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Abstract We consider nonlinear parabolic stochastic equations of the form ∂t u =
Lu + λσ(u)ξ̇ on the ball B(0, R), where ξ̇ denotes some Gaussian noise and σ

is Lipschitz continuous. Here L corresponds to a symmetric α-stable process killed
upon exiting B(0, R). We will consider two types of noises: space-time white noise
and spatially correlated noise. Under a linear growth condition on σ , we study growth
properties of the secondmoment of the solutions. Our results are significant extensions
of those in Foondun and Joseph (Stoch Process Appl, 2014) and complement those of
Khoshnevisan and Kim (Proc AMS, 2013, Ann Probab, 2014).

Keywords Stochastic partial differential equations · Fractional Laplacian · Stochastic
heat equation · Heat kernel
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1 Introduction and Main Results

Consider the following stochastic heat equation on the interval (0, 1) with Dirichlet
boundary condition:
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∣

∂t ut (x) = 1

2
∂xxut (x) + λut (x)ẇ(t, x) for 0 < x < 1 and t > 0

ut (0) = ut (1) = 0 for t > 0.

Here ẇ denotes white noise, λ is a positive parameter and u0(x) is the initial condition.
Set

Et (λ) :=
√

∫ 1

0
E|ut (x)|2dx .

The study of Et (λ) as λ gets large was initiated in [13,14]. In Ref. [9], it was shown
that Et (λ) grows like const × exp(λ4) as λ gets large. The main aim of this paper
is to extend similar results to a much wider class of stochastic equations. Existence
and uniqueness of solutions to these equations is a direct consequence of the methods
[6,18]. We will provide a proof in the appendix. We will first look at equations driven
by white noise. Fix R > 0 and consider the following:

∣
∣
∣
∣
∣

∂t ut (x) = Lut (x) + λσ(ut (x))ẇ(t, x),

ut (x) = 0, for all x ∈ B(0, R)c,
(1.1)

where ẇ denotes white noise (0,∞) × B(0, R). Here and throughout this paper, we
will make the following assumptions on the function σ and the initial condition u0.

Assumption 1.1 The function σ : Rd → R is a Lipschitz continuous function with

lσ |x | ≤ σ(x) ≤ Lσ |x | for all x ∈ Rd ,

where lσ and Lσ are some positive constants.

The above assumptions on σ are quite natural and have been used in various works;
see [10,11]. The lower bound is essentially a growth condition which is needed for our
results. These inequalities also imply that σ(0) = 0. This is needed for non-negativity
of solutions to stochastic heat equations. Even though we do not need non-negativity
of the solution in this paper, the upper bound makes our computations easier to follow.

Assumption 1.2 The initial function u0 is a non-negative, non-random bounded func-
tion which is strictly positive in a set of positive measure in B(0 , R). More precisely,
we will assume that if 0 < ε � R, then

∫

B(0, R−ε)

u0(y)dy

is strictly positive. Throughout this paper, whenever we fix ε > 0, we will always
assume that it is much less than R so that the above is satisfied.

L is the generator of a symmetric α-stable process killed upon exiting B(0, R) so
that (1.1) can be thought of as the Dirichlet problem for fractional Laplacian of order
α.
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1312 J Theor Probab (2017) 30:1310–1333

Following Walsh [18], we say that u is a mild solution to (1.1) if it satisfies the
following evolution equation,

ut (x) = (GDu)t (x) + λ

∫

B(0, R)

∫ t

0
pD(t − s, x, y)σ (us(y))w(ds dy), (1.2)

where

(GDu)t (x) :=
∫

B(0, R)

u0(y)pD(t, x, y) dy.

Here pD(t, x, y) denotes the fractional Dirichlet heat kernel. It is also well known
that this unique mild solution satisfies the following integrality condition

sup
x∈B(0, R)

sup
t∈[0, T ]

E|ut (x)|k < ∞ for all T > 0 and k ∈ [2, ∞], (1.3)

which imposes the restriction that d = 1 and 1 < α < 2, which will be in force
whenever we deal with (1.1).

Here is our first result.

Theorem 1.3 Fix ε > 0 and let x ∈ B(0, R − ε), then for any t > 0,

lim
λ→∞

log log E|ut (x)|2
log λ

= 2α

α − 1
,

where ut is the unique solution to (1.1).

Set

Et (λ) :=
√

∫

B(0, R)

E|ut (x)|2dx . (1.4)

We have the following definition.

Definition 1.4 The excitation index of u at time t > 0 is given by

e(t) := lim
λ→∞

log log Et (λ)

log λ

We then have the following corollary.

Corollary 1.5 The excitation index of the solution to (1.1) is 2α
α−1 .

It can be seen that when α = 2 this gives the result in [9]. Our second main result
concerns coloured noise driven equations. Consider

∣
∣
∣
∣
∣

∂t ut (x) = Lut (x) + λσ(ut (x))Ḟ(t, x),

ut (x) = 0, for all x ∈ B(0, R)c.
(1.5)
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This equation is exactly the same as (1.1) except for the noise which is now given by
Ḟ and can be described as follows.

E[Ḟ(t, x)Ḟ(s, y)] = δ0(t − s) f (x, y),

where f is given by the so-called Riesz kernel:

f (x, y) := 1

|x − y|β for all x, y ∈ Rd .

Here β is some positive parameter satisfying β < d. Other than the noise term, we
will work under the exact conditions as those for Eq. (1.1). The mild solution will thus
satisfy the following integral equation.

ut (x) = (GDu)t (x) + λ

∫

B(0, R)

∫ t

0
pD(t − s, x, y)σ (us(y))F(ds dy). (1.6)

Existence–uniqueness considerations will force us to impose β < α ∧ d; see for
instance [8] or the appendix of this current paper. We point out that the stochastic
integral in the above display is well defined for an even larger class of coloured noises.
This is thanks to [7,18]. The same applies for existence and uniqueness. One can
prove well-posedness of equations which are driven by noises which are more general.
For other papers studying coloured noise driven equations on bounded domains; see
[16,17]. Our first result concerning (1.5) is the following.

Theorem 1.6 Fix ε > 0 and let x ∈ B(0, R − ε), then for any fixed t > 0,

lim
λ→∞

log log E|ut (x)|2
log λ

= 2α

α − β
,

where ut is the unique solution to (1.5).

Corollary 1.7 The excitation index of the solution to (1.5) is 2α
α−β

.

It is clear that our results are significant extensions of those in [9,13]. The techniques
are also considerably harder and required some new highly non-trivial ideas which we
now mention.

• We need to compare the heat kernel estimates for killed stable process with that
of “unkilled” one. To do that, we will need sharp estimates of the Dirichlet heat
kernel.

• We will also need to study some renewal-type inequalities, and by doing so, we
come across the Mittag-Leffler function whose asymptotic properties become cru-
cial.

• While the above two ideas are enough for the proof of Theorem 1.3, we will also
need to significantly modify the localisation techniques of [13] to complete the
proof of Theorem 1.6.
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1314 J Theor Probab (2017) 30:1310–1333

Our method seems suited for the study of a much wider class of equations. To
illustrate this, we devote a section to various extensions.

Here is a plan of the article. In Sect. 2, we collect some information about the
heat kernel and the renewal-type inequalities. In Sect. 3, we prove the main results
concerning (1.1). Section 4 contains analogous proofs for (1.5). In Sect. 5, we extend
our study to a much wider class of equations.

Finally, throughout this paper, the letter c with or without subscripts will denote
constants whose exact values are not important to us and can vary from line to line.

2 Preliminaries

Let Xt denote the α-stable process on Rd with p(t, x, y) being its transition density.
It is well known that

c1

(

t−d/α ∧ t

|x − y|d+α

)

≤ p(t, x, y) ≤ c2

(

t−d/α ∧ t

|x − y|d+α

)

,

where c1 and c2 are positive constants. We define the first exit of time Xt from the ball
B(0, R) by

τB(0, R) := inf{t > 0, Xt /∈ B(0, R)}.
We then have the following representation for pD(t, x, y)

pD(t, x, y) = p(t, x, y) − Ex [p(t − τB(0, R), XτB(0, R)
, y); τB(0, R) < t].

From the above, it is immediate that

pD(t, x, y) ≤ p(t, x, y) for all x, y ∈ Rd .

This in turn implies that

pD(t, x, y) ≤ c1
td/α

for all x, y ∈ Rd . (2.1)

We now provide some sort of converse to the above inequality. Not surprisingly, this
inequality will hold for small times only.

Proposition 2.1 Fix ε > 0. Then for all x, y ∈ B(0, R − ε), there exists a t0 > 0
and a constant c1, such that

pD(t, x, y) ≥ c1 p(t, x, y),

whenever t ≤ t0. And if we further impose that |x − y| ≤ t1/α , we obtain the following

pD(t, x, y) ≥ c2
td/α

, (2.2)

where c2 is some positive constant.
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Proof Set δB(0, R)(x) := dist(x, B(0, R)c). It is known that

pD(t, x, y) ≥ c1

(

1 ∧ δ
α/2
B(0, R)(x)

t1/2

)(

1 ∧ δ
α/2
B(0, R)(y)

t1/2

)

p(t, x, y),

for some constant c1. See for instance [2] and references therein. Since x ∈ B(0, R−
ε), we have δB(0, R)(x) ≥ ε. Now choosing t0 = εα , we have δ

α/2
B(0, R)(x) ≥ t1/2 for all

t ≤ t0. Similarly, we have δ
α/2
B(0, R)(y) ≥ t1/2 which together with the above display

yield
pD(t, x, y) ≥ c2 p(t, x, y) for all x, y ∈ B(0, R − ε),

whenever t ≤ t0. We now use the fact that

p(t, x, y) ≥ c3

(
t

|x − y|d+α
∧ t−d/α

)

.

to end up with (2.2). 	

We now make a simple remark which will be important in the sequel.

Remark 2.2 Recall that for any t̃ > 0 and x ∈ B(0, R).

(GDu)s+t̃ (x) :=
∫

B(0, R)

pD(s + t̃, x, y)u0(y)dy.

Fix ε > 0 and note that for x ∈ B(0, R − ε),

(GDu)s+t̃ (x) ≥ inf
x, y∈B(0, R−ε)

pD(s + t̃, x, y)
∫

B(0, R−ε)

u0(y)dy.

Let t > 0. Choose ε small enough if necessary. Then, for any 0 ≤ s ≤ t , the right
hand side is strictly positive. For “small times,” that is, for t + t̃ ≤ t0, we can use the
argument of the above result to write pD(s + t̃, x, y) ≥ c1 p(s + t̃, x, y). While for
“large times,” we have pD(s+ t̃, x, y) ≥ c2e−λ(s+t̃) for some positive constant λ. This
follows from general spectral theory and can be found in [2] and references therein.
For x ∈ B(0, R − ε) and 0 ≤ s ≤ t , we have therefore found a strictly positive lower
bound on (GDu)s+t̃ (x). We denote this bound by gt to indicate its possible dependence
on t . In a sense, this fact is analogous to the well-known “infinite propagation of heat”
for the Laplacian.

We now give a definition of the Mittag-Leffler function which is denoted by Eβ

where β is some positive parameter. Define

Eβ(t) :=
∞
∑

n=0

tn

�(nβ + 1)
for t > 0.
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This function is well studied and crops up in a variety of settings including the
study of fractional Eq. [15]. In our context, we encounter it in the study of the renewal
inequalities mentioned in the introduction. Even though a lot is known about this
function, we will need the following simple fact whose statement is motivated by the
use we make of it later. We will need the upper and lower bounds separately.

Proposition 2.3 For any fixed t > 0, we have

lim sup
θ→∞

log log Eβ(θ t)

log θ
≤ 1

β
,

and

lim inf
θ→∞

log log Eβ(θ t)

log θ
≥ 1

β
.

In other words, we have

lim
θ→∞

log log Eβ(θ t)

log θ
= 1

β
.

Proof By using Laplace transforms techniques, one can show that for large z,

∣
∣
∣
∣
Eβ(z) − 1

β
ez

1/β
∣
∣
∣
∣
= o

(

ez
1/β

)

.

See for instance [12] and references therein for more details. Thus, for any positive
constant ε > 0 there exists a Z > 0 such that for all z > Z

∣
∣
∣
∣
Eβ(z) − 1

β
ez

1/β
∣
∣
∣
∣
≤ εez

1/β
.

Choosing ε < 1/β, it is easy to see that

log

(

log

(
1

β
− ε

)

+ z1/β
)

≤ log log Eβ(z) ≤ log

(

log

(
1

β
+ ε

)

+ z1/β
)

.

Letting z = θ t , the above yield the assertions of the proposition. 	

What follows is a consequence of Lemma 14.1 of [14]. But for the sake of complete-

ness, we give a quick proof based on the asymptotic behaviour of the Mittag-Leffler
function which we used in the above proof. Fix ρ > 0 and consider the following:

S(t) :=
∞
∑

k=1

(
t

kρ

)k

for t > 0. (2.3)

Lemma 2.4 For any fixed t > 0, we have

lim inf
θ→∞

log log S(θ t)

log θ
≥ 1

ρ
.

123
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Proof From the asymptotic property of the gamma function, there exists an N > 0

such that for k ≥ N , we have �(kρ + 1) ≥
(

ρk
e

)ρk
. We thus have

S(t) ≥
∞
∑

k=N

[(ρ

e

)ρ

t
]k 1

�(kρ + 1)

= Eρ

[(ρ

e

)ρ

t
]

−
∑

k<N

[(ρ

e

)ρ

t
]k 1

�(kρ + 1)
.

An application of Proposition 2.3 proves the result. 	


We now present the renewal inequalities.

Proposition 2.5 Let T < ∞ and β > 0. Suppose that f (t) is a non-negative locally
integrable function satisfying

f (t) ≤ c1 + κ

∫ t

0
(t − s)β−1 f (s)ds for all 0 ≤ t ≤ T, (2.4)

where c1 is some positive number. Then for any t ∈ (0, T ], we have the following

lim sup
κ→∞

log log f (t)

log κ
≤ 1

β
.

Proof We begin by setting (Aψ)(t) := κ
∫ t
0 (t − s)β−1ψ(s)ds where ψ can be any

locally integrable function. And for any fixed integer k > 1, we have (Akψ)(t) :=
κ

∫ t
0 (t − s)β−1(Ak−1ψ)(s)ds. We further set 1(s) := 1 for all 0 ≤ s ≤ T . With these

notations, (2.4) can be succinctly written as f (t) ≤ c1+(A f )(t)which upon iterating
becomes

f (t) ≤ c1

n−1
∑

k=0

(Ak1)(t) + (An f )(t). (2.5)

Some further computations show that

(An f )(t) = (κ�(β))n

�(nβ)

∫ t

0
(t − s)nβ−1 f (s) ds

and therefore we also have

(An1)(t) = (κ�(β))ntnβ

�(nβ + 1)
.

123
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As n → ∞, we have (An f )(t) → 0. We thus end up with

f (t) ≤ c1

∞
∑

k=0

(Ak1)(t)

= c1

∞
∑

k=0

(κ�(β))ntnβ

�(nβ + 1)

= c1Eβ

(

κ�(β)tβ
)

.

Keeping in mind that we are interested in the behaviour as κ tends to infinity while t
is fixed, we can apply Proposition 2.3 to obtain the result. 	

We have the “converse” of the above result.

Proposition 2.6 Let T < ∞ and β > 0. Suppose that f (t) is a non-negative locally
integrable function satisfying

f (t) ≥ c2 + κ

∫ t

0
(t − s)β−1 f (s)ds for all 0 ≤ t ≤ T, (2.6)

where c2 is some positive number. Then for any t ∈ (0, T ], we have the following

lim inf
κ→∞

log log f (t)

log κ
≥ 1

β
.

Proof With the notations introduced in the proof of Proposition 2.5, (2.6) yields

f (t) ≥ c2

n−1
∑

k=0

(Ak1)(t) + (An f )(t). (2.7)

Now similar arguments as in Proposition 2.5 prove the result. We leave it to the reader
to fill in the details. 	


The above inequalities are well studied; see for instance [12]. But the novelty here
is that, as opposed to what is usually done, instead of t , we take κ to be large.

3 Proofs of Theorem 1.3 and Corollary 1.5

We will begin with the proof of Theorem 1.3. We will prove it in two steps. Set

St (λ) := sup
x∈B(0, R)

E|ut (x)|2. (3.1)

We then have the following proposition.
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Proposition 3.1 Fix t > 0, then

lim sup
λ→∞

log logSt (λ)

log λ
≤ 2α

α − 1
.

Proof We start off with the representation (1.2) and take the second moment to obtain

E|ut (x)|2 = |(GDu)t (x)|2 + λ2
∫ t

0

∫

B(0, R)

p2D(t − s, x, y)E|σ(us(y))|2dyds
= I1 + I2.

(3.2)
Clearly, for any fixed t > 0, I1 ≤ c1 where c1 is a constant depending on t . We
now focus our attention on I2. The Lipschitz property of σ together with the Markov
property of killed stable processes yield the following

I2 ≤ (λLσ )2
∫ t

0

∫

B(0, R)

p2D(t − s, x, y)E|us(y)|2dyds

≤ (λLσ )2
∫ t

0
Ss(λ)

∫

B(0, R)

p2D(t − s, x, y)dyds

≤ (λLσ )2
∫ t

0
Ss(λ)pD(2(t − s), x, x)ds

≤ c2λ
2
∫ t

0

Ss(λ)

(t − s)1/α
ds.

Putting these estimates together, we have

St (λ) ≤ c1 + c2λ
2
∫ t

0

Ss(λ)

(t − s)1/α
ds.

Now an application of Proposition 2.5 proves the result. 	

For any fixed ε > 0, set

Iε,t (λ) := inf
x∈B(0, R−ε)

E|ut (x)|2.

Proposition 3.2 For any fixed ε > 0, there exists a t0 > 0 such that for all 0 < t ≤ t0,

lim inf
λ→∞

log log Iε,t (λ)

log λ
≥ 2α

α − 1
.

Proof As in the proof of the previous proposition, we start off with (3.2) and seek to
find lower bound on each of the terms.We fix ε > 0 and choose t0 as in Proposition 2.1.
Using Remark 2.2, we have that for 0 < t ≤ t0, we have infx∈B(0, R−ε) GD(t, x) :=
g̃t0 . Hence, I1 ≥ g̃2t0 . We now turn our attention to I2.

123
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I2 ≥ (λlσ )2
∫ t

0

∫

B(0, R)

p2D(t − s, x, y)E|us(y)|2dyds

≥ (λlσ )2
∫ t

0
Iε,s(λ)

∫

B(0, R−ε)

p2D(t − s, x, y)dyds

Set A := {y ∈ B(0, R − ε); |x − y| ≤ (t − s)1/α}. Since t − s ≤ t0, we have
|A| ≥ c1(t − s)1/α . Now using Proposition 2.1, we have

∫

B(0, R−ε)

p2D(t − s, x, y)dy ≥ c2

∫

A

1

(t − s)2/α
dy

= c3
1

(t − s)1/α
.

We thus have

I2 ≥ c4λ
2
∫ t

0

Iε,s(λ)

(t − s)1/α
ds.

Combining the above estimates, we have

Iε,t ≥ g̃2t0 + c4λ
2
∫ t

0

Iε,s(λ)

(t − s)1/α
ds.

We now apply Proposition 2.6 to obtain the result. 	

Proof of Theorem 1.3 The proof of the result when t ≤ t0 follows easily from the
above two propositions. To prove the theorem for all t > 0, we only need to prove the
above proposition for all t > 0. For any fixed T, t > 0, by changing the variable we
have

E|uT+t (x)|2

= |(GDu)T+t (x)|2 + λ2
∫ T+t

0

∫

B(0, R)

p2D(T + t − s, x, y)E|σ(us(y))|2dyds

= |(GDu)T+t (x)|2 + λ2
∫ T

0

∫

B(0, R)

p2D(T + t − s, x, y)E|σ(us(y))|2dyds

+ λ2
∫ t

0

∫

B(0, R)

p2D(t − s, x, y)E|σ(uT+s(y))|2dyds.

This gives us

E|uT+t (x)|2 ≥ |(GDu)T+t (x)|2 +λ2l2σ

∫ t

0

∫

B(0, R)

p2D(t − s, x, y)E|uT+s(y)|2dyds.

Since by Remark 2.2, |(GDu)T+t (x)|2 is strictly positive, we can use the proof of the
above proposition with an obvious modification to conclude that

123
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lim inf
λ→∞

log log E|uT+t (x)|2
log λ

≥ 2α

α − 1
,

for x ∈ B(0, R − ε) and small t . 	

Proof of Corollary 1.5 Note that

∫ R

−R
E|ut (x)|2dx ≤ 2R sup

x∈[−R, R]
E|ut (x)|2

and
∫ R

−R
E|ut (x)|2dx ≥ 2(R − ε) inf

x∈[−(R−ε), R−ε]E|ut (x)|2.
We now apply Theorem 1.3 and use the definition of Et (λ) to obtain the result. 	


4 Proofs of Theorem 1.6 and Corollary 1.7

Recall that
St (λ) := sup

x∈B(0, R)

E|ut (x)|2,

where here and throughout the rest of this section, ut will denote the solution to (1.5).
The following lemma will be crucial later. In what follows, f denotes the spatial
correlation of the noise Ḟ .

Lemma 4.1 For all x, y ∈ B(0, R),

∫∫

B(0, R)×B(0, R)

pD(t, x, w)pD(t, y, z) f (w, z)dwdz ≤ c1
tβ/α

, (4.1)

for some positive constant c1.

Proof We begin by noting that

∫∫

B(0, R)× B(0, R)

pD(t, x, w)pD(t, y, z) f (w − z, 0)dwdz

≤
∫

Rd

∫

Rd
p(t, x, w)p(t, y, z) f (w − z, 0)dwdz

≤
∫

Rd
p(2t, w, x − y) f (w, 0)dw.

Now the scaling property of the heat kernel and a proper change of variable proves
the result. 	

Proposition 4.2 Fix t > 0, then

lim sup
λ→∞

log logSt (λ)

log λ
≤ 2α

α − β
.
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Proof We start with the mild formulation to the solution to (1.5) which after taking
the second moment gives us

E|u(t, x)|2 = |(GDu)t (x)|2

+ λ2
∫ t

0

∫

B(0, R)× B(0, R)

pD(t − s, x, y)pD(t − s, x, z) f (y, z)

× E[σ(us(y))σ (us(z))]dydzds
= I1 + I2.

We obviously have I1 ≤ c1. Note that the Lipschitz assumption on σ together with
Hölder’s inequality give

E[σ(us(y))σ (us(z))] ≤ L2
σ

[

E|us(y)|2]1/2[E|us(z)|2
]1/2

≤ L2
σ Ss(λ).

We can use the above inequality and Lemma 4.1 to bound I2 as follows.

I2 ≤ (λLσ )2
∫ t

0

Ss(λ)

(t − s)β/α
ds.

Combining the above estimates, we obtain

St (λ) ≤ c1 + c2λ
2
∫ t

0

Ss(λ)

(t − s)β/α
ds,

which immediately yields the result upon an application of Proposition 2.5. 	

We have the following lower bound on the second of the solution. Inspired by the

localisation arguments of [13], we have the following.

Proposition 4.3 Fix ε > 0 and t̃ > 0. Then for all x ∈ B(0, R− 2ε) and 0 ≤ t ≤ t0,

E
∣
∣ut+t̃ (x)

∣
∣
2 ≥ g2t + g2t

∞
∑

k=1

(λlσ c1)
2k

(
t

k

)k(α−β)/α

,

where c1 is some positive constant depending on α and β.

Proof Fix ε > 0 and for convenience, set B := B(0, R) and Bε := B(0, R − ε). We
will also use the following notation; B2 := B × B and B2

ε := Bε × Bε .
After taking the second moment, the mild formulation of the solution together with

the growth condition on σ gives us

E|ut (x)|2 = |(GDu)t (x)|2 + λ2
∫ t

0

∫

B2
pD(t − s1, x, z1)

× pD
(

t − s1, x, z
′
1

)

E
[

σ(us1(z1))σ
(

us1(z
′
1)

)

f
(

z1, z
′
1

)]

dz1dz
′
1ds1.
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We now use the assumption that σ(x) ≥ lσ |x | for all x to reduce the above to

E|ut (x)|2 ≥ |(GDu)t (x)|2 + λ2l2σ

∫ t

0

∫

B2
pD(t − s1, x, z1)

× pD(t − s1, x, z
′
1)E|us1(z1)us1(z′1)| f (z1, z′1)dz1dz′1ds1.

We now replace the above by t + t̃ and use a substitution to reduce the above to

E
∣
∣ut+t̃ (x)

∣
∣2 ≥ |(GDu)t+t̃ (x)|2

+ λ2l2σ

∫ t

0

∫

B2
pD(t − s1, x, z1)pD(t − s1, x, z

′
1)

× E|ut̃+s1(z1)ut̃+s1(z
′
1)| f (z1, z′1)dz1dz′1ds1.

We also have

E
∣
∣ut̃+s1(z1)ut̃+s1(z

′
1)

∣
∣ ≥ |(GDu)t̃+s1(z1)(GDu)t̃+s1(z1)|

+ λ2l2σ

∫ s1

0

∫

B2
pD(s1 − s2, z1, z2)pD(s1 − s2, z

′
1, z

′
2)

× E|ut̃+s2(z2)ut̃+s2(z
′
2)| f (z2, z′2)dz2dz′2ds2.

The above two inequalities thus give us

E
∣
∣ut+t̃ (x)

∣
∣2 ≥ |(GDu)t+t̃ (x)|2

+ λ2l2σ

∫ t

0

∫

B2
pD(t − s1, x, z1)pD

(

t − s1, x, z
′
1

)

× E
∣
∣ut̃+s1(z1)ut̃+s1(z

′
1)

∣
∣ f

(

z1, z
′
1

)

dz1dz
′
1ds1

≥ ∣
∣(GDu)t̃+t (x)

∣
∣
2

+ λ2l2σ

∫ t

0

∫

B2
pD(t − s1, x, z1)pD

(

t − s1, x, z
′
1

)

× f
(

z1, z
′
1

)

(GDu)t̃+s1(z1)(GDu)t̃+s1(z
′
1)dz1dz

′
1ds1

+ (λlσ )4
∫ t

0

∫

B2
p(t − s1, x, z1)p

(

t − s1, x, z
′
1

)

f
(

z1, z
′
1

)

×
∫ t̃+s1

0

∫

B2
pD(s1 − s2, z1, z2)pD

(

s1 − s2, z
′
1, z

′
2

)

× E
∣
∣ut̃+s2(z2)ut̃+s2(z

′
2)

∣
∣ f

(

z2, z
′
2

)

dz2dz
′
2ds2dz1dz

′
1ds1.

(4.2)
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We set z0 = z′0 := x and s0 := t and continue the recursion as above to obtain

E
∣
∣ut̃+t (x)

∣
∣2 ≥ ∣

∣(GDu)t̃+t (x)
∣
∣2

+
∞
∑

k=1

(λlσ )2k
∫ t

0

∫

B2

∫ s1

0

∫

B2

· · ·
∫ sk−1

0

∫

B2
|(GDu)t̃+sk (zk)(GDu)t̃+sk (z

′
k)|

×
k

∏

i=1

pD(si−1 − si , zi−1, zi )pD

(si−1 − si , z
′
i−1, z

′
i ) f

(

zi , z
′
i

)

dzidz
′
idsi . (4.3)

Therefore,

E
∣
∣ut̃+t (x)

∣
∣
2 ≥ |(GDu)t̃+t (x)|2

+
∞
∑

k=1

(λlσ )2k
∫ t

0

∫

B2
ε

∫ s1

0

∫

B2
ε

· · ·
∫ sk−1

0

∫

B2
ε

∣
∣(GDu)t̃+sk (zk)(GDu)t̃+sk

(

z′k
)∣
∣

×
k

∏

i=1

pD(si−1 − si , zi−1, zi )pD

(si−1 − si , z
′
i−1, z

′
i ) f

(

zi , z
′
i

)

dzidz
′
idsi .

Using the fact that for zk, z′k ∈ Bε ,

(GDu)t̃+sk (zk)(GDu)t̃+sk

(

z′k
) ≥ inf

x,y∈Bε

inf
0≤s≤t

(GDu)t̃+s(x)(GDu)t̃+s(y)

≥ g2t ,

we obtain

E
∣
∣ut̃+t (x)

∣
∣2 ≥ g2t + g2t

∞
∑

k=1

(λlσ )2k
∫ t

0

∫

B2
ε

∫ s1

0

∫

B2
ε

· · ·
∫ sk−1

0

∫

B2
ε

×
k

∏

i=1

pD(si−1 − si , zi−1, zi )pD

(si−1 − si , z
′
i−1, z

′
i ) f

(

zi , z
′
i

)

dzidz
′
idsi .
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We reduce the temporal region of integration as follows.

E
∣
∣ut̃+t (x)

∣
∣
2 ≥ g2t + g2t

∞
∑

k=1

(λlσ )2k
∫ t

t−t/k

∫

B2
ε

∫ s1

s1−t/k

∫

B2
ε

· · ·
∫ sk−1

sk−1−t/k

∫

B2
ε

×
k

∏

i=1

pD(si−1 − si , zi−1, zi )pD

(si−1 − si , z
′
i−1, z

′
i ) f

(

zi , z
′
i

)

dzidz
′
idsi .

Now we make a change the temporal variable, si−1 − si → si , in the following way
such that for all integers i ∈ [1, k], we have

∫ si−1

si−1−t/k
pD(si−1 − si , zi−1, zi )pD

(

si−1 − si , z
′
i−1, z

′
i

)

f
(

zi , z
′
i

)

dsi

=
∫ t/k

0
pD(si , zi−1, zi )pD

(

si , z
′
i−1, z

′
i ) f (zi , z

′
i

)

dsi .

We thus have

E
∣
∣ut̃+t (x)

∣
∣
2 ≥ g2t + g2t

∞
∑

k=1

(λlσ )2k
∫ t/k

0

∫

B2
ε

∫ t/k

0

∫

B2
ε

· · ·
∫ t/k

0

∫

B2
ε

×
k

∏

i=1

pD(si , zi−1, zi )pD
(

si , z
′
i−1, z

′
i

)

f
(

zi , z
′
i

)

dzidz
′
idsi .

We now focus our attention on the multiple integral appearing in the above inequality.
We will further restrict its spatial domain of integration so that we have the required
lower bound on each component of the following product,

k
∏

i=1

pD (si , zi−1, zi ) pD
(

si , z
′
i−1, z

′
i

)

f
(

zi , z
′
i

)

. (4.4)

Recall that x ∈ B(0, R − 2ε). For each i = 1, . . . , k, choose zi and z′i satisfying

zi ∈ B
(

z0, s
1/α
1 /2

)

∩ B
(

zi−1, s
1/α
i

)

and
z′i ∈ B

(

z′0, s
1/α
1 /2

)

∩ B
(

z′i−1, s
1/α
i

)

,

so that we have |zi − z′i | ≤ s1/αi together with |zi − zi−1| ≤ s1/αi and |z′i − z′i−1| ≤
s1/αi . Now using Proposition 2.1, we can conclude that pD(si , zi−1, zi ) ≥ s−d/α

i

and pD(si , z′i−1, z
′
i ) ≥ s−d/α

i . Moreover, we have |zi − z′i | ≤ s1/α1 , which gives us
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f (zi , z′i ) ≥ s−β/α
1 . In other words, we are looking at the points {si , zi , z′i }ki=0 such

that the following holds

k
∏

i=1

pD(si , zi−1, zi )pD
(

si , z
′
i−1, z

′
i

)

f
(

zi , z
′
i

) ≥
k

∏

i=1

1

s2d/α
i sβ/α

1

.

For notational convenience, we set Ai := {zi ∈ B(x, s1/α1 /2) ∩ B(zi−1, s
1/α
i )} and

A′
i := {z′i ∈ B(x, s1/α1 /2) ∩ B(z′i−1, s

1/α
i )} which lead us to

∫ t/k

0

∫

A1

∫

A′
1

∫ t/k

0

∫

A2

∫

A′
2

· · ·
∫ t/k

0

∫

Ak

∫

A′
k

k
∏

i=1

pD(si , zi−1, zi )

× pD
(

si , z
′
i−1, z

′
i

)

f
(

zi , z
′
i

)

dzidz
′
idsi

≥
∫ t/k

0

∫

A1

∫

A′
1

∫ t/k

0

∫

A2

∫

A′
2

· · ·
∫ t/k

0

∫

Ak

∫

A′
k

k
∏

i=1

1

s2d/α
i sβ/α

1

dzidz
′
idsi .

We now use the lower bounds on the area of A′
i s and Ai s to estimate the above

integrals. We note that for si ≤ s1/2, the area of A′
i and Ai is bounded below by

c1s
d/α
i . After some computations and using the fact that si ≤ s1/2, we see that the

above integral is bounded below by

c2k2

∫ t/k

0

1

skβ/α
1

[
k

∏

i=2

∫ s1/2

0
dsi

]

ds1 = αc2k3
k(α − β)

(
t

k

)k(α−β)/α

.

Putting the above estimates together we obtain

E
∣
∣ut̃+t (x)

∣
∣2 ≥ g2t + g2t

∞
∑

k=1

(λlσ )2k
αc2k3

k(α − β)

(
t

k

)k(α−β)/α

≥ g2t + g2t

∞
∑

k=1

(λlσ c4)
2k

(
t

k

)k(α−β)/α

,

for some constant c4. 	

Recall that

Iε,t (λ) := inf
x∈B(0, R−ε)

E|ut (x)|2,
where here ut is the solution to (1.5). We now have

Proposition 4.4 For any fixed ε > 0, then for any fixed t > 0, we have

lim inf
λ→∞

log log Iε,t (λ)

log λ
≥ 2α

α − β
.
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Proof We begin by noting that any fixed t > 0 can be written as t = t̃ + t ′, where t̃
is strictly positive and t ′ is small as in the previous proposition.

∞
∑

k=1

(λlσ c1)
2k

(
t ′

k

)k(α−β)/α

=
∞
∑

k=1

(

(λlσ c1)2t ′(α−β)/α

k(α−β)/α

)k

.

Lemma 2.4 with ρ := (α − β)/α and θ := λ2 together with the above result finishes
the proof. 	

Proof of Theorem 1.6 The above two propositions prove the theorem for all t ≤ t0.
We now extend the result to all t > 0. As in the proof of Theorem 1.3, we only need
to extend the above proposition to any fixed t > 0. For any T, t > 0,

E |uT+t (x)|2 ≥ |(GDu)t+T (x)|2 + λ2l2σ

∫ T+t

0

∫

B2
pD(T + t − s1, x, z1)

× pD
(

T + t − s1, x, z
′
1

)

E
∣
∣us1(z1)us1

(

z′1
)∣
∣ f

(

z1, z
′
1

)

dz1dz
′
1ds1.

This leads to

E |uT+t (x)|2 ≥ |(GDu)t+T (x)|2 + λ2l2σ

∫ t

0

∫

B2
pD(t − s1, x, z1)

× pD
(

t − s1, x, z
′
1

)

E
∣
∣uT+s1(z1)uT+s1

(

z′1
)∣
∣ f

(

z1, z
′
1

)

dz1dz
′
1ds1.

A similar argument to that used in the proof of Proposition 4.3 shows that

E |uT+t (x)|2 ≥ |(GDu)T+t (x)|2

+
∞
∑

k=1

(λlσ )2k
∫ t

0

∫

B2

∫ s1

0

∫

B2

· · ·
∫ sk−1

0

∫

B2

∣
∣(GDu)T+sk (zk)(GDu)T+sk

(

z′k
)∣
∣

×
k

∏

i=1

pD(si−1 − si , zi−1, zi )pD

(si−1 − si , z
′
i−1, z

′
i ) f

(

zi , z
′
i

)

dzidz
′
idsi .

Similar ideas to those used in the rest of the proof of Proposition 4.3 together with the
proof of the above proposition show that for all t ≤ t0, we have

lim inf
λ→∞

log log E|uT+t (x)|2
log λ

≥ 2α

α − β
.

for all T > 0 and whenever x ∈ B(0, R − ε). 	

Proof of Corollary 1.7 The proof is exactly the same as that of Corollary 1.5 and is
omitted. 	
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5 Some Extensions

We begin this section by showing that the methods developed in this paper can be used
to study the stochastic wave equation as well. More precisely, we give an alternative
proof of a very interesting result proved in [13]. Consider the following equation

∂t t ut (x) = ∂xxut (x) + λσ(ut (x))ẇ(t, x) for x ∈ R t > 0, (5.1)

with initial condition u0(x) = 0 and non-random initial velocity v0 satisfying v0 ∈
L1(R) ∩ L2(R) and ‖v0‖L2(R) > 0. As before σ satisfies the conditions mentioned in

the introduction. We set Et (λ) :=
√

∫ ∞
−∞ E|ut (x)|2 dx and restate the result of [13] as

follows,

Theorem 5.1 Fix t > 0, we then have

lim
λ→∞

log log Et (λ)

log λ
= 1

Proof We again use the theory of Walsh [18] to make sense of (5.1) as the solution to
the following integral equation

ut (x) = 1

2

∫ t

−t
v0(x − y) dy + 1

2
λ

∫ t

0

∫

R
1[0,t−s](|x − y|)σ (us(y))W (dsdy).

We now use Walsh’s isometry to obtain

E|ut (x)|2 = 1

4

∣
∣
∣
∣

∫ t

−t
v0(x − y) dy

∣
∣
∣
∣

2

+ 1

4
λ2

∫ t

0

∫

R
1[0,t−s](|x − y|)E|σ(us(y)|2 ds dy.

Recall that from the assumption on the initial velocity, we have

∫

R

∣
∣
∣
∣

∫ t

−t
v0(x − y) dy

∣
∣
∣
∣

2

dx ≤ 4t2‖v0‖2L2(R)
.

This and the assumption on σ yields

E2
t (λ) ≤ t2‖v0‖2L2(R)

+ 1

4
λ2L2

σ

∫ t

0
(t − s)E2

s (λ) ds. (5.2)

Using similar ideas, we can obtain the following lower bound,

E2
t (λ) ≥ t2‖v0‖2L2(R)

+ 1

4
λ2L2

σ

∫ t

0
(t − s)E2

s (λ) ds. (5.3)
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We now use Propositions 2.5 and 2.6 together with the above two inequalities to obtain
the result. 	


The method developed so far can be adapted to the study of a much wider class
of stochastic heat equations, once we have the “right” heat kernel estimates. Indeed,
(2.1) and (2.2) were two crucial elements of our method. So by considering operators
whose heat kernels behave in a nice way, we can generate examples of stochastic
heat equations for which we can apply our method. Recall that we are considering
equations of the type,

∂t ut (x) = Lut (x) + λσ(ut (x))Ḟ(t, x). (5.4)

Inwhat follows,wewill choose differentLswhile keeping all the other conditions as
before. And again, the choice of these operatorsLs will make the boundary conditions
clear. Some of the equations below appear to be new.We again do not prove existence–
uniqueness results as these are fairly standard once we have a grip on the heat kernel.
See [6,18].

Example 5.2 We choose L to be the generator of a Brownian motion defined on the
interval (0, 1)which is reflected at the point 1 and killed at the other end of the interval.
So, we are in fact looking at

∣
∣
∣
∣

∂t ut (x) = 1
2∂xxut (x) + λσ(ut (x))Ḟ(t, x) for 0 < x < 1 and t > 0

ut (0) = 0, ∂xut (1) = 0 for t > 0.

It can be shown that for any ε > 0, there exists a t0 > 0, such that for all x ∈ [ε, 1)
and t ≤ t0, the heat kernel of this Brownian motion satisfies

p(t, x, y) � t−d/2,

whenever |x − y| ≤ t1/2. We use the method developed in this paper to conclude that

lim
λ→∞

log log E|ut (x)|2
log λ

= 4

2 − β
,

whenever x ∈ [ε, 1).
Example 5.3 Let Xt be censored stable process as introduced in [1]. These have been
studied in [4]. Roughly speaking, the censored stable process in the ball B(0, R) can
be obtained by suppressing the jump from B(0, R) to the complement of B(0, R)c.
The process is thus forced to stay inside B(0, R). We denote the generator of this
process by −(−�)α/2|B(0, R) and consider the following equation

∂t ut (x) = −(−�)α/2|B(0, R)ut (x) + λσ(ut (x))Ḟ(t, x), (5.5)

In a sense, the above equation can be regarded as fractional equation with Neumann
boundary condition. In Ref. [4], it was shown that the probability density function of
Xt , which we denote by p̄(t, x, y) satisfies
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p̄(t, x, y) �
(

1 ∧ δ
α/2
B(0, R)(x)

t1/2

) (

1 ∧ δ
α/2
B(0, R)(y)

t1/2

)

p(t, x, y),

So we can proceed as in the proof of Theorem 1.6 to see that we have

lim
λ→∞

log log E|ut (x)|2
log λ

= 2α

α − β
, (5.6)

where the conditions on α and β are the same as those stated in Sect. 1.

Example 5.4 In this example, we choose L be the generator of the relativistic stable
process killed upon exiting the ball B(0, R). We are therefore looking at the following
equation

∣
∣
∣
∣
∣

∂t ut (x) = mut (x) − (m2/α − �)α/2ut (x) + λσ(ut (x))Ḟ(t, x),

ut (x) = 0, for all x ∈ B(0, R)c.

Here m is some fixed positive number. One can show that for any ε > 0, there exists
a t0 > 0, such that for all x, y ∈ B(0, R − ε) and t ≤ t0, we have

p(t, x, y) � t−d/α,

whenever |x − y| ≤ t1/α . See for instance [5]. The constants involved in the above
inequality depends on m. We therefore have the same conclusion as that of Theorem
1.6. In other words, we have

lim
λ→∞

log log E|ut (x)|2
log λ

= 2α

α − β
, (5.7)

whenever x ∈ B(0, R − ε) and the conditions on α and β are the same as those stated
in Sect. 1.

Example 5.5 Let 0 < ᾱ ≤ α with 1 < α < 2 and consider the following

∣
∣
∣
∣
∣

∂t ut (x) = −(−�)α/2ut (x) − (−�)ᾱ/2ut (x) + λσ(ut (x))Ḟ(t, x),

ut (x) = 0, for all x ∈ B(0, R)c.

TheDirichlet heat kernel for the operatorL := −(−�)α/2−(−�)ᾱ/2 has been studied
in [3]. Since ᾱ ≤ α, it is known that for small times, the behaviour of the heat kernel
estimates is dominated by the fractional Laplacian−(−�)α/2. More precisely, for any
ε > 0, there exists a t0 > 0, such that for all x, y ∈ B(0, R − ε) and t ≤ t0, we have

p(t, x, y) � t−d/α,

whenever |x − y| ≤ t1/α . Therefore, in this case also, we have (5.7).
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6 Appendix

In this section, we will indicate how to get existence and uniqueness of random field
solutions for the equations studied in this paper. We will focus on the coloured driven
equation. We will following a standard iteration argument. Recall that from Lemma
4.1, we have that for all x, y ∈ B(0, R),

∫∫

B(0, R)×B(0, R)

pD(t, x, w)pD(t, y, z) f (w, z)dwdz ≤ c1
tβ/α

, (6.1)

for some positive constant c1. Set u
(0)
t (x) := (GDu)t (x) and for n ≥ 1, set

u(n)
t (x) = (GDu)t (x) + λ

∫ t

0

∫

B(0, R)

pD(t − s, x, y)σ
(

u(n−1)
s (y)

)

F(ds, dy).

The stochastic integral is well defined even when the correlation function is restricted
on B(0, R). This essentially follows from [18]. We have by Burkholder’s inequality,

E
∣
∣
∣u

(n)
t (x) − u(n−1)

t (x)
∣
∣
∣

p ≤ cpλ
p
[∫ t

0

∫

B(0, R)×B(0, R)

pD(t − s, x, y)pD(t − s, x, z)

×E
∣
∣
∣σ(u(n−1)

s (y)) − σ(u(n−2)
s (y))

∣
∣
∣

∣
∣
∣σ(u(n−1)

s (z)) − σ(u(n−2)
s (z))

∣
∣
∣ f (y, z) dy dz ds

]p/2
,

where cp is some positive constant. Using

dn(t, x) := u(n)
t (x) − u(n−1)

t (x),

and the assumption on σ , we obtain

E|dn(t, x)|p ≤ cpλ
pL p

σ

[∫ t

0

∫

B(0, R)×B(0, R)

pD(t − s, x, y)pD(t − s, x, z)

× sup
x∈B(0, R)

E|dn−1(s, x)|2 f (y, z) dy dz ds
]p/2

We set

F(t) :=
∫ t

0

∫

B(0, R)×B(0, R)

pD(t − s, x, y)pD(t − s, x, z) f (y, z) dy dz ds.
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We now use Hölder’s inequality to obtain

sup
x∈B(0, R)

E|dn(t, x)|p ≤ cpλ
pL p

σ F(t)p/2−1
∫ t

0
sup

x∈B(0, R)

E |dn−1(s, x)|p ds

Since F(t) is bounded whenever β < α, we obtain

sup
x∈B(0, R)

E|dn(t, x)|p ≤ C
∫ t

0
sup

x∈B(0, R)

E|dn−1(s, x)|pds,

for some constant C > 0. Now Gronwall’s lemma gives convergence of the sequence
u(n)
t (x) in the pth moment, thus showing existence of a solution. Uniqueness follows

from a well-known argument. See [6] for details.

References

1. Bogdan, K., Burdzy, K., Chen, Z.-Q.: Censored stable processes. Probab. Theory Relat. Fields 127(1),
89–152 (2003)

2. Bogdan, K., Grzywny, T., Ryznar, M.: Heat kernel estimates for the fractional Laplacian with Dirichlet
conditions. Ann. Probab. 38(5), 1901–1923 (2010)

3. Chen, Z.-Q., Kim, P., Song, R.: Dirichlet heat kernel estimates for �α/2 + �β/2. Illi. J. Math. 54(4),
1357–1392 (2010)

4. Chen, Z.-Q., Kim, P., Song, R.: Two-sided heat kernel estimates for censored stable-like processes.
Probab. Theory Relat. Fields 146(3–4), 361–399 (2010)

5. Chen, Z.-Q., Kim, P., Song, R.: Sharp heat kernel estimates for relativistic stable processes in open
sets. Ann. Probab. 40(1), 213–244 (2012)

6. Dalang, R., Khoshnevisan, D., Mueller, C., Nualart, D., Xiao, Y.: A Minicourse on Stochastic Partial
Differential Equations. Lecture Notes in Mathematics, vol. 1962. Springer, Berlin (2009)

7. Dalang, Robert C.: Extending the martingale measure stochastic integral with applications to spatially
homogeneous s.p.d.e.’s. Electron. J. Probab. 4(6), 29 (1999). (electronic)

8. Ferrante, M., Sanz-Solé, M.: SPDEs with coloured noise: analytic and stochastic approaches. ESAIM
Probab. Stat. 10, 380–405 (2006). (electronic)

9. Foondun,M., Joseph,M.: Remarks on non-linear noise excitability of some stochastic equations. Stoch.
Process. Appl. 124(10), 3429–3440 (2014)

10. Foondun, M., Khoshnevisan, D.: Intermittence and nonlinear parabolic stochastic partial differential
equations. Electron. J. Probab. 14(21), 548–568 (2009)

11. Foondun,M.,Khoshnevisan,D.:On the stochastic heat equationwith spatially-colored random forcing.
Trans. Am. Math. Soc. 365, 409–458 (2013)

12. Henry, Daniel: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics,
vol. 840. Springer, Berlin (1981)

13. Khoshnevisan, D., Kim, K.: Non-linear noise excitation and intermittency under high disorder. Proc.
Am. Math. Soc. 143(9), 4073–4083 (2015)

14. Khoshnevisan, D., Kim,K.: Non-linear noise excitation of intermittent stochastic pdes and the topology
of LCA groups. Ann. Probab. 43(4), 1944–1991 (2015)

15. Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In:
Fractals and Fractional Calculus in continuumMechanics (Udine. 1996), CISMCourses and Lectures,
Vol. 378, pp. 291–348. Springer, Vienna (1997)

16. Marquez-Carreras, D., Sarra, M.: Large deviation principle for a stochastic heat equation with spatially
correlated noise. Electron. J. Probab. 8(12), 1–39 (2003)

123



J Theor Probab (2017) 30:1310–1333 1333

17. Nualart, Eulalia, Viens, Frederi: The fractional stochastic heat equation on the circle: time regularity
and potential theory. Stoch. Process. Appl. 119(5), 1505–1540 (2009)

18. Walsh, J.B.: An introduction to stochastic partial differential equations. In: École d’été de Probabilités
de Saint-Flour, XIV—1984, Lecture Notes in Mathematics, vol. 1180, pp. 265–439. Springer, Berlin
(1986)

123


	On Some Properties of a Class of Fractional Stochastic Heat Equations
	Abstract
	1 Introduction and Main Results
	2 Preliminaries
	3 Proofs of Theorem 1.3 and Corollary 1.5
	4 Proofs of Theorem 1.6 and Corollary 1.7
	5 Some Extensions
	Acknowledgements
	6 Appendix
	References


