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Abstract. Consider the Wronskians of the classical Hermite polynomials

Hλ,l (x) :=Wr(Hl (x), Hk1(x), . . . , Hkn (x)), l ∈Z≥0\{k1, . . . , kn},

where ki = λi + n − i, i = 1, . . . ,n and λ = (λ1, . . . , λn) is a partition. Gómez-Ullate et
al. showed that for a special class of partitions the corresponding polynomials are orthog-
onal and dense among all polynomials with respect to a certain inner product, but in
contrast to the usual case have some degrees missing (so-called exceptional orthogonal
polynomials). We generalise their results to all partitions by considering complex contours
of integration and non-positive Hermitian products. The corresponding polynomials are
orthogonal and dense in a finite-codimensional subspace of C[x] satisfying certain quasi-
invariance conditions. A Laurent version of exceptional orthogonal polynomials, related to
monodromy-free trigonometric Schrödinger operators, is also presented.

Mathematics Subject Classification. 33C47 (81Q05).

Keywords. exceptional orthogonal polynomials, quasi-invariance, trivial monodromy,
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1. Introduction

Consider polynomials pn(x) ∈R[x] of degrees n = 0,1, . . ., satisfying the orthogo-
nality relation

(pm, pn)= δmngn,

where the inner product of polynomials is defined by a real integral

(p,q) :=
∫ b

a
p(x)q(x)w(x)dx (1)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11005-016-0828-8&domain=pdf
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for some positive weight function w. Suppose that there exists a second-order dif-
ferential operator

T = A(x)
d2

dx2
+ B(x)

d
dx

+C(x)

having these polynomials as eigenvectors:

T pn(x)= En pn(x), n=0,1, . . . .

A classical result due to Bochner [3] says that in that case the sequence of poly-
nomials pn(x), n∈Z≥0, must coincide (up to a linear change of x) with one of the
systems of classical orthogonal polynomials of Hermite, Laguerre or Jacobi.
Gómez-Ullate, Kamran and Milson [11] considered the following variation of

Bochner’s question. Let us assume now that in the previous considerations n
belongs to a certain proper subset S⊂Z≥0 such that Z≥0\S is finite. To make this
non-trivial they added the following density condition: the linear span U =〈pn :n∈
S〉 of the corresponding polynomials must be dense in R[x] in the sense that if
(p, pn)=0 for all n∈ S then p≡0. In that case the sequence pn(x), n∈ S is called
a system of exceptional orthogonal polynomials.
The main example of such polynomials are exceptional Hermite polynomials [12]

having the Wronskian form

Hλ,l(x) :=Wr(Hl(x), Hk1(x), . . . , Hkn (x)), l ∈Z≥0\{k1, . . . , kn}, (2)

where Hl(x) are classical Hermite polynomials, λ= (λ1, . . . , λn) is a double parti-
tion and

ki =λi +n− i, i =1, . . . ,n.

The double partitions have the very special form

λ=μ2 = (μ1,μ1,μ2,μ2, . . . ,μk,μk),

where μ= (μ1,μ2, . . . ,μk) is another partition with n=2k (see [8]). According to
Krein and Adler [1] this guarantees that the corresponding Wronskian

Wλ(x)=Wr(Hk1(x), . . . , Hkn (x)) (3)

has no zeroes on the real line and thus determines a non-singular weight
function

w(x)=W−2
λ (x)e−x2 . (4)

The geometry of the complex zeroes of the corresponding Wronskians is quite
interesting and was studied by Felder et al. in [8].
One of the goals of our paper is to find a proper interpretation of the excep-

tional Hermite polynomials (2) for all partitions λ. As we will see, this will
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naturally lead us to the notion of quasi-invariance, which appeared in the the-
ory of monodromy-free Schrödinger operators, going back to Picard and Darboux
and more recently revisited by Duistermaat and Grünbaum [7]. In certain classes
such operators were explicitly described in terms of Wronskians in [4,7,10,15].
Grinevich and Novikov studied the spectral properties of these and more general
singular finite-gap operators and emphasised the important link with the theory of
Pontrjagin spaces (see [14] and references therein). Our paper can be considered
as dealing with the implications of all these results for the theory of exceptional
orthogonal polynomials.
More precisely, we first complexify the picture by considering the vector space

V =C[z] and replace the inner product (1) by a Hermitian product of the form

〈p,q〉 :=
∫
C
p(z)q̄(z)w(z)dz, (5)

where q̄(z) := q(z̄) is the Schwarz conjugate of the polynomial q(z), C ⊂ C is a
contour in the complex domain and w(z) is a complex weight function. The con-
dition that this product is Hermitian implies certain restrictions on the contour
C and function w(z) (see Section 2). It also requires certain restrictions on the
set of polynomials for which the product is well defined. As it turned out, such
polynomials form a subspace U ⊂V of finite codimension defined by some quasi-
invariance conditions. Similarly to [11] we say that the polynomials pn(z), n ∈ S,
form a system of complex exceptional orthogonal polynomials if their linear span is
a subspace of U that is dense in U in the sense that 〈p, pn〉=0 for all n∈ S, implies
that p≡0.

We will show that the Wronskians (2) satisfy these criteria for every partition λ

and a suitable choice of C with w given by (4). For a double partition λ we can
take as a contour C the real line with U = V and recover the results by Gómez-
Ullate et al. [12].
Note that the corresponding Hermitian form is positive definite only for double

partitions, otherwise we always have polynomials with negative norms. The appear-
ance of negative norms for singular potentials was first emphasised by Grinevich
and Novikov [14].
We also consider the Laurent version of our approach. Some Laurent versions

of orthogonal polynomials are already known in the literature (see e.g. [6] and ref-
erences therein), but our approach is different since it is not based on the Gram–
Schmidt procedure. Similarly, it does not fit into the theory of orthogonal polyno-
mials on the unit circle initiated by Szegö [18], who considered the case of usual
polynomials.
Consider the Laurent polynomials � = C[z, z−1] and the following complex

bilinear form on �:

(P, Q)= 1
2π i

∮
C
P(z)Q(z)

dz
z

,
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where C={z∈C : |z|=1} is the unit circle. The standard basis zn, n∈Z, satisfies the
Laurent orthogonality relation

(zk, zl)= δk+l,0, k, l ∈Z.

We consider more general forms

(P, Q)= 1
2π i

∮
Cμ

P(z)Q(z)w(z)
dz
z

, (6)

where Cμ is the circle defined by |z|=μ and w(z)=W (z)−2, with W (z) some Lau-
rent polynomial. For this form to be well defined, we need to assume that P, Q
belong to a suitable subspace of quasi-invariants Q⊂� of finite codimension.

Let K be a finite subset of N. Suppose that Pn ∈ �, n ∈Z, satisfy the Laurent
orthogonality relation

(Pk, Pl)= δk+l,0hk, k, l ∈Z, (7)

but Pn is proportional to P−n for n ∈ K, which implies that the corresponding
hn =0, and thus Pn is orthogonal to all Pk, k ∈Z. If the minimal complex Euclid-
ean extension of the linear span of Pn, n∈Z, coincides with the subspace of quasi-
invariants Q, then we call them exceptional Laurent orthogonal polynomials. The
need to consider such an extension is the novelty of the Laurent case, which is
related to the fact that the corresponding form is degenerate on the linear span
of Pn, n∈Z.
We present an example of such polynomials corresponding to the trigonometric

monodromy-free Schrödinger operators [4]. Namely, for any set κ ={k1, . . . , kn} of
distinct natural numbers k1 > k2 > · · ·> kn >0 and any choice of complex parame-
ters a= (a1, . . . ,an), ak ∈C\{0}, we define the Laurent polynomials

Pκ,a;l(z)=

∣∣∣∣∣∣∣∣∣

�k1(a1; z) �k2(a2; z) · · · �kn (an; z) zl

D�k1(a1; z) D�k2(a2; z) · · · D�kn (an; z) Dzl

...
...

. . .
...

...

Dn�k1(a1; z) Dn�k2(a2; z) · · · Dn�kn (an; z) Dnzl

∣∣∣∣∣∣∣∣∣
(8)

where �k(a; z)=azk +a−1z−k, k ∈N and D= z d
dz .

When parameters ak satisfy the condition |ak |=1 for all k=1, . . .n we introduce
a Hermitian form on a certain subspace of quasi-invariant Laurent polynomials
Qκ,C and show that the minimal Hermitian extension of the linear span of Pκ,a;l ,
l ∈Z, coincides with the subspace of quasi-invariants Qκ and is dense in Qκ,C .

2. Complex Exceptional Hermite Polynomials

In this section, we consider the polynomials Hλ,l , as defined in (2), for general
partitions, i.e. we do not require that λ is a double partition. We shall refer to
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these polynomials as complex exceptional Hermite polynomial or CEHPs for short.
Although these polynomials have real coefficients for the partitions which are not
double it is natural to consider them as elements of the complex Hermitian vector
space because the contour of integration in (5) is complex.

We begin by recalling how Hλ,l are obtained by a sequence of Darboux transfor-
mations from the classical Hermite polynomial Hl . The starting point is the clas-
sical fact that the functions

ψl(z)= Hl(z)e
−z2/2, l ∈Z≥0 (9)

have the eigenfunction property

Lψl ≡−d2ψl

dz2
+ z2ψl = (2l +1)ψl , z∈C,

and satisfy the boundary conditions

lim
Re z→±∞ψl(z)=0

(for any fixed value of Im z). We will choose the normalisation of Hermite poly-
nomials such that the highest coefficient of Hl(z) is 2l and all the coefficients are
integer:

H0 =1, H1 =2z, H2 =4z2 −2, H3 =8z3 −12z, H4 =16z4 −48z2 +12, . . . .

As is well known, after n consecutive Darboux transformations at the levels kn <

kn−1 < · · · < k1, where ki = λi + n − i, i = 1, . . . ,n, one arrives at the Schrödinger
operator

Lλ =− d2

dz2
−2

d2

dz2
(
logWr(ψk1 , . . . ,ψkn )

)+ z2, (10)

which satisfies the intertwining relation

Dλ ◦L =Lλ ◦Dλ, (11)

where the intertwining operator Dλ acts according to

Dλψ = Wr(ψ,ψk1 , . . . ,ψkn )

Wr(ψk1 , . . . ,ψkn )
,

see e.g. [1,5]. It follows that the functions

ψλ,l = Wr(ψl ,ψk1 , . . . ,ψkn )

Wr(ψk1 , . . . ,ψkn )
, l /∈{k1, . . . , kn}, (12)

have the eigenfunction property

Lλψλ,l = (2l +1)ψλ,l .
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Substituting (9) in (12) and using the general property Wr(g f1, . . . , g fn) =
gnWr( f1, . . . , fn), one finds that

ψλ,l = Hλ,l
e−z2/2

Wλ

, (13)

where Hλ,l are given by (2).
By a direct computation, it is readily inferred that Hλ,l is an eigenfunction of

the operator

Tλ =− d2

dz2
+2

(
z+ W ′

λ

Wλ

)
d
dz

−
(
W ′′

λ

Wλ

+2z
W ′

λ

Wλ

)
(14)

with eigenvalue 2(l −n).

EXAMPLE 1. Consider the special case λ = (1), which corresponds to the
Schrödinger operator

L(1) =− d2

dz2
−2

d2

dz2
(
log(2ze−z2/2)

)+ z2

=− d2

dz2
+ z2 + 2

z2
+2.

Already in this simple example, we obtain eigenfunctions (12) with a singularity
on the real line (at z = 0). Indeed, this can be seen explicitly by writing out the
first exceptional Hermite polynomials H(1),k =Wr(ψk,ψ1) and the corresponding
few eigenfunctions ψ(1),k = Wr(ψk ,ψ1)

ψ1
:

H(1),0 =1, ψ(1),0 = 1
z e

−z2/2,

H(1),2 =−(2+4z2), ψ(1),2 =− 2+4z2
z e−z2/2,

H(1),3 =−16z3, ψ(1),3 =−16z2e−z2/2,

H(1),4 =12(1+4z2 −4z4), ψ(1),4 = 12(1+4z2−4z4)
z e−z2/2,

H(1),5 =64z3(5−2z2), ψ(1),5 =64z2(5−2z2)e−z2/2,

H(1),6 =−40(3+18z2 −36z4 +8z6), ψ(1),6 =− 40(3+18z2−36z4+8z6)
z e−z2/2.

More generally, using the fact that

Wr(ψ2l+1,ψ1)(−z)=−Wr(ψ2l+1,ψ1)(z), l ∈N,

as well as the fact that each classical Hermite polynomial H2l(z), l ∈Z≥0, has a
non-zero constant term, it is readily seen that ψ(1),l(x) is regular on the whole real
line if and only if l∈Z≥0\{1} is odd. The eigenvalues of the first few eigenfunctions
are given in Figure 1, where open and filled circles indicate that the correspond-
ing eigenfunctions are singular and non-singular, respectively. In addition, the cross
represents the eigenvalue removed by the Darboux transformation.
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Figure 1. The eigenvalues of the first few eigenfunctions for λ= (1).

Note that in the theory of quantum Calogero–Moser systems (of which this
example is the simplest case) only non-singular solutions are considered (see e.g.
[16]).

We will now use the fact that Dλ is obtained as the composition of first-order
intertwining operators. To be more specific, let us introduce the short-hand nota-
tion

Wm =Wr(ψkm , . . . ,ψkn ), Wm(ψ)=Wr(ψ,ψkm , . . . ,ψkn ),

(where it is convenient to allow m = n + 1 and set Wn+1 = 1, Wn+1(ψ) = ψ), and
recall the standard identity

Wm−1Wm(ψ)=Wm−1(ψ)
d
dx

Wm −Wm
d
dx

Wm−1(ψ), m≥1.

Then it is readily verified that

Dλ = D1 ◦ · · · ◦ Dm ◦ · · · ◦ Dn, (15)

with

Dm = d
dz

− d
dz

(
log

Wm

Wm+1

)
. (16)

For our purposes, a key notion is that of trivial monodromy, see e.g. [19]. A
Schrödinger operator L = −d2/dz2 + u(z), whose potential u is a meromorphic
function of z, is said to have trivial monodromy if all solutions of its eigenvalue
equation

Lψ(z)= Eψ(z) (17)

are meromorphic in z for all E .
We recall that every monodromy-free Schrödinger operator L with a quadrati-

cally increasing rational potential is of the form (10) for some partition λ. The fact
that each Schrödinger operator Lλ has trivial monodromy is easily seen. Indeed,
in the special case u(z)= z2 all eigenfunctions are entire, and trivial monodromy is
preserved under (rational) Darboux transformations. The converse result is due to
Oblomkov [15].
Duistermaat and Grünbaum [7] obtained local conditions for trivial mon-

odromy. Specifically, in a neighbourhood of a pole z = zi the potential u(z) must
have a Laurent series expansion of the form

u(z)=
∑
r≥−2

cr (z− zi )
r ,
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with

c−2 =mi (mi +1) for some mi ∈N,

and

c2 j−1 =0, ∀ j =0,1, . . . ,mi .

In addition, every eigenfunction ψ has a Laurent series expansion of the form

ψ(z)= (z− zi )
−mi

∞∑
r=0

dr (z− zi )
r ,

with

d2 j−1 =0, ∀ j =1, . . . ,mi .

We proceed to consider the implications for the CEHPs Hλ,l . Let Zλ be the set
of zeros zi ∈C of the Wronskian Wλ(z) with multiplicities mi ∈N. In addition, we
need the subset ZR

λ ⊂ Zλ obtained by restriction to zi ∈R. We say that a meromor-
phic function ψ(z) is quasi-invariant at the point z= zi with multiplicity mi ∈N if
it satisfies the following two conditions:

(1) ψ(z)(z− zi )mi is analytic at z= zi ,
(2) (ψ(z)(z− zi )mi )(2 j−1)|z=zi =0, for all j =1, . . . ,mi .

The second condition can be rewritten as

ψ(σi (z))= (−1)mi ψ(z)+o((z− zi )
mi ),

where σi (z)=2zi − z is the reflection with respect to zi . This explains the terminol-
ogy.
Introducing the subspace

Qλ =
{
p∈C[z] :ψ(z) := p(z)

e−z2/2

Wλ(z)
is quasi-invariant at z= zi , ∀zi ∈ Zλ

}
,

it follows from the above that the C-linear span

Uλ =〈Hλ,l : l ∈Z≥0\{k1, . . . , kn}〉
belongs to Qλ. From Proposition 5.3 in [12], we recall that the codimension of Uλ

in C[z] is equal to |λ|. On the other hand, |λ| is the degree of Wλ(z), and there-
fore the number of quasi-invariance conditions that any p∈Qλ should satisfy. This
yields the converse inclusion, and thus the following result.

PROPOSITION 1. The C-linear span of CEHPs coincides with polynomial quasi-
invariants:

Uλ =Qλ.
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Using the fact that the operator Tλ [cf. (14)] preserves Uλ, a different charac-
terisation of this subspace was deduced in Proposition 5.4 in [12]: a polynomial
p∈C[z] is an element of Uλ if only if

2W ′
λ(p

′ −2zp)−W ′′
λ p∈ (Wλ),

where (Wλ) denotes the ideal generated by Wλ. That this divisibility condition is
necessary is clear from the form of the singular part of Tλ and that it is sufficient
follows from a direct count of the number of linear conditions it imposes on a
polynomial p∈C[z].
Whenever λ is not a double partition, the Wronskian Wλ(z) will have one or

more real zeros [1], so that the weight function (4) is no longer non-singular on
the real line. A formula for the precise number of real zeros was recently obtained
in [13]. To resolve the problem with singularities, we replace the standard contour
R by a shifted contour C= iξ +R and consider a corresponding Hermitian product
(5). As will become clear below, to ensure that the product is Hermitian we need
to restrict attention to the following subspace of quasi-invariant polynomials:

Qλ,R =
{
p∈C[z] :ψ(z) := p(z)

e−z2/2

Wλ(z)
is quasi-invariant at z= zi , ∀zi ∈ ZR

λ

}
.

By counting quasi-invariance conditions, we obtain the next proposition.

PROPOSITION 2. The codimension of Qλ in Qλ,R is |λ|−∑
zi∈ZR

λ
mi .

We are now ready for the main definition of this section.

DEFINITION 1. Let ξ ∈R be such that

0< |ξ |< |Im zi |, ∀zi ∈ Zλ\ZR

λ . (18)

Then, we define a sesquilinear product 〈·, ·〉 on Qλ,R by setting

〈p,q〉=
∫
iξ+R

p(z)q̄(z)
e−z2

W 2
λ (z)

dz, p,q ∈Qλ,R. (19)

Now we will show that the product does not depend on the specific choice of ξ .
We find it worth stressing that this important property relies on our restriction to
the subspace Qλ,R.

PROPOSITION 3. For any p,q ∈Qλ,R, the value of 〈p,q〉 is independent of ξ ∈R

provided condition (18) is satisfied.

Proof. Let Iξ denote the integral in the right-hand side of (19). By Cauchy’s the-
orem, it suffices to show that Iξ − I−ξ = 0 for some ξ satisfying (18). From the
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residue theorem, we deduce that the difference between the two integrals is pro-
portional to

∑
zi∈Zλ,R

Res
z=zi

(
p(z)q̄(z)

e−z2

W 2
λ (z)

)
.

We claim that each of these residues vanish. In fact, we have the following more
general result.

LEMMA 1. If ψ , φ are quasi-invariant at z= zi , with any multiplicity mi ∈N, then

Res
z=zi

(
ψ(z)φ(z)

)=0.

Indeed, it follows from Condition (2) above that

(
ψ(z)φ(z)(z− zi )

2mi
)(2mi−1)⏐⏐

z=zi

=
2mi−1∑
j=0

(
2mi −1

j

)(
ψ(z)(z− zi )

mi
)(2mi−1− j)⏐⏐

z=zi

(
φ(z)(z− zi )

mi
)( j)⏐⏐

z=zi

=0.

It is now straightforward to show that Definition 1 yields a Hermitian product.

PROPOSITION 4. The sesquilinear product 〈·, ·〉 is Hermitian:

〈p,q〉=〈q, p〉, ∀p,q ∈Qλ,R.

Proof. In what follows, we find it convenient to use the notation

w(z)= e−z2

W 2
λ (z)

,

and use a subscript to indicate the choice of ξ in (19). Since the classical Hermite
polynomials have real coefficients, it is evident from (3) that w̄(z) = w(z). Hence,
we have the following equalities:

〈p,q〉ξ =
∫
R

p(iξ + x)q̄(iξ + x)w(iξ + x)dx

=
∫
R

p̄(−iξ + x)q(−iξ + x)w(−iξ + x)dx

=〈q, p〉−ξ .

Combined with Proposition 3, this yields the asserted hermiticity property.
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We recall that the classical Hermite polynomials Hl(x) satisfy the orthogonality
relation

∫
R

Hj (x)Hl(x)e
−x2dx = δ jl2l l!√π, j, l ∈Z≥0. (20)

Combining this fact with the factorisation (15) of the intertwining operator Dλ,
it is now readily established by induction on the length n of λ that the CEHPs
Hλ,l(x) are orthogonal with respect to the Hermitian form 〈·, ·〉 (cf. [12]).

THEOREM 1. The CEHPs Hλ,l satisfy the orthogonality relation

〈Hλ, j , Hλ,l〉= δ jl
√

π2l l!
n∏

m=1

2(l − km), j, l ∈Z≥0\{k1, . . . , kn}. (21)

Proof. The assertion clearly holds true for n= 0, with the empty product taken
to be equal to one. Introducing the partition

λ̂= (λ2, . . . , λn),

we have

〈Hλ, j , Hλ,l〉=
∫
iξ+R

(D1ψλ̂, j )(z)(D1ψλ̂,l)(z)dz.

Since Wm =Wm , the (formal) adjoint of D1 is given by

D∗
1 =− d

dx
− d

dx

(
log

W1

W2

)
.

The factorisation

D∗
1D1 =Lλ̂ −2k1 −1

thus entails that

〈Hλ, j , Hλ,l〉=2(l − k1)〈Ĥλ, j , Ĥλ,l〉.

This completes the induction step, and the theorem is proved.

Remark 1. Since 〈·, ·〉 is Hermitian, each squared norm 〈p, p〉, p ∈Qλ,R, is real,
but need not to be positive. In fact, if the partition is not double, there is always a
finite set of polynomials with negative squared norm, which can be easily identified
using formula (21). For example, setting λ= (1) in (21), we see that 〈H(1),l , H(1),l〉<
0 if and only if l =0. Grinevich and Novikov [14] pointed out a similar fact in a
finite-gap case.
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We conclude this section by showing that the linear span Uλ is dense in Qλ,R in
the sense that

〈p, Hλ,l〉=0, ∀l ∈Z≥0\{k1, . . . , kn} =⇒ p≡0.

By Proposition 1, we can formulate the result as follows.

THEOREM 2. The subspace Qλ is dense in Qλ,R.

Proof. Suppose that p∈Qλ,R is such that

〈p,q〉=0, ∀q ∈Qλ.

Introducing the polynomials

qλ,l(z)=W 2
λ (z)Hl(z), l ∈Z≥0,

which clearly belong to the subspace Qλ, we obtain

0=〈p,qλ,l〉=
∫
iξ+R

p(z)H̄l(z)e
−z2dz, ∀l ∈Z≥0.

Since the integrand is entire, we can take the limit ξ → 0. Then expanding p in
terms of the classical Hermite polynomials Hl , it follows immediately from (20)
that p≡0.

Remark 2. If we assume that λ is a double partition, then we recover orthogonality
and completeness results from [12] (see Propositions 5.7, 5.8). Indeed, to recover
the former it is enough to note that the weight function (4) is guaranteed to be
non-singular on the real line, so that we can take the limit ξ →0 in (19); and the
latter follows from the observation that we have Qλ,R =C[z].

3. Exceptional Laurent Orthogonal Polynomials

In this section, we generalise our approach to the space of Laurent polynomials
� =C[z, z−1] using the trigonometric monodromy-free Schrödinger operators [4],
which play an important role in the theory of Huygens’ principle [2].
More specifically, we consider the Laurent polynomials Pκ,a;l , as defined in (8).

Due to the results of Theorem 3 and Proposition 6 we call Pκ,a;l , l ∈Z, exceptional
Laurent orthogonal polynomials (ELOPs).

3.1. THE GENERAL CASE

In this first subsection, we allow any choice of complex parameters a= (a1, . . . ,an),
ak ∈C\{0}.
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We start from the elementary fact that the exponential functions

el(x)= exp(ilx), l ∈Z,

have the eigenfunction property

L el ≡−d2el
dx2

= l2el , x ∈C/2πZ.

Note that instead of usual unit circle R/2πZ we consider its complex version –
cylinder C/2πZ. It is natural from the trivial monodromy point of view, see [4].

Sequences of Darboux transformations at the levels 0< kn < kn−1 < · · · < k1 are
now parameterised by n complex parameters θ = (θ1, . . . , θn), θk ∈C. Specifically,
introducing the functions

φk j (θ j , x)=2 cos(k j x + θ j ), j =1, . . . ,n, (22)

the resulting Schrödinger operator takes the form

Lκ =− d2

dx2
−2

d2

dx2
(
logWr(φk1 , . . . , φkn )

)
, (23)

where κ ={k1, . . . , kn}. Furthermore, letting Dκ act by

Dκφ = Wr(φ,φk1 , . . . , φkn )

Wr(φk1 , . . . , φkn )
,

the intertwining relation (11) holds true, and the functions

φκ,θ;l = Wr(el , φk1 , . . . , φkn )

Wr(φk1 , . . . , φkn )
, l ∈Z, (24)

have the eigenfunction property

Lκφκ,l = l2φκ,l .

We note that at each level k j , j =1, . . . ,n, the multiplicity is reduced from two to
one. Indeed, by (22)–(24) and linearity of the Wronskian, we have the relation

exp(iθ j )φκ,k j (x)+ exp(−iθ j )φκ,−k j (x)≡0, j =1, . . . ,n.

To establish the precise connection between the functions φκ,l and the ELOPs
Pκ,a;l given by (8), we change variable to

z= exp(i x)

and fix the values of the parameters a= (a1, . . . ,an) according to

ak = exp(iθk)∈C\{0}, k=1, . . . ,n.
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Then, it is readily seen that

φκ,θ;l(x)= Pκ,a;l(z)Wκ,a(z)
−1,

with Pκ,a;l(z) given by (8) and

Wκ,a(z)=

∣∣∣∣∣∣∣∣∣

�k1(a1; z) �k2(a2; z) · · · �kn (an; z)
D�k1(a1; z) D�k2(a2; z) · · · D�kn (an; z)

...
...

. . .
...

Dn−1�k1(a1; z) Dn−1�k2(a2; z) · · · Dn−1�kn (an; z)

∣∣∣∣∣∣∣∣∣
, (25)

where D= zd/dz and

�k(a; z)=azk +a−1z−k .

Furthermore, a direct computation reveals that Pκ,a;l is an eigenfunction of the
operator

Tκ = D2 −2
DWκ,a

Wκ,a
D+ D2Wκ,a

Wκ,a

with eigenvalue l2.

EXAMPLE 2. In the particular case κ ={1} the corresponding Schrödinger oper-
ator is given by

L{1} =− d2

dx2
−2

d2

dx2
(
log(2 cos(x + θ1))

)

=− d2

dx2
+ 2

cos2(x + θ1)
.

When expressed in terms of the variable z and the parameter a1, the first few
exceptional Laurent polynomials P{1},a;l defined by (8) and the corresponding
eigenfunctions �{1},a;l = P{1},a;l/�1, l ∈Z are given by

P{1},a;0 =a1z−a−1
1 z−1, �{1},a;0 = a1z−a−1

1 z−1

a1z+a−1
1 z−1

,

P{1},a;−1 =2a1, �{1},a;−1 = 2a1
a1z+a−1

1 z−1
,

P{1},a;1 =−2a−1
1 , �{1},a;1 =− 2a−1

1

a1z+a−1
1 z−1

,

P{1},a;−2 =a−1
1 z−3 +3a1z−1, �{1},a;−2 = a−1

1 z−3+3a1z−1

a1z+a−1
1 z−1

,

P{1},a;2 =a1z3 +3a−1
1 z, �{1},a;2 =− a1z3+3a−1

1 z

a1z+a−1
1 z−1

.

From these explicit formulae, it is evident that P{1},a;−1 and P{1},a;1, as well as
�{1},a;−1 and �{1},a;1, are linearly dependent. Moreover, the definition of �{1},a;l
clearly entails that each such eigenfunction is singular at z=±i/a1.
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We note that, upon setting

Wm =Wr(φkm , . . . , φkn ),

the intertwining operator Dκ factorises according to (15), (16). Just as in the Her-
mite case, it follows that each Schrödinger operator Lκ has trivial monodromy.
Moreover, every monodromy-free trigonometric Schrödinger operator is of the
form (23); see [4].

Let Zκ be the set of zeros zi ∈C of the function Wκ,a(z) with multiplicities mi ∈
N and Xκ be the corresponding set consisting of x j such that exp(i x j )= z j , z j ∈
Zκ (we drop the dependence on a in the notations for brevity in the rest of this
section).
Introduce the subspace

Qκ ={
P ∈� :�(x) := (P/Wκ )(exp(i x)) is quasi-invariant at all x j ∈ Xκ

}
.

It follows from the trivial monodromy property that

Uκ := 〈Pκ,l : l ∈Z〉⊂Qκ .

However, in contrast to Hermite case (see Proposition 1), the converse inclusion
does not hold. Instead, we have the following result.

PROPOSITION 5. The codimension of Uκ in Qκ is n.

Proof. From (8), we deduce that

Pκ,l(z)= zl+|κ| det V (l, k1, . . . , kn)
n∏
j=1

k j + l.d.,

where

|κ|=
n∑

i=1

ki ,

l.d. stands for terms of lower degree and V is the Vandermonde matrix

V (α1, . . . , αm)=

⎡
⎢⎢⎢⎣

1 1 · · · 1
α1 α2 · · · αm
...

...
. . .

...

αm−1
1 αm−1

2 · · · αm−1
m

⎤
⎥⎥⎥⎦ .

Since det V (l, k1, . . . , kn)=0 if and only if l = k1, . . . , kn , it follows that the degree
sequence

I+
κ ={deg P(z) : P ∈Uκ }
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stabilises at k1 + |κ| + 1 in the sense that l ∈ I+
κ for all l ≥ k1 + |κ| + 1. Applying

the same line of reasoning to the Laurent polynomials Pκ,−l(1/z), we find that the
same statement holds true for

I−
κ ={deg P(z−1) : P ∈Uκ}.

Among the ELOPs Pκ,l with |l|<k1+|κ|+1, a maximal set of linearly independent
Laurent polynomials is given by

l ∈{k1, . . . , kn}∪ {0,±1, . . . ,±(kn −1)}∪ {±(kn +1), . . . ,±(kn−1 −1)}
∪ · · ·∪ {±(k2 +1), . . . ,±(k1 −1)}.

The cardinality of this index set equals

n+2kn −1+2(kn−1 − kn −1)+· · ·+2(k1 − k2 −1)=2k1 −n+1.

Observing that

2k1 +2|κ|+1− (2k1 −n+1)=2|κ|+n,

we conclude that the codimension of Uκ in � is 2|κ|+n.
On the other hand, counting quasi-invariance conditions, we find that the codi-

mension of Qκ in � equals 2|κ| and so the assertion follows.

Remark 3. In contrast to the case of usual polynomials there are several defini-
tions of the degree of a Laurent polynomial, but none of them are convenient
for our purposes. Let us define the L-degree LdegP of a Laurent polynomial P =∑q

i=p ci z
i with cp �= 0, cq �= 0 as q if q > −p, and p if q < −p. If q = −p the L-

degree is not well-defined since it could be both p and q. Under these assumptions

Ldeg Pκ,l =|κ|+ l, l ∈N\κ, Ldeg Pκ,l =−|κ|+ l, −l ∈N\κ,

otherwise it is not well-defined. Note that the polynomials Pκ,k j and Pκ,−k j with
undefined L-degrees are linearly dependent.

Next, we consider a particular complex bilinear form on Qκ , given by (6)
with W = Wκ , and establish corresponding Laurent orthogonality relations. A
related Fourier theory for more general algebro-geometric operators was studied by
Grinevich and Novikov in [14].

DEFINITION 2. Let μ∈R>0 be such that

μ �= |zi |, ∀zi ∈ Zκ . (26)

Then, we define a complex bilinear form (·, ·) on Qκ by setting

(P, Q)= 1
2π i

∮
Cμ

P(z)Q(z)W−2
κ (z)

dz
z

, P, Q ∈Qκ , (27)
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where

Cμ ={z∈C : |z|=μ}. (28)

Substituting z=exp(i x) and following the line of reasoning used in the proof of
Lemma 3, we readily find that the product is well-defined in the sense that it does
not depend on the choice of μ. More precisely, we have the following lemma.

LEMMA 2. For any P, Q ∈Qκ , the value of (P, Q) is independent of μ∈R>0 pro-
vided (26) is satisfied.

We are now ready to state and prove the first of the main results in this section,
which may be viewed as a natural analog of Theorem 1.

THEOREM 3. The ELOPs Pκ,l satisfy the Laurent orthogonality relation

(Pκ, j , Pκ,l)= δ j+l,0

n∏
m=1

(l2 − k2m), j, l ∈Z.

Proof. Just as in the proof of Theorem 1, we note that the assertion holds true
for n=0, and proceed by induction on the length n of κ. Letting κ̂ = (k2, . . . , kn),
we have

(Pκ, j , Pκ,l)= 1
2π

∫ 2π

0
(D1φκ̂, j )(x)(D1φκ̂,l)(x)dx .

Making use of the factorisation

D∗
1D1 =Lκ̂ − k21, (29)

with

D∗
1 =− d

dx
− d

dx

(
log

W1

W2

)

the (formal) adjoint of D1, we deduce

(Pκ, j , Pκ,l)= (l2 − k21)(P̂κ, j , P̂κ,l),

which completes the induction step.

Remark 4. Having started from an eigenvalue problem with doubly degenerate
eigenvalues, we have that (Pκ,l , Pκ,−l)=0 for some of the ELOPs Pκ,l . More specif-
ically, it is evident from the theorem that this is the case if and only if l = ±km ,
m=1, . . . ,n.
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Expanding on the result of Proposition 5, we proceed to establish the precise
relationship between Uκ and Qκ . We begin with a general definition.
Let V be a vector space over C. Then V is called complex Euclidean space if it

is equipped with a non-degenerate bilinear form B :V ⊗V →C.

DEFINITION 3. Let W ⊂V be a subspace of complex Euclidean space V . We say
that V is a minimal complex Euclidean extension of W if

dim
(
ker B|W

)= codimVW.

For any linear space W and bilinear form B with non-trivial kernel

K :=ker B,

it is readily verified that there is a unique (up to isomorphisms) minimal com-
plex Euclidean extension V ⊃W . Letting K ∗ denote the dual space of K , it can
be realised as follows:

V = K ⊕ K ∗ ⊕W/K ,

with the extension of B determined by

(k1 + k̂1 +w1, k2 + k̂2 +w2) �→ k̂2(k1)+ k̂1(k2)+ B(w1,w2),

where k1, k2 ∈ K , k̂1, k̂2 ∈ K ∗ and w1,w2 ∈W . Moreover, for each basis k1, . . . , kn ∈
K , there is a unique basis k̂1, . . . , k̂n ∈ K ∗ such that (k j , k̂l)= δ jl .

EXAMPLE 3. Suppose that B|W =0, so that each vector w∈W is isotropic. Then
we have

V ∼=W ⊕W ∗,

with

B(w1 + ŵ1,w2 + ŵ2)= ŵ2(w1)+ ŵ1(w2), w1,w2 ∈W, ŵ1, ŵ2 ∈W ∗.

As demonstrated by the following proposition, the inclusion Uκ ⊂Qκ provides a
concrete example of a minimal complex Euclidean extension in the sense of Defi-
nition 3.

PROPOSITION 6. Qκ is the minimal complex Euclidean extension of Uκ .

Proof. From Theorem 3 we infer that

ker(·, ·)|Uκ =〈Pκ,k j : j =1, . . . ,n〉.
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(Note the linear relations a j Pκ,k j +a−1
j Pκ,−k j =0.) Since ELOPs Pκ,l corresponding

to different values of l2, and hence different eigenvalues, are linearly independent,
it follows that

dim
(
ker(·, ·)|Uκ

)=n.

Recalling Proposition 5, we see that it remains only to verify that (·, ·) is non-
degenerate on Qκ . Observing that

W2
κ (z)z j ∈Qκ , ∀ j ∈Z,

we have

(
P,W2

κ (z)z−l)= 1
2π i

∮
Cμ

P(z)z−l dz

z

which clearly is non-zero for all non-zero P ∈Qκ , and suitable l ∈Z.

3.2. THE HERMITIAN CASE

In the case when all θk are real or, equivalently, when parameters a= (a1, . . . ,an)
satisfy

|ak |=1, k=1, . . . ,n, (30)

we can introduce the Hermitian structure as follows.
Note that in this case the weight function w(z)=Wκ(z)−2 is invariant under the

antilinear involution

P†(z) := P(1/z̄), P ∈�, (31)

which will play much the same role as the Schwartz conjugate did in the Hermite
case. In fact, observing that (DP)†=−DP† and that �

†
k =�k , we can deduce from

(25) that

W†
κ (z)= (−1)n(n−1)/2Wκ(z), κ ={k1, . . . , kn}. (32)

In addition, the zero set Zκ becomes invariant under the involution z→1/z̄, i.e.

zi ∈ Zκ =⇒ 1/z̄i ∈ Zκ ,

and, since z=1/z̄ whenever |z|=1, we have that

Wκ(z)W†
κ (z)=|Wκ |2, |z|=1. (33)
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Letting ZC
κ ={zi ∈ Zκ : |z|=1} and XR

κ ={x j :exp(i x j )= z j , z j ∈ ZC
κ }⊂R, we intro-

duce the following subspace of quasi-invariant Laurent polynomials:

Qκ,C =
{
P ∈� :�(x) := (P/Wκ )(exp(i x)) is quasi-invariant at all x j ∈ XR

κ

}
.

From (32), it is straightforward to infer that

Q†
κ =Qκ , Q†

κ,C =Qκ,C ,

which allows us to define a natural sesquilinear product on Qκ,C .

DEFINITION 4. Assuming that (30) holds true, we introduce

ν = min
zi∈Zκ|zi |>1

|zi |,

and let μ∈R>0 be such that

1<max(μ,1/μ)<ν. (34)

Then, we define a sesquilinear product 〈·, ·〉L on Qκ,C by setting

〈P, Q〉L = 1
2π i

∮
Cμ

P(z)Q†(z)
(Wκ(z)W†

κ (z)
)−1 dz

z
, P, Q ∈Qκ,C . (35)

Again, the product does not depend on the specific choice of μ.

LEMMA 3. For any P, Q ∈Qκ,C , the value of 〈P, Q〉L is independent of μ ∈R>0

provided (34) is satisfied.

By adapting the proof of Proposition 4, we can use the lemma to show that Def-
inition 4 yields a Hermitian product.

PROPOSITION 7. The sesquilinear product 〈·, ·〉L is Hermitian:

〈P, Q〉L =〈Q, P〉L , ∀P, Q ∈Qκ,C .

Proof. Using the notation

w(z)=1
/Wκ(z)W†

κ (z)
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and using a subscript to indicate the choice of μ in (35), we deduce the following
equalities:

〈P, Q〉L ,μ = 1
2π

∫ 2π

0
P(μeiϕ)Q̄(μ−1e−iϕ)w(μeiϕ)dϕ

= 1
2π

∫ 2π

0
P̄(μe−iϕ)Q(μ−1eiϕ)w(μ−1eiϕ)dϕ

=〈Q, P〉L ,μ−1 ,

and so hermiticity follows from Lemma 3.

Moreover, the proof of Theorem 3 is readily adapted to yield the following
orthogonality result.

THEOREM 4. Assuming that (30) holds true, the ELOPs Pκ,l satisfy the orthogo-
nality relation

〈Pκ, j , Pκ,l〉L = δ jl

n∏
m=1

(k2m − l2), j, l ∈Z. (36)

Proof. Taking z= exp(i x) in the integral in (35) and observing that (cf. (32))

Wm(−x)= (−1)(n−m)(n−m+1)/2Wm(x),

we establish the equalities

〈Pκ, j , Pκ,l〉L = 1
2π

∫ 2π

0
(D1φκ̂, j )(x)(D1φκ̂,l)(−x)dx

=− 1
2π

∫ 2π

0
φκ̂, j (x)(D∗

1D1φκ̂,l)(−x)dx .

Appealing to the factorisation (29), we thus obtain the relation

〈Pκ, j , Pκ,l〉L = (k21 − l2)〈P̂κ, j , P̂κ,l〉L ,

and the assertion follows by induction on n.

After replacing the bilinear form B by a Hermitian sesquilinear form h, Defini-
tion 3 as well as the succeeding discussion applies with minor changes also in the
present situation. Specifically, we say that V is a minimal Hermitian extension of
W if

dim
(
ker h|W

)= codimVW.

Then, we have the following analog of Theorem 2.
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THEOREM 5. The subspace Qκ , which is the minimal Hermitian extension of Uκ ,
is dense in Qκ,C .

Proof. Suppose that P ∈Qκ,C is such that

〈P, Q〉L =0, ∀Q ∈Qκ .

Since the Laurent polynomials

Qκ,l =Wκ(z)W†
κ (z)zl , l ∈Z,

clearly are contained in Qκ , we have that

0=〈P, Qκ,l〉L = 1
2π i

∮
Cμ

P(z)zl
dz
z

, ∀l ∈Z.

Taking the limit μ→1 and using the property that

1
2π i

∮
|z|=1

zk zl
dz
z

= δk+l,0, k, l ∈Z

we conclude that P ≡0.

Remark 5. It is known from the soliton theory that for every non-empty set κ and
any choice of real θk the corresponding potential always has singularities on the
real line. This means that in the Laurent case we do not have non-trivial regular
examples (unlike Hermite case with double partitions).

4. Concluding Remarks

We have discussed two complex versions of the exceptional orthogonal polynomi-
als, related to two classes of monodromy-free Schrödinger operators. We would like
to emphasise two novelties compared to the original approach of Gómez-Ullate et
al. [11,12].
First, in order to define the inner product in general we have to reduce the space

of polynomials to the subspace of quasi-invariants, which has a finite codimension.
The only exception is the Hermite case with double partitions considered in [12].
Second, in the Laurent case the space of quasi-invariants is not generated by the

corresponding exceptional Laurent polynomials, so we need to consider the mini-
mal complex Euclidean extension.
In the rational case with sextic growth at infinity there are some partial results

[10], which lead to finite sets of orthogonal polynomials of the same degree. It
would be interesting to analyse this situation in view of a recent very interesting
paper by Felder and Willwacher [9].
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It would be interesting also to see what happens with exceptional orthogonal
polynomials in the multidimensional case. One can use the monodromy-free gener-
alised Calogero–Moser operators, playing an important role in the theory of Huy-
gens principle [4]. We plan to address this elsewhere soon.
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7. Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parame-

ter. Commun. Math. Phys. 103, 177–240 (1986)
8. Felder, G., Hemery, A.D., Veselov, A.P.: Zeros of Wronskians of Hermite polynomials

and Young diagrams. Phys. D 241, 2131–2137 (2012)
9. Felder, G., Willwacher, T.: Jointly orthogonal polynomials. J. Lond. Math.

Soc. 91(3), 750–768 (2015)
10. Gibbons, J., Veselov, A.P.: On the rational monodromy-free potentials with sextic

growth. J. Math. Phys. 50(1), 013513 (2009)
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12. Gómez-Ullate, D., Grandati, Y., Milson, R.: Rational extensions of the quantum har-

monic oscillator and exceptional Hermite polynomials. J. Phys. A 47, 015203 (2014)
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Phys. A 34, 3511–3519 (2001)


	Complex Exceptional Orthogonal Polynomials and Quasi-invariance
	Abstract. 
	1 Introduction
	2 Complex Exceptional Hermite Polynomials
	3 Exceptional Laurent Orthogonal Polynomials
	3.1 THE GENERAL CASE
	3.2 THE HERMITIAN CASE

	4 Concluding Remarks
	Acknowledgements
	References


