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Abstract

In this paper we study weakly hyperbolic second order equations with time
dependent irregular coefficients. This means assuming that the coefficients are less
regular than Hölder. The characteristic roots are also allowed to have multiplicities.
For such equations, we describe the notion of a ‘very weak solution’ adapted to
the type of solutions that exist for regular coefficients. The construction is based
on considering Friedrichs-type mollifiers of coefficients and corresponding clas-
sical solutions, and their quantitative behaviour in the regularising parameter. We
show that even for distributional coefficients, the Cauchy problem does have a very
weak solution, and that this notion leads to classical or to ultradistributional solu-
tions under conditions when such solutions also exist. In concrete applications, the
dependence on the regularising parameter can be traced explicitly.

1. Introduction

In this paper we study equations of the type

∂2
t u(t, x)−

n∑

i=1

bi (t)∂t∂xi u(t, x)−
n∑

i=1

ai (t)∂
2
xi

u(t, x) = 0, x ∈ R
n, t ∈ [0, T ],

(1)

where the coefficients are real and ai � 0 for all i = 1, . . . , n. It follows that
this equation is hyperbolic (but not necessarily strictly hyperbolic). This kind of
equation appears in many physical phenomena where discontinuous or singular
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entities are involved, for instance in the wave propagation in a layered medium. An
example is the wave equation

∂2
t u(t, x)−

n∑

i=1

ai (t)∂
2
xi

u(t, x) = 0,

where the coefficients ai are Heaviside or Delta functions. In particular, when n = 2,
we can have the equation

∂2
t u(t, x)− Ht0,t1(t)∂

2
x1

u(t, x)− δt2∂
2
x2

u(t, x) = 0, (2)

where 0 < t0 < t1 � t2 � T , Ht0,t1 is the jump function with Ht0,t1(t) = 0
for t < t0 and t > t1 and Ht0,t1(t) = 1 for t0 � t � t1, and δt2 is the Delta
function concentrated at t2. In this paper we will use the expression “a real-valued
distribution” for a distribution u ∈ D(R) such that u(ϕ) ∈ R for all real-valued test
functions ϕ. Similarly, we will write u � 0 if u(ϕ) � 0 for all non-negative test
functions ϕ � 0.

This is clearly the case for the coefficients above.
We also note that if ai � 0 is a non-negative distribution, it has to be of

order zero, that is a Radon measure. However, we will not be making explicit
use of this fact, thus, the analysis is extendible to more general sums of the form∑n

i, j=1 ai, j (t)∂xi ∂x j u in (1). However, certain modifications are needed in this case,
in particular in the way this equation is reduced to a (hyperbolic) system - such an
extension will be addressed elsewhere.

As usual, we will often rewrite the Equation (1) using the notation Dt = −i∂t

and Dxi = −i∂xi . The well-posedness of the corresponding Cauchy problem

D2
t u(t, x)−

n∑

i=1

bi (t)Dt Dxi u(t, x)−
n∑

i=1

ai (t)D
2
xi

u(t, x) = 0,

u(0, x) = g0, (3)

Dt u(0, x) = g1,

has been studied by many authors in the case of regular coefficients. If the coeffi-
cients ai and bi are sufficiently regular we can refer to the fundamental paper by
Colombini et al. [6], showing that even if the coefficients are smooth, the well-
posedness of the Cauchy problem (3) can be expected to hold only in Gevrey
spaces (see also [9] for the weakly hyperbolic case). In fact, the famous example of
Colombini and Spagnolo [13] shows that even if all bi = 0 and all ai are smooth,
the Cauchy problem (3) may not be distributionally well-posed due to multiplici-
ties. On the other hand, if the operator (1) is strictly hyperbolic, it was shown in [6]
that the Cauchy problem (3) may still be distributionally ill-posed if the coefficients
are less regular, for example only Hölder. An example of non-uniqueness in weakly
hyperbolic problems was given in [10].

These examples, already for the second order equations with time-dependent
coefficients as in (3), show the following by now well-known qualitative facts:
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• if the coefficients are smooth and the equation is strictly hyperbolic, the Cauchy
problem (3) is distributionally well-posed (of course, much more is known, but
it is less important for our purposes here);

• if the coefficients are smooth but the equation has multiplicities, then the Cauchy
problem (3) may be not distributionally well-posed. However, it becomes well-
posed in the appropriate classes of ultradistributions (depending on additional
properties of coefficients or characteristic roots);

• if the equation is strictly hyperbolic but the coefficients are only Hölder contin-
uous, the Cauchy problem (3) may be not distributionally well-posed. However,
it becomes well-posed in the appropriate classes of ultradistributions;

• if the coefficients of the equation are continuous (and not Hölder continuous),
there may be no ultradistributional well-posedness. However, it may become
well-posed in the space of Fourier hyperfunctions.

As we see in the above statements, if we want to continue having a well-posedness
result, the reduction in regularity assumptions on the coefficients leads to the ne-
cessity of weakening the notion of a solution to the Cauchy problem and enlarging
the allowed class of solutions.

A threshold between distributional and ultradistributional well-posedness for
equations with time-dependent coefficients (on the level of C∞ and Gevrey well-
posedness) in terms of the regularity of coefficients has been discussed by Colombini
et al. [8]. We note that for x-dependent coefficients the situation becomes even much
more subtle: for example, while very general Gevrey well-posedness results are
available for Gevrey coefficients (see, for example Bronshtein [4] or Nishitani
[26]), the C∞ well-posedness of second order equations with smooth coefficients
is heavily dependent on the geometry of characteristics (see, for example [2,29]).
Again, most such results can be translated into distributional or ultradistributional
well-posedness, but still for equations with smooth or Gevrey coefficients.

The aim of this paper is to analyse the Cauchy problem (3) under much weaker
regularity assumptions on coefficients. The general goal of reducing the regularity
of coefficients for evolution partial differential equations has both mathematical
and physical motivations, and has been thoroughly discussed by Gelfand [15], to
which we refer also for the philosophical discussion of this topic.

Before we proceed with our approach, let us mention that the Cauchy prob-
lem (3) for operators with irregular coefficients has history and motivation from
specific applied sciences. For example, problems of this type appear in geophysi-
cal applications with delta-like sources and discontinuous or more irregular media
(for example, fractal-type media occurs naturally in the upper crust of the Earth
or in fractured rocks), see [25], and especially [19] for a more detailed discussion
and further references in geophysics and in tomography. Such problems have been
treated using microlocal constructions in the Colombeau algebras, see for example
Hörmann and de Hoop [19,20]. If the coefficients are measurable such equations
often fall within the scope of problems which can be handled by semigroup meth-
ods, as in Kato [22]. However, to the best of our knowledge, there are no approaches
to problems with irregularities like those in (2), providing both a well-posedness
statement and a relation to ‘classical’ solutions.
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In this paper, we will look at the Cauchy problem (3) in different settings, the
most general being that the coefficients ai and bi are distributions. In this case, in
view of the famous Schwartz impossibility result on multiplication of distributions
[30], the first question that arises is how to interpret the Equation (1) when u is
a distribution as well. A related question, for our purposes, is how to interpret
the notion of a solution to the Cauchy problem (3). In view of the discussion
above, it appears natural that in order to obtain solutions in this setting, one should
weaken the notion of a solution to the Cauchy problem since ultradistributions or
hyperfunctions may not be sufficient for such a purpose.

The aim and the main results of this paper are to show that:

• one can introduce the notion of ‘very weak solutions’ to the Cauchy problem (3),
based on regularising coefficients and the Cauchy data with certain adaptation
of Friedrichs mollifiers. Then, one can show that very weak solutions exist even
if the coefficients and the Cauchy data are (compactly supported) distributions
(Theorem 2.6);

• if the coefficients are sufficiently regular, namely, if they are in the class C2, the
very weak solutions all coincide in a certain sense, and are related to (coincide
with) other known solutions. More precisely, if the Cauchy data are Gevrey
ultradifferentiable functions, any very weak solution (for any regularisation of
the coefficients) converges in the strong sense to the classical solution in the
limit of the regularisation parameter. If the Cauchy data are distributions, any
very weak solution (for any regularisation of the coefficients) converges in the
ultradistributional sense to the ultradistributional solution in the limit of the
regularisation parameter. See Theorem 2.7 for a precise formulation.

The appearance of the class C2 is due to the fact that since we do not assume
that the equation is strictly hyperbolic, the C2-regularity of coefficients does guar-
antee that the characteristic roots of (1) are Lipschitz, and hence we know that
the Gevrey or ultradistributional well-posedness holds. In the case that the equa-
tion is strictly hyperbolic, the assertions above still hold if the coefficients are, for
example Lipschitz. Some further refinements are sometimes possible given precise
relations between regularities of coefficients and roots of a hyperbolic polynomial
(Bronshtein’s theorem [3] and its refinements as in [12]).

The idea of considering regularisations of coefficients or solutions of hyperbolic
partial differential equations in different senses is of course natural. For example,
after regularising (for example non-Lipschitz, Hölder, etc.) coefficients with a para-
meter ε, relating ε to some frequency zones in the energy estimate often yields the
Gevrey or even C∞ well-posedness (see for example [6,7], and other papers). It is
not always possible to relate ε to frequency zones in which case families of solutions
can be considered as a whole: for example, for hyperbolic equations with discon-
tinuous coefficients, regularised families have been already considered by Hurd
and Sattinger [21], with a subsequent analysis of limits of these regularisations
in L2 as ε → 0.

The purpose of this paper is to carry out a thorough analysis of appearing fami-
lies of solutions and, by formulating a naturally associated notion of a ‘very weak’
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solution, to relate it (as ε → 0) to known classical, distributional or ultradistribu-
tional solutions.

In the next section we provide more specifics regarding the above statements. In
particular, we briefly review the relevant ultradistributional well-posedness results,
and put the notion of a very weak solution into a wider context.

In terms of the literature review for second order Cauchy problems (3), we will
only give very specific references relevant to our subsequent purposes: for ‘regular’
coefficients much is known, for sharp results see, for e.g., Colombini et al. [6],
Nishitani [26]. For references on equations with analytic coefficients, we refer to
our recent paper [18]. Also, we do not discuss other interesting phenomena on the
borderline of the existence of strong solutions (for example irregularity in t can be
sometimes compensated by favourable behaviour in x , see for example Cicognani
and Colombini [5]).

2. Main Results

As we mentioned in the introduction, already when the coefficients are regular,
there are several types of assumptions where we can expect qualitatively differ-
ent results. On one hand, for very regular data, we may have well-posedness in
the spaces of smooth, Gevrey, or analytic functions. At the duality level, this corre-
sponds to the well-posedness in spaces of distributions, ultradistributions, or Fourier
hyperfunctions.

We start by recalling the known results for coefficients which are regular: in
[17], extending the one-dimensional result of Kinoshita and Spagnolo in [23], we
have obtained the following well-posedness result (for the special case of b j = 0,
see also [9]):

Theorem 2.1. [17]

(i) If the coefficients a j , b j , j = 1, . . . , n, belong to Ck([0, T ]) for some k �
2 and g j ∈ γ s(Rn) for j = 1, 2 then there exists a unique solution u ∈
C2([0, T ]; γ s(Rn)) of the Cauchy problem (3) provided that

1 � s < 1 + k

2
;

(ii) if the coefficients are of class C∞ on [0, T ] then the Cauchy problem (3) is
well-posed in any Gevrey space;

(iii) under the hypotheses of (i), if the initial data g j are Gevrey Beurling ul-
tradistributions in E ′

(s)(R
n) for j = 1, 2 then there exists a unique solution

u ∈ C2([0, T ];D′
(s)(R

n)) of the Cauchy problem (3) provided that

1 � s < 1 + k

2
;

(iv) under the hypotheses of (ii) the Cauchy problem (3) is well-posed in any space
of ultradistributions;
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(v) finally if the coefficients are analytic on [0, T ] then the Cauchy problem (3) is
C∞ and distributionally well-posed.

For the sake of the reader we briefly recall the definitions of the spaces γ s(Rn)

and γ (s)(Rn) of (Roumieu) Gevrey functions and (Beurling) Gevrey functions,
respectively. These are intermediate classes between analytic functions (s = 1)
and smooth functions. In the sequel, N0 = {0, 1, 2, . . .}.
Definition 2.2. Let s � 1. We say that f ∈ C∞(Rn) belongs to the Gevrey
(Roumieu) class γ s(Rn) if for every compact set K ⊂ R

n there exists a constant
C > 0 such that for all α ∈ N

n
0 we have the estimate

sup
x∈K

|∂α f (x)| � C |α|+1(α!)s .

We say that f ∈ C∞(Rn) belongs to the Gevrey (Beurling) class γ (s)(Rn) if for
every compact set K ⊂ R

n and for every A > 0 there exists a constant C > 0 such
that for all α ∈ N

n
0 we have the estimate

sup
x∈K

|∂α f (x)| � C A|α|+1(α!)s .

Let now γ (s)c (Rn) be the space of Beurling Gevrey functions with compact sup-
port. Its dual is the corresponding space D′

(s)(R
n) of ultradistributions and E ′

(s)(R
n)

is the subspace of compactly supported ultradistributions. We refer to [16] for rel-
evant properties and Fourier characterisations of these spaces of ultradifferentiable
functions and ultradistributions.

Going back to the Equation (1) and the corresponding Cauchy problem, we
know that dropping the regularity assumption on the coefficients from Ck to C2α ,
withα ∈ (0, 1], we still get Gevrey and ultradistributional well-posedness as proved
for example in [11] for n = 1, and in [16] for general n, which we follow:

Theorem 2.3. [16] Assume that the characteristic roots of the Equation (1) are of
class Cα, α ∈ (0, 1] in t .

(i) Let g j ∈ γ s(Rn) for j = 1, 2. Hence, the Cauchy problem (3) has a unique
solution u ∈ C2([0, T ], γ s(Rn)) provided that

1 � s < 1 + α.

(ii) Let g j ∈ E ′
(s)(R

n) for s = 1, 2. Hence, the Cauchy problem (3) has a unique

solution u ∈ C2([0, T ],D′
(s)(R

n)) provided that

1 � s � 1 + α.

(iii) If the roots are distinct then Gevrey and ultradistributional well-posedness
hold provided that

1 � s < 1 + α

1 − α
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and

1 � s � 1 + α

1 − α
,

respectively.

It is our purpose in this paper to prove the well-posedness of the Cauchy problem
(3) when the coefficients are less than Hölder.

The first main idea now is to start from distributional coefficients ai and bi ,
i = 1, . . . , n, to regularise them by convolution with a suitable mollifierψ obtaining
families of smooth functions (ai,ε)ε and (bi,ε)ε, namely

ai,ε = ai ∗ ψω(ε) and bi,ε = bi ∗ ψω(ε), (4)

where

ψω(ε)(t) = ω(ε)−1ψ(t/ω(ε))

and ω(ε) is a positive function converging to 0 as ε → 0. It turns out that the
nets (ai,ε)ε and (bi,ε)ε are C∞-moderate, in the sense that their C∞-seminorms
can be estimated by a negative power of ε (see Definition 2.4 and also (22)). More
precisely, we will make use of the following notions of moderateness.

In the sequel, the notation K � R
n means that K is a compact set in R

n .

Definition 2.4. (i) A net of functions ( fε)ε ∈ C∞(Rn)(0,1]) is C∞-moderate if
for all K � R

n and for all α ∈ N
n
0 there exist N ∈ N0 and c > 0 such that

sup
x∈K

|∂α fε(x)| � cε−N ,

for all ε ∈ (0, 1].
(ii) A net of functions ( fε)ε ∈ γ s(Rn)(0,1] is γ s-moderate if for all K � R

n

there exists a constant cK > 0 and there exists N ∈ N0 such that

|∂α fε(x)| � c|α|+1
K (α!)sε−N−|α|,

for all α ∈ N
n
0, x ∈ K and ε ∈ (0, 1].

(iii) A net of functions ( fε)ε ∈ C∞([0, T ]; γ s(Rn))(0,1] is C∞([0, T ]; γ s(Rn))-
moderate if for all K � R

n there exist N ∈ N0, c > 0 and, for all k ∈ N0
there exist Nk > 0 and ck > 0 such that

|∂k
t ∂
α
x uε(t, x)| � ckε

−Nk c|α|+1(α!)sε−N−|α|,

for all α ∈ N
n
0, for all t ∈ [0, T ], x ∈ K and ε ∈ (0, 1].

We note that the conditions of moderateness are natural in the sense that regu-
larisations of distributions or ultradistributions are moderate, namely we can think
that

compactly supported distributions E ′(Rn) ⊂ {C∞-moderate families} (5)
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by the structure theorems for distributions, while the regularisations of the com-
pactly supported Gevrey ultradistributions can also be shown to be Gevrey-moderate.

Thus, while a solution to a Cauchy problem may not exist in the space on
the left hand side of an inclusion like the one in (5), it may still exist (in a certain
appropriate sense) in the space on its right hand side. The moderateness assumption
will be enough for our purposes. However, we note that regularisation with standard
Friedrichs mollifiers will not be sufficient, hence the introduction of a family ω(ε)
in the above regularisations.

We can now introduce a notion of a ‘very weak solution’ for the Cauchy problem
(3). We can also call it a Gevrey very weak solution (of order s), or simply a very
weak solution.

Definition 2.5. Let s � 1. The net (uε)ε ∈ C∞([0, T ]; γ s(Rn)) is a very weak
solution of order s of the Cauchy problem (3) if there exist

(i) C∞-moderate regularisations ai,ε and bi,ε of the coefficients ai and bi , re-
spectively, for i = 1, . . . , n,

(ii) γ s-moderate regularisations g0,ε and g1,ε of the initial data g0 and g1, re-
spectively,

such that (uε)ε solves the regularised problem

D2
t u(t, x)−

n∑

i=1

bi,ε(t)Dt Dxi u(t, x)−
n∑

i=1

ai,ε(t)D
2
xi

u(t, x) = 0,

u(0, x) = g0,ε,

Dt u(0, x) = g1,ε,

for all ε ∈ (0, 1], and is C∞([0, T ]; γ s(Rn))-moderate.

The main results of this paper can be summarised as the following solvability
statement complemented by the uniqueness and consistency in Theorem 2.7.

Theorem 2.6. Let the coefficients ai , bi of the Cauchy problem (3) be distributions
with compact support included in [0, T ], such that ai , bi are real-valued and ai � 0
for all i = 1, . . . , n. Let the Cauchy data g0, g1 be compactly supported distrib-
utions. Then, the Cauchy problem (3) has a very weak solution of order s, for all
s > 1.

In fact, Theorem 2.6 will be refined according to the regularity of the initial
data. More precisely, we will distinguish between the following cases:

Case 1: distributional coefficients and Gevrey initial data;
Case 2: distributional coefficients and smooth initial data;
Case 3: distributional coefficients and distributional initial data.

The uniqueness and consistency result for very weak solutions of the Cauchy
problem (3) is as follows. We distinguish between Gevrey Cauchy data and the
general distributional Cauchy data:
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Theorem 2.7. Assume that the real-valued coefficients ai and bi are compactly
supported, belong to Ck([0, T ]) with k � 2 and that ai � 0 for all i = 1, . . . , n.
Let 1 < s < 1 + k

2 .

• Let g0, g1 ∈ γ s
c (R

n). Then any very weak solution (uε)ε converges in the space
C([0, T ]; γ s(Rn)) as ε → 0 to the unique classical solution in C2([0, T ],
γ s(Rn)). In particular, this limit exists and does not depend on the C∞-
moderate regularisation of the coefficients.

• Let g0, g1 ∈ E ′(Rn). Then any very weak solution (uε)ε converges in the
space C([0, T ];D′

(s)(R
n)) to the unique solution in C2([0, T ],D′

(s)(R
n)). In

particular, this limit exists and does not depend on the C∞-moderate regular-
isation of coefficients ai and bi and the Gevrey-moderate regularisation of the
initial data g0, g1.

In Theorem 2.7, we assume that 1 < s < 1 + k
2 in order to make sure that

the unique classical or ultradistributional solutions exist, provided by Theorem 2.1.
Theorem 2.7 will follow from Theorem 7.1.

The proof of Theorem 2.6 relies on classical techniques for weakly hyperbolic
equations (quasi-symmestriser, energy estimates, Gevrey-wellposedness, etc.) and
ideas from generalised function theory (regularisation). In particular, proving the
existence of a very weak solution coincides, by fixing the mollifiers, with prov-
ing well-posedness of the corresponding Cauchy problem in a suitable space of
Colombeau type. This space will be chosen according to the regularity of the initial
data. So, the proof of Theorem 2.6 will follow from the well-posedness results in
Theorems 4.7, 5.3 and 6.3.

We note that the proof of Theorem 2.6 actually provides us with a description of
possible regularisations, in particular, of functions ω(ε) used in the regularisation
of coefficients in (4). Indeed, ω(ε) will be of the type c(log(ε−1))−r or of the type
c(log(ε−1))−r1ε−r2 , for c > 0 and r, r1, r2 > 0.

We note that the idea of considering regularisations of coefficients and solutions
of partial differential equations in different senses has been seen in the literature. For
example, after regularising (for example non-Lipschitz, Hölder) coefficients with a
parameter ε, relating ε to some frequency zone in the energy estimate often yields
the Gevrey or even C∞ well-posedness (see for example Colombini et al. [7] and
other papers). For less regularity, for example for hyperbolic equations with discon-
tinuous coefficients regularised families have been already considered by Hurd and
Sattinger [21], with a subsequent analysis of limits of these regularisations in L2

as ε → 0. An interesting result of well-posedness has been obtained for discontin-
uous and in general distributional coefficients in the Colombeau context by Lafon
and Oberguggenberger [24]. In their paper they proved that first order symmet-
ric systems of differential equations with Colombeau coefficients and Colombeau
initial data have a unique Colombeau solution under suitable logarithmic type as-
sumptions on the principal part. This result, while it can be easily extended to
pseudo-differential systems, cannot be directly applied to our equation, since the
system to which one can reduce our equations is, in general, non-symmetric and
non-strictly hyperbolic.
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It will be useful also to us to use the developed machinery of Colombeau
algebras in the proofs. In particular, this will provide an easy-to-get refinement of
the uniqueness part of the corresponding statements. However, we need to work in
algebras of generalised functions based on regularisations with Gevrey functions
since smooth solutions do not have to exist due to multiplicities.

As mentioned above, we will employ quasi-symmetriser techniques, or more
precisely, a parameterised version of the quasi-symmetriser seen in [17]. This is
the topic of the next section.

3. Parameter Dependent Quasi-Symmetriser

In this paper, we will be applying the standard reduction of a scalar second
order equation to the 2 × 2 system: setting

u j = D j−1
t 〈Dx 〉2− j u, j = 1, 2,

we transform the equation

D2
t u(t, x)−

n∑

i=1

bi (t)Dt Dxi u(t, x)−
n∑

i=1

ai (t)D
2
xi

u(t, x) = 0

into the hyperbolic system

Dt

(
u1
u2

)
=

(
0 〈Dx 〉∑n

i=1 ai (t)D2
xi

〈Dx 〉−1 ∑n
i=1 bi (t)Dxi

) (
u1
u2

)
. (6)

We now assume that the equation coefficients are distributions with compact
support contained in [0, T ]. Since the formulation of (1) might be impossible due
to issues related to the product of distributions, we replace (1) with a regularised
equation. In other words, we regularise every ai and bi by a convolution with
a mollifier in C∞

c (R
n) and get nets of smooth functions as coefficients. More

precisely, letψ ∈ C∞
c (R),ψ � 0 with

∫
ψ = 1 and let ω(ε) be a positive function

converging to 0 as ε → 0. Define

ψω(ε)(t) := 1

ω(ε)
ψ

(
t

ω(ε)

)
,

ai,ε(t) := (ai ∗ ψω(ε))(t), t ∈ [0, T ]
and

bi,ε(t) := (bi ∗ ψω(ε))(t), t ∈ [0, T ].
By the structure theorem for compactly supported distributions, we have that there
exists L ∈ N0 and c > 0 such that

|ai,ε(t)| � cω(ε)−L , |bi,ε(t)| � cω(ε)−L ,
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for all i = 1, . . . , n. Regularising the Equation (1) means equivalently to regularise
the system (6) as

Dt

(
u1
u2

)
=

(
0 〈Dx 〉∑n

i=1 ai,ε(t)D2
xi

〈Dx 〉−1 ∑n
i=1 bi,ε(t)Dxi

) (
u1
u2

)
,

with symbol matrix A1,ε(t, ξ). Clearly, one can write A1,ε(t, ξ) as 〈ξ 〉Aε(t, ξ),
where

Aε(t, ξ) =
(

0 1∑n
i=1 ai,ε(t)ξ2

i 〈ξ 〉−2 ∑n
i=1 bi,ε(t)ξi 〈ξ 〉−1

)
.

The matrix Aε(t, ξ) has eigenvalues

λ1,ε(t, ξ) = 1

2

⎛

⎝
n∑

i=1

bi,ε(t)ξi 〈ξ〉−1 −
√√√√

(
n∑

i=1

bi,ε(t)ξi 〈ξ〉−1

)2

+ 4
n∑

i=1

ai,ε(t)ξ2
i 〈ξ〉−2

⎞

⎠ ,

λ2,ε(t, ξ) = 1

2

⎛

⎝
n∑

i=1

bi,ε(t)ξi 〈ξ〉−1 +
√√√√

(
n∑

i=1

bi,ε(t)ξi 〈ξ〉−1

)2

+ 4
n∑

i=1

ai,ε(t)ξ2
i 〈ξ〉−2

⎞

⎠ .

(7)

Note that λ1,ε〈ξ 〉 and λ2,ε〈ξ 〉 are the roots of the characteristic polynomial

τ 2 −
n∑

i=1

bi,ε(t)ξiτ −
n∑

i=1

ai,ε(t)ξ
2
i

and fulfil the inequality

λ1,ε(t, ξ)
2 + λ2,ε(t, ξ)

2 � 2(λ1,ε(t, ξ)− λ2,ε(t, ξ))
2,

employed by Kinoshita and Spagnolo in [23] to obtain Gevrey well-posedness
for the corresponding Cauchy problem.

It is clear that the regularised Equation (1) and the corresponding first order
system have solutions (uε)ε and (Uε)ε, respectively, depending on the parameter
ε ∈ (0, 1]. By Fourier transformation in x the system

DtUε =
(

0 〈Dx 〉∑n
i=1 ai,ε(t)D2

xi
〈Dx 〉−1 ∑n

i=1 bi,ε(t)Dxi

)
Uε, (8)

where

Uε =
(

u1,ε
u2,ε

)
=

( 〈Dx 〉uε
Dt uε

)

is transformed into

Dt Vε(t, ξ) = 〈ξ 〉Aε(t, ξ)Vε(t, ξ), (9)

where

Vε(t, ξ) = (FUε(t, ·))(ξ).
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Finally, by regularising the initial data as well if needed (for instance in Case 3),
we transform the Cauchy problem (3) into

Dt Vε(t, ξ) = 〈ξ 〉Aε(t, ξ)Vε(t, ξ),

V0,ε = (FUε(0, ·))(ξ) = F(〈Dx 〉g0,ε, g1,ε).

The well-posedness of this regularised Cauchy problem will be obtained by con-
structing a quasi-symmetriser for the matrix Aε and the corresponding energy.
Before proceeding with the technical details we recall some general basic facts.
For more details see [14,23].

3.1. The Quasi-Symmetriser: General Theory

Note that for m×m matrices A1 and A2 the notation A1 � A2 means (A1v, v) �
(A2v, v) for all v ∈ C

m with (·, ·) the scalar product in C
m .

Let A(λ) be the m × m Sylvester matrix with real eigenvalues λl , that is,

A(λ) =

⎛

⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . 1

−σ (m)m (λ) −σ (m)m−1(λ) . . . . . . −σ (m)1 (λ)

⎞

⎟⎟⎠ ,

where

σ
(m)
h (λ) = (−1)h

∑

1�i1<···<ih�m

λi1 · · · λih

for all 1 � h � m. In the sequel we make use of the following notations: Pm for
the class of permutations of {1, . . . ,m}, λρ = (λρ1, . . . , λρm ) with λ ∈ R

m and
ρ ∈ Pm , πiλ = (λ1, . . . , λi−1, λi+1, . . . , λm) and λ′ = πmλ = (λ1, . . . , λm−1).
Following Section 4 in [23] we have that the quasi-symmetriser is the Hermitian
matrix

Q(m)
δ (λ) =

∑

ρ∈Pm

P(m)δ (λρ)
∗ P(m)δ (λρ),

where δ ∈ (0, 1], P(m)δ (λ) = H (m)
δ P(m)(λ), H (m)

δ = diag{δm−1, . . . , δ, 1} and the
matrix P(m)(λ) is defined inductively by P(1)(λ) = 1 and

P(m)(λ) =

⎛

⎜⎜⎜⎝

0

P(m−1)(λ′)
...

0
σ
(m−1)
m−1 (λ′) . . . . . . σ

(m−1)
1 (λ′) 1

⎞

⎟⎟⎟⎠ .

Note that P(m)(λ) is depending only on λ′. Finally, let W (m)
i (λ) denote the row

vector
(
σ
(m−1)
m−1 (πiλ), . . . , σ

(m−1)
1 (πiλ), 1

)
, 1 � i � m,
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and let W(m)(λ) be the matrix with row vectors W (m)
i . The following proposition

collects the main properties of the quasi-symmetriser Q(m)
δ (λ). For a detailed proof

we refer the reader to Propositions 1 and 2 in [23] and to Proposition 1 in [14].

Proposition 3.1. (i) The quasi-symmetriser Q(m)
δ (λ) can be written as

Q(m)
0 (λ)+ δ2 Q(m)

1 (λ)+ · · · + δ2(m−1)Q(m)
m−1(λ),

where the matrices Q(m)
i (λ), i = 1, . . . ,m−1, are nonnegative and Hermitian

with entries being symmetric polynomials in λ1, . . . , λm.
(ii) There exists a function Cm(λ) bounded for bounded |λ| such that

Cm(λ)
−1δ2(m−1) I � Q(m)

δ (λ) � Cm(λ)I.

(iii) We have

|Q(m)
δ (λ)A(λ)− A(λ)∗Q(m)

δ (λ)| � Cm(λ)δQ(m)
δ (λ).

(iv) For any (m − 1)× (m − 1) matrix T let T � denote the m × m matrix
(

T 0
0 0

)
.

Then, Q(m)
δ (λ) = Q(m)

0 (λ)+ δ2 ∑m
i=1 Q(m−1)

δ (πiλ)
�.

(v) We have

Q(m)
0 (λ) = (m − 1)!W(m)(λ)∗W(m)(λ).

(vi) We have

det Q(m)
0 (λ) = (m − 1)!

∏

1�i< j�m

(λi − λ j )
2.

(vii) There exists a constant Cm such that

q(m)0,11(λ) · · · q(m)0,mm(λ) � Cm

∏

1�i< j�m

(λ2
i + λ2

j ).

We finally recall that a family {Qα} of nonnegative Hermitian matrices is called
nearly diagonal if there exists a positive constant c0 such that

Qα � c0 diag Qα

for all α, with

diag Qα = diag{qα,11, . . . , qα,mm}.
The following linear algebra result is proven in [23, Lemma 1].
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Lemma 3.2. Let {Qα} be a family of nonnegative Hermitian m × m matrices such
that det Qα > 0 and

det Qα � c qα,11qα,22 · · · qα,mm

for a certain constant c > 0 independent of α. Then,

Qα � c m1−m diag Qα

for all α, that is, the family {Qα} is nearly diagonal.

Lemma 3.2 is employed to prove that the family Q(m)
δ (λ) of quasi-symmetrisers

defined above is nearly diagonal when λ belongs to a suitable set. The following
statement is proven in [23, Proposition 3].

Proposition 3.3. For any M > 0 define the set

SM = {λ ∈ R
m : λ2

i + λ2
j � M(λi − λ j )

2, 1 � i < j � m}.
Then the family of matrices {Q(m)

δ (λ) : 0 < δ � 1, λ ∈ SM } is nearly diagonal.

We conclude this section with a result on nearly diagonal matrices depending
on three parameters (that is δ, t, ξ ) which will be crucial in the next section. Note
that this is a straightforward extension of Lemma 2 in [23] valid for two parameter
(that is δ, t) dependent matrices.

Lemma 3.4. Let {Q(m)
δ (t, ξ) : 0 < δ � 1, 0 � t � T, ξ ∈ R

n} be a nearly
diagonal family of coercive Hermitian matrices of class Ck in t, k � 1. Then,
there exists a constant CT > 0 such that for any non-zero continuous function
V : [0, T ] × R

n → C
m we have

∫ T

0

|(∂t Q(m)
δ (t, ξ)V (t, ξ), V (t, ξ))|

(Q(m)
δ (t, ξ)V (t, ξ), V (t, ξ))1−1/k |V (t, ξ)|2/k

dt � CT ‖Q(m)
δ (·, ξ)‖1/k

Ck ([0,T ])

for all ξ ∈ R
n .

3.2. The Quasi-Symmetriser of the Matrix Aε

We now focus on the matrix Aε corresponding to the Cauchy problem we are
studying. It is clear that we will get a family of quasi-symmetrisers (Q(2)

δ (λε))ε,
where λε = (λ1,ε, λ2,ε). More precisely, by direct computations we get

Q(2)
δ (λε) =

(
λ2

1,ε + λ2
2,ε −(λ1,ε + λ2,ε)

−(λ1,ε + λ2,ε) 2

)
+ 2δ2

(
1 0
0 0

)
,

where λ1,ε and λ2,ε are defined as in (7). Thus,

Q(2)
δ (λε) =

( ( ∑n
i=1 bi,ε(t)ξi

)2〈ξ〉−2 + 2
∑n

i=1 a1,ε(t)ξ2
i 〈ξ〉−2 − ∑n

i=1 bi,ε(t)ξi 〈ξ〉−1

− ∑n
i=1 bi,ε(t)ξi 〈ξ〉−1 2

)

+2δ2
(

1 0
0 0

)
.
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Note that from the formula (7), λ1,ε and λ2,ε are nets of smooth functions fulfilling
the estimate

|∂(k)t λi,ε(t, ξ)| � ckω(ε)
−L−k, (10)

for all k ∈ N0, for t ∈ [0, 1], ξ ∈ R
n and ε ∈ (0, 1]. Finally, since λ1,ε and λ2,ε in

(7) are roots of a second order equation, they fulfil

λ2
1,ε(t, ξ)+ λ2

2,ε(t, ξ) � 2(λ1,ε(t, ξ)− λ2,ε(t, ξ))
2, (11)

so the condition on the roots used in [23] and in [17] is trivially fulfilled with
constant M = 2 (see (6) in [17]).

By analysing Lemma 3.2 and Proposition 3.1 in this particular case we get the
following results on the quasi-symmetriser Q(2)

δ (λε).

Proposition 3.5. Let Q(2)
δ (λε) as defined above. Then,

(Q(2)
δ (λε)V, V ) � 1

8
(Q(2)

δ,�(λε)V, V ), (12)

where Q(2)
δ,�(λε) is the diagonal part of the matrix Q(2)

δ (λε). In addition, there exists
a constant C2 > 0 such that

(i) C−1
2 ω(ε)2Lδ2 I � Q(2)

δ (λε(t, ξ)) � C2ω(ε)
−2L I,

(ii) |((Q(2)
δ (λε)Aε(t, ξ)− Aε(t, ξ)∗Q(2)

δ (λε))V, V )| � C2δ(Q
(2)
δ (λε)V, V ),

for all δ > 0, ε ∈ (0, 1], t ∈ [0, T ], ξ ∈ R
n and V ∈ C

2.

Proof. By direct computations and by (11) we have that

det Q(2)
δ (λε) = (λ1 − λ2)

2 + 4δ2 � 1

2
(λ1(t, ξ)

2 + λ2(t, ξ)
2)+ 4δ2

� 2

4
(λ1(t, ξ)

2 + λ2(t, ξ)
2 + 2δ2) = 1

4
qδ,11(λε)qδ,22(λε).

Note that the estimate below is uniform in ε and δ. Hence, Lemma 3.2 yields

(Q(2)
δ (λε)V, V ) � 1

8
(Q(2)

δ,�(λε)V, V ).

We pass now to prove assertion (i). We have that

(Q(2)
δ (λε)V, V )= (λ2

1,ε+λ2
2,ε)|V1|2 − 2(λ1,ε+λ2,ε)Re(V1V2)+2δ2|V1|2+2|V2|2

=|λ1,εV1 − V2|2 + |λ2,εV1 − V2|2+ 2δ2|V1|2.
It follows that if |V1|2 � γω(ε)2L |V2|2, with 0 � γ � 1 we have that

(Q(2)
δ (λε)V, V ) � 2δ2|V1|2 = δ2(|V1|2 + |V1|2) � C−1

2 ω(ε)2Lδ2(|V1|2 + |V2|2).
(13)
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On the other hand, recalling from (10) that |λi,ε(t, ξ)|2ω(ε)2L � c uniformly in
variables and parameter for i = 1, 2, if |V1|2 � γω(ε)2L |V2|2, we can write

(Q(2)
δ (λε)V, V ) = |λ1,εV1 − V2|2 + |λ2,εV1 − V2|2 + 2δ2|V1|2

� 1

2
|V2|2 − λ2

1,ε|V1|2 + 1

2
|V2|2 − λ2

2,ε|V1|2 + 2δ2|V1|2

� |V2|2 − (λ2
1,ε + λ2

2,ε)γω(ε)
2L |V2|2 + 2δ2|V1|2

� (|V2|2 − cγ |V2|2)+ 2δ2|V1|2.
So, choosing γ sufficiently small and for C2 big enough we have that

(Q(2)
δ (λε)V, V ) � C−1

2 δ2(|V1|2 + |V2|2). (14)

Combining (13) with (14) we conclude that

(Q(2)
δ (λε)V, V ) � C−1

2 ω(ε)2Lδ2(|V1|2 + |V2|2), (15)

for all V ∈ C
2. Finally, from (10) we have that

(Q(2)
δ (λε)V, V ) � C2ω(ε)

−2L(|V1|2 + |V2|2),
proving in this way that assertion (i) holds.

We now want to prove assertion (ii). We begin by computing Q(2)
δ (λε)Aε(t, ξ)−

Aε(t, ξ)∗Q(2)
δ (λε). We get

Q(2)
δ (λε)Aε(t, ξ)− Aε(t, ξ)

∗Q(2)
δ (λε) =

(
0 2δ2

−2δ2 0

)

and therefore

((Q(2)
δ (λε)Aε(t, ξ)− Aε(t, ξ)

∗Q(2)
δ (λε))V, V )=2δ2(V2V1−V1V2)=4iδ2ImV1V2.

This means that ((Q(2)
δ (λε)Aε(t, ξ) − Aε(t, ξ)∗Q(2)

δ (λε))V, V ) does not depend

on the eigenvalues λε = (λ1,ε, λ2,ε), or in other words, by replacing Q(2)
δ (λε) with

Q(2)
δ,�(λε) we can preliminary prove

|((Q(2)
δ (λε)Aε(t, ξ)− Aε(t, ξ)

∗Q(2)
δ (λε))V, V )|

= |((Q(2)
δ,�(λε)Aε(t, ξ)− Aε(t, ξ)

∗Q(2)
δ,�(λε))V, V )| � 2δ(Q(2)

δ,�(λε)V, V ).

This is easily done. Indeed,

|((Q(2)
δ (λε)Aε(t, ξ)− Aε(t, ξ)

∗Q(2)
δ (λε))V, V )| � 2δ2δ|V1||V2|

and,

(Q(2)
δ,�(λε)V, V ) � 2δ2|V1|2 + 2|V2|2.

It follows that

2δ2δ|V1||V2| � 2δ(δ2|V1|2 + |V2|2),



Hyperbolic Equations with Non-regular Coefficients

thus

|((Q(2)
δ (λε)Aε(t, ξ)− Aε(t, ξ)

∗Q(2)
δ (λε))V, V )| � δ(Q(2)

δ,�(λε)V, V ). (16)

The proof of assertion (ii) is completed by combining (16) with (12). ��
Note that

1

8
(Q(2)

δ,�(λε)V, V ) � (Q(2)
δ (λε)V, V ) � 2(Q(2)

δ,�(λε)V, V ).

Indeed,

(Q(2)
δ (λε)V, V )= (λ2

1,ε+λ2
2,ε)|V1|2 − 2(λ1,ε+λ2,ε)Re(V1V2)+2δ2|V1|2+2|V2|2

� 2(λ2
1,ε|V1|2+|V2|2)+2(λ2

2,ε|V1|2 + |V2|2)+ 2δ2|V1|2
� 2(λ2

1,ε + λ2
2,ε + 2δ2)|V1|2 + 4|V2|2 = 2(Q(2)

δ,�(λε)V, V ).

Adopting the notations of [23] we then have that the bound from below (19) in
[23] is fulfilled with c0 = 1

8 . This means that the family of matrices

{Q(2)
δ,ε(t, ξ) := Q(2)

δ (λε),

λε(t, ξ) = (λ1,ε(t, ξ), λ2,ε(t, ξ)), t ∈ [0, T ], ξ ∈ R
n, δ ∈ (0, 1], ε ∈ (0, 1]}

is nearly diagonal.
A careful analysis of the proof of Lemma 2 in [23] allows us to extend Lemma 3.4

to the family of quasi-symmetrisers (Q(2)
δ (λε))ε. The constant CT = c−(1−1/k)

0 in
Lemma 2 is in our case equal to (1/8)−(1−1/k).

Lemma 3.6. Let {Q(2)
δ,ε(t, ξ) : 0 < δ � 1, 0 < ε � 1, 0 � t � T, ξ ∈ R

n} be
the nearly diagonal family of quasi-symmetrisers introduced above. Then, for any
continuous function V : [0, T ] × R

n → C
2, V = 0, we have

∫ T

0

|(∂t Q(2)
δ,ε(t, ξ)V (t, ξ), V (t, ξ))|

(Q(2)
δ,ε(t, ξ)V (t, ξ), V (t, ξ))1−1/k |V (t, ξ)|2/k

dt � CT ‖Q(2)
δ,ε(·, ξ)‖1/k

Ck ([0,T ])

for all ξ ∈ R
n, δ ∈ (0, 1] and ε ∈ (0, 1].

We are now ready to prove the well-posedness of the Cauchy problem (3). This
will consist of two parts:

(i) choice of the framework,
(ii) energy estimates.

We begin by considering Case 1: distributional coefficients and Gevrey initial data.

4. Case 1: Well-Posedness for Gevrey Initial Data

We want to prove the well-posedness of the Cauchy problem (3) when the
coefficients of the equation are distributions with compact support and the initial
data are compactly supported Gevrey functions. This will be achieved in a suitable
algebra of Colombeau type containing the usual Gevrey classes as subalgebras. We
start by developing these objects.
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4.1. Gevrey-Moderate Families

We begin by investigating the convolution of a compactly supported Gevrey
function with a mollifier ϕ ∈ S (Rn) with

∫
ϕ(x) dx = 1 and

∫
xαϕ(x) dx = 0

for all α = 0 and

ϕε(x) := ε−nϕ(x/ε).

The following holds:

Proposition 4.1. Let σ > 1. Let u ∈ γ σc (R
n) and let ϕ be a mollifier as above.

Then

(i) there exists c > 0 such that

|∂α(u ∗ ϕε)(x)| � c|α|+1(α!)σ
for all α ∈ N

n
0, x ∈ R

n and ε ∈ (0, 1];
(ii) there exists c > 0 and for all q ∈ N0 a constant cq > 0 such that

|∂α(u ∗ ϕε − u)(x)| � cqc|α|+1(α!)σ εq ,

for all α ∈ N
n
0, x ∈ R

n and ε ∈ (0, 1];
(iii) there exist c, c′ > 0 such that

|û ∗ ϕε(ξ)| � c′ e−c〈ξ〉 1
σ
,

for all ξ ∈ R
n and ε ∈ (0, 1].

Proof. (i) By convolution with the mollifier ϕε and straightforward estimates
we obtain

|∂α(u ∗ ϕε)(x)| = |∂αu ∗ ϕε(x)|�
∫

Rn
|∂αu(x−εz)||ϕ(z)| dz � c|α|+1(α!)σ ,

for all α ∈ N
n
0, x ∈ R

n and ε ∈ (0, 1].
(ii) Analogously, by Taylor expansion and the properties of the mollifier ϕ (in

particular since
∫

xαϕ(x) dx = 0 for all α = 0) we get for any q ∈ N0 the
following estimate:

|∂α(u ∗ ϕε − u)(x)| = |(∂αu ∗ ϕε − ∂αu)(x)|
=

∣∣∣∣
∫

Rn
(∂αu(x − εz)− ∂αu(x))ϕ(z) dz

∣∣∣∣

=
∣∣∣∣
∫

Rn

∑

|β|=q+1

∂α+βu(x − εθ z)

β! (εz)βϕ(z) dz

∣∣∣∣

�
∫

Rn

∑

|β|=q+1

|∂α+βu(x − εθ z)|
β! εq+1|zβϕ(z)| dz

� εq+1c|α|+q+2
∑

|β|=q+1

((α + β)!)σ
β!

∫

Rn

∑

|β|=q+1

|zβϕ(z)| dz

� εq+1c|α|+q+2
∑

|β|=q+1

2σ |α|+σ |β|(α!)σ (β!)σ
β!

×
∫

Rn

∑

|β|=q+1

|zβϕ(z)| dz � cq c̃ |α|+1(α!)σ εq .
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Note that the estimate above holds for all α ∈ N
n
0 and q ∈ N0 uniformly in

x ∈ R
n and ε ∈ (0, 1].

(iii) By Fourier transform we get that

û ∗ ϕε(ξ) = û(ξ)ϕ̂ε(ξ) = û(ξ)ϕ̂(εξ)

and therefore since u ∈ γ σc (Rn) andϕ ∈ S (Rn) the third assertion is trivial.
��

In Definition 2.4 we introduced the notion of a moderate net, that is, a net of
functions ( fε)ε ∈ γ σ (Rn)(0,1] is γ s-moderate if for all K � R

n there exists a
constant cK > 0 and there exists N ∈ N0 such that

|∂α fε(x)| � c|α|+1
K (α!)σ ε−N−|α|,

for all α ∈ N
n
0, x ∈ K and ε ∈ (0, 1].

Analogously one can talk of γ σ -negligible nets.

Definition 4.2. Let σ � 1. We say that (uε)ε is γ σ -negligible if for all K � R
n

and for all q ∈ N0 there exists a constant cq,K > 0 such that

|∂αuε(x)| � c|α|+1
q,K (α!)σ εq−|α|,

for all α ∈ N
n
0, x ∈ K and ε ∈ (0, 1].

We can now prove the following proposition.

Proposition 4.3. (i) If (uε)ε is γ σ -moderate and there exists K � R
n such that

supp uε ⊆ K for all ε ∈ (0, 1] then there exist c, c′ > 0 and N ∈ N0 such
that

|ûε(ξ)| � c′ε−N e−cε
1
σ 〈ξ〉 1

σ
, (17)

for all ξ ∈ R
n.

(ii) If (uε)ε is γ σ -negligible and there exists K � R
n such that supp uε ⊆ K for

all ε ∈ (0, 1] then there exists c > 0 and for all q > 0 there exists cq > 0
such that

|ûε(ξ)| � cqε
qe−cε

1
σ 〈ξ〉 1

σ
, (18)

for all ξ ∈ R
n.

(iii) If (uε)ε is a net of tempered distributions with (ûε)ε satisfying (17) then (uε)ε
is γ s -moderate.

(iv) If (uε)ε is a net of tempered distributions with (ûε)ε satisfying (18) then (uε)ε
is γ s -negligible.
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Proof. (i) By elementary properties of the Fourier transform and since supp uε ⊆ K
for all ε we have that

|ξα ûε(ξ)| = |F(Dα(uε))(ξ)| �
∫

K
|∂αuε(x)| dx � C |α|+1(α!)σ ε−|α|−N , (19)

for all α ∈ N
n
0 and ξ ∈ R

n . Let us now write 〈ξ 〉2M |ûε(ξ)|2 as

∑

k�M

(
M

k

)
|ξ |2k |ûε(ξ)|2 =

∑

k�M

(
M

k

) ∑

|α|�k

cαξ
2α|ûε(ξ)|2,

where cα > 0. Hence, from (19) we have

|ξα ûε(ξ)|2 � C2|α|+2(α!)2σ ε−2|α|−2N

and, therefore, from α! � |α||α|, we conclude

〈ξ 〉2M |ûε(ξ)|2 � cM C2M+2 M2σMε−2M−2N .

It is clear that this last estimate implies

〈ξ 〉M |ûε(ξ)| � c′
M C M+1 MσMε−M−N ,

for all M ∈ N0, uniformly in ε ∈ (0, 1] and ξ ∈ R
n . Note that by direct compu-

tations on the binomial coefficients one can see that the constant c′
M is of the type

C ′M so

〈ξ 〉M |ûε(ξ)| � C M+1 MσMε−M−N � C M+1eσM (M !)σ ε−M−N ,

for some suitable constant C > 0. It follows that

〈ξ 〉 M
σ |ûε(ξ)| 1

σ � C
M
σ

+ 1
σ eM M ! ε− M

σ
− N
σ � 2−M C

M
σ

+ 1
σ 2M eM M ! ε− M

σ
− N
σ ,

and therefore introducing a suitable constant ν > 0 (depending on σ ) we have that

∑

M

|ûε(ξ)| 1
σ

(
ν〈ξ 〉 1

σ ε
1
σ

)M 1

M ! �
∑

M

2−Mε−
N
σ ,

for all ξ ∈ R
n and ε > 0. In conclusion, recognising the Taylor series of an

exponential in the previous formula, we arrive at

|ûε(ξ)| � c′ e−c〈ξ〉 1
σ ε

1
σ
ε−N ,

for a suitable constants c, c′ > 0 as desired.
(ii) The proof in (i) can be repeated for a γ σc -negligible net (uε)ε. From the

assumption of negligibility it is immediate to see that the estimate

|ûε(ξ)| � cqε
qe−cε

1
σ 〈ξ〉 1

σ
,

holds uniformly in ξ and ε.
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(iii) If (uε)ε is a net of tempered distributions satisfying (i) then by the Fourier
characterisation of Gevrey functions (uε)ε is a net of Gevrey functions of order σ .
More precisely,

|∂αuε(x)| = |∂αF−1(ûε)(x)| � cε−N
∫

Rn
|ξα|e−cε

1
σ 〈ξ〉 1

σ dξ

= cε−N
∫

Rn
e− c

2 ε
1
σ 〈ξ〉 1

σ dξ

(
sup
ξ∈Rn

|ξα|e− c
2 ε

1
σ 〈ξ〉 1

σ

)

� cε−N ε−n
∫

Rn
e− c

2 |ξ | 1
σ dξ

(
sup
ξ∈Rn

|ξα|e− c
2 ε

1
σ |ξ | 1

σ

)

� c′ε−N−n sup
ξ∈Rn

|ξα|e− c
2 ε

1
σ 〈ξ〉 1

σ
. (20)

Clearly,

sup
|ξ |�1

|ξα|e− c
2 ε

1
σ 〈ξ〉 1

σ � 1.

Assume now that |ξ | � 1. Hence

sup
|ξ |�1

|ξα|e− c
2 ε

1
σ 〈ξ〉 1

σ � sup
|ξ |�1

|ξα|e− c
2 ε

1
σ |ξ | 1

σ
.

Note that there exists a constant cσ > 0 such that

|ξα|e− c
2 ε

1
σ |ξ | 1

σ = ε−|α||εξ | |α|σ
σ e− c

2 ε
1
σ |ξ | 1

σ = ε−|α|
(

|εξ | |α|
σ e− c

2σ |εξ | 1
σ

)σ

= ε−|α|
((

|εξ | 1
σ

c

2σ

)|α|
e− c

2σ |εξ | 1
σ

)σ(
c

2σ

)−|α|σ

� ε−|α|
(

c

2σ

)−|α|σ
(|α|!)σ

� ε−|α|
(

c

2σ

)−|α|σ
n|α|σ (α!)σ � ε−|α|c|α|

σ (α!)σ . (21)

Finally combining (20) with (21) we conclude that there exists a constant C > 0
such that

|∂αuε(x)| � C |α|+1(α!)σ ε−|α|ε−N−n,

for all x ∈ R
n and ε ∈ (0, 1].

(iv) If (uε)ε is a net of tempered distributions satisfying (i i) then by calculations
analogous to the ones above (replacing −N with q) we have that

|∂αuε(x)| � C |α|+1
q (α!)σ εq−n,

for all ε ∈ (0, 1] and x ∈ R
n . ��
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Making use of the previous definitions of γ σ -moderate and negligible net (see
Definition 4.2 and the paragraph above),we introduce the quotient space

Gσ (Rn) := γ σ -moderate nets

γ σ -negligible nets
.

We now investigate the relationship between Gσ (Rn) and the classical Colombeau
algebra

G(Rn) = EM (R
n)

N (Rn)
= C∞-moderate nets

C∞-negligible nets
.

We recall that a net (uε)ε is C∞-moderate if for all K � R
n and all α ∈ N

n
0 there

exist c > 0 and N ∈ N0 such that

|∂αuε(x)| � cε−N , (22)

for all x ∈ K and ε ∈ (0, 1]. A net (uε)ε is C∞-negligible if for all K � R
n , all

α ∈ N
n
0 and all q ∈ N0 there exists c > 0 such that

|∂αuε(x)| � cεq , (23)

uniformly in x ∈ K and ε ∈ (0, 1]. For the general analysis of G(Rn) we refer to
for example Oberguggenberger [28].

Proposition 4.4. For all σ � 1,

Gσ (Rn) ⊆ G(Rn).

Proof. To prove that Gσ (Rn) is a subalgebra of G(Rn) we need to prove that
γ σ -moderate and γ σ -negligible nets are elements of EM (R

n) and N (Rn), respec-
tively and that if a γ σ -moderate net belongs to N (Rn) then it is automatically γ σ -
negligible. The first two implications are clear from the definition of γ σ -moderate
and γ σ -negligible net. Finally, if (uε)ε is γ σ -moderate and belongs to N (Rn) then
for all K � R

n we have

|∂αuε(x)|2 = |∂αuε(x)||∂αuε(x)| � c|α|+1
K (α!)σ ε−N−|α|cK ,qε

q .

Choosing q = 2q ′ + N and by simple estimates we get

|∂αuε(x)|2 � c2|α|+2
K ,q ′ (α!)2σ ε2q ′−2|α|,

which implies that the net (uε)ε is γ σ -negligible. ��
The quotient space Gσ (Rn) is a sheaf. This means that one can introduce a notion
of restriction and a notion of support. More precisely, x ∈ R

n \ supp u if there
exists an open neighbourhood V of x such that u|V = 0 in Gσ (V ). Define Gσc (Rn)

as the algebra of compactly supported generalised functions in Gσ (Rn). Making
use of the previous arguments on γ σ -moderate and -negligible nets we can prove
the following proposition.
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Proposition 4.5. (i) If u ∈ Gσ (Rn) has compact support then it has a repre-
sentative (uε)ε and a compact set K such that supp uε ⊆ K uniformly in
ε.

(ii) γ σc (R
n) is a subalgebra of Gσc (Rn).

Proof. (i) We begin by recalling that if u ∈ G(Rn) has compact support then it
has a representative (uε)ε with supp uε contained in a compact set K uniformly
with respect to ε. In other words, there exists ψ ∈ C∞

c (R
n) identically one on a

neighbourhood of supp u such thatψu = u in G(Rn). It follows that if u ∈ Gσ (Rn)

has compact support then ψu = u in Gσ (Rn). Indeed,

|∂α(ψuε)(x)| �
∑

α′�α

(
α

α′

)
|∂α′

ψ(x)||∂α−α′
uε(x)| � cψc|α|+1

ψ (α!)σ ε−N−|α|.

This means that (ψuε)ε is γ σc -moderate. Since ψuε − uε is γ σ -moderate and
belongs to N (Rn) as well, we conclude that (ψuε − uε)ε is γ σ -negligible.

(ii) The inclusion γ σc (R
n) ⊆ Gσc (Rn) is a straightforward consequence of the

fact that if u ∈ γ σc (Rn) then (u − u ∗ ϕε)ε is γ σ -negligible by Proposition 4.1 and
supp[(u ∗ ϕε)ε] = supp u. ��

An analogous version of Proposition 4.5 can be proven for Gσ (Rn) and γ σ (Rn),
but it goes beyond the scope of this paper.

In this paper we will also make use of the following factor space.

Definition 4.6. Let (uε(t, x))ε ∈ C∞([0, T ]; γ σ (Rn)). We say that the net (uε)ε
is C∞([0, T ]; γ σ (Rn))-moderate if for all K � R

n there exist N ∈ N0, c > 0 and,
for all k ∈ N0 there exist Nk > 0 and ck > 0 such that

|∂k
t ∂
α
x uε(t, x)| � ckε

−Nk c|α|+1(α!)σ ε−N−|α|,

for all α ∈ N
n
0, for all t ∈ [0, T ], x ∈ K and ε ∈ (0, 1].

We say that the net (uε)ε is C∞([0, T ]; γ σ (Rn))-negligible if for all K � R
n ,

for all k ∈ N0 and for all q ∈ N0 there exists c > 0 such that

|∂k
t ∂
α
x uε(t, x)| � c|α|+1(α!)σ εq−|α|,

for all α ∈ N
n
0, for all t ∈ [0, T ], x ∈ K and ε ∈ (0, 1].

We denote the quotient space of C∞([0, T ]; γ σ (Rn))-moderate nets with re-
spect to C∞([0, T ]; γ σ (Rn))-negligible nets by

G([0, T ];Gσ (Rn)).

Note that the estimates in Definition 4.6 express the usual Colombeau properties
in t and the new Gevrey-Colombeau features in x and that

Gσ (Rn) ⊆ G([0, T ];Gσ (Rn)) ⊆ G([0, T ] × R
n).

Moreover, in G([0, T ];Gσ (Rn)) one can make use, at the level of representatives,
of the characterisations by Fourier transform seen above (uniformly in t ∈ [0, T ]).



Claudia Garetto & Michael Ruzhansky

4.2. Energy Estimate and Well-Posedness

Let us define the energy

Eδ,ε(t, ξ) := (Q(2)
δ,ε(t, ξ)V (t, ξ), V (t, ξ)).

We have

∂t Eδ,ε(t, ξ) = (∂t Q(2)
δ,εV, V )+ i(Q(2)

δ,εDt V, V )− i(Q(2)
δ,εV, Dt V )

= (∂t Q(2)
δ,εV, V )+ i(Q(2)

δ,εA1,εV, V )− i(Q(2)
δ,εV, A1,εV )

= (∂t Q(2)
δ,εV, V )+ i〈ξ 〉((Q(2)

δ,εAε − A∗
εQ(2)

δ,ε)V, V ).

It follows that

∂t Eδ,ε(t, ξ) �
|(∂t Q(2)

δ,ε(t, ξ)V (t, ξ), V (t, ξ))|Eδ,ε(t, ξ)
(Q(2)

δ,ε(t, ξ)V (t, ξ), V (t, ξ))

+〈ξ 〉|((Q(2)
δ,εAε − A∗

εQ(2)
δ,ε)(t, ξ)V (t, ξ), V (t, ξ))|. (24)

Now let

Kδ,ε(t, ξ) := |(∂t Q(2)
δ,ε(t, ξ)V (t, ξ), V (t, ξ))|

(Q(2)
δ,ε(t, ξ)V (t, ξ), V (t, ξ))

,

provided that V = 0. Hence, we can rewrite (24) as

∂t Eδ,ε(t, ξ) � Kδ,ε(t, ξ)Eδ,ε(t, ξ)

+〈ξ 〉|((Q(2)
δ,εAε − A∗

εQ(2)
δ,ε)(t, ξ)V (t, ξ), V (t, ξ))|. (25)

By Proposition 3.5(ii) we have that

|((Q(2)
δ,εAε − A∗

εQ(2)
δ,ε)(t, ξ)V (t, ξ), V (t, ξ))| � C2δ(Q

(2)
δ,ε)(t, ξ)V (t, ξ), V (t, ξ))

= C2δEδ,ε(t, ξ).

Hence

∂t Eδ,ε(t, ξ) � (Kδ,ε(t, ξ)+ C2δ〈ξ 〉)Eδ,ε(t, ξ). (26)

In the following we take any fixed integer k � 2. Writing now

∫ T

0
Kδ,ε(t, ξ) dt

as

∫ T

0

|(∂t Q(2)
δ,ε(t, ξ)V (t, ξ), V (t, ξ))|

(Q(2)
δ,ε(t, ξ)V (t, ξ), V (t, ξ))1−1/k(Q(2)

δ,ε(t, ξ)V (t, ξ), V (t, ξ))1/k
dt,
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from the bound from below in Proposition 3.5(i), Lemma 3.6 and the estimates on
the roots λi,ε(t, ξ), i = 1, 2, we have that

∫ T

0
Kδ,ε(t, ξ) dt

�
∫ T

0

|(∂t Q(2)
δ,ε(t, ξ)V (t, ξ), V (t, ξ))|

(Q(2)
δ,ε(t, ξ)V (t, ξ), V (t, ξ))1−1/k(C−1

2 ω(ε)2Lδ2|V (t, ξ)|2)1/k
dt

= C
1
k
2 δ

− 2
k ω(ε)−

2L
k

∫ T

0

|(∂t Q(2)
δ,ε(t, ξ)V (t, ξ), V (t, ξ))|

(Q(2)
δ,ε(t, ξ)V (t, ξ), V (t, ξ))1−1/k |V (t, ξ)|2/k

dt

� C
1
k
2 ω(ε)

− 2L
k δ−

2
k ‖Q(2)

δ,ε(·, ξ)‖1/k
Ck ([0,T ]) � C1δ

− 2
k ω(ε)−

2L
k ω(ε)−

L
k −1, (27)

uniformly in all the variables and parameters. Combining now (27) with the estimate
on |((Q(2)

δ,εAε − A∗
εQ(2)

δ,ε)(t, ξ)V (t, ξ), V (t, ξ))| above, by Gronwall lemma we
obtain

Eδ,ε(t, ξ) � Eδ,ε(0, ξ)e
C1δ

− 2
k ω(ε)

− 3L
k −1+C2T δ〈ξ〉

� Eδ,ε(0, ξ)e
CT (δ

− 2
k ω(ε)

− 3L
k −1+δ〈ξ〉). (28)

As in [17] set δ− 2
k = δ〈ξ 〉. It follows that δ− 2

k = 〈ξ 〉 1
σ , where

σ = 1 + k

2
.

Making use of the estimates in Proposition 3.5(i), of the definition of Q(2)
δ,ε and of

the fact that ω(ε)−1 � 1, we obtain

C−1
2 ω(ε)2Lδ2|V (t, ξ)|2 � Eδ,ε(t, ξ) � Eδ,ε(0, ξ)e

CTω(ε)
− 3L

k −1〈ξ〉 1
σ

� C2ω(ε)
−2L |V (0, ξ)|2eCTω(ε)

− 3L
k −1〈ξ〉 1

σ
.

This implies, for M = (3L + k)/k,

|V (t, ξ)|2 � C2
2δ

−2ω(ε)−4L |V (0, ξ)|2eCTω(ε)
−M 〈ξ〉 1

σ

= C2
2ω(ε)

−4L〈ξ 〉 k
σ |V (0, ξ)|2eCTω(ε)

−M 〈ξ〉 1
σ
,

or equivalently

|V (t, ξ)| � Cω(ε)−2L 〈ξ 〉 k
2σ |V (0, ξ)|eCω(ε)−M 〈ξ〉 1

σ
,

for a suitable constant C > 0.
We begin by assuming that the initial data are in γ s(Rn). This means that

|V (0, ξ)| � C ′
0e−C0〈ξ〉 1

s
.
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Since our solution is dependent on the parameter ε from now on we will adopt
the notation Vε. Note that when the initial data are in γ s

c (R
n) we do not need any

regularisation to embed them in the algebra Gs(Rn), due to Proposition 4.1(ii).
Hence,

|Vε(t, ξ)| � Cω(ε)−2L 〈ξ 〉 k
2σ |Vε(0, ξ)|eCω(ε)−M 〈ξ〉 1

σ
, (29)

and by simple estimates

|Vε(t, ξ)| � Cω(ε)−2L〈ξ 〉 k
2σ C ′

0e−C0〈ξ〉 1
s eCω(ε)−M 〈ξ〉 1

σ

= CC ′
0ω(ε)

−2L〈ξ 〉 k
2σ e− C0

2 〈ξ〉 1
s e− C0

2 〈ξ〉 1
s +Cω(ε)−M 〈ξ〉 1

σ
. (30)

If s < σ , the condition

−C0

2
+ Cω(ε)−M 〈ξ 〉 1

σ
− 1

s � 0

is equivalent to

Cω(ε)−M 〈ξ 〉 1
σ

− 1
s � C0

2
,

〈ξ 〉 1
σ

− 1
s � C0

2

1

C
ω(ε)M ,

〈ξ 〉 1
s − 1

σ �
(

C0

2

1

C

)−1

ω(ε)−M ,

〈ξ 〉 �
((

C0

2

1

C

)−1

ω(ε)−M
) 1

1
s − 1

σ

or, in other words, to the condition

〈ξ 〉 � Rε :=
((

C0

2

1

C

)−1

ω−M (ε)

) 1
1
s − 1

σ . (31)

Assume now that ω(ε)−1 is moderate, that is ω(ε)−1 � cε−r for some r � 0.
Hence, there exists N ∈ N0 such that under the assumption (31) the estimate (30)
yields

|Vε(t, ξ)| � c′ε−N e−C ′〈ξ〉 1
s
, (32)

which proves that the net Uε = F−1(Vε1〈ξ〉�Rε ) is γ s-moderate. It remains to
estimate Vε(t, ξ)when 〈ξ 〉 � Rε. Going back to (30) we have that if 〈ξ 〉 � Rε then

|Vε(t, ξ)| � Cω(ε)−2L 〈ξ 〉 k
2σ C ′

0e−C0〈ξ〉 1
s eCω(ε)−M 〈ξ〉 1

σ

� CC ′
0ω(ε)

−2L 〈ξ 〉 k
2σ e− C0

2 〈ξ〉 1
s e− C0

2 〈ξ〉 1
s eCω(ε)−M 〈Rε〉 1

σ
.
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At this point, choosing ω(ε)−M 〈Rε〉 1
σ of logarithmic type, that is,

ω(ε)−M 〈Rε〉 1
σ � c log(ε−1) ⇐⇒ ω(ε)−Mω(ε)

−M 1
σ

1
s − 1

σ � c log(ε−1)

⇐⇒ ω(ε)−1 � c(log(ε−1))

1

M+ M 1
σ

1
s − 1

σ ⇐⇒ ω(ε)−1 � c(log(ε−1))

1
s − 1

σ
1
s M , (33)

we can conclude that there exists N ∈ N0 and c′,C ′ > 0 such that

|Vε(t, ξ)| � c′e−C ′〈ξ〉 1
s
ε−N ,

for all ε ∈ (0, 1], t ∈ [0, T ] and 〈ξ 〉 � Rε. This together with (32) and Proposi-
tion 4.3(iii) shows that the net (Uε(t, ·))ε is γ s-moderate on R

n for

1 < s < σ = 1 + k

2
.

We are now ready to state and prove the following well-posedness theorem.

Theorem 4.7. Let

D2
t u(t, x)−

n∑

i=1

bi (t)Dt Dxi u(t, x)−
n∑

i=1

ai (t)D
2
xi

u(t, x) = 0,

u(0, x) = g0,

Dt u(0, x) = g1,

where the coefficients ai and bi are real-valued distributions with compact support
contained in [0, T ] and ai is non-negative for all i = 1, . . . , n. Let g0 and g1 belong
to γ s

c (R
n)with s > 1. Then there exists a suitable embedding of the coefficients ai ’s

and bi ’s into G([0, T ]) such that he Cauchy problem above has a unique solution
u ∈ G([0, T ];Gs(Rn)).

Proof. We begin by writing the equation

D2
t u(t, x)−

n∑

i=1

bi (t)Dt Dxi u(t, x)−
n∑

i=1

ai (t)D
2
xi

u(t, x) = 0

as an equation in G([0, T ];Gs(Rn)). This means that we replace the coefficients ai

and bi with the equivalence classes of (ai,ε)ε and (bi,ε)ε in G([0, T ]) as in Section 3.
Since the initial data are in Gs(Rn) they can be imbedded in Gs(Rn) as they are,
that is [(g0)] ∈ Gs

c (R
n) and [(g1)] ∈ Gs

c (R
n).

Existence. We argue now at the level of representatives and we transform the equa-
tion to the first order system (6). From the theory of weakly hyperbolic equations
and in particular from [17,23] we know that the Cauchy problem

D2
t u(t, x)−

n∑

i=1

bi,ε(t)Dt Dxi u(t, x)−
n∑

i=1

ai,ε(t)D
2
xi

u(t, x) = 0
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with initial data g0, g1 ∈ γ s
c (R

n), has a net of (classical) solutions (uε)ε ∈
C2([0, T ] : γ s(Rn)). More precisely, we know that given s > 1 and for k � 2
there exists a solution (uε)ε ∈ C2([0, T ] : γ s(Rn)) provided that

1 < s < 1 + k

2
.

So, in the arguments which follow we assume s and k in this relation and we perform
the embedding of the coefficients ai and bi with a logarithmic scale of the type

ω−1(ε) = c(log(ε−1))r , c � 0,

as in (33), where r depends on s and k.
It is our task to show that this net is moderate. From the energy estimates in

Section 4.2 at the Fourier transform level we have that the net (uε)ε (or better
the corresponding (Uε)ε) is γ s(Rn)-moderate with respect to x with s as above.
Since this moderateness estimate is uniform in t and the coefficients of the equation
are smooth and moderate in t ∈ [0, T ] as well, by induction on the t-derivatives
and arguing as in [24] we can easily conclude that (uε)ε is C∞([0, T ]; γ σ (Rn))-
moderate for

1 < s < 1 + k

2
.

Hence, (uε)ε generates a solution u ∈ G([0, T ];Gs(Rn)) to our Cauchy problem.
Uniqueness. Assume now that the Cauchy problem has another solution v ∈
G([0, T ];Gs(Rn)). At the level of representatives this means

D2
t (uε − vε)(t, x)−

n∑

i=1

bi,ε(t)Dt Dxi (uε − vε)(t, x)

−
n∑

i=1

ai,ε(t)D
2
xi
(uε − vε)(t, x) = fε(t, x),

with initial data

uε(0, x)− vε(0, x) = n0,ε(x),

Dt uε(0, x)− Dtvε(0, x) = n1,ε(x),

where ( fε)ε is C∞([0, T ]; γ s(Rn))-negligible and (n0,ε)ε and (n1,ε)ε are both
compactly supported and γ s(Rn)-negligible. The corresponding first order system
is

Dt

(
w1,ε
w2,ε

)
=

(
0 〈Dx 〉∑n

i=1 ai,ε(t)D2
xi

〈Dx 〉−1 ∑n
i=1 bi,ε(t)Dxi

) (
w1,ε
w2,ε

)
+

(
0
fε

)
,

where w1,ε and w2,ε are obtained via the transformation

w j,ε = D j−1
t 〈Dx 〉2− j (uε − vε), j = 1, 2.
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This system will be studied after Fourier transform, as a system of the type

Dt Vε(t, ξ) = 〈ξ 〉Aε(t, ξ)V + Fε,

with

Fε =
(

0
Fx→ξ fε

)
.

These kinds of systems and the corresponding weakly hyperbolic equations (with
right hand-side) have been investigated in [16] under even less regular assumptions
on the coefficients (Hölder). In particular (see Theorem 3 in [16]) Gevrey well-
posedness results have been obtained for

1 < s < 1 + k

2
.

The proof of Theorem 3 in [16] can be easily adapted to our situation by insert-
ing everywhere a multiplicative factor ω(ε)−L coming from the regularisation of

the coefficients and by replacing e−ρ(t)〈ξ〉 1
s with e−ρ(t)ε 1

s 〈ξ〉 1
s in the formula (4.1)

defining V in [16]. The estimate (4.9) in [16] is therefore transformed into

|Vε(t, ξ)| � c1ω(ε)
−N 〈ξ 〉N eκ1ε

1
s 〈ξ〉 1

s |Vε(0, ξ)|
+c2ω(ε)

−N 〈ξ 〉N eκ2ε
1
s 〈ξ〉 1

s |F̂ε(t, ξ)|,
(34)

where N ∈ N0 depends on the equation or better on the regularity of the co-
efficients and κ1, κ2 > 0 can be chosen small enough. It follows that since the
initial data Vε(0, ξ) and the right-hand side Fε(t, ξ) are negligible then (Vε)ε is
negligible as well in the suitable function spaces, or in other words, (uε − vε)ε
is C([0, T ], γ s(Rn))-negligible. From the equation itself and the fact that the co-
efficients are nets of smooth functions one can deduce that the net (uε − vε)ε is
smooth in t as well and more precisely that it is C∞([0, T ], γ s(Rn))-negligible.
This proves that u = v in G([0, T ];Gs(Rn)). ��

5. Case 2: Well-Posedness for Smooth Initial Data

We now work under the assumption that the initial data g0 and g1 are not Gevrey
but still smooth. More precisely, g0, g1 ∈ C∞

c (R
n). By convolution with a mollifier

ϕε as in Case 1 we get a net of smooth functions. It is our aim to find for a function
u ∈ C∞

c (R
n) a new regularisation of the type

u ∗ ρε
such that the corresponding net is Gevrey. This will allow us to embed the initial
data g0 and g1 in an algebra of Gevrey-Colombeau type and to proceed with the
well-posedness of the Cauchy problem (3).

We begin with the following regularisation inspired by [1].
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5.1. Gevrey Regularisation of Smooth Functions with Compact Support

In the sequel S(σ )(Rn), σ > 1, denotes the space of all ϕ ∈ C∞(Rn) such that

‖ϕ‖b,σ = sup
α,β∈N

n
0

∫

Rn

|xβ |
b|α+β|α!σ β!σ |∂αϕ(x)| dx < ∞

for all b > 0.
We recall that the Gelfand-Shilov space S(σ )(Rn) is Fourier transform invariant

(see for example [27, Chapter 6] and [31]). It follows that taking the inverse Fourier
transform φ = F−1ψ of a function ψ ∈ S(σ )(Rn) identically 1 in a neighborhood
of 0 one gets a function φ ∈ S(σ )(Rn) with

∫
φ(x) dx = 1, and

∫
xαφ(x) dx = 0, for all α = 0. (35)

For instance, one can take ψ ∈ γ (σ)(Rn) ∩ C∞
c (R

n), where γ (σ)(Rn) is the space
of all f ∈ C∞(Rn) such that for all compact subset K of R

n and all b > 0 there
exists c > 0 such that

sup
x∈K

|∂α f (x)| � c b|α|α!σ

for all α ∈ N
n
0.

We say that φ ∈ S(σ )(Rn) is a mollifier if the property (35) holds. Let now
χ ∈ γ σ (Rn) with 0 � χ � 1, χ(x) = 0 for |x | � 2 and χ(x) = 1 for |x | � 2. We
define (as in [1]) the net of Gevrey functions

ρε(x) := ε−nφ

(
x

ε

)
χ(x | log ε|). (36)

Note that the following estimates are valid for ε small enough, that is, for all
ε ∈ (0, η] with η ∈ (0, 1]. Without loss of generality we can assume η = 1.

Proposition 5.1. Let u ∈ C∞
c (R

n) and ρε as above. Then, there exists K � R
n

such that supp(u ∗ ρε) ⊆ K for all ε small enough and

(i) there exists c > 0 and η ∈ (0, 1] such that

|∂α(u ∗ ρε)(x)| � c|α|+1(α!)σ ε−|α|

for all α ∈ N
n
0, x ∈ R

n and ε ∈ (0, η], or in other words, (u ∗ ρε)ε is
γ σc -moderate.

(ii) The net (u∗ρε−u)ε is compactly supported uniformly in ε and C∞-negligible.
(iii) There exist c, c′ > 0 and η ∈ (0, 1] such that

|ûε(ξ)| � c′ e−c ε
1
σ 〈ξ〉 1

σ
,

for all ξ ∈ R
n and ε ∈ (0, η].
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Proof. (i) We begin by observing that there exists a compact set K ⊆ R
n such that

supp(u ∗ ρε) ⊆ K for all ε ∈ (0, 1/2]. Indeed, since the function u has compact
support and supp ρε ⊆ | log ε|−1(suppχ) we get the inclusion

supp(u ∗ ρε) ⊆ supp u + | log(1/2)|−1suppχ.

We write ∂α(u ∗ ρε)(x) as

(u ∗ ∂αρε)(x) = ε−n
∑

γ�α

(
α

γ

)
∂γ φ

(
x

ε

)
ε−|γ |∂α−γ χ(x | log ε|)| log ε||α−γ |.

Hence, the change of variable y/ε = z in
∫

Rn
u(x − y)∂γ φ

(
y

ε

)
∂α−γ χ(y| log ε|) dy

entails

|∂α(u ∗ ρε)(x)|
�

∑

γ�α

(
α

γ

)
ε−|γ || log ε||α−γ |

∫

Rn
|u(x − εz)||∂γ φ(z)||∂α−γ χ(ε| log ε|z)| dz.

(37)

Since χ ∈ γ σ (Rn) is compactly supported, there exists a constant cϕ > 0 such that

|∂α−γ χ(ε| log ε|z)| � c|α−γ |+1
χ (α − γ )!σ , (38)

for all z ∈ R
n and ε ∈ (0, 1/2]. Thus, combining (37) with (38) we obtain the

estimate

|∂α(u ∗ ρε)(x)| �
∑

γ�α

(
α

γ

)
ε−|γ || log ε||α−γ |c|α−γ |+1

χ (α − γ )!σ

×
∫

Rn

|u(x − εz)||∂γ φ(z)|(γ !)σ
(γ !)σ dz

� c(u, χ)
∑

γ�α

(
α

γ

)
ε−|γ || log ε||α−γ |c|α−γ |

χ (α − γ )!σ ‖φ‖σ,1γ !σ

� c(u, χ, φ)
∑

γ�α

(
α

γ

)
ε−|γ || log ε||α−γ |c|α−γ |

χ (α − γ )!σ γ !σ . (39)

Since | log ε| is bounded by ε−1,

∑

γ�α

(
α

γ

)
= 2|α|

and

δ! � |δ|! � |δ||δ|
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for all δ ∈ N
n
0, we can conclude from (39) that

|∂α(u ∗ ρε)(x)| � c c|α|
1 ε−|α| ∑

γ�α

(
α

γ

)
|α − γ |σ |α−γ ||γ |σ |γ | � c c|α|

1 ε−|α|2|α||α|σ |α|

� c′c|α|
1 ε−|α|2|α|eσ |α|(α!)σ .

At this point collecting the terms with exponent |α| we conclude that there exist a
constants C > 0 and C1 > 0 such that

|∂α(u ∗ ρε)(x)| � C |α|(α!)σ ε−|α|, (40)

uniformly in ε ∈ (0, 1/2].
(ii) By embedding of C∞

c (R
n) into the Colombeau algebra G(Rn)we know that

the net (u − u ∗ φε)ε is C∞-negligible. It is easy to check that (u ∗ φε − u ∗ ρε)ε
is C∞-negligible as well. Hence, (u − u ∗ ρε)ε is C∞-negligible.

(iii) In (i) we have proven that the net (u ∗ρε)ε is γ σc -moderate and has support
contained in a compact set K uniformly with respect to ε. So, by Proposition 4.3(i)
we immediately conclude that there exist c, c′ > 0 such that

|ûε(ξ)| � c′ e−c ε
1
σ 〈ξ〉 1

σ
,

for all ξ ∈ R
n and ε ∈ (0, 1/2]. ��

In the sequel ι denotes the map

C∞
c (R

n) → Gσc (Rn) : u �→ [(u ∗ ρε)ε].
Proposition 5.2. (i) The map ι is injective on C∞

c (R
n).

(ii) If u ∈ γ σc (Rn) then (u ∗ φε − u ∗ ρε)ε is γ σ -negligible.

Proof. (i) Let u ∈ C∞
c (R

n) and (u ∗ ρε)ε be γ σc -negligible. Hence, (u ∗ ρε)ε is
C∞-negligible. Since (u ∗φε − u ∗ ρε)ε is C∞-negligible we conclude that the net
(u ∗φε)ε is C∞-negligible. By embedding of C∞(Rn) into the Colombeau algebra
G(Rn) it follows that u = 0. This shows that the map ι is injective.

(ii) We write (u ∗ φε − u ∗ ρε)(x) as
∫

Rn
u(x − εy)φ(y)(1 − χ(yε| log(ε)|) dy.

Hence, by the properties of χ and by the vanishing moments of ϕ, for any integer
q > 1 we get

|∂α(u ∗ φε − u ∗ ρε)(x)|
�

∫

Rn
|∂αu(x − εy)||φ(y)|

∑

|β|=q

|∂βχ(yε| log ε|θ)|
β! |ε log(ε)y||β| dy

� c|α|+1(α!)σ
∫

Rn
|φ(y)||y|qc(χ, q)|ε log(ε)|q dy

� c(q, χ, φ)c|α|+1(α!)σ ε q
2 .

This proves that the net (u ∗ φε − u ∗ ρε)(x) is γ σ -negligible. ��
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Concluding, we can state that the algebra Gσc (Rn) contains not only γ σc (R
n) but

also C∞
c (R

n) as a subalgebra. This is obtained by modifying the embedding from
u ∗ ϕε in Section 4 to u ∗ ρε.

5.2. Energy Estimates and Well-Posedness

We now take initial data g0, g1 in C∞
c (R

n) and we embed them in Gs
c (R

n) as
g0 ∗ ρε and g1 ∗ ρε. By repeating the transformation into first order system and the
energy estimates of Case 1 at the Fourier transform level we arrive at (29), that is

|Vε(t, ξ)| � Cω(ε)−2L 〈ξ 〉 k
2σ |Vε(0, ξ)|eCω(ε)−M 〈ξ〉 1

σ
,

for a suitable constant C > 0 and M = (3L + k)/k. Since

|Vε(0, ξ)| � C ′
0e−C0ε

1
s 〈ξ〉 1

s
,

we get

|Vε(t, ξ)| � Cω(ε)−2L〈ξ 〉 k
2σ C ′

0e−C0ε
1
s 〈ξ〉 1

s eCω(ε)−M 〈ξ〉 1
σ

= CC ′
0ω(ε)

−2L〈ξ 〉 k
2σ e− C0

2 ε
1
s 〈ξ〉 1

s e− C0
2 ε

1
s 〈ξ〉 1

s +Cω(ε)−M 〈ξ〉 1
σ
. (41)

Recall that s > 1 and that k is any fixed integer with k � 2. Now, if s < σ , the
following inequalities are equivalent:

−C0

2
ε

1
s + Cω(ε)−M 〈ξ 〉 1

σ
− 1

s � 0,

Cω(ε)−M 〈ξ 〉 1
σ

− 1
s � C0

2
ε

1
s ,

〈ξ 〉 1
σ

− 1
s � C0

2

1

C
ω(ε)Mε

1
s ,

〈ξ 〉 1
s − 1

σ �
((

C0

2

1

C

)−1

ω(ε)−Mε−
1
s

)
,

〈ξ 〉 �
((

C0

2

1

C

)−1

ω(ε)−Mε−
1
s

) 1
1
s − 1

σ ,

or, in other words,

〈ξ 〉 � Rε :=
((

C0

2

1

C

)−1

ω(ε)−Mε−
1
s

) 1
1
s − 1

σ . (42)

As in the previous case we take ω(ε)−1 moderate. Under the assumption (42) the
estimate (41) implies, for some N ∈ N0,

|Vε(t, ξ)| � C ′ε−N e−C ′ε 1
s 〈ξ〉 1

s
. (43)
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This shows that the net Uε = F−1(Vε1〈ξ〉�Rε ) is γ s-moderate. We still have to
estimate Vε(t, ξ)when 〈ξ 〉 � Rε. Going back to (41) we have that if 〈ξ 〉 � Rε then

|Vε(t, ξ)| � Cω(ε)−2L〈ξ 〉 k
2σ C ′

0e−C0ε
1
s 〈ξ〉 1

s eCω(ε)−M 〈ξ〉 1
σ

� CC ′
0ω(ε)

−2L〈ξ 〉 k
2σ e− C0

2 ε
1
s 〈ξ〉 1

s e− C0
2 ε

1
s 〈ξ〉 1

s +Cω(ε)−M 〈Rε〉 1
σ
. (44)

At this point, choosing ω−M (ε)〈Rε〉 1
σ of logarithmic type, that is,

ω−M (ε)〈Rε〉 1
σ � c log(ε−1) ⇔ ω(ε)−Mω(ε)

−M 1
σ

1
s − 1

σ ε
− 1

s

1
σ

1
s − 1

σ � c log(ε−1)

⇔ ω(ε)−1 � c(log(ε−1))

1

M+ M 1
σ

1
s − 1

σ ε
1
σM ,⇔ ω(ε)−1 � c(log(ε−1))

1
s − 1

σ
1
s M ε

1
σM ,

(45)

we can conclude that there exists N ∈ N0 and c′,C ′ > 0 such that

|Vε(t, ξ)| � c′e−C ′ε 1
s 〈ξ〉 1

s
ε−N ,

for all ε ∈ (0, 1], t ∈ [0, T ] and 〈ξ 〉 � Rε. Combing this last estimate with (43) we
can conclude, by Proposition 4.3(iii), that, as in the previous case, the net (Uε(t, ·))ε
is γ s-moderate on R

n for

1 < s < σ = 1 + k

2
.

We are now ready to state the following well-posedness theorem.

Theorem 5.3. Let

D2
t u(t, x)−

n∑

i=1

bi (t)Dt Dxi u(t, x)−
n∑

i=1

ai (t)D
2
xi

u(t, x) = 0,

u(0, x) = g0,

Dt u(0, x) = g1,

where the coefficients ai and bi are real valued distributions with compact support
contained in [0, T ] and ai is non-negative for all i = 1, . . . , n. Let g0 and g1 belong
to C∞

c (R
n). Then, for all s > 1 there exists a suitable embedding of the coefficients

ai and bi into G([0, T ]) such that the Cauchy problem above has a unique solution
u ∈ G([0, T ];Gs(Rn)).

Proof. We reduce the Cauchy problem above to a first order system and embed of
the coefficients and initial data in the corresponding Colombeau algebras (ai,ε ∗
ψω(ε), bi,ε ∗ ψω(ε), g0 ∗ ρε, g1 ∗ ρε). Note that, we embed the coefficients ai and
bi by means of a net ω(ε) with

ω−1(ε) � c εr1(log(ε−1))r2
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as in (45), where r1 and r2 depend on s and fixed k � 2 with 1 � s < 1 + k.
The energy estimates of Section 5.2 and the same arguments of Case 1 show

the existence of a solution u ∈ G([0, T ];Gs(Rn)). The uniqueness of the solution
u is obtained as in the proof of Theorem 4.7. ��

6. Case 3: Well-Posedness for Distributional Initial Data

We now consider distributional initial data, that is g0, g1 ∈ E ′(Rn), and inves-
tigate their convolution with the mollifier ρε.

Proposition 6.1. Let u ∈ E ′(Rn) and ρε as in (36). Then, there exists K � R
n

such that supp(u ∗ ρε) ⊆ K for all ε small enough and there exist C > 0, N ∈ N0
and η ∈ (0, 1] such that

|∂α(u ∗ ρε)(x)| � C |α|+1(α!)σ ε−|α|−N

for all α ∈ N
n
0, x ∈ R

n and ε ∈ (0, η].
Proof. The following proof differs from the proofs of Propositions 4.1 and 5.1
in terms of mollifier and dependence in ε. We begin by noting that there exists a
compact set K ⊆ R

n such that supp(u ∗ρε) ⊆ K for all ε ∈ (0, 1/2]. Indeed, since
the distribution u has compact support and supp ρε ⊆ | log ε|−1(suppχ)we get the
inclusion

supp(u ∗ ρε) ⊆ supp u + | log(1/2)|−1suppχ.

By the structure of u we know that there exists a continuous and compactly sup-
ported function g such that

∂α(u ∗ ρε) = ∂α(∂βg ∗ ρε) = g ∗ ∂α+βρε,

where

∂α+βρε = ε−n
∑

γ�α+β

(
α + β

γ

)
∂γ φ

(
x

ε

)
ε−|γ |∂α+β−γ χ(x | log ε|)| log ε||α+β+γ |.

Hence, the change of variable y/ε = z in
∫

Rn
g(x − y)∂γ φ

(
y

ε

)
∂α+β−γ χ(y| log ε|) dy

entails

|∂α(u ∗ ρε)(x)| �
∑

γ�α+β

(
α + β

γ

)
ε−|γ || log ε||α+β+γ |

×
∫

Rn
|g(x − εz)||∂γ φ(z)||∂α+β−γ χ(ε| log ε|z)| dz. (46)
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Since χ ∈ γ σ (Rn) is compactly supported, there exists a constant cχ > 0 such that

|∂α+β−γ χ(ε| log ε|z)| � c|α+β−γ |+1
ϕ (α + β − γ )!σ , (47)

for all z ∈ R
n and ε ∈ (0, 1/2]. Hence, combining (46) with (47) we obtain the

estimate

|∂α(u ∗ ρε)(x)| �
∑

γ�α+β

(
α + β

γ

)
ε−|γ || log ε||α+β+γ |c|α+β−γ |+1

χ (α + β − γ )!σ

×
∫

Rn

|g(x − εz)||∂γ φ(z)|(γ !)σ
(γ !)σ dz

� c(g, χ)
∑

γ�α+β

(
α + β

γ

)
ε−|γ || log ε||α+β+γ |c|α+β−γ |

χ (α + β − γ )!σ‖φ‖σ,1γ !σ

� c(g, χ, φ)
∑

γ�α+β

(
α + β

γ

)
ε−|γ || log ε||α+β+γ |c|α+β−γ |

χ (α + β − γ )!σ γ !σ .

(48)

Since | log ε| is bounded by ε−1,
∑
γ�α+β

(
α+β
γ

) = 2|α+β| and δ! � |δ|! � |δ||δ|
for all δ ∈ N

n
0 we can conclude from (48) that

|∂α(u ∗ ρε)(x)| � c c|α+β|
1 ε−|α|−|β| ∑

γ�α+β

(
α + β

γ

)
|α + β − γ |σ |α+β−γ ||γ |σ |γ |

� c c|α+β|
1 ε−|α|−|β|2|α+β||α + β|σ |α+β|

� cc|α+β|
1 ε−|α|−|β|2|α+β|eσ |α+β||α + β|!σ .

At this point collecting the terms with exponent |α| and the terms with exponent |β|
(β depends only on u) we conclude that there exist a constants C > 0 and C1 > 0
such that

|∂α(u ∗ ρε)(x)| � C |β|
1 |β|!σC |α||α!|σ ε−|α|−|β|, (49)

uniformly in ε ∈ (0, 1/2]. Note that by the inequality |δ|! � n|δ|δ! we have that
(49) implies the assertion of Proposition 6.1 with N = |β| and different constants.

��
It follows that the net (u ∗ ρε)ε is γ σc -moderate and therefore from Proposi-

tion 4.3 we have that there exists c > 0 and N ∈ N0 such that

|û ∗ ρε(ξ)| � cε−N e−cε
1
σ 〈ξ〉 1

σ
,

for all ξ ∈ R
n and ε small enough (from the proof, ε ∈ (0, 1/2]).

Remark 6.2. Starting from Proposition 6.1 and arguing as for the embedding of
E ′(Rn) into G(Rn) one can easily prove that

E ′(Rn) → Gσc (Rn) : u �→ [(u ∗ ρε)ε]
is an embedding of E ′(Rn) into Gσc (Rn).
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6.1. Energy Estimates and Well-Posedness

Let us now consider the Cauchy problem

D2
t u(t, x)−

n∑

i=1

bi (t)Dt Dxi u(t, x)−
n∑

i=1

ai (t)D
2
xi

u(t, x) = 0,

u(0, x) = g0,

Dt u(0, x) = g1,

with g0, g1 ∈ E ′(Rn). We embed coefficients and initial data in the corresponding
Colombeau algebras and we transform the equation into a first order system simi-
larly to Case 1 and 2. In particular, from Proposition 6.1, we have in this case that
the initial data Vε(0, ξ) fulfils

|Vε(0, ξ)| � ε−N C ′
0e−C0ε

1
s 〈ξ〉 1

s
,

for some N ∈ N0. This modifies the estimates of Case 2 only by a multiplying
factor ε−N, so for Rε as in (42) we get that there exists N ′ ∈ N0 such that

|Vε(t, ξ)| � c′e−C ′ε 1
s 〈ξ〉 1

s
ε−N ′

,

for all ε, t ∈ (0, T ] and ξ ∈ R
n . This result allows us to state the following

well-posedness theorem.

Theorem 6.3. Let

D2
t u(t, x)−

n∑

i=1

bi (t)Dt Dxi u(t, x)−
n∑

i=1

ai (t)D
2
xi

u(t, x) = 0,

u(0, x) = g0,

Dt u(0, x) = g1,

where the coefficients ai and bi are real valued distributions with compact support
contained in [0, T ] and ai is non-negative for all i = 1, . . . , n. Then, the conclusion
of Theorem 5.3 holds for initial data g0 and g1 in E ′(Rn) as well.

7. Consistency with the Classical Well-Posedness Results

We conclude this paper by showing that when the coefficients are regular enough
and the initial data are Gevrey then the very weak solution coincides with the
classical and ultradistributional ones obtained in [17,23].

Theorem 7.1. Let

D2
t u(t, x)−

n∑

i=1

bi (t)Dt Dxi u(t, x)−
n∑

i=1

ai (t)D
2
xi

u(t, x) = 0,

u(0, x) = g0, (50)

Dt u(0, x) = g1,
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where the real-valued coefficients ai and bi are compactly supported, belong to
Ck([0, T ]) with k � 2 and ai � 0 for all i = 1, . . . , n. Let g0 and g1 belong to
γ s

c (R
n) with s > 1. Then

(i) there exists an embedding of the coefficients ai ’s and bi ’s, i = 1, . . . , n,
into G([0, T ]), such that the Cauchy problem above has a unique solution
u ∈ G([0, T ];Gs(Rn)) provided that

1 < s < 1 + k

2
;

(ii) any representative (uε)ε of u converges in C([0, T ]; γ s(Rn)) as ε → 0 to the
unique classical solution in C2([0, T ], γ s(Rn)) of the Cauchy problem (50);

(iii) if the initial data g0 and g1 belong to E ′(Rn) then any representative (uε)ε
of u converges in C([0, T ];D′

(s)(R
n)) to the ultradistributional solution in

C2([0, T ],D′
(s)(R

n)) of the Cauchy problem (50).

Proof. (i) From Section 4 (Case 1) we know that by embedding coefficients and
initial data in the corresponding Colombeau algebras the Cauchy problem has a
unique solution u ∈ G([0, T ];Gs(Rn)). It also has a unique classical solution
ũ ∈ C2([0, T ], γ s(Rn)).

(ii) We now want to compare u with ũ. By definition of the classical solution
we know that

D2
t ũ(t, x)−

n∑

i=1

bi (t)Dt Dxi ũ(t, x)−
n∑

i=1

ai (t)D
2
xi

ũ(t, x) = 0,

ũ(0, x) = g0, (51)

Dt ũ(0, x) = g1.

Since the initial data do not need to be regularised because they are already Gevrey,
there exists a representative (uε)ε of u such that

D2
t uε(t, x)−

n∑

i=1

bi,ε(t)Dt Dxi uε(t, x)−
n∑

i=1

ai,ε(t)D
2
xi

uε(t, x) = 0,

uε(0, x) = g0, (52)

Dt uε(0, x) = g1,

for suitable embeddings of the coefficients ai and bi . Noting that the nets (ai,ε−ai )ε
and (bi,ε − bi )ε are converging to 0 in C([0, T ] × R

n) for i = 1, . . . , n we can
rewrite (51) as

D2
t ũ(t, x)−

n∑

i=1

bi,ε(t)Dt Dxi ũ(t, x)−
n∑

i=1

ai,ε(t)D
2
xi

ũ(t, x) = nε(t, x),

ũ(0, x) = g0, (53)

Dt ũ(0, x) = g1,
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where nε ∈ C([0, T ]; γ s(Rn)) and converges to 0 in this space. From (53) and (52)
we get that ũ − uε solves the Cauchy problem

D2
t (̃u − uε)(t, x)−

n∑

i=1

bi,ε(t)Dt Dxi (̃u − uε)(t, x)−
n∑

i=1

ai,ε(t)D
2
xi
(̃u − uε)(t, x) = nε(t, x),

(̃u − uε)(0, x) = 0,

(Dt ũ − Dt uε)(0, x) = 0.

By the energy estimates of Case 1 and arguing as in the uniqueness proof of
Theorem 4.7 to deal with the right-hand side we arrive after reduction to a system
and by application of the Fourier transform to estimate |(Ṽ − Vε)(t, ξ)| as in (34),
in terms of (Ṽ − Vε)(0, ξ) and the right-hand side nε(t, x). In particular, since the
coefficients are regular enough (of class Ck , k � 2), the term ω(ε)−N disappears
in (34) and we simply get

|(Ṽ − Vε)(t, ξ)| � c1〈ξ 〉N eκ1ε
1
s 〈ξ〉 1

s |(Ṽ − Vε)(0, ξ)| + c2〈ξ 〉N eκ2ε
1
s 〈ξ〉 1

s |n̂ε(t, ξ)|.
(54)

Since (Ṽ − Vε)(0, ξ) = 0 and nε → 0 in C([0, T ]; γ s(Rn)) we conclude that
uε → ũ in C([0, T ]; γ s(Rn)). Moreover, since any other representative of u will
differ from (uε)ε by a C∞([0, T ]; γ s(Rn))-negligible net, the limit is the same for
any representative of u.

(iii) Let us now consider the case of initial data in E ′(Rn). We know from [17]
that the Cauchy problem

D2
t u(t, x)−

n∑

i=1

bi (t)Dt Dxi u(t, x)−
n∑

i=1

ai (t)D
2
xi

u(t, x) = 0,

u(0, x) = g0, (55)

Dt u(0, x) = g1,

has a unique solution ũ ∈ C2([0, T ],D′
(s)(R

n)) in the sense of ultradistributions.
Hence,

D2
t ũ(t, x)−

n∑

i=1

bi (t)Dt Dxi ũ(t, x)−
n∑

i=1

ai (t)D
2
xi

ũ(t, x) = 0,

ũ(0, x) = g0,

Dt ũ(0, x) = g1.

We also know that the Cauchy problem (55) has a unique solution u in G([0, T ];Gs

(Rn)) after suitable embedding of coefficients and initial data. This means that there
exists a representative (uε)ε of classical smooth solutions such that

D2
t uε(t, x)−

n∑

i=1

bi,ε(t)Dt Dxi uε(t, x)−
n∑

i=1

ai,ε(t)D
2
xi

uε(t, x) = 0,

uε(0, x) = g0,ε, (56)

Dt uε(0, x) = g1,ε,
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for suitable embeddings of coefficients and initial data as discussed previously in
Case 3. Note that the nets (ai,ε − ai )ε and (bi,ε − bi )ε are converging to 0 in
C([0, T ] × R

n) for i = 1, . . . , n and that g0,ε − g0 and g1,ε − g1 are nets of
distributions converging to 0 as well. As in (ii) we can write

D2
t (uε − ũ)(t, x)−

n∑

i=1

bi,ε(t)Dt Dxi (uε − ũ)(t, x)

−
n∑

i=1

ai,ε(t)D
2
xi
(uε − ũ)(t, x) = nε(t, x),

uε(0, x)− ũ(0, x) = g0,ε − g0, (57)

Dt uε(0, x)− Dt ũ(0, x) = g1,ε − g1,

where (nε)ε is converging to 0 in C([0, T ];D′
(s)(R

n)) and the nets g0,ε − g0 and
g1,ε − g1 are converging to 0 in the sense of distributions. From the estimate (54)
we deduce that Ṽ − Vε → 0 in C([0, T ];D′

(s)(R
n)) or in other words that uε → ũ

in C([0, T ];D′
(s)(R

n)). Analogously, this result is not affected by changing the
representative (uε)ε of u ∈ G([0, T ];Gs(Rn)). ��
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