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Abstract

The spectral properties of the pseudo-differential operator (−d2/dx2)1/2 + x2 are analyzed by a
combination of functional integration methods and direct analysis. We obtain a representation of
its eigenvalues and eigenfunctions, prove precise asymptotic formulae, and establish various analytic
properties. We also derive trace asymptotics and heat kernel estimates.
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1 Introduction

Stochastic methods based on functional integration applied to the study of properties of pseudo-
differential operators and related semigroups offer a powerful alternative to the techniques of analysis
[3, 8]. Typical problems addressed include spectral properties of the operator, heat kernel estimates,
Lp-boundedness, ultracontractivity properties, and the decay of the eigenfunctions.

In the paper [10] we study analytic properties of evolution semigroups generated by fractional
Schrödinger operators

Hα = (−∆)α/2 + V, 0 < α < 2

with (fractional) Kato-class potentials V . As α 6= 2 these operators generate non-Gaussian α-stable
processes running under the potential V . These are Lévy processes with paths having jump discontinu-
ities. The well-known case α = 2 corresponds to standard Schrödinger operators generating Brownian
motion in the presence of V (which is an Itô diffusion under extra conditions on the potential). The
properties of Schrödinger operators and fractional Schrödinger operators in many aspects markedly
differ. One sharp contrast appears in the decay properties of their ground state (first eigenfunction).
Specifically, the ground state of a Schrödinger operator with pinning potential V (x) → ∞ as |x| → ∞
decays (super)exponentially while it decays only polynomially in the case of fractional Schrödinger
operators. This difference is due to the heavy tails of stable processes, as opposed to the Gaussian
tail of Brownian motion. Another remarkable difference is that, roughly, the Schrödinger semigroups
e−t(−∆+V ) are intrinsically ultracontractive for super-quadratically increasing potentials, while this

property holds for fractional Schrödinger semigroups e−t((−∆)α/2+V ) already for potentials increasing
faster than logarithmically.

Our aim in the present paper is to focus on one single pseudo-differential operator and derive
fine details on its spectrum and eigenfunctions by using a combination of functional integration and
hands-on analytic methods. We will consider the operator

H =

√
− d2

dx2
+ x2

and obtain various formulae and estimates on its kernel, eigenfunctions, and spectrum. The interest
in this particular choice is twofold. One is that in order to further develop the more general theory it
is important to have cases of reference with as detailed information as possible. The results we obtain
below are indeed more refined than the general methods using either pseudo-differential calculus or
functional integration provide, and we view this paper as complementary to the more general results
in [7, 13]. A second motivation is that there is much controversy in the physics literature (see, for
instance, [12, 5]) about claimed solutions of fractional Schrödinger equations. Due to non-locality of
these operators such equations are more delicate than usual Schrödinger equations and an appropriate
rigorous mathematical treatment is necessary. The operator we consider describes the massless (semi-)
relativistic quantum harmonic oscillator studied in physics.

Our main results are as follows. First we derive a functional integral representation which allows to
define H as a self-adjoint operator. From the results of [9] it follows that the first eigenfunction (ground
state) ϕ1 of H is bounded both from below and above by x−4 with suitable prefactors, moreover, for
all other eigenfunctions |ϕn(x)| 6 constϕ1(x) holds. Due to the special choice of the potential, by
using special functions we improve this result to a detailed asymptotic expansion of eigenfunctions, in
particular, tighten the order of magnitude on the bounds (Theorem 3.10 below). Secondly, in [11] it
was proven that the eigenfunctions are uniformly bounded for the case of the Cauchy process run in
an interval only. We prove uniform boundedness of all eigenfunctions for H on R (Theorem 3.13), and
show that the set of zeroes of each eigenfunction is finite (Corollary 3.12). Also, we discuss the shape
of the ground state (Theorem 3.14). On the eigenvalues our main results are the precise asymptotic
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expansions in Corollary 3.6 resulting from Theorem 3.5, in which we prove that the eigenvalues are
simple. We also obtain a spectral gap estimate (Corollary 3.9), and derive the trace asymptotics in
Theorem 3.8. We give a heat kernel estimate in Theorem 3.13.

The plan of the paper is the following. In Section 2 we derive a Feynman-Kac-type formula for
a class of operators covering our case and then particularize to our chosen operator. We use the
functional representation to define the operator as a self-adjoint operator. In Section 3 we show that
the Fourier transform of the eigenfunctions satisfy the Airy equation under appropriate boundary
conditions. This allows us to identify the spectrum of the fractional harmonic oscillator operator and
derive some asymptotic formulae. Furthermore, here we present the main results as discussed above.
In a short Section 4 we provide an appendix of the used facts on Airy functions.

2 Functional integral representation

Recall that the linear operator with domain Hα(Rd) = {f ∈ L2(Rd) : |k|αf̂ ∈ L2(Rd)}, 0 < α < 2,

d > 1, defined by ̂(−∆)α/2f(k) = |k|αf̂(k), is the fractional Laplacian of order α. It is essentially
self-adjoint on C∞

0 (Rd), and its spectrum is Spec((−∆)α/2) = Specess((−∆)α/2) = [0,∞).
Let V : Rd → R be a bounded Borel measurable function. We call (−∆)α/2 + V , 0 < α < 2, a

fractional Schrödinger operator with potential V , where V acts as a multiplication operator. Since V
is a bounded function, the operator (−∆)α/2 + V is self-adjoint on Dom((−∆)α/2) defined as a sum
of two self-adjoint operators. Therefore Spec((−∆)α/2 + V ) ⊂ [0,∞).

Let (ΩX ,FX , PX ) be a probability space and (Xt)t>0 a real valued symmetric α-stable process
on it, with 0 < α < 2. (Xt)t>0 is a non-Gaussian Lévy process, in particular it has independent
and stationary increments. We use the notations P x and Ex, respectively, for the distribution and
the expected value of the process starting in x ∈ R at time t = 0; for simplicity we do not indicate
the measure in subscript (while we do when have any other measure or process). The characteristic
function of (Xt)t>0 is given by

E
0[eiξXt ] = e−t|ξ|α , ξ ∈ R, t > 0. (2.1)

As a Lévy process, (Xt)t>0 has a version with paths in D([0,∞);Rd), the space of càdlàg functions
(i.e., right continuous functions with existing left limits).

Recall that a subordinator (St)t>0 on a given probability space (ΩS ,FS , PS) is an almost surely
non-decreasing [0,∞)-valued Lévy process starting at 0. An example is the (α/2)-stable subordinator
(St)t>0 uniquely determined by its Laplace transform

E
0
PS

[e−λSt ] = e−tλα/2
, t > 0, λ > 0. (2.2)

Consider standard Brownian motion (Bt)t>0 on a given probability space (ΩW ,FW , PW ), where
PW is Wiener measure. Clearly,

E
0
PW

[eiξBt ] = e−t|ξ|2 , ξ ∈ R, t > 0. (2.3)

It is a standard fact that any symmetric α-stable process (Xt)t>0 can be obtained as a random time
change of Brownian motion where this random time process is an (α/2)-stable subordinator (St)t>0.
It is convenient to consider the processes (Bt)t>0 and (St)t>0 on two different probability spaces
(ΩW ,FW , PW ) and (ΩS ,FS , PS). Then the process (Xt)t>0 can be obtained in terms of subordinate
Brownian motion with respect to the (α/2)-stable subordinator:

Xt : ΩPW
× ΩPS

∋ (ω, τ) 7−→ BSt(τ)(ω) := Xt(ω, τ).
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This can also be seen by the composition of the characteristic exponent (2.3) with the Laplace exponent
(2.2) which gives (2.1). Furthermore, P can then be identified as the image measure of this process
on D([0,∞);Rd) such that

P x(Xt ∈ A) = (P x
W × P 0

S)(BSt ∈ A)

holds for all Borel sets A ⊂ Rd.

In what follows we take the case d = 1, α = 1, i.e., the operators
√

− d2

dx2 , V (x) = x2 so that we

will consider the fractional Schrödinger operator

H :=

(
− d2

dx2

)1/2

+ x2. (2.4)

The symmetric 1-stable process (Xt)t>0 is also known as Cauchy process whose one-dimensional dis-
tributions are given explicitly by

P x(Xt ∈ dy) =
1

π

t

t2 + (x− y)2
dy, x ∈ R.

Our main concern in this paper is to study the spectral properties of H by using functional integration
methods.

First we show how H relates with the Cauchy process. We have the following Feynman-Kac-type
formula, which we state in d dimensions and a class of V containing our special case (see [7, 10] for
more general pseudo-differential operators).

Theorem 2.1. Let V ∈ L∞(Rd) and (Xt)t>0 be a d-dimensional Cauchy process. We have

(f, e−t(
√
−∆+V )g) =

∫

Rd

dxEx
[
f(X0)g(Xt)e

−
∫ t
0
V (Xs)ds

]
. (2.5)

Proof. We divide the proof into four steps.

(Step 1) Suppose V ≡ 0. Our first claim is

(f, e−t(
√
−∆)g) =

∫

Rd

dxEx
[
f(X0)g(Xt)

]
. (2.6)

We regard the process (Xt)t>0 as the composition of Brownian motion (Bt)t>0 and the 1/2-stable
subordinator (St)t>0 as explained above. Let Eλ denote the spectral projection of the self-adjoint
operator −∆ > 0. Then by using (2.2) and the usual Feynman-Kac formula for et∆ we have

(
f, e−t

√
−∆g

)
=

∫ ∞

0
e−t

√
λd(f,Eλg) =

∫ ∞

0
E
0
PS

[
e−λSt

]
d(f,Eλg)

= E
0
PS

[∫ ∞

0
e−Stλd(f,Eλg)

]
= E

0
PS

[
(f, e−St(−∆)g)

]

= E
0
PS

[∫

Rd

dxEx
PW

[f(B0)g(BSt)]

]
=

∫

Rd

dxEx[f(X0)g(Xt)],

thus (2.6) follows.

(Step 2) Let 0 = t0 < t1 < ... < tn, f0, fn ∈ L2(Rd) and assume that fj ∈ L∞(Rd), for j = 1, 2, ..., n−1.
We claim that


f0,

n∏

j=1

e−(tj−tj−1)
√
−∆fj


 =

∫

Rd

dxEx


f(X0)

n∏

j=1

fj(Xtj )


 . (2.7)
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For simplifying the notation put sj = tj − tj−1, for any j = 1, ..., n and

gi = fi




n∏

j=i+1

e−sj
√
−∆fj


 , j = 1, ..., n − 1, gn = fn.

Notice that gj = fje
−sj+1

√
−∆gj+1. By (2.6) the left hand side of (2.7) can be represented as

∫

Rd

dxEx
[
f(X0)g1(Xs1)

]
=

∫

Rd

dxf(x)Ex [g1(Xs1)] .

Using (2.6) again, we obtain

E
x
[
gj(Xsj )

]
=

∫

Rd

p(sj , y − x)gj(y)dy =

∫

Rd

p(sj, y − x)fj(y)e−sj+1

√
−∆gj+1(y)dy

=

∫

Rd

E
y
[
p(sj ,X0 − x)fj(X0)gj+1(Xsj+1)

]
dy

=

∫

Rd

p(sj , y − x)fj(y)Ey
[
gj+1(Xsj+1)

]
dy = E

x
[
fj(Xsj )E

Xsj
[
gj+1(Xsj+1)

]]
,

for j = 1, ..., n − 1. The above equalities yield

f0,

n∏

j=1

e−sj
√
−∆fj


 =

∫

Rd

dxEx
[
f(X0)f1(Xs1)×

×E
Xs1

[
f2(Xs2)EXs2

[
f3(Xs3)EXs3

[
. . .EXsn−1 [fn(Xsn)] . . .

]]]]
,

and (2.7) follows by the Markov property of (Xt)t>0.

(Step 3) Let now 0 6= V ∈ Cb(R
d). We show (2.5) for such V . Since

√
−∆ is self-adjoint, the Trotter

product formula holds:
(
f, e−t(

√
−∆+V )g

)
= lim

n→∞

(
f,
(
e−(t/n)

√
−∆e−(t/n)V

)n
g
)
.

Combined with (Step 2) it yields

(
f, e−t(

√
−∆+V )g

)
= lim

n→∞

∫

Rd

dxEx
[
f(X0)g(Xt)e

−
∑n

j=1(t/n)V (Xtj/n)
]
.

Since each càdlàg path s 7→ ω(s) = Xs(ω) is continuous in s ∈ [0, t] except for at most finite points,
we have

∑n
j=1(t/n)V (Xtj/n) →

∫ t
0 V (Xs)ds as n → ∞ in the sense of Riemann integral. Thus (2.5)

follows for V ∈ Cb(R
d).

(Step 4) We make use of the argument in [16, Theorem 6.2] to complete the proof. Suppose that
V ∈ L∞(Rd) and let Vn = φ(x/n)(V ∗ hn), where hn = ndφ(nx) with φ ∈ C∞

0 (Rd) such that
0 6 φ 6 1,

∫
φ(x)dx = 1 and φ(0) = 1. Then Vn → V almost everywhere and Vn are bounded

and continuous. Let N denote the set of all x such that Vn(x) does not converge to V (x). Then
the measure of {t ∈ [0,∞) : Xt(ω) ∈ N} is zero P x-almost surely and

∫ t
0 Vn(Xs)ds →

∫ t
0 V (Xs)ds as

n → ∞ P x-a.s. Thus
∫

Rd

dxEx
[
f(X0)g(Xt)e

−
∫ t
0 Vn(Xs)ds

]
→
∫

Rd

dxEx
[
f(X0)g(Xt)e

−
∫ t
0 V (Xs)ds

]

as n → ∞. On the other hand, e−t(
√
−∆+Vn) → e−t(

√
−∆+V ) in strong sense as n → ∞, since√

−∆ + Vn →
√
−∆ + V on the domain Dom(

√
−∆).
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We can use Theorem 2.1 to define
√
−∆+V as a self-adjoint operator. We define the Feynman-Kac

semigroup

(Ttf)(x) = E
x
[
e−

∫ t
0 V (Xs)dsf(Xt)

]
, f ∈ L2(Rd), x ∈ R

d.

Theorem 2.2. Let V ∈ L1
loc(R

d) such that V > 0. Then {Tt : t > 0} is a strongly continuous
symmetric semigroup. In particular, there exists a self-adjoint operator K bounded from below such
that e−tK = Tt.

K can be identified as the self-adjoint operator
√
−∆ + V for 0 6 V ∈ L1

loc(R
d).

Proof. Since 0 6 V ∈ L1
loc(R

d) there exist C
(0)
V , C

(1)
V > 0 such that

sup
x∈Rd

E
x[e−

∫ t
0 V (Xs)ds] 6 eC

(0)
V +C

(1)
V t. (2.8)

Therefore we have

‖Ttf‖2 6

∫

Rd

dxEx
[
e−2

∫ t
0 V (Xs)ds|f(Xt)|2

]

6 Ct

∫

Rd

dxEx
[
|f(Xt)|2

]

= Ct‖e(t/2)∆f‖2 6 Ct‖f‖2,
with some Ct > 0. Thus Tt is a bounded operator from L2(Rd) to L2(Rd). Similarly as in Step 2 of
the proof of Theorem 2.1 it is seen that the semigroup property TtTs = Tt+s holds for t, s > 0.

To obtain strong continuity of Tt in t it suffices to show weak continuity. Let f, g ∈ C∞
0 (Rd). Then

we have

(f, Ttg) =

∫

Rd

dxEx,0
PW×PS

[
f(B0)g(BSt)e

−
∫ t
0
V (BSr )dr

]
.

Since St(τ) → 0 as t → 0 for each τ ∈ ΩPS
, dominated convergence gives (f, Ttg) → (f, g).

Finally, we check the symmetry property T ∗
t = Tt. Let B̃s = B̃s(ω, τ) = BSt(τ)−s(ω) − BSt(τ)(ω).

For every τ ∈ ΩPS
we have then B̃s

d
= Bs with respect to P x

W (
d
= denotes that the random variables

are identically distributed). Hence

(f, Ttg) =

∫

Rd

dxf(x)Ex,0
PW×PS

[
e−

∫ t
0 V (B̃Sr )drg(B̃St)

]

= E
0,0
PW×PS

[∫

Rd

dxf(x)e−
∫ t
0
V (x+B̃Sr )drg(x + B̃St)

]

= E
0,0
PW×PS

[∫

Rd

dxf(x− B̃St)e
−

∫ t
0 V (x+B̃Sr−B̃St)drg(x)

]
.

In the second equality we changed the variable x to x−B̃St . Since B̃St

d
= −BSt and B̃Sr−B̃St

d
= BSt−Sr ,

we have

(f, Ttg) =

∫

Rd

dxEx,0
PW×PS

[
f(BSt)e

−
∫ t
0 V (BSt−Sr )drg(x)

]
.

Moreover, as St − Sr
d
= St−r for 0 6 r 6 t, we obtain

(f, Ttg) =

∫

Rd

dxEx,0
PW×PS

[
f(BSt)e

−
∫ t
0 V (BSt−r

)drg(x)
]

=

∫

Rd

dxEx,0
PW×PS

[
f(BSt)e

−
∫ t
0
V (BSr )dr

]
g(x) = (Ttf, g).

The existence of a self-adjoint operator K bounded from below such that Tt = e−tK follows now by
the Hille-Yoshida theorem. This completes the proof.
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3 Eigenvalues and eigenfunctions of H

3.1 Basic regularity properties

From now on we consider H defined by (2.4) and the related Feynman-Kac semigroup. {Tt : t > 0} is
given by an integral kernel, i.e., there exists u(t, x, y) such that

(Ttf)(x) =

∫

R

u(t, x, y)f(y)dy, x ∈ R, f ∈ L2(R).

Lemma 3.1. For every t > 0, the operators Tt are compact.

Proof. [9], Lemma 1.

Lemma 3.2. Let u(t, x, y) be the integral kernel of the Feynman-Kac semigroup {Tt : t > 0}. The
following properties hold:

1. for every t > 0 the function u(t, ·, ·) is continuous, strictly positive, and bounded on R× R

2. the semigroup is intrinsically ultracontractive, i.e., there exists C(t) > 0 such that u(x, y, t) 6

C(t)ϕ1(x)ϕ1(y), for all t > 0 and x, y ∈ R, where ϕ1 is the first eigenfunction of
√

− d2

dx2 + x2.

Proof. [9].

By Lemma 3.1 above the spectrum of H is purely discrete and there exists an orthonormal basis in
L2(R) consisting of eigenfunctions ϕn such that Ttϕn = e−λntϕn, where 0 < λ1 < λ2 6 λ3 6 . . . → ∞
are the eigenvalues. Using the relation between the semigroup {Tt : t > 0} and its generator H we get
in strong sense

Hϕn(x) = lim
t↓0

Ttϕn(x) − ϕn(x)

t
= lim

t↓0
e−λnt − 1

t
ϕn(x) = −λnϕn(x), x ∈ R,

which means that the functions (ϕn)n∈N are also eigenfunctions of the Schrödinger operator H and

√
− d2

dx2
ϕn(x) + x2ϕn(x) = λnϕn(x), x ∈ R. (3.1)

We conclude this section by discussing some basic regularity properties of the eigenfunctions of H.

Lemma 3.3. For every n = 1, 2, . . . we have ϕn ∈ L1(R).

Proof. For every x ∈ R define

f(x) = E
x
[
e−

∫ 1
0
X2

s ds
]

and denote by τ := inf{s > 0 : Xs 6 −1} the first exit time of the process (Xt)t>0 from the half-line
(−1,∞). Then, for every x ∈ R such that x > 2 we have

f(x) = E
x
[
e−

∫ 1
0
X2

sds
]

= E
0
[
e−

∫ 1
0
(Xs+x)2ds

]

6 E
0
[
e−

∫ 1∧τ
0

(Xs+x)2ds
]

6 E
0
[
e−(x−1)2

∫ 1∧τ
0

ds
]

= E
0
[
e−(x−1)2(1∧τ)

]

6 e−(x−1)2 +

∫ ∞

1
e−(x−1)2zg(z)dz,
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where g(z) is a density function of the random variable τ . The explicit formula for g was derived by
Darling [4] (compare also [3, 11]). There exists a constant c1 > 0 such that for every x > 2 we have
g(x) < c1x

2 ([3], p. 286). Thus

f(x) 6 e−(x−1)2 + c1

∫ ∞

1
e−(x−1)2zz2dz 6 e−(x−1)2

(
1 + c1

∫ ∞

0
e−(x−1)2u(u + 1)2du

)
6 c2e

−(x−1)2

whenever x > 2. The same argument for x < −2 shows that there is a constant c3 such that for every
|x| > 2

f(x) 6 c3e
−(|x|−1)2 .

Finally, we get

∫

R

|ϕn(y)|dy = eλn

∫

R

|T1ϕn(y)|dy 6 eλn

∫

R

∫

R

u(1, x, y)|ϕn(x)|dxdy

= eλn

∫

R

f(x)|ϕn(x)|dx = eλn

(∫

|x|62
+

∫

|x|>2

)
f(x)|ϕn(x)|dx

6 eλn

(∫ 2

−2
|ϕn(x)|dx + c3

∫

|x|>2
e−(|x|−1)2 |ϕn(x)|dx

)
< ∞,

where the last inequality is a consequence of the fact that ϕn ∈ L2(R).

In fact, a stronger property is true, which we will need below.

Lemma 3.4. We have that x2ϕn ∈ L1(R), for all n = 1, 2, ...

Proof. For V (x) = x2 the estimate

ϕ1(x) 6
C

V (x)|x|d+α

holds for the first eigenfunction (ground state) ϕ1(x), see [9], Theorem 1. Since the Feynman-Kac
semigroup is intrinsically ultracontractive by Lemma 3.2 above,

|ϕn(x)| 6 cn
x4

, |x| > 1 (3.2)

follows. Then the proof of the claim is straightforward.

3.2 Eigenvalues

We will determine the functions ϕn and corresponding eigenvalues λn starting from the relation (3.1).
Denote the Fourier transform of eigenfunctions by

yλn(x) := ϕ̂n(x) =
1√
2π

∫

R

eixzϕn(z)dz.

Note that yλn is well-defined since ϕn ∈ L1(R) by Lemma 3.3. Moreover, Lemma 3.4 implies that
yλn ∈ C2(R), n = 1, 2, ... By performing Fourier transform in (3.1)

− y′′λn
(x) + |x|yλn(x) = λnyλn(x) (3.3)

is obtained. We are looking for yλ ∈ C2(R) ∩ L1(R) satisfying

− y′′λ(x) + |x|yλ(x) = λyλ(x), λ > 0. (3.4)
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Notice that if a function yλ(x) is a solution of (3.4), then the function yλ(−x) is also a solution. Hence
it suffices to consider equation (3.4) only for x > 0 and construct even and odd solutions on the whole
real line.

For x > 0 equation (3.4) takes the form

y′′λ(x) − (x− λ)yλ(x) = 0.

On substituting z = x− λ, fλ(z) = yλ(x) the equation reduces to the Airy differential equation (4.1)
below

f ′′
λ (z) − zfλ(z) = 0.

(For a discussion of Airy functions see the Appendix.) The general solution of the above equation is
thus obtained as

yλ(x) = c1Ai(x− λ) + c2Bi(x− λ).

The facts that y ∈ L1(R) and the function Bi(z) tends to infinity when z → ∞ (see (4.3)) imply
c2 = 0. Without loss of generality we can assume that c1 = 1.

Finally, to obtain an even function on the whole real line we put

yλ(x) = Ai(|x| − λ), x ∈ R. (3.5)

We furthermore require that the right derivative at 0 is zero

lim
x→0+

y′λ(x) = 0

which is equivalent to

Ai′(−λ) = 0. (3.6)

For odd functions we have
yλ(x) = sgn(x)Ai(|x| − λ), x ∈ R (3.7)

and we require

lim
x→0+

yλ(x) = 0

or equivalently

Ai(−λ) = 0. (3.8)

Conditions (3.6) and (3.8) together with equation (3.4) imply that the functions yλ defined on the real
line by (3.5) and (3.7) belong to C2(R).

By the Parseval equality and the fact that (xAi2(x) − (Ai(x))2)′ = Ai(x), which is an easy conse-
quence of the Airy equation (4.1), we get

∫ ∞

−∞
ϕ2
n(x)dx =

∫ ∞

−∞
(ϕ̂n)2(x)dx = 2

∫ ∞

0
Ai(x + λn)2dx = 2

(
(Ai′(−λn))2 + λnAi2(−λn)

)
.

We have thus proved the following result.
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Theorem 3.5. The eigenvalues for the problem (3.1) are given by

λ2k−1 = −a′k k = 1, 2 . . . ,

λ2k = −ak, k = 1, 2 . . . ,

where ak and a′k denote the zeroes of the functions Ai and Ai′ in decreasing order. They are all simple,
the eigenfunctions ϕ2k−1(x) are even and ϕ2k(x) are odd. Furthermore, the Fourier transforms of the
L2-normalized eigenfunctions are given by

ϕ̂n(x) =





Ai(|x| − λn)√
2λnAi(−λn)

n = 1, 3, 5, . . .

sgn(x)Ai(|x| − λn)√
2Ai′(−λn)

n = 2, 4, 6, . . .

, x ∈ R.

Making use of the asymptotic expansions and estimates for the zeroes of the Airy function and its
derivative [14, 6] yields

Corollary 3.6. We have

λ2k−1 ∼ g

(
3

8
π(4k − 3)

)
, k → ∞,

λ2k ∼ f

(
3

8
π(4k − 1)

)
, k → ∞.

where

g(t) = t2/3
(

1 − 7

48
t−2 +

35

288
t−4 − 181223

207360
t−6 +

18683371

1244160
t−8 − 91145884361

191102976
t−10

)
, (3.9)

f(t) = t2/3
(

1 +
5

48
t−2 − 5

36
t−4 +

77125

82944
t−6 − 108056875

6967296
t−8 +

162375596875

334430208
t−10

)
. (3.10)

Moreover, we have

λ2k−1 6

(
3π

8
(4k − 1)

)2/3

, k = 1, 2, . . . ,

(
3π

8
(4k − 1)

)2/3

6 λ2k 6

(
3π

8
(4k − 1)

)2/3(
1 +

3

2
arctan

(
5

18π(4k − 1)

))
, k = 1, 2, . . .

Remark 3.7. A numerical calculation for the first few eigenvalues gives

λ1
∼= 1.01879297164747

λ2
∼= 2.33810741045976

λ3
∼= 3.24819758217983

λ4
∼= 4.08794944413097

λ5
∼= 4.82009921117874

λ6
∼= 5.52055982809555.

Using the above asymptotic formulae we can derive a result on the asymptotic behaviour of the
trace of the semigroup at zero.
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Theorem 3.8. We have

lim
t→0+

t3/2
∞∑

n=1

e−λnt =
1√
π
.

Proof. We divide the series into two components

F (t) =
∞∑

k=1

e−λ2k−1t =
∞∑

k=1

ea
′

kt, G(t) =
∞∑

k=1

e−λ2kt =
∞∑

k=1

eakt.

By (3.9) we get that for every t ∈ [0, 1]

∞∑

k=1

e−(3/2π(k−3/4)2/3t)
6 F (t) 6 e−ct

∞∑

k=1

e−(3/2π(k−3/4)2/3t)

for some constant c > 0. Moreover, the function x 7→ e−(3/2π(x−3/4)2/3t) is strictly positive and non-
increasing on [1,∞). Thus

e−ct

∫ ∞

1
e−(3/2π(x−3/4)2/3t)dx 6 F (t) 6

(
e−(3/8π)2/3t +

∫ ∞

1
e−(3/2π(x−3/4)2/3t)dx

)
.

A substitution yields

∫ ∞

1
e−(3/2π(x−3/4)2/3t)dx =

1

t3/2π

∫ ∞

(3/8π)2/3t
e−uu1/2du

and we obtain limt→0+ t3/2F (t) = π−1Γ(3/2) = 1
2
√
π

. In the same way we get limt→0+ t3/2G(t) = 1
2
√
π

and this completes the proof.

Using the estimates for the eigenvalues given in Corollary 3.6 we obtain an estimate for the spectral
gap.

Corollary 3.9. We have

λ2 − λ1 >

(
3π

8

)2/3

(32/3 − 1).

3.3 Eigenfunctions

Next we derive the asymptotic behaviour of the eigenfunctions. We use the notation pn, qn as in (4.4)
below.

Theorem 3.10. For every k = 1, . . . and N = 2, 3, . . . we have

ϕ2k−1(z) =

√
2

−a′k

(
p3(a

′
k)

z4
− p5(a

′
k)

z6
+ . . . + (−1)N

p2N−1(a′k)

z2N

)
+ O

(
1

z2N+2

)
, as |z| → ∞.

For every k = 1, 2, . . . and N = 2, 3, . . . we have

ϕ2k(z) =
√

2

(
q4(ak)

z5
− q6(ak)

z7
+ . . . + (−1)N

q2N (ak)

z2N+1

)
+ O

(
1

z2N+3

)
, as |z| → ∞.
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Proof. For k = 1, 2, . . ., we have λ2k−1 = −a′k, and

ϕ2k−1(z) =

√
2

−a′k

1

Ai(a′k)

∫ ∞

0
Ai(u + a′k) cos zu du. (3.11)

Integration by parts (2N + 2 times) together with (4.5), (4.7) and (4.4) give

∫ ∞

0
Ai(u + a′k) cos zu du =

N∑

s=0

sin zu

z2s+1
(−1)sAi(2s)(u + a′k)

∣∣∣∣
∞

0

+

+

N∑

s=1

cos zu

z2s
(−1)s−1Ai(2s−1)(u + a′k)

∣∣∣
∞

0
+ RN (z)

=

N∑

s=1

1

z2s
(−1)sAi(2s−1)(a′k) + RN (z)

=
N∑

s=1

p2s−1(a
′
k)

z2s
(−1)sAi(a′k) + RN (z),

where

RN (z) =
cos zu

z2N+2
Ai(2N+1)(u + a′k)

∣∣∣
∞

0
+

1

z2N+2

∫ ∞

0
Ai(2N+2)(u + a′k) cos zudu

= −p2N+1(a
′
k)Ai(a′k)

z2N+2
+

1

z2N+2

∫ ∞

0
Ai(2N+2)(u + a′k) cos zudu.

Using the asymptotic relations (4.5) and (4.7) together with formula (4.4) we get

|RN (z)| 6 1

|z|2N+2

(
|p2N+1(a′k)Ai(a′k)| +

∫ ∞

0
|Ai(2N+2)(u + a′k)|du

)
=

c2k−1,N

|z|2N+2
.

Notice that p1(x) ≡ 0, which completes the proof for this case.
For k = 1, 2, . . . we have

ϕ2k(z) =

√
2

Ai′(ak)

∫ ∞

0
Ai(u + ak) sin zudu.

Similar arguments give

Ai′(ak)√
2

ϕ2k(z) =
N∑

s=0

cos zu

z2s+1
(−1)s+1Ai(2s)(u + ak)

∣∣∣
∞

0
+

N∑

s=0

sin zu

z2s+2
(−1)sAi(2s+1)(u + ak)

∣∣∣∣
∞

0

+ RN (z)

=

N∑

s=0

(−1)s

z2s+1
Ai(2s)(ak) + RN (z)

=
N∑

s=1

(−1)sq2s(ak)

z2s+1
Ai′(ak) + RN (z),

where

RN (z) =
cos zu

z2N+3
(−1)N+2Ai(2N+2)(u + ak)

∣∣∣
∞

0
+

(−1)N+1

z2N+3

∫ ∞

0
Ai(2N+3)(u + ak) cos zudu

=
1

z2N+3

(
q2N+3(ak)Ai′(ak) +

∫ ∞

0
Ai(2N+3)(u + ak) cos zudu

)
.

Thus we get |RN (z)| 6 c2k,N |z|−2N−3. Finally, notice that q2(x) ≡ 0. This completes the proof.
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Theorem 3.11. The eigenfunctions ϕn are analytic functions on R. Their Maclaurin expansions are
given by

ϕ2k−1(x) =

√
2

−a′k

1

Ai(a′k)

∞∑

m=0

w2m(a′k)(−1)m

(2m)!
x2m,

ϕ2k(x) =

√
2

Ai′(ak)

∞∑

m=0

w2m+1(ak)(−1)m

(2m + 1)!
x2m+1,

where k = 1, 2, . . . and

wn(x) =

∫ ∞

0
Ai(u + x)undu.

Proof. For k = 1, 2, . . . we have

ϕ2k−1(x) =

√
2

−a′k

1

Ai(a′k)

∫ ∞

0
Ai(u + a′k) cos xudu

=

√
2

−a′k

1

Ai(a′k)

∫ ∞

0
Ai(u + a′k)

∞∑

m=0

(xu)2m

(2m)!
(−1)mdu.

Moreover, by (4.5) it is seen that there exists a constant ck > 0 such that |Ai(u+ a′k)| < cke
− 2

3
u3/2

for
all u > 0. Hence

∞∑

m=0

∫ ∞

0

∣∣∣∣
x2mu2m

(2m)!
(−1)mAi(u + a′k)

∣∣∣∣ du =
∞∑

m=0

|x|2m
(2m)!

∫ ∞

0
|Ai(u + a′k)|u2mdu

6 ck

∞∑

m=0

|x|2m
(2m)!

∫ ∞

0
e−

2
3
u3/2

u2mdu

= ck

∞∑

m=0

(|x|2)m

(2m)!

(
3

2

) 4m−1
3

Γ

(
4m + 2

3

)
.

By putting dm = 1
(2m)!

(
3
2

) 4m−1
3 Γ

(
4m+2

3

)
and making use of Stirling’s formula Γ(x) ∼

√
2πe−xxx−1/2,

as x → ∞ we obtain

dm
dm+1

= (2m + 1)(2m + 2)

(
2

3

)4/3 Γ
(
4m+2

3

)

Γ
(
4m+6

3

)

∼ (2m + 1)(2m + 2)

(
2

3

)4/3

e4/3
(

4m + 2

4m + 6

) 4m+2
3

− 1
2
(

3

4m + 6

)4/3
m→∞−→ ∞.

Thus Fubini’s theorem applies to get

ϕ2k−1(x) =
√

2

∞∑

m=0

(−1)m√
−a′k(2m)!

(
1

Ai(a′k)

∫ ∞

0
Ai(u + a′k)u2mdu

)
x2m.

Similar arguments give

ϕ2k(x) =
√

2
∞∑

m=0

(−1)m

(2m + 1)!

(
1

Ai′(ak)

∫ ∞

0
Ai(u + ak)u2m+1du

)
x2m+1.
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Corollary 3.12. Every eigenfunction ϕn has a finite number of zeroes.

Proof. Using the asymptotic expansions in Theorem 3.10 it is easily seen that for every n there exists
An > 0 such that sup|x|>An

|ϕn(x)| > 0. This means that all zeroes of ϕn are in [−An, An]. Since the
function ϕn is analytic, the set of its zeroes is finite.

Theorem 3.13. The eigenfunctions ϕn are uniformly bounded.

Proof. We begin with the case of odd eigenfunctions ϕn, where n = 2k − 1, k = 1, 2, . . .; the proof for
the even eigenfunctions is similar. It suffices to consider x > 0. We have

ϕn(x) =

√
2

−a′k

1

Ai(a′k)

∫ ∞

0
Ai(u + a′k) cos zu du.

Using the asymptotic formulae (3.9), (4.8) for −a′k and Ai(a′k) respectively we get that

1√
−a′kAi(a′k)

= O(k−1/6) (3.12)

We have
∫ ∞

0
Ai(u + a′k) cos xudu =

∫ −a′k

−a′1

Ai(u) cos x(u + a′k)du +

∫ ∞

a′1

Ai(u) cos x(u− a′k)du.

The Airy function is non-negative on [a′1,∞] and thus the absolute value of the second integral is
uniformly bounded by

∫∞
a′1

Ai(u)du < ∞. The first integral is a sum of two integrals I1(x) and I2(x)

where

I1(x) =

∫ −a′k

−a′1

(
Ai(u) − sin

(
2
3u

3/2 + π
4

)

u1/4
√
π

)
cos x(u + a′k)du

I2(x) =
1√
π

∫ −a′k

−a′1

sin

(
2

3
u3/2 +

π

4

)
cos x(u + a′k)

u1/4
du.

Using the asymptotic expansion for the Airy function ([1] 10.4.60 p.448) we get

Ai(u) − sin
(
2
3u

3/2 + π
4

)

u1/4
√
π

= O

(
1

u7/4

)
,

as u → ∞. Thus there is a constant c1 > 0 such that

|I1(x)| 6 c1

∫ ∞

−a′1

u−7/4du.

The integral 2
√
πI2(x) can be rewritten as the sum I3(x) + I4(x), where

I3(x) =

∫ −a′k

−a′1

(u1/2 + x) sin

(
2

3
u3/2 +

π

4
+ xu + xa′k

)
du

(u1/2 + x)u1/4

I4(x) =

∫ −a′k

−a′1

sin

(
2

3
u3/2 +

π

4
− xu− xa′k

)
du

u1/4
.

The term I3 is uniformly bounded by Lemma 4.1 with

f(x, u) = (u1/2 + x) sin

(
2

3
u3/2 +

π

4
+ xu + xa′k

)

14



and
g(x, u) = (u1/2 + x)−1u−1/4.

To deal with the term I4 we need to consider several cases. Let (x− 1)2 > −a′k or (x+ 1)2 < −a′1 and
rewrite I4 in the form

I4(x) =

∫ −a′k

−a′1

(u1/2 − x) sin

(
2

3
u3/2 +

π

4
− xu− xa′k

)
du

u1/4(u1/2 − x)
.

An application of Lemma 4.1 with

f(x, u) = (u1/2 − x) sin

(
2

3
u3/2 +

π

4
− xu− xa′k

)

and
g(x, u) = (u1/2 − x)−1u−1/4

implies that I4 is uniformly bounded for x >
√
−a′k+1 and k = 2, 3, . . .. For the case −a′1 < (x−1)2 6

−a′k 6 (x + 1)2 we have

I4(x) =

∫ (x−1)2

−a′1

(u1/2 − x) sin

(
2

3
u3/2 +

π

4
− xu− xa′k

)
du

u1/4(u1/2 − x)

+

∫ −a′k

(x−1)2
sin

(
2

3
u3/2 +

π

4
− xu− xa′k

)
du

u1/4
.

The first integral above is uniformly bounded by the same argument as in the previous case. The
absolute value of the second integral is bounded by

∫ −a′k

(x−1)2

du

u1/4
6

∫ (x+1)2

(x−1)2

du

u1/4
=

3

4
((x + 1)3/4 − (x− 1)3/4) 6 c1x

1/4
6 c2k

1/6.

The last inequality follows from the fact that (x− 1)2 6 −a′k and the asymptotic expansion for a′k. In
the case −a′1 < (x− 1)2 6 (x + 1)2 < −a′k we split up I4 as

I4(x) =

(∫ (x−1)2

−a′1

+

∫ −a′k

(x+1)2

)
(u1/2 − x) sin

(
2

3
u3/2 +

π

4
− xu− xa′k

)
du

u1/4(u1/2 − x)

+

∫ −a′k

(x−1)2
sin

(
2

3
u3/2 +

π

4
− xu− xa′k

)
du

u1/4
.

By Lemma 4.1 the first two integrals are uniformly bounded following by the same argument as before.
The last integral is bounded by c2k

1/6. Finally, when (x− 1)2 < −a′1 < (x + 1)2 < −a′k we have

I4(x) =

∫ (x+1)2

−a′1

sin

(
2

3
u3/2 +

π

4
− xu− xa′k

)
du

u1/4

+

∫ −a′k

(x−1)2
(u1/2 − x) sin

(
2

3
u3/2 +

π

4
− xu− xa′k

)
du

u1/4(u1/2 − x)
.

The absolute value of the first integral is estimated as

∫ (x+1)2

−a′1

du

u1/4
6

∫ (
√

−a′1+2)2

−a′1

du

u1/4
.
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The last term can be uniformly bounded by one more application of Lemma 4.1. Hence we obtain

∫ ∞

0
Ai(u + a′k) cos xudu = O(k1/6)

uniformly in x > 0. Together with (3.12) this implies that the functions ϕn are uniformly bounded.

Theorem 3.14. The ground state ϕ1 is decreasing on (0,∞). Moreover, there exist x1 > x0 > 0 such
that ϕ1 is concave on [−x0, x0] and is convex on (−∞,−x1] and [x1,∞).

Proof. For 0 < x < y, let (R
(1)
t )t>0, (R

(2)
t )t>0 be two squared-Bessel processes of dimension 1 and

with index ν = −1/2, such that R
(1)
0 = x2 and R

(1)
0 = y2, and let (ηt)t>0 be a 1/2-stable subordinator

independent from R(1) and R(2). Using the comparison theorem (see [15], Chapter IX, Theorem 3.7)

we get R
(1)
t 6 R

(2)
t for all t > 0 with probability 1. Thus R

(1)
ηt 6 R

(2)
ηt , for all t > 0. However, the

process R
(1)
ηt is X2

t starting form x2, and R
(1)
ηt is X2

t starting form y2. Hence

E
x
[
e−

∫ t
0
X2

s ds
]
> E

y
[
e−

∫ t
0
X2

s ds
]
, 0 < x < y.

For every x ∈ R we have

E
x
[
e−

∫ t
0 X2

s ds
]

=

∫

R

u(t, x, y)dy

=

∫

R

∞∑

n=1

e−λntϕn(x)ϕn(y)dy

=

∞∑

n=1

e−λntϕn(x)

∫

R

ϕn(y)dy.

This implies

ϕ1(x) =

(∫

R

ϕn(y)dy

)−1

lim
t→∞

eλnt E
x
[
e−

∫ t
0 X2

sds
]

and therefore the ground state is non-increasing on (0,∞) as a limit of non-increasing functions. In
fact, ϕ1 is strictly decreasing on (0,∞). This easily follows from the monotonicity of ϕ1 proven above,
and the fact that ϕ1 is analytic on R.

Concavity follows from the expression

ϕ′′
1(0) = −

√
2

−a′1

1

Ai(a′1)

∫ ∞

0
Ai(u + a′1)u

2du.

We have Ai(u + a′1)u2 > 0 on (0,∞) thus ϕ′′
1(0) < 0. By continuity of ϕ′′

1 at 0 it follows that there
exists x0 > 0 such that ϕ′′

1(x) < 0 for all x ∈ [−x0, x0]. Moreover, we have

ϕ1(x) = −
√

2

−a′1

1

Ai(a′1)

∫ ∞

0
Ai(u + a′1)u2 cos xudu.

Putting f(u) = Ai(u + a′1)u2 and integrating by parts we obtain

1

Ai(a′1)

∫ ∞

0
Ai(u + a′1)u

2 cos xudu = −f (5)(0)

x6
+

1

x7

∫ ∞

0
f (7)(u) sin xudu,
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where f (5)(0) = 20Ai(a′1) and f (7)(u) = P (u)Ai(u + a′1) + Q(u)Ai′(u + a′1), where P (u) and Q(u) are
polynomials. Applying (4.5) and (4.7) we get

lim
|x|→∞

x6ϕ′′
1(x) = 20

√
2

−a1
> 0

and this implies that there exists x1 > x0 such that ϕ′′
1 is positive on (−∞,−x1] and [x1,∞). This

completes the proof.

Theorem 3.15. The integral kernel u(t, x, y) is jointly continuous on (0,∞)×R×R. Moreover, there
exists a constant c > 1 such that

1

c

ea
′

1t

(1 + x4)(1 + y4)
6 u(t, x, y) 6 c

ea
′

1t

(1 + x4)(1 + y4)
, (3.13)

for every t > 1 and x, y ∈ R.

Proof. For every t0 > 0, using the uniform boundedness of the eigenfunctions ϕn given in Theorem
3.13, we have

|u(t, x, y)| 6
∞∑

n=1

e−λnt|ϕn(x)||ϕn(y)| 6 M
∞∑

n=1

e−λnt 6 M
∞∑

n=1

e−λnt0 < ∞, x, y ∈ R, t > t0,

for some constant M > 0. The boundedness of the last series easily follows from the asymptotic
expansions for λn given in Corollary 3.6. Then the continuity of u(t, x, y) follows from the continuity
of ϕn.

For k = 1, 2, . . . we have

√
−a′k√
2

ϕ2k−1(x) =
1

x4

(
1 +

1

Ai(a′k)

∫ ∞

0
Ai(4)(u + a′k) cos xudu

)
,

where Ai(4)(t) = t2Ai(t) + 2Ai′(t). From the asymptotic expansions ([1] 10.4.60 and 10.4.62) one can
easily get that

|Ai(4)(t)| 6 c1t
2,

with some constant c1. Thus, using (4.5) and (4.7), we get

∣∣∣∣
∫ ∞

0
Ai(4)(u + a′k) cos xudu

∣∣∣∣ 6

∫ 0

a′k

|Ai(4)(t)|dt +

∫ ∞

0
Ai(4)(t)dt 6 c1

∫ 0

a′k

t2dt + c2 6 c3(−a′k)3

Similarly, we have

Ai′(ak)√
2

ϕ2k(x) =
1

x4

∫ ∞

0
Ai(4)(u + ak) sinxudu,

where
∣∣∣∣
∫ ∞

0
Ai(4)(u + ak) sinxudu

∣∣∣∣ 6 c3(−ak)3

Using the asymptotic formulae (4.8) and (4.9) we obtain that |x4ϕ2k−1(x)| 6 c4(k − 3/4)11/6 and
|x4ϕ2k(x)| 6 c4(k−1/2)11/6. This yields, combined with the asymptotic expansion for ϕ1, the estimates

∣∣∣∣
ϕ2k−1(x)

ϕ1(x)

∣∣∣∣ 6 c5(k − 3/4)11/6 and

∣∣∣∣
ϕ2k(x)

ϕ1(x)

∣∣∣∣ 6 c5(k − 1/2)11/6.
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for the ratio of the eigenfunctions, for every x ∈ R. We have

|u(t, x, y) − e−λ1tϕ1(x)ϕ1(y)| 6 e−λ1tϕ1(x)ϕ1(y)e−(λ2−λ1)t
∞∑

n=2

e−(λn−λ2)t

∣∣∣∣
ϕn(x)

ϕ1(x)

∣∣∣∣
∣∣∣∣
ϕn(y)

ϕ1(y)

∣∣∣∣ .

For every t > 0 the series on the right hand side is uniformly bounded by

∞∑

n=2

e−(λn−λ2)t

∣∣∣∣
ϕn(x)

ϕ1(x)

∣∣∣∣
∣∣∣∣
ϕn(y)

ϕ1(y)

∣∣∣∣ 6 c5

( ∞∑

k=2

exp(−c6(k − 3/4)2/3)

(
k − 3

4

) 11
3

+

∞∑

k=1

exp(−c7(k − 1/4)2/3)

(
k − 1

4

) 11
3

)
.

Using the integral test for convergence it is easy to see that the above series converge. Thus the
expression

e−(λ2−λ1)t
∞∑

n=2

e−(λn−λ2)t

∣∣∣∣
ϕn(x)

ϕ1(x)

∣∣∣∣
∣∣∣∣
ϕn(y)

ϕ1(y)

∣∣∣∣

tends to zero uniformly in x, y ∈ R as t → ∞. This proves the estimates (3.13) for t > t0 and x ∈ R,
y ∈ R for some t0 > 1.

Now let t ∈ [1, t0]. Then we have

|u(t, x, y) − e−λ1tϕ1(x)ϕ1(y)| 6 c8e
−λ1tϕ1(x)ϕ1(y)

with a constant c8 > 0. This provides an upper bound for u(t, x, y), for all x, y ∈ R. Using the above
estimates for the ratio ϕn(x)/ϕ1(x), dominated convergence and the asymptotic expressions for the
eigenfunctions in Theorem 3.10 we obtain that for every t ∈ [1, t0]

lim
|x|,|y|→∞

u(t, x, y)

ϕ1(x)ϕ1(y)
= −a′1

∞∑

k=1

exp(a′kt)

−a′k
> −a′1

∞∑

k=1

exp(a′kt0)

−a′k
> 0.

The function e−λ1t is comparable with a constant on [1, t0], whence

u(t, x, y) > ce−λ1tϕ1(x)ϕ1(y)

for t ∈ [1, t0], |x| > x0 and |y| > y0 for suitable x0, y0 > 0.
Notice that for every a ∈ [−y0, y0] and s ∈ [1, t0]

lim
|x|,→∞,y→a,t→s

u(t, x, y)

ϕ1(x)ϕ1(y)
=
√

−a′1

∞∑

k=1

ea
′

ks√
−a′k

ϕ2k−1(a)

ϕ1(a)
> 0.

Positivity of the limit is a consequence of the well-known general estimate u(t, x, y) > ctϕ1(x)ϕ1(y)
derived from intrinsic ultracontractivity, with a constant ct > 0. Thus there exist εs, εa > 0, xs,a > 0
and a constant cs,a > 1 such that

1

cs,a
6

u(t, x, y)

ϕ1(x)ϕ1(y)
6 cs,a

for every (t, |x|, y) ∈ (s− εs, s + εs) × (xs,a,∞) × (a− εa, a + εa). The family

{(s− εs, s + εs) × (a− εa, a + εa)}(s,a)∈[1,t0]×[−y0,y0]
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is an open cover of the compact set [1, t0] × [−y0, y0]. Therefore there exists a finite subcover

{(sk − εsk , sk + εsk) × (ak − εak , ak + εak)}k=1,2,...,n

of the set [1, t0] × [−y0, y0]. Putting c = max{csk ,ak : k = 1, . . . , n}, x1 = max{xsk,ak : k = 1, . . . , n}
we get that

1

c
6

u(t, x, y)

ϕ1(x)ϕ1(y)
6 c

for every (t, |x|, y) ∈ [1, t0]×(x1,∞)× [−y0, y0]. Due to the symmetry of u(t, x, y) we get the analogous
result for (t, x, |y|) ∈ [1, t0] × [−x0, x0] × [y1,∞) Since u and ϕ1 are continuous and strictly positive
we get

u(t, x, y) > ce−λ1tϕ1(x)ϕ1(y)

for (t, x, y) ∈ [1, t0]× [−max{x0, x1},max{x0, x1}]× [−max{y0, y1},max{y0, y1}]. This completes the
proof.

4 Appendix: Airy functions

For the convenience of the reader we summarize some basic properties of Airy functions used in this
paper.

The Airy functions Ai(x) and Bi(x) are defined as two independent solutions of the Airy equation

y′′ − xy = 0, x ∈ R. (4.1)

The equation can be easily reduced to the Bessel equation (for x 6 0) and to the modified Bessel
equation (x > 0). This allows to express the Airy functions in terms of Bessel functions Jϑ and
modified Bessel functions Kϑ, Iϑ in the following way:

Ai(x) =





√−x

3

[
J1/3

(
2

3
(−x)3/2

)
+ J−1/3

(
2

3
(−x)3/2

)]
, x 6 0,

1

π

√
x

3
K1/3

(
2

3
x3/2

)
, x > 0.

(4.2)

Bi(x) =





√
−x

3

[
J−1/3

(
2

3
(−x)3/2

)
− J1/3

(
2

3
(−x)3/2

)]
, x 6 0,

√
x

3

[
I1/3

(
2

3
x3/2

)
+ I−1/3

(
2

3
x3/2

)]
, x > 0.

(4.3)

Using the relation Ai′′(x) = xAi(x) we get that the n-th derivative of Ai is given by

Ai(n)(x) = pn(x)Ai(x) + qn(x)Ai′(x), (4.4)

where pn and qn are nth order polynomials defined by the recursive relations

pn+1(x) = p′n(x) + xqn(x),

qn+1(x) = pn(x) + q′n(x)

and p0(x) ≡ 1, q0(x) ≡ 0. Below we give formulae for pn and qn for n = 1, . . . , 10.
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p1(x) = 0 q1(x) = 1
p2(x) = x q2(x) = 0
p3(x) = 1 q3(x) = x
p4(x) = x2 q4(x) = 2
p5(x) = 4x q5(x) = x2

p6(x) = x3 + 4 q6(x) = 6x
p7(x) = 9x2 q7(x) = x3 + 10
p8(x) = x4 + 28x q8(x) = 12x2

p9(x) = 16x3 + 28 q9(x) = x4 + 52x
p10(x) = x5 + 100x2 q10(x) = 20x3 + 80

We recall some asymptotic results related to Airy functions. The asymptotic behaviour of Ai for
large arguments is given by ([1],10.4.59 and 10.4.60)

Ai(x) ∼= 1

2π1/2
x−1/4e−

2
3
x3/2

, x → ∞, (4.5)

Ai(−x) =
1

π1/2

sin
(
2
3x

3/2 + π/4
)

x1/4
+ O(x−7/4), x → ∞. (4.6)

The corresponding formula for Ai′ is given by ([1], 10.4.61)

Ai′(x) ∼= − 1

2π1/2
x1/4e−

2
3
x3/2

, x → ∞. (4.7)

Asymptotic formulae for Ai(a′k) and Ai′(ak) are ([1] 10.4.96 and 10.4.97)

Ai(a′k) ∼ (−1)k−1π−1/2

(
3π

2

)−1/6

(k − 3/4)−1/6, k → ∞, (4.8)

Ai′(ak) ∼ (−1)k−1π−1/2

(
3π

2

)1/6

(k − 1/2)1/6, k → ∞. (4.9)

Finally we prove a result we have used in the previous section.

Lemma 4.1. For any open set D ⊂ R and a > 0 let u 7→ f(x, u) be a continuous function for
every fixed x ∈ D such that

∫ y
a f(x, u)du is uniformly bounded for (x, y) ∈ D × [a,∞). Assume that

(x, u) 7→ g(x, u) is a uniformly bounded function on D × [a,∞) such that for every x ∈ D and y > a
the function u → g(x, u) has continuous derivative on [a, y), and its derivative has at most one zero
in [a, y). Then

F (x, y) =

∫ y

a
f(x, u)g(x, u)du

is a uniformly bounded function in D × [a,∞).

Proof. Denote by b the zero of the function g(x, ·) in the interval [a, y). If there are no zeroes of g(x, ·)
in this interval b can be arbitrarily chosen in the interval. Fix x ∈ D. Applying the second mean
value theorem for integration to the intervals [a, b] and [b, y] apart it follows that there exist constants
λ1 ∈ [a, b] and λ2 ∈ [b, y] such that F (x, y) is equal to

g(x, a)

∫ λ1

a
f(x, u)du + g(x, b)

∫ b

λ1

f(x, u)du + g(x, b)

∫ λ2

b
f(x, u)du + g(x, y)

∫ y

λ2

f(x, u)du.

Using the assumption that the functions g(x, u) and
∫ y
a f(x, u)du are uniformly bounded, the result

follows.
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