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Nonlinear layered lattice model and generalized solitary waves in imperfectly bonded structures

Karima R. Khusnutdinova,1,* Alexander M. Samsonov,2 and Alexey S. Zakharov1

1Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
2Ioffe Physico-Technical Institute of the Russian Academy of Sciences, St. Petersburg 194021, Russia

�Received 21 November 2008; published 13 May 2009�

We study nonlinear waves in a two-layered imperfectly bonded structure using a nonlinear lattice model. The
key element of the model is an anharmonic chain of oscillating dipoles, which can be viewed as a basic lattice
analog of a one-dimensional macroscopic waveguide. Long nonlinear longitudinal waves in a layered lattice
with a soft middle �or bonding� layer are governed by a system of coupled Boussinesq-type equations. For this
system we find conservation laws and show that pure solitary waves, which exist in a single equation and can
exist in the coupled system in the symmetric case, are structurally unstable and are replaced with generalized
solitary waves.
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I. INTRODUCTION

Lattice models, i.e., ordered �in particular periodic�, dis-
crete systems of interacting particles, are often used to study
nonlinear dynamics of condensed matter �e.g., �1–4��. Typi-
cally, lattice models allow for a slowly varying field approxi-
mation �long-wave approximation�, which links them with
continuum theories, and establishes relations between physi-
cal characteristics of a lattice and measurable macroparam-
eters of the continuum. The latter is currently of considerable
interest in connection with the question of applicability of
continuum theories at microscales and nanoscales.

In 1938 Frenkel and Kontorova �FK� �5� used a simple
chain of particles interacting with the nearest neighbors in
the presence of an external periodic potential to model the
dynamics of dislocations in metals in the vicinity of the dis-
location core. One- and two-dimensional FK-type models
have found numerous applications in studies of dynamics of
molecular crystals, polymer chains, hydrogen-bonded chains,
etc. �see �4,6� and references therein�. In 1955 the Fermi-
Pasta-Ulam �FPU� �7� model appeared in connection with
the studies of the thermal conductivity of solids. It was ob-
served that, counter intuitively, in anharmonic chains of par-
ticles �with weak nonlinearity in interaction potentials� there
was no equipartition of energy among the modes of the har-
monic approximation. This study has later led to the concept
of a soliton, a localized �exponentially decaying to infinity�
remarkably stable traveling nonlinear wave of permanent
form �8�. In 1967 Toda �9� showed that a chain of particles
with exponential interaction potentials also has exact solitary
wave solutions. A modified Toda lattice with an external lin-
ear elastic term has been used to model the dynamics of a
laminated composite in �10�, establishing that stable enve-
lope solitons play a central role in the dynamics of such a
chain instead of the Toda solitons. In �11� the Toda lattice has
been related to a different composite, where layers were ori-
ented across the direction of wave propagation, having
shown a possibility of existence of solitary waves in such

laminated structures. The so-called “zig-zag” models have
been introduced to describe the nonlinear dynamics of mo-
lecular chains in �12�, having shown that a geometric non-
linearity can have a strong effect on the dynamics of a chain,
alongside with the nonlinearity of the interaction potential
�often called the physical nonlinearity�. Coupled Klein-
Gordon �cKG� chains and corresponding cKG equations
were proposed as a model for long longitudinal waves in
bilayers, where nonlinearity comes only from the bonding
material, and were used to study a number of dynamic prop-
erties of such coupled systems, including solitary waves,
modulational instability of nonlinear multiphase wave trains,
and energy exchange between the components �see �13� and
references therein�.

Lattice models are also often used to study fracture �e.g.,
�14–23��. In such models, fracture is introduced as vanishing
links between respective elements of the lattice. It was
shown that many dynamic properties of fracture can be de-
scribed using linear lattice models. The lattice approach to
fracture problems has several advantages compared to the
classical continuum theories described, for example, in �24�.
In particular, it allows for more natural formulations of the
fracture criterion and more effective numerical approaches to
the dynamics of fracture, for example, such difficult aspects
as crack branching, although developing suitable lattice
models is a complex problem in its own right �see �20,21�
and references there�. It also allows one to construct a num-
ber of exact analytical solutions, using the discrete Fourier
transform and the discrete Wiener-Hopf technique, overcom-
ing certain difficulties of the classical continuum fracture
problems �e.g., �19,22,23��. Lattice modeling of nonlinear
waves in a delaminated bilayer has been attempted in �25�,
having shown the sensitivity of nonlinear waves to such ex-
tended inhomogeneities, and having invited further studies of
the scattering of nonlinear waves in delaminated layered
elastic waveguides �26–28�.

In many cases the behavior of solids is affected by the
existence of “microstructure,” which could be of various na-
ture. Most obvious sources of microstructure are the exis-
tence of molecules in polymers, grains in granular materials,
crystallites in polycrystals, heterogeneity of mechanical
properties of composites, as well as some other irregularities
of materials. Again, there are two main approaches to the

*Corresponding author: FAX: �44 �0�1509 223969;
k.khusnutdinova@lboro.ac.uk

PHYSICAL REVIEW E 79, 056606 �2009�

1539-3755/2009/79�5�/056606�14� ©2009 The American Physical Society056606-1

http://dx.doi.org/10.1103/PhysRevE.79.056606


modeling of microstructured media: continuum theories �see,
for example, �29–32� � and lattice theories �e.g., �1–3� and
references therein�.

In this paper, we use a lattice model to study nonlinear
waves in layered elastic waveguides with some softer mate-
rial between the layers �for example, a soft adhesive bond-
ing�. The key element of this model is a complex chain of
oscillating dipoles earlier considered as a linear model in
�33�. The latter is a natural generalization of the linear model
in �2,34� and a nonlinear model in �35�. Introduction of such
models was mainly motivated by applications to the descrip-
tion of thin films, although they can also be viewed as a
two-dimensional “footprint” of some three-dimensional crys-
tals �e.g., �3��. The model proposed in �35� has also found
applications to the description of some quasi-one-
dimensional crystals �36�. Interest to lattice models has been
recently renewed in connection with so-called lattice mate-
rials �e.g., �37�� and nanostructures �e.g., �38��.

A natural question arising in connection with any lattice
model is an existence of a mapping between a nonlinear
lattice and some nonlinear partial differential equations for
the continuum �e.g., �39��. Considering a simplified model of
two coupled one-dimensional FPU chains with the soft bond-
ing between them, one may expect to get a system of
coupled Boussinesq-type equations in the continuum ap-
proximation. However, it is important to derive this system
explicitly as an accurate nonlinear asymptotic model from a
complex chain, which has all essential degrees of freedom of
a real elastic waveguide, and takes into account both geo-
metrical and physical sources of nonlinearity. This approach
would be impossible until recently due to the large amount of
required derivations. As shown in �40�, derivations of this
kind are now possible �although still difficult�, using modern
computer algebra packages �we used MATHEMATICA �41��.

Our paper is organized as follows. In Sec. II we consider
the basic lattice waveguide and discuss the coincidence of
the corresponding asymptotic continuum model describing
long nonlinear longitudinal waves with the Boussinesq-type
equation derived for a macroscopic waveguide using the
nonlinear elasticity approach in �42�. The approach of this
section can be applied to other lattice models used to study
nonlinear waves or in molecular-dynamics simulations. We
note that in the lattice waveguide under consideration, there
is no simple analogy between long flexural and longitudinal
waves. We finish the section with a possible extension of this
basic model. Section III is devoted to a layered lattice model
which we use to study nonlinear waves in two-layered
waveguides with a layer of a softer material between them.
Long nonlinear longitudinal waves in this lattice model are
described by a system of coupled Boussinesq-type equations.
We consider a version of coupled regularized
Boussinesq�cRB�-type equations and find two nontrivial con-
servation laws, which are later used to control the accuracy
of our numerical simulations. In Sec. IV we study nonlinear
waves in a two-layered imperfectly bonded structure using
the derived system. We show that the classical solitary wave
solution, exponentially decaying to zero in its tail regions,
which exists in the symmetric case, is structurally unstable. It
is replaced with a generalized solitary wave having a co-
propagating oscillatory tail, which clearly manifests itself in

numerical simulations. We theoretically predict the period
and wavelength of these long-wave ripples, accompanying
the core solitary wave, and compare them with numerical
results. We conclude in Sec. V by discussing a possible link
between the difference in the nature of nonlinear waves in
layered structures with different types of bonding and recent
experimental results in �27�.

II. DIPOLE LATTICE MODEL

Our basic dipole lattice model consists of coupled FPU-
type chains of interacting particles of mass m shown in
Fig. 1, which is viewed as an anharmonic chain of oscillating

dipoles �Pn , P̄n�.
Each dipole has four degrees of freedom, and its displace-

ments are described by the following variables: horizontal
�u1

n� and vertical �u2
n� displacements of the geometrical center

On, in-plane rotation of the dipole axis �to an angle ��n�, and
change in a distance between the poles �2u4

n�. This is a non-
linear symmetric version of the linear model considered in
connection with the dynamics of thin films and elastic trusses
in �33�. The model generalizes the simpler chain of dipoles
�with fixed distance between the poles� studied as a linear
model in �2� �see also �3�� and �34� and as a nonlinear model
in �35�.

A. Governing equations

The displacements of poles are given in terms of the di-
pole coordinates �see Fig. 1� as follows:

U1
n = u1

n − �l + u4
n�sin ��n,

U2
n = u2

n + �l + u4
n�cos ��n − l ,

Ū1
n = u1

n + �l + u4
n�sin ��n,

Ū2
n = u2

n − �l + u4
n�cos ��n + l .

Introducing u3
n= l��n and assuming that rotations are small

��n=u3
n / l�1, one can use truncated Taylor expansions in

order to derive equations of motion up to quadratic terms.
The kinetic energy of the nth dipole has the form

(b)(a)

FIG. 1. �Color online� Dipole lattice model: an anharmonic

chain of oscillating dipoles �Pn , P̄n� described by four variables
�u1

n ,u2
n ,��n ,u4

n�.
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Tn =
M

2
��u̇1

n�2 + �u̇2
n�2 + �u̇4

n�2 + �1 +
u4

n

l
�2

�u̇3
n�2� , �1�

where M =2m is the dipole mass, and dot denotes derivative
with respect to time. The potential energy of the nth dipole is
defined by pairwise interactions between neighboring par-
ticles,

�n = �n,n+1 + �n̄,n + 1 + �n,n + 1 + �n̄,n+1 + �n−1,n + �n − 1,n̄

+ �n−1,n̄ + �n − 1,n + ��, �2�

where overlines denote particles in the second �“bottom”�
row. The potential energy of interaction between any two
neighboring particles is assumed to have the form

����r�� =
�̃

2
�r�

2 +
�̃

3
�r�

3 + . . . , �3�

where �r� is the change in a distance between the particles,

and ��̃ , �̃� denotes one of three possible pairs of interaction
constants shown in Fig. 1. The change in a distance between

any pole of the nth dipole �P̃n� and any pole of the

�n+1�th dipole �P̃n+1� is given by �see Fig. 2�

�rñ,n + 1˜ = ��Ũ1
n+1 − Ũ1

n + r0 cos 	0�2

+ �Ũ2
n+1 − Ũ2

n + r0 sin 	0�2�1/2 − r0, �4�

where Ũ1
n , Ũ2

n denote horizontal and vertical displacements

of the pole P̃n. The change in a distance between the poles of
the nth dipole is given by �r�=2u4

n.

Introducing the differences �x= Ũ1
n+1− Ũ1

n, �y= Ũ2
n+1− Ũ2

n,
and assuming that these differences are small compared to r0,
i.e., �x /r0�1, �y /r0�1, one can use expansions

�rñ,n + 1˜ = �x cos 	0 + �y sin 	0 +
1

2r0
��x sin 	0

+ �y cos 	0�2 −
1

2r0
2 ��x cos 	0 + �y sin 	0�


��x sin 	0 + �y cos 	0�2 + . . . .

Substitution of Eqs. �1� and �2� into the Euler-Lagrange
equations

d

dt
� �Tn

� u̇i
n� −

�Tn

�ui
n +

��n

�ui
n = 0

yields four difference-differential equations

Mü1
n +

��n

�u1
n = 0, Mü2

n +
��n

�u2
n = 0,

M�ü3
n�1 +

u4
n

l
�2

+ 2
u̇3

nu̇4
n

l
�1 +

u4
n

l
�� +

��n

�u3
n = 0,

M�ü4
n −

�u̇3
n�2

l
�1 +

u4
n

l
�� +

��n

�u4
n = 0, �5�

where

−
��n

�ui
n = bij� j

n + cij��2� j
n + dijuj

n + gijk��2� j
n�k

n

+ hijk���2� j
n��2�k

n + � j
n�k

n� + �liju3
n + l̃i ju4

n���2� j
n

+ �miju3
n + m̃iju4

n�� j
n + pijkuj

nuk
n, �6�

and � j
n=uj

n+1−uj
n−1, ��2� j

n=uj
n+1−2uj

n+uj
n−1. �We assume the

summation with respect to repeated indices.� The coefficients
of Eq. �6� are given in Appendix A.

B. Models for long longitudinal and flexural waves

To study long waves, one can use the continuum approxi-
mation of the governing Eqs. �5� �e.g., �32��,

ui
n�t� = ui�x,t� ,

ui�x � a,t� = ui�x,t� � auix
�x,t� +

a2

2
uixx

�x,t� �
a3

6
uixxx

�x,t�

+
a4

24
uixxxx

�x,t� + . . . ,

and subsequent asymptotic analysis of the arising system of
nonlinear PDEs,

Mu1tt
= 2b14a�u4x

+
a2

6
u4xxx

� + c11a
2�u1xx

+
a2

12
u1xxxx

� + N1,

Mu2tt
= − 2b14a�u3x

+
a2

6
u3xxx

� + c22a
2�u2xx

+
a2

12
u2xxxx

� + N2,

M�u3tt
�1 +

u4

l
�2

+ 2
u3t

u4t

l
�1 +

u4

l
��

= 2b14a�u2x
+

a2

6
u2xxx

� + c33a
2�u3xx

+
a2

12
u3xxxx

�
+ d33u3 + N3,

M�u4tt
−

�u3t
�2

l
�1 +

u4

l
��

= − 2b14a�u1x
+

a2

6
u1xxx

� − c22a
2�u4xx

+
a2

12
u4xxxx

�
+ d44u4 + N4. �7�

FIG. 2. �Color online� Distances between P̃n and P̃n+1 and P̃n�

and P̃n+1.

NONLINEAR LAYERED LATTICE MODEL AND… PHYSICAL REVIEW E 79, 056606 �2009�

056606-3



The truncated nonlinear terms N1−4 in the right-hand side of
Eqs. �7� are given in Appendix B.

The derivation of the asymptotic long-wave models for
predominantly longitudinal or flexural waves is based on an
observation that in the linear approximation the system �7�
uncouples into two subsystems, describing the interaction
between longitudinal and dipole �or axial� oscillations, and
transversal and rotational oscillations �33�. Introducing di-
mensionless variables

ũi =
ui

Ai
, t̃ =

t

T
, x̃ =

x

X
, �8�

looking for predominantly longitudinal waves, and denoting
X /T=v=O�1�, one can find the scaling

A1

a
	 �1/2,

A2

a
	 �3/2,

A3

a
	 �2,

A4

a
	 �,

a

X
	 �1/2,

�9�

when the leading-order behavior of the system is described
by the subsystem of equations for ũ1 and ũ4,

Mv2ũ1t̃t̃
− a2�2b14ũ4x̃

+ c11ũ1x̃x̃
� + �a3�2m41ũ4ũ4x̃

+ 8h123ũ1x̃
ũ4x̃

+ l12ũ4ũ1x̃x̃
− 2g111ũ1x̃

ũ1x̃x̃
� − �a2�b14

3
ũ4x̃x̃x̃

+
c11

12
ũ1x̃x̃x̃x̃

�
+ O��2� = 0, �10�

2b14ũ1x̃
− d44ũ4 + ��Mv2

a2 ũ4t̃t̃
+ c22ũ4x̃x̃

+
b14

3
ũ1x̃x̃x̃

− a�p444ũ4
2� + 2m41ũ4ũ1x̃

+ 4h123�ũ1x̃
�2� + O��2� = 0.

�11�

Here m41=−m14=m24+
4�1

d cos . From Eq. �11�, ũ4 can be
expressed in terms of ũ1 by asymptotic reiteration,

ũ4 =
2b14

d44
ũ1x̃

+ ��4a�b14m41

d44
2 −

h123

d44
−

b14
2 p444

d44
3 ��ũ1x̃

�2

+
2b14Mv2

a2d44
2 ũ1t̃t̃x̃

+ �2b14c22

d44
2 +

b14

3d44
�ũ1x̃x̃x̃� + O��2� .

�12�

Substituting Eq. �12� into Eq. �10�, returning to the original
dimensional variables and denoting u1=u one obtains to
O���, the equation for long nonlinear longitudinal waves in
the form

utt − c0
2uxx = E1uxuxx + E2uttxx + E3uxxxx, �13�

where the coefficients c0, E1, E2, and E3 are expressed in
terms of the lattice parameters as follows:

c0
2 =

a2

M
�2� + ����, � =

2�1 cos2 

�� + 2�1 sin2 
,

E1 =
a2

M

3����� + 1�2sin2  + a�4� − 2���3 tan3 

+
�1

2
� ���

�1 cos 
�3��, E2 = l2�2,

E3 =
a4

12M
�2� + ����1 − 3� tan2 �� . �14�

Equation �13� derived here as an asymptotic approximation
of the initial dipole lattice model coincides with the so-called
doubly dispersive equation �DDE�, earlier derived for a mac-
roscopic waveguide using the nonlinear elasticity approach
�42–44�. A similar equation has also appeared in the study of
waves in microstructured solids �see �45,46� and references
therein�.

For the motions under consideration, the equation above
is asymptotically equivalent to both the integrable by the
inverse scattering transform �IST� nonlinear string equation
�47,48�,

utt − c0
2uxx = E1uxuxx + E23uxxxx, �15�

where E23=E2c0
2+E3, and the regularized Boussinesq equa-

tion,

utt − c0
2uxx = E1uxuxx + Ẽ23uttxx, �16�

where Ẽ23=E23 /c0
2. The latter is nonintegrable by the IST,

however, is preferable from the viewpoint of numerical
simulations due to suppression of the short wave instability
�e.g., see �49,50��.

To leading order, the relation between the axial displace-
ment and the horizontal strain is given by u4=−l�u1x

+. . .
which can be viewed as a lattice analog of Poisson’s effect in
elasticity �51�, with parameter � corresponding to Poisson’s
ratio, while higher-order terms in Eq. �12� provide correc-
tions to this relation. Weak �i.e., higher order in �� transver-
sal and rotational motions are slaved to longitudinal waves
�see Appendix C�.

It is interesting to compare the previous case of the domi-
nant longitudinal waves with the case of the dominant flex-
ural waves by introducing a different scaling,

A1

a
	 �3/2,

A2

a
	 �1/2,

A3

a
	 �,

A4

a
	 �2,

a

X
	 �1/2,

X

T
= v 	 1. �17�

Up to O��2� this yields the following subsystem of equations
for ũ2 and ũ3:

ũ2t̃t̃
+

a2

Mv2��2b14ũ3x̃
− c22ũ2x̃x̃

� + ��b14

3
ũ3x̃x̃x̃

−
c22

12
ũ2x̃x̃x̃x̃

�� = 0,

ũ2x̃
+

d33

2b14
ũ3 +

�

2b14
�−

Mv2

a2 ũ3t̃t̃
+ c33ũ3x̃x̃

+
b14

3
ũ2x̃x̃x̃

� = 0.

Eliminating ũ3 from the second equation by asymptotic reit-
eration �to leading order ũ3= lũ2x̃

+. . .� and returning to the
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original variables, one arrives at the linear equation for u2

u2tt
= l2u2ttxx

−
2a2l2

M
�u2xxxx

,

which is an analog of the equation for flexural waves in
elastic waveguides, when the effect of rotational inertia is
taken into account, but shear deformations are neglected
�e.g., �52��. Thus, there is no simple analogy between long
nonlinear longitudinal and flexural waves—at least—within
the scope of our model.

C. Extension of the dipole lattice model

A natural extension of the basic dipole lattice model con-
sists in considering a layered lattice with perfect or ideal
interface �e.g., �53��, where two identical lattice waveguides
are welded together �Fig. 3�. Variables u1−4

n corresponding to

the displacements of the boundary particles Pn and P̄n are
defined as above. The horizontal and vertical displacements
of the central particles On are denoted by variables u5

n and u6
n,

respectively �see Fig. 3�.
Deriving discrete and continuous equations as above and

introducing dimensionless variables �8�, one can find the pre-
dominantly longitudinal waves scaling in the form

A1

a
	

A5

a
	 �1/2,

A2

a
	

A6

a
	 �3/2,

A3

a
	 �2,

A4

a
	 �,

a

X
	 �1/2,

X

T
= v 	 1.

Assuming that central particles do not displace too far from
the geometrical center of the dipole, we write

ũ1 = ũ5 + �w̃1 + . . . , ũ2 = ũ6 + �w̃2 + . . . ,

where w̃1,2 are unknown functions. This assumption is an
analog of the near planar cross-section hypothesis in the
theory of elastic rods and bars �see �44,45��. One can asymp-
totically derive an independent subsystem of equations for
predominantly longitudinal waves and, consequently, an
equation for u5 or u1 �see Appendix D�. The latter in dimen-
sional variables has the form

u1tt
− c0

2u1xx
= G1u1x

u1xx
+ G2u1ttxx

+ G3u1xxxx
+ G4u1tttt

,

�18�

where

c0
2 =

a2

M
�3� + 2����, � =

2�1 cos2 

�� + 2�1 sin2 
,

G1 =
a2

M

6����1 + ��2sin2 

+ a�6� − 4���3 tan3  + �1� ���

�1 cos 
�3�� ,

G2 =
1

3
�2l2�2 − a2�1

2
−

� + ���

�1 cos2 
�� ,

G3 =
a4

M
�3

4
� −

1

3
��� −

�2

2�1 cos2 
−

����

�1 cos2 
� ,

G4 = −
M

18�1 cos2 
,

and u4=−l�u1�+. . .. Note that this is also a Boussinesq-type
equation, but unlike �13� it contains a fourth order time de-
rivative. However, for this regime the Eq. �18� is again as-
ymptotically equivalent to both �15� and �16� �with the re-
fined coefficients�. Similar to previous section, for this
asymptotic regime weak transversal and rotational motions
are slaved to the longitudinal waves.

The dominant flexural waves can be considered by intro-
ducing the scaling

A1

a
	

A5

a
	 �3/2,

A2

a
	

A6

a
	 �1/2,

A3

a
	 � ,

A4

a
	 �2,

a

X
	 �1/2,

X

T
= v 	 1.

Repeating the same steps as for longitudinal waves, one ar-
rives at a more accurate equation for flexural waves com-
pared to a single-layer lattice,

u2tt
=

2

3
l2�1 −

�

4
�u2ttxx

−
2a2l2

3M
�3� +

3

4
����u2xxxx

−
�M

18�1 cos2 
u2tttt

.

This is an analog of the equation for the linear flexural waves
in an elastic waveguide, when the deflection due to shear is
taken into account �e.g., �52��. The relation between u2 and
u6 and an equation for u6 is given in Appendix E.

III. LAYERED LATTICE MODEL

Motivated by our studies of longitudinal bulk nonlinear
waves in layered waveguides �26–28�, we consider two
waveguides with a layer of a softer material between them

(b)(a)

FIG. 3. �Color online� Extension of the dipole lattice model: two
welded identical dipole lattices; variables u1–4

n define displacements

of the boundary particles Pn and P̃n, variables u5–6
n correspond to

the displacements of the central particles On.
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�for example, a soft adhesive, usually modeled as an imper-
fect interface, e.g., �53,54��. Layered structures become in-
creasingly important in physics �e.g., in microelectronics and
aerospace engineering�. We use a layered lattice model
shown in Fig. 4 and discuss asymptotic models for long non-
linear longitudinal waves. The notations for lattice param-
eters and variables are shown in Fig. 4.

A. Coupled Boussinesq-type equations

To derive the Euler-Lagrange equations for the composite
lattice, one has to form the total potential energy of the nth
lattice element,

�n
total = �n + �̂n + �n

g,

where �n is the potential energy of the nth dipole of the

upper layer �given by formulas �2�–�4��, �̂n is given by simi-
lar formulas for the potential energy of the nth dipole of the
lower layer, and �n

g is the energy of interactions between the
layers �i.e., energy of the bonding layer, or glue, for brevity�,

�n
g = �n̄,n+1

g + �n,n + 1
g + �n − 1,n

g + �n−1,n̄
g + ��

g . �19�

Here, the relevant formulae are similar to Eqs. �2�–�4� but
refer to particles interacting via the bonding layer.

We assume that the bonding layer is soft and introduce the
scaling

�g = �2�̃g, �g� = �2�̃g�, �g = �2�̃g, �g� = �2�̃g.

One can derive the governing equations, their continuum ap-
proximation, and then use the scaling from Sec. II for the
case of predominantly longitudinal waves to asymptotically
derive the subsystem of four equations for ũ1, ũ4, w̃1, and w̃4,
which are similar to a pair of coupled single-layer sub-
systems,

M1v
2ũ1t̃t̃

− a2�2b14ũ4x̃
+ c11ũ1x̃x̃

� + �a3�2m41ũ4ũ4x̃

+ 8h123ũ1x̃
ũ4x̃

+ l12ũ4ũ1x̃x̃
− 2g111ũ1x̃

ũ1x̃x̃
�

− �a2�b14

3
ũ4x̃x̃x̃

+
c11

12
ũ1x̃x̃x̃x̃

− 2�̃g cos2 g�ũ1 − w̃1��
+ O��2� = 0,

2b14ũ1x̃
− d44ũ4 + ��M1v

2

a2 ũ4t̃t̃
+ c22ũ4x̃x̃

+
b14

3
ũ1x̃x̃x̃

− a�p444ũ4
2 + 2m41ũ4ũ1x̃

+ 4h123�ũ1x̃
�2�� + O��2� = 0,

M2v
2w̃1t̃t̃

− a2�2b̂14w̃4x̃
+ ĉ11w̃1x̃x̃

� + �a3�2m̂41w̃4w̃4x̃

+ 8ĥ123w̃1x̃
w̃4x̃

+ l̂12w̃4w̃1x̃x̃
− 2ĝ111w̃1x̃

w̃1x̃x̃
�

− �a2� b̂14

3
w̃4x̃x̃x̃

+
ĉ11

12
w̃1x̃x̃x̃x̃

− 2�̃g cos2 g�w̃1 − ũ1��
+ O��2� = 0,

2b̂14w̃1x̃
− d̂44w̃4 + ��M2v

2

a2 w̃4t̃t̃
+ ĉ22w̃4x̃x̃

+
b̂14

3
w̃1x̃x̃x̃

− a�p̂444w̃4
2 + 2m̂41w̃4w̃1x̃

+ 4ĥ123�w̃1x̃
�2�� + O��2� = 0.

Eliminating ũ4 and w̃4 from the equations above, we can
describe the leading-order behavior of the system in terms of
ũ1 and w̃1 by coupled doubly dispersive equations �cDDE�,
which in the original dimensional variables have the form
�we denote u1=u and w1=w�

utt − c0
2uxx = E1uxuxx + E2uttxx + E3uxxxx − E4�u − w� ,

wtt − ĉ0
2wxx = Ê1wxwxx + Ê2wttxx + Ê3wxxxx − Ê4�w − u� .

�20�

The coefficients c0, E1, E2, and E3 are given by formulas in
�14�, where M→M1, and E4=

2�g

M1
cos2 g. Similar coeffi-

cients in the second equation are obtained by replacing the
upper layer constants with that of the lower layer. Using
leading-order relations uxx=utt /c0

2+ . . ., wxx=wtt / ĉ0
2+ . . ., one

can show that for the motions under consideration this sys-
tem is asymptotically equivalent to different types of coupled
Boussinesq equations. We will consider the form of cRB
equations due to its advantages from the viewpoint of nu-
merical simulations,

utt − c0
2uxx = E1uxuxx + �E2 +

E3

c0
2 �uttxx − E4�u − w� ,

wtt − ĉ0
2wxx = Ê1wxwxx + �Ê2 +

Ê3

ĉ0
2 �wttxx − Ê4�w − u� .

�21�

Let us note that relaxing conditions on the coefficients of the
bonding layer,

�g = ��̃g, �g� = ��̃g�, �g = ��̃g, �g� = ��̃g,

and repeating the steps above, one can obtain a more general
asymptotic long-wave model, which in dimensional variables
has the form

Soft Bonding Layer

FIG. 4. �Color online� Layered lattice model: two dipole lattices
with an intermediate soft bonding layer.
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utt − �c0
2 + cg

2�uxx = E1uxuxx + E2uttxx + E3uxxxx

− �E4 + E5wx��u − w� − E6wxx,

wtt − �ĉ0
2 + ĉg

2�wxx = Ê1wxwxx + Ê2wttxx + Ê3wxxxx

− �Ê4 + Ê5ux��w − u� − Ê6uxx, �22�

where, in addition to coefficients in Eqs. �20�,

cg
2 =

l2�2

M1
��g� + 2�g sin2 g� ,

E6 =
a2

4M1
�2�g�2 cos2 g + �� + �̂�tan  sin 2g

+ ��̂ tan2  sin2 g� + �g���̂ tan2  ,

while similar coefficients in the second equation are obtained
by replacing the upper layer constants with that of the lower
layer. System �20� is an asymptotic reduction of Eq. �22�,
and formally can be viewed as its particular case. Various
asymptotically equivalent versions of Eq. �22� can be con-
sidered, using leading-order relations uxx= �utt+E4�u
−w�� /c0

2+ . . ., wxx= �wtt+ Ê4�w−u�� / ĉ0
2+ . . .. Based on the

shown similarity between continuum models for our basic
lattice model and a macroscopic waveguide �see Sec. II�, we
believe that similar description can be obtained within the
framework of dynamic nonlinear elasticity. In what follows
we focus on the properties of cRB Eq. �21�.

B. Conservation laws

We find conservation laws for the cRB Eqs. �21�, which
are used to control the accuracy of numerical simulations of
their solutions.

We can rescale variables in Eq. �21� as

t →
t

T�
, x →

x

X�
, u →

u

U�
, w →

w

U�
,

with

U� =
c0

2X�

E1
, T� =

X�

c0
, X� = �E2 +

E3

c0
2 �1/2

to write Eqs. �21� in the form

utt − uxx = uxuxx + uttxx − ��u − w� ,

wtt − c2wxx = wxwxx + �wttxx + ��u − w� . �23�

The coefficients in Eqs. �23� are given by

c2 =
ĉ0

2

c0
2 , � = �E2 +

E3

c0
2 �E4

c0
2 ,  =

Ê1

E1
,

� = �Ê2 +
Ê3

ĉ0
2 �/�E2 +

E3

c0
2 �, � =

�Ê4

E4
.

The system �23� is Lagrangian with the density

L =
1

2
�ut

2 +
�

�
wt

2 − ux
2 −

�c2

�
wx

2 −
1

3
�ux

3 +
�

�
wx

3� + utx
2

+
��

�
wtx

2 − ��u − w�2� .

In addition to a simple conservation law

�ut +
�

�
wt�

t

− �ux +
�c2

�
wx +

1

2
ux

2 +
�

2�
wx

2 + uttx +
��

�
wttx�

x

= 0,

immediately following from Eqs. �23�, it has two nontrivial
conservation laws, for energy and momentum,

At
i + Bx

i = 0, i = 1,2, �24�

where the respective densities and flows are given by

A1 =
1

2
�ut

2 +
�

�
wt

2 + ux
2 +

�c2

�
wx

2 +
1

3
�ux

3 +
�

�
wx

3� + utx
2

+
��

�
wtx

2 + ��u − w�2� ,

B1 = − utux −
�c2

�
wtwx −

1

2
utux

2 −
�

2�
wtwx

2 − ututtx −
��

�
wtwttx,

A2 = utux +
�

�
wtwx + utxuxx +

��

�
wtxwxx,

B2 = −
1

2
�ut

2 +
�

�
wt

2 + ux
2 +

�c2

�
wx

2 +
2

3
�ux

3 +
�

�
wx

3� + utx
2

+
��

�
wtx

2 − ��u − w�2� − uxuttx −
��

�
wxwttx.

Indeed, one can verify that Eqs. �24� hold by virtue of Eqs.
�23�.

IV. CLASSICAL AND GENERALIZED SOLITARY WAVES

Differentiating system �23� with respect to x and denoting
ux= f , wx=g, we obtain

f tt − fxx =
1

2
�f2�xx + f ttxx − ��f − g� ,

gtt − c2gxx =
1

2
�g2�xx + �gttxx + ��f − g� . �25�

In the symmetric case when c==�=1, system �25� admits
a reduction g= f , where f satisfies the equation

f tt − fxx =
1

2
�f2�xx + f ttxx, �26�

same as for a single waveguide �see Sec. II B�.
Equation �26� has particular solutions in the form of soli-

tary waves,
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f = A sech2x − vt

�
, �27�

where A=3�v2−1� , �= 2v
�v2−1

shown in Fig. 5 for v=1.2.
It turns out that these pure or classical solitary wave so-

lutions, rapidly decaying to zero in their tail regions �e.g.,
�55,56��, are structurally unstable and are replaced with so-
called generalized solitary waves with a copropagating oscil-
latory tail �see �57–68� and references therein�, as shown
below.

A. Linear dispersion relation and generalized solitary waves

We consider system �23� and assume that coefficients are
perturbed compared to the symmetric case above but remain
positive. The linear dispersion relation is obtained by seeking
solutions of the linearized equations in the form

f = Aeik�x−pt� + c.c., g = Beik�x−pt� + c.c.,

where k is a wave number and p is a phase velocity, resulting
in

�k2�1 − p2� − k4p2 + ���k2�c2 − p2� − �k4p2 + �� = �� .

�28�

The dispersion curve is symmetric with respect to both k and
p, and we will consider it only in the first quadrant, where
the curve has two branches. Although Eq. �28� is a biqua-
dratic equation, solving it directly is of little help as the
resulting formula is hard to analyze. It turns out that the
analysis of Eq. �28� is considerably simplified if we make a
change of variable

S = k2�1 − p2� − k4p2 + �, or p2 =
� + k2 − S

k2�1 + k2�
, �29�

and rewrite the dispersion relation �28� as

S2 − bS − c = 0, �30�

where

b = � + k2 − ��� + k2c2�, c = ��� ,

� = �1 + k2�/�1 + �k2� .

We also have the following relation between the amplitudes
A and B:

B =
S

�
A =

��

S − b
A . �31�

From Eq. �30�

S1,2 =
1

2
�b � �b2 + 4c� , �32�

and we conclude that S1�0 and S2�0, since c�0. More-
over, one can show that 0�S1��+k2; therefore the disper-
sion relation yields real values of p for all real wave numbers
k for both branches of the dispersion relation and the linear-
ized system is spectrally stable. Further, for any fixed value
of k we have S2�S1. Then from Eq. �29�, p2� p1, and we
conclude that the two branches do not intersect at any finite
value of k. Finally, analyzing the behavior of the branches as
k→0 and k→�, we find the following asymptotics:

p1 →�� + �c2

� + �
+ O�k2�, as k → 0,

p2 →
�� + �

k
+ O�k�, as k → 0,

and

p1 → �
c

��k
+ O� 1

k3� , if � � c2,

1

k
+ O� 1

k3� , if � � c2,

as k → �� ,

p2 → �
1

k
+ O� 1

k3� , if � � c2,

c
��k

+ O� 1

k3� , if � � c2.

as k → �� .

A typical linear dispersion curve of Eq. �23� is shown in Fig.
6. Significant difference with the linear dispersion curve of
the reduction �26� in the symmetric case �shown in Fig. 7�
consists in the appearance of the second �upper� branch, go-
ing to infinity as k→0, and approaching zero, remaining
above the lower branch, as k→�.

The classical or pure solitary waves of the symmetric
case arise as a bifurcation from wave number k=0 of the
linear wave spectrum shown in Fig. 7, when there is no pos-
sible resonance with any linear wave for any value of k. The
solitary wave speed v is greater than the linear long-wave
speed, i.e., v�1, while the speed of linear wave of any wave
number is smaller, i.e., p�1. This becomes impossible when

�40 �20 0 20 40
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

f

t � 0

(b)(a)

FIG. 5. �Color online� Solitary wave �27� for v=1.2.
0.2 0.4 0.6 0.8 1.0 1.2

1

2

3

4

k

p

p�1.2 �horizontal line� for k�0.4963

FIG. 6. �Color online� Two branches of the linear dispersion
curve of Eq. �23� for c=1, �=1.1, �=�=0.1, and intersection with
p=1.2 �horizontal line�.
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the symmetry is broken. Instead, generalized solitary waves
arise as a bifurcation from the lower dispersion curve branch
at wave number k=0 for the case when there is a possible
resonance with the upper branch for some finite nonzero
value of k. For example, a possible resonance is shown in
Fig. 6 for v= p=1.2. The generalized solitary wave clearly
manifests itself in numerical simulations discussed in the
next section.

B. Numerical simulations

In this section, we discuss numerical simulations of gen-
eralized solitary wave solutions of the system �25�. We break
the symmetry of the system �25� with c==�=1 and �=�
by perturbing the coefficients � and c, while keeping =1
and �=�. This is a natural perturbation related to the disper-
sive properties of the layered structure. We numerically inte-
grate Eq. �25� with the perturbed coefficients, imposing the
initial condition �27� on both f and g. Our emphasis will be
on verifying appearance of ripples moving with the speed of
the core solitary wave. We will also compare numerically
calculated wavelength and period of the ripples with the the-
oretical predictions made in the previous section.

We use a Fourier basis for the x dependence of f and g.
Then, writing any variable q�x , t� as

q�x,t� = �
j�0

q̃j�t�eijx + c.c.,

where j is one of the numerically resolved wave numbers,
we write Eq. �25� as the first-order system

� f̃

f̃ t

g̃

g̃t

�
t

=�
0 1 0 0

−
j2

1 + j2 0 0 0

0 0 0 1

0 0 −
j2c2

1 + �j2 0
�� f̃

f̃ t

g̃

g̃t

�
+�

0

F̃j�t�
1 + j2

0

G̃j�t�
1 + �j2

� , �33�

where the terms F̃j�t� and G̃j�t� originate from

F�x,t� =
1

2
�f2�xx − ��f − g� ,

G�x,t� =
1

2
�g2�xx + ��f − g� .

We solve Eq. �33� using a split-step scheme �see, for ex-

ample, �69,70��. Neglecting the terms involving F̃j and G̃j in
Eq. �33�, we obtain a linear system that can be updated ex-

actly, since given f̃ , f̃ t, g̃, and g̃t at time t, we can write down
explicitly the solution of the linear system at time t+�t.

Similarly, neglecting the terms not involving F̃j and G̃j in Eq.

�33�, we obtain a system in which f̃ and g̃ are constant, so

that f̃ t and g̃t can be trivially updated by using the values of

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

k

p

p � 1

FIG. 7. �Color online� Linear dispersion curve of the reduction
�26� in the symmetric case c=1, �=1, and �=�=0.1.
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FIG. 8. �Color online� Generation of a generalized solitary wave for c=1, =1, �=1.1, and �=�=0.1; v=1.2, from a classical solitary
wave of the symmetric case �nx=1024,nt=500�.
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F̃j and G̃j at time t. By combining these two steps in a se-
quence of appropriately chosen fractional steps, one may ob-
tain a method of any order �e.g., �69��. For the simulations to
be presented, we use a fourth-order scheme with 500 to 2000
time steps nt, and with 1024 to 4096 points nx in the x direc-
tion, and the terms F̃j and G̃j evaluated pseudospectrally.
Conservation of energy and momentum �24� has been moni-
tored, with maximum deviations from the mean value being
in the range of 0.4% and mean squared deviations at about
0.02%. The amplitude of the ripples was typically at least 2%
from the amplitude of the core solitary wave.

The generation of a generalized solitary wave in both
components f and g is shown in Fig. 8 for c=1, =1, �
=1.1, and �=�=0.1; v=1.2. The initial conditions in the
form of two identical solitons in both f and g are shown in
the left panel. As the waves propagate to the right, the ripples
are formed behind the core solitary waves shown in the cen-
tral and the right panels for t=100 and t=200, respectively.

Note that importantly, after a brief transient period, the
accompanying ripples start moving at the velocity of the core

solitary wave, which is best seen in the relief plots shown in
Fig. 9 for the same values of physical parameters as in Fig. 8.
In these plots, the emphasis is on the small amplitude struc-
tures formed behind the core solitary wave, which is clipped
at f =g=0.039 �shown by white color�. The periodic wave
behind the core solitary wave is seen as an alternating se-
quence of light and dark lines, which after a brief transient
process become parallel to the trajectory of the core solitary
wave. One can also notice that the periodic waves in the tails
of f and g have opposite sign, which is in agreement with
formula �31�.

Figure 10 shows the formation of a generalized solitary
wave for c=1.05, =1, �=1.05, and �=�=0.1; v=1.2. Note
that the perturbation in c significantly increases the duration
of the transient period, which is now accompanied with quite
noticeable radiation to the left. Nonetheless, after this tran-
sient period one can again notice the formation of a general-
ized solitary wave similar to that shown in Fig. 9.

In Table I we compare numerically calculated values of
the period Tn and the wavelength �n of the ripples with the
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FIG. 9. �Color online� Generation of a generalized solitary wave
for c=1, =1, �=1.1, and �=�=0.1; v=1.2 �nx=1024,nt=500�.
Plot range: f � �min f �−0.039�black� ,0.039�white��, g� �min g
�−0.039�black� ,0.039�white��. The core solitary wave is clipped at
f =0.039, g=0.039.
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FIG. 10. �Color online� Generation of a generalized solitary
wave for c=1.05, =1, �=1.05, and �=�=0.1; v=1.2 �nx=1024,
nt=500�. Plot range: f � �min f �−0.032�black� ,0.032�white��, g
� �min g�−0.036�black� ,0.036�white��. The core solitary wave is
clipped at f =0.032, g=0.036.
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theoretical predictions T=2� / �kp2� and �=2� /k of the pre-
vious subsection, for c=1, =1, �=1.1, and several values
of parameters �=� and v. We note that a copropagating wave
is only approximately periodic; therefore numerical values
are shown as values in a certain interval. Generally, agree-
ment between numerical values and theoretical predictions is
quite good, especially for the period of waves. Also, a co-
propagating wave becomes shorter with the increase of � or
decrease of v, in agreement with the theory. Thus, numerical
simulations of this section confirm that stable generalized
solitary wave solutions of the cRB Eqs. �25� appear in the
long-time asymptotics of localized initial data, replacing
classical solitary waves of a single regularized Boussinesq
Eq. �26�.

V. CONCLUDING REMARKS

We studied nonlinear longitudinal waves in a two-layered
structure with a soft bonding layer using a relatively simple
long-wave model in the form of coupled Boussinesq-type
equations. The derivation of this model was based on a non-
linear layered dipole lattice model, having all essential de-
grees of freedom of a realistic layered structure. Moreover,
this approach allowed us to consider both geometrical and
physical sources of nonlinearity in the structure. Although
the derivations were rather challenging and required sym-
bolic computations, they seem to be easier and physically
more transparent than similar derivations within the scope of
dynamic elasticity theory for nonlinearly elastic materials
�e.g., the Murnaghan model �71,72��, which are yet to be
performed. Nevertheless, based on the shown similarity be-
tween long-wave models for a single lattice waveguide and a
nonlinearly hyperelastic waveguide, we conjectured that a
similar wave regime described in terms of coupled
Boussinesq-type equations exists within the scope of nonlin-

ear dynamic elasticity. Indeed, we found explicit formulas
relating parameters of the nonlinear dipole lattice with the
elastic moduli of the continuum.

Our study reveals an important difference in the proper-
ties of nonlinear waves in a layered structure with an imper-
fect interface compared to the limiting case of the perfect �or
ideal� interface �which can be considered as a single homo-
geneous waveguide�. We showed that the classical solitary
wave solution, which exists in a homogeneous waveguide is
generally replaced with a generalized solitary wave accom-
panied by a copropagating periodic wave in its tail. This
effect may be related to the recently observed increase in the
decay rate of a nonlinear longitudinal bulk strain solitary
wave in “imperfectly” bonded layered structure compared to
the decay rate in a comparable homogeneous waveguide or
“perfectly” bonded layered structure �27�. Indeed, in the gen-
eralized solitary wave, the amplitude of the core solitary
wave gradually decreases due to the continuous radiation of
a copropagating wave. As the model considered in this paper
is rather robust, we would expect similar phenomena to take
place in other physical contexts, where the model could be
applied.

ACKNOWLEDGMENTS

We thank E. S. Benilov, R. H. J. Grimshaw and A. B.
Movchan for useful discussions. The research was supported
by the UK EPSRC under Grant No. EP/D035570/1.

APPENDIX A

The nonzero coefficients are given in terms of the lattice
parameters by the following formulas:

b14 = − b23 = �1 sin 2, bij = − bji,

c11 = 2�� + �1 cos2 �, c22 = − c44 = 2�1 sin2  ,

c33 = 2�� − �1 cos2 �; d33 = − 8�1 cos2  ,

d44 = − 8�1 sin2  − 4��,

g111 = 2�� + �1 cos3 � +
3�1

d
cos  sin2  ,

g122 = g212 = g144

= 2�1 cos  sin2  +
�

d cos 
+

�1

d
cos3 

−
2�1

d
cos  sin2  ,

g133 = g111 −
2�1

d
cos , g234 = − g122 −

2�1

d
cos  ,

g313 = − g111 + 4� ,

TABLE I. Numerically determined period Tn and wavelength �n

of a copropagating wave �only approximately constant for each nu-
merically found solution� for c=1, =1, �=1.1, and �=� versus
rounded theoretical predictions T and � �nx=4096,nt=2000�.

�

v

1.1 1.2 1.3

0.05 Tn=12.5�0.1 Tn=13.5�0.1 Tn=14.4�0.1

T�12.47 T�13.52 T�14.41

�n=13.60�0.15 �n=16.55�0.15 �n=18.31�0.15

��13.71 ��16.22 ��18.74

0.1 Tn=10.1�0.1 Tn=10.5�0.1 Tn=11.0�0.1

T�10.05 T�10.55 T�10.99

�n=10.99�0.15 �n=12.60�0.15 �n=14.5�0.15

��11.06 ��12.66 ��14.28

0.15 Tn=8.9�0.1 Tn=9.2�0.1 Tn=9.4�0.1

T�8.91 T�9.21 T�9.47

�n=9.80�0.15 �n=10.99�0.15 �n=12.30�0.15

��9.81 ��11.05 ��12.31
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g324 = − g414 = g423 = g122 −
2�

d cos 
, gijk = gikj ,

h123 = − h114 = h213 = − h312 = h411 = − �1 sin  cos2 

+
�1

d
sin  cos2  −

�1

2d
sin3  ,

h224 = − h422 = − h444 = �1sin3 +
3�1

2d
sin  cos2  ,

h334 = h123 +
�

d sin 
−

�1

d sin 
cos2  ,

h433 = h411 +
�1

d
sin , hijk = hikj ,

l12 = − 8�1 sin  cos2  +
8�1

d
sin  cos2  −

4�1

d
sin3  ,

l34 = l12 +
4�

d sin 
−

4�1

d sin 
cos 2, lij = lji,

l̃11 = − l12, l̃22 = − l̃44 = 8�1 sin3  +
12�1

d
sin  cos2  ,

l̃33 = l12 +
8�

d sin 
−

8�1

d sin 
cos2  ,

m13 = 8�1 cos3  −
4�1

d
cos  +

12�1

d
sin2  cos  ,

m24 = − 8�1 sin2  cos  −
4�1

d
cos  −

4�1

d
cos3 

+
8�1

d
sin2  cos , mij = − mji,

m̃14 = − m24 −
4�1

d
cos , m̃23 = m24, m̃ij = − m̃ji,

p334 = p433 = 2l12 −
16�1

d sin 
cos2  +

8�1

d
sin  ,

p444 = − 16�1 sin3  −
24�1

d
sin  cos2  − 8��,

pijk = pikj .

APPENDIX B

The truncated nonlinear terms N1−4 in the right-hand side
of Eqs. �7� are given by

Ni = gijk�a2ujxx
+

a4

12
ujxxxx

��2aukx
+

a3

3
ukxxx

�
+ �liju3 + l̃i ju4��a2ujxx

+
a4

12
ujxxxx

�
+ hijk��a2ujxx

+
a4

12
ujxxxx

��a2ukxx
+

a4

12
ukxxxx

�
+ �2aujx

+
a3

3
ujxxx

��2aukx
+

a3

3
ukxxx

�� + �miju3 + m̃iju4�


�2aujx
+

a3

3
ujxxx

� + pijkujuk.

APPENDIX C

Weak �i.e., the higher order in �� transversal and rota-
tional motions are slaved to longitudinal waves, being gov-
erned by the subsystem of equations for ũ2 and ũ3,

Mv2ũ2t̃t̃
+ a2�2b14ũ3x̃

− c22ũ2x̃x̃
� − �a3�2m24�ũ3ũ4x̃

+ ũ3x̃
ũ4�

+ 8h123ũ1x̃
ũ3x̃

+ 8h224ũ2x̃
ũ4x̃

+ l12ũ3ũ1x̃x̃
+ l̂22ũ4ũ2x̃x̃

+ 2g122�ũ1x̃
ũ2x̃x̃

+ ũ1x̃x̃
ũ2x̃

�� + �a2�b14

3
ũ3x̃x̃x̃

−
c22

12
ũ2x̃x̃x̃x̃

�
+ O��2� = 0,

2b14ũ2x̃
+ d33ũ3 + ��−

Mv2

a2 ũ3t̃t̃
+ c33ũ3x̃x̃

+
b14

3
ũ2x̃x̃x̃

+ 2a�p334ũ3ũ4 − m13ũ3ũ1x̃
− m24ũ4ũ2x̃

− 4h123ũ1x̃
ũ2x̃

��
+ O��2� = 0.

Eliminating ũ3, we derive an equation for ũ2, which in di-
mensional variables has the form

u2tt − c0
2�u2x

u1xx
+ u2xx

u1x
� − l2u2ttxx

+
2a2l2

M
�u2xxxx

= 0.

To leading order, the rotational motions are defined by u3
= lu2x

+. . ..

APPENDIX D

The subsystem for longitudinal waves follows from the
equations for ũ1 , ũ4 and ũ5 and has the form:

Mv2ũ5t̃t̃
= 3a2��� + �1 cos2 �ũ5x̃x̃

− 2�1 cos2 w̃1�

− ��Mv2w1t̃t̃ + a3�D3w̃1ũ4 + D4w̃1ũ5x̃
+ D5ũ4ũ5x̃x̃

+ D6ũ5x̃
ũ5x̃x̃

�� + �a2�D7w̃1x̃x̃
+ D8ũ5x̃x̃x̃x̃

� + O��2� ,

�34�
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0 = �3�� + 6�1 sin2 �ũ4 + 3�1 sin 2ũ5x̃

+ ��Mv2

a2 ũ4t̃t̃
+ D9ũ5x̃x̃x̃

+ a�D10ũ4
2 + D11ũ4ũ5x̃

+ D12�ũ5x̃
�2�� + O��2� , �35�

Mv2ũ5t̃t̃
= 3a2�4�1 cos2 w̃1 + 2�1 sin 2ũ4x̃

+ �� + 2�1 cos2 �ũ5x̃x̃
� − �a3�D13w̃1ũ4 + D14w̃1ũ5x̃

+ D15ũ4ũ4x̃
+ D16ũ4x̃

ũ5x̃
+ D17ũ4ũ5x̃x̃

+ D18ũ5x̃
ũ5x̃x̃

�

+ �a2�D19w̃1x̃x̃
+ D20ũ4x̃x̃x̃

+ D21ũ5x̃x̃x̃x̃
� + O��2� ,

�36�

where D1−D21 are some intermediate coefficients. From Eq.
�34�, using asymptotic reiteration, we find w̃1 in terms of ũ4
and ũ5. Then, ũ4 can be found from Eq. �35� in terms of ũ5,
again by asymptotic reiteration. After that an equation for ũ5
is derived from Eq. �36�. Returning to dimensional variables,
we obtain

u5tt
− c0

2u5xx
= F1u5x

u5xx
+ F2u5ttxx

+ F3u5xxxx
+ F4u5tttt,

�37�

where

c0
2 =

a2

M
�3� + 2����, � =

2�1 cos2 

�� + 2�1 sin2 
,

F1 =
a2

M

6����1 + ��2sin2 

+ a�6� − 4���3 tan3  + �1� ���

�1 cos 
�3�� ,

F2 =
2

3
�l2�2 − a2�1 +

�

�1 cos2 
�� ,

F3 =
a4

M
�9

4
� +

2

3
��� +

�2

�1 cos2 
�, F4 =

M

9�1 cos2 
,

and u4=−l�u5�+. . ..
Up to O��� terms,

u5 = u1 +
M

6�1 cos2 
u1tt

−
a2

2
�1 +

�

�1 cos2 
�u1xx

+ . . . ,

�38�

which allows one to obtain Eq. �18� from Eq. �37� with the
same accuracy, substituting Eq. �38� into the left-hand side of
Eq. �37� �i.e., into the leading-order terms�.

APPENDIX E

The relation between u2 and u6, up to O��� terms, is given
by

u6 = u2 +
M

3��� + 2�1 sin2 �
u2tt

− a2 �1 sin2 

�� + 2�1 sin2 
u2xx

+ . . . .

With the same accuracy, an equation for u6 has the form

u6tt
=

2

3
l2�1 − ��u6ttxx

−
2a2l2

M
�� +

1

4
����u6xxxx

+
�M

9�1 cos2 
u6tttt

.
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