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double-well potentials

Andrej Junginger,1, a) Galen T. Craven,1, b) Thomas Bartsch,2 F. Revuelta,3, 4 F. Borondo,4, 5 R. M. Benito,3 and
Rigoberto Hernandez1, c)

1)Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry,
Georgia Institute of Technology, Atlanta, GA 30332-0400
2)Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU,
United Kingdom
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Reaction rates across time-dependent barriers are difficult to define and difficult to obtain using standard
transition state theory approaches because of the complexity of the geometry of the dividing surface separating
reactants and products. Using perturbation theory (PT) or Lagrangian descriptors (LDs), we can obtain the
transition state trajectory and the associated recrossing-free dividing surface. With the latter, we are able
to determine the exact reactant population decay and the corresponding rates to benchmark the PT and LD
approaches. Specifically, accurate rates are obtained from a local description regarding only direct barrier
crossings and to those obtained from a stability analysis of the transition state trajectory. We find that these
benchmarks agree with the PT and LD approaches for obtaining recrossing-free dividing surfaces. This result
holds not only for the local dynamics in the vicinity of the barrier top, but also for the global dynamics of
particles that are quenched at the reactant or product wells after their sojourn over the barrier region. The
double-well structure of the potential allows for long-time dynamics related to collisions with the outside
walls that lead to long-time returns in the low-friction regime. This additional global dynamics introduces
slow-decay pathways that do not result from the local transition across the recrossing-free dividing surface
associated with the transition state trajectory, but can be addressed if that structure is augmented by the
population transfer of the long-time returns.

Keywords: reaction rates, transition state theory

I. INTRODUCTION

One of the grand challenges in chemistry is the control
of chemical reaction pathways with exquisite specificity.
Theoretical and computational approaches require both
precise understanding of the potential landscape describ-
ing the reactive system and the effect of an external or
driving force used to control the reaction. Even with
these in hand, the determination of the pathways and
rates across these driven chemical processes is challeng-
ing. The present work is aimed at addressing this gen-
eral problem on a prototype chemical reaction through
the use of several recent developments in transition state
theory (TST)1–13 as discussed below.

Configurational changes of reactive systems are typi-
cally mediated by a barrier which separates the reactant
and product basins. The detailed dynamics of the reac-
tion is then determined by the structure of the potential

a)Present address: Institut für Theoretische Physik, Universität
Stuttgart, Germany
b)Present address: Department of Chemistry, University of Penn-
sylvania, Philadelphia, PA 19104
c)Author to whom correspondence should be addressed; Electronic
mail: hernandez@gatech.edu.

energy surface (PES) that results from the interactions in
the system. For this reason, the PES is of special interest
in the investigation of a reaction. On the one hand, it
determines the possible reaction pathways and the rate
at which a reaction takes place. On the other hand, an
incident external driving can lead to modifications of the
PES and thereby influence the outcome and speed of the
reaction. This is the case, e. g., if tailored external fields
are applied that can specifically deform the PES in a
desired way.14–19 An example of such a driven reaction
that has recently been addressed using some of the meth-
ods described herein is the isomerization of ketene with
a time-dependent external field driving its dipole.20

In order to describe the rate of a reaction, qualita-
tively and quantitatively, TST has proven to be an ac-
curate method applicable in many different situations.
The fundamental idea of TST is to divide the underly-
ing phase space into regions of reactants and products
and to compute the reaction rate using the reactive flux
though a dividing surface (DS) separating these regions.
The rates calculated using TST are formally exact if the
DS is crossed by each reactive trajectory exactly once.
Thus, a central task for applying TST is the construc-
tion of a DS with this no-recrossings property. In time-
independent systems with a two-dimensional configura-
tion space, the DS is associated with an unstable periodic
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orbit at the barrier top, and in higher-dimensional sys-
tems it can be constructed using a normally hyperbolic
invariant manifold.21–29

A fundamentally different situation exists in the case
of systems including time-dependent interactions because
the geometric objects used to describe the reaction will
then also be time-dependent. The time-dependent tran-
sition state (TS) trajectory,30–36 which is a distinguished
hyperbolic trajectory close to the barrier top, has suc-
cessfully been applied in several driven systems to ob-
tain formally exact reaction rates in the classical limit.
In this context, two observations are of special impor-
tance for the practical determination of the reaction
rates: First, it has been suggested that for simple barrier
structures,34,35 the rate of reactive trajectories crossing
the time-dependent DS can be obtained from stability
analysis of the TS trajectory. This is a significant sim-
plification because it suggests that the rate may be ob-
tained by investigating only a single trajectory instead of
the decay of the reactant population through the labori-
ous propagation of a large ensemble of trajectories. Sec-
ond, the observation20,37,38 that the TS trajectory can
be constructed using a minimization procedure of La-
grangian descriptors (LDs)39,40 has been an important
step towards a general construction scheme of this spe-
cial trajectory on complex energy landscapes.

In previous work,35,37 some of us addressed a single
anharmonic barrier that is externally driven by hori-
zontal oscillations in the barrier position. The agree-
ment between the crossing rates over a barrier with time-
dependent position and the stability properties of the TS
trajectory has thus far been shown for relatively simple
potentials described by a barrier and no wells. Including
the latter is critical in fully describing chemical reaction
dynamics because the bottom of the reactant well is the
energetic reference for the temperature of the ensemble
of reactants, and it provides the reference frame for the
magnitude of the driven oscillations in the barrier. In
addition, the existence of a reactant well allows trajecto-
ries which leave the barrier region to be reflected at the
classical turning point and return to the barrier at longer
times. This property, which is particular to the simplified
form of the one-dimensional form investigated here at low
friction, turns out to be of significant importance for the
understanding of the comparison between the overall re-
action dynamics observed in numerical simulations and
TST calculations.

Thus the major extension in this work involves the
use of a model for the time-dependent barrier dynamics
which includes reactant and product regions for which re-
action rates are well defined using standard approaches.
Our results confirm that the TS trajectory provides a
recrossing-free DS not only for local trajectories in the
vicinity of the barrier region, but also for the entire re-
actant ensemble. We demonstrate that the nonlocal dy-
namics in the metastable region does have a significant
influence on the total dynamics of the system. The agree-
ment in the results provides further evidence that both

PT and LDs can be used to obtain the TS trajectory. The
use of this model introduces long-time dynamics, clearly
visible in the numerical trajectories, in which particles
return to the barrier after collision on the far side of the
bounding potential. These returning trajectories are a
consequence of global mechanisms that might be impor-
tant in chemical reactions but they can nevertheless be
accounted for as discussed below.

This paper is organized as follows: In Sec. II, we
present the theoretical framework of our investigations
by introducing the dynamical equations, model poten-
tial energy surface, as well as the theoretical formalism
related to the determination of the rate using the TS
trajectory, LDs, and stability analysis. In Sec. III, we
present numerical results related to the construction of
the TS trajectory using LDs, the determination of the
reaction rates, and a comparison of the rates with the
developed theory. Section IV contains a discussion of the
ramifications of our findings and the outlook for future
research.

II. THEORY

A. The Oscillating Potential

We now construct a class of time-dependent poten-
tials shown in Fig. 1 which have stationary reactant and
product wells but an oscillating anharmonic barrier in
the interaction region. Specifically, the potential for this
model system is the sum of three terms

V (x, t) = V −Morse(x) + VGauss(x, t) + V +
Morse(x) , (1)

where V ±Morse are Morse potentials providing wells in the
respective reactant (−) and product (+) regions while
being small in the region of the other well. A time-
dependent Gaussian potential VGauss provides the dom-
inant structure of the barrier and its motion while be-
having approximately harmonically near the barrier top.
Specifically, these potential terms are:

V ±Morse(x) = D
[
1− e±b(x∓x0)

]2
−D , (2a)

VGauss(x, t) = EG e−a[x−xb(t)]2 , (2b)

where xb is the position of the barrier, a and b determine
the barrier and ground state frequencies, respectively, EG

is the barrier height, D is the well depth, and ±x0 are
the positions of the wells. Throughout this paper, we
will set EG = D = a = b = 1, and x0 = 3. This defines,
together with m = 1, a set of natural units for our prob-
lem.

To a good approximation the moving Gaussian bar-
rier is zero near the minima of the Morse potentials, and
conversely the double well potential formed by the two
Morse potentials is constant near the barrier. As a con-
sequence, the total potential has stationary wells at ±x0

and a barrier of constant height and constant shape at



3

-D

Eb

-x0 0 x0

(a)
P
o
te

n
ti

a
l 

V
(x

)

Position x

-xb +xb

Reactants

-D

Eb

-x0 0 x0

(b)

P
o
te

n
ti

a
l 

V
(x

)

Position x

FIG. 1. Spatial dependence of the double-well potential
V (x, t) in Eq. (1) for the parameters EG = a = D = b =
x0/3 = 1. Panel (a) shows the potential for different barrier
positions xb = 0,±0.2a,±0.4a in red. We consider particles
in the left well x < 0 as reactants. In (b) the harmonic ap-
proximations of the potential at its minima and its maximum,
respectively, are shown in blue.

xb(t). In practice, for the parameter values chosen in this
work, the barrier height is constant to within 1% and the
location of the maximum differs from xb(t) by less than
10%.

We use three different protocols for the horizontal oscil-
lation in the position of the barrier top as also employed
in Ref. 35:

x
(1)
b (t) = xmax

b sin(ω0t) , (3a)

x
(2)
b (t) =

xmax
b

2

[
cos(ω0t) + cos(3ω0t)

]
, (3b)

x
(3)
b (t) =

xmax
b

4

[
sin(2ω0t) + sin(4ωot) + sin(6ω0t)

]
.

(3c)

The time-dependence for each of these barrier positions
is shown in the corresponding top panel of Fig. 2. In this
figure, as well as throughout this paper unless stated oth-
erwise, we set ω0 = π, and xmax

b = 0.4. The first protocol

x
(1)
b (t) is a simple single-mode sinusoidal oscillation of the

barrier top with frequency ω0 and amplitude xmax
b [see

Fig. 2(a)]. The second and third driving protocols also

take into account the second and third harmonic of the
fundamental frequency [see Figs. 2(b)–(c)] correspond-
ing to the leading-order contributions in a Fourier cosine
series.

B. Equation of Motion

We consider the dynamics of a particle of unit mass in
the double-well potential (1), both for the isolated system
and for a particle influenced by a thermal bath. In the
latter case, the dynamics of the particle is described by
the one-dimensional Langevin equation

ẍ(t) = −V ′(x)− γv(t) + ξα(t) . (4)

Here, γ denotes the strength of the bath-induced friction,
v = ẋ is the velocity, and ξα are random forces simulating
collisions with solvent particles. The random forces obey
the fluctuation-dissipation theorem41

〈ξα(t), ξα(t′)〉 = 2γkBT δ(t− t′) , (5)

where kB is the Boltzmann constant and T is the temper-
ature (the index α shall denote a specific random force
sequence of the numerical simulation). From this, the
description of the isolated system without a bath is ob-
tained for γ = T = 0 and it reduces to the standard
Newtonian equations of motion (EoM).

C. Calculation of the TS Trajectory

In order to obtain exact rates for trajectories cross-
ing the oscillating barrier (the reactive flux), knowledge
of a DS free of recrossings is essential. Otherwise, re-
active trajectories that recross the DS lead to overesti-
mates in the flux calculation, and consequently an overes-
timate of the reaction rate. For several one-dimensional
systems with a time-dependent barrier, a recrossing-free
DS has been shown to be given by the TS trajectory
(x‡, v‡).30–36,42,43 As noted by Bartsch et al.,30,31 this
distinguished trajectory defines the origin of a moving
coordinate system

∆x = x− x‡(t) , ∆v = v − v‡(t) , (6)

in which the dynamics (4) effectively becomes time-
independent and noiseless in the harmonic limit. The
solution of (4) in this limit is simply given by

∆x(t) =
eλut − eλst

λu − λs
[∆v(0)− λs∆x(0)] , (7a)

∆v(t) =
λueλut − λse

λst

λu − λs
[∆v(0)− λs∆x(0)] , (7b)

where λu and λs are the harmonic approximations to the
TS trajectory stability exponents, given by

λu,s = −1

2

(
−γ ±

√
γ2 + 4ω2

b

)
, (8)
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FIG. 2. (Top) Time-dependent barrier position xb(t) in Eq. (3) for the different driving protocols and parameters xmax
b = 0.4

and ω0 = π. (Bottom) Phase space plots of the LD (17) for τ = 13, γ = 0, and calculated for a grid of size 1000× 1000. The
color scale is in arbitrary units and the minimum of the LD is highlighted by the white cross.

and ωb is the characteristic barrier frequency. For the
Gaussian barrier, its value is ωb =

√
2aEG. For the to-

tal potential in Eq. (1), the barrier frequency is slightly
higher than the Gaussian value and is time-dependent.
Indeed for the parameter values used in this work, it dif-
fers from the Gaussian approximation by less than 5%.
For simplicity, we therefore approximate the frequency as
if it is constant and equal to that of the Gaussian barrier
throughout this work.

For anharmonic barriers, the EoM (4) have no analytic
solution. As a consequence, the TS trajectory can only
be computed numerically. We report here two alternative
procedures for this purpose: First, in Sec. II C 1, we de-
scribe a perturbative scheme, and second, in Sec. II C 2,
we discuss a more global calculation of the TS trajectory
based on LDs.

1. The TS Trajectory and Perturbation Theory

Perturbation theory42–44 (PT) has previously been
successfully applied to the determination of the TS tra-

jectory, in situations where the potential barrier is not
too strongly anharmonic. PT solves the EoM (4) by first
making a Taylor expansion of the external potential V
as a function of a small parameter, ε, up to a certain or-
der, nPT, and then computing the solution of the EoM or-
der by order. Specifically, the TS trajectory is expanded
as

x‡(t) =

nPT∑
n=0

ε2nx‡n(t), (9)

and setting ε = 1 at the end of the calculations. The
forces exerted by the moving potential and the noise can
then be expanded similarly:

f = −V ′(x‡(t), t) + ξα(t)

=

nPT∑
n=0

ε2nfn(t). (10)

For the potential in Eq. (1), the lowest order terms of f
are given by
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f0 =− ω2
bxb + 2b2De−2b(x0+xb)(xb − x‡0)

(
−eb(x0+xb) − eb(x0+3xb) + 2e4bxb + 2

)
+ ξα(t), (11a)

f1 = aω2
b(xb − x‡0)3 +

1

3
e−2b(x0+xb)

[
b4D(xb − x‡0)3

(
−eb(x0+xb) − eb(x0+3xb) + 8e4bxb + 8

)
−6b2Dx‡0

(
−eb(x0+xb) − eb(x0+3xb) + 2e4bxb + 2

)]
,

(11b)

f2 =− 1

2
aω2

b(xb − x‡0)2
[
a(xb − x‡0)3 + 6x‡1

]
+

1

60
e−2b(x0+xb)

[
b6D(xb − x‡0)5

(
−eb(x0+xb) − eb(x0+3xb) + 32e4bxb + 32

)
− 60b4Dx‡1(xb − x‡0)2

(
−eb(x0+xb) − eb(x0+3xb) + 8e4bxb + 8

)
−120b2Dx‡2

(
−eb(x0+xb) − eb(x0+3xb) + 2e4bxb + 2

)]
.

(11c)

The perturbative terms of the TS trajectory expansion
in Eq. (9) are given by33–35,44

x‡n(t) =
1

λu − λs

(
S[λu, fn; t]− S[λs, fn; t]

)
, (12)

where the S-functionals32 are defined as

S[λ, g; t] =


−
∫ ∞
t

g(τ) exp(λ(t− τ)) dτ : Reλ > 0,

+

∫ t

−∞
g(τ) exp(λ(t− τ)) dτ : Reλ < 0.

(13)
Because fn depends on the low order

terms, x‡0, x
‡
1, . . . , x

‡
n, Eq. (12) is an implicit equa-

tion for x‡n(t) that can be solved by a fixed point
iteration.

Figure 3 shows the TS trajectory computed using the
previous perturbative scheme for the three driving proto-
cols introduced in Eq. (3) up to order nPT = 4. Here, we
have also superimposed the TS trajectory (black dashed
curve) computed using the LDs described in the next sub-
section; it is taken as a reference since it provides a more
accurate solution. As can be seen, the general behavior
of the TS trajectory is nearly captured by the harmonic
approximation to the TS trajectory (leading order term

in PT), x‡0, as shown in red. However, a more accurate
result is obtained when higher orders are included, as
can be inferred from the figure. In general, the agree-
ment between LDs and PT increases with the pertur-
bation order, nPT. Nevertheless, for the second driving
protocol (3b), the results obtained for nPT = 1 (blue) fit
those of the LD better than those obtained when nPT = 2
(orange), nPT = 3 (green), or nPT = 4 (yellow).

In order to obtain a numerically exact representation of
the TS trajectory that includes all orders of perturbation
theory at once, we separate the harmonic part of the
barrier potential from the anharmonic contributions and
rewrite the equation of motion (4) for the TS trajectory

x‡ as

ẍ‡ = ω2
bx
‡ − γẋ‡ + εf (14)

with

f = −V ′(x‡(t), t)− ω2
bx
‡(t) + ξα(t). (15)

If ε = 1, Eq. (14) agrees with the original equation of
motion (4). If ε = 0, it reduces to the trivial case of the
harmonic barrier without external driving or noise.

Using the methods of Refs. 30, 31, 42, and 43, it can
be shown that the solution of Eq. (14) can be formally
expressed as

x‡(t) =
ε

λu − λs

(
S[λu, f ; t]− S[λs, f ; t]

)
, (16)

Equation (16) is an implicit equation for the unknown
function x‡(t). It can be solved by a fixed point iteration,
starting from the known solution, x‡ = 0 for ε = 0. The
parameter ε can be used to control the convergence of
the iteration scheme by computing the TS trajectory first
for small values of ε and then increasing ε towards the
limiting value equal to 1 which is the case of interest.

The TS trajectory (solid black) given by Eq. (16) is
also shown in Fig. 3. The agreement between this TS
trajectory and the exact one given by the LDs is very
good, especially for the third driving protocol (3c), where
it is seen that it clearly improves the PT results [cf. inset
in Fig. 3(c)]. For the second driving protocol (3b), the
results rendered by both approximations are similar. In
this case, the PT (9) agrees better than Eq. (16) with the
LDs for positive values of the TS trajectory, and worse
for the negative ones, as shown in Fig. 3(b). Finally, for
the first driving protocol (3a), the results given by Eq. (9)
are always in better agreement with those obtained with
Eq. (16) if nPT ≥ 2.

2. The TS Trajectory and Lagrangian Descriptors

An alternative procedure for the computation of the
TS trajectory is given by the global minimization of
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FIG. 3. Time-dependence of the TS trajectory for the driving
protocols given by Eqs. (3a), (3b), and (3c) for γ = 0. The
black dashed curve shows the results for the LDs, the black
solid curve those for Eq. (16), and the other curves the per-
turbative results obtained with Eq. (9) (leading-order: red;
order 1: blue; order 2: orange; order 3: green; order 4: yel-
low). Notice how the error reduction as the perturbative order
is increased. Insets: detailed view of the TS trajectory close
to the first minimum.

LDs.20,37,38 In the context of TST, a particular useful
LD is defined by

L(x0,v0, t0) =

∫ t0+τ

t0−τ
‖v(t)‖ dt , (17)

where v is the velocity of a certain trajectory and there-
fore L is a measure of arc length of that trajectory over
the time interval [t0 − τ ; t0 + τ ]. We will also use one-
sided LD L(f) and L(b) in which the time interval (17) is
extended only over the forward (f : t0 ≤ t ≤ t0 + τ) or
the backward (b: t0 − τ ≤ t ≤ t0) direction of time.

Of special importance for the reaction dynamics are
the stable and unstable manifolds Ws,u attached to the
(time-dependent) barrier top. These can be identified us-

ing the LD in Eq. (17) because the trajectories on these
manifolds yield extremal properties of the LD. More pre-
cisely, the manifolds directly correspond to minima of the
LD in the forward and the backward LD, respectively:

Ws(x0, t0) = arg minL(f)(x0,v0, t0) , (18a)

Wu(x0, t0) = arg minL(b)(x0,v0, t0) . (18b)

The function arg min here denotes the value of the argu-
ment v0 that yields the minimum of the LD. The coor-
dinates of the TS trajectory T (t0) at time t0 is located
on the intersection Ws ∩Wu of the time-dependent sta-
ble and unstable manifolds, and it corresponds to the
minimum of the two-sided LD (17),

T (t0) = arg minL(x0,v0, t0) . (19)

D. Stability Analysis

Motivated by the assumption that the local dynamics
of reactive trajectories close to the TS trajectory deter-
mines the reaction rate, previous work34 suggests that
a linearized stability analysis of this trajectory contains
the complete information on the rate. We will compare
the corresponding results with the numerical rates of
the double-well potential, and therefore present a brief
overview on the stability analysis in the following. For
details, we refer the reader to Ref. 34.

The stability analysis hinges on the assumption that
the long-time dynamics, which determines the rate, is
dominated by the local dynamics close to the TS trajec-
tory, i. e. we consider the case that ∆x and ∆v are small
enough that the dynamics can be appropriately described
by linearized dynamical equations. In this case, a trajec-
tory which is initially close to the TS trajectory evolves
in time according to the linear relation(

∆x(t)
∆v(t)

)
=M(t)

(
∆x0

∆v0

)
. (20)

Here, M is the stability matrix with the properties

M(0) = 1 , Ṁ = J (t)M , (21)

and J is the Jacobi matrix of the EoM about the TS
trajectory. If the TS trajectory is periodic and charac-
terized by its first single period, M reduces to the mon-
odromy matrix whose eigenvalues are the Floquet multi-
pliers ms,u. One of the multipliers, ms, is associated with
an approach of the trajectory towards the TS trajectory
on the stable manifold, while the other, mu, corresponds
to the increasing deviation from the TS trajectory on
the unstable manifold. The corresponding time scales
are then given by the Floquet exponents

µs,u =
1

T
log |ms,u| . (22)
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Recent work by Craven et al.34,35 suggests agreement be-
tween the barrier crossing rate and the difference of the
Floquet exponents (22),

kfloq = µu − µs . (23)

Moreover, Revuelta et al.44 have shown that the relation
in (23) can be generalized to aperiodic and thermally
driven systems if the Floquet exponents are replaced by
Lyapunov exponents. We will use these relations for com-
parisons with the numerical results below.

III. RESULTS

In this section, we present the results of our investi-
gation on the double-well potential (1) with oscillating
barrier position. We first demonstrate the construction
of the time-dependent TS trajectory using LDs. Second,
we present the capability of the TS trajectory to serve as
a recrossing-free DS in both the noisy and noiseless cases.
Third, we compare and contrast the rates obtained from
the different methods described in the previous section.

A. TS Trajectory and its Local Dynamics

Contour plots of the LD over the phase space—
calculated using Eq. (17)—for each of the driving pro-
tocols (3) in the noiseless case with no a thermal bath
are shown in the bottom panels in Fig. 2. According to
Eqs. (18), the stable and unstable manifolds Ws,u close
to the barrier top appear as minimum valleys of the LD.
Their intersections are homoclinic points, and the one
with the lowest value of the LD naturally corresponds to
the TS trajectory [see Eq. (19)]. It is highlighted with
a marker (× in white). Other intersections of the sta-
ble and unstable manifolds are also homoclinic points.
They are the result of particles that leave the barrier re-
gion, that are subsequently reflected by the well, and that
finally reenter the barrier region. This is a class of tra-
jectories that did not appear in previous work34 because
the lack of reactant and product wells in the potentials
therein did not give rise to recurrences. It exists only
for sufficiently low values of the damping γ. For large
damping, trajectories that leave the barrier region along
the unstable manifold are quickly attracted into one of
the wells and do not return to the barrier unless reacti-
vated at much longer time scales than those relevant to
the rate. The results in Fig. 2 were all obtained for the
more intricate case of low damping.

The LD plots in Fig. 2 have an axial symmetry that
forces the LD minimum to be located on either the x = 0
or the v = 0 axis. This symmetry results from that of
the double-well potential (1) with respect to x = 0 and a
suitable choice of the phase of the external driving: The
symmetry axis is either the line x = 0 [in Figs. 2(a), (c)]
or the line v = 0 [in Fig. 2(b)] reveals that the reason is
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FIG. 4. TS trajectories (solid black) and barrier positions
(dotted black) for the three driving protocols in Eqs. (3a–c),
respectively. The respective top panels show the dynamics
without noise, while the bottom panels include noise and fric-
tion with γ = 0.001 and kBT = 5.

rather the external driving: the symmetry axis is x = 0
in case that the external driving is xb = 0 at t = 0 and it
is the line v = 0 if xb = xmax

b at t = 0. The symmetry of
the LD plots is lost if noisy dynamics with the random
forces ξα in Eq. (4) are taken into account (not shown).
If the temperature is not too high, so that the dynamics
is still dominated by the underlying potential, noisy dy-
namics only leads to small changes in the LD structure
in phase space. However, the basic structure of the LD,
the stable and unstable manifolds, and the existence of
the minimum (19) remain. The method of minimizing
the LD can, therefore, also be used to extract the TS
trajectory in this case.

The TS trajectories for noisy and noiseless dynamics
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for each of the driving protocols 1–3 are shown in Fig. 4 as
black curves. Panels (a)–(c) correspond to the respective
subfigures of Fig. 2. Within each panel, the top figure
shows the case without noise, while the bottom figure in-
cludes noise. Furthermore, the white background color
denotes the region x < xb left to the barrier and the
gray background is the region x > xb on its right-hand
side. The border between the two regions consequently
displays the position of the barrier top xb. The colored
curves show the time evolution of representative particles
which have been initially placed close to the TS trajec-
tory at t = 0. As can be seen, the corresponding trajec-
tories escape strictly either to the left or the right of the
TS trajectory, crossing it at most once. This observation
indicates that the TS trajectory carries a recrossing-free
dividing surface, as required by TST.

B. Global Structure and Reaction Dynamics

The invariant manifolds of the TS trajectory that were
obtained by the LD also provide a global description of
the dynamics. In particular, the stable manifold of the
TS trajectory contains trajectories that are trapped near
the barrier top for all time. It therefore separates regions
of reactive and non-reactive trajectories in phase space.
According to Eq. (18), the location of the stable manifold
is indicated by a valley of minima of the backward LD. In
addition, the forward-time LD changes drastically as the
stable manifold is crossed. For trajectories on the nonre-
active side of the stable manifold the velocity decreases
to zero as they approach the barrier. The forward LD of
these trajectories is therefore markedly smaller than for
reactive trajectories, which slow down near the barrier,
but do not come to a complete stop. Fig. 5 compares
of the forward-time (0 ≤ t ≤ τ) LD and the basins of
attraction of the left and right wells for various values
of the damping γ. In all cases, the contour lines on the
surface computed using LDs (top panels) are in excel-
lent agreement with the corresponding contours of final
state committers (bottom panels). For a noiseless sys-
tem, the TS trajectory is a periodic orbit. Its stable
manifold can be calculated in the immediate vicinity of
the TS trajectory by a linear stability analysis and fur-
ther away by backward propagation of trajectories on the
manifold. Results of this computation are indicated by
the green curves in Fig. 5. They demonstrate both that
the stable manifold separates reactive from nonreactive
trajectories and that the location of the stable manifold
can be reliably obtained from the LD. In noisy systems,
where the direct computation of the stable manifold can-
not be carried out easily, LD can therefore be applied
with confidence.

The reaction rates can be determined from the cor-
responding construction of the TS trajectory for each
of the driving protocols including and excluding noise.
For this purpose, we use a thermal ensemble consisting
of 10 million particles on the reactant side of the bar-

rier with a Boltzmann distribution at a temperature of
kBT = 5.0. We chose this value of the temperature as
it is high enough that a significant amount of particles
react, while it is low enough that the dynamics is still
dominated by the underlying potential.

The time dependence of the reactant population (top
panels) and the number of forward/backward reactions
(bottom panels) for each of the driving protocols 1–3 with
and without noise are shown in the bottom and top rows
of Fig. 6, respectively. In order to define these popula-
tions, one has to specify where exactly the reactant well
ends. We use either the instantaneous barrier top or
the TS trajectory to define the boundary. In the former
case, the population shows pronounced oscillations as a
function of time that persist well beyond the time inter-
val shown in the figure. By contrast, the TS trajectory
gives rise to a monotonic decay of the reactant popu-
lation, which indicates that it provides a recrossing-free
DS.

These observations are underscored by the net number
of particles which cross the DS in a given time interval, as
indicated in the bottom panels of Fig. 6 (positive values
mean forward reactions and negative values mean back-
ward reactions). Using the barrier top as the DS, suc-
cessive forward and backward reactions occur through-
out the entire time interval. Furthermore, one observes
a clear correlation of these forward/backward reactions
with the motion of the barrier top (the barrier top veloc-
ity vb is shown as a black curve): Forward and backward
reactions result when vb < 0 and vb > 0, respectively.

The situation is fundamentally different when the TS
trajectory x‡ is used as a DS (orange curves and his-
tograms): The reactant population decay is monotonous
throughout for all driving protocols with and without
noise. Further evidence for this behavior is seen in the
time evolution of the net number of reactions: here only
positive values occur because only forward reactions take
place. Therefore, the TS trajectory shows its ability to
serve as a recrossing-free DS also in the present case of
a time-dependent double-well potential. We emphasize
that this observation goes beyond being the confirma-
tion of previous findings based on time-dependent barrier
without wells.34 The double-well potential allows parti-
cles to escape from the local barrier region, traverse the
reactant well, be reflected and reenter the barrier region.
The observation that the escape of particles which have
left and reentered the barrier region can be characterized
by corresponding TS trajectories that are recrossing-free
extends the previous observations from a local to a global
picture.

C. Barrier Crossing Rates

In addition to characterizing the nature of trajecto-
ries as reactive or nonreactive, the TS trajectory can be
used to also compute the rates by which particles evolve
from the reactant to the product well. For comparison,
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FIG. 5. (Top) Global phase space portrait of the forward contribution of the LD (0 ≤ t ≤ τ) for Protocol 1 on the whole range
relevant for the reaction dynamics in the double-well potential and different values of the friction: (a) γ = 0.00 , (b) γ = 0.01,
and (c) γ = 0.05. The LD has been computed for the parameter τ = 40 and the color scale is the same as in Fig. 2. (Bottom)
Corresponding plots showing the basins of attraction for a particle initiated at the respective phase space position. Black and
white refer to the left and right well as the corresponding basins, respectively.

we obtain these rates (k) numerically by monitoring the
population decay and fitting it to the function

P(t) = P1 e−kt + P2 t+ P3 , (24)

where P1,2,3 and k are fitting parameters. Such a form
typically includes only two terms, P1e−kt and P3, corre-
sponding to the exponential decay towards the “long-
time” asymptotic value in the population. However,
due to the driven oscillations in the barrier, energy is
constantly pumped into the reactant ensemble. Conse-
quently, a mean decrease in the reactant population is
observed at long times (t & 10 for the parametric val-
ues employed here) that can be captured by a decreasing
linear term. This linear decrease is given by the contribu-
tion, P2 t+P3 in Eq. (24), shown as a dotted black curve
in the comparisons of the fit to the population decay in
Fig. 6.

Before we discuss the detailed dependence of the reac-
tion rates on different parameters such as temperature,
barrier oscillation frequency and amplitude, we first ad-
dress a comparison between particles crossing the barrier
directly and those that first leave the barrier region and

traverse the reactant well before a reaction takes place.
For this purpose, we consider an initial thermal ensemble
ρδ with a δ-distribution at x′ in configuration space and
a Boltzmann distribution ρv(v) in velocity space,

ρδx′ (x, v) ∝ δ(x− x′)× ρv(v) . (25)

The family of such ensembles allows for a more detailed
analysis of the dynamics, but it does not prevent the
determination of the average decay of the population be-
cause the entire thermal ensemble ρtherm can be recovered
simply through integration over the complete reactant
well,

ρtherm(x, v) =

∫
well

dx′ ρδx′ (x, v) . (26)

Figure 7(a) shows the time development of the reac-
tant population for the initial distribution (25) with
x′ = −0.2, i. e. close to the barrier top. The decay of
the reactant population does not decrease through a sin-
gle near-exponential decay but rather exhibits a series of
stepped decays. The first step is related to those trajec-
tories (not shown) which have enough kinetic energy as
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FIG. 6. Comparison of the reaction dynamics at a temperature of kBT = 5 obtained from the barrier top as DS (cyan) and
the TS trajectory as DS (orange). The respective top panels show the time-dependence of the reactant population P(t). The
bottom panels present histograms showing the number reacting particles per time interval ∆t = 0.01. Positive values indicate
forward reactions, while negative numbers mean backward reactions. The solid black curve indicates the barrier velocity (in
arbitrary units) for each driving protocol. The black dashed curves show the long-time decay contribution P2 x+P3 in Eq. (24).
In the noisy case, the calculations have been performed with a friction parameter γ = 0.001

well as a positive value of the velocity v > 0 near the
barrier such they cross it directly, leading to products.
By contrast, the second step is due to particles which
first leave the barrier region into the reactant well, are
reflected by the back wall, return to the barrier, and then
react. Further steps correspond to two, three, and more
oscillations in the reactant well before the reaction takes
place. This suggests that the overall rate ktot is a convo-
lution of the direct decay—as characterized by the direct
rate kdir—within a given step and the population remain-
ing after each of the many possible long-time recurrences
due to multiple reflections with the back wall.

As displayed in Fig. 7(a), both the direct and total de-
cay mechanisms lead to different values of the rate. The
direct rate kdir is significantly larger: an exponential fit
to the first drop-off of the reactant population in Fig. 7
(black dashed curve) yields a rate of kdir = 3.491 while
the overall fit (taking into account the several-step reac-
tion; black dash-dotted curve) corresponds to a rate of
ktot = 0.184. In Fig. 7(b), we present the same procedure
for the several-step decay for different positions x′ of the
initial distribution ρδx′ . It shows that the initial position

x′ has a significant influence on the locations and the
sizes of the single drop-offs. The reason for this hinges
predominantly on whether a given particle in the ensem-
ble has enough initial kinetic energy to cross the barrier.
The overall reaction rate of the total thermal ensemble
in the reactant well is obtained from the average (26). It
is shown as the red solid curve in Fig. 7 and the corre-
sponding rate can be extracted from the fit shown as the
black dash-dotted curve.

An alternative interpretation of the difference in the
direct and total rates can also be inferred following the
observations of De Leon et al.45,46 about the role of re-
active islands on rates. The geometry of the interfaces
between the basins of attraction in Fig. 5 in the vicinity
of the barrier is characterized by several distinct but par-
allel components of the DS. The direct rate results from
the crossing of the first of these in the barrier region
whereas the total rate includes trajectories that cross (in
the reactive direction) any one of them. Meanwhile, the
loss of exponential behavior that we find in some of the
cases below would presumably result from the chaotic
structure in the DSs between the reactive islands.
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FIG. 7. (a) Time-dependence of the reactant population for
an initial δ-distribution at x = −0.2. The dashed curve shows
an exponential fit (24) with rate kfloq to the first drop-off of
the population (0 ≤ t ≤ 5). The dash-dotted curve shows
the same exponential fit with decay rate ktot to the whole
time scale (0 ≤ t ≤ 20). Panel (b) demonstrates the dif-
ferent population decay in dependence of the position of the
initial δ-distribution in blue. The corresponding behavior for
a Boltzmann distribution which results from integrating over
all possible δ-distributions is shown in red.

D. Direct vs Global Rates

Reaction rates as a function of temperature kBT
[Fig. 8(a)], barrier frequency ω0 [Fig. 8(b)], and barrier
amplitude xmax

b [Fig. 8(c)] are shown in Fig. 8. We also
show the rates obtained from three different methods: (i)
the rates ktot (dots connected with dashed lines) are ob-
tained from the decay of a thermal ensemble distributed
over the whole reactant well, (ii) the rates kdir (dots with-
out lines) obtained from an ensemble which has an initial
distribution (25), and (iii) the rates kfloq (solid curves)
obtained from the Floquet difference (23) which provide
a good approximation to the TS trajectory stability ex-
ponents under small noise strength.35

In the temperature dependence of the rates, one natu-
rally expects an exponential behavior according to

k = const× e−∆E/kBT . (27)

This expectation is indeed satisfied for the overall rates
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FIG. 8. Comparison of the rates kfloq obtained from the dif-
ference of the Floquet exponents (solid lines), the rates ktot

observed from the decay of the reactant population (dots con-
nected with dashed lines), and the rates kdir of the direct re-
action (dots without lines). Shown is the dependence on (a)
the temperature kBT of the initial ensemble, (b) the barrier
frequency ω0, and (c) the barrier amplitude xb. The dots
show the rates obtained from a fit to the reactant population
decay according to Eq. (24). The lines in (a) show fits of
Eq. (27) to the data points (see Tab. I for the fit coefficients),
and the lines in (b,c) are cubic interpolations of the data.
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Protocol const ∆E

1 0.3972 0.6422
2 0.4026 0.5169
3 0.4456 0.1834

TABLE I. Fit coefficients of Eq. (27) to the data shown in
Fig. 8(a).

ktot in Fig. 8(a) with the corresponding fits to (27) shown
as dotted curves. The fit coefficients are provided in
Tab. I. Although the exponential behavior is satisfied,
the rates differ by up to one order of magnitude. In con-
trast to these cases, the Floquet rate kfloq in Eq. (23)
does not reproduce the total rates. This disagreement
results from the fact that the Floquet rate is obtained
only from the stability properties of the TS trajectory,
leaving out the possibility for longer decays due to the
reflections. The TS trajectory is independent of the ini-
tial distribution and therefore does not depend on the
corresponding temperature. Therefore, this is also true
for the Floquet rates, and Floquet rates appear as lines
of constant height in Fig. 8(a).

In Fig. 8(b), we see that a different behavior of the
rates also manifests itself in its dependence on the bar-
rier frequency ω0. While the total rates ktot remain the
smallest throughout, the direct rates kdir are, again, the
highest ones, and the Floquet rates lie in between. All
the rates, however, have in common that a slight mod-
ulation is observed when varying the frequency [for the
driving protocol 2 and at low frequency (green) it is even
a large modulation].

As we demonstrate in Fig. 8(c), the general behavior of
the direct crossing rates kdir and the Floquet rate kfloq is
similar if the barrier amplitude is varied. In both cases,
the rate changes only marginally for small amplitudes,
while it decreases faster as the barrier amplitude becomes
larger. The dependence of the direct and Floquet rates
seen here also agree in the sense that the single-mode
driving (red) shows the strongest decrease, while it is
weakest for protocol 3. By contrast, the total rate ktot

does not show such a decrease in the rate when increas-
ing the oscillation amplitude of the barrier. Because the
total rate ktot is the only one that takes into account the
nonlocal structure of the potential apart from the bar-
rier, we expect that this effect is due to the fact that the
total rate is dominated by the structure of the well and
influenced by the barrier motion to a minor degree.

A general observation in Figs. 8(b)–(c) is the fact that
the barrier driving amplitude and frequency are less rel-
evant for the total crossing rates ktot than they are for
the direct rates kdir. This observation can, again, be ex-
plained by the multi-step decay process shown in Fig. 7
where two different time scales are of importance: The
first one is the characteristic time scale of the direct pro-
cess, which only depends on the local barrier properties,
and thus it is sensitive to the barrier driving. The second
time scale is the oscillation period of the particle in the

well. It is only slightly modified by the driving because of
the construction of the potential (1). In other systems in
which the driving also has a significant influence on the
form of the well (e. g. its depth), a strong dependence
of the driving parameters on the total rates may also be
observed.

Our rate calculations demonstrate the importance of
taking into account the complete dynamics of the system
when the global dynamics lead to recurrences to the bar-
rier region. The fact that the direct rates are captured
well by the recrossing-free DS associated with the TS
trajectory indicates its accuracy. When trajectories can
revisit the barrier region due to the presence of reflecting
boundaries, one must evidently include this additional
mechanism to obtain the long time rates.

IV. CONCLUSIONS

In this paper, we have investigated the reaction dy-
namics of a double-well potential with a time-dependent
(driven) barrier in a thermal bath using the Langevin
equation to describe the dynamics. We have computed
the TS trajectory—which serves as a recrossing-free DS—
using different orders in PT and using a method based
on the minimization of LDs. The results of these inde-
pendent methods are in good agreement up to small vari-
ances that would be expected from the different orders
of PT.

Through this work, we have verified the recrossing-
free property of the TS trajectory by direct integration
of thermal ensembles of particles. The results show that
this DS is free of recrossings in cases without and with
noise, and this property also holds for particles which
react after one or more oscillations in the reactant well.
The latter result is especially important because it ex-
tends previous findings regarding a local picture that is
only in the vicinity of the barrier top. What emerges is a
global picture that takes into account the whole reactive
system.

We have also computed the reaction rates of the sys-
tem for different temperatures, oscillating frequencies
and amplitudes of the driven barrier. The comparison
of the rates obtained from the total population decay,
the direct barrier crossings, and the Floquet rates under-
score the importance of taking into account the complete
dynamics of the system: All the comparisons agree with
the observation that the total reaction rate is significantly
lower than the direct or Floquet rates. The total rates
exhibit a monotonic increase with temperature (as would
be expected from standard statistical rate theories), the
direct rates appear to be convolved with an additional
resonance, and the Floquet-derived rates are tempera-
ture independent. By contrast, the direct rates and
the ones obtained from the Floquet exponents of the TS
trajectory agree in their behavior with increasing barrier
oscillation amplitude; the total rates do not show such a
dependence.
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In summary, this work demonstrates that: (i) The di-
rect rates can be obtained accurately using several meth-
ods for determining the TS trajectory. In particular the
LD approach leads to accurate rates. (ii) The values of
the LDs give rise to a structure that is similar to that
of the long-time reactant and product committers, while
the underlying stable and unstable Lagrangian manifolds
can be seen from the local minima on the LD hypersur-
face. (iii) When there are recurrences such as in the spe-
cial case of the double well, the rates become convolved
with this additional mechanism, but the contribution of
the rates due to the direct reaction across the barrier
can still be captured by the rate associated with the TS
trajectory.

Real molecular potentials typically differ from the
model potential investigated in this paper in two ways:
First, their reactant and product wells usually have a dif-
ferent depth, i. e. the activation barriers in forward and
backwards direction differ. Second, the potential energy
surfaces of most chemical reactions exhibit more than
one nontrivial degree of freedom so that the dynamics
of the system perpendicular to the reaction coordinate
needs to be considered. Our future investigations will
take these important steps into account in order to ver-
ify the present results also for the case of nonsymmetric
potentials and to make the application of the TS trajec-
tory method possible for real molecular reactions driven
by external electromagnetic fields.
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