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Abstract—There is an increasing need to develop processing 
tools for diffusion tensor image data with the consideration of 
the non-Euclidean nature of the tensor space. In this paper 
Procrustes analysis, a non-Euclidean shape analysis tool under 
similarity transformations (rotation, scaling and translation), is 
proposed to redefine sample statistics of diffusion tensors. A 
new anisotropy measure Procrustes Anisotropy (PA) is defined 
with the full ordinary Procrustes analysis. Comparisons are 
made with other anisotropy measures including Fractional 
Anisotropy and Geodesic Anisotropy. The partial generalized 
Procrustes analysis is extended to a weighted generalized 
Procrustes framework for averaging sample tensors with 
different fractions of contributions to the mean tensor. 
Applications of Procrustes methods to diffusion tensor 
interpolation and smoothing are compared with Euclidean, 
Log-Euclidean and Riemannian methods. 
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I.  INTRODUCTION 

Diffusion tensor imaging (DTI) is a specific magnetic 
resonance imaging (MRI) modality method for providing 
information about the microstructure and organization of the 
tissue in vivo. In DTI, displacement of water molecules over 
time is modeled by a zero-mean trivariate Gaussian 
distribution [1] with covariance matrix evolving linearly with 
time and determined by the diffusion tensor (DT), a 3x3 
symmetric positive-definite matrix. DT inference from 
observed diffusion MRI data has been commonly carried out 
using least squares [2][3] and Bayesian [4][5] methods. The 
principal eigenvector of the tensor estimates the dominant 
fiber orientation at a voxel whereas various tensor-derived 
diffusion anisotropy indices measure local anisotropy. DTI 
has been applied into the study of diseases such as multiple 
sclerosis, schizophrenia, and stroke [6]. White matter 
tractography [7][8][9]is another promising application of 
DTI for investigating brain connectivity. 

There is an increasing need to develop processing tools 
for diffusion tensor data. With the consideration of positive 
semi-definiteness and symmetry of diffusion tensor, non-
Euclidean methods [10][11][12][13][14] have been proposed 
for diffusion tensor processing and anisotropy study. 

Recall that D is a 3x3 real matrix with symmetric 
positive semi-definiteness, i.e. D = DT and xDxT 

≥ 0 for all 
x ∈ . Let )(Df  be a probability density function of a 

diffusion tensor D on a Riemannian metric space. The 
Fréchet mean [14][15][16] of D is defined as 
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where d is a metric. A Fréchet mean is not necessarily 
unique. However, it is possible to prove the uniqueness with 
sufficient conditions. For example, for non-Euclidean spaces 
with negative sectional curvature, the Fréchet mean is always 
unique [17]. 

 
Given a sample of N diffusion tensors D1,…,DN the 

Fréchet mean of D1,…,DN is given by 
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And the sample variance of D1,…,DN is defined as 
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The Euclidean [18], Log-Euclidean [19] and Riemannian 

[14][20] metrics, denoted by LE dd  , and Rd  respectively, 
have been proposed for defining the sample mean of 
diffusion tensors.  

The main aim of this work is to define new statistics of 
diffusion tensor sample with the non-Euclidean method 
Procrustes analysis for tensor field processing and anisotropy 
study. 

 

II. PROCRUSTES MEAN DIFFUSION TENSOR  

A. Procrustes Distances 

In this section, two Procrustes-based distances full 
ordinary Procrustes and Procrustes size-and-shape distances 
will be introduced. 

To ensure the positive semi-definiteness of Di, i = 1, 2, 
we use a reparameterization Di = Qi Qi

T where Qi is a 3x3 
real matrix. For example, Qi = chol(Di) is the Cholesky 
decomposition, or Qi = Di

1/2 is the matrix square root. In our 
computation we shall choose the Cholesky decomposition. 
Note that Qi and any rotation of it QiR (R ∈  O(3)) result in 
the same Di, i.e. Di = Qi Qi

T = QiR (QiR) T. 
Full ordinary Procrustes analysis (FOPA) [21][22] is 

used to match two objects as closely as possible with 
similarity transformations (translation, rotation and scale). 
Let us first consider a pair of diffusion tensors D1 and D2. 



The full Procrustes shape metric between D1 and D2 is given 
by 

                  RQQDD ˆˆ),( 2121 β−=Fd                   (4) 

where )ˆ,ˆ( Rβ  is the solution to minimize a squared 
Euclidean distance under the similarity transformations. The 
squared Euclidean distance is given by 
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where a 3x3 rotation matrix R ∈  O(3), a scale parameter 
0>β , and a 3x1 location vector γ represent three 

similarity transformations. Note 13 is the 3x1 vector of ones. 

The solution )ˆ,ˆ,ˆ( Rγ β  to the minimization of (5) has been 
solved [21]. 

In DTI study, we wish to match Q1 (from D1) and Q2 
(from D2) under location, rotation and reflection while often 
preserving scale information. Then the joint study of size-
and-shape is of interest. Size-and-shape spaces were 
introduced by [23]. The definition of the size-and-shape of a 
configuration matrix was given by [21]. The Procrustes size-
and-shape distance between two diffusion tensors is defined 
as 
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The Procrustes solution R̂  for matching Q1 and Q2 is 
  RQQR
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where U and V are from the singular value decomposition. 
  

B. Procrustes Estimators 

Consider the general case where there are 
2≥N diffusion tensors D1,…,DN, and Di = Qi Qi

T, i = 1,2. 
Now the aim is to calculate the Fréchet mean using the full 
Procrustes shape metric in (4) and the Procrustes size-and-
shape metric in (6). 

The sample Fréchet mean relative to the full Procrustes 

shape metric )(⋅Fd  is given by 
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The sample Fréchet mean relative to the Procrustes size-
and-shape distance )(⋅Sd  is given by 
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Specifically, 
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C. Procrustes Anisotropy 

We define a new anisotropy measure Procrustes 
anisotropy (PA) with the full Procrustes shape metric. The 
definition of PA is given by 
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where ∑ =
= 3

1
3/

i iλλ . It is clear that PA is a normalization 

of the FOPA distance from any given diffusion tensor D to 
the identity tensor, representing the case of ideal isotropy. 
The range of PA is [0, 1] with PA=0 indicating full isotropy 
and PA ≈ 1 representing the extremely strong anisotropy. 
PA is invariant to the uniform scaling of a diffusion tensor. 

III.  WEIGHTED GENERALIZED PROCRUSTES METHOD 

In this section, diffusion tensor processing methods 
including smoothing and interpolation are developed with 
consideration of contributions from more than two 
neighboring tensors. 

A. Weighted generalized Procrustes analysis 

For processing a sample of diffusion tensors at voxels 
distributed in three-dimensional space, a more general case 
appears that the contributions from D1,…,DN are different to 
the mean diffusion tensor. Therefore, we need to consider a 
weighted problem to obtain the weighted mean diffusion 
tensor. 

Given a suitable distance function d, the weighted 
Fréchet sample mean of D1,…,DN  is defined by: 
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where the weights wi satisfy  wi ≥  0 and 1
1

=∑ =

N

i iw , and 

in applications can be, for example, a function of the 
Euclidean distance from the location of interest to the 
sampling locations (e.g., voxels). 

 
Weighted generalized Procrustes analysis (WGPA) is 

proposed to estimate T̂  when d = dS is the size-and-shape 
distance [13]. It can then be shown that the WGPA mean 
tensor is given by 
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squared Euclidean norms, which is  given by 
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Below we give an algorithm (in Table 1) for computing 

WGPAQ̂ : 

TABLE 1.  WEIGHTED GENERALIZED PROCRUSTES ALGORITHM 

1: Initial setting:  Nichol i
P
i ,...,1),( =← DQ  

2: WGPAS  from previous iteration: 0←pS  

3: WGPAS  from current iteration: 
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14: return  
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B. Weights 

In WGPA we assume that the weights wi, i=1,..., N are a 
function of the Euclidean distance from the voxel of interest 
to the sampling voxel. The simplest setting for the weights is 
with the inverse distance function given by 
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where di is the Euclidean distance from the voxel containing 
the weighted mean to the ith voxel with Di. 
     For more flexibility of weight setting, an exponential 
weight function is proposed as follows: 
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where 0 , ≥BA  are used to control the change of the 
weight as the distance changes. For example, with A = 1 and 
B = 0.01 the weight changes more steadily than the weight 
with A = 20 and B = 0.01. 

 

C. Smoothing 

Weighted generalized Procrustes framework can be 
adapted to smooth the diffusion tensor data. Let Vs be the 
voxel location in (x,y,z) coordinates. Let Ds be the original 
diffusion tensor in voxel Vs. Neighbor voxels of Vs can be 
defined by 
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V
m ≤−=K          (19) 

where 0* ≥d  is a constant. 
Given D1,…,Dm at voxels V1,...,Vm, the weighted mean 

sD is the weighted generalized Procrustes mean of D1,…,Dm 

and Dm+1, where Dm+1= Ds. It is natural to let Ds contribute to 
the weighted mean, and let Vs be a neighbor of itself, i.e. Vs 
=Vm+1. Weights of each diffusion tensor can be set with a 
weight function. For example, the exponential weights are 
given by 
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In particular, since ||Vm+1-Vs||=0, Ds with the largest weight 
wm+1 contributes most. 

In a diffusion tensor dataset given each diffusion tensor 
Ds at voxel Vs and D1,…,DN at neighbour voxels V1,...,VN 

we can calculate the weighted mean tensor sD which will 

replace each Ds. The weights w1,...,wN and ws are set as 
proposed in (18). 

D. Interpolation 

By interpolation of the tensor data we mean construction 
of new diffusion tensors based on the original data. More 
specifically, we mesh the three-dimensional volume 
containing diffusion tensor data with regular rigid. For each 
new born subvoxel V*, we will sample a weighted 
generalized Procrustes mean of diffusion tensors at V*'s 
neighbors, and allocate this mean to V*. 

IV.  APPLICATIONS 

A. Material 

A set of diffusion weighted MR images acquired with the 
Uniform 32 DTI diffusion gradient direction scheme [24] 
from a healthy human brain has been used for this study. The 
MR images were acquired using a spin echo EPI (echo 
planar imaging) sequence with diffusion weighting gradients 
applied with a weighting factor of b=1000 s/mm2 in a Philips 
3T Achieva clinical imaging system (Philips Medical 
Systems, Best, The Netherlands). Throughout the subject's 
head, 52 interleaved contiguous transaxial slices were 
acquired in a matrix of 112x112 (interpolated to 224x224) 
with an acquisition voxel size of 1x1x2 mm3. For each slice, 
the acquisition was repeated for each of the 32 non-collinear 
directions according to the Uniform 32 direction scheme, and 
once with no diffusion weighting (b=0). A Bayesian 



estimation method [5] has been employed to compute the 
tensor field and all methods of this paper are programmed 
with MATLAB (The Mathworks, Inc., R2008a). 

B. Anisotropy Study 

Now let us compare PA with Fractional Anisotropy (FA) 
[25], and the hyperbolic tangent function of Geodesic 
Anisotropy (tanh(GA)) [12] from real data. Figure 1 shows 
FA, PA and tanh(GA) maps (axial slices). Since PA of 
diffusion tensor is always smaller than FA and tanh(GA) 
values, the PA map gives a darker color overall. The 
splenium in corpus callosum is one of the regions where the 
overall anisotropy is strongly high [26]. We take FA, PA and 
tanh(GA) values along the green line in the splenium and 
show them in Figure 2. PA has significantly higher variation 
than FA and tanh(GA). In general, PA offers better contrast 
in highly anisotropic regions. 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

C. Geodesic Iinterpolation 

Now we carry out an experiment to investigate the 
geometric nature of geodesic paths obtained with different 
metrics. 

Two synthetic tensors D1 and D2 are not orthogonal and 
are of different shape and size. To compare interpolations 
with different metrics in size, orientation and anisotropy of 
tensor, we use four measures: the determinant |D| (volume of 
the diffusion ellipsoid), |D|, FA and PA, where the angle φ  
measures the difference of orientations from the synthetic D1 

to an interpolated tensor in the geodesic path. The angle φ  is 
the smaller angle between the principal eigenvectors of D1 
and the interpolated tensor. The angle φ  is defined as                                         

                     9,...,1||),arcsin(|| 1 =×= ipvpv iφ            (21) 

where pv1 is the principal eigenvector of D1 and pvi is the 
principal eigenvector of the ith interpolated tensor (including 
two synthetic diffusion tensors), and i=1,...,9, with i=1 and 
i=9 corresponding to the synthetic tensors D1 and D2, 
respectively. 

Figure 3 shows four different geodesic paths between D1 
and D2, namely, the Euclidean dE, log-Euclidean dL, 
Riemannian dR and Procrustes size-and-shape dS metrics. 
From a variety of examples it does seem clear that the 
Euclidean metric is very problematic, especially due to the 
parabolic interpolation of the determinant. The Procrustes 
metric offers somewhat better interpolation in the tensor's 
orientation and anisotropy (see graphs of |D| andφ ). In 
general, the log-Euclidean and Procrustes size-and-shape 
methods seem preferable. 

 
 
 
 
 
 
 
 
 
 
 
 

D. Interpolation and Smoothing of Real Data 

We smooth and interpolate (with 2 interpolations 
between each pair of original voxels) the diffusion tensor 
data from a normal human brain, and calculate the FA and 
PA maps shown in Figure 4. Obviously, FA and PA maps 
from the processed tensor data are much smoother than the 
ones without processing. The feature that the cingulum (cg) 
is distinct from the corpus callosum (cc) is clearer in the 
anisotropy maps from the processed data than those without 
processing in Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 1. Anisotropy maps from axial view. Left: FA map. Middle: PA 
map. Right: tanh(GA) map. 

 

 
Figure 2. Comparison of FA, PA and tanh(GA) values. FA, PA and 
tanh(GA) values are from tensors at voxels along the green line in 
Figure 1.  
 

 
Figure 3. Geodesic paths in experiment 5 between two general tensors (in 
red) and graphs of four measures. 

 

 
Figure 4. FA (a) and PA (b) maps based on Bayesian estimates without post-
processing. FA (c) and PA (d) maps from smoothed and interpolated tensor 
data obtained with the weighted generalized Procrustes method. (a.1), (b.1), 
(c.1) and (d.1) are zoomed inset regions in yellow box. 

 



V. CONCLUSION 

In this work, we have used the full ordinary Procrustes 
analysis to match two diffusion tensors. The solution to the 
full ordinary Procrustes problem of a diffusion tensor and an 
isotropy has been normalized to be a new anisotropy index- 
Procrustes Anisotropy (PA). PA provides better contrast in 
highly anisotropic region of the brain. For a more general 
case with more than two tensors, the weighted generalized 
Procrustes framework has been developed for averaging 
more than two diffusion tensors with different fractions of 
contributions to the mean tensor. The weighted generalized 
Procrustes method has also been adapted for tensor field 
smoothing and interpolation. It will be interesting to apply 
Procrustes methods to other processing situations such as 
regularization of diffusion tensors [27] for the future work. 
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