lyapunov stability. This stability implies that if the

perturbation term of the original solution is small enough, then the solution perturbed is

still stable and does not diverge with the time evolution. Especially, all terms appearing

in (30) are derivatives of the disturbance g and therefore, if the disturbance is changing

slowly, then the solution perturbed is quite stable.

3.4. Comparison with experiment

FIG. 3. Comparison between the analytical solution and experiment. a The

analytical travelling wave solution h = h(τ), a = 0.06 µm for θ = 45◦ with the

consistent aspect ratio (left) and the direct 3D image of the travelling wave solution

(27) (right). The bars in the the height profile and the 3D diagram indicate the trace

of incident ion at 45◦. The magnified cross section along the dotted line is shown. b

AFM image of rippled Si surface produced by 40 keV Xe+ at θ = 45◦ (courtesy V.

Vishnyakov [23]). The height profile with ion traces (bars) (left) and top view (right).

Figure 3 displays a comparison between the analytical solution obtained in (29) (a)

and the experimental result for Si (b). a shows the cross-section which has an equivalent

aspect ratio as the experiment (right) and the direct 3 dimensional (3D) visualisation

(left) of the travelling wave solution (27) with the original aspect ratio for a = 0.06 µm.

b gives the cross-section (left) and the top view (right) of an atomic force micrograph
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(AFM) image of a Si surface after 40 keV Xe+ at θ = 45◦, ion fluence 1 × 1018 ions

cm−2 at 100 K. The analytical solution contains singularities in the valley region and

this tendency is also observed in the experimental height profile with the same trend of

a convex, symmetric periodic shape as predicted by the stable travelling wave solution.

The superimposed incidence directions show that the bottoms of the valleys are not

directly exposed to ion irradiation (figure 3 a) and therefore the solution is likely to

give an inaccurate description in this region. Certainly the troughs of the ripples in the

experiment are exposed to the beam and seem to be much smoother, (figure 3 b,left)

possibly due to ion reflection and diffusion.

However the Lyapunov stability shown above should guarantee the stability of the

analytical solution from any small perturbation in the shadowed region (figure 3 a,left).

The mean ripple wavelength from the experiment is λ = 0.4 µm and the solution

would then predict a stable wave height of 2× λ/2π ∼ 0.13 µm. This agrees also nicely

with the average height of the experimental result 0.12 µm (b, left). The effective

penetration depth a in this case is thus λ/2π ∼ 0.06 µm which is consistent with the

maximal penetration depth Rmax
p of 40 keV Xe+ ions, calculated as ∼0.06 µm using the

SRIM 2008 code. Figure 4 shows the statistical distributions of various ion stopping

λexp/2π λexp,h/2π

λexp/2π λexp/2π

λexp,l/2π

Xe+  40 keV      Si Kr+  2 keV      Si

Ar+  300 eV      SiAr+  500 eV      Si

0Å         Target Depth        1000Å 0Å         Target Depth        200Å

dc

a b

0Å         Target Depth        100Å 0Å         Target Depth        100Å

FIG. 4. Ion stopping range distribution with respect to the target depth calculated

by SRIM 2008. 1.0×105 ions were irradiated individually onto the silicon target

layer at normal incident angle in each case. λexp is the typical wavelength observed

experimentally. a Xe+ 40 keV, λexp = 120 nm, at 100 K [23]. b Kr+ 2 keV, λexp,l = 65

nm at 140 K, λexp,h = 75 nm at 440 K [37]. c Ar+ 500 eV, λexp = 40 nm, at RT [22].

d Ar+ 300 eV, λexp = 30 nm, at RT [22]. The values lie at the end of the implantation

depth range.

depth (projected ion range) in an Si substrate calculated by SRIM. Arrows indicate
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the effective penetration depth a predicted as λ/2π by the consistent wavelength λexp

observed experimentally and by the cycloid solution (27). Despite the different ion

species and energies, and also surface metal contamination in the case of b, the predicted

effective penetration depths are in excellent agreement with the maximal ion penetration

depth Rmax
p . Thus these calculation results provide strong evidence that the cycloid type

nonlinear solution predicted by eqs. (6) and (27) results in parallel mode ripples. The

incident angles in b, c, d are ∼ 50◦, 67◦, 67◦ respectively. In the case of c and d, the

incident angle is far from the specific angle θs = 45◦ and the mean height of ripples is

also very small (∼ 2 nm) compared to the other ripples and their wavelength. In the

next section, we will discuss a possible explanation of this discrepancy.

3.5. Approximate solutions for other angles

Before going into the detail of the discussion, we consider the approximation of the

equation of motion (23) with respect to the surface variation. The highest order term

of eq. (23) is hxxh
2
x. If this term can be ignored, then the equation is

∂h

∂t
≈ ua

hxx

(1 + h2
x)

2
{−2hx sin 2θ + cos 2θ}+ uY (hx sin θ − cos θ). (31)

This also possesses a travelling wave solution given by h(t, x) = h̃(x + σt) −
u
(

cos 2θ
4

+ Y cos θ
)

t with

h̃ = a cos p, x+ σt = a(p+ sin p), and σ = u

(

sin 2θ

2
+ Y sin θ

)

. (32)

Since the height of the periodic pattern resulting from this solution (32) is expected

to be λ/π, the slowly variation of surface topography cannot be explained by this

approximation.

On the other hand, because of the atomic relocation term, i.e. the nonlinear term

in eq. (23), it is preferential to have the main relocation angle as 45◦ in order to keep

the cycloid solution from interfering with the h2
x term. Thus if the system manages to

obtain the cycloid solution locally, it is expected that the form of cycloid will be tilted

to the ion beam incident angle to keep the relative relocation angle 45◦ between the

incident ion and cycloid. Indeed, typical ripples observed at incident angles 67◦ possess

a sawtooth-like asymmetrical shape [38] (see also figure 6). The small structure can be

interpreted as an embedded cycloid inclining to the optimal direction.

The ripple structure induced by low energy ion beam at the incident angle 67◦,

raises two questions namely, why does the structure saturate at such a small height and

why clearly defined parallel mode ripples are observed at this incident angle. Since the

ion energies are very low, the effective energy deposition depth a is relatively small. In

order to follow the growth process up to the saturation point, the contribution of other

factors, such as thermally activated diffusion and topography dependent sputtering,

should be taken into account for more accuracy. In fact, an evaluation of these factors

gives a possible evolution mechanism responding to these questions.
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4. Contribution of other effects

4.1. Surface diffusion

In the initial stages of ion bombardment, so long as the linear approximation is still

valid, the model described above is unstable for every wave component at θ > 45◦

in the linear dispersion relation. For small structure formation in the initial stage, the

periodic structure growth is stabilised by the contribution of the diffusion term [17]. The

substrate temperature is temporary and locally enhanced due to the single ion impact

[39]. We consider the contribution of the self-diffusion under temporary enhanced local

temperature. Since all events, such as atomic relocations and sputter erosion, occur on a

time scale associated with the high temperature regime, we have two different equation

of motions describing the surface dynamics in two different time regimes, namely the

quick movement surface dynamics

∂h

∂t
=
√

1 + (∇h)2
(

ua
∂

∂u
{(~i · ~ew)(~i · ~eu)} − uY~i · ~ew +B′∇2

sκ

)

, (33)

where B′ is the self-diffusion coefficient at the enhanced temperature T ′ given by

B′ =
Dmaxγν

ρ20kB

e−Ed/kBT ′

T ′ . (34)

On the other hand, after the local temperature is cooled down to the global substrate

temperature, the surface dynamics is simply evoked by the self-diffusion, i.e.,

∂h

∂t
=
√

1 + (∇h)2B∇2
sκ, (35)

Incorporating these two dynamics eqs. (33) and (35) with two diffusion terms yields

∂h

∂t
=
√

1 + (∇h)2
(

ua
∂

∂u
{(~i · ~ew)(~i · ~eu)} − uY~i · ~ew + B̃∇2

sκ

)

, (36)

where B̃ is the temperature dependent diffusion coefficient given by

B̃ = B + rtB
′ (37)

where rt is the relative time ratio between the quenching time of the effective local

temperature enhancement and the mean time distance of two ion impact in the local

region. With a high substrate temperature T , the diffusion term is dominated by the

first term when the quenching time is small enough, i.e. if

T ′eEd/kBT ′

TeEd/kBT
>> rt (38)

holds. Indeed, for a typical quenching time tq ∼ 10−12 s, Sf ∼ 1 nm2 [40], flux φ ∼ 1 ions

nm−2s−1 [22], migration barrier Ed ∼ 1.2 eV [21], melting temperature of Si T ′ ∼ 1700

K, and surface area of atomic flow, the ratio rt is rt = tqSfφ = 10−12 from (13) and

the critical temperature Tc for
T ′eEd/kBT ′

TceEd/kBTc
∼ rt is Tc ∼ 380 K. Thus in experiments at a

temperature of T > 800 K reported by Erlebacher et al [20] and Chason et al [21], the

substrate temperature based diffusion term plays a crucial role; at low and moderate
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temperatures diffusion is restricted to the short time local temperature enhancement

induced by the ion impact. Note that this critical temperature is highly dependent on

the displacement barrier Ed.

In the linear regime, ignoring the constant term, eq. (36) in a 2D Cartesian system

reduces to

∂h

∂t
∼= ua cos 2θhxx + uY sin θhx − B̃hxxxx.

The height evolution obeying this equation of motion behaves like the BH model for

θ > 45◦ due to the negative sign of the second order derivative term. The incident angle

dependence is in agreement with the smoothing term of the Carter and Vishnyakov

model. For θ ≤ 45◦, every wave component decays with time evolution and the surface

is simply eroded since the coefficients of these terms are positive. This prediction is

close to the critical angle ∼ 50◦ reported by the low energy ion sputtering of pure

silicon surfaces by Madi et al [41]. Since u ∝ φ, the wavelength λ giving the maximum

initial structure growth speed is λ−1 ∝
√

ua/B̃ ∝ (φT )1/2eEd/2kBT , which is the same

prediction of the BH theory with respect to the ripple wavelength of parallel mode.

Moreover, in this case the wavelength follows a negative power law of the ion energy

λ−1 ∝ √
ua ∝ E7/12 since u ∝ ∆v ∝ E1/2 from eq. (15) and a ∼ projected range ∝ E2/3

from the Sigmund theory. This prediction λ ∝ E−0.58 is close to that reported by Brown

et al [42] λ ∝ E−0.45 at 930 K. At lower temperatures, the contribution of the diffusion

term for the final configuration is not so significant and the wavelength follows a positive

power law relationship λ ∝ a ∝ E2/3 as predicted by the travelling wave solution (27).

Such positive power law dependencies are also reported by Chini et al [43] λ ∝ E0.45

for Ar+ 50-140 keV, as well as Ziberi et al [44] λ ∝ E0.44 for Ar+ 0.5-2 keV at room

temperature.

4.2. Surface sputtering

Now consider a more detailed description of the contribution of sputtering in the case

of ion beams with energies in the range (≤ 5 keV). By assuming a small penetration

depth a << κ−1, the erosion velocity vs depends on the local topography as Ref.[17]

vs(ϕ, κ) = v0(ϕ)− vc(ϕ)aκ, (39)

for a fixed incident angle θ and a constant ion energy. By accounting for the surface

normal factor [7] as in eq. (4), the time evolution of h is given by

∂h

∂t
=
√

1 + (∇h)2
(

ua
∂

∂u
{(~i · ~ew)(~i · ~eu)} − v0 + vcaκ+ B̃∇2

sκ

)

, (40)

where v0 and vc are functions of ϕ where ϕ is given by ϕ = θ − tan−1(hx). Here the

magnitudes of u, v0 and vc are considered as similar, assuming that the magnitude of B̃

is also similar,from the corresponding term in eq. (23) we have

√

1 + (∇h)2
∂

∂u
{(~i · ~ew)(~i · ~eu)} =

hxx{−2hx sin 2θ + (1− h2
x) cos 2θ}

(1 + h2
x)

2
,
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Thus eq. (40) can be written as

∂h

∂t
= ua

hxx{−2hx sin 2θ + (1− h2
x) cos 2θ}

(1 + h2
x)

2

− vc(ϕ)a
hxx

1 + h2
x

+
√

1 + h2
x(−v0(ϕ) + B̃∇2

sκ) (41)

Under the assumption of a small variation in h with a << κ−1 ∼ x, the spacial variation

can be scaled x̃ := εx with a small number ε ∼ a. so that x̃ ≈ O(1). Then eq. (41) is

∂h

∂t
= −

√

1 + ε2h2
x̃v0(ϕ) +O(ε3, aε2). (42)

By ignoring third order terms i.e. ε3 ∼ aε2 ∼ 0 and rewriting in terms of the

original unscaled variables eq. (42) becomes

∂h

∂t
∼= −v0(θ) + v′′0(θ)

2
h2
x + v′0(θ)hx − v0(θ). (43)

The diffusion term disappears at low and moderate temperatures since it is of 4th order.

The surface erosion velocity v0 is proportional to the angular dependent sputter

rate Y0(θ), a good model of which is given by eq. (44), the Yamamura formula [45], i.e.

v0(θ) ∝ Y0(θ) =
Y0(0)

cosf θ
exp

[

−f cos θopt(
1

cos θ
− 1)

]

. (44)

The fitting parameter f is given by

f = 1.85

(

1 +
1.25

√

E/Eth − 1

)

, (45)

where Eth is the sputtering threshold energy. For Ar+ →Si, θopt = 69.5◦ [46, 6] and

EAr
th = 32.8 eV [47]. Figure 5 shows the sputtering yield and its derivative, Y0, Y

′
0 and

the function Y0 + Y ′′
0 . In (c) for the specific angle θs ∼ 60◦ the coefficient of h2

x, i.e.

v0(θs) + v′′0(θs) vanishes. The vanishing angle in (d) is almost the same. This angle

is agreement with the incident angle at which the clearest ripples are observed in the

experiment of Macko et al [37] (∗ in d) for the same Kr+ ion beam energy of 2 keV. The

specific angle θs is not especially sensitive to E and Eth but is highly dependent on θopt.

For the specific angle θs, eq. (43) is simply

∂h

∂t
= v′0(θs)hx + v0(θs). (46)

This also possesses a periodic travelling wave solution h(t, x) = c0 cos(x+v′0(θs)t+ c1)+

v0(θs)t, where c0 and c1 are constants. As before there also exists a cycloid solution for

eq. (46) given by

h = c0 cos(p+ c1) + v0(θs)t, x+ v′0(θs)t = p+ c2 sin p, (47)

where c2 is a constant with |c2| ≤ 1. Figure 6 shows a comparison between a cross-

sectional transmission electron micrograph image of a Si surface after 500 eV Ar+

irradiation at θ = 67◦ and the cycloid solution. For c0 = 0.22, c1 = π/2 and c2 = 0.7 with

the scale factor 7.4 nm, the cycloid solution fits the experimental observation extremely
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FIG. 5. The angle dependent sputtering yields and their derivatives. a: The

sputtering yield given by eqs. (44) and (45) with Y0(0) = 0.93 [48], θopt = 70◦,

E = 1000 eV and EAr
th = 32.8 eV. b: The first derivative of Y0(θ). The sign of this

term is related to the direction of the travelling wave solution. c: The term being

proportional to the coefficient of h2
x in eq. (43). d: The same expression as c with

different energy parameters E = 2000 eV and EKr
th = 39.6 eV. ∗: STM images of the

surface topography of Si after E = 2000 eV Kr ion irradiation at 300 K (courtesy S.

Macko and T. Michely, Macko et al [37]).

FIG. 6. Comparison of the analytical solution with experiment. (a) TEM image

of a silicon surface after 500 eV Ar+ bombardment at θ = 67◦ from Ref. [3]. (b) 3D

image of a cycloid solution for eq. (46) given by (47). The scale is in nanometers.

well. With these parameters, the wavelength λ and ripple height h0 are λ ∼ 47 nm and

h0 ∼ 3.2 nm respectively.

It is known experimentally that there exists a “magic angle” where clear pattern

formation is observed. This angular dependence is however strongly influenced by the
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substrate properties and various preferential angles are reported e.g. θs =5◦-20◦ [49],

θs =60◦-75◦ [37], and θs ∼ 67◦ [50]. These differences can be understood by the vanishing

angle of the nonlinear term in eq. (43) which depends on the parameters in eq. (44).

E.g., for ion beam irradiation with 2 keV Kr+, the vanishing angle seems to be 60◦-70◦

from the report of Macko et al [37] (Fig. 5 d ∗) and in the case of Ar+ 300-500 eV, this

angle is expected as around 67◦ from various experimental observations [38, 22, 51, 3].

The preferential incident angles θs =5◦-20◦ reported by Ziberi et al [49] are totally

different angular regimes from other reports. This could be also explained by the surface

property change with respect to the angular dependent sputtering yield due to the metal

impurity [52].

5. Summary

Previous models of surface pattern formation under ion bombardment have been ex-

amined and a new kinetic model of surface modification based on the energetic nuclear

collisions inducing atomic relocation model has been constructed within a similar frame-

work. Major statements and outcomes are as follows:

1. The atomic relocation is modelled by elastic nuclear collisions, conservation of mass,

and material relaxation without explicit consideration of the viscosity and the stress

tensor.

2. The relocation model induces a flat surface instability when the incident angle

θ > 45◦. This agrees with the experimental report by Madi et al .

3. The model gives a cycloid function as a stable nonlinear travelling wave solution in

the Lyapunov sense for a specific incident angle. In the linear regime, when the surface

curvature is large enough, thermally activated self-diffusion stabilises the evolution of

wave components but away from this regime the model gives a cycloid function as a

stationary configuration.

4. The thermal spike induced by ion impingement is considered as the temporal lo-

cal temperature enhancement. This mechanism can explain ripple formation induced

by ion beams at low and moderate temperatures, namely without a significant con-

tribution of thermally activated surface diffusion at environmental temperatures. The

solution agrees with the a corresponding experimental observation of Carter and Vish-

nyakov.

5. The experimentally observed parallel mode ripple wavelength λ under various ion

species with different energies is predicted as 2πa for the effective energy deposition

depth a which is approximately estimated by the maximal ion stopping range.

6. Once the characteristic length of the periodic patterns exceeds a certain size, the

contribution of surface diffusion disappears because of a 4th order dependency on topog-

raphy. Then the topography converges to the shape of a travelling wave which appears

most clearly at the specific “magic angles” where a nonlinear term in the approximated

equations of motion disappears due to the contribution of the angular dependency of
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the sputtering yield Y0(θ) + Y ′′
0 (θ) related to behavior around the inflection point.

Although surface erosion occurs under ion beam irradiation, this theory

predicts that a local fast relocation process due to disordering induced by the

irradiation significantly contributes toward the essential driving force for the surface

nanostructuring. Suppressing sputtering can also promote well-defined ripple formation.

This theory provides reasonable explanations to experimental observations of parallel

mode ripple properties, such as wavelength, height, incident angular dependency of

structure formation under various types of ions with different energies but it does

differ from some previous approaches. As a result we suggest that further experiments

be performed such as the measurement of the velocity of the moving ripples which

could be used to determine the ‘u ’ parameter. If this parameter could then be

varied experimentally we should be able to see regions where the ripples appear clearly.

Previous models do not explicitly depend on this parameter and many are based on a

linearisation of the problem. Further experiments could involve making ripples with

optimum angles first and then changing the beam direction to 45◦, so that a full

investigation of how the ripples behave and their ion dependency especially in the non-

linear regime should help with the verification.

In contrast, where recrystallisation occurs between ion impacts, such as in most

metals under low energy bombardment or where the sputter effect is large enough to

dominate the relaxation process, ripple nanostructure formation is unlikely to occur.
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[44] Ziberi, B., Frost, F., Höche, Th. and Rauschenbach, B. 2005 Phys. Rev. B 72: 235310

[45] Yamamura, Y., Itikawa, Y. and Itoh, N. 1983 Institute of Plasma Physics, Nagoya University

Report No. IPPJ-AM-26

[46] Yamamura, Y., Mössner, C. and Oechsner, H. 1987 Radiat. Eff. 103: 25

[47] Eckstein, W. 2007 “Sputtering Yields”, in Sputtering by Particle Bombardment: Experiments and

Computer Calculations from Threshold to MeV Energies, edited by Behrisch, R. and Eckstein,

W. (Springer, Berlin)

[48] Zalm, P. C. 1983 J. Appl. Phys. 54(5): 2660

[49] Ziberi, B., Frost, F., Tarz, M., Neumann, H. and Rauschenbach, B. 2008 Appl. Phys. Lett. 92:

063102
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