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A NEW PROOF OF THE ALEXANDER-HIRSCHOWITZ INTERPOLATION

THEOREM

ELISA POSTINGHEL

Abstract. The classical polynomial interpolation problem in several variables can be generalized
to the case of points with greater multiplicities. What is known so far is essentially concentrated
in the Alexander-Hirschowitz Theorem which says that a general collection of double points in Pr

gives independent conditions on the linear system L of the hypersurfaces of degree d, with a well
known list of exceptions. We present a new proof of this theorem which consists in performing
degenerations of Pr and analyzing how L degenerates.

AMS Subject Classification: 14C20, 14D06, 14N05
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Introduction

Fix p1, . . . , pn ∈ Pr distinct points and fix m1, . . . ,mn positive integers. Define Lr,d := |OPr(d)|
to be the linear system of hypersurfaces of Pr of degree d and consider

L := Lr,d(m1, . . . ,mn)

the linear subsystem of those divisors of Lr,d having multiplicity at least mi at pi, i = 1, . . . , n. Its
virtual dimension is defined to be

v(L ) :=

(
r + d

r

)
− 1−

n∑
i=1

(
r +mi − 1

r

)
,

i.e. the dimension of Lr,d minus the number of conditions imposed by the multiple points. The
actual dimension of L cannot be less than −1, hence we define the expected dimension to be

e(L ) := max{v(L ),−1}.
If the conditions imposed by the assigned points are not linearly independent, the actual dimension
of L is greater that the expected one: in that case we say that L is special. Otherwise, if the
actual and the expected dimension coincide, we say that L is non-special.
The dimensionality problem consists in investigating if a given a linear system L is non-special.
The dimension of L is upper semicontinuous in the position of the points in Pr; it achieves its
minimum value when they are in general position. Let Z be a scheme of length

∑n
i=1

(
r+mi−1

r

)
given by n fat points in general position and consider the following restriction exact sequence

0→ L = Lr,d(m1, . . . ,mn)→ Lr,d → Lr,d|Z .

In cohomology we get

0→ H0(Pr,L )→ H0(Pr,Lr,d)→ H0(Z,Lr,d|Z)→ H1(Pr,L )→ 0,

being h1(Pr,Lr,d) = 0. Thus L is non-special if and only if h0(Pr,L ) · h1(Pr,L ) = 0.
For r = 1 and general points, the system L1,d(m1, . . . , nn) is always non-special. Furthermore,

if all points have multiplicity one the system Lr,d(1
n) is also non-special. However, the problem

becomes more and more complicated in several variables and higher multiplicities. What is known
is Theorem 0.1, a result due to J. Alexander and A. Hirschowitz. They classify the special cases
for r ≥ 2 and m1 = · · · = mn = 2.
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Theorem 0.1 (Alexander-Hirschowitz). The linear system Lr,d(2
n) is non-special except in the

following cases:
r ∀ 2 3 4 4
d 2 4 4 4 3
n ≤ r 5 9 14 7

A natural approach to the dimensionality problem of linear systems is via degenerations. De-
generations allow to move the multiple base points of the linear system in special position, arguing
with a semicontinuity argument. More precisely, if one finds a good specialization of the points -
good in the sense that the corresponding limit linear system is non-special - then also the original
one is non-special. Computing the limit linear system is in general delicate. Hirschowitz in [12]
elaborated a degeneration technique, which he called la méthode d’Horace, consisting in making
iterated specializations of as many points as convenient on a fixed hyperplane and then applying
induction on dimension and degree. To be more explicit, let L := Lr,d(2

n) be the linear sys-
tem of hypersurfaces of Pr of degree d singular at a collection of n general points; the main idea
of Hirschowitz was to degenerate in such a way that h of the n points have support on a fixed
hyperplane π ⊆ Pr; one gets the so called Castelnuovo exact sequence:

0→ Lr,d−1(2n−h, 1h)→ L → Lr−1,d(2
h),

where the h base points of the kernel system are the residual of the h double points specialized on
π. Thus, arguing by induction, if the two external systems are non-special with virtual dimension
at least −1, which means that one does not lose any condition in this restriction procedure, i.e.
h1(Pr,Lr,d−1(2n−h, 1h)) = h1(π,Lr−1,d(2

n)) = 0, then the system L is non-special too. Unfortu-
nately, this method does not cover all possible situations. A refined version, the so called méthode
d’Horace différentielle, gives a general solution exploiting subsequent specializations of part of the
double base points of the linear system to a hyperplane π. The original proof, of more than a
hundred pages proposed by Alexander and Hirschowitz, is contained in [1]-[2]-[3]-[4] and simplified
in [5].

In 2002, K. Chandler presented an easier proof of Theorem 0.1 for d ≥ 4. She proposes a
simplified version of the Horace’s method using the Curvilinear Lemma ([7], Lemma 4). In the case
of degree three, the method does not work because specializing to hyperplanes one must deal with
quadrics which give rise to special systems. Another problem with cubics is that each of the lines
joining pairs of points lies in the base locus of the linear system, hence the standard approach can
fail because these lines meet π. K. Chandler transformed the obstruction caused by the presence
of lines in the base locus in an advantage and completed the proof of Theorem 0.1, see [8]. The
innovation was to specialize some of the points onto a subspace L of codimension 2 and pairs of
points on hyperplanes containing L.

A recent improvement of this argument is due to M. C. Brambilla and G. Ottaviani. In a
beautiful paper ([6]) they offer a shorter proof of Theorem 0.1 in the case d ≥ 4 and propose a
new and simpler degeneration argument in the cubic case. Their argument is similar to that of
Chandler, but it is more effective. Their main idea is to choose a subspace L of codimension three,
instead of two, on which they specialize the points. This choice really simplifies the arithmetic side
of the problem.

C. Ciliberto and R. Miranda in [10] and [11] used a different degeneration construction, originally
proposed by Z. Ran ([14]) to study higher multiplicity interpolation problem, in particular to prove
Theorem 0.1 in the planar case. This approach consists in degenerating the plane to a reducible
surface, with two components intersecting along a line, and simultaneously degenerating the linear
system L = L2,d(2

n) to a linear system L0 obtained as fibered product of linear systems on
the two components over the restricted system on their intersection. The limit linear system L0

is somewhat easier than the original one, in particular this degeneration argument allows to use
induction either on the degree or on the number of imposed multiple points. This construction
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provides a recursive formula for the dimension of L0 involving the dimensions of the systems on
the two components.

In this paper we generalize this approach to the case with r ≥ 3 and we complete the proof of
Theorem 0.1 with this method, exploiting induction on both d and r. In Section 2 we describe
our construction: it consists in blowing up a point p ∈ Pr in the central fiber of a trivial family
Pr ×∆ over a disc ∆ with a line bundle which restricts to OPr(d) on any fiber, then twisting by
an appropriate negative multiple of the exceptional divisor, obtaining the union of the exceptional
divisor and of the strict transform of the blowing up of Pr at p as central fiber of the new family.
Then we consider n general points on the general fiber, we specialize them on the two components
of the central fiber and we study the corresponding limit linear systems. This argument does not
suffice to cover all the cases, because of an arithmetic obstruction similar to the one that Brambilla
and Ottaviani met. Our idea is to perform further degenerations in order to handle these cases;
the interested reader can find the details in Section 3.

A tricky point of this approach is the study of the transversality of the restrictions of the systems
on the intersection of the two components. In the planar case, Ciliberto and Miranda proved it
using the finiteness of the set of inflection points of linear systems on P1 ([10], Proposition 3.1). In
higher dimension transversality is more complicated. In Section 2.2 and in Section 3.1 we present
our approach to this problem: if at least one of the two restricted systems is a complete linear
system, then the dimension of the intersection is easily computed. Anyhow, this is not sufficient to
finish the proof of Theorem 0.1. For instance, it does not work in the cubic case. The solution to
this obstacle is to blow up a codimension three subspace L of Pr, instead of a point. This approach
to the cubic case is not so different from the one of Brambilla and Ottaviani; we propose it in
Section 4.

Also the quartic case must be analyzed separately. Indeed, twisting by a negative multiple of
the exceptional component of the central fiber, we reduce to quadrics that are special. We show
Theorem 0.1 for quartics in Section 2.3 by induction on r, with a geometric argument that exploits
the property of cubics of containing all lines through two distinct double points.

Our construction, besides its intrinsic intent (on the way we prove non-speciality of some inter-
esting quasi-homogeneous systems, see Section 2.1), gives hope for further extensions to greater
multiplicities.

1. The special cases

In this section we briefly describe the special cases of Theorem 0.1. The linear system L =
Lr,2(2n), with 2 ≤ n ≤ r consists of quadric cones with vertex containing the double (n − 1)-

dimensional linear subspace of Pr determined by the n points: hence dim(L ) =
(
r−n+2

2

)
−1 > e(L ).

For n ≥ r + 1, the system Lr,2(2n) is empty.

Let n =
(
r+2

2

)
−1, for r = 2, 3, 4. The linear system Lr,4(2n) is expected to be empty. Nevertheless

it is special because there exists a (unique) quartic singular at the given points, i.e. the double
quadric through them.

Through a general collection of seven points in P4 there exists a rational normal curve of degree
four; its secant variety is a cubic hypersurface which is singular along the whole curve and in
particular at the seven points. Thus L4,3(27) is special, having virtual dimension equal to −1.

2. The first degeneration

Let us first define the integers

n− = n−(r, d) :=

⌊
1

r + 1

(
r + d

r

)⌋
, n+ = n+(r, d) :=

⌈
1

r + 1

(
r + d

r

)⌉
.



4 ELISA POSTINGHEL

If non-speciality holds for a collection of n− double points, then it holds for a smaller number of
double points. On the other hand, if there are no hypersurfaces of degree d with n+ general nodes,
the same is true adding other nodes. Our aim is to prove by induction on r and d that Lr,d(2

n) is
non-special for n− ≤ n ≤ n+, except in the list of Theorem 0.1.
The technique consists in degenerating Pr to a reducible variety and studying how a linear system
on the general fiber degenerates. The limiting system will be easier than the general one, and this
will enable us to use induction.

Let ∆ be a complex disc with center at the origin. Consider the product V = Pr ×∆ with the
natural projections p1 and p2. Let Vt = Pr × {t} be the fiber of p2 over t ∈ ∆. Take a point (p, 0)
in the central fiber V0 and blow it up to obtain a new (r + 1)-fold X with the maps f : X → V,
π1 = p1 ◦ f and π2 = p2 ◦ f :

X
f

//

π2
&&

π1
--V p1
//

p2
��

Pr

∆

The so obtained flat morphism π2 : X → ∆, with fiberXt = π−1
2 (t), t ∈ ∆, produces a 1-dimensional

degeneration of Pr. If t 6= 0 then Xt = Vt is a Pr, while for t = 0 the fiber X0 is the union of
the strict transform F of V0 and the exceptional divisor P ∼= Pr of the blow-up. The two varieties
P and F meet transversally along a (r − 1)-dimensional variety R which is isomorphic to Pr−1: it
represents a hyperplane on P and the exceptional divisor on F.
A line bundle on X0 corresponds to two line bundles, respectively on P and on F, which agree
on the intersection R. Precisely Pic(X0) = Pic(P) ×Pic(R) Pic(F), where the Picard group of P is
generated by O(1), while the Picard group of F is generated by the hyperplane class H and the
class E of the exceptional divisor. This generalizes to higher dimension the degeneration of the
plane used by Ciliberto and Miranda to compute the dimension of linear systems of plane curves
of degree d with n points of equal multiplicity m ≤ 3, or in the quasi-homogeneous case when all
the multiplicities are equal except one (see [10]).

Consider the line bundle OX (d) = π∗1(OPr(d)): its restriction to the general fiber Xt
∼= Pr is

isomorphic to OPr(d), while on the central fiber the restrictions to P and F are OP and OF(dH)
respectively. Now we want to twist by a negative multiple of the exceptional divisor. Notice first
that the bundle OX (P) restricts to P as OP(−1) and restricts to F as OF(E). Then execute a twist
by the bundle OX (−(d−1)P): the restriction of OX (d)⊗OX (−(d−1)P) to Xt is still OPr(d), while
the restrictions to P and F become

OP(d− 1) and OF(dH − (d− 1)E).

The resulting line bundle on X0 is a flat limit of the bundle OPr(d) on the general fiber. Such a
limit is not unique.
We now consider the homogeneous linear system Lt := L = Lr,d(2

n) of the hypersurfaces of Pr of
degree d with n assigned general points p1,t, . . . , pn,t of equal multiplicity m = 2. Fix a non-negative
integer b ≤ n and specialize b points generically on F and the other n− b points generically on P,
i.e. take a flat family {p1,t . . . , pn,t}t∈∆ such that p1,0, . . . , pb,0 ∈ F and pb+1,0, . . . , pn,0 ∈ P. The
limiting linear system L0 on X0 is formed by the divisors in the flat limit of the bundle OPr(d) on
the general fiber Xt, singular at p1,0, . . . , pn,0. This system restricts to F and to P to the following
systems:

LP = Lr,d−1(2n−b) and LF = Lr,d(d− 1, 2b),

where the point of multiplicity d − 1 is the point p ∈ V0
∼= Pr which we blew up to obtain F.

We say that the limit linear system L0 is obtained from L by a (1, b)-degeneration, according to
[10]. An element of L0 consists either of a divisor on P and a divisor on F, both satisfying the
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conditions imposed by the multiple points, which restrict to the same divisor on R, or it is a divisor
corresponding to a section of the bundle which is identically zero on P (or on F) and which gives a
general divisor in LF (or in LP respectively) containing R as a component.
If we denote by lt the dimension of Lt on Xt, we have, by upper semicontinuity, that l0 ≥ lt =
dim(Lr,d(2

n)).

Lemma 2.1. In the above notation, if l0 = e(Lr,d(2
n)), then the linear system L has the expected

dimension, i.e. it is non-special.

Let us consider the restriction exact sequences to R ∼= Pr−1 ⊆ P,F:

0→ L̂P → LP → RP ⊆ |OPr−1(d− 1)| and 0→ L̂F → LF → RF ⊆ |OPr−1(d− 1)|,

where RP, RF denote the restrictions of the systems LP, LF to R and L̂P, L̂F denote the kernel
systems. The kernel L̂P consists of those sections of LP which vanish identically on R, i.e. the
divisors in LP containing R ∼= Pr−1 as component; the same holds for L̂F:

L̂P = Lr,d−2(2n−b) and L̂F = Lr,d(d, 2
b).

We denote by vP, vF, v̂P, v̂F and by lP, lF, l̂P, l̂F the virtual and the actual dimensions of the
various linear systems. Our aim is to compute l0 by recursion. The simplest cases occurs when
all the divisors in L0 come from a section which is identically zero on one of the two components:
in those cases the matching sections of the other system must lie in the kernel of the restriction
map. If, on the contrary, the divisors on L0 consist of a divisor on P and a divisor on F, both
not identically zero, which match on R, then the dimension of L0 depends on the dimension of
the intersection R := RP ∩ RF of the restricted systems. A section of H0(X0,L0) is obtained
by taking an element in H0(R,R) and choosing preimages of such an element: h0(X0,L0) =

h0(R,R) + h0(P, L̂P) + h0(F, L̂F). Thus, at the linear system level

l0 = dim(R) + l̂P + l̂F + 2.(2.2)

The crucial point is to compute the dimension of R, from which one obtains l0. If the systems
RP,RF ⊆ |OPr−1(d − 1)| are transversal, i.e. if they intersect properly inside |OPr−1(d − 1)|, then

dim(R) = max
{
rP + rF −

(
d+r−2
r−1

)
+ 1,−1

}
, where rP := dim(RP) and rF := dim(RF).

Notice that transversality holds if at least one between LP and LF cuts the complete series on R.

2.1. Some useful lemmas. For what concerns the analysis of the linear system on P and the
relative kernel system, we can exploit induction on d because they are linear systems of hyper-
surfaces of lower degree with nodes. Actually this is the reason for performing degenerations as
described above. However, in general the systems LF and L̂F are unknown because of the presence
of a point of greater multiplicity in their base locus. This section is devoted to the study of such
quasi-homogeneous linear systems.

Lemma 2.3. The linear system Lr,d(d, 2
b) is either special of dimension dim(Lr−1,d(2

b)), or it is
empty.

Proof. A hypersurface of Pr of degree d having multiplicity d at a point p is a cone of degree d with
vertex at p. Let p1, . . . , pb be the general double points. A divisor in Lr,d(d, 2

b) is a cone, with
vertex at p, over a hypersurface of degree d in a general hyperplane π ∼= Pr−1 of Pr (p /∈ π) that must
be singular at the b points obtained from p1, . . . , pb as projection from p to π, which are general in π.
h0(Pr,Lr,d(d, 2

b)) = h0(Pr−1,Lr−1,d(2
b)); moreover h1(Pr,Lr,d(d, 2

b)) = b + h1(Pr−1,Lr−1,d(2
b)),

and this concludes the proof. �

From now on, we assume that the case of cubics is already solved, i.e. that Lr,3(2n) is non-special
except if r = 4 and n = 7. The proof of this is completely untied from what follows and it will be
discussed in Section 4.
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We are going to prove that there exists an upper bound on the number k of nodes such that the
linear system Lr,d(d−1, 2k) is non-special. The proof will be by induction on both d and r. Lemma
2.4 and Lemma 2.6 provide the starting points of the induction: d = 4 and r = 3 respectively.

Define the integer

k(r) :=

⌈
1

r + 1

(
r + 4

4

)⌉
− r − 1.

Lemma 2.4. Let r ≥ 2. The linear system Lr,4(3, 2k), with k ≤ k(r), is non-special.

Proof. The proof is by induction on r. It suffices to prove the statement for k(r) nodes. For
k < k(r), non-speciality is a consequence. The base step is the case r = 2: the system L2,4(3, 22)
is non-special (see Lemma 2.5). Consider now the scheme Z given by the union of the triple point
and k(r − 1) < k(r) double points. If π ⊂ Pr is a fixed hyperplane containing the support of Z,
then the trace of Z with respect to π is the scheme Z ∩ π, while the residual scheme is given by a
point of multiplicity 2 and k(r − 1) simple points. Thus we get the restriction exact sequence,

0→ L̂ := Lr,3(21+k(r)−k(r−1), 1k(r−1))→ Lr,4(3, 2k(r))→ Lπ := Lr−1,4(3, 2k(r−1)).

This gives us the induction on r. The system on the right is non-special with virtual dimension
at least −1, by the inductive hypothesis. The system on the left is non-special and it has virtual
dimension v(L̂ ) ≥ −1. Moreover dim(Lr,4(3, 2k(r))) = dim(Lπ) + dim(L̂ ) + 1 = v(Lr,4(3, 2k(r))),
and this concludes the proof. �

Define now the integers

k0(d) :=

⌊
d2 + 2d− 3

4

⌋
and h(d) :=

⌊
2d+ 1

3

⌋
The reader can easily check that k0(d)− h(d) ≤ k0(d− 1).

Lemma 2.5. The linear system Lπ = L2,d(d− 1, 2h(d)) is non-special, for d ≥ 3.

Proof. The statement follows by induction on d and by the following restriction sequence:

0→ L2,d−1(d− 2, 2h(d)−1, 1)→ Lπ → L1,d(d− 1, 2).

�

Lemma 2.6. Let d ≥ 4 and k ≤ k0(d). The linear system L = L3,d(d− 1, 2k) is non-special.

Proof. We prove the statement by induction on d for a collection of k0(d) points. The base step is
the case L3,4(3, 25) that is non-special by Lemma 2.4. The induction is given by specializing p and
h(d) nodes on a general plane π ⊆ P3:

L̂ := L3,d−1(d− 2, 2k0(d)−h(d), 1h(d))→ L → Lπ := L2,d(d− 1, 2h(d)).

The kernel system L̂ is non-special by induction, moreover it has positive virtual dimension.
Finally, dim(L ) = dim(L̂ ) + dim(Lπ) + 1 = e(L ) and this concludes the proof. �

Now, we prove a non-speciality result for linear systems of hypersurfaces of degree d of Pr with
a point of multiplicity d− 1 and k general nodes in full generality. To this, define the number

k(r, d) :=

⌊
1

r + 1

(
r + d

r

)
− 1

r + 1

(
r + d− 2

r

)⌋
− (r − 2),

for every r ≥ 3 and d ≥ 4. We want to prove that the linear system Lr,d(d− 1, 2k) is non-special,
if k ≤ k(r, d).
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Remark 2.7. Notice that k(3, d) is equal to the number k0(d) defined in Lemma 2.6, so that result
can be employed as the base step of the induction on r. Moreover, being k(r, 4) ≤ k(r), the linear
system Lr,4(3, 2k) is non-special by Lemma 2.4, so this can be used as starting step of the induction
on d.

As in the case r = 3, the trick will be to specialize k(r − 1, d) nodes on an hyperplane π ∼= Pr−1

containing the support of p as follows:

0→ L̂ → L = Lr,d(d− 1, 2k(r,d))→ Lπ = Lr−1,d(d− 1, 2k(r−1,d)),(2.8)

where the kernel system is L̂ = Lr,d−1(d− 2, 2k(r,d)−k(r−1,d), 1k(r−1,d)).

Proposition 2.9. The linear system Lr,d(d−1, 2k), with k ≤ k(r, d) and d ≥ 4, is non-special and
it has virtual dimension at least −1.

Proof. Consider the restriction exact sequence in (2.8): Lπ is non-special by induction on r, and

v(Lπ) ≥ −1. L̂ is non-special by induction on d and by the fact that k(r, d)−k(r−1, d) ≤ k(r, d−1)

as one can easily check, moreover v(L̂ ) ≥ −1. Finally, dim(L ) = dim(L̂ ) + dim(Lπ) + 1 = e(L )
and this completes the proof. �

Remark 2.10. Lemma 2.4 provides an upper bound for the number of double points which is bigger
than the one we need for the base step of the induction on the degree used in the proof of Proposition
2.9. Nevertheless k(r) is exactly the number of nodes that we will specialize on the component F in
the proof of Alexander-Hirschowitz Theorem in degree four (Section 2.3).

2.2. First transversality lemma. In this section we will show that it is possible to choose a
specialization of the nodes such that LF cuts the complete series on R = F ∩ P, for d ≥ 5; in this
way we also get transversality of the restricted systems.

Lemma 2.11 (Transversality Lemma I). Performing a (1, b)-degeneration with b ∈ Z such that

the system L̂F ∼= Lr−1,d(2
b) has dimension l̂F = dim(Lr−1,d(2

b)) = v(Lr−1,d(2
b)) ≥ −1, then the

restricted systems RP and RF are transversal in |OPr−1(d− 1)|.

Proof. Notice that b ≤
⌊

1
r

(
r+d−1
r−1

)⌋
≤ k(r, d), therefore the system LF is non-special, by Proposition

2.9. Let pi = [pi,0, . . . , pi,r] ∈ F, i = 1, . . . , b, be the general double points. The restricted system
on R is the complete linear system of hypersurfaces of Pr−1 of degree d − 1 containing b simple
general points qi = [pi,0, . . . , pi,r−1], i = 1, . . . , b, which are the traces on the exceptional divisor
R of the b lines through the (d − 1)-point p, that we blew up, and the points p1, . . . , pb: RF =
Lr−1,d−1(1b). Indeed a local computation that we omit proves that RF ⊆ Lr−1,d−1(1b), moreover

rF = lF − l̂F − 1 =
(
r+d−2
r−1

)
− 1− b (see [13], Section 2.1.4).

Now, if LP is empty, transversality is trivial, being R = ∅. So, assume that LP 6= ∅. The general
section of R is a section of RP that vanishes at q1, . . . , qb which are in general position in R.
Therefore RP and RF intersect transversally in R and dim(R) = max{dim(RF)− b,−1}. �

2.3. Quartics. This section is devoted to the analysis of the case d = 4.

2.3.1. Quartics in P3. If n > 9 the system is empty, being dim(L3,4(29)) = 0 (see Section 1). For
n = 8, we prove non-speciality of the corresponding linear system performing a (1, 4)-degeneration:

LF = L3,4(3, 24), L̂F = L3,4(4, 24) ∼= L2,4(24),LP = L3,3(24), L̂P = L3,2(24) = ∅. The system LP
is non-special (as we will see in Section 4), while the system LF is non-special by Proposition 2.9.
RF is the complete series L2,3(14) and the restricted systems intersect transversally (see the proof

of Lemma 2.11). Hence l0 = dim(R) + l̂P + l̂F + 2 = v(L3,4(28)). It follows that also the system of
quartic surfaces of P3 having n nodes, with n < 8, is non-special.
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2.3.2. Quartics in P4. The systems of quartics with n nodes in P4, for n > 14, is empty, being
dim(L4,4(214)) = 0 (see Section 1). Performing a (1, 8)-degeneration of P4, we prove that the
system L4,4(213) is non-special, as in the case of P3. As consequence, for a smaller number of
general nodes, the system of quartics of P4 is non-special.

2.3.3. Quartics in Pr, r ≥ 5. Let n−(r, 4) ≤ n ≤ n+(r, 4). We will prove non-speciality of the

linear system Lr,4(2n), performing a (1, n− r− 1)-degeneration. The system L̂F = Lr,4(4, 2n−r−1)
is empty, in fact it has dimension dim(Lr−1,4(2n−r−1)) = −1 (use induction on r and check that
the virtual dimension is negative). Furthermore the system LF = Lr,4(3, 2n−r−1) is non-special
by Lemma 2.4, being n − r − 1 ≤ k(r). The system LP = Lr,3(2r+1) is non-special, under the
assumption that Alexander-Hirschowitz Theorem holds for cubics (see Section 4). The kernel

system L̂P = Lr,2(2r+1) of quadric hypersurfaces with r + 1 double points is empty, therefore the
restriction map LP ↪→ RP ⊆ |OPr−1(3)| is injective. If a cubic has k nodes, then it must contains all

the
(
k
2

)
lines joining the points. Consequently, when we restrict to the hyperplane R, the image of

the cubics in LP must contain the traces of those lines as base points: we get RP ⊆ Lr−1,3(1(r+1
2 )).

As we see in the next proposition, these
(
r+1

2

)
points give independent conditions, so RP is the

complete series.

Proposition 2.12 (Transversality for quartics). In the previous setting, the system RP is the

complete linear system of cubics of R with
(
r+1

2

)
base points and dim(RP) =

(
r+2
r−1

)
− 1−

(
r+1

2

)
.

Proof. We have to prove that the
(
r+1

2

)
points on R, traces of the lines joining the r + 1 nodes

p1, . . . , pr+1 specialized on the component P, impose independent conditions. If we prove that this
is true for quadrics, it will be true for cubics. The case r = 3 is easy: let p1, . . . , p4 points in P ∼= P3.
Three of them, say p1, p2, p3, span a plane π which cuts a line π′ on R ∼= P2. On this line we will
have the three distinct points given as traces of the three lines < pi, pj >, i 6= j, i, j = 1, 2, 3. The
line π′ splits off the system of conics through these three points, thus

L2,2(16) = π′ + L2,1(13),

where the three base points of the system on the right are the projection of p1, p2, p3 from p4 on R
and they will not lie on a line, by generality. So our system is empty. For r > 3, apply induction
and use the same argument. �

From this follows that RP and RF intersect properly in R, being RP the complete series. In
particular, the system R consists of the sections of RF vanishing at the

(
r+1

2

)
base points of RP,

thus dim(R) = max
{
lF −

(
r+1

2

)
,−1

}
= e(L ) and we conclude applying Formula (2.2).

Remark 2.13. This discussion does not apply if r = 3, 4. Indeed the kernel on the component
F would be isomorphic to L2,4(25) and L3,4(29) respectively, that are special and in particular
nonempty.

2.4. Proof of Theorem 0.1, part I. The goal of this section is to apply the above degeneration
technique to linear systems of hypersurfaces of Pr, with r ≥ 3, of degree d ≥ 5 with a collection of
n nodes in general position, with n− ≤ n ≤ n+. Let us set

(2.14) b0 = b0(r, d) :=
1

r

(
r + d− 1

r − 1

)
=

⌊
1

r

(
r + d− 1

r − 1

)⌋
+
β

r
, β = β(r, d) ∈ {0, . . . , r − 1},

and assume that b0 ∈ Z, i.e. that β = 0. Perform a (1, b)-degeneration of Pr and L , with b = b0.

Proposition 2.15. With the notation used, assume β = 0. If the linear systems Lr−1,d(2
b)(∼= L̂F),

LP = Lr,d−1(2n−b) and L̂P = Lr,d−2(2n−b) are non-special, then the linear system Lr,d(2
n) is non-

special.
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Proof. The system L̂F ∼= Lr−1,d(2
b) has dimension −1. The system LF = Lr,d(d − 1, 2b) is non-

special, by Proposition 2.9 and cuts the complete series RF = Lr−1,d−1(1b) on R, by Lemma 2.11.
Furthermore the restricted systems intersect transversally. The system on the component P is non-
special, by assumption and it is nonempty, because one computes vP > −1. The kernel system L̂P
is non-special and empty, because v̂P ≤ −1. Moreover the dimension of the intersection R of the
restricted systems on R is dim(R) = max{lP − b,−1} = e(L ). Now, using formula (2.2), we get

l0 = dim(R) + l̂P + l̂F + 2 = dim(R) = e(L ). Therefore, by upper semicontinuity, the system L is
non-special. �

3. The second degeneration

Let b0 = b0(r, d) be as defined in (2.14). Specializing b = b0 double points on F and the others
on P does not cover all the cases. More precisely, if b0 /∈ Z, i.e. if β > 0, a arithmetic obstruction
prevents us from finding an integer b such that the limiting system L0 has dimension equal to e(L ).

For example when L is expected to be empty, namely if n = n+ =
⌈

1
r+1

(
r+d
r

)⌉
= 1

r+1

(
r+d
r

)
+ l

r+1 ,

l ∈ {0, . . . , r} and v(L ) = −1 − l, we would like to find a specialization such that L̂P = L̂F =

R = ∅ in order to prove that L = ∅. If β > 0, the minimal integer b such that L̂F = ∅ is
b = db0e = b0 + r−β

r . But we would have a problem with the dimension of R (which we wish to
be empty); indeed dim(R) = max{lP − b,−1} = max{−1 − l + r − β,−1} and we are not able to

check if −l + r − β ≤ 0. On the other hand, if we choose b = bb0c = b0 − β
r , then L̂F, which has

dimension dim(Lr−1,d(2
b)), is nonempty.

Hence we use another approach in order to overcome the problem. It consists in degenerating
the system L0 on the central fiber X0 to a system L ′

0 such that some of the points of F approach
R.
Let ∆′ be a complex disc around the origin. Consider the trivial family Z = Z × ∆′ → ∆′ with
reducible fibers Zs = Ps ∪ Fs, where Ps = P is isomorphic to Pr, Fs = F is isomorphic to Pr blown
up at a point and Ps ∩ Fs = Rs ∼= Pr−1, for every s ∈ ∆′. Consider on Zs, s 6= 0, the linear system
L ′
s := L0, where L0 is the flat limit of Lt = Lr,d(2

n), with respect to the first degeneration. Such
a system is given by two linear systems L ′

Ps
and L ′

Fs
on the two components that agree on the

intersection Rs. The system on Ps (on Fs) restricts to a system R′Ps
(R′Fs

respectively) and the

kernel is L̂ ′
Ps

(L̂ ′
Fs

respectively). We have the following identities:

L ′
Ps

= LP, L ′
Fs

= LF, L̂ ′
Ps

= L̂P, L̂ ′
Fs

= L̂F, R′Ps
= RP, R′Fs

= RF, for s 6= 0

Now, let β ∈ N such that β ≤ b. Consider the scheme on the central fiber given by n− b double
points in P0 \R0, b−β in F0 \R0 and β in R0: we can consider these nodes as limit of the n general

nodes in Zs (n− b in Ps and b in Fs, s 6= 0). So, on the central fiber Z0 the systems L ′
P0

, L̂ ′
P0

and

L ′
F0

are still the same, while

L̂ ′
F0

= Lr,d(d, 2
b−β, 1β) ∼= Lr−1,d(2

b−β, 1β)

with the following restriction sequences:

0 → L̂ ′
P0
→ L ′

P0
→ R′P0

⊆ |OPr−1(d− 1)|
0 → L̂ ′

F0
→ L ′

F0
→ R′F0

⊆ Lr−1,d−1(2β)

We denote by v̂′P0
, v′P0

, v̂′F0
, v′F0

and l̂′P0
, l′P0

, l̂′F0
, l′F0

the virtual and the actual dimensions. Let

R′0 := R′P0
∩R′F0

. As in Section 2, we obtain a recursive formula for the dimension of L ′
0:

l′0 = dim(R′0) + l̂′P0
+ l̂′F0

+ 2.(3.1)

Lemma 3.2. Keeping the same notations as above, if there are integers b, β such that l′0 = e(L ),
then L is non-special.
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3.1. Second transversality Lemma. The intersection R′0 is contained in the linear system of
those divisors of R′P0

that are singular at β further general points of R0, the ones imposed by R′F0
,

and satisfying the remaining matching conditions. Let us denote by

L̂ ′m
P0
⊆ L̂ ′

P0
, L ′m

P0
⊆ L ′

P0
and R′

m
P0
⊆ R′P0

,

the systems defined by the matching conditions imposed by RF to RP. The first step is to prove
that if we impose our β nodes to R′P0

, the resulting system R̄′P0
:= R′P0

(2β) is non-special, i.e.

dim(R̄′P0
) = dim(R′P0

)− rβ. Notice that R′mP0
⊆ R̄′P0

⊆ R′P0
. Define L̄ ′

P0
:= Lr,d−1(2n−b+β) ⊂ L ′

P0

to be the linear system of hypersurfaces of degree d− 1 of P0 with n− b general nodes on P0 and β
general nodes on R0 ⊆ P0. Recall that R0 is a general hyperplane for P0 and notice that if β < r
then the n− b+ β nodes are in general position in P0.

Lemma 3.3 (Transversality Lemma II). In the above construction, assume that h0(P0, L̂ ′
P0

) = 0,

h1(P0, L̂ ′
P0

) > 0, that h1(P0, L̄ ′
P0

) = 0 and that β < r. Then the linear system R̄′P0
is non-special.

Proof. Restricting L̄ ′
P0

to R0
∼= Pr−1, we get the following exact sequence:

0→ ˆ̄L ′
P0

:= Lr,d−2(2n−b, 1β)→ L̄ ′
P0
→ R̄′P0

Notice that h0(P0,
ˆ̄L ′
P0

) = h0(P0, L̂ ′
P0

) = 0, h0(P0, L̄ ′
P0

) = h0(P0,L ′
P0

) − (r + 1)β and that

h1(P0,
ˆ̄L ′
P0

) = h1(P0, L̂ ′
P0

) + β. We have the following commutative diagram.

0 0

K(r+1)β

OO

V

OO

0

0 // H0(P0,L ′
P0

) //

OO

H0(R0,R′P0
) //

OO

H1(P0, L̂ ′
P0

) //

OO

0

0 // H0(P0, L̄ ′
P0

) //
?�

OO

H0(R0, R̄′P0
) //

?�

OO

H1(P0,
ˆ̄L ′
P0

) //

OO

0

0

OO

0

OO

Kβ
?�

OO

//

0

OO

It follows that dim(V ) = rβ. Hence H0(R0, R̄′P0
) has codimension equal to dim(V ) = rβ in

H0(R0,R′P0
) and, at the level of linear systems, dim(R̄′P0

) = dim(R′P0) − rβ. Therefore the β

nodes impose rβ linearly independent conditions to R̄′P0
and this concludes the proof. �

Corollary 3.4. In the setting of above, the β nodes specialized on R0 give linearly independent
conditions to the matching system R′mP0

.
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3.2. Proof of Theorem 0.1, part II. In this section we analyze the cases such that b0(r, d) /∈ Z,
i.e. the cases for which the first degeneration argument does not suffice. Let L ′

s = L ′
Ps
×R′Ps∩R′Fs

L ′
Fs

be the system on the general fiber, which corresponds to the limit system of Lr,d(2
n), with respect

to the first degeneration. Let b0(r, d) and β(r, d) be as defined in (2.14); choose

b = b0 −
β

r
+ β ∈ Z.

Remark 3.5. Notice that if β = 0 then Proposition 2.15 applies, with no need of making a second
degeneration.

From now on, we assume that the systems Lr−1,d(2
b−β), Lr,d−1(2n−b+β) and Lr,d−2(2n−b) are

non-special, for points in general position. Consider the following exact sequence on F0:

0→ L̂ ′
F0

= Lr,d(d, 2
b−β, 1β)→ L ′

F0
→ R′F0

⊆ Lr−1,d−1(1b−β, 2β)(3.6)

The kernel system is empty and h1(F0, L̂ ′
F0

) = 0. The system L ′
F0

= Lr,d(d− 1, 2b) is non-special
by Proposition 2.9, in fact one checks that b ≤ k(r, d), for r ≥ 3, d ≥ 5. Furthermore it cuts the
complete series on R0, namely R′F0

= Lr−1,d−1(1b−β, 2β), in fact the b−β simple points (trace on R0

of the lines through the b−β double points and the (d−1)-point) are base points (see Lemma 2.11).

The system L̂ ′
P0

= Lr,d−2(2n−b) is empty; indeed it is non-special by assumption and v̂′P0
≤ −1.

The linear system L̄ ′
P0

= Lr,d−1(2n−b+β) ⊂ L ′
P0

on P0 is non-special by assumption, moreover

dim(L̄ ′
P0

) ≥ −1, for r ≥ 3 and d ≥ 5. The hypotheses of Lemma 3.3 are satisfied, hence R′P0
and

R′F0
intersect transversally on R0 and we get dim(R′0) = dim(R′mP0

) = max{l′P0
−rβ−(b−β),−1} =

e(L ).

Proposition 3.7. In the above notation, assume that the systems Lr−1,d(2
b−β)(∼= L̂ ′

F0
), L̄ ′

P0
and

L̂ ′
P0

are non-special. Then the linear system Lr,d(2
n) is non-special.

Proof. Following the argument of this section we get l′0 = dim(R′0) + l̂′P0
+ l̂′F0

+ 2 = dim(R′0) =
e(L ). �

Putting together Proposition 2.15 and Proposition 3.7, the proof of Theorem 0.1 for d ≥ 4 is
now complete.

4. Cubics

The techniques introduced in the previous sections do not work in the case of cubics, because
the limiting system on the exceptional component P of the central fiber of a (1, b)-degeneration is
a linear system of quadrics with nodes which is special. We will prove non-speciality of Lr,3(2n),
for r ≥ 3, (r, n) 6= (4, 7) by induction on r, with a different degeneration argument.
The starting point is the linear system L3,3(25) of cubic surfaces of P3, which is empty as expected.
Indeed, if we restrict it to a plane π and if we specialize three nodes on it, we get the following
sequence:

0→ L3,2(22, 13)→ L3,3(25)→ L3,3(25)|π ⊂ L2,3(23).

If a cubic has two double points, it must vanish identically on the line joining them. This line
meets π at a point, so L3,3(25)|π ⊆ L2,3(23, 1) = ∅. Moreover the kernel L3,2(22, 13) is empty, and

this concludes the proof in the case of P3.
The system L4,3(2n), n ≥ 8 is empty as expected, being dim(L4,3(27)) = 0 (see Section 1).

Moreover one can prove non-speciality of L4,3(26) by specializing five of the nodes on a hyperplane
π and exploiting the following exact sequence:

0→ L4,2(2, 15)→ L4,3(26)→ L4,3(26)|π = L3,3(25) = ∅.
From this follows non-speciality of L4,3(2n), n ≤ 5.
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Now, for r ≥ 5, define γ(r) =
(
r+3
r

)
− (r + 1)n−(r, 3), i.e.

γ(r) :=

{
0 if r ≡ 0, 1 (mod 3)

l + 1 if r ≡ 2 (mod 3)

where l ∈ Z is such that r = 3l + k, with k ∈ {0, 1, 2}. We will prove the following.

Theorem 4.1. The linear system L := Lr,3(2n
−(r,3), 1γ(r)) is empty, for r ≥ 5.

4.1. The degeneration construction. We will perform a degeneration of Pr and simultaneously
of L , by blowing up a 3-codimensional subspace of the central fiber. Let us consider the trivial
family Y = Pr×∆→ ∆, where ∆ is a complex disc with center at the origin. Let Y0 be the central
fiber. Choose a general linear subspace L ⊂ Y0 = Pr of codimension h: NL|Y = OL(1)⊕h ⊕ OL is
the normal sheaf of L in Y. Blowing up L in the family, we obtain a new family X , with maps
π1 : X → Pr and π2 : X → ∆ and a reducible central fiber X0 which is the union of the strict
transform V of Pr, i.e. Pr blown up along L, and the exceptional divisor T , which is isomorphic to
P(N ∗L|Y) ∼= P(OPr−h(1)⊕h ⊕ OPr−h(2)). This variety of dimension r is a Ph-bundle over L ∼= Pr−h

with the natural map p : T → L. The intersection of the two components of X0 is a (r − 1)-
dimensional subvariety Q = P(OPr−h(1)⊕h) ∼= Pr−h×Ph−1; it is the exceptional divisor of the blow
up of L in the central fiber. The Picard group of V is generated by the hyperplane class HV , which
corresponds to the line bundle OV (1) pull back of OPr(1), and by the divisor Q. The Picard group
of T is generated by π := p∗(OL(1)) and by Q; so the O(1)-bundle of T ∼= P(OPr−h(1)⊕h⊕OPr−h(2))
is of the form HT = Q+ 2π.

Now, consider the line bundle OX (3) = π∗1OPr(3). It restricts to OPr(3) on the general fiber;
while on the central one we have:

|OX (3)|T | = |3π| and |OX (3)|V | = |3HV |.
If r 6= 7, choose h = 3 and twist by −T : on the general fiber we do not make any change, while on
the special one we get:

|3π +Q| on T and |3HV −Q| on V.

Consider the linear system of cubics on the general fiber Lt := L , which has virtual dimension
−1, for every r. Specialize n−(r − 3, 3) nodes and γ(r − 3) simple points on the component T :

LT = |3π +Q− 2n
−(r−3,3) − 1γ(r−3)| and LV = |3H −Q− 2r+1 − 1γ(r)−γ(r−3)|,

where γ(r) − γ(r − 3) ∈ {0, 1}. The system LV is isomorphic to the linear system of cubic
hypersurfaces of Pr containing a 3-codimensional subspace L, being singular at r+1 general points,
and passing through γ(r) − γ(r − 3) general points; we will use the following notation: LV

∼=
Lr,3(L, 2r+1, 1γ(r−3)).
If we restrict the two linear systems to the intersection Q, we obtain as kernels the following systems:

L̂T = |3π − 2n
−(r−3,3) − 1γ(r−3)| ∼= Lr−3,3(2n

−(r−3,3), 1γ(r−3))

L̂V = |3H − 2Q− 2r+1 − 1γ(r)−γ(r−3)|

The motivation of this choice is that in this way the kernel L̂T is known to be empty, applying
induction from r − 3 to r, if r 6= 7.

4.2. Emptyness of L̂V . The kernel system of the component V is isomorphic to the linear system
of cubic hypersurfaces of Pr that are singular along a 3-codimensional subspace L and at r+1 general
points, and with γ(r)− γ(r − 3) additional base points: L̂V

∼= Lr,3(2L, 2r+1, 1γ(r)−γ(r−3)). Notice
that Lr,2(2L, 2) has dimension 2; this is easy and can be left to the reader.

Proposition 4.2. The system Lr,3(2L, 2r+1) is empty, for r ≥ 3.



A NEW PROOF OF THE ALEXANDER-HIRSCHOWITZ INTERPOLATION THEOREM 13

Proof. In the first case (r = 3) the system is L3,3(25) that is empty. For r ≥ 4, the statement
follows by induction on r and by the sequence

0→ Lr,2(2L, 2, 1r)→ Lr,3(2L, 2r+1)→ Lr−1,3(2L′, 2r)

where L′ ∼= Pr−4 is the intersection of L with the restricting hyperplane. �

From this proposition in particular follows the emptyness of L̂V , for r ≥ 5, r 6= 7.

4.3. Matching systems. Let p1, . . . , pt, with t = n−(r − 3, 3), be the nodes specialized on T .
Each of them lies on a distinct fiber of the ruling of T : say pi ∈ fi ∼= P3. This implies that each of
the sections of LT must contain f1, . . . , ft. Therefore the sections of LT |Q must contain t distinct

planes σi = fi|Q
∼= P2, each of them imposing 3 linear conditions on it.

The sections of LV |Q must agree with those of LT |Q. Define Lm
V ⊆ LV and L̂m

V ⊆ L̂V to be the

linear systems on V defined by the matching conditions. Similarly, let Lm
T ⊆ LT and L̂m

T ⊆ L̂T

be the corresponding systems on the exceptional component. The system Lm
V is the linear system

of cubic hypersurfaces of Pr which contain a linear subspace L of codimension 3 and which are
singular at n−(r, 3) nodes, such that n−(r− 3, 3) of them are supported on L and r+ 1 are general
in Pr \ L and which pass through γ(r)− γ(r − 3) additional general points:

Lm
V
∼= Lr,3({L, 2n−(r−3,3)}, 2r+1, 1γ(r)−γ(r−3)), r 6= 7.

We will use the notation {L, 2t} for the scheme given by a subspace L and t general nodes supported
on it. We will prove that the matching system Lm

V is empty, for r ≥ 5 by induction from r − 3 to
r, starting from the cases r = 5, 6, 7. This proof is very similar to the one of M. C. Brambilla and
G. Ottaviani in [6], Section 5. We need two preliminary results.

Proposition 4.3. The system K2(r) := Lr,3({L1, 2
3}, {L2, 2

3}, {L3, 2
3}), with L1, L2, L3

∼= Pr−3

three general subspaces of Pr, is empty for r ≥ 6.

Proof. For r = 6 it suffices to make an explicit computation. For r ≥ 7, we prove the statement
by induction from r − 1 to r. Choose a general hyperplane of Pr: it intersects Li in a subspace L′i
of dimension r − 4, for i = 1, 2, 3. Moreover specialize the nine nodes on it, three on each L′i, and
consider the following exact sequence

0→ Lr,2(L1, L2, L3)→ K2(r)→ K2(r − 1).(4.4)

The kernel system is empty, indeed in Pr there are no quadric hypersurfaces vanishing along three
general subspaces of codimension three. �

Proposition 4.5. Let L1, L2
∼= Pr−3 be general subspaces of Pr. The linear system K1(r) :=

Lr,3({L1, 2
r−2}, {L2, 2

r−2}, 23) is empty for r ≥ 3, r 6= 4.

Proof. We will prove the statement by induction on r, from r − 3 to r, starting from the cases
r = 3, 5, 7. For r = 3, one has K1(3) = L3,3(25); this system is empty. For r = 5 and r = 7 it is an
explicit computation. For r = 6, r ≥ 8, we prove the statement exploiting the following restriction
exact sequence:

0→ K2(r)→ K1(r)→ K1(r − 3).

The kernel is empty by Proposition 4.3 and K1(r − 3) is empty by induction.
�

Proposition 4.6. Keep the same notation as above. Let r ≥ 5. The matching linear system Lm
V

is empty.
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Proof. For r = 5, the matching system is Lm
V = L5,3({L, 23}, 26, 1). With an explicit computation,

one can see that it is empty. For r = 6 the matching system is Lm
V = L6,3({L, 25}, 27). Restricting

it to a general L1
∼= P3 intersecting L in the support p of one of the nodes and specializing on it

four general nodes, we get

0→ L6,2({L, 24}, {L1, 2
4}, 23)→ L6,3({L, 25}, 27)→ L3,3({p, 2}, 24).

The kernel is empty by Proposition 4.5, and the restricted system is L3,3(25) which is empty.
For r = 7 the matching system is Lm

V = L7,3({L, 27}, 28), with L ∼= P4. Let p1, . . . , p7 ∈ L
and q1, . . . , q8 ∈ Pr \ L be the supports of the fifteen nodes. Let π be a hyperplane such that
L ∩ π = L′ ∼= P3 and such that p4, . . . , p7 ∈ L′; moreover specialize on π the points q2, . . . , q8:

Lm
V

φ→ Lm
V |π ⊆ L6,3({L′, 24}, 27).

Notice that the line joining q1 and pi is contained in all the sections of Lm
V and it intersects π at

a point, for i = 1, 2, 3. Therefore Lm
V |π ⊆ L6,3({L′, 24}, 27, 13). It is non-special as consequence

of the previous point (case r = 6), moreover it is empty, having virtual dimension equal to −1.
Furthermore the kernel of the restriction map φ is L7,2({L, 23}, 2, 17). It is easy to check that
dim(L7,2({L, 23}, 2)) = 6, choosing for example L = {x0 = x1 = x2 = 0}, p1 = [0, 0, 0, 0, 0, 0, 0, 1],
p2 = [0, 0, 0, 0, 0, 0, 1, 0], p3 = [0, 0, 0, 0, 0, 1, 0, 0] and q1 = [1, 0, 0, 0, 0, 0, 0, 0]. Therefore, imposing
seven further general base points, the resulting system is empty. For r ≥ 8, the statement follows
by induction restricting to a general Pr−3 and making specializations of the points as follows:

Lr,3({L, 2n−(r−3,3)}, 2r+1, 1γ(r)−γ(r−3))→ Lr−3,3({L′, 2n−(r−6,3)}, 2r−2, 1γ(r)−γ(r−3)),

where L′ = L ∩ Pr−3 ∼= Pr−6: the kernel is K1(r) = ∅. �

Finally, being Lm
V = L̂m

T = ∅, for r ≥ 5, r 6= 7, then L = Lt is empty.

Remark 4.7. For r = 7, the emptyness of the matching system does not suffice to conclude that the
system of cubics of P7 with fifteen nodes is empty (and in particular non-special), because the kernel

system L̂T on the other component is nonempty. Nevertheless this is crucial because it represents
the starting point of the induction from r − 3 to r, for r ≥ 10, r ≡ 1 (mod 3); so we will analyze
this case separately.

4.4. Cubics in P7. We will reproduce the same argument, but blowing up a subspace L1 of
codimension four, instead of three, in the central fiber of the trivial family P7 ×∆. Let us denote
by T the exceptional component of the new special fiber, and by V the strict transform, as above.
Let p : T → L1 the natural map and π := p∗OL1(1). Twist by −T and consider the limit of the
linear system of cubics of P7:

|3π +Q| on T and |3HV −Q| on V,

where HV is the pull-back of a hyperplane, and Q is the exceptional divisor of the blow up. Consider
the system L7,3(215) on the general fiber. To prove emptyness, we use the same trick as in the
general case: we specialize the right number of points on the two components as follows:

LT = |3π +Q− 25|, and LV = |3HV −Q− 210| ∼= L7,3(L1, 2
10).

The kernels of the restriction to Q are

L̂T
∼= L3,3(25) = ∅, and L̂V = |3HV − 2Q− 210| ∼= L7,3(2L1, 2

10).

Each node specialized on T selects a fiber of the ruling of T . Each fiber cuts a P3 at the
intersection Q, which corresponds to a fiber of the ruling of Q. So, as in the general case, the
matching system on V is

Lm
V,7
∼= L7,3({L1, 2

5}, 210)
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and it has virtual dimension −1. To prove its emptyness, we make two subsequent specialization
of the general nodes, five on L2 and five on L3, where L2, L3

∼= P3 are general subspaces of P7, as
we did for the general case:

0→ K1 → Lm
V,7 → L3,3(25)→ 0

where K1 := L7,3({L1, 2
5}, {L2, 2

5}, 25) and

0→ K2 → K1 → L3,3(25)→ 0

where K2 := L7,3({L1, 2
5}, {L2, 2

5}, {L3, 2
5}). With an explicit computation we prove that K2 is

empty, therefore K1 is empty too and this concludes the proof.
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Thesis, Università degli Studi Roma Tre (2010).

[14] Z. Ran: Enumerative geometry of singular plane curves, Inventiones Math., 97 (1989), 447-465.
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