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Summary

A fixed, rigid structure is said to be cloaked in small amplitude, time-harmonic water
waves if it is possible to surround it with other fixed or moving structures or variations
in the sea-bed topography in such a way that there are no scattered waves in the far
field. The resulting system of structures is said to be transparent to the incident wave
field. By finding inequalities which the kinetic and potential energy in the total wave
field for such a system must satisfy, it is shown that transparency is impossible for a
system of structures which has non-zero volume and satisfies the condition that the
free surface is connected and a vertical line drawn from every point on the free surface
does not intersect another structure but intersects the sea bed at a point at which
the bed is horizontal.

1. Introduction

In recent years much attention has been given to the possibility of constructing a cloak
for a structure, so that when it is irradiated by an electromagnetic wave, the wave is bent
around the structure and the structure rendered invisible to an observer in the far field
(1), (2), (3). The concept of cloaking has also been explored in acoustics (4), surface
waves (5) and elasticity (6), (7) and a special issue of Wave Motion is devoted to work
which discusses cloaking in a variety of physical situations (8). In linear water-wave theory
Porter and Newman (9), (10), (11), (12) use the term cloaking to describe the elimination
of the far-field scattered waves that arise when a monochromatic plane wave is incident
upon a fixed, rigid structure and this is the definition that will be used in this work. In
particular, they investigated whether is is possible to cloak a vertical circular cylinder in
water waves, by either varying the sea-bed topography in the neighbourhood of the cylinder
or by surrounding it with other structures. Numerical calculations showed that it is possible
to significantly reduce the amplitude of the scattered wave field at certain frequencies by
a suitable construction of the surrounding system, but whether perfect cloaking is possible
at one or more frequencies, is an open question. In related work, an experimental study by
Dupont et al (13) investigated the possibility of eliminating the sloshing modes produced
by a structure situated at the end of a wave guide by putting vertical posts in front of it.

In order to be able to cloak a structure by other structures in water waves, it is necessary
that the total system made up from the structure and its cloak does not produce any
scattered waves in the far field when a monochromatic plane wave is incident upon it.
Such a system is said to be transparent to the incident wave field. In two dimensions,
transparency occurs if the reflection coefficient associated with the system is zero and the
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transmission coefficient has the same phase as the incident wave. The first condition is
shown to be impossible in §2, for a two-dimensional system of structures which satisfies the
so-called ‘John condition’ (defined below) and for which there is no isolated portion of the
free surface. Brief details of the argument for a fluid of infinite depth were presented in (14)
and an expanded version of the proof for a fluid of finite depth is given below. In §3 the
proof is extended to show that a system of three-dimensional structures of non-zero volume
which satisfies the John condition and for which the free surface is connected, cannot be
transparent to the incident wave field. The implications of this result for the cloaking of a
single structure are discussed.

2. The reflection coefficient for a two-dimensional system of structures

A small amplitude plane wave with angular frequency ω is incident from the left on a fixed
system of rigid, two-dimensional structures in water of finite depth, as illustrated in Fig
1. There are a finite number of piecewise smooth structures in the system and their total
cross-sectional area is assumed to be non-zero. One of the structures intersects the mean
free surface at x = ±a and is contained within these lines. The free surface is connected
on either side of this structure and any remaining structures, or variations in the depth of
the fluid, are contained in the fluid region below the surface-piercing structure. This means
that a vertical line, drawn from each point on the mean free surface does not intersect any
structure but intersects the sea bed at z = −h, where h is a constant. This last condition
is referred to as the ‘John condition’ because John (15) established that the solution to
the linear scattering problem is unique for such a system. An extension of his method will
now be used to show that it is impossible for the reflection coefficient R to be zero when
a monochromatic plane wave is incident on such a system of structures. The result will be
established by first assuming that R = 0 at a particular frequency and then showing that
this leads to a contradiction.

The scattering potential is given by Re[φ(x, z) e−iωt] where φ has continuous second
partial derivatives in the fluid and is continuous onto the boundary. The function φ satisfies

∇2φ = 0 in the fluid (2.1)

and the boundary conditions

∂φ

∂n
= 0 on the structures and sea bed, (2.2)

where ∂/∂n is the derivative in the outward normal direction to the fluid. The linearised
free surface condition is given by

Kφ− ∂φ

∂z
= 0 on z = 0, |x| > a, (2.3)

where

K =
ω2

g
. (2.4)

There is assumed to be no reflection of the incident wave and so

φ ∼

{
eikx cosh k(z+h)

cosh kh , x→ −∞,
T eikx cosh k(z+h)

cosh kh , x→∞,
(2.5)
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Fig. 1 A two-dimensional system of structures which satisfies the John condition

where energy conservation gives |T | = 1 and the wave number k satisfies the dispersion
relation

K = k tanh kh. (2.6)

The portion of the mean free surface in −M < x < −a is denoted by F− and that in
a < x < M by F+. The fluid regions below F± are denoted by D±. The remaining fluid
region surrounding the bodies and contained in the region −a < x < a is denoted by Di

and is assumed to have a non-zero, cross-sectional area. As φ satisfies (2.1), integration of
∇.[φ∇φ] over the total fluid region contained in −M < x < M and an application of the
divergence theorem gives∫

D−∪D+∪Di

|∇φ|2 dV =

∫
∂(D−∪D+∪Di)

φ
∂φ

∂n
dS, (2.7)

where the overbar denotes complex conjugate and ∂(D−∪D+∪Di) is the total boundary of
the region D− ∪D+ ∪Di. The boundary condition on the structures and the sea bed (2.2)
means that there is no contribution to the integral on the right-hand side of (2.7) from these
surfaces. Furthermore, by energy conservation and the fact that R = 0, the contributions
from the lines x = ±M cancel in the limit as M →∞. Thus (2.7) yields∫

Di

|∇φ|2 dV + lim
M→∞

[∫
D−∪D+

|∇φ|2 dV −K
∫
F−∪F+

|φ|2 dx

]
= 0, (2.8)
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where (2.3) has been used to rewrite the integral over F− ∪ F+ and it is convenient to
separate out the integral over the finite fluid region Di from the integral over D− ∪ D+.
It is not possible to separate the integrals over D− ∪D+ from the integrals over F− ∪ F+

before the limit as M →∞ is taken, because φ doesn’t decay as x→ ±∞ and so the limits
of these individual integrals in (2.8) do not exist.

If φ were equal to a constant in the non-zero region Di, by analytic continuation φ would
have to equal a constant everywhere in the fluid and so would not satisfy the far-field
condition (2.5). Thus φ is not equal to a constant in Di, and so the integral of |∇φ|2 over
this region is strictly positive and (2.8) gives

lim
M→∞

[∫
D−∪D+

|∇φ|2 dV −K
∫
F−∪F+

|φ|2 dx

]
< 0. (2.9)

Green’s theorem is applied to φ and eik(x−b) cosh k(z + h)/ cosh kh in the region x > b ≥ a.
Both functions represent outward-going waves as x→∞ and so the only contribution comes
from the line x = b and gives∫ 0

−h

[
∂φ

∂x
− ikφ

]
x=b

cosh k(z + h)

cosh kh
dz = 0. (2.10)

The second term in (2.10) is integrated by parts to give

φ(b, 0) =
1

sinh kh

∫ 0

−h

[
∂φ

∂z
sinh k(z + h)− i∂φ

∂x
cosh k(z + h)

]
x=b

dz. (2.11)

It is convenient to define

sinα =
sinh k(z + h)[

sinh2 k(z + h) + cosh2 k(z + h)
]1/2 =

sinh k(z + h)

[cosh 2k(z + h)]
1/2

, (2.12)

where α is real but not constant, then

cosα =
cosh k(z + h)[

sinh2 k(z + h) + cosh2 k(z + h)
]1/2 =

cosh k(z + h)

[cosh 2k(z + h)]
1/2

(2.13)

and (2.11) becomes

φ(b, 0) =
1

sinh kh

∫ 0

−h

[
∂φ

∂z
sinα− i∂φ

∂x
cosα

]
x=b

[cosh 2k(z + h)]
1/2

dz

= − i

2 sinh kh

∫ 0

−h

[
eiα
(
∂φ

∂z
+
∂φ

∂x

)
+ e−iα

(
∂φ

∂x
− ∂φ

∂z

)]
x=b

[cosh 2k(z + h)]
1/2

dz.

(2.14)

For general complex A and B, |A+B|2 = 2(|A|2 + |B|2)− |A−B|2 ≤ 2(|A|2 + |B|2), so an
application of the Cauchy-Schwarz inequality to (2.14) gives

|φ(b, 0)|2 ≤ 1

4 sinh2 kh

∫ 0

−h

∣∣∣∣− eiα
(
∂φ

∂z
+
∂φ

∂x

)
+ e−iα

(
∂φ

∂z
− ∂φ

∂x

)∣∣∣∣2
x=b

dz

∫ 0

−h
cosh 2k(z + h) dz

≤ 1

4k tanh kh

∫ 0

−h
2

(∣∣∣∣∂φ∂z +
∂φ

∂x

∣∣∣∣2 +

∣∣∣∣∂φ∂z − ∂φ

∂x

∣∣∣∣2
)
x=b

dz =
1

K

∫ 0

−h
|∇φ|2x=b dz. (2.15)
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Integration of (2.15) from b = a to b = M gives, after some rearrangement,∫
D+

|∇φ|2 dV −K
∫
F+

|φ|2dx ≥ 0. (2.16)

As R is assumed to be equal to zero, an application of Green’s theorem to φ and
eik(x+b) cosh k(z + h)/ cosh kh in the region x < −b ≤ −a, leads to the similar result∫

D−

|∇φ|2 dV −K
∫
F−

|φ|2dx ≥ 0. (2.17)

Inequalities (2.16) and (2.17) are valid for arbitrary M , so they may be added together and
the limit as M →∞ taken, to give

lim
M→∞

[∫
D−∪D+

|∇φ|2 dV −K
∫
F−∪F+

|φ|2dx

]
≥ 0. (2.18)

This last inequality is incompatible with the one in (2.9) and so the original assumption
that the reflection coefficient is zero, is impossible.

3. A system of three-dimensional structures

In this section, the scattering properties of a three-dimensional system of piecewise smooth
structures which satisfies the John condition and for which the free surface is connected, are
investigated. An illustration of such a system where the water depth is constant everywhere,
is given in Fig 2. It will be shown that when a monochromatic plane wave is incident on a
system which satisfies these conditions, scattered waves are produced in the far field unless
the system consists of vertical plates which are aligned with the wave direction. The result
is established in a similar way to that for the two-dimensional case, by first making the
assumption that there are no scattered waves in the far field and then showing that this
leads to a contradiction.

Rectangular Cartesian coordinates (x, y, z) are defined so that the origin is at the level
of the mean free surface F , the z-axis points vertically upwards and the incident wave
propagates in the positive x direction. The parameter C is chosen so that the structures
are contained within the region r ≤ C, where cylindrical polar coordinates (r, θ, z) are
defined by

x = r cos θ, y = r sin θ. (3.1)

The combined region of fluid directly below all the structures is denoted by Di and the
remaining fluid region in r ≤ C is denoted by Do. The fluid depth in Do is assumed to be
constant and equal to h but the topography of the seabed may vary below the structures
in the region Di. Unless the structures extend throughout the depth or are thin plates, Di

is a non-zero region. The scattering potential Re[φ(x, y, z) e−iωt] is harmonic in the fluid,
continuous onto the boundary and satisfies the boundary conditions given in (2.2) and the
linearised free surface condition (2.3) on F . As the incident wave propagates in the positive
x direction, the radiation condition gives

φ =

[
eikx +

(
2

πkr

)1/2

A(θ) eikr−iπ/4 +O

(
1

r3/2

)]
cosh k(z + h)

cosh kh
, as r →∞, (3.2)
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Fig. 2 A system of three-dimensional structures which satisfies the John condition

where A(θ) measures the amplitude of the scattered waves in the far field. For the system
of structures to be transparent to the incident wave A(θ) = 0 for all θ and (3.2) becomes

φ =

[
eikx +O

(
1

r3/2

)]
cosh k(z + h)

cosh kh
, as r →∞. (3.3)

If each of the structures extends throughout the depth with a uniform horizontal cross-
section and the fluid depth h is constant everywhere, then the z−dependence may be
subtracted out from the potential and φ written as

φ = u(x, y)
cosh k(z + h)

cosh kh
, (3.4)

where u(x, y) satisfies the two-dimensional Helmholtz equation on F ,

∇2u+ k2u = 0. (3.5)

From (3.3) u may be written as

u = eikx +u1(x, y), (3.6)

where

u1 = O

(
1

r3/2

)
, as r →∞. (3.7)

In general u1 may be expanded in terms of Bessel functions in any annulus in r > C but
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in order to satisfy (3.7) all the coefficients in the expansion must be zero. So u1 = 0 in any
annulus in r > C and by analytic continuation u1 = 0 everywhere on F . Thus the only
possibility is that the diffraction potential is given by the incident wave everywhere in the
fluid, ie

φ = eikx
cosh k(z + h)

cosh kh
. (3.8)

This potential only satisfies the boundary condition (2.2) on each of the structures if they
are all vertical plates, aligned with the direction of propagation of the incident wave. So all
other structures, which extend throughout the depth with a uniform horizontal cross-section,
generate a non-zero scattered wave field.

John’s uniqueness theorem (15) is now extended to show that transparency cannot occur
if the combined fluid region below all the structures is non-zero and the free surface is
connected. As in the two-dimensional case, an application of the divergence theorem gives∫

Di∪Do

|∇φ|2 dV =

∫
∂(Di∪Do)

φ
∂φ

∂n
dS, (3.9)

where ∂(Di ∪Do) is the boundary of the region. As φ satisfies (2.2), there is no contribution
to the integral on the right-hand side of (3.9) from the structure surfaces or the seabed.
If there are no scattered waves in the far field, the radiation condition holds in the form
(3.3) and the integral over the surface r = C vanishes in the limit as C →∞. So the only
contribution to the boundary integral in (3.9) comes from the mean free surface F . As in
the previous section, it is convenient to separate out the integral over the region Di on the
left-hand side of (3.9) and then take the limit as C →∞ to give∫

Di

|∇φ|2 dV + lim
C→∞

[∫
Do

|∇φ|2 dV −K
∫
F

|φ|2 dS

]
= 0, (3.10)

where (2.3) has been used to rewrite the integral over F . In order that the analytic
continuation of φ should satisfy the far-field condition (3.3), φ cannot be equal to a constant
in any non-zero region between a structure and the seabed. So∫

Di

|∇φ|2 dV > 0 (3.11)

and (3.10) becomes

lim
C→∞

[∫
Do

|∇φ|2 dV −K
∫
F

|φ|2 dS

]
< 0. (3.12)

As the system of structures satisfies the John condition, it is convenient to follow (16) and
define

w(x, y) =

∫ 0

−h
φ(x, y, z)

cosh k(z + h)

cosh kh
dz, (3.13)

at all points (x, y) on F . The two-dimensional Laplacian of w is taken and after some
manipulation with the use of the governing equation and boundary conditions for φ, it may
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be shown that w satisfies the two-dimensional Helmholtz equation (3.5). From (3.3) and
(3.13)

w =

∫ 0

z=−h

[
eikx +O

(
1

r3/2

)]
cosh2 k(z + h)

cosh2 kh
dz = N eikx +O

(
1

r3/2

)
, as r →∞,

(3.14)
where integration gives

N =
[kh+ sinh kh cosh kh]

2k cosh2 kh
. (3.15)

The same argument to that used previously for a system of structures which extends
throughout the depth shows that w = N eikx in every annulus for which r > C. As
the free surface is connected, analytic continuation of w to the whole of F means that

w =

∫ 0

−h
φ(x, y, z)

cosh k(z + h)

cosh kh
dz = N eikx (3.16)

everywhere on F . Integration of (3.16) by parts gives

N eikx = φ(x, y, 0)
sinh kh

k cosh kh
−
∫ 0

−h

∂φ

∂z

sinh k(z + h)

k cosh kh
dz, (3.17)

whereas differentiation of (3.16) with respect to x shows that

ikN eikx =

∫ 0

−h

∂φ

∂x

cosh k(z + h)

cosh kh
dz. (3.18)

The combination ik(3.17)-(3.18) is formed and then rearranged to give

φ(x, y, 0) =
1

sinh kh

∫ 0

−h

[
∂φ

∂z
sinh k(z + h)− i∂φ

∂x
cosh k(z + h)

]
dz, (3.19)

at all points on F . This is the same representation for φ at a point on the free surface that
was obtained in the two-dimensional problem in (2.11). So a similar argument to that used
to obtain (2.15) gives

|φ(x, y, 0)|2 ≤ 1

K

∫ 0

−h
|∇φ|2 dz. (3.20)

Both sides of (3.20) may be integrated over F , the resulting equation rearranged and the
limit as C →∞ taken to give

lim
C→∞

[∫
Do

|∇φ|2 dV −K
∫
F

|φ|2 dS

]
≥ 0. (3.21)

A comparison of (3.21) and (3.12) shows that they are incompatible. So the original
assumption that there are no scattered waves in the far field is impossible, and a system
of structures of non-zero volume which satisfies the John condition and for which the free
surface is connected, cannot be transparent to an incident wave.
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4. Discussion

The results of the previous section show that it is impossible to cloak a single structure with
non-zero volume which satisfies the John condition, by surrounding it with other structures
which also satisfy the John condition, in such a way that the free surface remains connected.
However, this does not rule out the possibility of forming a perfect cloak for such a structure
with a torus and Newman (12) showed that by optimizing the cross-section of the torus,
significant reductions in the scattered wave amplitude from a vertical circular cylinder may
be obtained numerically at certain frequencies. In addition, the argument presented in this
work only applies to the situation in which any variations in the sea bed are directly below
a structure. This is consistent with the results in (9), (10) and (11), where near-cloaking of
a vertical circular cylinder is found to be possible numerically at certain frequencies, when
the bathymetry in the neighbourhood of the cylinder has a particular form. However, the
question of whether any structures exist which may be cloaked perfectly at one or more
frequencies, remains open.

Further work will use the extensions of John’s uniqueness proof described in (16), to
investigate whether transparency over certain frequency ranges may be ruled out for systems
of structures in two- and three- dimensions, which satisfy the John condition but for which
the free surface is not connected.
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