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RIGOROUS NUMERICAL APPROXIMATION

OF ESCAPE RATES

WAEL BAHSOUN

Abstract. An interval map with holes is a mathematical model which is used

in the study of nonequilibrium statistical mechanics. We use Ulam’s method

to approximate the escape rate for an interval map with holes and find a bound

on the approximation error.

1. Introduction

Consider an infinite set of identical particles evolving independently in a box I

according to a stochastic process T which throws some of the particles outside of I.

If a particle escapes from I under the process T , it will never come back again. Such

systems are of central interest in the study of nonequilibrium statistical mechanics

[6, 7, 15].

A physical quantity associated to this problem is the escape rate of the particles

from the box. In [6], a theoretic escape rate formula is found. However, it is often

impossible to compute the exact escape rate using this formula.

Interval maps with holes are one possible mathematical model of such systems.

In this paper we deal with Lasota-Yorke maps with holes [2, 12]. These maps, which

were first introduced in [14], are defined as follows:

Let T : R → R be a piecewise monotonic and piecewise C nonsingular transfor-

mation (with respect to Lebesgue measure) and piecewise expanding. Let H be a

finite union of disjoint open intervals, H =

⋃

H , H ⊂ [0, 1], T (H) ∩ [0, 1] = ∅

for all n ∈ N, and T ([0, 1] \ H) = [0, 1]. Define T : [0, 1] \ H → [0, 1] to be the

restriction of T to [0, 1] \H.

This model was studied in [2] where existence of an absolutely continuous condi-

tionally invariant measure (see Definition 3.1) was proved under certain conditions.

Our goal is to present a numerical technique to approximate the escape rate for

an interval map with holes and find a bound on the approximation error. This

technique is based on Ulam’s scheme [16] and it relies on the abstract perturbation

result of [9] and its numerical counterpart [11].

In Section 2 we present the abstract stability theorem of [9]. In fact, we need

the statement of the this result since the constants involved in it are needed in
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our numerical computations. Section 3 is devoted to numerical approximation of

the escape rate. In particular, we prove, in Lemma 3.10, a result which enables us

to use the computer and estimate the BV norm of the resolvent of a finite rank

operator. Our main result in this section is obtaining an algorithm which can be

implemented to compute the approximate escape rate. In Section 4, we obtain rates

of convergence of the approximation scheme of Section 3. Our main result in this

section is Theorem 4.6. In Section 5, we show that the algorithm of Section 3 is

actually feasible to implement. In particular, we use the algorithm to give rigorous

approximation of the escape rate of a certain Lasota-Yorke map with holes.

2. Abstract perturbation Result

Let (I,B,λ) be the measure space where I = [0, 1], B is the Borel σ-algebra and

λ is Lebesgue measure. Let L = L (I,B,λ). For f ∈ L , we define

V f = inf{varf : f = f a.e.},

where

varf = sup{

∑

|f(x )− f(x )| : 0 = x < x < · · · < x = 1}.

We denote by BV the space of functions of bounded variation on I equipped with

the norm || · || = V (·) + || · || [5].

Let P : BV (I) → BV (I) be two bounded linear operators, i=1,2. We assume

that: For f ∈ L

(2.1) ||P f || ≤ ||f || ,

and ∃α ∈ (0, 1), A > 0 and B ≥ 0 such that

(2.2) ||P f || ≤ Aα ||f || +B||f || ∀n ∈ N ∀f ∈ BV (I).

Further, we introduce the mixed operator norm:

|||P ||| = sup ||P f || .

For any bounded linear operator P : BV → BV with spectrum σ(P ), consider the

set

V (P ) = {z ∈ C : |z| ≤ r or dist(z,σ(P )) ≤ δ}.

Since the complement of V (P ) belongs to the resolvent of P , it follows that ([5]

Lemma 11, VII.6.10)

H (P ) = sup{||(z − P ) || : z ∈ C \ V } < ∞.

Remark 2.1. α in (2.2) is an upper bound on the essential spectral radius of P [1].

Theorem 2.2. [9, 11] Consider two operators P : BV (I) → BV (I) which satisfy

(2.1) and (2.2). For r ∈ (α, 1), let

n = ,

ln 2A

ln r/α

-

C = r ; D = A(A+B + 2)

n = ,

ln 8BDCH (P )

ln r/α

-.



If

|||P − P ||| ≤

r

8B(H (P )B + (1− r) )

= ε (P , r, δ)

then for each z ∈ C \ V (P ), we have

||(z − P ) f || ≤

4(A+B)

1− r

r ||f || +

1

2ε

||f || .

Set

γ =

ln(r/α)

ln(1/α)

,

a =

8[2A(A+B) + (1− r) ](A+B) r + 1

1− r

and

b = 2[(4(A+B) (D +B) +B)(1− r) r +B].

If

|||P − P ||| ≤ min{ε (P , r, δ),

[

r

4B (H (P )(D +B) + 2A(A+B) + (1− r) )

]

}

= ε (P , r, δ)

(2.3)

then for each z ∈ C \ V (P ), we have

(2.4)

|||(z−P ) − (z−P ) ||| ≤ |||P −P ||| (a||(z−P ) || + b||(z−P ) || ).

Corollary 2.3. [9, 11] If |||P − P ||| ≤ ε (P , r, δ) then σ(P ) ⊂ V (P ). In

addition, if |||P −P ||| ≤ ε (P , r, δ), then in each connected component of V (P )

that does not contain 0 both σ(P ) and σ(P ) have the same multiplicity; i.e., the

associated spectral projections have the same rank.

3. Ulam’s method for Escape rates

Let T be an interval map with holes and denote by P the Perron-Frobenius

operator associated with T [1]. Let f ≥ 0,

∫

fdλ = 1 and denote by supp(f) the

support of f . Suppose for a moment that a.e. x eventually escapes from I, then

for some n ≥ 1, λ(T (I)) < λ(supp(f)) and we have

||P f || =

∫

P fdλ =

∫

fdλ <

∫

fdλ = ||f || .

Thus, P eventually decreases the norm of functions. Consequently T cannot pre-

serve a measure which is absolutely continuous with respect to Lebesgue measure.

In this case, the measure which describes the dynamics is given by the following

definition.

Definition 3.1. A probability measure µ on [0, 1], dµ = gdλ, is said to be a T -

absolutely continuous conditionally invariant measure if there exists 0 < ρ< 1 such

that Pg = ρg.



For results on the existence of absolutely continuous conditionally invariant mea-

sures we refer the reader to [2, 3, 12] and to the recent survey article [4].

The escape rate of the points through the holes under the iteration of T is defined

by − ln ρ where ρ is the dominant eigenvalue of the Perron-Frobenius operator

associated with T . In this section, we present a numerical method for estimating

ρ. We assume:

(A1) ∃ α ∈ (0, 1), and B ≥ 0 such that ∀f ∈ BV (I)

V Pf ≤ αV f +B ||f || ;

(A2) P , as operator on BV (I), has a dominant eigenvalue ρ such that:

α < ρ < 1.

Remark 3.2. Since α is an upper bound on the essential spectral radius of P ,

any eigenvalue of P with modulus bigger than α is an isolated eigenvalue of finite

multiplicity. Thus, ∃ r > α and δ > 0 such that any eigenvalue ρ of P , with

|ρ | > r , satisfies:

(1) B(ρ , 2δ ) ∩B(0, r ) = ∅;

(2) B(ρ , 2δ ) ∩B(ρ , 2δ ) = ∅ for i .= j.

Remark 3.3. Given a Lasota-Yorke map with holes, α and B in the inequality of

(A1) are computable.

We now present Ulam’s approximation of P . Let η be a finite partition of I into

intervals. Let mesh(η) be the mesh size of η; i.e, the maximum length of an interval

in η, and let B be the finite σ-algebra associated with η. For f ∈ L , let

Π f = E(f |B ),

where E(·|B ) denotes the conditional expectation with respect to B . Then, if

x ∈ I ∈ η

(Π f)(x) =

1

λ(I )

∫

fdλ.

Define

P = Π ◦ P ◦Π .

P is called Ulam’s approximation of P . Using the basis { χ } in L , P can

be represented by a (row) substochastic matrix acting on vectors from R by left

multiplication. The entries of Ulam’s matrix are given by:

P =

λ(I ∩ T J )

λ(I )

.

Lemma 3.4. P has a positive dominant eigenvalue ρ ≤ 1.

Proof. By definition P is a non-negative matrix. Therefore, the existence of the

positive dominant eigenvalue ρ follows from the Perron-Frobenius Theorem on

non-negative matrices [10]. Moreover, for f ∈ L , we have

||P f || = ||(Π ◦ P ◦Π )f || ≤ ||PΠ f || ≤ ||Π f || ≤ ||f || .

Thus, ρ ≤ 1. !



The following lemma mainly states that the projection operator Π does not

increase variation when η is defined as above. This is a well known fact [13]. We

will denote the identity operator by 1.

Lemma 3.5. For f ∈ BV (I) and ε = mesh(η) we have

(1) V (Π f) ≤ V (f);

(2) ||f −Π f || ≤ εV (f).

Lemma 3.6.

(1) P and P satisfy (2.2) with the same constants;

(2) |||P − P ||| ≤ Γε, where Γ = max{α+ 1, B } and ε = mesh(η).

Proof. Firstly, for f ∈ BV (I), by (A1), for any n ∈ N

V P f ≤ α V f +B ||f || ,

where B = . Thus, P satisfies (2.2) with A=1, and B = B + 1. By the first

statement of Lemma 3.5, we have

V P f = V ((Π ◦ P ◦Π )f) ≤ V (PΠ f) ≤ αV f +B ||f || .

Thus P satisfies (2.2) with A=1, and B = B +1. This completes the proof of the

first part of the lemma. By the second statement of Lemma 3.5 we obtain

||(P − P )f || ≤ ||(Π ◦ P ◦Π − P ◦Π )f || + ||(P ◦Π − P )f ||

= ||(Π − 1)PΠ f || + ||P (Π − 1)f ||

≤ εV (PΠ f) + εV f

≤ ε ((α+ 1)V f +B ||f || )

≤ εΓ||f || .

!

Remark 3.7. Our goal is to approximate the dominant eigenvalue of P by the

dominant eigenvalue of P for a suitable η. However, the constants in Theorem 2.2

depend on the norm of the resolvent of the operator. Since all these constants are

computable for P (we will show this later in this section), we use Theorem 2.2

with P as the first operator and P as the second operator.

First, we need the following lemma to show that we can really use Theorem 2.2

with P as the first operator and P as the second operator. The proof is based on

the proof of Lemma 4.2 of [11].

Lemma 3.8. [11] Given P , δ > 0 and r > α, there exists ε > 0 such that for each

η with 0 < mesh(η) ≤ ε , we have

(3.1) mesh(η) ≤ (2Γ) ε (P , r, δ),

and

(3.2) |||P − P ||| ≤

1

2

ε (P , r, δ).

Proof. Since (3.2) follows from (3.1) by Lemma 3.6, we only prove (3.1). Let P, P

be P , P of Theorem 2.2 respectively and ε = mesh(η). There exist a δ and an

r , 0 < δ ≤ δ and α <r ≤ r, such that for any eigenvalue ρ of P , with |ρ | > α,

we have:



(1) B(ρ , 2δ ) ∩B(0, r ) = ∅;

(2) B(ρ , 2δ ) ∩B(ρ , 2δ ) = ∅ for i .= j.

If 2Γε ≤ ε (P, r , δ /2) (ε ≤ ε (P, r , δ /2)), then there exists a constant c such

that

sup ||(z − P ) || ≤ c .

In particular, σ(P ) ⊂ V (P ). Let ρ ∈ σ(P ) with |ρ| > r . Then, by Corollary

2.3, there exists a ρ ∈ σ(P ) such that |ρ− ρ | ≤ δ /2. Thus, if |z − ρ | ≥ δ we

obtain

|z − ρ| ≥ |ρ − z|−| ρ− ρ | ≥ δ /2.

Thus, V (P ) ⊂ V (P ) ⊆ V (P ); i.e.,

C \ V (P ) ⊆ C \ V (P ).

Therefore,

(3.3) sup ||(z − P ) || ≤ sup ||(z − P ) || ≤ c .

Thus, H (P ) ≤ c and for fixed r and δ, ε (P , r, δ) is uniformly bounded from

below. Set

ε = inf{(2Γ) ε (P , r, δ) : ε = mesh(η) ≤ (2Γ) ε (P, r , δ /2)} > 0.

!

Remark 3.9. The main difficulty in applying the above lemma is the computation

of c . In fact (z−P ) acts on the whole of BV and consequently, its norm cannot

be found using the computer. In the next lemma, we show how we deal with this

difficulty.

Lemma 3.10. For f ∈ BV (I) with ||f || = 1 and z ∈ C \ V (P ) we have:

(1) ||(z − P ) f || ≤ ( + 1)||(z − P ) Π f || + + ;

(2) ||(z − P ) Π f || ≤ ||(z − P ) f || + .

Proof. Let f ∈ BV (I), ||f || = 1. Firstly, using the fact P f = P Π f for i ≥ 1

and the identity

(z − P ) = z (z − P ) P + z · 1,

we have

||(z − P ) (f −Π f)|| = ||(z (z − P ) P + z · 1)(f −Π f)||

= ||

f

z

−

Π f

z

|| ≤

1

|z|

||(Π − 1)f || ≤

3

r

.

(3.4)

Now, write (z − P ) Π f = h, then h = (P h+Π f). Therefore, we have

V h ≤

1

|z|

(V P h+ 1)

≤

1

r

(αV h+B ||h|| + 1).

(3.5)

By (3.5), we obtain

V h ≤

B ||h|| + 1

r − α

,



and consequently,

(3.6) ||(z − P ) Π f || ≤ (

B

r − α

+ 1)||(z − P ) Π f || +

1

r − α

.

By (3.4) and (3.6) the first part of the lemma follows. For the second part, by (3.4),

we have

||(z − P ) Π f || ≤ ||(z − P ) Π f ||

≤ ||(z − P ) f || + ||(z − P ) (Π f − f)||

≤ ||(z − P ) f || +

3

r

.

(3.7)

!

Remark 3.11. One can use the matrix representation of P and the computer to

find ||(z − P ) Π f || since Π f is just a vector.

Let

H (P ) = sup{(

B

r − α

+1)||(z−P ) Π f || +

1

r − α

+

3

r

: ||f || = 1, z ∈ C\V (P )},

and

ε (P , δ, r) = min{

r

8B(H (P )B + (1− r) )

,





r

4B

(

H (P )(D +B) + 2(1 +B) + (1− r)

)



 }.

Lemma 3.12.

(1) ε (P , δ, r) is uniformly bounded below;

(2) ε (P , δ, r) ≤ ε (P , δ, r);

(3) mesh(η) ≤ (2Γ) ε (P , δ, r) implies mesh(η) satisfies (3.1).

Proof. By the proof of Lemma 3.8, ε (P , δ, r) is uniformly bounded below by a

positive number. Then using part 2 of Lemma 3.10, we see that ε (P , δ, r) is

uniformly bounded below by a positive number. The second part follows from part

(1) of lemma 3.10. The last part of the lemma is a consequence of the second

part. !

Based on the fact that ε (P , δ, r) is really computable, we present an algorithm

which can be implemented to approximate ρ with a specified tolerance, τ , on the

approximation error. This could not have been achieved using ε (P , δ, r).

Algorithm I

(1) Given an interval map with holes whose P satisfies conditions (A1) and

(A2). Then, α and B are given. Let τ > 0 be a given tolerance on the

error.

(2) Pick δ = and r = α+ for k ∈ N such that δ ≤ τ and r < 1.

(3) Feed in a partition of I into intervals. Call it η.

(4) Compute ε the mesh size of η.



(5) Find P = (P ) where

P =

λ(I ∩ T J )

λ(I )

.

(6) Compute the following: H (P ), n = , -, C = r , D = 3 + B,

n = , -, γ = , B = + 1, Γ = max{1 + α, B }.

(7) Check if ε ≤ (2Γ) ε (P , δ, r).

If (7) is not satisfied, feed in a new η with a smaller mesh size and repeat

(3)-(7); otherwise, continue.

(8) List the eigenvalues of P whose modulus is bigger than r: ρ , i = 1, . . . , d.

(a) P = QR decomposition, where Q is an orthogonal matrix and R is

an upper triangular matrix.

(b) RQ = Q P Q.

(c) P = P , P = Q R , P = Q P Q .

This iterative method is called the QR method [17]. Most mathematical

software uses the QR method to compute eigenvalues.

(9) Find ρ the dominant eigenvalue of P and define:

CL = { all the eigenvalues from the list which are in B(ρ , δ)}.

(10) Check:

(a) The list in (8) is not empty.

(b) B(ρ , δ) ∩B(0, r) = ∅;

(c) If ρ /∈ CL, then B(ρ , δ) ∩B(ρ , δ) = ∅.

(11) If (10) is satisfied, report |ρ−ρ | < δ; otherwise, multiply k by 2 and repeat

steps (2)-(11) starting with the last η that satisfied (7).

Proposition 3.13. The above algorithm stops after finitely many steps.

Proof. By Lemma 3.12, for each δ > 0 and r > α ∃ ε = mesh(η) > 0 such that

ε < (2Γ) ε (P , r, δ).

Therefore, the internal loop of the algorithm (2)-(7) stops after finitely many steps.

We now prove that the outer loop of the algorithm stops after finitely many steps.

There exist a K ∈ N, K < +∞, such that δ = < δ , r = α + < r and η

with ε = mesh(η) > 0 such that

(1) ε < (2Γ) ε (P ,α+ , );

(2) ε < (2Γ) ε (P,α+ , ).

(1) implies σ(P ) ⊂ V (P ) and (2) implies σ(P ) ⊂ V (P ) ⊂ V (P ). Thus,

ρ ∈ B(ρ , δ), CL ⊂ B(ρ, δ), and any P eigenvalue which is not in CL is contained

in V (P ) \ B(ρ, δ). By Remark 3.2, (11) of the algorithm is satisfied for this

K. !

4. rates of Convergence

In this section, in addition to assumptions (A1) and (A2), we assume:

(A3) ρ, the dominant eigenvalue of P , is simple.



We first present an algorithm which enables us to find a P whose dominant

eigenvalue, ρ , is simple and within a specified distance from ρ.

Algorithm II

(1) Given an interval map with holes whose P satisfies conditions (A1), (A2) and

(A3). Then, α and B are given. Let τ > 0 be a given tolerance on the error.

(2)-(9) are the same as in Algorithm I.

(10) (a) Check that CL = {ρ }.

(b) B(ρ , 2δ) ∩B(0, r) = ∅;

(c) If ρ /∈ CL, then B(ρ , 2δ) ∩B(ρ , 2δ) = ∅.

(11) is the same as in Algorithm I.

Proposition 4.1. Algorithm II stops after finitely many steps.

Proof. The internal loop (2)-(7) of Algorithm II stops after finitely many steps for

the same reasons as in Proposition 3.13. We now prove that the outer loop stops

after finitely many steps. There exist a K ∈ N, K < +∞, such that δ = < δ ,

r = α+ < r and η with ε = mesh(η) > 0 such that

(1) ε < (2Γ) ε (P ,α+ , );

(2) ε < (2Γ) ε (P,α+ , ).

(1) implies σ(P ) ⊂ V (P ) and (2) implies σ(P ) ⊂ V (P ) ⊂ V (P ). Thus,

ρ ∈ B(ρ , δ) and ρ ∈ B(ρ, δ). Since ρ is simple, then by Corollary 2.3, ρ is the

only eigenvalue of P in B(ρ, δ) and any non dominant P eigenvalue is contained in

V (P )\B(ρ, δ). By Remark 3.2, (11) of the algorithm is satisfied for this K. !

Let ε = mesh(η ), δ and r , such that ε < (2Γ) ε (P , δ , r ) and |ρ −ρ| < δ ,

where ρ is the dominant eigenvalue of P , be given from Algorithm II.

Lemma 4.2. Let ε = mesh(η) < ε , then for z ∈ C \ V (P ) we have

||(z − P ) || ≤

(

4(A+B)

1− r

r +

1

2ε

)

,

where ε = .

Proof. We have

|||P − P ||| ≤ |||P − P |||+ |||P − P ||| ≤ 2ε Γ ≤ ε (P , r , δ ).

Therefore, we can use Theorem 2.2 with P = P and P = P . Thus, we obtain

||(z − P ) f || ≤

4(A+B)

1− r

r ||f || +

1

2ε

||f ||

≤

(

4(A+B)

1− r

r +

1

2ε

)

||f || .

(4.1)

!

Remark 4.3. We are now in a situation where |ρ − ρ | < δ , |ρ − ρ| < δ and

|ρ −ρ| < δ and ρ is at a distance of at least 2δ from any non dominant eigenvalue

of P,P and P .



Now, we can define the spectral projection [8] associated with ρ by

Π =

1

2πi

∫

(z − P ) dz.

Lemma 4.4. Let ε = mesh(η) < ε . We have

(4.2) |||Π −Π ||| ≤ C ε ,

where

C = 2δ Γ

(

a

(

4(A+B)

1− r

r +

1

2ε

)

+ b

(

4(A+B)

1− r

r +

1

2ε

)

)

,

and

ε =

r

8B(H (P )B + (1− r ) )

.

Proof. Theorem 2.2 implies

|||Π −Π ||| ≤

1

2π

∫

|||(z − P ) − (z − P ) ||| |dz|

≤ sup

(

a||(z − P ) || + b(||(z − P ) || )

)

· 2δ Γ ε .

(4.3)

Since z ∈ C \ V (P ) and ε ≥ ε , Lemma 4.2 implies

sup ||(z − P ) || ≤

4(A+B)

1− r

r +

1

2ε

.

This completes the proof. !

Remark 4.5. The constant C in Lemma 4.4 is computable.

Theorem 4.6. Let ε = mesh(η) < ε . Let g and g be the normalized eigenvectors

associated with ρ and ρ respectively. Then:

(1) ||g − g || ≤ ε ,

(2) |ρ− ρ | ≤ ε ,

where C = C (1 + ).

Proof. Let g be the normalized eigenvector corresponding to ρ; i.e., g ≥ 0 and

||g|| = 1. Define g = Π g. Firstly, we estimate the BV norm of g. We have, by

(A1),

ρ(V g) = V Pg ≤ αV g +B .

Therefore,

V g ≤

B

r − α

and

||g|| ≤

B

r − α

+ 1.



We now use this and Lemma 4.4 to get an estimate on the L norm of g . We have

||g|| − ||g || ≤ ||g − g ||

= ||Π g −Π g||

≤ |||Π −Π ||| · ||g||

≤ C ε (

B

r − α

+ 1) = Cε .

Thus, ||g || ∈

(

1− Cε , 1 + Cε

)

. Let g = . Then

||g − g|| ≤ ‖

g

||g ||

−

g

||g ||

‖ + ‖

g

||g ||

− g‖

≤

1

||g ||

||g − g|| +

|1− ||g || |

||g ||

||g||

≤

Cε

1−Cε

+

Cε

1−Cε

=

2C

1− Cε

ε .

Finally, we can obtain an estimate on the distance between ρ and ρ :

|ρ − ρ| = | ||P g || − ||Pg|| |

= |||(Π ◦ P ◦Π )g || − ||Pg|| | = |||Pg || − ||Pg|| |

≤ ||Pg − Pg|| ≤ ||g − g|| ≤

2C

1− Cε

ε .

!

5. example

In this section we use Algorithm I to approximate the escape rate of a Lasota-

Yorke map with holes. We analyse a simple example to demonstrate the perfor-

mance and feasiblity of the algorithm.

Example 5.1. We consider the transformation

T (x) =

{

2.08x for x <

2− 2x for x ≥
.

Remark 5.2. We chose a piecewise linear example so that the escape rate may

be computed directly, and thereafter compared to the estimate derived from the

algorithm. In fact, for U ∈ B(I), we have

λ(T (U)) =

1

2.08

λ(U) +

1

2

λ(U) =

4.08

4.16

λ(U).

Thus, the exact dominant eigenvalue of P is ρ = .

Calculations for the algorithm

First we will show that the Perron-Frobenius operator P associated with T sat-

isfies (A1) and (A2). It is easily seen that for f ∈ BV (I) we have

(5.1) V Pf ≤

1

2

V f.



Thus, (A1) is satisfied with α = and B = 0. Consequently,

||Pf || ≤

1

2

V f + ||f || .

We now check that (A2) is satisfied without using Remark 5.2. Thus, the following

is a procedure for checking that (A2) is satisfied without knowing ρ a priori.

Let H = ( , ). Then λ(H) = , where H is the hole in [0, 1] from which the

particles escape under the evolution of T . Let q ∈ (0, ) and define

E = {f ∈ L : V f < q, f ≥ 0,

∫

fdλ = 1}.

Then E is a compact convex subset of L (I). For f ∈ E

||Pf || = 1−

∫

fdλ ≥ 1− λ(H) · ||f ||

≥ 1− λ(H)(V f + 1) >

1

2

= α.

(5.2)

Let

Pf =

Pf

||Pf ||

.

Then, for f ∈ E ,

V (Pf) ≤ ||Pf || V (Pf) < V f.

Thus P (E ) ⊂ E . The Schauder-Tychonoff Theorem [5] implies P has a fixed

point in E ; i.e.,

Pg

||Pg||

= g,

or

Pg = ρg,

where ρ = ||Pg|| > α. Thus, (A2) is satisfied.

Now, we implement Algorithm I and obtain rigorous approximation of ρ. From

inequality (5.1), we obtain that α = and B = 0. Let the tolerance on the

approximation error be τ = 0.01. Let k = 50 and pick δ = and r = α + .

Notice that we have modified r from α+ to α+ . Since the algorithm works

for any decreasing sequences of r’s and δ’s, this modification does not affect the

proofs of the previous sections. We picked up this sequence of r’s because it will

require the outer loop of the algorithm to run only once. Table 1 shows the output

of the algorithm after running the inner loop twice. In the first run, we took the

mesh size ε = 2× 10 which failed to satisfy ε < (2Γ) ε . Then, we reduced the

mesh size to ε = 1.25 × 10 and it satisfied ε < (2Γ) ε . Thus, we obtained a

rigorous approximation of ρ. We have used MATLAB in our computations. The

main difficulty in implementing the algorithm is the computation of H . In the

discussion below, we will explain how we have computed H for this particular

example.

We present the computation of H when ε = mesh(η) = 1.25 × 10 . The

computation of H when ε = mesh(η) = 2 × 10 is done in exactly the same

way.



δ 10 10

r 0.97 0.97

ε 2× 10 1.25× 10

ρ 0.98076929201212 0.98076931645293

H 162.9499805 165.1996625

(2Γ) ε 1.30392654× 10 1.289151061× 10

Inner Loop Reduce Mesh Size Pass

Outer Loop Use Same δ and r Pass

Report No Report |ρ− 0.98076931645293| < 10

Table 1

After choosing ε = mesh(η) = 1.25 × 10 and setting the matrix P , we find

its dominant eigenvalue ρ and its second largest eigenvalue. We noticed that ρ is

simple and that the modulus of second largest eigenvalue is smaller than α. Thus,

σ(P ) \ {ρ } ⊂ B(0,α). We have (see [8])

(5.3) ||(z − P ) || ≤ δ ||Π || + ||R(z)|| ,

where ||Π || is the rank-one projection associated with ρ and R(z) is the resolvent

of the operator P (1 − Π ). Since the modulus of the second largest eigenvalue

of P is smaller than α and |z| > r > α, R(z) can be represented by a convergent

Neumann series. We have

||R(z)|| = ||

∑

(

P (1−Π )

)

z

)||

≤

1

r

(

∑ ||

(

P (1−Π )

)

||

r

+

∑ ||

(

P (1−Π )

)

||

r

)

≤

1

r

[

∑ ||

(

P (1−Π )

)

||

r

(

1 +

∑

(

||

(

P (1−Π )

)

||

r

) )]

< 34.27921938.

(5.4)

We have used the fact that ||

(

P (1−Π )

)

|| < 0.04169901783, to obtain a

convergent geometric series

∑

(

( )

)

. Computing the L norm

of the projection

||Π || = 1.257,

and using the definition of H and inequality (5.3), we obtain that

H ≤ 165.1996625.

Therefore,

(2Γ) ε ≥ 1.289151061× 10 > 1.25× 10 = ε.

Thus, the inner loop of the algorithm is satisfied. The outer loop is also satisfied

since B(0, r) ∩B(ρ , δ) = ∅. Thus, 0.9707 < ρ < 0.9908.

Remark 5.3. The interval (0.9707, 0.9908) does indeed contain the exact dominant

eigenvalue of P which was calculated in Remark 5.2.



Remarks on estimating H

(1) It is clear that the main numerical difficulty in implementing the algorithm

is the rigorous estimation (from above) of the quantityH . The calculation

in the example above shows one way of doing this whenever P has a single,

simple dominant eigenvalue outside of the disc B(0,α).

(2) In cases when the spectrum of P (and hence P ) is more complicated on

(B(0,α)) , the rigorous estimation of H is an interesting and challenging

problem.
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