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An explicit class of solutions is given which represents a family of expanding gravitational waves
with distinct wave fronts propagating into a variety of backgrounds, including vacuum Kasner and
Friedmann-Robertson-Walker fluid models with a stiff equation of state. Complete global solutions
are given, and it is indicated how solutions describing the collision of such waves may be constructed.
Since the solutions obtained are regular apart from the initial singularity, it is concluded that this
class of colliding gravitational waves do not introduce singularities into the space-time.
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I. INTRODUCTION

The class of nonexpanding plane gravitational waves,
which propagate in a flat background, are well known.
In recent years considerable attention has been paid to
the problem of the collision and interaction of such waves
(for a review see [1]). The purpose of the present paper
is to present a class of exact solutions that represents
the propagation of expanding plane fronted gravitational
waves in certain physically significant backgrounds and
to consider solutions describing their collision and subse-
quent interaction.

Our attention will be restricted to space-times that
contain two commuting, hypersurface orthogonal space-
like Killing vectors. For this, the line element can be
written in terms of two null coordinates v and v in the
Einstein-Rosen form

ds? = 2¢ Mdudv — e_U(evd:z:2 + e_dez) ,  (1.1)
where U, V, and M are functions of u and v only. This is
sufficient to describe both a suitable class of backgrounds
and regions containing gravitational waves which will be
identified by appropriate components of the Weyl tensor.

The space-times considered here admit a family of
planes spanned by the two Killing vectors 8, and §,.
These will form wave fronts of a gravitational wave, which
will propagate into a background along a null hypersur-
face, normally given by u = 0. The background region
will be that for which v < 0, while the region « > 0 will
contain the gravitational wave.

The background will admit full plane symmetry if
V = 0 in that region. It will then either be conformally
flat or of algebraic type D. However, we will also consider
various backgrounds for which V' # 0. These include cer-
tain cases that may be interpreted as having cylindrical
symmetry. '

The simplest expanding backgrounds to be considered
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are the vacuum Kasner space-times. These can eas-
ily be extended to include the presence of a stiff per-
fect fluid or a massless scalar field. Of particular inter-
est here are the conformally flat Friedmann-Robertson-
Walker (FRW) models containing a stiff fluid, particu-
larly the spatially flat and open cases, which admit full
plane symmetry. Some appropriate backgrounds will be
described in Sec. III. In general, such backgrounds are
often referred to as Gowdy universes.

The propagation and interaction of “gravitational soli-
tons” in such backgrounds are well known following the
work of Belinskii and Zakharov [2] and Belinskii [3]. Re-
cent work on this topic has been thoroughly reviewed by
Verdaguer [4]. Other inhomogeneous cosmological mod-
els containing gravitational and scalar waves have been
previously reviewed by Carmeli, Charach, and Malin [5].
In this paper, however, attention is restricted to waves
having well-defined wave fronts.

The collision and interaction of gravitational waves in
a vacuum Kasner background was initially considered by
Centrella and Matzner [6]. In a series of recent papers,
the propagation and interaction of gravitational waves
into spatially flat [7], [8], open [9], and closed [10] FRW
stiff luid backgrounds have also been described. In all
these cases, however, the gravitational waves have been
described in terms of the metric functions U and V,
but explicit expressions for M have not been obtained.
Nevertheless, it has been shown that the gravitational
wave represented by these solutions is necessarily par-
tially backscattered as it propagates.

In Sec. IV we will present complete solutions, including
explicit expressions for M, for a general class of gravita-
tional waves with well-defined wave fronts. Solutions de-
scribing the head-on collision of such waves and their sub-
sequent interaction will be presented in Sec. V. There it
will be shown that the components representing the grav-
itational waves are regular throughout the space-time. It
is therefore concluded that the collision of initially ex-
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panding gravitational waves does not introduce future
singularities. This is in marked contrast to the case of
nonexpanding gravitational wave interactions in a flat
background.

II. FIELD EQUATIONS

For space-times with the metric given by (1.1), the
vacuuin field equations take the form

Uyo=U,U, , (2.1)
2U,=U,% +V,2 —2U, M, , (2.2)
2Uyu= U2 + V2 — 2U,M,, , (2.3)
2M,,= —-U,U, + V.V, , (2.4)
2Vyo= UV, + U, V,, , (2.5)

and the nonzero components of the Weyl tensor can be
expressed in scale-invariant form as
8= —"21'(‘/1:1: -U,V, + MvVv) )
;—_—_ _%(Uqu - Vu‘/v) )
\IIZ= _%(Vuu - UuVu + MuVu) .

(2.6)

It therefore follows that the gravitational waves will
largely be determined by the metric function V(u,v).
Equation (2.1) can immediately be integrated to give

e = flu) +g(v) ,

where f(u) and g(v) are arbitrary functions. It is often
possible to adopt f and g as coordinates in place of u
and v. However, in order to include a wide range of
backgrounds, it is convenient here generally to retain the
functions f(u) and g(v).

It may also be noticed that Egs. (2.1), (2.4), and (2.5)
are the integrability conditions for Egs. (2.2) and (2.3).
Thus, if Eq. (2.5) is satisfied using (2.7), there auto-
matically exists a function M satisfying equations (2.2),
(2.3), and (2.4). In principle, M can then be obtained
by quadrature, although not usually in closed form.

In terms of the functions f and g, the main field equa-
tion (2.5) can be written as the Euler-Poisson-Darboux
equation with noninteger coefficients

(2.7)

(f+9)Vs+3Vs+ 3V =0. (2-8)

For any particular solution of this equation, the remain-
ing function M can then be found by putting
e~ M _ f'g e
- b
vVityg

where, from (2.2) and (2.3), S must satisfy the subsidiary
equations

Sf=—3(f+9)V¢?,

which are automatically integrable in view of (2.8).
We wish to consider a gravitational wave having a wave
front given by f = 0 (usually also u = 0). This will be

Sg=—3(f +9)V*, (2.9
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defined in the region f > 0 and will propagate into the
background region f < 0 as illustrated in Fig. 1. How-
ever, it is clear from (2.7) that a singularity occurs when
f + g = 0. This will generally be a curvature singular-
ity corresponding to a kind of big bang from which the
background emerges.

It is well known that, for any vacuum space-time with
two commuting, orthogonally transitive spacelike Killing
vectors, a solution containing a perfect fluid with a stiff
equation of state p = p can be generated using the
method of Wainwright, Ince, and Marshman [11]. In the
case when the Killing vectors are orthogonal, the proce-
dure can be summarized as follows. Given any vacuum
solution with the line element (1.1) with metric functions
U = —In[f(u) + g(v)], V and M, and any potential func-
tion o(f,g) satisfying the equation

(f+9)osg+ 507+ 30 =0, (2.10)
a new stiff fluid solution is given by U, V, and M + Q,
where the function Q(u,v) is found by integrating the
equations

Q=+, Y=-h(f+oes (@11)
The function o(f, g) may be considered either as a mass-
less scalar field or as a potential for a stiff perfect fluid
[12] with

16mp = eMt 9,0, = /F + ges"'nafag.
It may also be noted that the Weyl tensor component ¥,
is modified to the form

¥, = “%€M+Q(3Uqu —3VuVy — ou0y).

It may be noticed that Egs. (2.8) and (2.9) are formally
identical to Egs. (2.10) and (2.11). Thus any solutions of
(2.8) and (2.9) representing gravitational waves may also
be considered as possible solutions of (2.10) and (2.11)
representing scalar waves or acoustic waves in a stiff per-
fect fluid. Although this dual interpretation is possible,
the following sections will be written only in terms of
gravitational waves in particular backgrounds.

In this approach it is, therefore, only necessary to
construct solutions for gravitational waves in expand-
ing vacuum backgrounds. To any such solution a scalar

Background
region

Initial singularity f(u) +g(v) =0

FIG. 1. A gravitational wave with wave front f = 0 prop-
agates into a background region, which contains an initial
singularity at f + g = 0.
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field (possibly including scalar waves) or stiff fluid (with
or without independent acoustic waves) can always be
added subsequently.

It is convenient here also to introduce alternative time-
like and spacelike coordinates ¢t and z defined by

t= f + g9, zZ=9— f .

In this case, the line element (1.1) can be rewritten in
the form

-s
ds? = ;——\/E(dtz — dz?) —t(e¥da? + eV dy?),

the main vacuum field equation (2.8) becomes

1
Vu+ZVt~sz =0, (2.12)
and the subsidiary equations (2.9) become
Se=—3t (VV?+V.%), S.=-tWV,. (2.13)

III. POSSIBLE BACKGROUNDS

The basic background that we wish to consider is that
of a vacuum Kasner solution given here by

V =aln(f +9), S=—%azln(f+g) , (3.1)

or eV = t* and e=5 = to°/ 2, where a is an arbitrary
constant. By putting { = t(@*+3)/4 and rescaling the
coordinates, this may be expressed in the more familiar
form of the Kasner metric

ds? = dt? —t?Prdp? — §2P2dy® — §2P3 (2 |
where the exponents are given by

a2 -1

a?+3°

_ 2(1 —a)

2(1+a)
pP1 = 2 ) =
a’+3

a?2+3"°

p3 =

This space-time is flat when a = 1. The use of this
particular case enables us to consider expanding gravi-
tational waves in a Minkowski background. In this case,
however, there is a coordinate singularity instead of a
curvature singularity when ¢ = 0. The above vacuum
Kasner solution is of algebraic type D when a = 0.

To this family of backgrounds can always be added
a scalar field or stiff fluid using the Wainwright-Ince-
Marshman algorithm (2.10) and (2.11). One such so-
lution is given by

o =bln(f + g), Q= —1b%In(f + g). (3.2)

In this case, the line element is

ds®= 2(f + ¢) @ ¥ ~V/24tdg
—(f +g)'tedz® — (f +g)'~2dy>.

This includes the spatially flat FRW stiff fluid model
when @ = 0 and b = /3.
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Another solution that is of particular physical interest
is given by

d=b1n('1+ — l_f)
Vitg+Vi-f)’
(3.3)

2
0 £1a (LE20=0)
2 f+g

When a = 0 and b = /3, this is the open FRW stiff fluid
model. This can be seen by putting f(u) = 1 —e~** and
g(v) = e* — 1, so that o = v/3Intanh(u + v). It is then
in the form described by Bi¢dk and Griffiths [9] in which
the hypersurface f = 1 is part of future null infinity.

The two FRW stiff fluid models included above are
particularly appropriate to consider as backgrounds to
gravitational waves, since they are conformally flat with
V(f,g) = 0. The gravitational waves can then be clearly
identified in terms of the nonzero components of the Weyl
tensor. All that is required is to find a solution of Eq.
(2.8) for which V(0,9) = 0 and V¢(0,g) is bounded on
a wave front given by f = 0. In any more general
background, a solution of (2.8) for V(f,g), satisfying
V(0,g9) = 0 and Vf(0,g) bounded, can always be added
to the background V, since (2.8) is linear. However, the
properties of the gravitational wave added in this way
are more difficult to identify.

In terms of the metric

ds? = e M(dn? — dz?) — e7Y(eVdz? + e Vdy?)
in which we have now put n = 1/y/2(u 4 v) and z =

1/v/2(u — v), the above two FRW models may be sum-
marized in the form

k=0: e U =2y, e™M = 429,
V = 0, g = \/glnn )
k=-1: e U=sinh2npe %%, e M = ysinh2y,
V =0, o = v/3Intanhy

where 7 is a constant related to the energy density of the
fluid and some coordinates have been rescaled. In these
cases, the initial big bang singularity occurs when n = 0
and the surfaces of plane symmetry are clearly identified.

It is well known [13], however, that all the FRW space-
times with a stiff fluid source may also be written in a
different form using the same line element as that given
above. The various cases may be summarized as

E=+4+1: e U =sin2ysin23, e™M — ~sin 27,

eV =tans, o = +/3Intann,
k=0: e U =253, e M = y2n,

eV =z, o=+3n7n,
k=-1: e UV =sinh2nsinh2z, e M = vsinh2y,

eV = tanh 3z, o = +/3Intanhyp .

Expressed in the above notation, these forms of the FRW
models may be defined by
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g = —sin? v,
V= lln(lv\/f\/———\/—_“l—f\/1+g>
1+ ViV=-9+Vvi-fV1+g) "’

GZ;M(H\/}‘\/—*—FT\/W) ,

k=+1:

1-VivV=9+v1i-fVy1+g
k=0: f=u? g = —v?,

V= —In(vF - v=9) ,

o =V3In(V/f+v/=9),

f = sinh? v, g = —sinh? v,

N s o e B8 Ve BV

Vi+fV1—g—+Vf/—-g+1

U=an(\/1—+—f\/1_"‘—g+\/l_°\/“_g—1)
2 Vi+fV1—g+Vfv/—g+1

In this notation, it is possible to consider FRW stiff fluid
backgrounds of all three types. However, the solutions in
this form identify different families of null hypersurfaces
to those considered above. If x is considered as a periodic
(angular) coordinate, then Z > 0 may be interpreted as
the radial-like coordinate of a family of cylindrical sur-
faces. Solutions in these forms may, therefore, be taken
as stiff fluid backgrounds to families of cylindrical gravi-
tational waves.

It is also possible to consider background space-times
having any multiple of the above expressions for V. In-
deed, any solution of (2.8) may be taken in the back-
ground region and extended through the wave front.
Such backgrounds will be included in the general class of
Gowdy cosmological models. However, we will explicitly
give complete solutions here only for the simplest back-
grounds, namely, the vacuum Kasner and the spatially
flat and open FRW stiff fluid models.

IV. EXPLICIT SOLUTIONS

Our first task is to find a solution of Eq. (2.8) for which
V = 0 and V; is bounded on a wave front given by f = 0.
However, it is convenient here to start with this equation
in the form (2.12) involving the coordinates t = f + g
and z = g — f. It may be observed that (2.12) admits a
similarity solution. We may therefore consider solutions
of the form
V(t,z) = t"H, (%) . (4.1)

Substituting (4.1) into (2.12) gives the following equation
for H,(():

(1 - ¢} H! 4 (2n — 1)CH], — n*H, = 0, (4.2)
where
z_g—f
= - = — —_ < < 1.
¢ n T f and 1<(¢(<1

It may be noted that ( is a decreasing coordinate behind
the wave front on which ¢ = 1.
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The substitution { = (1—() transforms Eq. (4.2) into
the usual form of the hypergeometric equation, whose so-
lution can be expressed in terms of hypergeometric func-
tions in the form

V(taC)=AntnF(—n,—n;%—n;%(]_—C))
+Bat" (1= )" F(3,5in+ §53(1-0).

These solutions are valid for any arbitrary n, not neces-
sarily an integer. The first of these sets of terms may
be discarded, since they are not zero on the hypersurface
f = 0 on which ¢ = 1. The second set, however, is zero
on f =0 forn > —%. It is these solutions that have
formed the basis of the previous papers [7-10].

In passing it may be observed that, in these solutions,
the Weyl tensor components ¥4, ¥o, and ¥, are neces-
sarily nonzero. It follows that the gravitational wave that
has been introduced with the defined wave front is neces-
sarily backscattered as it propagates, and the space-time
is algebraically general.

It has been found convenient here to continue to ex-
press the solutions in the form (4.1). This form, together
with Eq. (4.2), yields an explicit set of solutions with
some very nice properties. This particular form also
enables complete integrals of the subsidiary equations
(2.13) to be obtained.

It may first be noted that, for n = 0, Eq. (4.2) admits
the explicit solution

Ho(¢) = %arccos(,

which satisfies the condition Ho(1) = 0. However, al-
though this is zero on f = 0, its derivative Vy is un-
bounded on f = 0. On its own, it therefore does not
satisfy the necessary junction conditions across the grav-
itational wave front.

Secondly, by differentiating Eq. (4.2), it may be ob-
served that, for any n, a particular solution Hy,(() satisfy-
ing the condition H,(1) = 0 can be calculated recursively
from H,_;(¢) using the relation

¢
Ha(¢) = /1 Ho_y(¢') dC". (4.3)

Starting with the above solution Ho({) for n = 0, a se-
quence of explicit solutions for n = 1,2,... can now eas-
ily be constructed. The derivatives of the nth solution
will satisfy the conditions

H,(1)=0, ---,

H,(1) =0, H™(1) =0

while the (n+1)th derivative will contain some integrable
singularity (proportional to 1/4/1 — ¢2). It is convenient
to rescale these solutions by multiplying by the numeri-
cal coefficient 1/H, (—1), so that the redefined solutions
satisfy the conditions H,(—1) = 1. The solutions (18)
then satisfy the boundary conditions

f=0

=0 for n=0,1,2,... .

ifio) ={
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By explicit calculation, it is found that the first few so-
lutions in this series are

Q)
Q)
Q)
9

= arccos( ,

—1¢arccos¢ + 1 1V1-¢2,
si(l + 2¢?%) arccos ¢ — 1¢/1—-¢2,
£ ((3 + 2¢?) arccos ¢

+m(4 +11¢%) /1 -¢2.

A particularly useful property of these solutions is that
they enable complete integrals of the subsidiary equa-
tions (2.9) or (2.13) to be obtained. However, it is first
convenient to rewrite these equations in the form

H

5

(
(
Ha(
Hs(

_ toe 1 o a2
St— 2‘/:‘. 2t(1 C)VC )

Se= —tViV +CVe? (4.4)

For any particular solution (4.1) given by V = t"H,(()
for any n # 0, these equations may be integrated to give

— tzn 2 2 2 12
§=- [n H, +(1—C)Hn].

It may now be noted that the above solutions only
satisfy the boundary conditions for a propagating gravi-
tational wave when n > % Thus Vo = agHo({) does not
satisfy the boundary conditions, but it can still be used
to generate the above series V,, for integer n > 1. It is
then possible to consider a class of solutions of the form

V=> ant"H.(() (4.5)

in which a,, are arbitrary constants. It can be seen that
solutions of this type correspond to a special case of the
series expansions given previously where the expansion
was in arbitrary powers of f with coefficients that include
hypergeometric functions of —f/g. In this case, the so-
lution (4.5) corresponds to an expansion in half-integer
powers of f, with the initial term of order f3/2.

One advantage of the expansion given here is that it
can be expressed explicitly in terms of more familiar func-
tions. However, the main advantage is that, since it is
expressed as a power series in t, the subsidiary equations
in the form (4.4) can be integrated completely. When the
background is taken to be a spatially flat or open FRW
stiff fluid background or a type-D Kasner background,
then V = 0 for f < 0. For these cases, with a gravita-
tional wave defined by (4.5) for f > 0, it can be shown
that the explicit expression for S for f > 0 is given by

oo 1 n
—;%t K,

where

Kn(C) = (n— k)Han_k

n—1
E Aklp_k [k
k=1

)Hk n— k]

In the case of a gravitational wave propagating in a

(1
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general vacuum Kasner background we may take, for
f=0,

V =aolnt+ Y ant" Ha(().

n=1

In this case the subsidiary equations may be integrated
to give

2 oo e o}
_ G n 1 .
S———E—lnt—aonzzlant Hn—néz%t K, ,

using the same expression as above for K, ({). To this so-
lution, any scalar field or stiff perfect fluid may be added
using the Wainwright-Ince-Marshman algorithm.

The class of explicit solutions described above are
strictly valid only in the region defined by —1 < ( <1
for which f > 0 and g > 0. The null hypersurface f = 0
has been interpreted as a gravitational wave front with a
background space-time in the region f < 0, f+g > 0. For
a complete solution, it is also necessary to determine an
extension of the solution into the region ¢ < 0, f+g >0
for which { < —1. An extension into this region having a
finite number of continuous derivatives can be achieved
for the explicit solutions given above for integer n simply
by replacing arccos¢ by 7 + arccosh(—() and /1 — {2 by
—v/¢%2—1.

Apart from the weak singularities (in the sense of an-
alytical functions) representing the gravitational wave-
fronts, it is important to notice that the solutions con-
structed in this way for the vacuum Kasner background
and the spatially flat and open FRW stiff fluid back-
grounds are regular everywhere except at the initial sin-
gularity ¢ = 0. The significance of this will be noted later.
At this stage, it may simply be noted that the gravita-
tional waves may be considered to originate in the initial
singularity.

V. WAVE INTERACTIONS

In order to consider the collision and subsequent in-
teraction of such waves, it is first convenient to shift the
wave front. It can be seen that the solution

‘/II = Zan t" H’n(CZ) )

n=1
where
2c+ z 2c—f+g
Cz = — 3
t f+g
represents a gravitational wave with wavefront f = c.

Similarly, the solution

Vin = Y bnt" Ha(Cs)

n=1

where
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2c—z 2c+f—g
t  f+g

represents a gravitational wave with wave front ¢ = ¢
propagating in the opposite direction. The two sequences
of constants a,, and b,, can be used to represent arbitrary
profiles of the two waves.

For some positive constant ¢, these solutions may be
taken to represent two approaching gravitational waves in
the regions Il (f+¢g >0, f > c¢,g<c)andIII (f+g > 0,
g > ¢, f < ¢), respectively. The background ahead of
each wave is the region I (f+g > 0, f < ¢, g < ¢). These
two waves collide when t = 2¢, and the region IV (f > ¢,
g > c) is the interaction region following the collision. It
is assumed that an initial singularity occurs when ¢t = 0.

When the background region I is the spatially flat or
open FRW stiff fluid model or a type-D Kasner space-
time in which V = 0, the above solutions form a char-
acteristic initial value problem for the collision of grav-
itational waves in these backgrounds. The two waves
approach each other from opposite spatial directions rel-
ative to the fluid. It can then be seen that the unique
solution representing the interaction region IV is given
by

G =

b

Viv = Z an t" Hn(CZ) + Z b, t" Hn(c3)

n=1 n=1

In this case it is more difficult to integrate Eqgs. (4.4) to
obtain Stv. However, it is clear that the solution will be
regular throughout the space-time.
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It is also straightforward to obtain an exact solution for
colliding gravitational waves in a vacuum Kasner back-
ground by including the expression Vi = agInt in all four
regions.

It may now be recalled that the solutions constructed
as described above for the vacuum Kasner background
and the spatially flat and open FRW stiff fluid back-
grounds are regular everywhere except at the initial sin-
gularity ¢t = 0. It is therefore concluded that interacting
gravitational waves of the type represented here do not
introduce future curvature singularities into the space-
time. This is in marked contrast to the case of the in-
teraction of nonexpanding gravitational waves in a flat
background. Here it has been shown that even a class of
arbitrarily strong gravitational waves originating in the
initial singularity are not sufficient to halt and reverse the
expansion of the background space-time. Of course it is
possible that very strong gravitational waves generated
subsequent to the big bang may well introduce future
singularities. However, this situation is well beyond the
scope of this paper.
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