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Abstract

We characterize the flow of a viscous suspension in an inclined channel where
the flow is maintained in a steady state under the competing influences of gravity
and an applied pressure drop. The basic model relies on a di↵usive-flux formalism.
Such models are common in the literature, yet many of them possess an unphysical
singularity at the channel centreline where the shear rate vanishes. We therefore
present a regularization of the basic di↵usive-flux model that removes this singu-
larity. This introduces an explicit (physical) dependence on the particle size into
the model equations. This approach enables us to carry out a detailed parameter
study showing in particular the opposing e↵ects of the pressure drop and gravity.
Conditions for counter-current flow and complete flow reversal are obtained from
numerical solutions of the model equations. These are supplemented by an ana-
lytic lower bound on the ratio of the gravitational force to the applied pressure
drop necessary to bring about complete flow reversal.

1. Introduction

Particles suspended in viscous flow occur in a wide variety of applications. In
certain technical operations (for example drilling oil wells), it is important to be
able to predict the properties of the suspension as a function of flow rate, par-
ticle size, etc., with a view to controlling the operation in real time [1]. There5

is therefore a strong motivation to develop accurate models to characterize the
hydrodynamics of the suspension. In this work we introduce a simple model to
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characterize the flow of suspension in an inclined channel under equilibrium condi-
tions. The modelling framework is the di↵usive-flux model. Such models certainly
abound in the literature – and many of them exhibit an unphysical singularity in10

the shear rate at the channel centreline. The main goal of this work therefore is to
introduce a self-consistent regularization that removes this singularity. A second
goal is to carry out a detailed parameter study based on the regularized model to
fully characterize the hydrodynamics as a function of the dimensionless parameters
in the problem – both in the horizontal and inclined cases. Before doing this, we15

place our work in the context of the existing literature on the subject.
There are at least two distinct approaches to modelling a suspension of dense

particles in a (Newtonian) liquid. In the first approach, called the suspension
balance model, the averaged dynamics of the suspended particles are described
in a statistical-mechanics formalism; this description is then coupled to the fluid20

mechanics of the problem. This model was first proposed in Reference [2]. A
review of the model (along with various refinements thereto) can be found in Ref-
erences [3, 4]. The model involves mass and momentum equations for the particle
phase (averaged over a test volume) and the mixture (again averaged over a test
volume), leading to four evolutionary equations in the first instance. Both mo-25

mentum equations involve particle-phase and mixture stress tensors respectively,
and the particle momentum equation further involves a hydrodynamic drag force,
meaning that three constitutive relations are required for closure. The closure is
achieved by modelling the hydrodynamic drag force and various viscous terms.
The particle-phase shear stress term is modelled by the introduction of an aux-30

iliary variable (the particle-phase ‘temperature’), leading to a set of five coupled
evolution equations. A simpler approach that makes predictions of comparable
accuracy to the suspension-balance model is the di↵usive-flux model, first intro-
duced in Reference [5] but based partly on earlier work [6] (see also Reference [7]).
The idea here is to focus entirely on the mixture for the hydrodynamic model,35

together with an advection-di↵usion equation for the volume fraction � of the par-
ticles. The particle flux in this equation is then modelled according to the collision
dynamics of the particles, to include shear-induced migration, viscous migration,
and gravitational settling.

In the present work, the di↵usive-flux model is adopted. The reasons for this40

choice are manifold: the di↵usive flux framework is both conceptually and ana-
lytically straightforward, and involves only a handful of parameters, all of which
can be estimated from benchmark cases. Although it has shortcomings (e.g. a
lack of a complete description of the anisotropy of particle interactions, leading
to incorrect predictions in complex geometries [4]), it produces good agreement45

between theory and experiments for flow profiles and volume profiles in relatively
simple geometries, e.g. horizontal pressure-driven pipe/channel flows, as well as in
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rotating shear flow [5]. The present work is focused on one such simple geometry,
namely channel flow. Finally, it has been shown that the suspension balance and
di↵usive-flux models share the same basic framework, the main di↵erence being50

the choice of closure relations for the di↵erent parameters [8].
In spite of the tractability of the di↵usive-flux model, in its basic form it cannot

be applied to fully-developed flow in an inclined channel. This is because the
model develops a singularity wherever the shear rate vanishes. A review of the
literature shows that this problem is overcome in certain highly specific contexts55

– e.g. resorting to a symmetry and placing the singularity at the centreline of
a horizontal pipe/channel [5], or exploiting the specific properties of interfacial
flows and placing the singularity at a free surface [9]. Yet the geometry of an
inclined channel prevents these solutions from being applied in the present context.
Furthermore, existing e↵orts to overcome these issues are incomplete. Reference [7]60

looks at inclined flows, but only in the context of Brownian particle di↵usion, which
is not relevant at the high Péclet numbers with which this work is concerned and in
any case is not a di↵usive-flux model. Reference [10] introduces a regularization of
the full di↵usive-flux model that removes the singularity through the introduction
of a collision rate proportional to a shear rate that is averaged over a particle65

radius. However, the averaging is accomplished using e↵ectively an L1 norm,
which on mathematical grounds is not optimal, as such an approach does not
completely regularize the model. (In detail, the shear stress is regularized by an
averaging technique involving an L1 norm, yet the L1 norm is not di↵erentiable,
hence the lack of a complete removal of the singularity by this means.) More70

importantly, the regularized model is not applied to inclined flows. Therefore, a
main aim of the present work is to derive a regularization procedure that fully
heals the singularity inherent in di↵usive-flux models. This then enables a full
parameter study for inclined flows that takes account of the di↵erent flow regimes
that arise as a result of the competing e↵ects of the pressure drop and gravity, as75

well as the bulk volume fraction and the channel inclination.
This work is organized as follows. In Section 2 the standard di↵usive-flux

model from the literature is summarized. A di↵usive-flux model specific to steady-
state operations in inclined channel flow is presented in Section 3, along with a
regularization to heal the singularity that would otherwise occur where the shear-80

rate vanishes. Results based on this approach are presented in Section 4, including
a detailed parameter study outlining the conditions under which di↵erent flow
regimes are observed. The observed flow regimes comprise regular flow (both fluid
and particles flowing upwards), countercurrent flow, and complete flow reversal.
We discuss the application of our model to suspending fluids with non-Newtonian85

rheology in Section 5, wherein concluding remarks are also given.
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2. General theoretical framework

In this section we summarize the full di↵usive-flux theoretical framework exis-
tant in the literature, with a view later on to subject this model to a regularization
technique to enable a full parameter study of the steady-state flow in an inclined
channel. The starting point is a momentum equation for the velocity u(x, t) of a
parcel comprising a mixture of particles and suspending fluid:

⇢(�)

✓
@u

@t
+ u ·ru

◆
= r · T + ⇢(�)g. (1)

where � is the particle-phase volume fraction, g is the acceleration due to gravity
and T is the mixture stress tensor. We start by assuming that the total mixture
stress tensor is given by T = �pI +�, in which p is the pressure, and � = µ(�)�̇.
Here �̇ is the rate-of-strain tensor with components �̇ij, where

�̇ij =
@ui

@xj
+

@uj

@xi
. (2)

The corresponding unsigned local rate of strain is given by

�̇ =
p

�̇ij �̇ij, (3)

where we sum over repeated indices. Furthermore, the density is given by

⇢(�) = ⇢p�+ ⇢f(1� �), (4)

where ⇢f is the constant fluid density and ⇢p is the particle density, also constant.
This is supplemented by the incompressibility condition r · u = 0.

The evolution of the volume fraction � is given by a flux-conservative equation,

@�

@t
+ u ·r� = �r · J�, (5)

where the particle flux J� is modelled according to the collision dynamics of the
particles, to include shear-induced migration, viscous migration, and gravitational
settling. A classification of the collective particle dynamics provide a means of
constituting the flux J�. The main e↵ect to consider is shear-induced migration,
which is based on the observation that in a dense suspension, particles that are
transported by a shear flow will collide. The collision rate is proportional to
��̇, where �̇ is the (unsigned) local shear rate. Particles will move from regions
where the collision rate is high to a nearby region where the collision rate is lower,
meaning that there is a shear-induced contribution Jc to the total flux, with Jc /
�r(��̇). Reference [5] gives the shear-induced flux as

Jc = �Dc�a
2r (��̇) , (6)
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where Dc is a dimensionless constant and a is the particle radius (a monodisperse
suspension of identical spherical particles is assumed). A second e↵ect is present
in viscous flows, whereby particles will move into regions of lower viscosity, from
regions of higher viscosity. In Reference [5] this is modelled in such a way that
the viscous contribution to the total flux is proportional to the ratio between the
viscosity gradient (giving the direction of migration) and the local viscosity, giving
a total contribution

Jv = �Dva
2�2�̇

✓
rµ

µ

◆
, (7)

where Dv is another dimensionless constant (both Dc and Dv can be thought of90

as O(1) rate constants related to the collision frequency, and can be determined
from experimental data, as in Reference [5]).

For particles whose density is greater than that of the suspending fluid, settling
will occur, leading to a gravitational flux. For Stokes flow, this can be modelled
as

Jg =
2a2(⇢p � ⇢f)�f(�)

9µf
g, (8)

where µf is the (constant) dynamic viscosity of the suspending fluid, and f(�) is the
so-called ‘hindrance function’, introduced here because the collective settling flux
in a suspension di↵ers from the corresponding single-particle expression because
neighbouring particles ‘hinder’ a given particle’s descent through the medium.
Using the same reasoning, walls also hinder settling, and exact expressions for
single-particle settling in the neighbourhood of a wall are known [11]; these e↵ects
may be parametrized through a modification of Equation (8):

Jg =
2a2(⇢p � ⇢f)�f(�)

9µf
g !(z). (9)

Expressions for !(z) can be found in the literature. Here we use

!(z) = A(z/a)2/
p
1 + A2(z/a)4,

with A = 1/6, (Reference [9] uses A = 1/18, but we have verified that the results
contained herein are insensitive to this choice), so that !(z) ! 0 as z ! 0 and
! ⇡ 1 away from z = 0. Also, numerous (and very similar) forms exist for the
hindrance function [8, 9, 12]; following References [9, 12], in the present work we
use f(�) = (1� �)µf/µ(�), where µ(�) is the e↵ective viscosity of the suspension.
For dense suspensions, the Krieger–Dougherty relation is appropriate here, giving
the e↵ective suspension viscosity as

µ(�) = µf

✓
1� �

�m

◆�⇠

, (10)
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where ⇠ is a positive constant and �m > 0 is the maximum volume fraction achiev-
able by the spherical particles. Following standard practice [9], we take ⇠ = 2 in
this work.95

For completeness, it is noted that the particles in the suspension will experience
thermal fluctuations, giving rise to a purely Brownian flux term Jd = �Dr�,
where D is the di↵usivity. The importance of the di↵usivity is estimated through
the particle Péclet number, Pe = �̇a2/D. For the present applications, this is
typically a large number [5], meaning that the Brownian contribution to the total
flux can be ignored. In this way, the particle flux J� is modelled as

J� = Jc + Jv + Jg + Jd, (11)

with the final (Brownian) contribution neglected in what follows.

3. Specific mathematical model including model regularization

 

U(z) 

x 
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gsin(D) 

-gcos(D) 
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dP/dL 

a 

H 

Figure 1: Schematic description of the model problem, with dP/dL > 0.

We consider pressure-gravity-driven flow in an inclined channel under equilib-
rium conditions as shown in Figure 1. The focus of the present work is on the
equilibrium scenario wherein the mixture shear stress balances with the pressure100

drop and the gravitational force. The reasons for this are manifold: it is a sim-
ple scenario amenable to a semi-analytical description; it is a scenario wherein
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di↵usive-flux models are known to produce acceptable results for the hitherto-
investigated horizontal case, and finally, it is an important base case that can be
generalized in the future to include a fully transient flow. Under these assump-105

tions, a fully developed flow corresponds to an equilibrium situation wherein the
pressure drop balances with the tangential stress and gravity force, such that the
relevant di↵usive-flux equations read

d�

dz
=

dP

dL
� ⇢(�)g sin↵, (12a)

0 = Jc + Jv + Jg, (12b)

where � = ±µ(�)�̇ is the (signed) shear stress of the mixture, and �̇ = |dU/dz| is
the unsigned local rate of strain (i.e. Equation (3) applied to channel flows [5]).
Here, the suspending fluid is assumed to be Newtonian; the e↵ects of a non-
Newtonian rheology in the suspending fluid are discussed briefly in Section 5. We
nondimensionalize the equations of motion based on the channel height H and the
characteristic velocity V , where

V =
H2

µf

dP

dL
,

thereby introducing dimensionless variables z̃ = z/H, Ũ = U/V , ė� = �̇(H/V )
and �̃ = �/�0, with �0 = µfV/H. Also, all densities are scaled relative to the110

density ⇢f of the suspending fluid. Based on these scaling rules, and based on the
closure relations for the fluxes described in Section 2, the following non-dimensional
equations of motion are obtained:

d�̃

dz̃
= 1� ⇢̃(�)ReFr�2 sin↵, (13a)

0 = Dc�
d

dz̃

⇣
ė��

⌘
+Dv�

2ė� 1
µ

dµ

dz̃

+
2(r � 1)�(1� �)

9µ̃(�)
ReFr�2 cos↵!(z̃), (13b)

where r = ⇢p/⇢f , ⇢̃ = r�+ (1� �), µ̃(�) = [1� (�/�m)]�⇠, and where

Re =
V H⇢f
µf

, Fr�2 =
gH

V 2
.

Following standard practice, the ornamentation over the dimensionless variables is
now dropped. We next rewrite Equation (13b) in terms of �, removing all instances
of �̇ as follows:

Dc�
d

dz

✓
|�|
µ
�

◆
+Dv�

|�|
µ2

dµ

dz
+

2(r � 1)�(1� �)

9µ(�)
ReFr�2 cos↵!(z) = 0. (14)
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A simple rearrangement of terms, by using the Krieger–Dougherty relation µ =
[1� (�/�m)]�2 and computing µ-derivatives, leads to

d�

dz
=

��d|�|
dz � 2

9Dc
ReFr�2(r � 1)(1� �) cos↵!(z)

|�|
h
1 + 2

⇣
Dv�Dc

Dc

⌘
�

�m��

i . (15)

Note that all explicit dependence of the problem on the particle size has dropped
out, as neither Equation (13b) nor Equation (15) exhibits an explicit dependence115

on a (there is however some implicit dependence, via the chosen functional form
of !(z)). This issue is commonly encountered in di↵usive-flux-type models, yet
is unphysical. This problem, as well as others described below, mean that it is
necessary to regularize Equation (15), which is the subject of the remainder of this
section.120

In practice, it is ill-advised to attempt to solve Equation (15) because of the
singularity at places where the shear stress vanishes (corresponding to the centre-
line in single-phase Poiseuille flow). This could be fixed by letting the collision
rate go to zero when the shear rate vanishes; however, this is unphysical. An
alternative would be proposing that “non-locality” is required in order to capture
the collision of particles with a deformation rate which is locally vanishing. To do
so, we consider the (unsigned) shear stress averaged over a single spherical particle
of radius a (see Appendix A):

�̂ =

s

�2 + 1
3a

2

✓
d�

dz

◆2

. (16)

Equation (16) and its implementation in the model equation (15) can be re-
garded as a non-local improvement of the basic Phillips model for an inclined
flow. E↵ectively, Equation (16) is the root-mean-square average shear stress over
a single particle. Use of the L2 norm (and hence the root-mean-square average)
in Equation (16) is justified because it renders the following calculations – in par-125

ticular, integrals – straightforward. More importantly, this approach means that
the shear stress appears in a di↵erentiable fashion in the final equation set. In
this way, all non-di↵erentiable contributions to the model equations (e.g. 1/|�|
and d|�|/dz in Equation (15)) are regularized. Crucially, this can be readily ex-
tended to out-of-equilibrium scenarios well beyond the simple scenario illustrated130

in Figure 1.
To understand how Equation (16) is worked into a balance model for the shear

stress and the volume fraction profiles, we start with the unregularized Equa-
tion (14) and replace all instances of |�| with �̂, to yield

Dc�
d

dz̃

✓
�̂

µ
�

◆
+Dv�

2 �̂

µ2

dµ

dz
+

2(r � 1)�(1� �)

9µ(�)
ReFr�2 cos↵!(z) = 0. (17)
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It is worth to observe that the Reynolds and Froude numbers combine together as

ReFr�2 =
⇢fg

dP/dL
. (18)

Equivalently, one may introduce the velocity V̂ =
p
(H/⇢f)(dP/dL), such that

ReFr�2 = gH/V̂ 2 and the dimensionless group can be identified as the inverse
of a squared Froude number (based on the rescaled velocity V̂ ). Throughout the
remainder of the work, we therefore use the dimensionless quantity

G := ReFr�2 (19)

as the key parameter. Notice that G(r�1) is nothing more than a local Richardson
number.

We proceed with calculations and reduce Equation (17) to

1 +

2(Dv �Dc)

Dc

�

�m � �

�
�̂
d�

dz
= �d�̂

dz
�� 2

9Dc
G(r � 1) cos↵(1� �)!(z), (20)

where the dimensionless average shear stress identified as

�̂ =

s

�2 + ✏2
✓
d�

dz

◆2

, ✏ = 1p
3
(a/H). (21)

Using Equations (13a) and (21), we obtain

d�̂

dz
=

1

�̂

✓
�
d�

dz
+ ✏2

d�

dz

d2�

dz2

◆
,

=
1

�̂

d�

dz

✓
� + ✏2

d2�

dz2

◆
,

=
�

�̂

d�

dz
� ✏2

�̂

d�

dz


G sin↵(r � 1)

d�

dz

�
, (22)

where � is the signed shear stress. Further regularization of the �-equation is135

applied whenever � = 0 or � = �m: in those cases, d�/dz is set to zero. This
forces � to remain within the physical bounds 0  �  �m. Thus, the fully
consistent regularized equation set reads

dU

dz
=

�

µ
, (23a)

d�

dz
= 1� G [r�+ (1� �)] sin↵, (23b)

d�

dz
=

8
<

:

0, if � = 0, or � = �m,
���

�̂
d�
dz �

2
9Dc

G(r�1)(1��) cos↵!(z)

�̂
h
1+2(Dv�Dc

Dc ) �
�m���

✏2

�̂2
d�
dz �G(r�1) sin↵

i , otherwise.
(23c)
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4. Results and parameter study140

Equation (23) is a two-point boundary value problem involving three first-order
ordinary di↵erential equations. Two boundary conditions are obvious: U(0) =
U(1) = 0, corresponding to no-slip at the channel walls. In practice, the third
boundary condition is prescribed as �(0) = �1, and �1 is adjusted until the corre-
sponding prescribed bulk cuttings volume fraction � is obtained, where

� =

Z 1

0

�(z) dz. (24)

In the present section, we report on results wherein the model ordinary di↵erential
equations (ODEs) (23) are solved numerically using a shooting method. Boundary
conditions at (U(0) = 0, �(0) = �1,�(0) = �1) are supplied and the parameter �1

is adjusted using a rootfinding procedure until the no-slip condition at z = 1 is also
satisfied. Also, the functional form for !(z) is taken directly from Reference [9],
which, when expressed in terms of dimensionless quantities, reads as

!(z) = Az2/
p
9✏4 + A2z4.

A full characterization of all the solutions to Equations (23) requires the explo-
ration of a multidimensional parameter space involving the five independent pa-
rameters (↵, ✏,�,G, r), with Dc = 0.43, Dv = 0.65, ⇠ = 2, �m = 0.68 set by theory
(e.g. References [5, 13]). Throughout this section, we set ✏ = 0.01. We also ini-
tially set ↵ = ⇡/12 and r = 2 and focus in the first instance on the ��G parameter145

subspace. However, we also subsequently investigate the e↵ects of varying angle
of inclination and density ratio – see Section 4.2 below.

4.1. Sample results
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(a) G = 0.1
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(b) G = 2
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(c) G = 10

Figure 2: Sample profiles for � = 0.35 and various values of G, corresponding to (a) weak gravity

e↵ect, (b) gravity e↵ect finely balanced compared to pressure e↵ect and (c) strong gravity e↵ect.

Increasing the gravity e↵ect leads to flow reversal, corresponding to a change in the direction of

the flow profile in (c). The values for the physical parameters r, ✏, and ↵ will be fixed throughout

the text as r = 2, ✏ = 0.01, and ↵ = ⇡/12.
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Figure 3: E↵ect on the volume-fraction and flow profiles of varying ✏. The other physical

parameters are the same as in Figure 2(a) (� = 0.35, G = 0.1).

Sample results are shown in Figure 2 for the case � = 0.35 and various values of
G. Here, in panel (a), the e↵ect of gravity is small compared to the applied pressure150

gradient, and the mixture flows up the channel under the applied pressure gradi-
ent. The volume-fraction profile and the mixture flow profile are similar to those
observed in pure pressure-driven channel flows, and the system is ‘well mixed’,
in the sense that a nonzero volume fraction extends from the bottom wall to the
top wall, with a maximum distribution of particles close to the channel centreline,155

corresponding to shear-induced migration. The volume-fraction profile possesses
a single sharp maximum: close inspection shows that this is not a ‘kink’ and that
the profile is smooth over lengthscales comparable to ✏. Increasing ✏ (Figure 3)
causes the profile to smoothen further over a wider range of scales, confirming
the e�cacy of the regularization introduced in Equation (23). Furthermore, the160

volume-fraction maximum is not attained exactly at the channel centreline: this
loss of symmetry is due to the importance of gravity in the problem. Symmetry
is recovered by setting G = 0.

Upon increasing the gravity e↵ect compared to the pressure e↵ect (panel (b)),
the system ceases to be well mixed, the particles settle, and a bed forms. The fluid165

velocity is correspondingly reduced to near-zero values in the bed, but the net flow
of matter is still in the negative x-direction. Upon increasing the gravity e↵ect
further, complete flow reversal happens (panel (c)). These results also suggest the
possibility of a near-stationary particle bed for suitable values of both � and G.
A sample of such a result is shown in Figure 4.170

To understand these trends in a more systematic way, contour plots of the
mixture volumetric flow rate and the particle volumetric flow rate were obtained.
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Figure 4: Stationary particle bed with clear layer of fluid transported upward (� = 0.4,G = 2.5).

These quantities are given by the respective equations

Qmixture =

Z 1

0

U(z) dz, Qparticles =

Z 1

0

�(z)U(z) dz; (25)

the fluid volumetric flow rate is obtained as Qfluid = Qmixture � Qparticles. For
simplicity, here and hereafter we will adopt the notation Q and Qp to denote
Qmixture and Qparticles, respectively. The corresponding plots are shown in Figure 5.
The existing results in Figure 2 appear in the flow-pattern map in Figure 5 as circles
corresponding to points in the parameter space: Figure 2(a) and (b) correspond175

to Q < 0 and hence an upward flux of the mixture while Figure 2(c) (o↵ the
scale in the presented flow-pattern map) corresponds to a downward flux of the
mixture. In both panels, there is a blank region in parameter space corresponding
to large particle volume fractions � and intermediate values of G. In this region, no
solution to the ODE system (23) exists. Physically, this region would correspond180

to a very high density of particles in a slow-moving or even stationary bed which
is unsustainable as an equilibrium solution, and would correspond to a ‘clogging
scenario’, wherein the particles overwhelm the flow and lead to a breakdown in
the fully-developed flow.
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Figure 5: (a) Mixture flowrate as a function of (�,G) showing flow reversal line Qmixture = 0

at large values of G; (b) Particle flowrate, showing reversal of particle flux at Qparticles = 0.

The cases already studied in Figure 2 are marked in panel (a) in the above as open circles,

with Figure 2(c) corresponding to a point outside of the illustrated domain, as shown by the

arrow in the above. A dimensional flowrate Q
⇤
can be recovered from Q via the identity Q

⇤
=

V HQ = (H
3
⇢fg/µf)G�1

Q, and similarly for Qp. Typical values for drilling applications are

⇢f = 1000� 1800 kg/m
3
, µf = 10� 60mPas, and H = 100mm.

4.2. Countercurrent flow and full parameter study185

Referring again to Figure 5(a), there is a critical curve (�c,Gc) (marked in a
solid black line) corresponding to parameter values for which Q = 0 (panel (a)).
Separately, in panel (b) there is a critical curve which Qp = 0. The curve Q = 0
corresponds to the situation of complete flow reversal, such that the mixture is
transported down the length of the channel (as opposed to direction implied in190

Figure 1). In contrast, the curve Qp = 0 corresponds to a reversal in the direction
of the particle flux. These two scenarios are connected but they are not the same.
In particular, the curves Q = 0 and Qp = 0 do not coincide – see Figure 6. For
comparison with the parameter studies that follow, the variables in Figure 6 are
chosen to be (�1,G), as opposed to (�,G).195

To examine the flow structure in the region enclosed by the curves Q = 0 and
Qp = 0 the parameters (�1,G) = (0.5, 3.85) were chosen and the corresponding
velocity and volume fraction profiles were generated (Figure 7). This figure demon-
strates that the region enclosed by the curves Q = 0 and Qp = 0 corresponds to a
countercurrent flow scenario, where a clear liquid layer is transported upwards and200

a dense particle-laden layer travels downwards. Based on the parameter study in
Figure 6 it can be expected that complete flow reversal is preceded by a small zone
of countercurrent flow (i.e. small in the (�1,G) parameter space). The importance
of the countercurrent flow to the operation of the system in the steady state can
be determined from the area enclosed by the curves Q = 0 and Qp = 0 in the205
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for which Q > 0, corresponding to the mixture moving down the channel. The region marked
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The region enclosed by the two curves corresponds to a scenario wherein the net movement of the

mixture is upwards but the particle flux is down, shown below to correspond to countercurrent

flow.
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Figure 7: Countercurrent flow regime corresponding to the parameter values (�1,G) = (0.5, 3.85).

Additional parameter values r = 2, ↵ = ⇡/12. The corresponding value of the bulk volume

fraction is � = 0.021.
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(�1,G) parameter space, and by the thickness of the corresponding countercurrent
layer (e.g. Figure 7).

In the above example, it can be seen that the countercurrent region is not
very large in parameter space, nor yet very important to the actual flow struc-
ture. Therefore, we complete a further parameter study wherein we investigate210

whether the regime of countercurrent flow can be extended by varying other flow
parameters, in particular the inclination angle ↵ and the particle density r. The
resulting mixture flowrate and particle flux for various values of (↵, r) are shown
in the flow-pattern maps in Figure 8. Changes to the density ratio and the angle of
inclination with respect to the base case (↵, r) = (⇡/12, 2) produce visible e↵ects215

in the structure of the flow-pattern maps. In particular:

• An increase in the angle of inclination ↵ means that the critical value of G
for the onset of complete flow reversal is lowered with respect to the base
case: from G ⇡ 4 to G ⇡ 1.5. This can be seen by comparing Figures 8(a)
and (c).220

• An increase in ↵ causes a downward surge in the particle flux at intermediate
volume fractions. This can be seen by comparing Figures 8(a) and (c) again:
for ↵ = ⇡/12 the quantity Qp attains large negative values at �1 ⇡ 0.2 and
G = 0, corresponding to an upward surge in the particle flux. In contrast, for
↵ = ⇡/4, Qp attains large positive values for large values of G and �1 ⇡ 0.5225

and corresponds to a downward surge in the particle flux.

• An increase in the density ratio r means that the region in parameter space
in which countercurrent flow is observed increases - albeit only slightly. This
can be seen by comparing Figures 9(a) and (b) and separately, Figures 8(c)
and (d).230

• Increases in either the angle of inclination or the density ratio lead to a
more prominent countercurrent flow structure, as evidenced by the contrast
between Figure 7 and Figure 9.

We have verified that increasing the angle of inclination beyond ↵ = ⇡/4 does not
introduce any further qualitative changes to the flow-pattern map. However, in235

order to maintain a just barely upwards-travelling flow, an increase in sin↵ will
need to be compensated with a corresponding decrease in G, so as to keep the
overall gravity e↵ect the same. This explains why the flow-reversal curves shift to
lower values of G with increases in sin↵ in Figure 8.

The above description is consistent with an analytical lower bound on the
critical value Gc necessary for the onset of complete flow reversal, which we derive
here. The result is that starting with G = 0, and for a fixed value of �1, it is
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Figure 8: Flow-pattern maps for various values of r and ↵. Subfigure (a) shows the previously-

considered base case r = 2, ↵ = ⇡/4. Each subfigure contains two panels showing Q on the left

and Qp on the right. The curves Q = 0 and Qp = 0 and their non-coincidence are shown in each

subfigure. The region enclosed by these curves corresponds to countercurrent flow. The curve

Q = 0 corresponds to the onset of complete flow reversal; the dashed line shows the lower bound

for the onset of complete flow reversal given by Equation (26).
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Figure 9: Countercurrent flow regimes with �1 = 0.5, and ↵ = ⇡/4, at di↵erent density ratios.

(a) r = 2, G = 1.39; (b) r = 5, G = 1.35.

necessary to increase G at least to the value

G =
1

sin↵

1

r�1 + (1� �1)
(26)

in order for the flow to reverse completely from upwards to downwards, that is,
the true critical value Gc for the onset of flow reversal is bounded below such that

Gc �
1

sin↵

1

r�1 + (1� �1)
.

One can see this as follows: for a scenario involving a strong upward flow, we240

will have U(z) < 0, with � a monotone-increasing function (Figure 10(a), solid
line). In contrast, for a strong downward flow the opposite situation will pertain
(Figure 10(b)). There is a crossover point where (d�/dz)0 = 0 – this condition
gives Equation (26). However, complete flow reversal does not happen exactly at
this point, since the scenario shown in Figure 10(a) (dashed line) may pertain.245

Therefore, G must be at or beyond the point given in Equation (26) in order for
the complete flow reversal to occur.
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Figure 10: Conditions for flow reversal: �(z) switches from increasing to decreasing at a threshold

value of G given by Equation (26). The situation in panel (a) (broken line) then pertains.

Only when G is increased beyond the threshold value of G does �(z) change to being a strictly

decreasing function whereupon complete flow reversal occurs.

We have checked that the critical curve for the onset of complete flow reversal
lies above the lower bound in Equation (26) for each of the parameter cases consid-
ered in Figure 8 – the bound is shown as a dashed curve in that figure. The bound250

is by no means sharp, although it sharpens with increasing inclination angle; the
sharpness of the bound also increases with decreasing density ratio.

5. Discussion and conclusions

So far we have considered only the case wherein both the suspending fluid
and the mixture possess a Newtonian rheology. In practice, these are unrealistic255

assumptions – particularly the latter. However, since the rheological properties
of many fluids can be fitted to a Herschel–Bulkley model, the applicability of
the regularized di↵usive-flux equations is recovered by introducing the Herschel–
Bulkley model into the momentum-balance equation. We outline here the main
changes required to implement this step. Crucially, constitutive modelling of four260

quantities is required to close the non-Newtonian version of Equation (23). These
are the mobility function, the consistency, power-law index for the rheological
model, and the Bingham number, detailed here as follows:

• A model for the settling viscosity in a Herschel–Bulkley fluid. Thus, equa-
tion (8) must be replaced by

Jg = ��MNN(�, z)Fr
�2(sin↵, 0,� cos↵), (27)

where the mobility function MNN(�, z) is to be determined.
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• The Herschel–Bulkley model for the suspension, given by a (non-dimensional)
constitutive relation of the form

µ(�) = k(�)�̇n(�)�1 +
Bn(�)

�̇
. (28)

Here, k(�) is the non-dimensional consistency, n(�) is the power and Bn(�) is265

the non-dimensional Bingham number. Thus, (k(0), n(0),Bn(0)) correspond
to a reversion to the rheological properties of the pure suspending fluid, i.e.
� = 0. These considerations lead to a constitutive relation for the viscous
component of the suspension stress tensor, � = µ(�)�̇.

An example of how the rheological parameters (n,Bn, k) can be measured as a270

function of the volume fraction and then fitted to a Herschel–Bulkley model can
be found in Reference [14]. Once these relations are supplied, the ODE system (23)
can be reformulated as follows:

dU

dz
=

8
<

:
sign(�)

⇣
|�|�Bn(�)

k(�)

⌘1/n(�)

, |�| > Bn(�),

0, otherwise,
(29a)

d�

dz
= 1� ReFr�2 [r�+ (1� �)] sin↵, (29b)

d�

dz
=

8
><

>:

0, if � = 0, or � = �m,
���

�̂
d�
dz �

1
Dc

Fr�2MNN (�,z) cos↵

�̂
h
1+2(Dv�Dc

Dc ) �
�m���

✏2

�̂2
d�
dz �ReFr�2(r�1) sin↵

i , otherwise.
(29c)

A thorough analysis of these equations is left for future work, although we note in
passing that the parameter space of Equations (29) is much enlarged with respect275

to the present study.
A second future aspect concerns the study of the suspension under transient

simulations, via direct numerical simulation. It will be straightforward formally to
couple the regularized momentum-balance equation (1) to the di↵usive-flux trans-
port equation (5), although a thorough analysis of the resulting system may be280

required to ensure a robust numerical solution, as the regularization introduces
higher-order velocity derivatives into the di↵usive-flux transport equation. Fi-
nally, the study of the system behavior under transient conditions can be linked
to complex geometries such as those found in oil-well-drilling by investigating the
linear stability of a suspension flow in a eccentric Taylor–Couette geometry. Such285

work has already been done for ordinary Newtonian flows [15]; it would be of great
theoretical and practical interest to extend this to suspensions such as the model
suspension considered herein.

Summarizing the present work, we have introduced a regularized di↵usive-
flux model for a viscous suspension. The regularization removes the unphysical290
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cusp in the volume-fraction profile at points where the shear rate vanishes. It
also introduces an explicit dependence on the particle radius into the problem.
The model enables a complete exploration of the parameter space involving the
ratio G = ⇢fg/(dP/dL), the density ratio r = ⇢p/⇢f , the angle of inclination, and
the bulk volume fraction. The flow regimes are mapped as a function of these295

parameters and conditions for complete flow reversal and countercurrent flow are
identified.

Acknowledgements

We would like to acknowledge the Norwegian Research Council for financial
support in generating this paper. R.B. acknowledges the support of Science Foun-300

dation Ireland under grant 12/IA/1683 and the support of the Irish Research
Council under the ‘New Foundations’ Scheme 2014. This work arose from the
102nd European Study Group with Industry, hosted by University College Dublin,
Ireland in July 2014. The work is based on the project provided by the Interna-
tional Research Institute Stravanger (IRIS), Norway. The authors acknowledge305

the presentation of the problem by Fionn Iversson and Johnny Petersen, and for
the ongoing engagement of Fionn Iversson in the work. The authors recognize the
participation of the members of the study group, including Panagiotis Giounan-
lis, Susana Gomes, Dan Lucas, Orlaith Mannion, Rachel Mulungye, and Brendan
Murray. The authors also acknowledge the improvements suggested by one of the310

anonymous referees.

Appendix A. Root-mean-square average of the shear stress over a par-
ticle

We demonstrate here how Equation (16) in the main text amounts to the root-
mean-square average shear stress over the particle. For, consider a particle located
at x0 in the domain. The mixture shear stress at this point is �(x0). In the present
context of unidirectional flow, � = ±µ(�)�̇ is the scalar-valued signed shear stress
of the mixture, and �̇ = |dU/dz| is the rate of strain. We emphasize that the
approach in this appendix can be generalized to arbitrary flows. Instead of using
|�| in the di↵usive-flux model (e.g. as in Equation (15)), we consider instead the
following averaged shear stress, where the average is taken in the L2 norm:

�̂(x0) =


1

|S(x0, a)|

Z

S(x0,a)

�2(x)dS

�1/2
(A.1)

where S(x0, a) is the sphere of centre x0 and radius a and |S(x0, a)| is the surface
area of the sphere (i.e. particle surface area, equal to 4⇡a2 in three dimensions).315

Also, dS denotes an infinitesimal patch of area on the boundary sphere S(x0, a). In
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what follows, it is important to compute the averages in a fully three-dimensional
manner: although the assumed flow is unidirectional, the particles are embedded in
a three-dimensional domain, and hence, the three-dimensional averaging technique
is necessary.320

Because the particles are assumed to have a small radius in comparison to the
channel height, the shear stress is expanded in a Taylor expansion, centred at the
particle centre, to second order:

�(x) = �(x0) + (xi � x0i)bi +
1
2(xi � x0i)(xj � x0j)Aij,

bi =
@�

@xi

����
x0

, Aij =
@2�

@xi@xj

����
x0

(A.2)

where we sum over repeated indices. We denote the radicand in Equation (A.1)
by I; we have

I =
1

|S(x0, a)|

Z

S(x0,a)

�2(x)dS,

=
1

|S(x0, a)|

Z

S(x0,a)

⇥
�(x0) + (x� x0i)bi +

1
2(x� x0i)(x� x0j)Aij

⇤2
dS,

= [�(x0)]
2 + 2|S(x0, a)|�1�(x0)bi

Z

S(x0,a)

(xi � x0i)dS

+ |S(x0, a)|�1


bi

Z

S(x0,a)

(xi � x0i)dS

�2

+ |S(x0, a)|�1�(x0)Aij

Z

S(x0,a)

(x� x0i)(x� x0j)dS + higher-order terms.

Doing the integrals and neglecting the higher-order terms, this works out to be

I = �(x0)
2 + 1

3a
2|b|2 + 1

3a
2�(x0)Aij�ij,

= �(x0)
2 + 1

3a
2[r�(x0)]

2 + 1
3a

2�(x0)r2�(x0). (A.3)

valid to second order in a Taylor expansion. For a unidirectional flow, this reduces
to

I = [�(x0)]
2 + 1

3a
2 [�0(x0)]

2 + 1
3�(x0)a

2 [�00(x0)]
2 , (A.4)

where �0 = d�/dz etc.
The second-order derivative is problematic in Equation (A.4). However, it can

safely be ignored. For, the terms proportional to a2 are important only when
�(x0) ! 0. In this limit, the term involving the second-order derivative tends to
zero as well. In other words, we have the following approximation:

I ⇡
(

1
3a

2 [�0(x0)]
2 for �(x0) ! 0,

[�(x0)]2 otherwise,
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meaning that the approximation

I ⇡ [�(x0)]
2 + 1

3a
2 [�0(x0)]

2

is uniformly valid, hence

�̂(x0) ⇡
q

[�(x0)]
2 + 1

3a
2 [�0(x0)]

2

i.e. Equation (16) in the main text is recovered.325
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