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Abstract—There is an increasing need to develop processing diffusion tensorD on a Riemannian metric space. The
tools for diffusion tensor image data with the corigeration of Fréchet mean [14][15][16] dD is defined as
the non-Euclidean nature of the tensor space. In th paper 1
Procrustes analysis, a non-Euclidean shape analysol under T =arginf —Id(D,T)Z f(D)dD, 1)
similarity transformations (rotation, scaling and translation), is . ) T2 ) ) )
proposed to redefine sample statistics of diffusiotensors. A~ Where d is a metric. A Fréchet mean is not necessarily
new anisotropy measure Procrustes Anisotropy (PAkidefined ~ unique. However, it is possible to prove the unigss with
with the full ordinary Procrustes analysis. Comparsons are  sufficient conditions. For example, for non-Eucidespaces
made with other anisotropy measures including Fradbnal with negative sectional curvature, the Fréchet meatways
Anisotropy and Geodesic Anisotropy. The partial gearalized unique [17].
Procrustes analysis is extended to a weighted genéred
Procrustes framework for averaging sample tensors ith Given a sample oN diffusion tensorsDy,...,Dy the
different fractions of contributions to the mean tesor. Fréchet mean db,,...,Dy is given by
Applications of Procrustes methods to diffusion tesor R N
interpolation and smoothing are compared with Eucliean, T = arginf Zd(Di,T)z. (2)
Log-Euclidean and Riemannian methods. T
And the sample variance B¥,...,Dy is defined as
Keywords-Procrustes analysi; non-Euclidean  metric; 1q ~
diffusion tensor; anisotropic diffusion Uél,.,.,DN :de(DwT)z- ®)
i=1

The Euclidean [18], Log-Euclidean [19] and Riemamni
[14][20] metrics, denoted byl_,d, and d respectively,

have been proposed for defining the sample mean of
diffusion tensors.

The main aim of this work is to define new statistof
diffusion tensor sample with the non-Euclidean rodth
Brocrustes analysis for tensor field processingaatisbtropy
study.

l. INTRODUCTION

Diffusion tensor imaging (DTI) is a specific magoet
resonance imaging (MRI) modality method for prongli
information about the microstructure and organarabtf the
tissue in vivo. In DTI, displacement of water mallss over
time is modeled by a zero-mean trivariate Gaussia
distribution [1] with covariance matrix evolvingkarly with
time and determined by the diffusion tensor (DT)3»8
symmetric positive-definite matrix. DT inferenceotfn
observed diffusion MRI data has been Commonly edrout 1. PROCRUSTESVIEAN DIFFUSIONTENSOR
using least squares [2][3] and Bayesian [4][5] rodth The
principal eigenvector of the tensor estimates tbmidant A Procrustes Distances
fiber orientation at a voxel whereas various tersived
diffusion anisotropy indices measure local anigoiraDTI
has been applied into the study of diseases suatuliple
sclerosis, schizophrenia, and stroke [6]. White tenat
tractography [7][8][9]is another promising applicat of
DTI for investigating brain connectivity.

There is an increasing need to develop processiolg t
for diffusion tensor data. With the consideratidnpositive
semi-definiteness and symmetry of diffusion tensuwn-
Euclidean methods [10][11][12][13][14] have beepngsed
for diffusion tensor processing and anisotropy wtud

In this section, two Procrustes-based distancet ful
ordinary Procrustes and Procrustes size-and-shafances
will be introduced.

To ensure the positive semi-definitenesDgfi = 1, 2,
we use a reparameterization = Q; Q;" whereQ; is a 3x3
real matrix. For exampleQ; = chol®)) is the Cholesky
decomposition, of; = DY is the matrix square root. In our
computation we shall choose the Cholesky deconiposit
Note thatQ; and any rotation of IQ;R (R LI O(3)) result in
the samd;, i.e.Di = Qi QiT = QiR (Q|R) T.

. . . . Full ordinary Procrustes analysis (FOPA) [21][228] i
oslirii?/((:eals!emia-l fj(?fir:ﬁeseg)sx Si @reilIDrTngtr:gxév)l(tTi %yr]:grrn:ltlrlc used to match two objects as closely as possibta wi
P e ) - similarity transformations (translation, rotatiomdascale).
x®. Let f(D) be a probability density function of a | et ys first consider a pair of diffusion tens@s and D,.



The full Procrustes shape metric betw&randD, is given
by

dF(DliDz):HQl_ﬁQzéH 4)

- . N .
Q4 :arglrg)f ;R'ury:e,)HQiRi -Q*- @2

where (,[AS’,IQ) is the solution to minimize a squared C. Procrustes Anisotropy

Euclidean distance under the similarity transforams. The
squared Euclidean distance is given by

SFOPA(Dlsz)2 =HQ1_,BQ2R_13'YT 2, )

where a 3x3 rotation matriR [1 O(3), a scale parameter
£ >0, and a 3x1 location vectoy represent three
similarity transformations. Not#; is the 3x1 vector of ones.

The solution(?,,@,li) to the minimization of (5) has been

solved [21].

In DTI study, we wish to matck; (from D;) and Q»
(from D,) under location, rotation and reflection whileewft
preserving scale information. Then the joint studysize-

We define a new anisotropy measure Procrustes
anisotropy (PA) with the full Procrustes shape meffhe
definition of PA is given by

PA(D):\EdF('jg D)

33 -2 3
S35
2 i=1 i=1
where/ ) = Z?_l\/fi/g. It is clear that PA is a normalization
of the FOPA distance from any given diffusion tenBoto

(13)

and-shape is of interest. Size-and-shape spacee wéhe identity tensor, representing the case of idsatropy.
introduced by [23]. The definition of the size-asttape of a  The range of PA is [0, 1] with PA=0 indicating fisiotropy

configuration matrix was given by [21]. The Prodasssize-
and-shape distance between two diffusion tensadefined
as

ds(D,,D,) = inf [|Q,-Q,R|- (6)

ROo(3)
The Procrustes solutioR for matchingQ; andQ; is
R =arginf Q.- QR
=uv’

whereU andV are from the singular value decomposition.

B. Procrustes Estimators

Consider the general case where there
N = 2diffusion tensord;,...,.Dy, andD; = Q; Q. i = 1,2.
Now the aim is to calculate the Fréchet mean usiegfull
Procrustes shape metric in (4) and the Procrustesasd-
shape metric in (6).

The sample Fréchet mean relative to the full Psiesu
shape metricd - ([}l is given by

~

Te =Q:QF, (®)
where
A 2
Q: —arglrgfiZﬂ:F;Dr!)f(s)HﬂiQiRi -QI° ©

The sample Fréchet mean relative to the Procrsstes
and-shape distanag ([) is given by

R N
T =arginf iZ:l:ds(Di T)%. (10)
Specifically,
Ts =Q4Qs, (11)
where

and PA=1 representing the extremely strong anisotropy.
PA is invariant to the uniform scaling of a diffasitensor.

Il.  WEIGHTED GENERALIZED PROCRUSTESMETHOD

In this section, diffusion tensor processing method
including smoothing and interpolation are developéth
consideration of contributions from more than
neighboring tensors.

two

™) A Wei ghted generalized Procrustes analysis

For processing a sample of diffusion tensors atelgox
distributed in three-dimensional space, a more g¢roase
appears that the contributions frddy,...,Dy are different to
the mean diffusion tensor. Therefore, we need tsider a

ar¥eighted problem to obtain the weighted mean diffus

tensor.
Given a suitable distance functiod, the weighted
Fréchet sample meanbf,...,Dy is defined by:

N

= i 1 . 2, 14

T = arginf ;W'd(D"D) (14)
. . N

where the weightsy; satisfy w,> 0 a”dzizlwi =1, and

in applications can be, for example, a function tbé
Euclidean distance from the location of interest the
sampling locations (e.g., voxels).

Weighted generalized Procrustes analysis (WGPA) is

proposed to estimat® whend = ds is the size-and-shape
distance [13]. It can then be shown that the WGP&am

tensor is given by
- - A AT
TWGPA - QWGPAQWGPA (15)
N

where Q\NGPA:Z'-lwiQiéi and the orthogonal matrices

Iii , i=1,...N minimize Sygpa the sum of
squared Euclidean norms, which is given by

weighted



2

N N
Swera = Rimp; ZWi QAR _ZWJQJ'RJ' (16)
e =1 =

Below we give an algorithm (in Table 1) for compgti

QWGPA'

TABLE 1. WEIGHTED GENERALIZED PROCRUSTESALGORITHM

1:Initial setting: QP — chol (D,),i =1,...,N
2: Syepa from previous iterationS, — 0

3: Sygpa from current iteration:
N N
Sy = 2w lIQF =2 w,Q I
i=1 j=1

4:while | S, = S, [>tolerancedo

5: for i=1toNdo
A 1

6: = — W. t
Q 1-w; ; Qi

7:  Calculate th@, minimizing ”Q -QrR, || (partial
ordinary Procrustes analysis)

8: QiP - Qiplii
9: end for
10: S, - S,
11 N N
"S- Zvvl ”Qip _ZWjQ'j:; I
i=1 j=1
12:end while

. oA N
13: Quera < Z\NiQiP
=1

14:return Q oo

B. Weights

In WGPA we assume that the weightsi=1,...,N are a
function of the Euclidean distance from the voxeinterest
to the sampling voxel. The simplest setting forweghts is
with the inverse distance function given by

— di_l
W ==

247
=1

whered; is the Euclidean distance from the voxel contajnin
the weighted mean to the ith voxel with

For more flexibility of weight setting, an eential
weight function is proposed as follows:

expCAd)+B [,

17

Jd=1...,N

N (18)

i N
D exp-Ad?)+B

=1

C. Smoothing

Weighted generalized Procrustes framework can be
adapted to smooth the diffusion tensor data. Leb& the
voxel location in Xy,2) coordinates. LeDg be the original
diffusion tensor in voxel ¥ Neighbor voxels of Ycan be
defined by

V,V,,....V. y=arg||V-V, |kd (19)
\%
whered” =0 is a constant.
Given Dy,...,Dy, at voxels V,...,Vy, the weighted mean

Bsis the weighted generalized Procrustes medpy, of.,Dy,

andDy,.1, whereD,,;1= Ds. It is natural to leDg contribute to
the weighted mean, and let e a neighbor of itself, i.e.sV
=Vn+1. Weights of each diffusion tensor can be set with
weight function. For example, the exponential weigare
given by
expCA|lV, -V ) +B
i N

expCA(lV, -V, |) +B
=1

Ji=1...m+1 (20)

i

In particular, since ||\M:1-V¢|=0, Ds with the largest weight
Wpm+1 CONtributes most.

In a diffusion tensor dataset given each diffusiensor
Ds at voxel \{ andD;,...,Dy at neighbour voxels ...,y

we can calculate the weighted mean terﬁglwhich will

replace eaclDs The weightswy,...wy and ws are set as
proposed in (18).

D. Interpolation

By interpolation of the tensor data we mean coostsn
of new diffusion tensors based on the original ddare
specifically, we mesh the three-dimensional volume
containing diffusion tensor data with regular rigkbr each
new born subvoxel V* we will sample a weighted
generalized Procrustes mean of diffusion tensord/*a
neighbors, and allocate this mean to V*.

IV.  APPLICATIONS

A. Material

A set of diffusion weighted MR images acquired vitile
Uniform 32 DTI diffusion gradient direction schenfi24]
from a healthy human brain has been used for thdysThe
MR images were acquired using a spin echo EPI (echo
planar imaging) sequence with diffusion weightingdients
applied with a weighting factor of b=1000 s/fmim a Philips
3T Achieva clinical imaging system (Philips Medical
Systems, Best, The Netherlands). Throughout théestd
head, 52 interleaved contiguous transaxial slicesrew
acquired in a matrix of 112x112 (interpolated tol2224)

where A,B=>0 are used to control the change of thewith an acquisition voxel size of 1x1x2 mnfror each slice,

weight as the distance changes. For example, Avithl and
B = 0.01 the weight changes more steadily than thight
with A =20 andB = 0.01.

the acquisition was repeated for each of the 32audimear
directions according to the Uniform 32 directiohame, and
once with no diffusion weighting (b=0). A Bayesian



estimation method [5] has been employed to comphue g=arcsin(Jpv, x pv, [|),i =1,...9 (21)
tensor field and all methods of this paper are @ogned |, here pv; is the principal eigenvector db, and pv; is the

with MATLAB (The Mathworks, Inc., R2008a). principal eigenvector of thigh interpolated tensor (including
B. Anisotropy Study two synthetic diffusion tensors), andl,...,9, withi=1 and
i=9 corresponding to the synthetic tensors &hd D,

Now let us compare PA with Fractional AnisotropAjF
[25], and the hyperbolic tangent function of Geaddes
Anisotropy fanh(GA)) [12] from real data. Figure 1 shows
FA, PA andtanh(GA) maps (axial slices). Since PA of
diffusion tensor is always smaller than FA atadh(GA)
values, the PA map gives a darker color overalle Th
splenium in corpus callosum is one of the regiohene the o . .

X ; ; parabolic interpolation of the determinant. The dPustes
?a\ﬁr%l ,vasaaggsyeslsosgotﬂglyg?égez [ﬁr?]é \i/r\wletrﬁikgbﬂ:eﬁigrqid an metric offers somewhat better interpolation in teasor's
show them in Figure 2. PA has significantly highariation ~ Ofientation and anisotropy (see graphs Df 4nd¢). In
than FA andanh(GA). In general, PA offers better contrast general, the log-Euclidean and Procrustes sizeshage
in highly anisotropic regions. methods seem preferable.

IDI & FA PA
des 000N\ YT —— |{—]

1234567809 123456789 123456789 123456789

respectively.

Figure 3 shows four different geodesic paths betvize
and D, namely, the Euclideands, log-Euclidean d,
Riemanniandz and Procrustes size-and-shape metrics.
From a variety of examples it does seem clear that
Euclidean metric is very problematic, especiallye da the

TRV s i e
desroeoti\\ ! | | {~—]
Figurl. nisotropy maps om iaI ieW. Left: p.iddle: PA ds/000 ( Q \ \\ f§$| | »‘"l M M \—/|

map. R|ghttanh(GA)map T13456789 123456789 123456789 123456789
Figure 3. Geodesic paths in experiment 5 betweergemeral tensors (in

red) and graphs of four measures.

D. Interpolation and Smoothing of Real Data

We smooth and interpolate (with 2 interpolations
between each pair of original voxels) the diffusi@msor
data from a normal human brain, and calculate theafd
PA maps shown in Figure 4. Obviously, FA and PA sap
from the processed tensor data are much smootherttte
ones without processing. The feature that the ¢dimgycg)
is distinct from the corpus callosum (cc) is cleare the
anisotropy maps from the processed data than thitkeut
Tos 110 115 120 125 130 processing in Figure 4.

x coordinates (left to right)
Figure 2. Comparison of FA, PA atahh(GA) values. FA, PA and
tanh(GA) values are from tensors at voxels along tleegiine in
Figure 1.

C. Geodesic linterpolation

Now we carry out an experiment to investigate the
geometric nature of geodesic paths obtained witteréint
metrics.

Two synthetic tensorB; and D, are not orthogonal and
are of different shape and size. To compare intatipos
with different metrics in size, orientation and sotropy of
tensor, we use four measures: the determibgrivplume of

: : : : Figure 4. FA (a) and PA (b) maps based on Bayesstimates without post-
the diffusion e”'_pSOId)’Dl’ FA_and F)A’ where the anglp processing. FA (c) and PA (d) maps from smootheatliaterpolated tensor
measures the difference of orientations from thettmticD, data obtained with the weighted generalized Proesusethod. (a.1), (b.1),
to an interpolated tensor in the geodesic path.dfige ¢ is (c.1) and (d.1) are zoomed inset regions in yeliox.

the smaller angle between the principal eigenvectdD,
and the interpolated tensor. The anglés defined as



V. CONCLUSION

In this work, we have used the full ordinary Prates
analysis to match two diffusion tensors. The sohutio the

full ordinary Procrustes problem of a diffusiongenand an

isotropy has been normalized to be a new anisotimggx-
Procrustes Anisotropy (PA). PA provides better asttin
highly anisotropic region of the brain. For a mgeneral
case with more than two tensors, the weighted géined

Procrustes framework has been developed for aveyagi

more than two diffusion tensors with different fians of
contributions to the mean tensor. The weighted igdized
Procrustes method has also been adapted for tdiesdr
smoothing and interpolation. It will be interestitm apply
Procrustes methods to other processing situatiooh as
regularization of diffusion tensors [27] for thedte work.
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