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Abstract. Interface controls are unknown functions used as Dirichlet or Robin boundary data
on the interfaces of an overlapping decomposition designed for solving second order elliptic bound-
ary value problems. The controls are computed through an optimal control problem with either
distributed or interface observation. Numerical results show that, when interface observation is
considered, the resulting interface control domain decomposition method is robust with respect to
coefficients variations; it can exploit nonconforming meshes and provides optimal convergence with
respect to the discretization parameters; finally it can be easily used to face heterogeneous advection–
advection-diffusion couplings.
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1. Introduction. In this paper we propose an overlapping domain decomposi-
tion method with interface conditions that are suitable to face both homogenenous
and heterogeneous couplings, i.e., with either the same or different operators in the
subdomains.

We start by considering a family of overlapping domain decomposition methods,
originally proposed in [13] and [16], named least square conjugate gradient (LSCG)
and virtual control (VC) methods, respectively, designed for second order self-adjoint
elliptic problems. These methods reformulate the overlapping multidomain problem
as an optimal control problem whose controls are the unknown traces (or fluxes) of the
state solutions at the subdomain boundaries. (For this reason we speak about inter-
face controls.) The constraints of the minimization problem are the state equations,
the observation is distributed on the overlap, and the controls are found by either min-
imizing the L2 or H1 norm of the jump between state solutions associated with the
subdomains that share the same overlap. When the optimal control problem is solved
through the optimality system, by following the classical theory of Lions ([15]), we
need to solve both the primal and the dual state problems, as well as to compute the
jump between the two solutions on the whole overlap. When non-self-adjoint prob-
lems are considered, the matrices associated with the discretization of both primal
and dual problems have to be built and stored; moreover the same computational grid
on the overlap has to be used, in order to avoid heavy interpolation processes from
one grid to another. As we will show in [6], the convergence rate of these methods

∗Received by the editors September 10, 2012; accepted for publication (in revised form) July 1,
2013; published electronically September 10, 2013.

http://www.siam.org/journals/sicon/51-5/89076.html
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08034 Barcelona, Spain (marco.discacciati@upc.edu). This author acknowledges the support of the
Marie Curie Career Integration grant 2011-294229 within the 7th European Community Framework
Programme.
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THE ICDD METHOD FOR ELLIPTIC PROBLEMS 3435

depends on the discretization parameters (grid size and local polynomial degree) and
the overlap thickness.

In the present paper we propose a new version of the above-mentioned methods
in which the observation is of interface type (and not distributed on the overlap) and
it is restricted to the internal boundaries of the overlapping subdomains (that we can
call for sake of simplicity the interfaces).

In this paper we propose to rename the LSCG and VC methods as well as the
new one, interface control domain decomposition (ICDD) method, the former two
with distributed observation, the last one with interface observation.

ICDD with interface observation minimizes a suitable norm of the jump between
the solutions of different subdomains at the interfaces. The associated Euler–Lagrange
equation cannot be written in terms of the dual state solutions and the optimality
system cannot be inferred in a classical way. Nevertheless, we prove that solving the
Euler–Lagrange equation is equivalent to solve a pseudooptimality system, in which
the dual differential problems are replaced by primal problems depending on the jump
of the state solutions only at the interfaces, and the Euler–Lagrange equation can be
replaced by a linear combination of the traces of the state solutions.

The resulting domain decomposition method is robust and efficient with respect
to the variations of the coefficients of the problem, as our numerical results show.
It is also easily adaptable to solve heterogeneous problems since it requires neither
an in-depth (specific) knowledge of the differential subproblems nor specific interface
conditions as happens for domain decomposition methods with sharp interfaces (see,
e.g., [2, 4, 8]). In particular, in this paper the ICDD method with interface observa-
tion is successfully applied to the coupling between advection and advection-diffusion
(A-AD) problems. Our numerical results show that the heterogeneous solution con-
verges to the global elliptic one when the viscosity vanishes and that the computa-
tional cost for solving the heterogeneous problem is lower than that needed to solve
the homogeneous one.

Finally, it is worth noticing that the ICDD method with interface observation
works well as a nonconforming method, also for convection dominated problems. As a
matter of fact, the discretizations inside different subdomains can be totally unrelated
and the evaluation of the jump between the state solutions across the interfaces can
be performed by an interpolation step with a computational cost that does not affect
the global efficiency of the method. In particular, no mortar approach is needed to
guarantee the optimal convergence with respect to the discretization parameters, as
the numerical results of the last section show.

In this paper we limit ourselves to the present and study the well-posedness of
ICDD methods, while we defer to forthcoming papers other relevant aspects of the
topic. In particular, in [6] we analyze the efficiency of ICDD methods with respect
to the discretization parameters, such as the number of subdomains, the thickness of
the overlap, the mesh size (in the case of finite elements), or the polynomial degree
(in the case of spectral elements). Moreover, in [5], we compare ICDD methods with
the more classical additive Schwarz method with coarse grid when elliptic self-adoint
problems are taken into account.

In [7] we apply the ICDD method with interface observation to the heterogeneous
coupling between Stokes and Darcy equations for the simulation of fluids in porous
media.

An outline of this paper is as follows.
In section 2 we give two multidomain formulations of the reference elliptic differ-

ential problem and we prove their equivalence. These formulations stand at the base
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3436 M. DISCACCIATI, P. GERVASIO, AND A. QUARTERONI

of ICDD methods. In section 3 we present ICDD methods and in section 4 we prove
that the minimization problems (from which ICDD arises) are well-posed. Then we
formulate the optimality systems (pseudooptimality system when interface observa-
tion is considered) which are the kernels for practical implementation of the methods
themselves. In section 5 we extend the ICDD method with interface observation to
the A-AD coupling and we mention the heterogeneous Stokes–Darcy coupling that
will be analyzed in depth in [7]. Finally, in section 6 we report numerical results on
two-dimensional (2D) test cases approximated by both finite elements and spectral
elements.

2. Problem setting. Let Ω ⊂ Rd (d = 1, 2, 3) be an open bounded domain.
We split Ω into two overlapping subdomains Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2 and
we denote Ω12 = Ω1 ∩ Ω2 and Γi = ∂Ωi \ ∂Ω. Moreover, let ∂Ω = ΓD ∪ ΓN with
ΓD ∩ΓN = ∅ as shown in Figure 2.1, and denote Γi

D = ΓD ∩∂Ωi and Γi
N = ΓN ∩∂Ωi.

Let L be the linear elliptic operator

(2.1) Lu = div(−K∇u+ bu) + b0u,

where K = K(x) is a symmetric positive definite tensor K = (Kij)i,j=1,...,d, Kij ∈
L∞(Ω), Kij = Kji, that satisfies the ellipticity constraint

d∑
i,j=1

Kijξiξj ≥ K|ξ|2 ∀ξ = (ξ1, . . . , ξd) ∈ Rd

for a suitable K > 0.
We consider the following boundary value problem.
Global problem P .

(2.2)
Lu = f in Ω,
u = φD on ΓD,

∂nLu = φN on ΓN ,

where f ∈ L2(Ω), φD ∈ H1/2(ΓD), and φN ∈ H−1/2(ΓN ) are assigned functions
satisfying suitable compatibility conditions on ΓN ∩ ΓD (see [14]), and ∂nLu denotes
the conormal derivative of u:

∂nLu =

d∑
i,j=1

Kij
∂u

∂xj
ni − b · nu.

ni are the components of n, the latter being the unit normal vector external to ∂Ω.

Ω1

Ω2

Ω12

Γ1

Γ2

ΓDΓD

ΓNΓN

Ω1

Ω2

Γ

n
n

n

Fig. 2.1. Partition of Ω into two subdomains. On the left is the overlapping case, on the right
the nonoverlapping one.
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A few technical assumptions on b and b0 are made in order to guarantee the
well-posedness of (2.2), besides requiring that b ∈ [W 1,∞(Ω)]d and b0 ∈ L∞(Ω), with
b0(x) ≥ 0 in Ω:

1. if ΓN = ∅, ∃σ0 ≥ 0 such that

(2.3) b0(x) +
1

2
divb(x) ≥ σ0 ∀x ∈ Ω;

2. if ΓD = ∅, ∃σ0 > 0 such that (2.3) is satisfied and moreover

(2.4) ∃ε0 ≥ 0 such that ‖b‖L∞(ΓN ) ≤ 2[min{K,σ0} − ε0]

C∗ ,

where C∗ is the constant of the trace inequality

‖v‖2L2(∂Ω) ≤ C∗‖v‖2H1(Ω) ∀v ∈ H1(Ω);

3. if both ΓD = ∅ and ΓN = ∅, ∃σ0 ≥ 0 such that (2.3) is satisfied and ∃ε0 ≥ 0
such that
(a) if σ0 = 0, b satisfies

(2.5) ‖b‖L∞(ΓN ) ≤ 2KCΩ − ε0
C∗ ,

where CΩ is the constant of the Poincaré inequality

‖v‖L2(Ω) ≤ CΩ‖∇v‖L2(Ω),

(b) if σ0 > 0, b satisfies (2.4),
then problem (2.2) admits a unique weak solution (see problem (2.13) below).

There are several ways to reformulate (2.2) in an equivalent multidomain manner.
One possibility is on nonoverlapping subdomains Ω1, Ω2 ⊂ Ω, with Ω1 ∩ Ω2 = ∅,
Ω1 ∪Ω2 = Ω, Γ = ∂Ω1 ∩ ∂Ω2, and it reads (see, e.g., [19])

(2.6)
Lu1 = f in Ω1,
Lu2 = f in Ω2,
u1 = u2, ∂nLu1 = ∂nLu2 on Γ

with boundary conditions

(2.7)
ui = φD|Γi

D
on ∂Ωi ∩ ΓD, i = 1, 2,

∂nLui = φN |Γi
N

on ∂Ωi ∩ ΓN , i = 1, 2.

In the case of overlapping subdomains, we consider two different formulations.
Although they are mathematically equivalent, they will give rise to two different
ICDD methods that we compare in the forthcoming paper [6].

Problem PΩ12 .

(2.8)
Lu1 = f in Ω1,
Lu2 = f in Ω2,
u1 = u2 in Ω12

with boundary conditions (2.7);
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3438 M. DISCACCIATI, P. GERVASIO, AND A. QUARTERONI

Problem PΓ1∪Γ2 .

(2.9)
Lu1 = f in Ω1,
Lu2 = f in Ω2,

Ψ(u1) = Ψ(u2) on Γ1 ∪ Γ2

with boundary conditions (2.7).
We denote by Ψ(ui) either the trace of ui on Γ1 ∪ Γ2, or its conormal derivative

∂nLui on Γ1∪Γ2, or else a linear combination between ui and ∂nLui. Thus, depending
on the choice of Ψ, condition (2.9)3 may become either

(2.10) u1 = u2 on Γ1 ∪ Γ2,

(which stands at the base of the Schwarz method) or

(2.11) ∂nLu1 = ∂nLu2 on Γ1 ∪ Γ2,

or else

(2.12) βu1 + ∂nLu1 = βu2 + ∂nLu2 on Γ1 ∪ Γ2,

where β ≥ 0 is a suitable parameter. The equality (2.11) on Γ1 should be understood
as follows. The normal vector n on Γ1 is directed outward of Ω1 and the conormal
derivative of u2 is computed upon restricting u2 to Ω2 \ Ω12. On the other hand, on
Γ2 the normal vector n is directed outward of Ω2 and the conormal derivative of u1

is taken upon restricting it to Ω1 \ Ω12.
Since (2.11) is a special case of (2.12), in the following we will consider only the

more general condition (2.12).
Let us denote by RφD any lifting in Ω of the Dirichlet data φD, that is RφD ∈

H1(Ω), RφD |ΓD = φD. Analogously, Ri,φD denotes the lifting in Ωi of φD|Γi
D
, for

i = 1, 2.
We can associate problem (2.2) with the corresponding weak formulation: find

(u−RφD ) ∈ V such that

(2.13) a(u, v) = F (v) ∀v ∈ V,

where V = {v ∈ H1(Ω) : v = 0 on ΓD}, while the bilinear form a(·, ·) and the linear
functional F are defined as:

a(u, v) =

∫
Ω

(K∇u− bu) · ∇v +

∫
Ω

b0uv ∀u, v ∈ H1(Ω),

F (v) =

∫
Ω

fv +

∫
ΓN

φNv ∀v ∈ H1(Ω).

To write the weak form of the local problems in (2.9), we introduce the Hilbert
spaces

Vi = {vi ∈ H1(Ωi) : vi = 0 on Γi
D} and V D

i = {vi ∈ Vi : vi = 0 on Γi}
endowed with the canonical norm of H1(Ωi), and we distinguish the case in
which (2.9)3 corresponds to (2.10) or (2.12). In the first case we have

find (ui −Ri,φD ) ∈ Vi such that

ai(ui, vi) = Fi(vi) ∀vi ∈ V D
i , ui = uj on Γi, j = i, i, j = 1, 2,
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where ai(·, ·) is the restriction of the bilinear form a(·, ·) to Ωi, while

Fi(vi) =

∫
Ωi

fvi +

∫
Γi
N

φNvi ∀vi ∈ Vi.

In the second case the weak form reads
find (ui −Ri,φD ) ∈ Vi such that

ai(ui, vi)+

∫
Γi∪Γi

N

βuivi−
∫
Γi

(βuj+∂nLuj)vi = Fi(vi) ∀vi ∈ Vi, i, j = 1, 2, j = i.

The bilinear form a(·, ·) is continuous and also coercive on V . Indeed, the coer-
civity is guaranteed in the different cases by assumptions (2.3), (2.4), and (2.5).

Analogous results hold for the bilinear forms ai(·, ·) on Vi.
We want now to prove that (2.2), (2.8), and (2.9) are all equivalent problems. We

introduce the affine manifolds

VφD = {v ∈ H1(Ω) : v = φD on ΓD}, Vi,φD = {vi ∈ H1(Ωi) : vi = φD on Γi
D}.

Proposition 2.1. The function u ∈ VφD is the solution of (2.2) if and only
if u1 = u|Ω1 ∈ V1,φD and u2 = u|Ω2 ∈ V2,φD are the solutions of (2.8). Moreover,
u1 ∈ V1,φD and u2 ∈ V2,φD are the solutions of (2.8) if and only if they are solutions
of (2.9).

Proof. If u ∈ VφD is the solution of (2.2), then the restrictions of u to Ω1 and Ω2,
u|Ω1

and u|Ω2
, respectively, satisfy (2.8) by construction, so that we can set ui = u|Ωi

.
Vice versa, if u1 and u2 are the solutions of (2.8), if we set

u =

⎧⎨⎩
u1 in Ω1 \ Ω12,
u1 = u2 in Ω12,
u2 in Ω2 \ Ω12,

it is straightforward to see that u ∈ VφD and that it satisfies (2.2).
Assume that u1 and u2 are the solutions of problem (2.9). If we take w =

u1|Ω12
− u2|Ω12

in Ω12, then by definition w ∈ V12 with V12 = {v ∈ H1(Ω12) : v =
0 on ∂Ω12 ∩ ΓD} and it satisfies the following problem (with homogeneous data):

Lw = 0 in Ω12,
Ψ(w) = 0 on Γ1 ∪ Γ2,

w = 0 on ΓD ∩ ∂Ω12,
∂nLw = 0 on ΓN ∩ ∂Ω12,

whose unique solution is obviously w = 0. As a consequence, u1 = u2 in Ω12 and they
satisfy problem (2.8).

Vice versa, if u1 and u2 satisfy (2.8), they also satisfy (2.9)1, (2.9)2, and the
boundary condition (2.10). Finally, since u1 ∈ V1,φD , u2 ∈ V2,φD , and u1 = u2 in Ω12,
their image on Γ1 ∪ Γ2 through the operator Ψ are also equal.

Corollary 2.2. Problems (2.2), (2.8), and (2.9) are well-posed.
Proof. This follows from the well-posedness of (2.2) and the previous equivalence

results.
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3. The ICDD method. In order to simplify our analysis, we consider problem
(2.2) with homogeneous Dirichlet conditions, that is we put ΓN = ∅, ΓD = ∂Ω, and
φD = 0. As previously remarked, nonhomogeneous boundary data translate into a
modified right-hand side thanks to the use of a suitable lifting operator. This problem
modification does not affect the forthcoming analysis and discussion.

Then, we consider the overlapping decomposition of Ω introduced before.
The basic idea of the ICDD approach consists in introducing two controls which

play the role of unknown Dirichlet (or Robin) data at the interfaces of the decom-
position and in minimizing the difference between the solutions u1 and u2 of either
problem (2.8) and (2.9) through a suitable cost functional defined in Ω12 or on Γ1∪Γ2.

To this aim, for i = 1, 2, let us introduce the following vector spaces:
(i) admissible Dirichlet controls:

(3.1) ΛD
i = H

1/2
00 (Γi) = {μ ∈ H1/2(Γi) : ∃v ∈ H1(Ωi), v = μ on Γi, v = 0 on Γi

D};
(ii) admissible Robin controls:

(3.2) ΛR
i = (H

1/2
00 (Γi))

′.

The spaces (ΛD
i , ‖ · ‖

H
1/2
00 (Γi)

) and (ΛR
i , ‖ · ‖(H1/2

00 (Γi))′
), for i = 1, 2, are Hilbert

spaces.
In the case of Dirichlet controls, for i = 1, 2, we consider two unknown control

functions λi ∈ ΛD
i and we introduce the state problems

(3.3)
Lui = f in Ωi,
ui = λi on Γi,
ui = 0 on Γi

D.

In the case of Robin controls, for any β ≥ 0, (3.3) is replaced by

(3.4)
Lui = f in Ωi,

βui + ∂nLui = λi on Γi,
ui = 0 on Γi

D,

where now λi ∈ ΛR
i are the Robin controls.

The unknown interface controls are determined through the solution of a min-
imization problem involving a suitable cost functional depending on the difference,
with respect to a suitably chosen norm, between u1 and u2 either on the overlapping
region Ω12 (thus following (2.8)3) or on the interface Γ1∪Γ2 (referring to (2.9)3). For
instance, taking λ1 and λ2 as Dirichlet interface controls, we denote by ui(λi) the
solutions of (3.3) and we can proceed as follows.

Case 1. Minimization in the norm of L2(Ω12):

(3.5) inf
λ1,λ2

[
J0(λ1, λ2) =

1

2
‖u1(λ1)− u2(λ2)‖2L2(Ω12)

]
.

Case 2. Minimization in the norm of H1(Ω12):

(3.6) inf
λ1,λ2

[
J1(λ1, λ2) =

1

2
‖u1(λ1)− u2(λ2)‖2H1(Ω12)

]
.

Case 3. Minimization in the norm of L2(Γ1 ∪ Γ2):

(3.7) inf
λ1,λ2

[
J0,Γ(λ1, λ2) =

1

2
‖u1(λ1)− u2(λ2)‖2L2(Γ1∪Γ2)

]
.
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Remark 3.1. In the case ΓN = ∅ and ∂Ω12∩ΓD = ∅, we can replace the functional
J1 in (3.6) by the equivalent one

(3.8) J|·|1(λ1, λ2) =
1

2
|u1(λ1)− u2(λ2)|2H1(Ω12)

.

The minimization problems (3.5), (3.6), and (3.7) with constraints (3.3) (or (3.4))
are in fact optimal control problems and they can be analyzed by using the classical
theory of optimization (see, e.g., [15]). The controls are of boundary type (actually
they are interface controls) while the observation is distributed on the overlap in both
(3.5) and (3.6), while it is of boundary type in (3.7).

Problems (3.5) and (3.6) with constraints (3.3) were proposed in the papers by
Glowinski, Dinh, and Periaux [13] and Lions and Pironneau [16], without, however,
being analyzed. In [13] these methods were called least-squares conjugate-gradient
methods, while in [16] they were named virtual control methods. The latter nomencla-
ture has been used also by the authors of this paper in previous works (see [12, 4]).
In the next sections we will carry out the analysis of the minimization problems (3.5),
(3.6), and (3.7) as well as the derivation of the associated optimality systems. Let us
begin with the case of Dirichlet controls at the interfaces.

4. Analysis of the optimal control problems with Dirichlet interface
controls. We define the Hilbert spaces V = V1 × V2, V

D = V D
1 × V D

2 , and ΛD =

ΛD
1 ×ΛD

2 endowed with the corresponding graph norms. Let uλi,f
i denote the solutions

of problems (3.3) for i = 1, 2, and set uλ,f = (uλ1,f
1 , uλ2,f

2 ) for any λ = (λ1, λ2) ∈ ΛD.
Moreover, we set ΛD

12 = L2(Γ1 ∪ Γ2).
For the sake of notation unification, we can write (3.5)–(3.7) under the unified

form

(4.1) inf
λ∈ΛD

[
JC,H(λ) =

1

2
‖Cuλ,f‖2H

]
,

where (H, ‖ · ‖H) is a Hilbert space and C : V → H is a linear and continuous
(observation) operator. The different cases are specified in Table 4.1 and the reason
for the presence of the norms in the last column of the Table 4.1 will be clear after
the proof of Lemma 4.1.

The function (uλ1,f
1 − uλ2,f

2 )|Γ1∪Γ2 has to be interpreted in the sense of zeroth

order trace in the space H
1/2
00 (Γ1 ∪ Γ2).

Because of problem linearities, uλi,f
i = uλi,0

i + u0,f
i ; moreover, we denote by

uλi

i = uλi,0
i the solution of (3.3) with f = 0 and we set uλ = (uλ1

1 , uλ2
2 ), so that the

cost functionals can be written also as

(4.2) JC,H(λ) =
1

2
‖Cuλ‖2H + (Cuλ, Cu0,f )H +

1

2
‖Cu0,f‖2H.

Table 4.1

Different items for problem (4.1) and their relative notations.

JC,H(λ) H Cuλ,f ||| · |||∗
Case 1: J0(λ1, λ2) L2(Ω12) (uλ1,f

1 − uλ2,f
2 )|Ω12

|||λ|||0 = ‖Cuλ‖L2(Ω12)

Case 2: J1(λ1, λ2) H1(Ω12) (uλ1,f
1 − uλ2,f

2 )|Ω12
|||λ|||1 = ‖Cuλ‖H1(Ω12)

Case 3: J0,Γ(λ1, λ2) ΛD
12 (uλ1,f

1 − uλ2,f
2 )|Γ1∪Γ2

|||λ|||0,Γ = ‖Cuλ‖L2(Γ1∪Γ2)
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Lemma 4.1. In all Cases 1–3, ‖Cuλ‖H is a norm on the control space ΛD.
Proof. ‖Cuλ‖H is a seminorm on ΛD in every case. Then we can limit ourselves

to prove that if ‖Cuλ‖H = 0 then λ = (λ1, λ2) = 0.
(i) We start by considering Case 1, whereH = L2(Ω12) and Cuλ = (uλ1

1 −uλ2
2 )|Ω12 .

By using the same arguments adopted in the proof of Proposition 2.1, we can prove
that uλi

i = 0 in Ωi and then λi = 0 on Γi for i = 1, 2.

(ii) In Case 2, H = H1(Ω12) and Cuλ = (uλ1
1 − uλ2

2 )|Ω12 and the proof is similar.
(iii) In Case 3, if ‖uλ1

1 − uλ2
2 ‖2L2(Γ1∪Γ2)

= 0 then uλ1
1 = uλ2

2 a.e. on Γ1 ∪ Γ2;

the H1-regularity of both uλ1
1 and uλ2

2 implies uλi

i ∈ H
1/2
00 (Γi) and then ‖uλ1

1 −
uλ2
2 ‖2

H1/2(∂Ω12)
= 0. The thesis follows by the equivalence between H1/2(∂Ω) and

H1(Ω) norms and by (ii).
In view of the previous lemma, we can define three new norms in ΛD by setting

|||λ|||∗ = ‖Cuλ‖H (those listed in the fourth column of Table 4.1).
It is not guaranteed that ΛD is complete with respect to any of these norms.

Nevertheless, it is possible to built the completions of (ΛD, ||| · |||∗) (see, e.g., [21]),
with ||| · |||∗ chosen between those of Table 4.1 and to look for the solution of the
minimization problem (4.3) in such a complete space. The abstract space obtained
by completion can be “very large,” however, this is not an issue when using finite
dimensional approximations.

Let us denote by Λ̂
D

the completion of (ΛD, ||| · |||∗). Obviously, if (ΛD, ||| · |||∗) is
complete, then it holds Λ̂

D
= ΛD.

Theorem 4.2. The minimization problem

(4.3) inf
λ∈̂Λ

D
JC,H(λ)

has a unique solution λ ∈ Λ̂
D

satisfying

(4.4)
(̂Λ

D
)′〈J ′

C,H(λ),μ〉
̂Λ

D = (Cuλ,f , Cuμ)H = 0 ∀μ ∈ Λ̂
D
.

Proof. First, let us suppose that ΛD is complete. For any λ ∈ ΛD we set

(4.5) π(λ,μ) =
1

2
(Cuλ, Cuμ)H, L(μ) = −1

2
(Cu0,f , Cuμ)H,

so that JC,H(λ) = π(λ,λ) − 2L(λ) + 1
2‖Cu0,f‖2H (see (4.2)). π : ΛD × ΛD → R

is a bilinear symmetric form and thanks to Lemma 4.1 it is continuous and coercive
with respect to the norm ||| · |||∗, while L : ΛD → R is a linear continuous func-
tional. Moreover (ΛD, ||| · |||∗) is a Hilbert space. By applying classical results of
the calculus of variation (see, e.g., [15, Thm. I.1.1]), both existence and uniqueness
of the solution follow. The Euler–Lagrange equation (4.4) follows by observing that

ΛD ′〈J ′
C,H(λ),μ〉ΛD = 2π(λ,μ)− 2L(μ), for any λ, μ ∈ ΛD.

When ΛD is not complete the bilinear form π (the linear functional L, resp.)
is continuous on ΛD and it can be extended in a unique way to a continuous form

(functional, resp.) on Λ̂
D

thanks to the Hahn–Banach theorem. The thesis follows
by using the same arguments as before.

Remark 4.1. Other cost functionals could be defined, such as

(4.6) J1/2(λ1, λ2) =
1

2
‖u1(λ1)− u2(λ2)‖2H1/2

00 (Γ1∪Γ2)
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and

(4.7) J−1/2(λ1, λ2) =
1

2
‖∂nLu1(λ1)− ∂nLu2(λ2)‖2(H1/2

00 (Γ1∪Γ2))′
.

By defining suitable inner products based on Steklov–Poincaré operators (see [19]) in

both H
1/2
00 (Γ1 ∪ Γ2) and (H

1/2
00 (Γ1 ∪ Γ2))

′, it is possible to prove that both minimiza-
tion problems inf J1/2(λ) and inf J−1/2(λ) are equivalent to inf J1(λ). Nevertheless
we will not consider them in practice since they are quite expensive. Indeed, they
would require the solution of additive boundary value problems involving boundary
differential operators such as Laplace–Beltrami’s (see [4]).

4.1. The optimality system. For the solution of the minimization problem
(4.3) we apply the classical theory of optimal control problems (see [15]), where λ ∈
Λ̂

D
is the control, uλ,f ∈ V is the state, H is the observation space, and C : V → H

is the observation operator.
The numerical solution of the minimization problems (3.5) and (3.6) is achieved by

solving (numerically) the optimality system (OS) associated with the Euler–Lagrange
equation (4.4). The observation is distributed on the overlap (Cases 1–2) and the OS

associated with the Euler–Lagrange equation (4.4) reads as follows: find λ ∈ Λ̂
D
,

u ∈ V, p ∈ VD such that

ai(ui, vi) = Fi(vi), ui = λi on Γi ∀vi ∈ V D
i , i = 1, 2,

ai(vi, pi) = (−1)i+1(Cu, vi)H ∀vi ∈ V D
i , i = 1, 2,

(Cu, Cuμ)H = −
∫
Γ1

∂nL∗p1μ1dΓ−
∫
Γ2

∂nL∗p2μ2dΓ = 0 ∀μ = (μ1, μ2) ∈ Λ̂
D
,

(4.8)

where the inner product on the observation space H is the canonical one. Note that
the solution u of (4.8)1 is in fact uλ,f .

The following paragraphs are devoted to the derivation of both adjoint equations
(4.8)2 and the Euler–Lagrange equations (4.8)3 for the Cases 1–2.

Case 1. Given (u1−u2) ∈ H1(Ω12) and denoting by χ12 the characteristic function
associated with the open set Ω12, the adjoint problems read for i = 1, 2, find pi ∈ V D

i :

ai(vi, pi) = (−1)i+1

∫
Ωi

χ12(u1 − u2)vidΩ ∀vi ∈ V D
i ,

or alternatively,

L∗pi = (−1)i+1χ12(u1 − u2) a.e. in Ωi,
pi = 0 on ∂Ωi,

(4.9)

where L∗ is the adjoint operator of L. Notice that (4.9)1 holds a.e. in Ωi by regular-
ity results on elliptic problems which ensure that pi ∈ H2(Ωi). The Euler–Lagrange
equation (4.8)3 is derived in the following way (by using (4.9), (3.3), and integration
by parts):

(Cu, Cuμ)H =

∫
Ω12

(u1 − u2)(u
μ1

1 − uμ2

2 )dΩ =

2∑
i=1

∫
Ωi

L∗pi u
μi

i dΩ

=

2∑
i=1

[
−
∫
Ωi

Luμi

i pidΩ−
∫
∂Ωi

∂nL∗piu
μi

i dΓ +

∫
∂Ωi

∂nLu
μi

i pidΓ

]

= −
2∑

i=1

∫
Γi

∂nL∗piμidΓ.

D
ow

nl
oa

de
d 

10
/0

8/
13

 to
 1

47
.8

3.
70

.1
09

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3444 M. DISCACCIATI, P. GERVASIO, AND A. QUARTERONI

Case 2. By definition of the inner product in H = H1(Ω12), the adjoint problems
read for i = 1, 2, find pi ∈ V D

i :

(4.10) ai(vi, pi) = (−1)i+1

[∫
Ω12

∇(u1 − u2) · ∇vidΩ +

∫
Ω12

(u1 − u2)vidΩ

]
∀vi ∈ V D

i .

By introducing the linear and continuous functionals Gi : Vi → R,
(4.11)

Gi(vi) = (−1)i+1

[∫
Ω12

(−∇ · (∇(u1 − u2)) + (u1 − u2))vidΩ +

∫
Γ1∪Γ2

∂(u1 − u2)

∂n
vidΓ

]
,

problems (4.10) also read

L∗pi = Gi in V ′
i ,

pi = 0 on ∂Ωi,
(4.12)

so that

(Cu, Cuμ)H1(Ω12) =

2∑
i=1

(−1)i+1

[∫
Ω12

∇(u1 − u2) · ∇uμi

i dΩ +

∫
Ω12

(u1 − u2)u
μi

i dΩ

]

=

2∑
i=1

Gi(u
μi

i ) =

2∑
i=1

∫
Ωi

L∗pi u
μi

i dΩ

=

2∑
i=1

[
−
∫
Ωi

Luμi

i pidΩ−
∫
∂Ωi

∂nL∗piu
μi

i dΓ +

∫
∂Ωi

∂nLu
μi

i pidΓ

]

= −
2∑

i=1

∫
Γi

∂nL∗piμidΓ.

Different considerations have to be taken into account when the observation is on
the interfaces (Case 3). The Euler–Lagrange equation reads
(4.13)

(̂Λ
D
)′〈J ′

0,Γ(λ),μ〉̂ΛD =

∫
Γ1∪Γ2

(uλ1,f
1 − uλ2,f

2 )(uμ1

1 − uμ2

2 )dΓ = 0 ∀λ, μ ∈ Λ̂
D
,

where uλi,f
i and uμi

i are the solutions of (3.3) with nonnull and null f , respectively.
The next theorem, Theorem 4.3, ensures that minimizing the cost functional (3.7)
(or solving the Euler–Lagrange equation (4.13)) is equivalent to solving the following
pseudooptimality system:

find u, p ∈ VD, λ ∈ Λ̂
D

such that

ai(ui, vi) = Fi(vi), ui = λi on Γi ∀vi ∈ V D
i , i = 1, 2,

ai(pi, vi) = 0, pi = (−1)i+1(u1 − u2) on Γi ∀vi ∈ V D
i , i = 1, 2,∫

Γ1

((u1 − u2) + p2)μ1dΓ +

∫
Γ2

(−(u1 − u2) + p1)μ2dΓ = 0 ∀μ ∈ Λ̂
D
.

(4.14)

Note that the solution u of (4.14)1 is in fact uλ,f .
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Remark 4.2. We use the adjective pseudo to mean that (4.14) is derived by a
different approach than a classical optimality system. In fact, (4.14)2 differs from the
dual state equation and (4.14)3 is not obtained by an integration by parts procedure.

Theorem 4.3. The system (4.14) has a unique solution whose control component
λ is the solution of (4.3) (or equivalently (4.13)).

Proof. Existence. Let λ be the solution of

(4.15) inf
λ∈̂Λ

D
J0,Γ(λ)

(that exists and is unique in view of Theorem 4.2), then it is a solution of (4.14). As

a matter of fact, if λ is the solution of (4.15), then it satisfies (4.13), uλ1,f
1 −uλ2,f

2 = 0
on Γ1 ∪Γ2 and the solutions pi of (4.14)2 are null in Ωi for i = 1, 2. Therefore (4.14)3
is satisfied and (4.14) admits at least one solution.

Uniqueness. Let us start with the case f = 0. We define the operator χ : ΛD →
(ΛD)′,

(4.16) (ΛD)′〈χ(λ),μ〉ΛD =

∫
Γ1

((uλ1
1 −uλ2

2 )+pλ2 )μ1dΓ+

∫
Γ2

(−(uλ1
1 −uλ2

2 )+pλ1 )μ2dΓ,

where uλi

i and pλi (for i = 1, 2) are the solutions of (4.14)1,2 with f = 0. The linearity
of the operator χ : λ �→ χ(λ), follows from that of L. It remains to prove that
ker(χ) = {0}.

In view of (4.14)2, p
λ
1 ∈ V1 and pλ2 ∈ V2; therefore, pλi |Γi ∈ H

1/2
00 (Γi) and, if

λ ∈ ker(χ), by (4.16) it holds

(4.17) pλ2 = −(uλ1
1 − uλ2

2 ) on Γ1, pλ1 = uλ1
1 − uλ2

2 on Γ2.

It follows that pλ1 and pλ2 satisfy the system

a1(p
λ
1 , v1) = 0 ∀v1 ∈ H1

0 (Ω1), pλ1 = −pλ2 on Γ1,

a2(p
λ
2 , v2) = 0 ∀v2 ∈ H1

0 (Ω2), pλ2 = −pλ1 on Γ2.
(4.18)

By using the same arguments as in the proof of Proposition 2.1, we define w =
pλ1 + pλ2 ∈ H1(Ω12) and, thanks to (4.18), w ∈ H1

0 (Ω12), Lw = 0 a.e. in Ω12 and then
w ≡ 0 in Ω12. If we set

p =

⎧⎪⎨⎪⎩
pλ1 in Ω1 \ Ω12,

pλ1 = −pλ2 in Ω12,

−pλ2 in Ω2 \ Ω12,

then p ∈ H1
0 (Ω) and it satisfies a(p, v) = 0 ∀v ∈ H1

0 (Ω), yielding p ≡ 0 in Ω, i.e.,
pλ1 = 0 in Ω1 and pλ2 = 0 in Ω2. It follows that u

λ1
1 − uλ2

2 = 0 on Γ1 ∪ Γ2.
By invoking again the same arguments, however, now on the primal equations

(4.14)1 with f = 0, it holds uλi

i = 0 in Ωi and then λi = 0 on Γi, for i = 1, 2. By a

density argument the uniqueness is proven in Λ̂
D
.

When f = 0, for i = 1, 2 let pfi ∈ Vi denote the solution of

(4.19) a(pfi , vi) = 0 ∀vi ∈ Vi, pfi = (−1)i+1(u0,f
1 − u0,f

2 ) on Γi.

The pseudooptimality system (4.14) can be rewritten as

(ΛD)′〈χ(λ),μ〉ΛD = −(ΛD)′〈Af ,μ〉ΛD ∀μ ∈ ΛD,
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where Af : ΛD → (ΛD)′ is defined by

(ΛD)′〈Af ,μ〉ΛD =

∫
Γ1

((u0,f
1 − u0,f

2 ) + pf2 )μ1dΓ +

∫
Γ1

(−(u0,f
1 − u0,f

2 ) + pf1)μ2dΓ.

The thesis follows by applying the same arguments as before.
Remark 4.3. Solving the optimality system (4.14) is very attractive since both

problems with unknowns ui and pi are of the same nature (no adjoint equations
are needed here, contrary to what happens in (4.8)); moreover, only zeroth order
(Dirichlet) traces are required and no flux has to be computed on the interfaces.

When the boundary value problems are discretized by a Galerkin method (e.g., fi-
nite element methods (FEM) or spectral element methods (SEM)), the discretizations
in Ω1 and Ω2 may be totally unrelated: the two grids used inside each subdomain Ωi,
and/or the local polynomial degrees, may differ from one another. If the grids do not
match on Ω12, the term (uλ1

1 −uλ2
2 ) can be computed through interpolation operators

(from the mesh in Ω1 to that in Ω2 or vice versa). When distributed observation is
considered (as in minimizing J0 and J1) the interpolation step could be very expensive
if the overlapping region is wide and the meshes are very fine in Ω12, unless matching
meshes on the overlap are taken into account.

Different conclusions can be reached when interface observation is considered (as
in J0,Γ) since, in such cases, the interpolation is required only on the interfaces Γi,
with a computational cost that does not affect the global efficiency of the method.

Remark 4.4. The analysis carried out till now can be applied to decompositions
of Ω in M > 2 subdomains. In this respect, we distinguish between stripwise decom-
positions, in which each overlapped region is shared only by two subdomains, and
crosswise decompositions, in which more than two subdomains can share a nonempty
set. In the former case the subdomains Ωk for k = 1, . . . ,M can be numbered se-
quentially, so that all the odd (even, resp.) subdomains can be grouped in a unique

disconnected subdomain Ω̃1 (Ω̃2, resp.) and the analysis presented above still holds

provided Ωi is replaced by Ω̃i (for i = 1, 2). Otherwise in the latter case, we define
Ωij = Ωi ∩ Ωj for i = j and we replace the cost functionals of Table 4.1 by

(4.20) JH(λ) =
1

2

M∑
i,j=1
i>j

Ωij �=∅

‖uλi,f
i − u

λj ,f
j ‖2Hij

,

where Hij is L2(Ωij), H1(Ωij), or L2(∂Ωij). The formulation of both optimality
systems (4.8) and (4.14) follows by replacing Ω12 with Ωij for any i, j = 1, . . . ,M and
counting every overlap only once.

4.2. Analysis of the optimal control problems with Robin interface con-
trols. We consider now the case of Robin controls at the interfaces with distributed
observation. Like in the previous section, for the sake of simplicity we still assume
that φD = 0 on ∂Ω = ΓD. We introduce the spaces ΛR = ΛR

1 × ΛR
2 and

ΛR
12 = (H

1/2
00 (Γ1 ∪ Γ2))

′.

With a slight abuse of notation, we still indicate by uλ,f the solution of the control
problem although now we are considering Robin interface controls instead of Dirichlet
ones. More precisely, uλ,f is now the solution of (3.4).
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Notice that the characterizations of the cost functionals, as done in (4.1)–(4.2),
still hold considering now ΛR instead of ΛD and ΛR

12 instead of ΛD
12. Moreover, we

can prove the following results.
Lemma 4.4. For the Cases 1–2, ‖Cuλ‖H is a norm on the control space ΛR.
Theorem 4.5. For the Cases 1–2, the minimization problem

(4.21) inf
λ∈̂Λ

R
JC,H(λ)

has a unique solution λ ∈ Λ̂
R

satisfying

(4.22)
(̂Λ

R
)′
〈J ′

C,H(λ),μ〉
̂Λ

R = (Cuλ,f , Cuμ)H = 0 ∀μ ∈ Λ̂
R
,

where Λ̂
R

is the completion of ΛR with respect to the norm ‖ · ‖H.
The proofs of these results follow the ones of Lemma 4.1 and Theorem 4.2, re-

spectively.
Using Robin controls at the interfaces, the Euler–Lagrange equation (4.22) for

both Cases 1 and 2 leads to the following optimality system: find λ ∈ Λ̂
R
, u ∈ V,

p ∈ V such that

ai(ui, vi) +

∫
Γi

βuivi = Fi(vi) +
∫
Γi

λivi ∀vi ∈ Vi, i = 1, 2,

ai(vi, pi) +

∫
Γi

βvipi = (−1)i+1(Cu, vi)H ∀vi ∈ Vi, i = 1, 2,

(Cu, Cuμ)H =

∫
Γ1

p1μ1dΓ +

∫
Γ2

p2μ2dΓ = 0 ∀μ = (μ1, μ2) ∈ Λ̂
R
.

(4.23)

Note that the solution u of (4.23)1 is in fact uλ,f .
The characterization of the right-hand side done for the case of Dirichlet controls

still applies here.

5. ICDD for heterogeneous problems. We can take inspiration from the pre-
vious developments to address heterogeneous and multiphysics problems by a similar
approach. For the sake of exposition we consider two examples: the coupling between
advection and advection-diffusion equations and the associated ICDD formulation for
the case with interface observation, and a Stokes–Darcy coupled problem to model the
filtration of fluids through porous media. The latter problem will be fully addressed
in [7], where the associated ICDD formulation will be analyzed and numerical results
discussed.

5.1. ICDD with interface observation for the heterogeneous A-AD cou-
pling. Let us consider the coupling of advection and advection–diffusion equations
(in brief A-AD), that is of interest when the advection field dominates over the diffu-
sion and the solution of the global advection-diffusion problem features a boundary
layer. In such a case the presence of the viscous term is undoubtable in the subregion
adjacent to the layer, but at the same time it is negligible far from the layer. A pre-
liminary study of the A-AD coupling with overlapping subdomains has been carried
out in [12, 1, 4].

The same notations introduced above are used here; therefore we look for two
functions u1 and u2 (defined in Ω1 and Ω2, resp.) such that u1 satisfies the advection-
reaction equation

(5.1) L1u1 = div(bu1) + b0u1 = f in Ω1,
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Ω1

Ω2

Γ1Γ2

(∂Ω1 ∩Γ)in

L1u1 = f

L2u2 = f

layer

Fig. 5.1. Graphic representation of a 2D A-AD heterogeneous coupling.

while u2 satisfies the advection-diffusion-reaction equation

(5.2) L2u2 = div(−K∇u2 + bu2) + b0u2 = f in Ω2.

For any nonempty subset S ⊆ ∂Ω1, we set

the inflow part of S : Sin = {x ∈ S : b(x) · n(x) < 0},(5.3)

the outflow part of S : Sout = {x ∈ S : b(x) · n(x) > 0}(5.4)

and S0 = S \ (Sin ∪ Sout).
The boundary conditions for problem (5.1) are assigned on the inflow boundary

(∂Ω1)
in; for simplicity we set u1 = 0 on the external boundary (∂Ω1 \ Γ1)

in and
u1 = u2 on Γin

1 (see Figure 5.1). Assuming thatmeas(Γ0
2) = 0, we assign homogeneous

Dirichlet boundary conditions u2 = 0 for problem (5.2) on the external boundary
∂Ω2 \ Γ2, and u2 = u1 on Γ2.

We notice that in general there is no guarantee that u1 = u2 in Ω12 (see, e.g.,
[12, 1]).

When the computational domain is partitioned into two nonoverlapping subdo-
mains with sharp interface, the heterogeneous A-AD coupling has been analyzed in
[11, 10], where a suitable set of interface conditions has been provided expressing the
continuity of the velocity field across the inflow part of the unique interface Γ and the
continuity of the fluxes across the whole interface Γ.

In order to describe ICDD method for A-AD coupling, we first define the Hilbert
space (see [11, 10])

(5.5) L2
b(Γ

in
1 ) = {v : Γin

1 → R :
(
|b · nΓin

1
|
)1/2

v ∈ L2(Γin
1 )}.

The ICDD formulation for the heterogeneous coupling (5.1)–(5.2) reads as follows (see

Figure 5.2): look for the interface controls λ1 ∈ L2
b(Γ

in
1 ) and λ2 ∈ H

1/2
00 (Γ2) solutions

of

(5.6) inf
λ1,λ2

[
Jb(λ1, λ2) =

1

2

∫
Γin
1 ∪Γ2

|b · n|(uλ1,f
1 − uλ2,f

2 )2

]
,

where uλ1,f
1 and uλ2,f

2 are the solutions of⎧⎪⎪⎨⎪⎪⎩
L1u

λ1,f
1 = f in Ω1,

uλ1,f
1 = 0 on (∂Ω1 \ Γ1)

in,

uλ1,f
1 = λ1 on Γin

1 ,

⎧⎨⎩
L2u

λ2,f
2 = f in Ω2,

uλ2,f
2 = 0 on ∂Ω2 \ Γ2,

uλ2,f
2 = λ2 on Γ2.

(5.7)D
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Ω1

Ω1

Ω2

Ω2

Γin
1

Γ1 Γ2

Γ2 λ1

λ2

Fig. 5.2. Domain decomposition for the heterogeneous A-AD coupling.

Set

V1 = {v ∈ L2(Ω1), div(bv) ∈ L2(Ω1), v ∈ L2
b(∂Ω1)},

V D
1 = {v ∈ V1 : v|(∂Ω1\Γ1)in = 0}, ΛD

1 = L2
b(Γ

in
1 ),

and take V2, V
D
2 , and ΛD

2 as in section 2; therefore, define V = V1 × V2, VD =
V D
1 × V D

2 , and ΛD = ΛD
1 × ΛD

2 , and the bilinear forms

a1(u1, v1) = −
∫
Ω1

(bu1) · ∇v1 +

∫
Ω1

b0u1v1 +

∫
∂Ωout

1

b · nu1v1,

a2(u2, v2) =

∫
Ω2

K∇u2 · ∇v2 −
∫
Ω2

(bu2) · ∇v2 +

∫
Ω2

b0u2v2.

The A-AD counterpart of the optimality system (4.14), that is used in practice to
solve the minimization problem, reads find u,p ∈ V, λ ∈ ΛD such that

a1(u1, v1) =

∫
Ω1

fv1, u1 = λ1 on Γin
1 ∀v1 ∈ V D

1 ,

a2(u2, v2) =

∫
Ω2

fv2, u2 = λ2 on Γ2 ∀v2 ∈ V D
2 ,

a1(p1, v1) = 0, p1 = u1 − u2 on Γin
1 ∀v1 ∈ V D

1 ,

a2(p2, v2) = 0, p2 = u2 − u1 on Γ2 ∀v2 ∈ V D
2 ,∫

Γin
1

b · n((u1 − u2) + p2)μ1dΓ +

∫
Γ2

b · n((u2 − u1) + p1)μ2dΓ = 0 ∀μ ∈ Λ̂
D
.

(5.8)

The numerical results of Test 3 in section 6 refer to the finite element approx-
imation of (5.6)–(5.7). A more thorough investigation of the ICDD method for the
coupled A-AD problem (5.1)–(5.2) is carried out in [6].

5.2. Heterogeneous Stokes–Darcy coupling. A second instance of a hetero-
geneous problem is provided by the coupled free/porous-media flow problem. The
computational domain is a region naturally split into two parts: one, Ω1, occupied by
the fluid, the other, Ω2, by the porous media. The fluid in Ω1 can filtrate through the
adjacent porous medium. From the physical point of view, Γ is a surface separating
the two domains, but we can also suppose that there is a thin overlapping region of
coexistence of both media (see Figure 5.3). We assume that the fluid domain has a
fixed surface, i.e., we neglect here the case of free-surface flows.
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Ω1

Ω2

Γ
Ω1

Ω2
Γ1

Γ2

Ω12

Fig. 5.3. Representation of a 2D section of a possible computational domain for the coupled
free/porous-media flow problem. At left, a decomposition with sharp interface Γ; at right, a decom-
position with overlap.

Far from being exhaustive on the analysis of this problem (we refer to [17, 8,
4] for its precise statement), here we briefly formulate the coupling for overlapping
decompositions. The main advantage is to avoid using sharp interfaces which would
require an in-depth knowledge of the local physical behavior (interface conditions) as
the Beavers–Joseph–Saffman in the Stokes–Darcy coupling (see, e.g., [8]).

By using the Stokes equations for describing the motion of the fluid in Ω1 and
Darcy’s law for expressing the relation between velocity and pressure in porous media
the heterogeneous problem can be formulated as follows.

Given T > 0, a vector valued function f in Ω1 × (0, T ), a positive viscosity ν,
and a symmetric positive definite diagonal tensor K = (Kij)i,j=1,...,d, we look for the
fluid velocity u1 = u1(x, t) and the fluid pressure p1 = p1(x, t) in Ω1 × (0, T ), and for
the piezometric head ϕ = ϕ(x, t) (that essentially represents the fluid pressure in the
porus medium) in Ω2 × (0, T ), such that

∂tu1 − νΔu1 +∇p1 = f in Ω1 × (0, T ),
∇ · u1 = 0 in Ω1 × (0, T ),
−∇ · (K∇ϕ) = 0 in Ω2 × (0, T ),
BC for u1 on (∂Ω1 \ Γ1)× (0, T ),
BC for ϕ on (∂Ω2 \ Γ2)× (0, T ),
initial conditions for u1 in Ω1 × {0},

and finally we close the system by requiring that u1 and K∇ϕ match in some sense
in Ω12 × (0, T ) or on (Γ1 ∪ Γ2)× (0, T ).

This problem will be more carefully addressed in [7]. Some preliminary results in
this direction have been published in [20].

6. Numerical results. We give here a few numerical results referring to the
solution of elliptic boundary value problems by ICDD and we refer to [6] for an in-
depth description of the discretization of the systems (4.8) and (4.14), as well as for
efficiency and robustness analysis of the ICDD method.

The boundary value problems displayed in (4.14) are discretized by hp-FEM of
either simplicial (Pr) or quadrilateral (Qp) type. (In the latter case hp-FEM are
also known as SEM; see [3] for details.) The associated linear system has a blockwise
structure with unknowns [u1, u2, p1, p2, λ1, λ2]

t. Then we derive its Schur complement
system with respect to the control variables λi (see [6]), and we solve the latter by
the Bi-CGSTAB method (see [23]).

At each iteration of the Bi-CGSTAB method two matrix-vector products between
the Schur complement matrix and the vector of discrete interface controls have to be
performed. Each product involves addressing the three steps of the optimality system
(either (4.8) or (4.14)) for given interface control functions, that is
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Fig. 6.1. Iterations number of ICDD and Schwarz methods: at left, versus the mesh size h for
P1 discretization; at right, versus the polynomial degree p for Qp discretization and h = 0.2.

• solve M primal state problems in parallel (M denotes the global number of
subdomains);

• solve M dual state problems in parallel;
• evaluate the interface contributions in the Euler–Lagrange equations.

One iteration of the ICDD method is in fact one Bi-CGSTAB iteration and,
because the latter requires two matrix-vector operations, it costs the solution of 4M
local boundary value problems. The cost of one ICDD iteration is four times the
cost of one iteration of the classic additive Schwarz (AS) method and it is less than
twice the cost of one iteration of Bi-CGSTAB preconditioned by AS with coarse grid
(PASC). The latter requires us to solve 2M local boundary value problems at each
iteration and 2 matrix-vector products for the global stiffness matrix on the fine grid.
See, e.g., [22, 3].

In spite of that, the number of iterations required by ICDD with cost functional
J0,Γ and Dirichlet controls is in general lower than that required by Schwarz methods.

As an example, let us consider the elliptic problem (2.2) in Ω = (0, 1)2, set
K = 1, γ = 0, b = (0, 0), and Dirichlet boundary conditions on ∂Ω. The functions
f and φD are defined so that the exact solution of the differential problem (2.2) is
u(x, y) = sin(πxy) + 1.

The domain Ω is decomposed into 2×2 subdomains of the same size, the interfaces
Γi (for i = 1, . . . , 8) are parallel to the x and y axes and symmetric with respect to the
right lines passing at the midponts of the side of Ω. The thickness δ12 of the overlaps
is uniform and the local grids match on the overlaps.

In Figures 6.1 and 6.2 we compare the convergence rate of ICDD with Dirich-
let controls with that of Schwarz methods under a common stopping criterion with
tolerance ε = 10−12. The number of iterations required by the ICDD method with
Dirichlet controls and cost functionals J0, J1, and J0,Γ (named J0D, J1D and JGD,
resp.) as well as the number of both AS and PASC are shown versus the mesh size
h for P1 discretization, the polynomial degree p for Qp discretization, the overlap
thickness δ12 for both P1 and Qp.

The analysis of the condition number of the Schur complement matrix for the
ICDD method, as well as the design of a suitable coarse correction that may guarantee
scalability as for PASC, are in progress and will be presented in a future work ([5]).
Nevertheless, preliminary results show that the convergence rate of ICDD with J0,Γ
and Dirichlet controls is independent of the discretization parameters while it depends

on the overlap thickness as δ
−1/2
12 (see Figures 6.1 and 6.2).
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Fig. 6.2. Iterations number of ICDD and Schwarz methods versus the overlap thickness: at
left, for P1 discretization and uniform h = δ12; at right, for Q4 discretization and nonuniform h.
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Fig. 6.3. Iterations number of ICDD J0,Γ with Dirichlet (JGD) and Robin controls with several
values of β: at left, versus the polynomial degree p for Qp discretization; at right, versus the overlap
thickness δ12, for Q4.

Concerning Robin controls, preliminary results (see [6]) show that they are less
efficient than Dirichlet controls, hence the choice of the parameter β in (3.4) is not so
relevant. Here we will only consider the cost functional J0,Γ; the other cost functionals
display a very similar behavior.

With respect to the polynomial degree p (see Figure 6.3, left), the larger the β the
lower the number of iterations. The latter is however higher than that of the ICDD
method with Dirichlet controls.

When the overlap thickness δ12 tends to zero and β is either null or very small,
the number of iterations required by Robin controls is essentially independent of
δ12; however for increasing values of β, the number of iterations increases and shows
the same behavior of J0,Γ with Dirichlet controls. In any case ICDD with Dirichlet
controls turns out to be the most efficient one, as we can see in Figure 6.3, right.

Our conclusion is that the most efficient ICDD method is that obtained by min-
imizing the cost functional J0,Γ (that with interface observation) with Dirichlet con-
trols. From now on we will therefore take into account only such a functional.

Now we consider a decomposition of Ω = (0, 1)2 into two subdomains with irreg-
ular interfaces as shown in Figure 6.4, and we test the behavior of ICDD with cost
functional J0,Γ, Dirichlet controls, and P2 FEM discretization, when δ12 = h tends to
zero. The mesh is not uniform, nevertheless it is regular and h denotes the maximum
diameter of the triangles.
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Fig. 6.4. The triangular mesh with irregular interfaces.

Table 6.1

Iterations number and errors for the decomposition with irregular interfaces.

δ = h #iter inf J0,Γ e0 e1 e12,0

1/10 7 6.7834e-26 6.8367e-06 5.4954e-04 6.6013e-14
1/20 9 1.7068e-23 8.4739e-07 1.3650e-04 8.1152e-13
1/40 13 1.6443e-24 1.0568e-07 3.3985e-05 1.7596e-13
1/80 18 1.0253e-24 1.3228e-08 8.4858e-06 8.2360e-14

The coefficients of the differential operator are set as follows: K = 1, b = 0, γ = 0;
the functions f and φD are f(x, y) = sin(πx) sin(πy) and φD = sin(πx) sin(πy)/(2π2).

In Table 6.1 we report the number of ICDD iterations required to satisfy the
stopping test on the residual with tolerance ε = 10−9; the infimum of the cost
functional attained at convergence, the errors e0 = (

∑2
i=1 ‖u − ui,h‖2L2(Ωi)

)1/2 and

e1 = (
∑2

i=1 ‖u− ui,h‖2H1(Ωi)
)1/2 between the local discrete solutions ui,h and the ex-

act one; the norm of the jump between the local solutions e12,0 = ‖u1,h−u2,h‖L2(Ω12).

We notice that the number of iterations behaves like #iter = Cδ−1/2, as in the
case of regular interfaces. The errors with respect to the exact solution decay following
theoretical estimates for P2 finite elements, while the error e12,0 and the infimum of
the cost functional stay within the bounds of rounding errors.

Now we present three test cases, the first one for an operator with discontinu-
ous coefficients; the second one with regular coefficients and a known exact solution
for which we test the accuracy in nonconforming discretizations; the third one with
dominated convection.

6.1. Test 1. Let us consider the self-adjoint problem{ −div(K∇u) + u = 1 in Ω = (0, 1)2,
u = 0 on ∂Ω.

(6.1)

We investigate the robustness of ICDD with respect to jump discontinuities of the
elliptic coefficient K. We consider two classical tests, that are usually called central
jump and random mix. The computational domain is decomposed into 4 × 4 equal
subdomains with overlaps of thickness δ = 0.01 (equal to 1% of the side of Ω), each
subdomain is discretized in 3 × 3 square spectral elements, and in each element the
spectral polynomial degree is N = 12 with respect to every spatial variable.

In the central jump test the function K is

K =

{
α in Ωc = [0.25, 0.75]2,
1 in Ω \ Ωc

D
ow

nl
oa

de
d 

10
/0

8/
13

 to
 1

47
.8

3.
70

.1
09

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3454 M. DISCACCIATI, P. GERVASIO, AND A. QUARTERONI

10−1

10−2

10−2

10−3

10−3

10−410−5

10−6

1

1

10

102

102 102

104

106

Fig. 6.5. Test case 1, random mix: at left, values of the coefficient K in Ω; at right, the
numerical solution.

Table 6.2

Test case 1. Iteration counts and infimum of the cost functional for the central jump and
random mix configurations.

α #it inf J0,Γ

10−6 16 2 · 10−22

10−4 17 1 · 10−24

10−2 20 1 · 10−25

1 28 6 · 10−26

α #it inf J0,Γ

102 20 1 · 10−25

104 24 5 · 10−23

106 23 1 · 10−22

random 9 9 · 10−21

with α varying from 10−6 up to 106. In the random mix case, K is defined as in the
left picture of Figure 6.5.

In Table 6.2 we report the iteration counts and the infimum of the cost functional
J0,Γ obtained at convergence, for different values of the parameter α. The iteration
counts refer to Bi-CGSTAB, called here to solve the Schur complement system asso-
ciated with the discretization of (4.14). The stopping test is satisfied when the norm
of the residual is reduced of 12 orders of magnitude.

The results show that the convergence rate of ICDD to the solution of the mini-
mum problem (3.7) is independent of the jumps of the coefficients.

The size of the overlap is responsible in general for the convergence rate of the
Bi-CGSTAB iterations and, in the case of a discontinuous coefficient, also for the
accuracy of the approximation. More precisely, if the jump of the coefficient is very
large, the high variation of the solution is correctly captured without oscillations only
if the discretization is fine enough in a small region around the jump. We can achieve
good results, e.g., by using a very small overlap, then discretizing the overlap with
one spectral element (along the direction across the jump) and by using a moderately
large value of the polynomial degree N . Otherwise we can use a generous overlap
in spite of adopting higher polynomial degree N . On one hand, the smaller the
overlap thickness, the slower the convergence rate to the minimum point. On the
other hand, the larger the polynomial degree N , the more expensive the solution of
the boundary value problems inside each subdomain. Therefore, a careful tuning of
the discretization parameters is in order to minimize the computational costs without
compromising accuracy or stability.

6.2. Test 2. Let us consider now problem (2.2) in Ω = (0, 3)2, with Dirichlet
conditions u = φD on the boundary. We take K = 1, b = (y − 1, x), b0 = 1,
while the functions f and φD are chosen so that the exact solution is u(x, y) =
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Fig. 6.6. Test case 2. At left, subdomains with the same color share the same discretization
(the same number of spectral elements and the same polynomial degree). At center, is a possible
nonconforming mesh, the overlaps are marked with black lines. At right, is the numerical solution
with N = 12, Nc = 14, and Nt = 16.

Table 6.3

Test case 2. Iteration counts and absolute error with respect to the exact solution in H1 norm.
N denotes the polynomial degree in the subdomains of the left-bottom L-shaped band. At left, the
grids do not match on the overlaps for any N , also the number of elements differ band by band.
At right, the number of spectral elements is the same in each subdomain, but the grids match only
when N = 16.

N Nc Nt #it H1-error

4 6 8 29 1.44 · 10−1

6 8 10 26 8.89 · 10−3

8 10 12 27 1.46 · 10−4

10 12 14 27 1.25 · 10−5

12 14 16 26 3.76 · 10−7

14 16 20 27 1.94 · 10−9

N Nc Nt #it H1-error

6 8 16 27 2.50 · 10−3

8 10 16 26 4.49 · 10−5

10 12 16 27 3.30 · 10−7

12 14 16 26 1.63 · 10−8

14 16 16 27 1.61 · 10−10

16 16 16 26 7.79 · 10−12

sin(6πex−3) sin(6πey−3). This function shows a discrete number of bumps that are
mainly located in the square (2, 3)× (2, 3) (see Figure 6.6, right). Thus, it is natural
to enrich the discretization in the computational domain when moving from left to
right and from bottom to top. To realize this, we decompose Ω in 3 × 3 square
subdomains Ωk with a small overlap of size δ (that will be specified later). In its turn,
each subdomain Ωk is discretized in nek × nek spectral elements with polynomial
degree Nk with respect to both x and y. The number of spectral elements and the
polynomial degree can differ from one subdomain to another, providing nonmatching
grids on the overlaps. We analyze the convergence of the numerical solution towards
the exact one in H1-norm for various nonconforming discretizations.

We fix the overlap thickness equal to δ = 0.03. In each subdomain of the left-
bottom L-shaped band (the light-blue region of the picture at left of Figure 6.6) we
consider 3× 3 spectral elements with polynomial degree N , in each subdomain of the
central L-shaped band (blue region) we take 4× 4 spectral elements with polynomial
degree Nc = N + 2, and, finally, in the top-right subdomain we have 5 × 5 spectral
elements with polynomial degree Nt = N + 4 (see Figure 6.6, at center).

As we can read in Table 6.3 (at left), the error decays with exponential accuracy
when the polynomial degree N (and consequently also Nc and Nt) grows up, as it
typically happens for conforming spectral elements approximations. We remark the
fact that an interpolation technique between one spectral element grid to the other
has been used to match the two solutions on the interfaces of the overlaps.

In Table 6.3 (at right) we show the H1-norm error with respect to the exact
solution, for another discretization. The domain Ω = (0, 3)2 is split again in 3 × 3
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Fig. 6.7. Test case 3: at left, the decomposition of the computational domain; at right, the
numerical solution of the heterogeneous coupling with K = 10−6, obtained by stabilized Q2 finite
elements.

square subdomains, but we consider now 4 × 4 spectral elements in each subdomain
Ωk (for k = 1, . . . , 9), while the polynomial degree is equal to N in each subdomain
of the left-bottom L-shaped band, equal to Nc = min{N + 2, 16} in each subdomain
of the centered L-shaped band, and equal to Nt = 16 in the top-right subdomain.
The discretization is conforming only when N = 16. Also in this case we recover
exponential H1-convergence of the numerical solution to the exact one.

The number of Bi-CGSTAB iterations required to converge to the minimum point
of (3.7) is independent of the polynomial degree N . In [6] the convergence rate of
ICDD methods will be analyzed with respect to the other discretization parameters,
as the number of subdomains M , the size of the overlap, and the grid size for finite
element discretizations.

6.3. Test 3. Let us consider problem (2.2) in Ω = (0, 1)2, where K is a small
positive constant, b = [1, 1]t, b0 = 1, f = 1, and φD = 0. It is a convection-dominated
problem whose solution features boundary layers on the top and on the right sides of
the computational domain [18]. We analyze the behavior of the ICDD method (4.14)
when the elliptic coefficient K varies from 10−6 to 10−2. Moreover, for any value of
K considered, we solve the heterogeneous A-AD coupling (5.1)–(5.2) by the ICDD
method (5.6) (or equivalently (5.8)) by setting K = 0 in a subregion of the domain
far from the layers. We measure the difference in L2-norm between the state solution
of the homogeneous ICDD (with elliptic problems in all the subdomains) and that of
the heterogeneous ICDD, as well as the efficiency of the ICDD method in terms of
iterations count.

We split the computational domain into 2 × 2 subdomains whose interfaces are
close to the boundary layers (see Figure 6.7, left). We set Ω1 = (0, xΓ + δ/2) ×
(0, yΓ + δ/2), Ω2 = (0, xΓ + δ/2) × (yΓ − δ/2, 1), Ω3 = (xΓ − δ/2, 1)× (0, yΓ + δ/2),
and Ω4 = (xΓ − δ/2, 1) × (yΓ − δ/2, 1), the thickness of the overlap is δ = 0.01
(corresponding to 1% of the side of the computational domain) for all the cases, while
xΓ = yΓ will be specified later and they will be chosen so that they do not fall in the
boundary layer region. In the heterogeneous case, we solve the hyperbolic equation
in the subdomain Ω1 and the elliptic equation in Ω̃2 = ∪4

k=2Ωk.
In each subdomain we discretize the boundary value problems by Q2 finite ele-

ments, stabilized with Galerkin Least Squares techniques (see [9]) for the elliptic case.
In Table 6.4 we report the number of Bi-CGSTAB iterations required to solve the
Schur complement of system (2.2) up to reducing the residual of 12 orders of magni-
tude for both homogeneous (#ite) and heterogeneous (#ith) couplings. By denoting
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Table 6.4

Test case 3. Iterations count and errors for the convection dominated solution.

K xΓ #ith #ite ‖ue − uh‖L2(Ω1)
‖ue − uh‖L2(˜Ω2)

10−2 0.9 6 9 9.48 · 10−5 1.61 · 10−5

10−3 0.95 5 11 2.38 · 10−6 2.41 · 10−7

10−4 0.95 7 13 1.83 · 10−7 1.10 · 10−8

10−5 0.95 7 13 1.49 · 10−7 7.10 · 10−9

10−6 0.98 6 13 1.48 · 10−7 6.90 · 10−9

with ue and uh the state solutions of the homogeneous and heterogeneous couplings,
respectively, we report the errors ‖ue − uh‖L2(Ω1) and ‖ue − uh‖L2(˜Ω2)

. Numerical

results show that, for any considered value of K, to solve the heterogeneous problem
instead of the homogeneous one is advantageous and the differences between the het-
erogeneous and homogeneous solutions vanish when K tends to zero. The mesh in
Ω1 is fixed in 10 × 10 elements, while in the other subdomains we consider different
meshes versus the values of K. More precisely, we fix 50×nK elements in Ω2, nK×50
in Ω3, and nK × nK in Ω4, with nK = 5 when K = 10−2, 10−3, 10−4 and nK = 10
when K = 10−5, 10−6. In all cases the meshes are nonmatching on the overlaps.

7. Conclusion. In this paper we have introduced and analyzed the ICDDmethod
for the mathematical formulation and the numerical solution of elliptic partial differen-
tial equations. The idea consists of reformulating the original boundary value problem
on a decomposition of the domain Ω with overlapping subdomains Ωk; introducing
as control variables the unknown traces (of Dirichlet, Neumann, or Robin type) of
the original solution at the internal boundaries of the subdomains Ωk; introducing a
cost functional expressing the minimization of a suitable interface jump; deriving the
associated optimality system. The latter is numerically solved. The results obtained
on three different PDEs highlight the excellent properties of efficiency of the ICDD
method, especially its robustness with respect to the variation of the physical coef-
ficients. Of remarkable interest is the accuracy and computational efficiency of the
ICDD method to deal with heterogeneous PDEs (A-AD problems considered here,
Stokes–Darcy problems that will be dealt with in [7]).
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