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Abstract. The main observation of this paper it that the modified Korteweg-de Vries

equation has its natural origin in phase modulation of a basic state such as a periodic

travelling wave or more generally a family of relative equilibria. Extension to 2+1 suggests

that a modified Kadomtsev-Petviashvili (or a Konopelchenko-Dubrovsky) equation should

emerge, but our result shows that there is an additional term which has gone heretofore

unnoticed. Thus through the novel application of phase modulation a new equation appears

as the 2+1 extension to a previously known one. To demonstrate the theory it is applied to

the cubic-quintic Nonlinear Schrödinger (CQNLS) equation, showing that there are relevant

parameter values where a modified KP equation bifurcates from periodic travelling wave

solutions of the 2+1 CQNLS equation.
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1. Introduction

The modified Korteweg-de Vries equation (mKdV),

ut ± u2ux + uxxx = 0 , (1.1)

for the scalar-valued function u(x, t) is most well-known as an integrable member of the KdV

family. The interest of this paper will be on how the mKdV (and its 2+1 generalisations)

emerge in a reduction from an arbitrary PDE generated by a Lagrangian. The properties and

solutions of the mKdV equation motivate this analysis, but are not the focus of this paper.
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The mKdV equation is related to the KdV equation through the Miura transformation [12].

However, since the Miura transformation is not bijective, the range of solutions of mKdV

is much larger than KdV [20]. For example, the mKdV equation has breather solutions

and the cnoidal waves are Benjamin-Feir unstable when (1.1) has the plus sign [7, 20]. The

mKdV has been found in a wide range of applications: Alfv́en waves, anharmonic lattices,

ion acoustic solitons, traffic flow, thin ocean jets, heat pulses in solids, and internal waves

(see [20] and references therein).

Typically the KdV or mKdV is derived starting with the dispersion relation in the

neighborhood of a trivial state. The dispersion relation generates the linear terms and an

asymptotic expansion or the method of multiples scales is used to generate the nonlinear

terms (e.g. [6]). In this paper this strategy is reversed; the basic state is used as the generator

of the mKdV equation. This strategy is implemented using phase modulation. It is natural

since it encapsulates the case of emergence from simple or trivial basic states but also

generalises to the case of bifurcation from periodic travelling waves. Phase modulation

dramatically enlarges the range of contexts where the mKdV emerges as a model.

Phase modulation has its origins in Whitham modulation theory (WMT) [19] but WMT

generates dispersionless modulation equations. The idea in phase modulation is to use a more

general scaling and a direct ansatz with explicit wavenumber and frequency modulation (e.g.

[1, 16, 17, 18]), taking into account natural singularities. With the right scaling dispersion

enters naturally.

As in WMT, the starting point is the class of PDEs that are the Euler-Lagrange equation

associated with a general Lagrangian density,

L (U) =

∫ ∫ ∫
L(U,Ut, Ux, Uy) dxdydt , (1.2)

for some vector-valued function U(x, y, t). The theory will be developed in the context of

2+1 and this will lead to more than the mKdV equation and indeed more than the modified

KP equation. The theory revolves around the basic state. For definiteness the basic state is

assumed to be a periodic travelling wave solution

U(x, y, t) = Û(kx+my + ωt+ θ0) = Û(θ) , Û(θ + 2π) = Û(θ) , (1.3)

where (k,m) are the wavenumbers and ω is the frequency, although the theory can be built

around any relative equilibrium (cf. [1, 16, 17, 18]). The Lagrangian, averaged over one

period, on the wavetrain is then

L (ω, k,m) =

∫ 2π

0

L(Û , ωÛθ, kÛθ,mÛθ) dθ . (1.4)

The Whitham strategy is to substitute k = θx, m = θy, ω = θt, and take the variation of

(1.4) with respect to θ which results in the conservation of wave action,

A (ω, k,m)t + B(ω, k,m)x + C (ω, k,m)y = 0 , (1.5)
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where ω, k, and m are considered as functions of x, y, t, and A := Lω, B := Lk, and

C := Lm. This equation, coupled with the consistency conditions,

kt = ωx , mt = ωy , ky = mx , (1.6)

form the Whitham modulation equations (WMEs). However the four equations (1.5)-(1.6)

are a set of dispersionless first-order PDEs. To generate the mKdV equation a more general

approach is needed.

Our strategy here is to use an explicit ansatz for the modulation. That is the modulation

of Û(θ, ω, k,m) is represented by

Û(θ + εaφ, ω + εbΩ, k + εcq,m+ εdr) + εeW , (1.7)

where W is a remainder, ε is a small parameter, the exponents a, b, c, d, e are problem

dependent, and Ω, q, and r depend on slow time and space scales. Singularities in

wavenumber-frequency space affect the choice of scales, and are the key mechanism for

bringing in dispersion. Substitution of (1.7) into the Euler-Lagrange equation, expansion,

and reduction then leads to PDEs for Ω, q and r. The aim is to identify the singularites and

scaling that result in a mKdV in 1 + 1 and its generalisation to 2 + 1.

The main result of this paper is that when the components (A ,B,C ) of the wave action

conservation law, when evaluated on the family of basic states (1.3), have the singularities

Bk = 0 , Bkk = 0 , and Ck = 0 , (1.8)

in 2 + 1, then modulation with slow time and space scales

X = εx , Y = ε2y , T = ε3t , (1.9)

and the ansatz

Û(θ + φ, ω + ε3Ω, k + εq,m+ ε2r) + ε2W , (1.10)

results in the following modulation equation for q

((
Ak + Bω

)
qT +

1

2
Bkkkq

2qX + K qXXX

)

X

+ CmqY Y

+(Bkm + Ckk)(qqY )X + Bkm(qX∂
−1
X qY )X = 0 ,

(1.11)

with the modulation of Ω and r following from conservation of waves (see (3.3) in §3). This

equation will be called mKP-KD+ with the plus flagging up the second to last term. In this

equation ∂−1
X denotes an antiderivative (when the antiderivative is not well-defined, the term

∂−1
X qY is replaced by r). The coefficients in (1.11) are either derivatives of the components

of wave action conservation or, in the case of K , determined by the dispersion relation or a

Jordan chain argument, and the details of their construction are given in §3.
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Restriction of (1.11) to 1 + 1 gives the mKdV equation in universal form

(
Ak + Bω

)
qT +

1

2
Bkkkq

2qX + K qXXX = 0 , (1.12)

with only the first two conditions in (1.8) required. In 2 + 1 one would expect that the

generalisation of (1.12) is mKP

((
Ak + Bω

)
qT +

1

2
Bkkkq

2qX + K qXXX

)

X

+ CmqY Y . (1.13)

Indeed, this is the appropriate generalisation when Bkm = 0 and this latter condition is

satisfied when the basic state and equations are symmetric in y (see §3.1 for precise symmetry

condition). When Bkm 6= 0 the latter two terms and the complete equation in (1.11) are

required.

When only one of the last two terms in (1.11) is operational the mKP generalises to,

((
Ak + Bω

)
qT +

1

2
Bkkkq

2qX + K qXXX

)

X

+ CmqY Y + Bkm(qX∂
−1
X qY )X = 0 . (1.14)

This form of equation appears in [10, 11], albeit without the representation of the coefficients

in terms of the action as here, and in the literature it is called the Konopelchenko-Dubrovsky

equation, or mKP-KD for short. However, the complete equation (1.11) with the (qqY )X term

included is new. With the scaling (1.9) it is natural to include this term so it is surprising

that it has not been noticed before in generalisations of mKdV to 2 + 1.

The term “universal form” is used to indicate that the resulting equation is deduced from

the abstract Lagrangian (1.2), and the coefficients are expressed in terms of the components

of the action conservation which are defined purely in terms of the Lagrangian, and don’t

depend on particular PDEs. A key step in relating the properties of conservation laws to

the Euler-Lagrange equation is to transform the Lagrangian into multisymplectic form.

The theory is immediately applicable to any PDE generated by a Lagrangian with a

family of periodic travelling waves (or more generally a family of relative equilibria). As a

consequence, the theory of this paper anticipates the emergence of the mKP-KD+ equation

from finite amplitude waves, rather than just trivial states, in various contexts. An example

which demonstrates the application of this theory is given in §4. Starting with the cubic-

quintic variant of the Nonlinear Schrödinger equation (CQNLS),

iΨt + Ψxx + Ψyy − α|Ψ|2Ψ + |Ψ|4Ψ = 0 , (1.15)

for the complex-valued function Ψ(x, y, t) and parameter α > 0, it is shown that at particular

parameter values along a branch of periodic travelling waves, the equation (1.11) emerges

with Bkm = 0, and after scaling the coefficients, can be simplified to

(
± qT + q2qX + qXXX

)
X
− qY Y = 0 . (1.16)
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Dispersionless WMEs

Bk = 0

(
Ak + Bω

)
qT + BkkqqX + K qXXX = 0

Ak = 0

AωqTT +
(
1
2Bkkq

2 + K qXX

)
XX

= 0
(
Ak + Bω

)
qT + BkkqqX + K4qXXXXX = 0

K = 0Bkk = 0

(
Ak + Bω

)
qT + 1

2Bkkkq
2qX + K qXXX = 0

Figure 1: The three codimension two modulation equations associated with breakdown of

the KdV equation, with the middle bottom case, Bkk = 0 considered in this paper.

The derivation of mKdV in 1+1 in this paper completes the classification of codimension

two singularities that arise from the breakdown of the KdV equation in phase modulation.

In 1 + 1, the KdV equation arises via phase modulation when the WMEs break down at the

singularity Bk = 0 and in universal form [1] it is

(
Ak + Bω

)
qT + BkkqqX + K qXXX = 0 , (1.17)

where q(X,T ) is the modulated wavenumber, X = εx, and T = ε3t. There are three ways

this equation can degenerate producing codimension two singularities: Ak = 0 or K = 0 or

Bkk = 0. In each case a new scaling and ansatz produces a different equation. A diagram

showing the new codimension two equations that arise when KdV breaks down is in Figure

1. The first case, Ak = 0, is considered in [17] and the result is

Ak = 0 and Bkk 6= 0 , K 6= 0 ⇒ AωqTT +
(
1
2
Bkkq

2 + K qXX
)
XX

= 0 ,

with the additional constraint Aω 6= 0 generated, and new scaling. The second case, K = 0,

is considered in [14] and the result is

K = 0 and Ak 6= 0 , Bkk 6= 0 ⇒ (Ak + Bω)qT + BkkqqX + K5qXXXXX = 0 ,

with the additional constraint K5 6= 0 generated, and new scaling. The third case where

Bkk = 0 but the other two coefficients in (1.17) are nonzero, and Bkkk 6= 0, is considered

in this paper. All three of the above have 2 + 1 generalisations as well. The above

“classification by codimension” is reminscent of classifications in bifurcation theory [5]. The

above categorisation is in the gradient setting and so could potentially be made precise

by cataloguing the singularities of the Lagrangian function L (ω, k,m) using catastrophe
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theory or singularity theory for gradient bifurcation problems [2]. However in this case,

since the KdV equation (1.17) has only three coefficients, the classification of codimension

two singularities is immediate. However more general and higher codimensional singularities

in phase dynamics will require a more systematic approach.

The format of this paper is as follows. The abstract properties of the Lagrangian relevant

to the modulation theory are presented in §2, including the multisymplectic formulation,

linearisation and conservation laws. The phase modulation analysis is undertaken in §3 and

the equation (1.11) is derived. The theory is applied to CQNLS in §4. Implications, other

directions, and generalisations are discussed in the concluding remarks §5.

2. Lagrangian, conservation laws, and linearisation

The starting point for the theory is PDEs generated by the 2 + 1 abstract Lagrangian (1.2).

The theory relies on transforming this density into multisymplectic form, and the process to

do so has been documented elsewhere (e.g. [1, 17]). This transformation can be interpreted

as a multi-dimensional Legendre transform, or simply as a rearrangement of the Lagrangian

to isolate the derivatives in each direction. The transformed Lagrangian is

L (Z) =

∫ ∫ ∫ [
1

2
〈Z,MZt〉+

1

2
〈Z,JZx〉+

1

2
〈Z,KZy〉 − S(Z)

]
dxdydt ,

for a new n−component state vector Z, skew symmetric matrices M, J and K and

Hamiltonian function S. The first variation of L (Z), with fixed endpoints on the variations,

results in an Euler-Lagrange equation of the form

MZt + JZx + KZy = ∇S(Z) , (2.1)

where Z(x, y, t) is an n−component state vector. It is assumed that a periodic travelling

wave solution, or relative equilibrium solution exists. For definiteness take the basic state

to be the former, but the methodology proceeds almost identically for relative equilibrium.

The basic state is

Ẑ(θ, ω, k,m) , θ := kx+my + ωt+ θ0 , (2.2)

where k, m are wavenumbers, ω is a frequency, and θ0 is a shift along the solution orbit.

This solution satisfies

(ωM + kJ +mK)Ẑθ = ∇S(Ẑ) . (2.3)

The linearisation of (2.1) about the basic state defines the linear operator

LV = D2S(Ẑ)V − (ωM + kJ +mK)Vθ .

Using this definition, and differentiating (2.3), the θ, k, m and ω derivatives of the basic

state satisfy

LẐθ = 0 , LẐk = JẐθ ,

LẐm = KẐθ , LẐω = MẐθ .
(2.4)
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The first of these highlights that Ẑθ ∈ ker(L), and for the purposes of this analysis we will

assume that the kernel is no larger. As a consequence solvability of inhomogeneous problems

involving L reduces to

LP = Q is solvable when 〈〈Ẑθ, Q〉〉 = 0 ,

for an inner product 〈〈·, ·〉〉. For the periodic travelling wave basic state the inner product is

〈〈P,Q〉〉 :=
1

2π

∫ 2π

0

〈P,Q〉 dθ ,

where 〈·, ·〉 is the Euclidean inner product on Rn.

2.1. Conservation laws

The theory of phase modulation relies on multisymplectic Noether theory, which relates

symmetry to conservation laws using the matrices M, J and K. In the present context, where

the basic state is a periodic travelling wave, the conservation law of interest is conservation

of wave action [1, 16, 17]. After evaluating the components of wave action on the basic state

and averaging, they are

A (ω, k,m) = 1
2
〈〈Ẑ,MẐθ〉〉 , B(ω, k,m) = 1

2
〈〈Ẑ,JẐθ〉〉 , C (ω, k,m) = 1

2
〈〈Ẑ,KẐθ〉〉 . (2.5)

Derivatives of these arise in the theory, and form both necessary emergence conditions and

some of the coefficients in the emergent PDE. The derivatives which are needed in the theory

are:
Ak = 〈〈Ẑk,MẐθ〉〉 = Bω ,

Bk = 〈〈Ẑk,JẐθ〉〉 ,

Ck = 〈〈Ẑk,KẐθ〉〉 = Bm ,

Bkk = 〈〈Ẑkk,JẐθ〉〉+ 〈〈Ẑk,JẐθk〉〉 ,

Ckk = 〈〈Ẑkk,KẐθ〉〉+ 〈〈Ẑk,CẐθk〉〉 = Bkm ,

Bkkk = 〈〈Ẑkkk,JẐθ〉〉+ 3〈〈Ẑkk,JẐθk〉〉 .

(2.6)

2.2. Jordan Chain Theory

Aside from the conservation laws, the other main structure which arises within the reduction

scheme is that of a Jordan chain. Ultimately, this leads to a characterisation of the dispersion

term in the reduced PDE (1.11). The relevant theory needed is as follows. We will be brief

as the necessary theory for Jordan chains has been given in our previous papers [1, 16, 17].

The first two equations in (2.4) highlight the presence of a Jordan chain of the form

Lξ1 = 0 , Lξi+1 = Jξi , i > 0 ,
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with ξ1 = Ẑθ, ξ2 = Ẑk. Using the notion of solvability introduced earlier, a third element

will exist when

0 = 〈〈Ẑθ,JẐk〉〉 = −Bk ,

by using (2.6). When this derivative vanishes the chain increases in length, allowing for the

definition

Lξ3 = Jξ2 = JẐk . (2.7)

A fourth element is automatic since Lξ2 = Jξ3 is solvable:

〈〈Ẑθ,Jξ3〉〉 = −〈〈Ẑk,JẐk〉〉 = 0 .

This paper assumes that the chain terminates at length four, that is; Lξ5 = Jξ4 is not

solvable, and so we introduce the quantity

K = 〈〈JẐθ, ξ4〉〉 6= 0 . (2.8)

It can be simplified using the Jordan chain

K := 〈〈JẐθ, ξ4〉〉 = 〈〈Lξ2, ξ4〉〉 = 〈〈ξ2,Lξ4〉〉 = 〈〈ξ2,Jξ3〉〉 . (2.9)

This quantity will show up as a dispersion coefficient in the phase modulation theory.

3. Reduction to mKP-KD+ via phase modulation

The following modulation ansatz is proposed

Z(x, y, t) = Ẑ
(
θ + φ, k + εq,m+ ε2r, ω + ε3Ω

)
+ ε2W (θ + φ,X, Y, T ) , (3.1)

where φ, q, r,Ω are functions of the slow variables (X, Y, T ), and ε, with definitions

X = εx, Y = ε2y, T = ε3t .

That is is the correct ansatz is confirmed a posteriori. The modulation frequency and

wavenumbers are realated by the conservation of waves,

Ω = φT , q = φX , r = φY , (3.2)

which by cross-differentation give

qT = ΩX , rT = ΩY , rX = qY . (3.3)

The idea is to the substitute the ansatz (3.1) into (2.1), Taylor expand around ε = 0

and solve the resulting system of equations. The remainder term W is also expanded in an

asymptotic series, with

W = W0(θ + φ,X, Y, T ) + εW1(θ + φ,X, Y, T ) + ε2W2(θ + φ,X, Y, T ) + . . . .
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A key difference from previous analyses of this type is that the remainder term W now

depends on φ, since the perturbation θ 7→ θ + φ is of order unity.

The equations at order εj, j = 0, 1, 2, 3, 4 are needed, with the first three brief, and the

mkP-KD+ arising at fourth order. The ε0 equations is just

(
ωM + kJ +mK

)
Ẑθ = ∇S(Ẑ) ,

recovering (2.3) and Ẑ satisfies this equation by assumption. Using the second result of

(2.4), the ε1 equation reduces to

(q − φX)LẐθ = 0 ,

recovering the phase consistency condition q = φX . Ignoring terms that cancel and using

(2.4) again, the ε2 equation is

LW0 + (r − φY )LẐm = qXJẐk .

The second term on the left vanishes trivially by the phase consistency condition r = φY .

For the term on the right hand side, solvability is imposed and generates the condition

0 = 〈〈Ẑθ,JẐk〉〉 = −〈〈JẐθ, Ẑk〉〉 = −Bk (3.4)

This is precisely the condition seen in §2.2 for the chain to be of length 4. Assuming the

condition Bk = 0, the equation can be solved for W0, giving

W0 = qXξ3 , (3.5)

where ξ3 has been defined in (2.7), plus an arbitrary amount of homogeneous solution, which

drops out in the final analysis.

At third order the equations get a bit more complicated. The ε3 terms are

LW1 + (Ω− φT )LẐω = qqX
(
JẐkk + J∂θξ3 −D3S(Ẑ)(Ẑk, ξ3)

)

+qY
(
KẐk + JẐm

)
+ qXXJξ3

Since Ω = φT the second term on the left hand side vanishes. Now, consider the solvability

of the right hand side. The qY term is solvable when

0 = 〈〈Ẑθ,KẐk + JẐm
〉
〉 = −Bm − Ck .

We assume this condition to be satisfied henceforth in this analysis. The term in qXX is

automatically solvable, using the fourth element in the Jordan chain, Lξ4 = Jξ3. The final

term we consider is the qqX term. Assessing solvability,

0 = 〈〈Ẑθ,JẐkk〉〉+ 〈〈Ẑθ,J∂θξ3 −D3S(Ẑ)(Ẑk, ξ3)〉〉
= 〈〈Ẑθ,JẐkk〉〉+ 〈〈ξ3,LẐθk〉〉
= 〈〈Ẑθ,JẐkk〉〉+ 〈〈Ẑθk,JẐk〉〉 = −Bkk .

(3.6)
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Therefore we require Bkk to vanish for the analysis to continue. This confirms the necessity

of all three conditions (1.8) for the emergence of mKP-KD+.

When the conditions are met, the solution for W1 is

W1 = qqX∂kξ3 + qXXξ4 + rXζ , (3.7)

plus an arbitrary amount of homogeneous solution which is neglected as it does not affect

the final equation at fourth order. In (3.7) the function ζ is defined by

Lζ = KẐk + JẐm .

The function ∂kξ3 in the qqX term has been deduced by taking the k derivative of the defining

equation for ξ3,

D3S(Ẑ)(Ẑk, ξ3) + D2S(Ẑ)∂kξ3 − (ωM + kJ)∂θkξ3 − J(ξ3)θ = JẐkk ,

or

L∂kξ3 = JẐkk + J∂θξ3 −D3S(Ẑ)(Ẑk, ξ3) . (3.8)

At fourth order, collecting the necessary terms and simplifying the result,

LW2 = qT (MẐk + JẐω) + qXXXJξ4 + qXY (Jζ1 + Kξ3) + rY KẐm

+qrX
(
JẐkm + KẐkk + Jζ1 −D3S(Ẑ)(ζ1, Ẑk)

)

+rqX
(
JẐkm + K∂θξ3 −D3S(Ẑ)(Ẑm, ξ3)

)

+qqXX
(
D3S(Ẑ)(Ẑk, ξ4)− J(ξ4)θ − J∂kξ3

)
+ (qX)2

(
D3S(Ẑ)(ξ3, ξ3)− 2J∂kξ3

)

+q2qX

(
1
2
JẐkkk + J(ξ)θk − 1

2
D4S(Ẑ)(Ẑk, Ẑk, ξ3)

)

−q2qX
(

1
2
D3S(Ẑ)(Ẑkk, ξ3) + D3S(Ẑ)(Ẑk, ∂kξ3)

)
.

(3.9)

Solvability of the above is now considered, with the final result being the desired phase

equation. Take the inner product of the right hand side with Ẑθ = ξ1. Firstly, the coefficient

of the qT term can be computed to show that

〈〈Ẑθ,MẐk + JẐω〉〉 = −Ak −Bk .

Using the definition (2.8), the coefficient of the qXXX term is

〈〈Ẑθ,Jξ4〉〉 = −K .

Similarly the coefficient of rY is

〈〈Ẑθ,KẐm〉〉 = −Cm .
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The next considered is the q2qX term. Starting from our expression for Bkk,

Bkkk = ∂k
(
Bkk

)

= ∂k

(
− 〈〈Ẑθ,JẐkk〉〉 − 〈〈Ẑθ,J∂θξ3〉〉+ 〈〈Ẑθ, D3S(Ẑ)(Ẑk, ξ3)〉〉

)

= −〈〈Ẑθ,JẐkkk + J∂θkξ3 −D4S(Ẑ)(Ẑk, Ẑk, ξ3)−D3S(Ẑ)(Ẑkk, ξ3)〉〉

+〈〈Ẑθ, D3S(Ẑ)(Ẑk, ∂kξ3)〉〉 − 〈〈Ẑθk,L∂kξ3〉〉 .
This last term can be manipulated to obtain

〈〈Ẑθk,L∂kξ3〉〉 = 〈〈JẐθθ −D3S(Ẑ)(Ẑk, Ẑθ), ∂kξ3〉〉 = 〈〈Ẑθ,J∂θkξ3〉〉 − 〈〈Ẑθ,D3S(Ẑ)(Ẑk, ∂kξ3)〉〉 ,

and so

Bkkk = 〈〈Ẑθ,D4S(Ẑ)(Ẑk, Ẑk, ξ3) + D3S(Ẑ)(Ẑkk, ξ3) + 2D3S(Ẑ)(Ẑk, ∂kξ3)−JẐkkk−2J∂θkξ3〉〉 .
(3.10)

This shows that the coefficient of the q2qX term is −1
2
Bkkk.

Now consider the quadratic terms. Starting with the qqXX term, its coefficient is given

by

〈〈Ẑθ,D3S(Ẑ)(Ẑk, ξ4)− J∂θξ4 − J∂kξ3〉〉

= 〈〈JẐθ, ∂kξ3〉〉+ 〈〈JẐθ, ∂θξ4〉〉+ 〈〈Ẑk,D3S(Ẑ)(Ẑθ, ξ4)〉〉

= 〈〈JẐθ, ∂kξ3〉〉+ 〈〈Ẑk,J∂θξ3 −D3S(Ẑ)(Ẑθ, ξ4)〉〉+ 〈〈Ẑk, D3S(Ẑ)(Ẑθ, ξ4)〉〉

= 〈〈JẐθ, ∂kξ3〉〉+ 〈〈Ẑk,J∂θξ3〉〉

= ∂k

[
〈〈JẐθ, ξ3〉〉

]
.

(3.11)

In the above, we have used that

L∂θξ4 = J∂θξ3 −D3S(Ẑ)(Ẑθ, ξ4), (3.12)

which can be seen by differentiating the defining equation for ξ4. The expression inside the

bracket is zero since

〈〈JẐθ, ξ3〉〉 = −〈〈Ẑθ,Jξ3〉〉 = −〈〈Ẑθ,Lξ4〉〉 = −〈〈LẐθ, ξ4〉〉 = 0 . (3.13)

The q2X term is shown to vanish in a similar way,

〈〈Ẑθ,D3S(Ẑ)(ξ3, ξ3)− 2J∂kξ3〉〉

= 〈〈ξ3,D3S(Ẑ)(Ẑθ, ξ3)〉〉 − 2〈〈Ẑk,J∂θξ3〉〉

= 〈〈ξ3,D3S(Ẑ)(Ẑθ, ξ3)− 2JẐkθ〉〉

= −〈〈ξ3,L∂θξ3 + JẐθk〉〉

= −〈〈JẐk, ∂θξ3〉〉 − 〈〈ξ3,JẐθk〉〉

= −〈〈JẐk, ∂θξ3〉〉+ 〈〈∂θξ3,JẐk〉〉

= 0 ,
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using results from (3.11) and (3.13) in going from the second to third lines. Therefore both

terms, qqXX and q2X , which have the correct scaling but are not conservative, disappear in

the solvability condition.

Next consider the mixed terms (with both r and q). Firstly, the qrX term simplifies to

〈〈Ẑθ,JẐkm + KẐkk + J∂θη −D3S(Ẑ)(η, Ẑk)〉〉

= 〈〈Ẑθ,JẐkm + KẐkk〉〉+ 〈〈η,JẐθθ −D3S(Ẑ)(Ẑθ, Ẑk)〉〉
= 〈〈Ẑθ,JẐkm + KẐkk〉〉+ 〈〈JẐm + KẐk, Ẑθk〉〉
= −

(
〈〈Ẑ,JẐθkm〉〉+ 〈〈Ẑm,JẐθk〉〉

)
−
(
〈〈Ẑ,KẐθkk〉〉+ 〈〈Ẑk,KẐθk〉〉

)

= −Bkm − Ckk (noting that Bkm = Ckk) .

Similarly, for the rqX term,

〈〈Ẑθ,JẐkm + K∂θξ3 −D3S(Ẑ)(ξ3, Ẑm)〉〉

= 〈〈Ẑθ,JẐkm〉〉+ 〈〈ξ3,KẐθθ −D3S(Ẑ)(Ẑθ, Ẑm)〉〉

= 〈〈Ẑθ,JẐkm〉〉+ 〈〈JẐk, Ẑθm〉〉

= −
(
〈〈Ẑ,JẐθkm〉〉+ 〈〈Ẑm,JẐθk〉〉

)

= −Bkm .

Combining the results of the above calculations, we have shown that the equation for

W2 in (3.9) is solvable when q, r satisfy the PDE

(
Ak + Bω

)
qT +

1

2
Bkkkq

2qX + K qXXX + CmrY + (Bkm + Ckk)qrX + BkmrqX = 0 . (3.14)

Differentiating with respect to X and introducing the antiderivative to solve rX = qY for r

recovers (1.11). Alternately, expressing q = φX and r = φY in terms of the phase in 3.14),

the pure phase version of (1.11) is
((

Ak +Bω

)
φT + 1

6
Bkkkφ

3
X +K φXXX

)

X

+CmφY Y +(Bkm+Ckk)φXφXY +BkmφY φXX = 0.

(3.15)

3.1. Reflection symmetric basic state

If the equation has a reflection symmetry in the y−direction and the basic state inherits this

symmetry, it is shown in §7 of [16] that the third component of the wave action conservation

law in (2.5) satisfies

C (k,−m,ω) = −C (ω, k,m) .

With this symmetry it is immediate that

Ck

∣∣
m=0

= Ckk

∣∣∣∣
m=0

= 0 .
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Hence when the basic state is aligned with the x−axis (m = 0) the third necessary condition

in (1.8) is automatically satisfied, and the coefficents in the latter two terms in (1.11) vanish

simplifying the emergent phase equations to the mKP equation
((

Ak + Bω

)
qT +

1

2
Bkkkq

2qX + K qXXX

)

X

+ CmqY Y = 0 , (3.16)

with the only necessary conditions being Bk = Bkk = 0.

4. Example: reduction of CQNLS to mKP

The cubic-quintic NLS (CQNLS) equation in standard form is given in (1.15). It appears

in the optics literature, describing the propagation of light pulses [8], and in the literature

on Bose-Einstein condensates [9]. A self-consistent derivation of CQNLS is given [13]. The

CQNLS equation is the Euler-Lagrange equation associated with the Lagrangian

L =

∫ t2

t1

∫ x2

x1

[
1
2
i(ΨΨt −ΨΨt)− |Ψx|2 − |Ψy|2 − 1

2
α|Ψ|4 + 1

3
|Ψ|6

]
dxdt , (4.1)

for real constant α, leading to the equation

iΨt +∇2Ψ− α|Ψ|2Ψ + |Ψ|4Ψ = 0 . (4.2)

The CQNLS equation (4.2) has a three-parameter family of exact periodic travelling wave

solutions

Ψ(x, y, t) = Ψ0e
iθ , θ = kx+my + ωt . (4.3)

Substitution of this form of solution into (4.2) gives the amplitude as a function of the

wavenumber and frequency,

∆ := |Ψ0|4 − α|Ψ0|2 − ω − k2 −m2 = 0 . (4.4)

Rearranging, ∆ = 0 is equivalent to

(
|Ψ0|2 − 1

2
α
)2 − k2 = ω +m2 + 1

4
α2 , (4.5)

giving the necessary conditions for existence

|Ψ0|2 > 0 and ω + k2 +m2 + 1
4
α2 > 0 .

In the (k, |Ψ0|) plane the set ∆−1(0) is a family of hyperbola parameterised for each fixed

(m,α) by ω.

The class of solutions (4.3) can also be considered as a relative equilibrium associated

with the SO(2) symmetry; that is, eisΨ(x, y, t) is a solution of (4.2) whenever Ψ(x, y, t) is a

solution, for any s ∈ R. The conservation law for this symmetry is At +Bx + Cy = 0 with

A = 1
2
|Ψ|2 , B = 1

2
(Ψ∗Ψx −Ψ∗

xΨ) , C = 1
2
(Ψ∗Ψy −Ψ∗

yΨ) ,
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where ∗ denotes complex conjugation. This conservation law can be confirmed using Noether

theory or by direct calculation. Evaluating the components of the conservation law on the

family of basic states gives

A = 1
2
|Ψ0|2, B = k|Ψ0|2, C = m|Ψ0|2 , (4.6)

with |Ψ0|2 expressing using (4.4) as a function of (ω, k,m). In looking for singular points, in

the family of periodic travelling waves, where mKdV emerges, one observation is immediate:

C (ω, k,m) is an odd function of m, since |Ψ0|2 is an even function of m, and so

Ck

∣∣
m=0

= Ckk

∣∣∣∣
m=0

= 0 .

Therefore, set m = 0, and then we need only identify values of (ω, k) where Bk = 0 and

Bkk = 0, and the emergent equation will be mKP rather than mKP-KD or mKP-KD+ due

to the fact that Ckk = Bkm = 0.

Differentiating B twice gives

Bk = u+ kuk and Bkk = 2uk + ukk , with u := |Ψ0|2 ,

and

(2u− α)uk = 2k and (2u− α)ukk + 2u2k = 2 .

Combining the existence condition (4.4), the condition Bk = 0 and the condition Bkk = 0,

and setting m = 0, leads to the three simultaneous nonlinear equations. These equations

can be best visualised as three curves in the (u, k, ω) plane,

∆ = 0
(
u− 1

2
α
)2 − k2 = ω + 1

4
α2

Bk = 0
(
u− 1

4
α
)2

+ k2 = 1
16
α2

Bkk = 0
(
u− 1

2
α
)2 − 1

3
k2 = 0 .

(4.7)

The existence set ∆−1(0) is a hyperbola, the Bk = 0 curve is a circle, and the Bkk = 0 curve

consists of two straight lines. Where the three surfaces intersect correspond to points where

the mKP-KD+ equation arises, occurring when the hyperbola is tangent to the circle, with

an example of this given in figure 2. The intersection occurs when

ω = − 9

32
α2 , u := |Ψ0|2 =

3

8
α , k2 =

3

64
α2 , (4.8)

with α any positive number. Note that there are two distinct k values due to the symmetry

with respect to k in (4.4).

This calculation confirms that there exist parameter values where the mKP can

potentially emerge. Now compute the values of the cofficients in (1.11), evaluated at the

singular point (4.8)

Ak = −4
k

α
, Bkkk = −96

α
, Bkm = 0 , Cm = |Ψ0|2 =

3

8
α =

8

α
k2 . (4.9)
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Figure 2: An example of the surfaces defined in (4.7) for α = 4. The surfaces corresponding to

these conditions are coloured green, grey and orange respectively. The intersections between

and the second and third conditions with the first are highlighted by the black and red lines

respectively. The second image shows the intersection between these lines from above and

thus the points where the mKP-KD+ equation emerges.

In summary, just knowing that CQNLS comes from a Lagrangian and has a family of periodic

travelling waves, with the symmetry in m and the singularities Bk = 0 and Bkk = 0, it is

immediate that there are parameter values where the mKP equation emerges in the form

(
−8

k

α
qT −

48

α
q2qX + K qXXX

)

X

+
8

α
k2 qY Y = 0 . (4.10)

It remains to compute the X−dispersion coefficient K . This coefficient can be obtained by

using the dispersion relation of (4.2) linearised about the family of basic states, or it can be

calculated using the Jordan chain argument given in §2.2. The calculation is given below

using the Jordan chain argument, and it is found that

K = − 2

α
. (4.11)

Substitution into (4.10) and simplifying gives the final form for the mKP emerging from

CQNLS at the singular point (4.8),

(
k qT + 6 q2qX + 1

4
qXXX

)
X
− k2 qY Y = 0 , (4.12)
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noting that k = ±α
√

3/8. By scaling it can be put in the canonical form (1.16). The

resulting mKP equation is focussing and so the periodic travelling waves can be Benjamin-

Feir unstable [7].

4.1. The dispersion coefficient K

To confirm the expression (4.11) for the dispersion coefficient the Jordan chain argument in

§2.2 is used. Since K is associated with X−dispersion, it can be calculated using the 1D

version of CQNLS,

iΨt + Ψxx − α|Ψ|2Ψ + |Ψ|4Ψ = 0 . (4.13)

First set up the multisymplectic structure M, J and S, and construct the linearisation about

the family of basic states. Let Ψ = a1 + ia2 and introduce a = (a1, a2) and b = ax. Then

the multisymplectic formulation of (4.13) is

MZt + KZx = ∇S(Z) , (4.14)

where,

Z =

(
a

b

)
, M =

(
−σ 0

0 0

)
, J =

(
0 −I

I 0

)
, σ =

(
0 −1

1 0

)
,

and

S(Z) =
1

2
b · b− α

4
(a · a)2 +

1

6
(a · a)3 .

Just a summary of the calculations are given since analysis of this type appears in

previous papers [1, 16, 17]. The basic state in the multisymplectic representation is

Ẑ(θ, k,m, ω) = Gθ

(
â

b̂

)
,

with |â|4 − α|â|2 − ω − k2 = 0, b̂ = kσâ, and

Gθ := Rθ ⊕ Rθ , Rθ :=

[
cos θ − sin θ

sin θ cos θ

]
.

Linearising (4.14) about the family of basic states generates the linear operator

L := D2S(Ẑθ)− kJ∂θ − ωM∂θ ,

or, after substitution,

L :=

[(
4|a|2 − 2α)aaT + k2I kσ

−kσ I

]
.
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The kernel of L is spanned by

ξ1 := Ẑθ = Gθ

(
σâ

−kâ

)
.

The next two members of the Jordan chain satisfy Lξ2 = Jξ1 and Lξ3 = Jξ2. These equations

are easily solved explicitly giving

ξ2 = Gθ

(
βâ

(1 + kβ)σâ

)
and ξ3 = Gθ

(
0

βâ

)
,

with

β :=
k

(2|â|2 − α)|â|2
.

Now using the formula (2.9),

K = 〈〈ξ2,Jξ3〉〉 = −β2|â|2 = − 2

α
.

Confirming (4.11).

5. Concluding remarks

In this paper the x−direction was preferred in that it was the singularities Bk = Bkk = 0

that underpinned the derivation. There is a dual version where time is the preferred direction.

In the 1 + 1 case the singularities (1.8) are replaced by Aω = Aωω = 0 and the resulting

modulation equation is

(Bω + Ak)ΩX + 1
2
AωωωΩ2ΩT + M ΩTTT = 0 ,

with M determined by a M−based Jordan chain. This equation has 2 + 1 generalisations,

and could also be oriented so that y is the preferred direction.

Although related to the KdV equation, the mKdV equation has different structure and

a wider range of solutions. For example the focusing mKdV equation has periodic travelling

wave solutions which are Benjamin-Feir unstable [7]. It is shown in [3, 4] that this Benjamin-

Feir instability can be the catalyst for an energy cascade leading to a continuous spectrum

and a highly-complex wave field.

When Bkk is not zero but small, for example Bkk = εµ, the mKP-KD+ has an unfolding

into the 2 + 1 Gardner system which includes both cubic and quadratic nonlinearities.

((
Ak + Bω

)
qT + µqqX +

1

2
Bkkkq

2qX + K qXXX

)

X

+ CmqY Y + (Bkm + Ckk)(qqY )X + Bkm(qX∂
−1
X qY )X = 0.
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The most important potential generalisation of the theory in this paper is to the case

where the symmetry has dimension greater than one, the case of multiphase modulation.

The case of multiphase modulation in the case of a codimension one singularity leading to

KdV is developed in [18]. The generalisation of this theory to the codimension two case is of

great interest since the most well-known example of the emergence of the mKdV equation

is in multi-layer stratified shallow water hydrodynamics [6] and that case can be viewed as

multiphase modulation with a multi-dimensional affine symmetry group. Some progress in

this direction is in [15], where a theory for codimension two multiphase modulation leading

the Boussinesq equation (a multiphase generalisation of the codimension two singularity in

the left of Figure 1) is presented.
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