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\ Abstract
We classify quasilin Smi Riemann invariants whose characteristic webs are lin-
earizable on every solution® Altheugh the linearizability of an individual web is a rather
nontrivial differential constrainty the requirement of linearizability of characteristic webs on
all solutions impgses simple second-order constraints for the characteristic speeds of the sys-
tem. It is demonstrated that every such system with n > 3 components can be transformed
by a reciprocal transformation to n uncoupled Hopf equations. All our considerations are
local. { /
MSC: 33 MO
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1 Tntso uction
In' thi er we investigate the geometry of characteristics of quasilinear systems in Riemann
invarlynts

S Ry = N'(R)R;, (1)
1 =1,...,n (no summation over 7). Systems of this form govern a wide range of problems in
ure and applied mathematics. Let us recall the basic concepts needed to state our main results.
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speeds \! satisfy the constraints

PUblIShlng 5 < aj)\z’ > 5, ( DN >
k = 5

M — )\ B — X\t

here 9; = 9/OR!. Tt was shown by Tsarev [22] that this property is equivalent to integrability:
semi-Hamiltonian systems (1) possess infinitely many conservation laws and commuting flows,
and can be solved by the generalised hodograph method.

Linear degeneracy. System (1) is said to be linearly degenem{ its characteristic speeds
satisfy the conditions )

N =0,

no summation, ¢ = 1,...,n. Linear degeneracy is known to preyent“he breakdown of smooth
initial data, which is typical for genuinely nonlinear syste (ﬁype , and has been thoroughly
investigated in the literature, see e.g. [19, 16, 21].

iprocal transformations acting

—
Reciprocal transformations. There exists a natural class of
3pendent variables, (z,t) — (&, 1),

on systems of type (1). These are non-local changes of the in
defined as
di = Adt + Bdwg_db=Mdi + Ndz, (2)

where the right-hand sides are two conservafion laws of system (1), that is, two 1-forms that are
closed on every solution (A, B, M, N areﬁ% ns of R’s). The transformed system reads

where the transformed characteristi \?zdka e given by

\NB— A
\\A T )

Reciprocal transformations are kniegwn to preserve both the semi-Hamiltonian property and the

Characteristics.
0. Altogether,
every solution

form an n-web (that is, n one-parameter families of curves) on
3, 4] for an introduction to the web geometry.

Theore [J, 10] The following conditions are equivalent:

Syste ) has a parallelizable characteristic web on every solution.
ste:S (1) can be linearized by a reciprocal transformation.
(c) Sgs em (1) satisfies the following conditions:

\ semi-Hamiltonian property;
S,

e linear degeneracy;
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becomes redundant).

Publishing Linearizable webs. An n-web is said to be linearizable (rectifiable) if it is locally diffeomorphic
to n families of lines, not necessarily parallel. We emphasize that the condition of linearizability
is far more subtle than that of parallelizability, see [5, 6, 3, 15, 13, 2, 12, 1] and references therein
for a discussion of the linearizability problem.

The aim of this paper is to establish an analogue of Theorem 1 for systems (1) whose
characteristic webs are linearizable on every solution. Our main obse ation is that, although the
linearizability of an individual web is a rather nontrivial differentialcongtraint, the requirement
of linearizability of characteristic webs on all solutions leads to %d—order differential
constraints for the characteristic speeds, see Theorem 3 below. rt1cu1ar any such system
is reciprocally related to n uncoupled Hopf equations, R = &)

2 Linearizability of a planar web

Any projective transformation takes a linear web int@ a lingar web. Thus, the linearizability
of a web can be expressed in terms of projective differential invariants of the linearizing map,
namely, its Schwarzian derivative [20]. This appr(tch ean be traced back to the pioneering work
of Bol [5, 6]. The following form of the linearizability criterion will be most convenient for our

purposes: \ﬁ
m formed by integral curves of vector fields
\

Theorem 2 (Hénaut, [15]) A plan

is linearizable if and only if thﬁzs a Qlution E,F,G, H of the following system of PDEs,

2Giy + Hyp + F 2HEt—|—EHt+3FH —3GF,+3HF, =0,

Gpo + By i+ 3 t—BFG +3GE+ HE, +2FEH, —6FF, =0,

subject to the constrain

+3FA)2 4+ 3GN + H=V;(\), i=1,..,n. (5)

Remark. func ns F, F,G, H are linearly independent components of the 2-dimensional
Schwarziansderivative of the linearizing map [1]. For n > 4, relations (5) uniquely define
E,F, ,H equations (4) lead to explicit second-order constraints for A’. On the con-
trary, — = 3 relations (5) are only sufficient to determine, say, E, F, G in terms of H, so that
tion ve an over-determined second-order system for H. The analysis of this system is

qu e 1nv ved, in particular, differential constraints for A’ appear at differential order six and
1s explains why we treat the cases n > 4 and n = 3 separately.

S >< n systems with linearizable characteristics (n > 4)
T

The main result of this paper is the following Theorem.
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AI (a) System (1) has a linearizable characteristic web on every solution.

Publishing ’b) System (1) can be transformed by a reciprocal transformation to n uncoupled Hopf equations.
(¢) Characteristic speeds of system (1) satisfy the following conditions:

e For every quadruple of pairwise distinct indices i, j,k,l one has a relation
aij(A" = N + arg (N = X)) + ai;(N = AF) =0, (6)

9\

here a;; = 755 -

This allows one to introduce the pammetng/on a;j = pj)\ +qj.
e The 1-forms

wil = Zpi)\idRi, wig = ZindRi, wol = M
i—1 i=1 431

satisfy the gl(2) structure equations,

o %&3 ®)

a,b=1,2, which are equivalent to 0;p; = ai;p;, é;}@ ai;q;.

A system satisfying either of the equiva W ns (a), (b) or (c) is automatically semi-
Hamiltonian.
\

roof:

wog = Z GidR’, (7)
i=1

The equivalence of (b) and (g) can'pescen as follows. Consider reciprocal transformation (2),
note the relations ;A = A0, B NO;N. Requiring that the transformed characteristic
speed (3) depends on the ab&.%\only, namely 0; N = 0 for every J # i, we obtain all
first-order partial derivatives M N. Comparlng the relations 9; M= 0; e = 0; A=0
we obtain first-order relatlons ~J'his allows one to set a;; = p])\ + g, leadmg to

dA Aw11 + Bwia, dB = Awsi + Bwag,

£ dM*= Mwi1 + Nwia, dN = Mwo1 + Nwao,

where wgp ar/ . The compatibility conditions of these relations are nothing but
gl(2) struc equ ions (8). A direct calculation shows that they are equlvalent to Ojp; =
a;jpi, 0idis aijq;. By constructlon in the new independent variables &, t the system reduces
to n untoupled Hopf equations, Rt FU(RY)RL, where f are arbitrary functions (possibly, con-

stants)® Néte yna non-constant f? can be reduced to R' via a reparametrisation of Riemann

ng but non-local changes of variables depending on a solutlon this also establishes the
1mph§at10n = (a) (equivalently, (¢) = (a)).

ations (5) give E,F,G, H as functions of the characteristic speeds A" and their derivatives,

\ s for the less elementary implication, (a) = (c), let us first consider the case n = 4.
Eqt
C= S MRECAD = 37, MAPRE (we fix a solution so that R and A" become functions of

4
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AI P variables RY, R.  R! . Since the characteristic 4-web is required to be linearizable on every

Publishin solution, the equations split with respect to these variables. Thus, equating to zero coefficients
1t R we get first-order relations (6). Further, taking coefficients at R.,R7 and differentiating
relations (6) with respect to R yields all second-order relations for A\’ that are equivalent to
gl(2) structure equations (8).

Now the general case n > 4 readily follows. Let as fix four pairwise distinct indices i, j, k, [,
say 1,2, 3,4. Consider special solutions to system (1) such that R® = const, s > 4. This reduces
system (1) to a 4-component system for R',..., R* with linearizable characteristic 4-webs.
Therefore we have all relations (6), as well as all other necessaury(z’D ditions involving indices
1,2,3,4. The rest follows from the fact that every linearizability dition involves maximum 4

distinct indices.

Finally, the semi-Hamiltonian property follows from the fact that a system of uncoupled
Hopf equations is automatically semi-Hamiltonian, and r im))ca -ansformations preserve the
semi-Hamiltonian property. ~——

— O

Remark. Note that the equations for A, B and M, ncouple and the forms wyy, verify gi(2)
structure equations. Therefore (A, B) and (M ,'2:) can be“interpreted as sections of a flat 2-
dimensional vector bundle over the hodograph spaee. ‘)

! -

Example. The simplest example of an n- poneng system with linearizable characteristics is
provided by n uncoupled Euler equations,

ﬁf-@i%-
Remarkably, it appears as the mod h'o%al iitham system for the Benjamin-Ono equation [7].
Applying to this system reciprogal trahsforntations one obtains generic systems with linearizable
characteristics. Explicitly, let us twe conservation laws,

Ade @((ﬂ“)’fzk — 1)t + [ )da,

& Nda = [3((g") RY — gt + [ (") dz,

where f*(RF) and 4" ( arel arbitrary functions, and prime indicates derivative. The trans-
formed characteri§tic sheeds«take the form

4 XB-A SRR+ M

)

M -NN Y[R (R - RF) +g*

)ves characteristic speeds of generic systems with linearizable characteristics.
is type appeared as hydrodynamic reductions of integrable hydrodynamic chains
rations can be obtained by replacing some of the Euler equations by linear

R, ¢ = const. In particular, starting with n linear equations and applying

This for

N YRVt
>o(ch = cF)gh(RF)
Swhlc is a general formula for characteristic speeds of linearly degenerate semi-Hamiltonian sys-
tems with constant cross-ratios [11]. In this limiting case the characteristic web is parallelizable
on every solution.
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“ven though for n = 3 relations (6) are vacuous, we can always represent a;; in the form

PUb“Shmg 1;; = pjAt + g;. Explicitly,

; k
aij — akj . aijZ — aij)\

U A U U

i,k # j. Let us introduce the forms wg, by formulae (7), where the summation is from 1 to 3.

We have {
w1 = as1 — Q21 \1gR1 4 al% — 032 \2gR2 4 @23 = M?)’

A% —\? AL — 3
3 2 1 3 1
wip = PN APANIGRY 4 0520 = 41X \2q 2 NN 4334 \3a S,
wy = SE—BLAR! + 43— dR2 + 3dR,
Woy = a21)\ —a31)\ de + a32)\1 Ao\ 2 a13)\ —a23)\ dR3

A3 — )2 Al /\3‘ A2 — AL
Proposition 4 System (1) can be tmnsform%ﬂ%a@ipmcal transformation to 8 uncoupled
(2

Hopf equations if and only if the forms wabw ) structure equations (8).
\Bgoo :

\ ~.
This proposition claim can be proved ctly as in Theorem (3). Namely, requiring 9;\" =0
for any j # ¢, we obtain all ﬁrst—ors\@t.i\a erivatives of A, B, M, N in the form

dA = +PBwi2, dB = Aws + Bwas,

AM S Mwsy + Nwiz,  dN = Mwy; + Nwn,

where wgp are as abovesiLhe compatibility conditions of these relations are the gl(2) structure
equations.
O
Due to the ¢ lefity offlinearizability conditions for 3-webs, we were unable to prove the
analogue of T?(o)rem ) fér n = 3. Thus, we can only formulate the following conjecture.
Conjecture %\wmponent system (1), the following conditions are equivalent:

(a) System has a linearizable characteristic 3-web on every solution.

em (1)%an be transformed by a reciprocal transformation to 3 uncoupled Hopf equations.

[ms dab satisfy gl(2) structure equations (8).
atisfying either of the above conditions is automatically semi-Hamiltonian.

-~ Discussion:
T§e equivalence of (b) and (c) is proved in Proposition 4.

\ e implication (b) = (a), equivalently, (¢) = (a), is also straightforward: character-
istics of a Hopf equation are straight lines, and reciprocal transformations are non-local changes
of variables depending on a solution.
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AI :omputational challenge due to the complexity of linearizability conditions for 3-webs. This
Publi shing salculation seems to be out of reach for the modern computer algebra systems. O

Remark. The Gronwall conjecture [14] states that, modulo projective equivalence, a linearizable
non-hexagonal 3-web has a unique linear representation. While this is still open at the level of
individual webs (for partial results see [6, 23, 1]), our results show that the natural analogue
of this statement holds at the level of systems. Namely, if a system can be decoupled by a
reciprocal transformation, then the transformation is unique up tol/idear changes of x and t.

5 Concluding remarks j\

It remains a considerable computational challenge to establishythe fmplication (a) = (c¢) of
Conjecture 5. The difference with the case n > 3 can lailned geometrically as follows.
Any 4-subweb of a planar n-web defines a unique proj tif:;p nnectionV. The 4-subweb is
linearizable if and only if all web leaves are geodesics 6f<V/, and the curvature of the connection
vanishes. In fact, the functions E, F, G, H defined bylequatiens (5) (where i now runs over the
indices of the 4-subweb) are, up to constant factors, thewo-called Thomas coefficients of V (see
[17]). The flatness of V manifests itself in equat% (4))
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