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Secant degree of toric surfaces and
delightful planar toric degenerations

Elisa Postinghel∗
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Abstract. The k-secant degree is studied with a combinatorial approach. A planar toric degener-
ation of any projective toric surface X corresponds to a regular unimodular triangulation D of the
polytope defining X . If the secant ideal of the initial ideal of X with respect to D coincides with
the initial ideal of the secant ideal of X , then D is said to be delightful and the k-secant degree of
X is easily computed. We establish a lower bound for the 2- and 3-secant degree, by means of the
combinatorial geometry of non-delightful triangulations.
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Introduction

There is a long tradition within Algebraic Geometry that studies the dimension and the
degree of secant varieties. LetX ⊆ Pr be a projective, irreducible variety of dimension n.
Its k-secant variety Seck(X) is defined to be the closure of the union of all the Pk−1’s in
Pr meetingX in k independent points. If Seck(X) has the expected dimension kn+k−1,
an interesting question is the following: what is the number νk(X) of k-secant Pk−1’s to
X intersecting a general subspace of codimension kn + k − 1 in Pr? This question is
open in general.

We approach the problem of computing the number νk for toric varieties. The basic
strategy was suggested by work of Ciliberto, Dumitrescu and Miranda [5] and Sturmfels
and Sullivant [16]. Given a projective toric surface X , we perform planar toric degen-
erations, i.e., we consider regular unimodular triangulations D of the polytope P which
defines X . The ideal of the central fiber is the monomial initial ideal of the ideal of X

∗The author was partially supported by Marie-Curie IT Network SAGA, [FP7/2007-2013] grant agreement
PITN-GA-2008-214584.
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212 Elisa Postinghel

with respect to a suitable term order≺ which corresponds to the triangulation D (see [15,
Theorem 8.3]).

In Section 1 and Section 2 we introduce the objects of our study: convex lattice poly-
topes, toric varieties, toric degenerations and k-secant varieties. In Section 2.2 we intro-
duce the notion of k-delightful planar toric degenerations of toric varieties: if the k-secant
ideal of the initial ideal of X with respect to the degeneration coincides with the initial
ideal of the k-secant ideal of X , then the degeneration is k-delightful. Sturmfels and Sul-
livant proved in [16, Theorem 5.4] that if there exists a triangulation D of P with at least
one skew k-set, i.e., a subset of k triangles of D that are pairwise disjoint, then Seck(X)
has the expected dimension and the number of such skew k-sets is a lower bound for the
number νk(X), see Theorem 2.6. If equality holds, then D is k-delightful and the flat
limit of Seck(X) is a union of linear subspaces of dimension kn+k−1, hence the initial
ideal of the k-secant ideal is achieved and in particular the k-secant degree is computed.
This bound for νk(X) is almost never sharp, indeed k-delightful degenerations are rare.

In Section 3 we approach the secant degree computation and we improve the lower
bound for νk, for k = 2, 3 (Theorem 3.1). The main tool is taking into account the
singularities of the configuration D and explaining how they produce k-delightfulness
defect. As an application we show how this can be used to achieve information about the
initial ideal of the k-secant ideal of X with respect to D (Theorem 3.10).

The problem of finding delightful triangulations of polytopes was raised by Sturmfels
and Sullivant [16, Section 5]. They explored the existence of such triangulations for
Veronese varieties, Segre varieties and rational normal scrolls and they showed that a
Gröbner basis can be obtained. In Section 4 we complete the classification of all delightful
triangulations for toric surfaces with sectional genus 0.

Acknowledgments. I would like to thank C. Ciliberto for introducing me to the problem
of studying secant varieties while a student of him. I am also deeply grateful to R. Piene
for many stimulating discussions during the preparation of this paper and to Wouter Cas-
tryck for showing me a good reference for the classification of polytopes. I finally thank
the referee for a number of helpful and constructive suggestions in improving the contents
of this paper.

1 Convex lattice polytopes, toric varieties and toric degenerations

1.1 Census of polytopes in R2 with g ≤ 1. A lattice point in Rn is a point with
integral coordinates. A lattice polytope in Rn is a polytope whose vertices are lattice
points. The normalized Ehrhart polynomial of a lattice polytope P in Rn is the numerical
function EP : N → N, t 7→ #(tP ∩ Zn). It is known that EP is a polynomial of degree
dim(P ): EP =

∑dim(P )
i=0

ci
i! t

i. The leading coefficient cdim(P ) is denoted by Vol(P ) and
it is called the normalized volume of P . If dim(P ) = n, we have Vol(P ) = n! · V (P ),
where V (P ) is the usual Euclidean volume of P (see [15, Chapter 4]). If dim(P ) = 2,
we denote by Area(P ) the normalized volume of P .
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Secant degree of toric surfaces and delightful planar toric degenerations 213

Set n = 2 and denote by g the number of interior lattice points of a plane polytope.
In this section we will recall the classification of all convex lattice polytopes in R2 with
g = 0 (see [11, Theorem 4.1.2]) and with g = 1 (see [11, Theorem 4.2.3]), up to lattice
equivalence. An integral unimodular affine transformation in the plane, also known as an
equiaffinity, is a linear transformation followed by a translation such that, furthermore,
the corresponding matrix has determinant 1 and integral entries. For instance the matrix(

1 1
0 1

)
acts on a polytope by sending the point (x, y)T ∈ R2 to the point (x+y, y)T ∈ R2:

the points on the x-axis are fixed, while the points on the axis y = k are shifted by k on
the right as for example in Figure 1.

−→ �
�
��

�
�
��

Figure 1. An equiaffinity in the plane.

Normalized area, number of lattice points and convexity of a plane polytope are pre-
served under these transformations. Two plane polytopes are said to be lattice equivalent
if one can be transformed into the other via an equiaffinity.

We refer to [11, Chapter 4] for the proofs of the following results, see also [13].

Theorem 1.1. Any convex lattice polytope P with dim(P ) = 2 and g = 0 is lattice
equivalent to one of the polytopes in Figure 2.

PPPPPP1
δ

δ ≥ 1,

@
@
@
@

2

2
,

H
HHH11

δ1

δ2

δ2 ≥ δ1 ≥ 1.

Figure 2. Lattice polygons with g = 0.

Theorem 1.2. Any convex lattice polytope P with dim(P ) = 2 and g = 1 is lattice
equivalent to one of the polytopes in Figure 3.

We will use the notation P g(l, d,m) for the lattice equivalence classes of these poly-
topes, where l is the number of edges (or vertices), d is the normalized area and m is the
normalized maximal edge length. The two quadrilaterals with g = 1 and l = d = 4 in
Figure 3 are not distinguished by this notation, because they both have m = 1, so we will
write P 1(4, 4, 1) for the first one and P̃ 1(4, 4, 1) for the second one.

1.2 Toric varieties via polytopes and toric degenerations. A convex lattice polytope
P ∈ Rn defines a projective toric varietyXP of dimension n endowed with an ample line
bundle and therefore a morphism into Pr, where r+ 1 equals the number of lattice points
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Figure 3. Lattice polygons with g = 1.

of P , as follows. Let P ∩ Zn = {m0, . . . ,mr} be the set of the lattice points of P , with
mi = (mi1, . . . ,min), i = 0, . . . , r. Consider the monomial map

ΦP : (C∗)n → Pr

x 7→ [xm0 , . . . , xmr ],

where x = (x1, . . . , xn) and xmi = xmi1
1 · · ·xmin

n . The projective toric variety XP ⊆ Pr
is defined to be the closure of the image of ΦP , see [9, Section 1.5] for more details. The
degree of XP equals the normalized volume Vol(P ). Lattice equivalent polygons in R2

define the same toric surface.
A subdivision D of P is a partition of P given by a finite family {Qi}i∈I of convex

subpolytopes of maximal dimension such that
•
⋃
i∈I Qi = P ,

• Qi ∩Qj , with i 6= j, is either a common face or it is empty.

A subdivision D is said to be regular if there exists a lifting function F : P → R, i.e.
a piecewise linear positive function satisfying the following requests:
• the Qi’s are the orthogonal projections of the n-dimensional faces of the graph poly-

tope G(F ) := {(x, z) ∈ P × R : 0 ≤ z ≤ F (x)} of F on z = 0;
• F is strictly convex.

More details can be found in [8, 10]. Given a regular subdivision D of P , we define a
morphism as follows:

ΦD : (C∗)n × C∗ → Pr × C

(x, t) 7→ ([tF (m0)xm0 : · · · : tF (mr)xmr ], t).
(1.3)
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Secant degree of toric surfaces and delightful planar toric degenerations 215

The closure of ΦD((C∗)n × {t}), for all t 6= 0, is a variety Xt projectively equivalent to
XP . The map (1.3) can be extended to a map

XP × C∗→ Pr × C

(x, t) 7→ ([tF (m0)xm0 : · · · : tF (mr)xmr ], t)

and the flat morphism πD : ([tF (m0)xm0 : · · · : tF (mr)xmr ], t) 7→ t provides a 1-
dimensional embedded degeneration of Xt

∼= XP to X0 called toric degeneration. The
reducible central fiberX0 is given by the subdivisionD of P . The irreducible components
of X0 are the XQi

’s. The intersections of the components are given by the incidence rela-
tions of the corresponding polytopes: if i 6= j andQi andQj have a common faceQi∩Qj ,
then XQi and XQj intersect along XQi∩Qj . We will use the notation X0 = limDXP .

If the subdivision D of P is a regular unimodular triangulation, namely the family D
of subpolytopes of P is a simplicial complex whose maximal simplices are unit volume
n-dimensional tetrahedra Qi’s, then the reducible central fiber X0 is a union of linear n-
dimensional spaces. This leads to the notion of term order. In fact, if I ⊆ C[x0, . . . , xr]
is the homogeneous prime ideal defining XP and ≺ is any term order in C[x0, . . . , xr],
then the radical of the initial ideal in≺(I) is a squarefree monomial ideal whose corre-
sponding simplicial complex ∆≺(I) is a regular triangulation of the polytope P defining
X . Conversely any regular triangulation of P is of the form ∆≺(I), for some ≺, see [15,
Chapter 8].

If n = 2 and D is a regular unimodular triangulation of P , we will say that πD is a
planar toric degeneration of XP .

2 Secant varieties of toric varieties: a combinatorial approach

Let X ⊂ Pr be an irreducible, non-degenerate, projective variety of dimension n. Fix an
integer k ≥ 2 and consider the k-th symmetric product Symk(X). We define the abstract
k-secant variety of X , SkX ⊆ Symk(X)× Pr, as the Zariski closure of the set

{((x1, . . . , xk), z) ∈ Symk(X)× Pr : dim(π) = k − 1 and z ∈ π}

where π = 〈x1, . . . , xk〉. It is irreducible of dimension kn+k−1. Consider the projection
pkX on the second factor and define the k-secant variety ofX , Seck(X) := pkX(SkX), as the
image of SkX in Pr. It is an irreducible algebraic variety of dimension dim(Seck(X)) ≤
min{kn+ k− 1, r}. The right hand side is called the expected dimension of Seck(X). If
strict inequality holds then X is said to be k-defective, if equality holds then X is said to
be non-k-defective.

The general fiber of pkX is pure of dimension kn + k − 1 − dim(Seck(X)). Denote
by µk(X) the number of irreducible components. If dim(Seck(X)) = kn + k − 1 ≤ r,
then pkX is generically finite and the number µk(X) = deg(pkX) is called the k-secant
order of X (see [4]), i.e., µk(X) counts how many k-secant Pk−1’s to X pass through the
general point of Seck(X). This number is equal to one unless X is k-weakly defective.
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216 Elisa Postinghel

The weakly defective surfaces are classified in [3]. Let now L be a general linear subspace
of Pr of codimension kn+ k − 1: X has

νk(X) = µk(X) · deg(Seck(X))

k-secant Pk−1’s meeting L. Notice that if νk(X) = 1, then Seck(X) = Pr and µk(X) =
1 which means that for a general points of Seck(X) there is a unique k-secant Pk−1.

In this paper we present a combinatorial framework for the computation of the number
νk(X), for any toric surface X .

2.1 The k-secant degree of toric surfaces with g ≤ 1. In this section we will describe
the secant varieties of the toric surfaces defined by the polytopes of Theorem 1.1 and
Theorem 1.2. They are all minimal k-secant degree surfaces,Mk-surfaces (see [6]), i.e.
deg(Seck(X)) =

(
r−dim(Seck(X))+k

k

)
.

2.1.1 g = 0. The 2-Veronese embedding V2 of P2 into P5 is described by the triangle
P 0(3, 4, 2). The 2-secant variety Sec2(V2) is a well-known hypersurface of degree 3.
Moreover Seck(V2) = P5, k ≥ 3.

Let S = S(0, i) ⊆ Pi+1 be the rational normal cone defined by the triangles P 0(3, i,
i). We have dim(Seck(S)) = min{i + 1, 2k} (see [6, Proposition 1.14]). In particular
Seck(S) = Pi+1 if i ≤ 3k − 3, while S is k-defective if i ≥ 3k − 2. Furthermore S is an
Mk-surface if i+ 1 ≥ 2k, [6, Claim 5.2].

Let S = S(δ, δ + i) ⊆ P2δ+i+1, i ≥ 0, be the rational normal surface scroll whose
polygon is the trapezium P 0(4, 2δ + i, δ + 1). If k − 1 ≤ δ and 3k − 1 ≤ 2δ + i + 1
then S is a non-k-defectiveMk-surface. In particular deg(Seck(S)) =

(2δ+i−2k+2
k

)
and

µk(S) = 1, k ≥ 2.
A determinantal presentation for the ideals of their k-secant varieties is known, see

[1, Proposition 2.2].

2.1.2 g = 1. The k-secant varieties of the cubic toric surface in P3 defined by P 1(3, 3,
1) fill up P3, for each k ≥ 2. The same holds for the quartic toric surfaces in P4 defined
by P 1(3, 4, 2), P 1(4, 4, 1) and P̃ 1(4, 4, 1).

Let V3 be the 3-Veronese embedding of P2 into P9, described by the triangle P 1(3, 9,
3). It is a non-k-defective Mk-surface for k = 2, 3. In particular Sec2(V3) has di-
mension 5 and degree 15, while Sec3(V3) has dimension 8 and degree 4. Moreover
Seck(V3) = P9, k ≥ 4. The j-internal projections of V3, i.e. the surfaces obtained
from V3 as projections from j general points on it, 1 ≤ j ≤ 4, are del Pezzo surfaces
of degree 9 − j in P9−j . Consider in particular the ones defined by the subpolytopes
of P 1(3, 9, 3) with g = 1: P 1(4, 8, 3), P 1(4, 7, 3), P 1(5, 7, 2), P 1(3, 6, 3), P 1(4, 6, 2),
P 1(5, 6, 2), P 1(6, 6, 1), P 1(4, 6, 2), P 1(5, 5, 1). For k = 2, we have dim(Sec2(X)) = 5
and ν2(X) =

(
d−3

2

)
. For k ≥ 3, Sec3(X) = P9−j . All of them and their k-secant

varieties have nice determinantal presentations, for an overview see [2, 12].
Let nowX,Y ⊆ P8 be the 2-Veronese embedding of the smooth quadric P1×P1 ⊆ P3

and of the cone in P3 over a rational normal conic, respectively given by P 1(4, 8, 2) and
P 1(3, 8, 4). The surfaces X and Y both have 2-secant variety of dimension 5 and degree
10 and 3-secant variety of dimension 7 and degree 4, see [6, Theorem 9.1].
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Secant degree of toric surfaces and delightful planar toric degenerations 217

2.2 k-delightful planar toric degenerations. In this section we will introduce the no-
tion of k-secant ideals of a given ideal and we will study flat deformations to their initial
ideals.

Let I be any ideal in the polynomial ring K[x0, . . . , xr]. The secant I{2} = I ∗ I
of I is an ideal in K[x0, . . . , xr] defined in the following way. Consider the polynomial
ring K[x, y, z] = K[x0, . . . , xr, y0, . . . , yr, z0, . . . , zr]. Let I(y) and I(z) be the ideals
obtained as images of I in K[x, y, z] via the maps xi 7→ yi and xi 7→ zi, for i = 0, . . . , r.
Then I{2} is defined as the elimination ideal

(
I(y) + I(z) + 〈yi + zi − xi : 0 ≤ i ≤

r〉
)
∩K[x0, . . . , xr]. The k-secant ideals I{k} = I ∗ · · · ∗ I, k ≥ 3, of I are similarly

defined.

Remark 2.1. For homogeneous prime ideals, the k-secant ideals represent the prime ide-
als of the k-secant varieties of irreducible projective varieties.

Let now ≺ be any term order. The initial ideal of the k-secant ideal I{k} of I is
contained in the k-secant of the initial ideal of I, for k ≥ 2.

Theorem 2.2 ([14, 16]). The following inclusion of monomial ideals holds:

in≺(I{k}) ⊆ (in≺(I)){k}. (2.3)

Definition 1. If equality holds in (2.3), then ≺ is said to be k-delightful for the ideal I. It
is said to be delightful for I if it is k-delightful for I, for every k ≥ 2.

We are interested in recovering the initial ideal in≺(I{k}) with respect to non-de-
lightful term orders. Define J ⊆ K[x0, . . . , xr] to be the ideal given by the ideal I ∩
K[x0, . . . , xδ], 1 ≤ δ ≤ r−1, obtained from I by elimination plus the ideal generated by
the eliminated variables xδ+1, . . . , xr. Then we have the following inclusion of monomial
ideals

in≺(I{k}) ⊆ in≺(J {k}), (2.4)

for any term order ≺. Putting together (2.3) and (2.4) we obtain the following

Proposition 2.5. In the notation as above,

in≺(I{k}) ⊆ (in≺(I)){k} ∩ in≺(J {k}).

If in≺(J {k}) does not contain (in≺(I)){k}, then Proposition 2.5 provides a correction
of the monomial ideal (in≺(I)){k} to get a smaller ideal which is closer to the initial ideal
in≺(I{k}). We will go more into the details of this for toric ideals in Section 3.3.

For projective toric varieties the operation of taking the initial ideal with respect to
a term order such that in≺(I) is generated by squarefree monomials leads to the notion
of triangulations of polytopes. Let πD be a toric degeneration of a toric variety X of
dimension n to a union of Pn’s. Any subset of D of k pairwise skew Pn’s, i.e. k(n + 1)
vertices ofD that are the vertices of k disjoint tetrahedra ofD, will span a linear subspace
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218 Elisa Postinghel

of Pr of dimension kn+k−1. A subset of this type is said to be a skew k-set. We denote
by Nk(D) the set of such skew k-sets and by ν̄k(D) its cardinality, see [5, 16]. Sturmfels
and Sullivant proved that ν̄k(D) is a lower bound for the number νk(X) for toric varieties.

Theorem 2.6 ([16, Theorem 5.4]). If there exists a toric degeneration πD ofX to a union
of Pn’s such that ν̄k(D) ≥ 1, then Seck(X) has the expected dimension and νk(X) is
bounded below by the number of skew k-sets:

νk(X) ≥ ν̄k(D). (2.7)

Proof. Let I be the ideal ofX and let I0 be the ideal of the central fiberX0 with respect to
the toric degeneration πD. The simplicial complex of I0 is D. Let D{k} be the simplicial
complex of I{k}0 : the simplices in D{k} are the unions of k simplices in D, see [16,
Remark 2.9]. Notice that the simplices of D{k} of maximal dimension are the skew k-
sets and the subspaces they span sit in the flat limit of Seck(X). Therefore, if there exists
at least one skew k-set in D, then Seck(X) has the expected dimension kn+ k − 1.

Notice that different skew k-sets could span the same subspace π of Pr and that for the
general point of π there is a unique subspace of dimension k−1 meeting the k planes each
in a point, for each skew k-set spanning π. The variety described by D{k} is the reduced
union of the coordinate subspaces in Pr given by the skew k-sets. Furthermore, the limit
of the k-secant variety of X contains the variety defined by I{k}0 by Theorem 2.2. This
concludes the proof.

In [16] the authors conjectured that if equality holds in (2.7), then the term order
corresponding to the triangulation D is k-delightful. We will call such degenerations
k-delightful, see also [5, Section 5].

Now, fix k = 2 and consider the examples in Figure 4.

D
@
@

@
@

@
@

@
@
•

D′

@
@
@
@
@
@

@
@
@
@

@
@

•

Figure 4. Non-2-delightful triangulations.

The first picture represents a triangulation D of the hexagon P 1(6, 6, 1), i.e., a degen-
eration of the smooth del Pezzo surface X ⊆ P6 to a union of six planes intersecting
at a point. Since ν̄2(D) = 0 and ν2(X) = 3, D is not 2-delightful. The second one
represents a triangulation of the polytope P 1(3, 9, 3) defining the Veronese surface X ′

in P9: ν̄2(D′) = 12 and ν2(X ′) = 15 hence D′ is not 2-delightful. Notice that in both
cases there is a 2-delightfulness defect equal to 3. It is natural to wonder if the cause has
to be sought in the sextuple central point, marked in the figures, that intuitively prevents
the presence of disjoint triangles in the configurations. More generally, how do the sin-
gularities of the configuration influence the delightfulness property? This question was
asked by Ciliberto, Dumitrescu and Miranda [5]. Our aim is to give an explanation of this
phenomenon. In the next section we will propose our results in this direction.
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Secant degree of toric surfaces and delightful planar toric degenerations 219

3 A lower bound for the number νk, k = 2, 3, for toric surfaces

LetX be a projective toric surface and let P ⊆ R2 be the defining convex lattice polytope.
Let πD be a planar toric degeneration of X and let D be the corresponding regular uni-
modular triangulation of P . Let p ∈ P∩Zn be a lattice point of P and letQ1, . . . , Qδ ∈ D
be the triangles in D covering p: Q1∩· · ·∩Qδ = {p}. Suppose that the union of the Qi’s
is a a convex subpolytope Qp of P . Notice that Qp has either g = 0 if p is a boundary
point of P , or g = 1 if p is an interior point (cf. Theorem 1.1 and Theorem 1.2). Write
Qp = P g(l, δ,m) and define Zp to be the projective toric surface of degree δ defined by
Qp: Zp ⊆ Pδ′ ⊆ Pr, where δ′ = δ − g + 1.

This section is devoted to the proof of the following result that improves the lower
bound for νk of Theorem 2.6 for the cases n = 2, k = 2, 3.

Theorem 3.1. Let k ∈ {2, 3}. Let X = XP be a projective toric surface such that
dim(Seck(X)) = 3k − 1. Let D be any triangulation of P . Let {pi}i∈I ⊆ P ∩ Zn,
{Qpi}i∈I and {Zpi}i∈I be as above. Assume that
(1) dim Seck(Zpi) = 3k − 1, for i ∈ I ,
(2) there exists a regular subdivisionD1

i of P that containsQpi and which is a coarsening
of D.

Then D is not k-delightful. Moreover

νk(X) ≥ ν̄k(D) +
∑
i∈I

νk(Zpi). (3.2)

If p is a boundary lattice point, i.e. Qp has g = 0, we will call it a rational singularity
for D, while if p is an interior point, i.e. Qp has g = 1, we will say that p is an elliptic
singularity for D. In Table 1 and Table 2 all these singularities are classified.

Remark 3.3. This result also holds for k ≥ 4. However, since the expected dimension
of Seck(X) is min{3k − 1, r} and dim(Seck(Zp)) < dim(Seck(X)), for any Zp as in
Table 1 or Table 2, then none of the rational and elliptic singularities gives a contribution
to the computation of νk(X).

3.1 Proof of Theorem 3.1.

3.1.1 The case k = 2. LetX = XP be a projective toric surface with dim(Sec(X)) =
5. Let πD be a planar toric degeneration of X and let p be a rational or elliptic sin-
gularity for D. We will prove that the flat limit of the secant variety of X has a 5-
dimensional component of degree ν2(Zp). For this reason, we will assume that δ′ ≥ 5 so
that dim(Sec2(Zp)) = 5 (cf. Section 2.1). Furthermore we assume that there is a lifting
function FD1 over an intermediate regular subdivision D1 of P , that contains Q and other
polytopes obtained as union of triangles of D. The existence of such an FD1 will be dis-
cussed in Section 3.2. The regular subdivision D1 defines a degeneration πD1 of X to a
reducible surface that has Zp as component. Moreover, call πD2 the degeneration of the
central fiber of πD1 to X0.

Brought to you by | Loughborough University
Authenticated

Download Date | 6/2/17 2:44 PM



220 Elisa Postinghel

Proposition 3.4. Keeping the same setting as above, if there exists in D a singularity p
as in Table 1 or Table 2 and if there exists a regular subdivision D1 of P as above, then

ν2(X) ≥ ν̄2(D) + ν2(Zp). (3.5)

Proof. Consider first the degeneration πD1 of X . Denote by X1
t the fibers of D1: X1

t
∼=

X , for t 6= 0, while X1
0 is the reduced union of the toric surfaces corresponding to the

family D1. The 2-secant variety of Zp and all the joins between components of X1
0 sit in

the flat limit limD1 Sec2(X) with respect to D1 of the 2-secant variety of X .
Consider now πD2 which has as general fiberX2

s
∼= X1

0 , s 6= 0, and as central fiber the
reduced union of planes X2

0
∼= X0. The flat limit, with respect to D2, of limD1 Sec2(X),

namely limD Sec2(X), contains as components the flat limits, with respect to D2, of
all components of limD1 Sec2(X). In particular limD Sec2(X) contains limD2 Sec2(Zp),
which is a 5-dimensional component of degree ν2(Zp). Furthermore it contains the flat
limit viaD2 of all the joins between components ofX2

s , s 6= 0, including the P5’s spanned
by the skew 2-sets N2(D).

The contributions in terms of degree given by limD1 Sec2(X) and N2(D) can be
summed up. Indeed none of the P5’s spanned by the skew 2-sets are contained in the
limit limD2 Sec2(Z).

If {pi}i∈I are singularities of D all of them satisfying the conditions of Proposi-
tion 3.4, then the contributions given by ν2(Zp1)’s do not interfere with each other. To
see this, let us decompose the degeneration D by taking subdivisions D1

i and D2
i , for

each i. The flat limit of the secant variety of Zpi with respect to D2
i sits in the flat limit

of the secant variety of X with respect to D, for every i, by Proposition 3.4. Further-
more, let Pi ⊆ Pr be the projective subspace where Zpi , Seck(Zpi) and their limits live,
namely the space whose coordinates are given by the lattice points of Qpi . Notice that
dim(Pi ∩Pj) ≤ 3, for all i 6= j. Indeed there are at most two coplanar triangles with ver-
tices at two distinct points pi, pj . Since (limD2

i
Sec2(Zpi))∩(limD2

i
Sec2(Zpi)) ⊆ Pi∩Pj ,

then they have no common 5-dimensional component, for all i, j ∈ I , i 6= j, and none of
them contains any P5 spanned by elements of N2(D). Hence the respective degrees sum
up to ν̄2(D). This proves Theorem 3.1 for the case k = 2.

Example 3.6. Consider the embedding X ⊆ P11 of P1 × P1 via the line bundle O(2, 3).
We have ν2(X) = deg(Sec2(X)) = 35, see for example [7, Corollary 1.6]. Consider the
triangulations D and D′ of the corresponding rectangle displayed in Figure 5.

D:
@
@@

@
@@

@
@@

�
�
�
�
�

��
��
�

�
��

•p1
•p2

•p3
D′:

@
@@

@
@@

@
@@

�
��

��
��
�

�
��

@
@@•p′1

•p′2
•p′3

•q

Figure 5. Triangulations of a rectangle.

In the first example the sum of the number of skew 2-sets and of the contributions of the
singularities restores the 2-secant degree, ν̄2(D) + ν2(Xp1) + ν2(Xp2) + ν2(Xp3) = 35,
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while in the second example we have ν̄2(D′)+ν2(Xp′1
)+ν2(Xp′2

)+ν2(Xp′3
) = 33. Notice

that in D′ there is a lattice boundary point q which is covered by five triangles. It causes
an obstruction to the presence of skew 2-sets, hence it may affect the delightfulness ofD′,
but the polygon given as union of the five triangles is not convex and our argument does
not apply to this case.

3.1.2 The case k = 3. Let X = XP be a toric surface such that dim(Sec2(X)) = 8.
Let D be any regular unimodular triangulation of P . There is only one class of rational
singularity we are interested in. Indeed the only g = 0 toric surface with 3-secant variety
of dimension 8 and for which there exists a toric degeneration to a union of planes inter-
secting at a single point is the rational normal scroll S(2, δ − 2) ⊆ Pδ+1, corresponding
to the trapezium P 0(4, δ, δ−2), with δ ≥ 7 (see Table 1, last row). On the other hand, the
only g = 1 toric surfaces we have to consider are the Veronese surface V3 ⊆ P9 defined
by P 1(3, 9, 3) and the del Pezzo surface X8 ⊆ P8 defined by P 1(4, 8, 3). Indeed in all
remaining cases (see Table 2) the 3-secant varieties have dimension less than 8, so they
do not contribute to the 2-secant degree computation.

Proposition 3.7. In the same notation as above, let p be a multiple point such that the cor-
responding polytopeQp is either P 0(4, δ, δ−2), with δ ≥ 7, or P 1(3, 9, 3), or P 1(4, 8, 3).
Assume furthermore that there exists an intermediate regular subdivision D1 of P con-
taining Qp and coarsening D. Then

ν3(X) ≥ ν̄3(D) + ν3(Zp). (3.8)

Proof. It is easy to see that Sec3(Zp) and the joins J(Yi, J(Yj , Yl)), where Yi, Yj , Yl are
components of limD1 X , are in the flat limit limD1 Sec3(X).

Then, let πD2 be the degeneration of the central fiber of πD1 to the union of planes
given by the triangulation D. The P8’s spanned by the skew 3-sets of D and the limit
limD2 Sec3(Z) are 8-dimensional components of the limit of Sec3(X) with respect to
D. Furthermore, the contributions ν̄3(D) and ν3(Zp) do not interfere with each other,
because they do not have common full dimensional components.

If there are singularities {pi}i∈I for D satisfying the hypotheses of Proposition 3.7,
arguing as for the case k = 2, we get Inequality (3.2) for k = 3.

3.2 On the existence of an intermediate regular subdivision of P containingQ and
coarseningD. Let us construct first a partition of P containing Q, triangles and convex
polytopes given as union of triangles of D using the following algorithm. Let L1 . . . , Ll
be the edges of Q. For i = 1, . . . , l, define Si to be the minimal convex union of triangles
of D such that Si∩Q = Li. Now, let Li,1, . . . , Li,li be the edges of Si, for i ∈ {1, . . . , l}
and define Si,j as the minimal convex union of triangles of D such that Si,j ∩ Si = Li,j ,
i = 1, . . . , l, j = 1, . . . , li. Repeat the process until a family of polytopes whose union
is P is constructed. Notice that this new subdivision D1 is a coarsening of the original
regular subdivision D. It gives rise to a toric degeneration whether it is possible to flatten
the lifting function FD over Q, the Si’s, the Si,j’s, etc., by rescaling it in such a way that
the resulting piecewise linear function FD1 is strictly convex over P .
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Example 3.9. Consider the triangulation D of the rectangle in Example 3.6 and define
the following functions.

FD :
12 6 2 0
12 5 0 2
14 6 10 16

, FD1
1

:
12 6 2 0
12 6 0 2
14 6 10 16

, FD1
2

:
12 6 4 2
12 6 4 2
14 6 10 16

.

The first one defines the regular subdivisionD of the rectangle, while FD1
1
, FD1

2
are modi-

fications of FD that give rise to the subdivisions D1
1, D

1
2 of the rectangle in Figure 6.

D1
1:
@
@@

@
@@

�
�
�
��

��
�
��

�
��

Qp1

D1
2:
@
@@��

�
��

�
��

Qp2

Figure 6. Examples of intermediate regular subdivisions.

3.3 Computing the initial ideal of the secant ideal. Let IX and IZpi
denote the toric

ideals of P and Qpi , i ∈ I , respectively. Let JZpi
be the ideal defined by the generators

of IZpi
and by all variables not corresponding to lattice points of Qpi . As the referee

suggested, the following holds.

Theorem 3.10. In the notation as above, then

in≺(I{k}X ) ⊆ (in≺(IX)){k} ∩
⋂
i

in≺(J {k}Zpi
).

Proof. It follows from Proposition 2.5.

The proof of Theorem 3.1 implies that if the number νk(Zpi) is non-zero, then the
ideal J {k}Zpi

gives an effective correction to the secant ideal of the initial ideal of I. Indeed,

since the ideals J {k}Zpi
, k ∈ {2, 3} are known (see for example [12, Section 5.2] for an

overview), one can easily compute the initial ideal with respect to the triangulation D|Qpi

of Qpi .

Example 3.11. Consider the regular unimodular triangulation D of the rectangle in Ex-
ample 3.6. The coordinates x0, . . . , x11 of P11 correspond to the lattice points of the
polytope. Label them from left to right, top to bottom as follows.

x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11

.

The initial ideal of X with respect to D is the edge ideal consisting of all squarefree
quadratic monomials corresponding to non-edges of D: in≺(IX) = 〈x0x2, x0x3, . . . ,
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x9x11〉. The ideal (in≺(IX)){2} is generated by the squarefree monomials of degree at
least 3 corresponding to subsets of lattice points of P that are pairwise not on a edge of
D: (in≺(IX)){2} = 〈x0x2x7, . . . , x6x8x11, x0x2x7x11, . . . , x3x5x8x11〉, see [16, Theo-
rem 3.2].

The 2-secant variety of Zp1 ⊆ P5 fills up the space given by the six lattice points of
Qp1 , then in≺(J {2}Zp1

) = J {2}Zp1
= 〈x2, x3, x7, x8, x10, x11〉. The equation of the 2-secant

variety of Zp2 in P6 is known:

det

∣∣∣∣∣∣
x1 x2 x5
x2 x3 x6
x5 x6 x9

∣∣∣∣∣∣ = 0.

We can easily check that the restriction to K[x1, x2, x3, x5, x6, x7, x9] of the term order
on K[x0, . . . , x11] corresponding to D selects the main diagonal product as the leading
term of this determinant, thus we get in≺(J {2}Zp2

) = 〈x1x3x9, x0, x4, x8, x10, x11〉. The
equation of the 2-secant variety of the rational normal scroll Zp3 is known as well:

det

∣∣∣∣∣∣
x8 x4 x5
x9 x5 x6
x10 x6 x7

∣∣∣∣∣∣ = 0.

Thus in≺(J {2}Zp3
) = 〈xj1xj2xj3 , x0, x1, x2, x3, x10, x11〉, where (j1, j2, j3) equals either

(8, 5, 7) or (4, 6, 10). The ambiguity is due to the fact that two different term orders may
lead to the same triangulation, so we have to operate a choice between the two possible
leading terms. Nevertheless, in both cases the intersection (in≺(I)){2}∩

⋂3
i=1 in≺(J {2}Zpi

)

contains the initial ideal in≺(I{2}) and has the same degree and dimension.

4 Delightful triangulations of g = 0 polygons

In this section we classify all g = 0 convex lattice polytopes that admit delightful trian-
gulations. As a preliminary remark, notice that a necessary condition for the degeneration
to be 2-delightful is that it contains no lattice point as in Table 1 in its configuration. We
will see that the triangulations with this property turn out to be delightful.

The triangle P 0(3, 4, 2) admits two regular unimodular triangulations, up to lattice
equivalence, see Figure 7. They are both delightful, in fact in both cases in≺(I{2}) =

@
@
@
@

@
@

@
@
@
@�

�

x0

x1 x2

x3 x4 x5

Figure 7. Regular unimodular triangulations of P 0(3, 4, 2).
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@
@@

H
HHHH

```````````̀

hhhhhhhhhhhhhh· · ·

x0

x1 x2 x3 . . . xi xi+1

Figure 8. Regular unimodular triangulation of P 0(3, i, i).

(in≺(I)){2} = 〈x0x3x5〉 and in≺(I{k}) = (in≺(I)){k} = 〈0〉, k ≥ 3.
The unique regular unimodular triangulation of the triangle P 0(3, i, i) (cf. Figure 8)

is delightful. Indeed the ideal in≺(I{k}) = (in≺(I)){k} is generated by all squarefree
monomials of degree k + 1 in x1, . . . , xi+1 if i ≥ 2k and it is null if i < 2k.

The most interesting case involves trapezia.

Theorem 4.1. The trapezium P 0(4, 2δ+ i, δ+ i), δ ≥ 1, admits delightful triangulations
if and only if 0 ≤ i ≤ 3.

The unique delightful triangulations of P 0(4, 2δ + i, δ+ i), up to lattice equivalence,
are the ones represented in Figure 9.

i = 0: Dδ,δ
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· · ·
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@

@
@
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@
HHHH· · ·

i = 1: Dδ,δ+1
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@
@
@
@
@

@
@
@
@

· · ·
D′δ,δ+1

@
@

HHHH
@
@
@
@
@
@

@
@
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@
@
HHHH· · ·

i = 2: D′δ,δ+2
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@
@
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@
@
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@
@
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HH· · ·

i = 3: D′δ,δ+3
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HH

HH
HH

PPPPPP
@
@
@
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@
@

@
@

HH
HH

HH
HH

@
@

HH
HH· · ·

Figure 9. Delightful triangulations of g = 0 polytopes.

Recall that the rational normal scroll X defined by P := P 0(4, 2δ + i, δ + i), δ ≥ 1,
0 ≤ i ≤ 3 is non-k-defective and minimal k-secant degree, for any k such that 3k − 1 ≤
2δ + i + 1 (cf. Section 2.1.1). Therefore, in order to prove that a triangulation D of P
is k-delightful, it is enough to verify that the number ν̄k(D) equals the k-secant degree
whether dim(Seck(X)) = 3k−1. Otherwise it is enough to show that (in≺(I)){k} = 〈0〉,
where ≺ is a term order corresponding to D.

It is useful to have a recursive formula for ν̄k(D). Set d := 2δ+ i. Let D be a regular
unimodular triangulation of P as in Figure 9. Call T the last triangle ofD and define P1 ⊆
P to be the subpolytope of P such that P \P1 = T . We have P1 = P 0(4, 2δ1 + i1, δ+ i1),
0 ≤ i1 ≤ 3, with Area(P1) = d−1 = 2δ1+i1 for some δ1, i1. Notice that the triangulation
D1 := D|P1 of P1 is regular and lattice equivalent to one of the configurations in Figure 9.
Define moreover D2 := {T2 ∈ D1 : T2 ∩ T = ∅} ⊆ D1 ⊆ D: it is given by those
triangles of D which do not intersect T . One can see that D2 is a regular triangulation,
as in Figure 9, of a polytope P2 = P 0(4, 2δ2 + i2, δ + i2) ⊆ P1, 0 ≤ i2 ≤ 3, for some
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δ2, i2. We can now split Nk(D) in two sets: the skew k-sets contained in D1 on one side
and those involving T on the other side: Nk(D) = Nk(D1) ∪ {(T, (T2,1, . . . , T2,k−1)) :
(T2,1, . . . , T2,k−1) ∈ Nk−1(D2)}. Thus we get the formula:

ν̄k(D) = ν̄k(D1) + ν̄k−1(D2). (4.2)

Lemma 4.3. In the above notation, D is k-delightful if and only if D1 is k-delightful and
D2 is (k − 1)-delightful.

Proof. Since D2 contains at most d − 3 triangles, then ν̄k−1(D2) ≤
(
(d−3)−2(k−2)

k−1

)
.

Exploiting Formula (4.2) we get ν̄k(D) ≤
(
(d−1)−2(k−1)

k

)
+
(
(d−3)−2(k−2)

k−1

)
=
(
d−2(k−1)

k

)
.

Since the number on the right equals νk(XP ) the assertion follows.

This argument allows to use induction on d and k to prove that the degenerations
depicted in Figure 9 are k-delightful, for k such that 3k − 1 ≤ d+ 1.

Proof of Theorem 4.1. First of all notice that every regular unimodular triangulation of
P = P 0(4, 2δ+ i, δ+ i) different from the ones in Figure 4.1 contains a rational singular-
ity. Assume that D is as in Figure 9. It is easy to prove that D is 2-delightful by induction
on d using Formula (4.2).

To prove k-delightfulness for k ≥ 3, assume that (k − 1)-delightfulness holds for
any degeneration of P as in Figure 9. Define d0 = d0(k) := 3k − 2. If d < d0 then
k-delightfulness trivially holds. For d = d0 we have ν̄k(D) = ν̄k(D1) + ν̄k−1(D2) =
0 + 1 = 1. For the case d > d0, assume that k-delightfulness holds for degree ≤ d − 1
and apply induction to conclude.

In [16, Proposition 5.8] Sturmfels and Sullivant proved that if a delightful term order
exists for a rational normal scroll S(δ1, . . . , δn) of dimension n, then δj ∈ {m,m+1,m+
2,m+3} for somem. In particular they showed that the six configurations of Figure 9 are
the only possible delightful triangulations of the trapezium P 0(4, 2δ + 1, δ + 1). Indeed
they are the unique triangulations whose associated bipartite graphs do not posses certain
induced subgraphs, which correspond to the rational singularities in Table 1. Moreover
the proofs of [16, Theorem 5.9 and Proposition 5.11] show that all the triangulations down
the first column of Figure 9, namely Dδ,δ, Dδ,δ+1, D

′
δ,δ+2 and D′δ,δ+3, are delightful.

In Theorem 4.1 we gave a slightly different proof of this and moreover we showed
that D′δ,δ and D′δ,δ+1 are delightful as well.

In [16] the authors described the delightful term orders corresponding to the triangula-
tionsDδ,δ, Dδ,δ+1, D

′
δ,δ+2 andD′δ,δ+3 and computed the initial ideals of the secant ideals.

For the sake of completeness we describe here the initial ideal of the k-secant of the ideal
I of S(δ, δ) and S(δ, δ + 1) with respect to D′δ,δ and D′δ,δ+1 respectively. Consider first
the rectangle P 0(4, 2δ, δ) and label the lattice points of the bottom basis from (1, 0) to
(1, δ) and the lattice points of the top basis from (2, 0) to (2, δ). The lexicographic term
order corresponding to D′δ,δ is defined by the following rule:

x10 � x11 � x20 � x12 � · · · � x1j � x2,j−1 � x1,j+1 � · · · � x1δ � x2,δ−1 � x2δ.
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The initial ideal in≺(I{k}) = (in≺(I)){k} is generated by the squarefree monomial of
degree k+1 corresponding to (k+1)-sets of lattice points of P 0(4, 2δ, δ) that are pairwise
not on a edge of D′δ,δ , namely the diagonal products of the (k + 1)× (k + 1) minors ofx10 · · · x1,δ−k x20 · · · x2,δ−k

...
. . .

...
...

. . .
...

x1k · · · x1δ x2k · · · x2δ

 ,

if δ ≥ k+ 1, otherwise it is null. For the triangulation D′δ,δ+1 of P 0(4, 2δ + 1, δ + 1) the
description is similar and left to the reader.

5 Tables

In Table 1 and Table 2 the triangulations of polytopes Qp are collected. The point p
is marked in the pictures. The degree of the associated toric surface Zp is written in the
second column, while the numbers ν2(Zp) and ν3(Zp) are collected in the third and fourth
column, if dim(Seck(Zp)) = 3k − 1, otherwise we write “ / ”.

triangulation of Qp deg(Zp) ν2(Zp) ν3(Zp)
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@
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•
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2

) (
δ−4

3

)
Table 1. Rational singularities.
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triangulation of Qp deg(Zp) ν2(Zp) ν3(Zp)
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Table 2. Elliptic singularities.
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