
Dynamical density functional theory:

binary phase-separating colloidal fluid in a cavity

A J Archer‡

H H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK

Abstract. The dynamical density functional theory of Marconi and Tarazona [J.

Chem. Phys., 110, 8032 (1999)], a theory for the non-equilibrium dynamics of the one-

body density profile of a colloidal fluid, is applied to a binary fluid mixture of repulsive

Gaussian particles confined in a spherical cavity of variable size. For this model fluid

there exists an extremely simple Helmholtz free energy functional that provides a

remarkably accurate description of the equilibrium fluid properties. We therefore use

this functional to test the assumptions implicit in the dynamical density functional

theory, rather than any approximations involved in constructing the free energy

functional. We find very good agreement between the theory and Brownian dynamics

simulations, focusing on cases where the confined fluid exhibits phase separation in the

cavity. We also present an instructive derivation of the Smoluchowski equation (from

which one is able to derive the dynamical density functional theory) starting from the

Liouville equation – a fully microscopic treatment of the colloid and solvent particles.

This ‘coarse-graining’ is, of course, not exact and thus the derivation demonstrates the

physical assumptions implicit in the Smoluchowski equation and therefore also in the

dynamical density functional theory.

1. Introduction

For a multi-component fluid composed of particles with a large size difference between

the different components, a theoretical description of the (inhomogeneous) fluid

dynamics is challenging due to the varying equilibration timescales for the different

species of particles in the fluid. Colloidal suspensions are a particular example of

such complex fluids. Typically, the colloids are 10–1000nm in diameter, whereas the

solvent molecules are, in the case of water, ∼ 0.2nm. The situations in which a theory

could be used to describe the motion of inhomogeneous (confined) colloidal particles

are many. For example, in colloidal physics the use of optical tweezers to confine and

then move individual of groups of colloids is common [1]. Simulating such a fluid is also

computationally expensive, because of the huge numbers of solvent molecules required

when simulating even a limited number of colloids. A common approach to such systems

is to integrate out the degrees of freedom of the smaller particles in order to render a
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description of the system based only on the (much smaller) phase space corresponding

to the degrees of freedom of the big colloid particles [2].

In the case of colloidal fluids in thermal (static) equilibrium, this ‘coarse-grained’

approach is, at least formally, well understood and one is able to formulate an effective

Hamiltonian for the fluid involving only the phase space coordinates of the big particles.

Of course, the effective potential between the big particles is, in general, many-body

in character and dependent on the density of both the solvent and colloid particles

[2, 3]. For example, the depletion potential, or effective solvent mediated interaction

potential, between big hard-sphere particles dissolved in a solvent of small hard spheres,

is oscillatory for large separations [4] and is therefore very different from the ‘bare’

potentials one typically encounters between the particles of a molecular fluid. However,

for the non-equilibrium dynamics of colloidal fluids, coarse-graining is carried out on a

more ad-hoc basis. A common approach is to use the effective solvent mediated potential

obtained from the equilibrium theory together with stochastic equations of motion – i.e.

the force on the colloids due to collisions with the solvent particles is modelled as a

random white noise term and a frictional (Stokes) one-body drag force. The colloids

are thus modelled as Brownian particles. From the (Langevin) equations of motion for

the Brownian particles one can obtain the Fokker-Planck (Smoluchowski) equation [5]

for the colloid probability distribution function in phase space, and thus one is able to

determine non-equilibrium dynamic properties of the colloidal fluid. In going to such

a stochastic description of the dynamics one inevitably neglects hydrodynamic effects.

We justify the above stochastic approach in Sec. 4.

In this paper we consider cases of a model colloidal fluid confined in time dependent

one-body external potentials. We focus on the time dependence of the fluid one-

body density profile, using the dynamical density functional theory (DDFT) derived

recently by Marconi and Tarazona [6, 7] §. In a recent paper [9] (see also Ref.

[10]), it was demonstrated that this DDFT could be derived from the Smoluchowski

equation, by making the assumption that the form of correlations between particles in

an inhomogeneous fluid out of equilibrium, is the same as in an equilibrium fluid with

the same one body density profile [6, 7, 9]. We apply the DDFT to the dynamics of

a particular model colloidal fluid, the binary Gaussian core model (GCM), making

a comparison between the results from the DDFT and Brownian dynamics (BD)

simulation results. Dzubiella and Likos [11] made a similar comparison for the one

component GCM, and found good agreement between theory and simulations. The

GCM is a simple model for the effective potential between the centers of mass of polymers

or dendrimers in solution [3, 12, 13, 14, 15, 16, 17, 18]. The reason Dzubiella and Likos

chose this particular model fluid is that there exists a very simple, yet remarkably

accurate (as we demonstrate below for mixtures) Helmholtz free energy functional for

describing the equilibrium properties of the GCM [3, 19, 20, 21, 22, 23, 24] and thus

by using this functional combined with the DDFT they were able to test some of the

§ The key DDFT equation (Eq. (16)) was proposed originally, without derivation, by Evans [8].
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approximations inherent in the DDFT, rather than the approximations involved in the

free energy functional. The DDFT has also been successfully applied to situations with

steady currents [25, 26] and very recently, Rex et al have applied the DDFT to the GCM

fluid in shear and travelling wave potentials [27]. For these cases they also find good

agreement between theory and simulations. One particular question we wish to address

here is whether the DDFT can incorporate dynamical effects that are specific to colloidal

fluids composed of two different species of colloids and, in particular, dynamical effects

arising when there is phase separation and wetting phenomena in a confined colloidal

fluid.

The paper is arranged as follows: In Sec. 2 we introduce and briefly describe the

DDFT. The results from the application of the DDFT are presented in Sec. 3. In Sec.

4 we give an alternative derivation of the Smoluchowski equation. Starting from the

Liouville equations for a mixture of colloid and solvent particles, we first obtain the

Kramers equation and then from this the Smoluchowski equation. These equations can

also be derived as the (generalised) Fokker-Planck equations for a system of Brownian

particles with stochastic equations of motion. The present derivation elucidates some of

the physical assumptions concerning the fluid dynamics that are implicit in the Kramers

and the Smoluchowski equations. We believe this derivation sheds light on the status of

the DDFT and the approximations inherent in this theory. Finally, in Sec. 5 we discuss

our results and draw some conclusions.

2. The DDFT

Before introducing the DDFT, we recall briefly some of the basic results from equilibrium

density functional theory (EDFT) [8, 28] that are required for our discussion of the

DDFT. The key quantity in EDFT is the Helmholtz free energy functional:

F [ρ(r)] = Fid[ρ(r)] + Fex[ρ(r)] +

∫

druext(r)ρ(r), (1)

which is a functional of ρ(r), the fluid one-body density. For simplicity we consider a

one-component fluid. uext(r) is a one body external potential and

Fid[ρ(r)] = kBT

∫

drρ(r)[ln(Λ3ρ(r)) − 1], (2)

is the (exact) ideal gas free energy; Λ is the thermal de Broglie wavelength of the

particles. Fex[ρ(r)] is the excess (over ideal) contribution to the free energy due to

interactions between the particles [8, 28]. In EDFT one considers the following grand

potential functional

Ω[ρ(r)] = F [ρ(r)] − µ

∫

drρ(r), (3)

where µ is the chemical potential. The equilibrium density distribution is given by the

minimisation condition [8, 28]:

δΩ

δρ(r)
= 0. (4)
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Thus, using Eqs. (1) – (4), one obtains the following Euler-Lagrange equation for the

equilibrium fluid density profile:

0 = kBT ln Λ3ρ(r) − kBTc(1)(r) + uext(r) − µ, (5)

where the one body direct correlation function:

c(1)(r) ≡ −β
δFex[ρ(r)]

δρ(r)
. (6)

β = 1/kBT is the inverse temperature and −kBTc(1)(r) is an effective one body potential

that incorporates the effect of the interparticle interactions in the fluid. The central

task in EDFT is to find a suitable approximation for Fex[ρ(r)] for the fluid of interest.

Fex[ρ(r)] is, in general, an unknown quantity. A second functional derivative of Fex[ρ(r)]

gives the inhomogeneous (Ornstein-Zernike) pair direct correlation function:

c(2)(r, r′) ≡ −β
δ2Fex[ρ(r)]

δρ(r)δρ(r′)
. (7)

Often, approximations for Fex[ρ(r)] are constructed by requiring that the approximate

excess Helmholtz free energy functional generate, via Eq. (7), reliable results for c(2)(r),

the bulk pair direct correlation function, about which much is known from the theory of

bulk equilibrium fluids [28, 29].

We now move on to consider a non-equilibrium fluid of N Brownian colloid particles.

We denote the position of the ith colloid particle by ri, and the set of all position

coordinates by rN ≡ {r1, ..., rN}. The total colloid potential energy UN (rN , t) is assumed

to be of the following form:

UN(rN , t) =

N
∑

i=1

uext(ri, t) +
1

2

∑

j 6=i

N
∑

i=1

u2(ri, rj) +
1

6

∑

k 6=j 6=i

∑

j 6=i

N
∑

i=1

u3(ri, rj, rk) + ..., (8)

which is made up of a one-body term, i.e. a time-dependent one-body external potential

uext(ri, t) acts on each fluid particle; a two-body term, which is a sum of (time

independent) pair potentials u2(ri, rj); a three body term, given by a sum of three-

body potentials u3(ri, rj, rk) and higher body terms, each given by a sum of multi-body

potentials. Since we do not include explicitly the solvent particles, this potential must

include contributions from solvent mediated interactions between the colloids as well

as the direct (bare) interactions between the colloids – we will return to this issue in

Sec. 4‖. On the Brownian time scale the equations of motion of the colloids obey the

following stochastic (Langevin) equations of motion [30]:

Γ−1dri(t)

dt
= −

∂UN (rN , t)

∂ri

+ Gi(t), (9)

‖ For the purposes of calculating equilibrium fluid properties, all solvent effects are included in the

effective potential UN (rN , t). However, for dynamics, the solvent friction has to be explicitly taken into

account.
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where Γ−1 is a friction constant characterising the one-body drag of the solvent on the

colloidal particles and Gi(t) = (ξx
i (t), ξy

i (t), ξ
z
i (t)) is a white noise term with the property

〈ξα
i (t)〉 = 0,

〈ξα
i (t)ξν

i (t′)〉 = 2kBTδijδ
ανδ(t − t′). (10)

The stochastic equations of motion (9), of course, neglect hydrodynamic interactions

between the colloids.

We can define a probability density function P (N)(rN , t) for the N colloids. The

time evolution of P (N)(rN , t) is described by the Smoluchowski equation [5]:

∂P (N)

∂t
= Γ

N
∑

i=1

∂

∂ri

·

(

kBT
∂P (N)

∂ri

+
∂UN

∂ri

P (N)

)

. (11)

This equation is the (generalised) Fokker-Planck equation for the Langevin equations

(9). The Smoluchowski equation is generally presented from this stochastic viewpoint.

However, as we show below in Sec. 4, one can argue for its use as an approximation to

the exact Liouville equations: By going to the Smoluchowski equation the description

of the fluid is reduced to one based solely on the position coordinates of the colloids,

rather than utilising the full set of phase space coordinates for the colloid and solvent

particles. However, in practice a further reduction is required in order to be able to

determine explicitly the dynamics of the colloids. In particular, we focus on the colloid

one-body density [9, 10, 29]:

ρ(r1, t) = N

∫

dr2 ...

∫

drNP (N)(rN , t). (12)

Similarly, the n-particle density is

ρ(n)(rn, t) =
N !

(N − n)!

∫

drn+1 ...

∫

drNP (N)(rN , t). (13)

We now follow closely the derivation in Ref. [9]: Using Eqs. (8), (12) and (13), we find

that on integrating Eq. (11), one obtains [9, 31]:

Γ−1∂ρ(r1, t)

∂t
= kBT

∂2ρ(r1, t)

∂r2
1

+
∂

∂r1
·

[

ρ(r1, t)
∂uext(r1, t)

∂r1

]

+
∂

∂r1
·

∫

dr2ρ
(2)(r1, r2, t)

∂u2(r1, r2)

∂r1

+
∂

∂r1
·

∫

dr2

∫

dr3ρ
(3)(r1, r2, r3, t)

∂u3(r1, r2, r3)

∂r1
+ .... (14)

At equilibrium, when ∂ρ(r, t)/∂t = 0, this equation is just the gradient of the (exact)

first equation of the YBG hierarchy [29].

We are now in a position to make contact with EDFT. For an equilibrium fluid

the gradient of −kBTc(1)(r) (see Eq. (6)), a one body force due to interactions between

particles in the fluid, is given by the following sum-rule [8, 9, 32]:

− kBTρ(r1)
∂c(1)(r1)

∂r1
=

∞
∑

n=2

∫

dr2...

∫

drnρ
(n)(rn)

∂un(rn)

∂r1
. (15)
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If we assume that we can use (15) for a non-equilibrium fluid we are assuming that

the effective one body force on a particle in the fluid due to interactions with the other

particles is the same as that in the equilibrium fluid with the same one body density

profile. We make this assumption and using Eqs. (15) and (1) together with Eq. (14)

we obtain the key DDFT equation [6, 7, 9]:

∂ρ(r, t)

∂t
= Γ

∂

∂r
·

[

ρ(r, t)
∂

∂r

(

δF [ρ(r, t)]

δρ(r, t)

)]

, (16)

where F [ρ(r, t)] is given by Eq. (1) with ρ(r) replaced by the time dependent one-body

density ρ(r, t). Before commenting on the status of Eq. (16), we note that the above

arguments can easily be generalised to the case where there are several different species

of colloids. If there are Q different species of colloids, with Nq colloids of species q,

such that the total number of colloidal particles is N =
∑Q

q=1 Nq, and the total colloid

effective potential energy is (c.f. Eq. (8)):

UN(rN , t) =

Q
∑

q=1

NQ
∑

i=1

uq
ext(rq,i, t) +

1

2

Q
∑

q,q′=1

∑

j 6=i

NQ
∑

i=1

uq,q′

2 (rq,i, rq′,j) + ... (17)

In this case, the Smoluchowski equation (11) simply becomes

∂P (N)

∂t
=

Q
∑

q=1

Γq

Nq
∑

i=1

∂

∂rq,i

·

(

kBT
∂P (N)

∂rq,i

+
∂UN

∂rq,i

P (N)

)

, (18)

where Γ−1
q is the friction constant for the qth species of colloid particle. One can then

integrate Eq. (18) to obtain a DDFT for the one-body density profiles. The one-body

density of species q is:

ρq(rq,1, t) = Nq

Nq
∏

i=2

∫

drq,i

∏

q′ 6=q

∫

drNq′P (N)(rN , t), (19)

i.e., ρq(rq,1, t) is given by the integral over P (N) with respect to all the colloid position

coordinates other than those of the i = 1 colloid of species q. The multi-component

generalisation of the DDFT equation (16) then becomes:

∂ρq(r, t)

∂t
= Γq

∂

∂r
·

[

ρq(r, t)
∂

∂r

(

δF [{ρq(r, t)}]

δρq(r, t)

)]

, (20)

where the Helmholtz free energy functional for the multi-component colloidal fluid is

(c.f. Eq. (1)):

F [{ρq(r, t)}] =

Q
∑

q=1

kBT

∫

drρq(r, t)[ln(Λ3
qρq(r, t)) − 1] + Fex[{ρq(r, t)}]

+

Q
∑

q=1

∫

druq
ext(r, t)ρq(r, t). (21)

For an inhomogeneous equilibrium fluid Eqs. (3) and (4) imply that the chemical

potential µ = δF/δρ(r) is a constant throughout the body of the fluid. Similarly, for
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an inhomogeneous equilibrium multi-component fluid, the chemical potentials for the

different species,

µq =
δF [{ρq(r)}]

δρq(r)
, (22)

take a constant value throughout the fluid. The DDFT (20) is equivalent to assuming

that in the non-equilibrium fluid, this is not the case, and that the gradients of the

chemical potentials are the thermodynamic forces driving particle currents jq of each

species [9, 8]:

jq(r, t) = −Γqρq(r, t)
∂µq

∂r
. (23)

On combining this result with the continuity equation

∂ρq(r, t)

∂t
= −

∂

∂r
· jq(r, t), (24)

one obtains the DDFT Eq. (20). The DDFT is clearly not a theory for a colloidal fluid

in which there is a temperature gradient. In order to incorporate such an effect in a

microscopic theory, one would need to construct an external potential that couples to

both the position and momentum degrees of freedom of the colloids. In reality, such

thermal effects normally also influence the solvent particles. In the present description

we have effectively assumed that the solvent acts as a heat bath, keeping the temperature

of the colloids at a constant value – even in cases where the change in the external

potential is such that one would find an increase in the temperature of the fluid were it

a simple (molecular, non-colloidal) fluid – for example under rapid compression.

As we have already mentioned, Fex[{ρq(r)}], the equilibrium excess Helmholtz free

energy functional for the fluid mixture is, in principle, an unknown quantity. There

exist, depending on the fluid in question, a number of accurate approximate functionals,

which give extremely good results for equilibrium fluid density profiles for a wide variety

of external potentials (see, for example, Ref. [28] and references therein). This means

that the DDFT (20) is a very appealing theory for the dynamics of an inhomogeneous

colloidal fluid, since it builds directly upon EDFT, one of the most successful theories for

the equilibrium properties of inhomogeneous fluids. As the presentation above shows,

the DDFT is clearly not an exact theory. However, the fact that, in principle, the

equilibrium profiles obtained from the DDFT are almost exact leads one to expect that

the theory should be reliable – at least when the fluid is not too far from equilibrium.

3. Application of the DDFT to the GCM

We argued in the previous section that the DDFT (20) should be a good theory for the

dynamics of a colloidal fluid when the fluid is near to equilibrium, provided we have an

accurate approximation for the excess Helmholtz free energy functional Fex[{ρi(r, t)}]

for the fluid (we now use i, j, rather than q, q′ to label the different species of colloids).

In this section we shall demonstrate that in the case of a particular model fluid for

which we do have an accurate Helmholtz free energy functional, the DDFT seems to be
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reliable even for situations when the fluid is quite far from equilibrium and phenomena

such as phase separation and interfacial adsorption (wetting) are present. Throughout

we assume that the Brownian level of description (9) provides an accurate account of

the underlying particle dynamics.

Dzubiella and Likos [11] applied the DDFT to a one-component model fluid in

which the particles interact via a purely repulsive Gaussian potential, the Gaussian

core model (GCM). Their choice of model fluid was motivated by the fact that a

simple mean-field approximation for Fex[{ρi(r)}] proves to be quite accurate for the

equilibrium properties, and thus they were able to test whether the DDFT formulation

(16) of dynamics is accurate. We shall say more about this model fluid below. Their

strategy was to consider the inhomogeneous fluid confined in either a spherical cavity or

a slit. They used EDFT to calculate the equilibrium density profile corresponding to a

particular external potential and considered cases when the external potential suddenly

changed (i.e., a parameter in the external potential was either increased or decreased).

Using the density profile from the EDFT as the starting density profile, they used the

DDFT to determine how the density profile of the fluid evolved towards equilibrium.

The reliability of their results was assessed by making comparison with BD simulation

results – i.e. they numerically integrated Eq. (9) a number of different times, for different

realisations of the stochastic noise, and then averaged over all the different runs in order

to obtain the ensemble average time evolution of the fluid density profile. Dzubiella and

Likos found that the DDFT and the BD simulation results were in very good agreement

[11]. We follow the same strategy here but for a binary mixture of GCM particles.

The one component GCM does not exhibit fluid-fluid phase separation [3, 19]. It is

therefore of interest to find out whether the DDFT proves to be reliable for the dynamics

of inhomogeneous fluids when there is phase separation in the fluid and when related

interfacial phenomena such as wetting of the cavity wall are present. The model fluid

we consider is the binary GCM. This fluid does exhibit liquid-liquid phase separation

[20, 21]. The GCM particles interact via the following purely repulsive pair potential:

ui,j(r) = ǫi,j exp(−r2/R2
i,j) (25)

and no other higher body potentials. In Eq. (25) i, j = 1, 2 label the two different species

of particles, ǫi,j > 0 is a parameter that determines the strength of the interaction and

Ri,j denotes the range of the interaction potential. Note that this potential has no

hard core; the centres of the particles can overlap completely. When one considers

the effective potential between the centres of mass of polymers in a good solvent, one

finds that the Gaussian potential (25), with ǫi,j ∼ 2kBT and Ri,j ∼ Rg, the polymer

radius of gyration, provides a good approximation [3, 12, 13, 14, 15, 16]. When the fluid

density becomes sufficiently high, each GCM particle interacts with a large number of

neighbours, and it is established that the following mean-field excess Helmholtz free

energy functional [3, 19, 20, 21]:

Fex[{ρi(r)}] =
1

2

2
∑

i,j=1

∫

dr

∫

dr′ρi(r)ρj(r
′)ui,j(|r− r′|), (26)
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becomes rather accurate. This functional generates the RPA closure for the direct pair

correlation functions (c.f. Eq. (7)):

c
(2)
i,j (r, r′) ≡ −β

δ2Fex[{ρi(r)}]

δρi(r)δρj(r′)
= −βui,j(|r − r′|). (27)

We solve the DDFT (20) for the binary GCM confined in spherically symmetric

external potentials of the form:

ui
ext(r) = E (r/R)10 , (28)

where r is the distance from the origin, E = 10kBT and the length-scale R is the same

for both species of particles. This potential is of the same form as one of the external

potentials considered in Ref. [11] for a one component fluid of GCM particles. As the

length parameter R is increased, the size of the cavity is increased. We consider cases

where for times t < 0 the fluid is at equilibrium confined in a cavity with potentials (28),

with R = R1. Then at t = 0 the cavity potentials change to ones with R = R2 6= R1.

Due to the spherical symmetry of the external potentials, the (ensemble average) fluid

one body density profiles will also display spherical symmetry. In the binary GCM fluid

we shall consider mixtures with two different sets of pair potential parameters. The first

corresponds to a set giving bulk liquid-liquid phase separation and the second to a set

giving microphase-separation [23]. We shall also assume throughout that the friction

constants for the two different species of particles are equal, i.e., Γ−1
1 = Γ−1

2 = Γ−1, to

keep the problem as simple as possible.¶

3.1. DDFT for a GCM fluid which exhibits bulk phase separation

We consider a binary GCM fluid with pair potential parameters ǫ11 = ǫ22 = 2kBT ,

ǫ12 = 1.8877kBT , R22 = 0.665R11 and R12 = 0.849R11, which exhibits bulk fluid-fluid

phase separation. The fact that R12 = (1 + ∆)(R11 + R22)/2, with ∆ > 0, ensures

that the fluid exhibits positive non-additivity and it is this feature which induces phase

separation. This choice of pair potential parameters was used in a number of previous

studies by the author [21, 22, 33, 34, 35]. The fluid phase-separates at high total

densities ρ = ρ1 + ρ2, where ρ1 and ρ2 are the bulk densities of the two species. Within

the mean-field DFT defined by Eq. (26) the (lower) critical point is at ρR3
11 = 5.6 and

concentration x ≡ ρ2/ρ = 0.70 [21].

The first case we consider is that with N1 = 200 big particles of species 1 and

N2 = 100 particles of species 2, confined in a cavity with R = 4R11 for t < 0. At t = 0

the cavity size is suddenly reduced to R = 3R11. In Fig. 1 we display the evolution of

the fluid density profiles after this sudden compression of the cavity. We display the

results from solving the DDFT (20) combined with the RPA functional (26), as well

as results from BD simulations [36]. In the BD simulations we numerically integrate

Eq. (9) generalised to two different species of GCM particles. We typically perform

¶ Another more realistic choice, following Stokes, would be to set Γ−1

i
∝ Rii. However, we do not

believe making this alternative choice would affect any of our overall conclusions.
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Figure 1. Density profiles ρi(r, t) (DDFT results: solid line for species 1, dashed

line for species 2; symbols are BD results, (+) for species 1, (×) for species 2) for a

fluid composed of N1 = 200 particles of species 1 and N2 = 100 particles of species

2, which is initially (t < 0) at equilibrium in an external potential of the form in Eq.

(28) with R = 4R11. At t = 0 the external potentials suddenly change to those with

R = 3R11. The profiles are plotted for various t∗ = kBTΓR2
11t. The two species of

particles are uniformly mixed in the cavity at t = 0, but due to the increase in density,

the equilibrium profiles for the fluid in the cavity with R = 3R11 exhibits a degree of

demixing. Note also that ρ1(r = 0, t) is a non-monotonic function of time.
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Figure 2. This is the reverse case of that displayed in Fig. 1. Initially (t < 0) the fluid

is at equilibrium confined in external potentials of the form Eq. (28) with R = 3R11.

Then at t = 0 the cavity potentials suddenly change to those with R = 4R11. The

profiles are plotted for various t∗ = kBTΓR2
11t.
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Figure 3. The second moment of the density profiles, mi

2(t), defined by Eq. (29).

The left hand figure is for the cases corresponding to the density profiles displayed in

Figs. 1 and 2. The right hand figure corresponds to the cases in Figs. 4 and 5. The

solid lines are the second moment for species 1, m1
2(t), and the dashed lines m2

2(t), for

species 2. In each case, the curves with a higher value of mi

2(t → ∞) correspond to

a final external potential with a larger value of R. Note that in both cases m1
2(t) is

non-monotonic, whereas m2
2(t) is a monotonic function of time.

1500 different runs, each with different realisations of the stochastic noise term, and

then average over all the different runs in order to obtain the ensemble average time

evolution of the fluid density profiles. In order to generate each starting configuration,

we allow the fluid to equilibrate for a reduced time t∗ ≡ kBTΓR2
11t = 10 with a fixed

parameter R = R1(= 4R11) in the external potential, before changing this parameter

to R = R2(= 3R11) and determining the relaxation of the fluid. In Fig. 1 the density

profiles at t = 0 correspond to those of the equilibrium fluid in a cavity with R = 4R11
+.

When the external potential parameter R = 4R11, the two species of GCM particles are

mixed within the cavity, although because the walls of the cavity favour species 1, there

is a higher density of species 1 around the outside of the cavity. This preference of the

cavity wall for species 1 is due to the fact that the cavity wall potentials for both species

of particles decay into the fluid with the same decay length. This results in an effective

attraction between the wall and species 1 [22]. For small t > 0, the initial ‘compression’

of the fluid results in the growth of a sharp peak in the densities of both species around

r ≃ R2 = 3R11. This causes a density ‘wave’ to travel through the fluid into the centre

of the cavity. The fluid reaches equilibrium at t∗ ≡ t/τB ≃ 1.3, where τB = β/ΓR2
11 is

the Brownian time scale. In Fig. 1 we display the fluid density profiles for the times

t∗ = 0, 0.025, 0.1, 0.3, 0.8, and 2. The profile for t∗ = 2 effectively corresponds to the

equilibrium profile for the external potential (28) with R = 3R11. With this value of R

the fluid exhibits a degree of phase separation in the cavity due to the fact that the total

+ Note that within the grand canonical EDFT the mean number of particles 〈Ni〉 of species i in the

cavity is constrained. In practice we set the chemical potentials µi such that the the mean number of

particles in the cavity, 〈Ni〉 =
∫

drρi(r) = Ni, the number of particles in the BD simulation.
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Figure 4. Density profiles ρi(r, t) (solid line for species 1, dashed line for species 2)

for a fluid composed of N1 = 25000 particles of species 1 and N2 = 5000 particles of

species 2, which is initially (t < 0) at equilibrium confined in external potentials of

the form in Eq. (28) with R = 9R11. Then at t = 0 the external potentials suddenly

change to those with R = 13R11. The profiles are plotted for various t∗ = kBTΓR2
11t.

Initially, the fluid is separated into two phases, one rich in species 1 around the outside,

‘wetting’ the wall of the cavity, and the other phase in the centre of the cavity, rich in

species 2. Notice the slow diffusion of particles through the fluid-fluid interface in the

later stages of the equilibration.

density of the fluid in the cavity has increased. The particles of species 1 are mostly to

be found adsorbed around the wall of the cavity and species 2 towards the centre of the

cavity. In Fig. 2 we display the density profiles for the reverse situation to the case in

Fig. 1: The external potentials (28) are initially (t < 0) those with R = 3R11. Then, at

t = 0, the potentials are changed to those with R = 4R11. In this case the fluid reaches

equilibrium when t∗ ≃ 1.7. The reason that the ‘compression’ case (Fig. 1) is able to

reach equilibrium faster than the relaxation case (Fig. 2) is that in the compression
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Figure 5. This is the reverse case of that displayed in Fig. 4. Initially (t < 0) the fluid

is at equilibrium confined in external potentials of the form in Eq. (28) with R = 13R11.

Then at t = 0 the external potentials suddenly change to those with R = 9R11. The

profiles are plotted for various t∗ = kBTΓR2
11t. Notice the concentration ‘wave’ (dip

in the profile of species 1 and a peak in profile for species 2) that travels towards the

centre of the cavity which allows the fluid to reach equilibrium slightly faster than in

the opposite (relaxation) process – see Fig. 4.

case the ‘shock wave’ that travels inward, mixes up the fluid, which allows it to reach

equilibrium faster than in the relaxation case. In Fig. 3 we display the second moment

of the density profile,

mi
2(t) =

∫

drr2ρi(r, t). (29)

Dzubiella and Likos [11] found that for a one component GCM fluid this is a monotonic

function of time. For the relaxation (cavity expansion) case they found that m2(t)

can be very accurately approximated by an exponentially decaying function. For the
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compression case, m2(t) is also monotonic, and can be accurately parameterised by a

function composed of two exponentials. They also found that the one component GCM

fluid reaches equilibrium faster in the compression case, where R is decreased at time

t = 0, rather than the relaxation case. For the binary GCM fluid, m2
2(t) is also a

monotonic function of time (dashed lines), but interestingly, m1
2(t) is not (solid lines) –

see Fig. 3. This is because particles of species 1 are adsorbed on the wall of the cavity

and when the parameter R in the external potentials is suddenly decreased, particles

of species 1 are forced more strongly towards the centre of the cavity than the species

2 particles. This causes an increase in the density of species 1 at the centre of the

cavity. However, in the final stages of the fluid equilibration, the density of species

1 at the centre of the cavity decreases again. In other words, ρ1(r = 0, t) is a non-

monotonic function of time. Similarly, when the cavity is suddenly increased in size, it

is the particles of species 1 that ‘feel’ the space around the outside of the fluid that has

suddenly appeared, rather than the species 2 particles, and so it is species 1 particles that

move outwards to fill this space. However, in the final stages of the fluid equilibration

process, there is a net flow of species 1 particles back towards the centre of the cavity.

For these reasons, only m1
2(t) is a non-monotonic function of time. Dynamic processes

such as these only occur when the fluid confined in the cavity is a binary fluid, where

the wall of the cavity has a preference for one of the species. As can be seen from Figs.

1 and 2 there is remarkably good agreement between the density profiles obtained from

the DDFT and from the BD simulations. This agreement gives us confidence concerning

the reliability of the DDFT for cases where the numbers of particles are such that BD

simulations become computationally too expensive. Note also that the RPA functional

(26) becomes increasingly accurate as the GCM fluid density is increased [3, 19]; this

should further improve the accuracy of the DDFT results.

In Figs. 4 and 5 we display the DDFT results for a similar situation as in Figs.

1 and 2, except in this case the cavity is larger and the number of confined particles

is higher: N1 = 25000 particles of species 1 and N2 = 5000 particles of species 2 (the

average densities are also higher). In Fig. 4 we display the results for the case when

the fluid, for t < 0, is at equilibrium in a cavity with potentials given by Eq. (28) with

R = 9R11. Then at t = 0 the potentials change suddenly to those with R = 13R11.

We plot the density profiles for t∗ = 0, 0.02, 0.04, 0.06, 0.1, 0.5, 1, 5, 10, 20, 30 and

∞. (Here and elsewhere, the t = ∞ density profiles are those obtained using EDFT

for cavity potentials with R = R2. In the present case R2 = 13R11.) We see that at

t = 0 the fluid is strongly phase separated in the cavity, with the phase rich in species

1 ‘wetting’ the wall of the cavity, and the phase rich in species 2 at the centre of the

cavity. The final equilibrium configuration, t → ∞, when the cavity radius R = 13R11,

is that where the two species of particles are mixed together in the cavity, although the

preference of the cavity wall for species 1 ensures that the density of species 1 is still

higher around the outside of the cavity. In order to reach this equilibrium configuration

the fluid first exhibits a ‘quick’ flow of the phase rich in species 1 to fill the space created

around the outside of the fluid by the cavity expansion. There is then a second ‘slow’
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process whereby the two demixed phases mix, i.e. the diffusion of particles across the

fluid-fluid interface is a slow process.

For the reverse (cavity compression) situation, the results are displayed in Fig. 5.

For t < 0 the fluid is at equilibrium in a cavity with potentials given by Eq. (28) with

R = 13R11. Then at t = 0 the potentials change suddenly to those with R = 9R11.

We plot the density profiles for t∗ = 0, 0.02, 0.1, 0.5, 1, 3, 5, 10, 15, 20, 35 and ∞. In

this case the fluid reaches equilibrium slightly faster than in the case where the cavity

size is increased. This is because in the cavity compression case, the sudden decrease of

R at t = 0 sends a particle concentration ‘wave’ into the centre of the cavity (see Fig.

5) which allows the fluid to reach equilibrium faster. This ‘wave’ forms as a dip in the

density profile of species 1 and a peak in profile for species 2 couple together and move

towards the centre of the cavity. The amplitude of the wave increases with proximity

to the centre of the cavity. As can be seen in the right hand figure of Fig. 3 for both

these cases the second moments of the density profiles, given by Eq. (29), show similar

behaviour to the cases with fewer particles in Figs. 1 and 2 – see Fig. 3. m1
2(t) is a

non-monotonic function of time, whereas m2
2(t) is a monotonic function of time. As for

the cases in Figs. 1 and 2, this is due to the fact that the species 1 particles are adsorbed

on the cavity wall, rather than the species 2 particles.

3.2. DDFT for a GCM fluid which exhibits microphase separation

We now consider a binary GCM fluid with pair potential parameters the same as in

the previous subsection except that R12 = 0.6R11, i.e. R12 = (1 + ∆)(R11 + R22)/2,

with ∆ < 0; the fluid exhibits negative non-additivity. This fluid does not exhibit bulk

fluid-fluid phase separation. Due to the negative non-additivity there is a propensity to

ordering in the fluid in which particles of species 1 have as nearest neighbours particles

of species 2, and vice versa [23]. We refer to this phenomenon as ‘1-2 ordering’. At

high total densities EDFT predicts that this GCM fluid freezes into a crystal in which

the particles are highly delocalized, with Lindemann parameters as high as 90% near

melting [23]. When the fluid is confined in a spherical cavity and the fluid density

is high enough, the fluid forms an ‘onion’ structure of alternating layers, one particle

thick, of the two different species [23] (see also Figs. 6, 7, 9 and 10). Similarly, when

the high density mixture is confined in a planar slit the density profiles show that fluid

forms alternating layers of the two different species parallel to the walls of the slit [23].

At lower densities the two different species of particles are mixed. This microphase

separation is associated with the fact that the bulk fluid exhibits an instability with

respect to periodic density modulations – a ‘λ-instability’. For more details regarding

the origin of this instability see Ref. [23] and references therein. Here our interest is

limited to the question: Can the DDFT describe the formation of ‘onion’ structures in

a spherical cavity with potentials given by Eq. (28) when R is reduced, and can the

DDFT describe the onion ‘melting’ when R is increased?

We follow a strategy similar to that taken in the previous subsection and make
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Figure 6. Density profiles ρi(r, t) (solid line is DDFT results for species 1, dashed line

for species 2; symbols are BD results, (+) for species 1, (×) for species 2.) for a fluid

composed of N1 = 200 particles of species 1 and N2 = 150 particles of species 2, which

is initially (t < 0) at equilibrium confined in external potentials of the form in Eq.

(28) with R = 4R11. Then at t = 0, the external potentials suddenly change to those

with R = 3R11. The profiles are plotted for various t∗ = kBTΓR2
11t. This model fluid

exhibits microphase-separation. The final t∗ = 1 configuration is an ‘onion’ structure.

 0

 1

 2

 3

 4

 0  1  2  3  4  5

ρ i
(r

) 
R

11
3

r/R11

t*=0

 0

 1

 2

 3

 4

 0  1  2  3  4  5

ρ i
(r

) 
R

11
3

r/R11

t*=0.025

 0

 1

 2

 3

 4

 0  1  2  3  4  5

ρ i
(r

) 
R

11
3

r/R11

t*=0.05

 0

 1

 2

 3

 4

 0  1  2  3  4  5

ρ i
(r

) 
R

11
3

r/R11

t*=0.1

 0

 1

 2

 3

 4

 0  1  2  3  4  5

ρ i
(r

) 
R

11
3

r/R11

t*=0.5

 0

 1

 2

 3

 4

 0  1  2  3  4  5

ρ i
(r

) 
R

11
3

r/R11

t*=1.0

Figure 7. This is the reverse case of that displayed in Fig. 6. Initially (t < 0) the fluid

is at equilibrium confined in external potentials of the form in Eq. (28) with R = 3R11.

Then at t = 0, the external potentials suddenly change to those with R = 4R11. The

profiles are plotted for various t∗ = kBTΓR2
11t. The initial t = 0 configuration is an

‘onion’ structure.
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a comparison between the results from DDFT and BD simulations for cases with a

limited number of particles, in order to demonstrate the reliability of the DDFT for

this particular GCM fluid and then we apply the DDFT to cases where the number

of particles is too high for simulations to be a realistic tool for studying the dynamics.

In Fig. 6 we display the density profiles for a fluid composed of N1 = 200 particles of

species 1 and N2 = 150 particles of species 2, which is initially (t < 0) at equilibrium

confined in external potentials of the form in Eq. (28) with R = 4R11. Then at t = 0

the external potentials are suddenly changed to those with R = 3R11. We display the

density profiles for t∗ = 0, 0.025, 0.05, 0.1, 0.5 and 1. In the initial t = 0 density profiles

we see that there is little sign of the fluid exhibiting 1-2 ordering. As was the case for

the fluid described in the previous subsection, the wall potentials result in an effective

attraction between the wall of the cavity and particles of species 1. Therefore there is an

increased density of species 1 around the wall of the cavity. Following the compression in

the cavity at t = 0, there is an initial in-flow of fluid towards the centre of the cavity and

an increase in the density of the fluid near to the cavity wall. Following this initial stage,

the fluid relaxes into a configuration which exhibits a pronounced degree of 1-2 ordering

– see the t∗ = 1 figure in Fig. 6. In Fig. 7 we display the results for the reverse situation,

i.e. when the fluid is initially (t < 0) at equilibrium confined in external potentials of

the form in Eq. (28) with R = 3R11, then at t = 0, the external potentials suddenly

change to those with R = 4R11. We display the profiles for t∗ = 0, 0.025, 0.05, 0.1,

0.5 and 1. In both cases the agreement between the DDFT and the BD simulations is

remarkably good. Fig. 8 displays the results for the second moment of the density profile,

defined by Eq. (29). As in the previous subsection, in the present case the moments

m1
2(t) for species 1 are non-monotonic functions of time, whereas the moments m2

2(t)

are monotonic functions of time. The fluid which exhibits 1-2 ordering is able to reach

equilibrium faster than the fluid considered in the previous subsection which exhibits

bulk phase separation. This is because the average distance the particles must diffuse to

be arranged in a microphase-separated distribution is shorter than in the case where the

final equilibrium configuration is that exhibiting ‘bulk’ phase-separation. In the latter

case the particles of species 1 must diffuse to the outside of the cavity, whilst particles

of species 2 must diffuse to the centre of the cavity in order to reach equilibrium.

In Figs. 9 and 10 we display the DDFT results for a similar situation, except now

the cavity is larger and the number of confined particles is also much bigger: N1 = 16000

particles of species 1 and N2 = 15000 particles of species 2 (the average densities are

also higher). In Fig. 9 we display the results for the case when the fluid, for t < 0, is at

equilibrium in a cavity with potentials given by Eq. (28) with R = 8R11. Then at t = 0

the potentials change suddenly to those with R = 10R11. We plot the density profiles

for t∗ = 0, 0.02, 0.06, 0.1, 0.2, 0.5, 0.7, 1 and ∞. At t = 0 the two different species

of particles are strongly ordered into alternating layers of the two different species – an

‘onion’ structure. The final equilibrium configuration, t → ∞, is that where the two

species of particles are uniformly mixed in the cavity, although, due to the preference

of the cavity wall for species 1, the density of species 1 is higher in the outer region of
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Figure 8. The second moment of the density profiles, mi
2(t), defined by Eq. (29), for

a GCM fluid exhibiting microphase-separation, with density profiles displayed in Figs.

6 and 7. The solid lines are the second moment for species 1, m1
2(t), and the dashed

lines m2
2(t), for species 2. In each case, the curves with a higher value of mi

2(t → ∞)

correspond to a final external potential with a larger value of R. Note that in both

cases m1
2(t) is non-monotonic, whereas m2

2(t) is a monotonic function of time, as was

the case in Fig. 3 for a GCM fluid that exhibits bulk phase separation.

the cavity. The equilibration process is almost an order of magnitude shorter in time

than in either of the cases in Figs. 4 or 5 for the GCM fluid exhibiting bulk liquid-liquid

phase separation, even though the number of particles involved in these cases is similar.

This is because the particles must diffuse a distance ∼ R11, the particle size, in order

to go from a state with 1-2 ordering to a mixed state, whereas for the fluid exhibiting

‘bulk’ phase separation the particles must diffuse a much larger distance ∼ R, the radius

of the cavity. For the reverse (cavity compression) situation, the results are displayed

in Fig. 10. Initially, for t < 0, the fluid is at equilibrium in a cavity with potentials

given by Eq. (28) with R = 10R11. Then at t = 0 the potentials change suddenly to

those with R = 8R11. We plot the density profiles for t∗ = 0, 0.01, 0.02, 0.06, 0.1,

0.2, 0.5, 0.7 and ∞. As with the cavity expansion case in Fig. 9 this process is almost

an order of magnitude quicker in time than in either of the cases in Figs. 4 or 5. The

compression causes the total fluid density to first increase around the wall of the cavity,

before increasing near the centre of the cavity. This results in the ‘onion’ layers forming

first in the outer region and then developing inwards towards the centre of the cavity as

the fluid equilibrates.

4. Liouville, Kramers and Smoluchowski equations

We now turn to the question of what approximations are involved in the present

description of the fluid dynamics. Under what circumstances can the equations of

motion for a solution of colloids suspended in a solvent of much smaller particles be
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Figure 9. Density profiles ρi(r, t) (solid line for species 1, dashed line for species 2)

for a fluid composed of N1 = 16000 particles of species 1 and N2 = 15000 particles of

species 2, which is initially (t < 0) is at equilibrium confined in external potentials of

the form in Eq. (28) with R = 8R11. Then at t = 0 the external potentials are suddenly

changed to those with R = 10R11. The profiles are plotted for various t∗ = kBTΓR2
11t.

This model fluid exhibits microphase-separation. The initial t = 0 configuration is an

‘onion’ structure.

approximated by the stochastic equations of motion (9)? Or, equivalently, in which

situations can the time evolution of the probability density function for the full system

of colloid and solvent particles be approximated by the Smoluchowski equation (11)?

In Refs. [37, 38] these questions are addressed for the case of a fluid in which one

of the particles is much larger than the rest and when the solvent friction coefficient

Γ−1 is sufficiently large, that one can argue that the time evolution of the probability

distribution function for the single big (colloid) particle is governed by the single

particle Smoluchowski equation. Here we present an argument which is a simplified

generalisation (for N big colloid particles) of this argument. The derivation does not

contain new ideas. However, we do make connections between older, well known, results

concerning the dynamics of colloidal fluids and more recent developments in the theory

of solvent mediated effective potentials between colloids in solution [3]. The following

therefore provides much insight to the physics incorporated in the Smoluchowski

equation and therefore also in the DDFT, and applies generally to colloidal fluids.

We consider a fluid consisting of a single species of N colloid particles of mass m,
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Figure 10. This is the reverse case of that displayed in Fig. 9. Initially (t < 0)

the fluid is at equilibrium confined in external potentials of the form in Eq. (28) with

R = 10R11. Then at t = 0, the external potentials suddenly change to those with

R = 8R11. The density profiles (solid line for species 1, dashed line for species 2) are

plotted for various t∗ = kBTΓR2
11t.

suspended in a single component solvent composed of S solvent particles, of mass M .

We denote the coordinates of the ith colloid by ri and momentum pi. The set of colloid

position coordinates we denote by rN ≡ {r1, ..., rN} and similarly pN ≡ {p1, ...,pN}.

For the solvent particles we denote the location in phase space of the νth solvent particle

by (Rν ,Pν). Just as for the colloids, we denote the sets RS ≡ {R1, ...,RS} and

PS ≡ {P1, ...,PS}. The Hamiltonian for this system is:

H(rN ,pN ,RS,PS, t) =
1

2m

N
∑

i=1

|pi|
2 +

1

2M

S
∑

ν=1

|Pν |
2

+ VN(rN , t) + VN,S(rN ,RS) + VS(RS, t), (30)

where the first two terms on the right hand side are the colloid and solvent kinetic

energy contributions to the Hamiltonian. VN(rN , t) is the colloid potential energy:

VN(rN , t) =
N
∑

i=1

vext(ri, t) +
1

2

∑

j 6=i

N
∑

i=1

v2(ri, rj) +
1

6

∑

k 6=j 6=i

∑

j 6=i

N
∑

i=1

v3(ri, rj, rk) + ... (31)

which is assumed to be made up of a one-body term (external potential vext(ri, t) on

each colloid particle) a two-body term (v2(ri, rj) is the pair potential), a three body
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term v3(ri, rj, rk), etc. Note that VN(rN , t) describes the direct or bare colloid-colloid

interaction potential; it does not involve effective solvent mediated interactions and is

therefore not the same as UN(rN , t) in Eq. (8) – we will further clarify this issue later

(see Eq. (43)) ∗. Similarly, VS(RS, t) is the solvent potential energy and VN,S(rN ,RS)

is the potential energy arising from interactions between the colloid and the solvent

particles.

We can define a phase space probability density function f (N+S)(rN ,pN ,RS,PS, t)

for the fluid, and its time evolution is governed by the (exact) Liouville equation [29]:

∂f (N+S)

∂t
+

1

m

N
∑

i=1

pi ·
∂f (N+S)

∂ri

+
N
∑

i=1

Xi ·
∂f (N+S)

∂pi

+
1

M

S
∑

ν=1

Pν ·
∂f (N+S)

∂Rν

+

S
∑

ν=1

Yν ·
∂f (N+S)

∂Pν

+

S
∑

ν=1

Z̄ν ·
∂f (N+S)

∂Pν

+

N
∑

i=1

Zi ·
∂f (N+S)

∂pi

= 0, (32)

where

Xi = −
∂VN

∂ri

, Yν = −
∂VS

∂Rν

, Zi = −
∂VN,S

∂ri

, Z̄ν = −
∂VN,S

∂Rν

, (33)

are forces on the particles. The Liouville equation is a statement of the continuity of

f (N+S) in phase space over time.

Since the solvent particles are much smaller than the colloids, they will equilibrate

on a time scale τs much smaller than the time scale τc on which the colloids equilibrate,

i.e. τc ≫ τs. We are interested in phenomena that occur on time scales ∼ τc, so we can

assume that effectively the solvent particles equilibrate instantaneously, and when we

integrate over the solvent degrees of freedom in Eq. (32) we obtain an equation similar to

the Liouville equation for a one component fluid of N particles, but with an additional

‘solvent’ term due to interactions between the colloid and solvent particles:

∂f (N)

∂t
+

1

m

N
∑

i=1

pi ·
∂f (N)

∂ri

+
N
∑

i=1

Xi ·
∂f (N)

∂pi

=

(

∂f (N)

∂t

)

solvent

, (34)

where the colloid reduced probability density function is

f (N)(rN ,pN , t) ≡

∫

dPS

∫

dRSf (N+S)(rN ,pN ,RS,PS, t) (35)

and formally the ‘solvent’ term is
(

∂f (N)

∂t

)

solvent

≡ −

N
∑

i=1

∂

∂pi

·

∫

dPS

∫

dRSZif
(N+S). (36)

The term
∫

dPS
∫

dRSZif
(N+S) in (36) is proportional to the average force exerted on

colloid i by the solvent particles. On this ‘coarse-grained’ time scale ≫ τs, the leading

order contributions to this force are a one body (Stokes) drag force on each colloid,

∗ For generality we assume VN (rN , t) contains higher body terms, although it is generally assumed

that the bare interactions between particles are pairwise with no higher body terms. In principle, the

higher-body terms arise from integrating over quantal degrees of freedom in obtaining VN (rN , t).
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−γpi, where γ is a friction coefficient, and a force term, xi, due to solvent mediated

interactions between the colloids. This force is

xi = −
∂ΦN

∂ri

, (37)

where ΦN(rN) is the effective solvent mediated potential between the colloid particles.

For an equilibrium fluid ΦN (rN) = −kBT ln QS(rN), where QS(rN) is a partial partition

function [3]:

QS(rN) =
Λ−3S

S

S!

∫

dRS exp

[

−
1

kBT

(

VN,S(rN ,RS) + VS(RS, t)
)

]

, (38)

and ΛS is the de-Broglie wavelength for the solvent particles. For the equilibrium fluid

ΦN (rN) can, in principle, be calculated. In general

ΦN (rN) = Ṽ φ0 +
N
∑

i=1

φ1(ri) +
1

2

∑

j 6=i

N
∑

i=1

φ2(ri, rj) +
1

6

∑

k 6=j 6=i

∑

j 6=i

N
∑

i=1

φ3(ri, rj, rk) + ...,(39)

where Ṽ is the volume of the system, φ0 is a zero-body potential [3], φ1(ri) is the solvent

mediated one-body potential (for example with the fluid container walls), φ2(ri, rj) is

a two body pair potential, φ3(ri, rj, rk) is a three body potential, and so on. These

potentials are generally density dependent. We shall assume that the non-equilibrium

solvent mediated potential is the same as the equilibrium solvent mediated potential

(39). This approximation should be reliable on time scales ≫ τs, since on these time

scales the solvent particles are effectively at equilibrium. Thus the leading order terms

in a Taylor expansion of the force term in Eq. (36) can be expressed as:
(

∂f (N)

∂t

)

solvent

≃
N
∑

i=1

∂

∂pi

·

(

(γpi − xi)f
(N) + θ

∂f (N)

∂pi

+ ...

)

, (40)

where θ is a mobility coefficient, which, in principle, is a function of the colloidal phase

space coordinates. However, we shall assume γ and θ to be constants. If we now

substitute Eq. (40) into Eq. (34), retaining only the two leading order terms, then we

obtain:

∂f (N)

∂t
+

1

m

N
∑

i=1

pi ·
∂f (N)

∂ri

+
N
∑

i=1

(Xi + xi) ·
∂f (N)

∂pi

= γ
N
∑

i=1

∂

∂pi

· pif
(N) + θ

N
∑

i=1

∂2f (N)

∂p2
i

. (41)

We recognise this as the Kramers equation – i.e. a generalised Fokker-Planck equation

[5]. At this point we can also make the connection between the constants γ and θ via

the fluctuation dissipation theorem, and we find that θ = mkBTγ. In other words,

when θ = mkBTγ, the equilibrium colloid reduced probability distribution function is

correctly given by

f
(N)
0 ∝ exp

[

−β

(

1

2m

N
∑

i=1

|pi|
2 + VN(rN) + ΦN (rN)

)]

, (42)
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where VN(rN), the term describing the direct interactions between the colloids, is given

by Eq. (31) with a time independent external potential.

We now clarify the difference between the potentials UN(rN , t) in Eq. (8) and

VN(rN , t) in Eq. (31). We see that the total colloid potential UN (rN , t), is given by

(see Eqs. (31) and (39)):

UN(rN , t) = VN(rN , t) + ΦN (rN). (43)

i.e., we see explicitly here that UN (rN , t) is the sum of the direct colloid interaction

potential (31) and the solvent mediated potential (39). In Eq. (8) we can therefore

identify the total colloid effective one body potential uext(ri) = vext(ri) + φ1(ri), as the

sum of a direct potential and a solvent mediated potential. Similarly, the total colloid

effective pair potential u2(ri, rj) = v2(ri, rj) + φ2(ri, rj), the total colloid effective three

body potential u3(ri, rj, rk) = v3(ri, rj, rk) + φ3(ri, rj, rk), and the higher body effective

potentials are a sum of a direct contribution and a solvent mediated contribution.

The Kramers equation (41) can also be obtained as the (generalised) Fokker-Planck

equation for the time evolution of the probability density function for N colloid particles

with the following stochastic equations of motion [5]:

dri

dt
=

pi

m
,

dpi

dt
= −γpi −

∂

∂ri

(VN(rN , t) + ΦN (rN)) + Gi(t), (44)

where Gi(t) = (ξx
i (t), ξy

i (t), ξ
z
i (t)) is a white noise term with correlations given by

Eq. (10). In a stochastic treatment of the colloidal fluid one considers the above

equations of motion, (44), solely for the colloids and one incorporates the effect of the

solvent via the stochastic noise term, the friction coefficient γ and the solvent mediated

potential ΦN(rN). In the treatment above, we arrived at the Kramers equation (41) by

approximating the Liouville equation for the full system of solvent and colloid particles.

In deriving the Kramers equation (41) it is clear that we made a very large reduction

in number of degrees of freedom in the description of the fluid, since we have integrated

over the solvent degrees of freedom. However, there are still 6N degrees of freedom

in (41) and further reductions are required. We now focus on the colloid probability

density function

P (N)(rN , t) =

∫

dpNf (N)(rN ,pN , t). (45)

In order to obtain an equation for the time evolution of P (N)(rN , t) we have to make

further approximations. The following is a generalisation of the “quick and dirty”

approach in Ref. [2] (see also Refs. [5, 39]). On integrating with respect to the colloid

momentum degrees of freedom in Eq. (41), we obtain the following continuity equation:

∂P (N)

∂t
+

N
∑

i=1

∂

∂ri

· Ji = 0, (46)

where the current

Ji ≡

∫

dpN 1

m
pif

(N)(rN ,pN , t), (47)
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and we have used the fact that the integrals
∫

dpi(∂f (N)/∂pi),
∫

dpi(∂
2f (N)/∂p2

i ) and
∫

dpi(∂(pif
(N))/∂pi) are all equal to zero.

Also, if we multiply Eq. (41) through by pk/m, the velocity of the kth colloid, and

then integrate over all the colloid momentum degrees of freedom, we obtain:

∂Jk

∂t
+

N
∑

i=1

∫

dpN pk

m

(

pi

m
·
∂f (N)

∂ri

)

+
N
∑

i=1

∫

dpN pk

m

(

(Xi + xi) ·
∂f (N)

∂pi

)

= γ

N
∑

i=1

∫

dpN pk

m

∂

∂pi

· pif
(N) − γmkBT

N
∑

i=1

∫

dpN pk

m

∂2f (N)

∂p2
i

. (48)

If we now make a ‘local momentum equilibrium’ approximation [2], which sets terms such

as
∫

dpNpi,apj,bf
(N) = mkBTP (N)δi,jδa,b, where pi,a is the a–component (a, b = x, y, z)

of the momentum of the ith particle, then we find that Eq. (48) reduces to

∂Jk

∂t
+

kBT

m

∂P (N)

∂rk

−
1

m
(Xk + xk)P

(N) = −γJk. (49)

If the friction constant γ is sufficiently large then we can neglect the first term in (49),

as it will be negligible compared to the friction term −γJk, on the Brownian time scales

τB, and we obtain:

Jk ≃ −ΓkBT
∂P (N)

∂rk

− Γ
∂UN

∂rk

P (N), (50)

where Γ = 1/mγ. Substituting (50) into Eq. (46), we obtain the Smoluchowski equation

(11).

The Smoluchowski equation is generally presented from the stochastic viewpoint,

starting from the Langevin equations of motion (9). However, as shown above, one

can argue for its use as an approximation to the exact Liouville equations for the time

evolution of the probability density function for colloidal fluids. The above derivation

demonstrates the physical conditions under which the time evolution of the probability

density function of a fluid of colloidal particles is described by the Smoluchowski

equation. By going to the Smoluchowski equation (with an effective potentials between

the colloids), the description of the fluid is reduced to one based on only the position

coordinates of the colloids, rather than the full set of phase space coordinates for the

colloid and solvent particles, which is, of course, a significant simplification.

5. Discussion and conclusions

In Sec. 2 we introduced the DDFT of Marconi and Tarazona [6, 7] for colloidal fluids,

following a recent derivation in Ref. [9] of the DDFT starting from the Smoluchowski

equation. We emphasise that this is an approximate theory. In Sec. 3 we applied the

DDFT to the specific case of a binary fluid of GCM particles confined in a spherical

cavity of variable size. We find that the DDFT is able to describe accurately the time

evolution of the highly structured fluid one-body density profiles. We find a variety of

collective dynamic processes that are accounted for by the DDFT. For example, the
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case in Fig. 5, where we see a particle concentration ‘wave’ travelling through the fluid

into the centre of the cavity that allows the fluid to equilibrate into the phase-separated

configuration slightly faster than one would expect, bearing in mind the results displayed

in Fig. 4, which showed that the fluid-fluid interface persists for a long time after the

cavity radius R is increased. Such phenomena are very difficult to simulate because of

the large number of particles involved. It is in situations such as these where the DDFT

should provide a useful tool to analyse the fluid dynamics.

Our strategy is to first consider cases of only a few hundred particles where BD

simulations can be used to assess the accuracy of the DDFT results. In these test

cases with fewer particles, where the fluid exhibits a limited degree of phase separation

and wetting behaviour, we find excellent agreement between the DDFT and the BD

simulation results (see for example Figs. 1 and 2). This gives us confidence to trust

the reliability of the DDFT when applied to cases with many more particles, where

comparison with simulation becomes computationally too expensive. We predict that

were one to perform a BD simulation for (say) the cases presented in Figs. 4 and 5,

one would find just as good agreement between the DDFT results and BD simulation

results. In fact, one should argue that since the total fluid densities are higher in these

situations, and the fact that the RPA functional (26) becomes more accurate at higher

densities [3, 21], the results from the DDFT should be even more reliable in these cases.

In Sec. 4, we derive the Smoluchowski equation, starting from the exact Liouville

equations by making a series of approximations in order to go from a description of the

fluid in terms of the full set of colloid and solvent phase space coordinates to a (far

more manageable) description solely in terms of the colloid position coordinates (the

Smoluchowski equation (11)). Such integration over degrees of freedom is a process

that is required in order to render a practical statistical description of any condensed

matter system. We believe our derivation is useful because it highlights some of the

approximations involved in the Smoluchowski equation for colloids and therefore also in

the DDFT and thus sheds light on the status of the DDFT.

The Smoluchowski equation is usually presented from the stochastic viewpoint,

since it is the Fokker-Planck equation for the Langevin equations (9). This

connection makes it clear that the Smoluchowski equation and thus the DDFT neglect

hydrodynamic effects. To include hydrodynamic effects one would have to treat

the solvent at a level beyond that taken here, where the effects of the solvent are

incorporated in the DDFT via the effective solvent mediated potential between the

colloids and in the friction coefficient Γ−1. One can build in hydrodynamic effects in the

Smoluchowski equation by replacing Γ with a matrix Γij, describing the hydrodynamic

coupling between colloids i and j [9, 40, 41]. However, this makes the reduction of the

Smoluchowski equation to a DDFT much less straightforward.

We conclude that the DDFT, Eq. (20), should provide a good theory for the

dynamics of the one body density of a colloidal fluid, even when there is phase

separation and wetting of interfaces, provided that i) the friction constant characterising

the solvent, Γ−1, is large enough and ii) there exists an accurate approximation for
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the excess Helmholtz free energy functional Fex[ρ]. Many colloidal fluids can be

accurately modelled as effective hard-sphere fluids and therefore we expect that the

DDFT combined with fundamental measure free energy functionals [42, 43] for hard

spheres to provide a reliable theory for the dynamics of the one body density profile of

a (hard-sphere) colloidal fluid.
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