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Abstract. In this paper, we discuss the numerical approximation of random periodic solutions of stochastic differential
equations (SDEs) with multiplicative noise. We prove the existence of the random periodic solution as the limit of the
pull-back flow when the starting time tends to −∞ along the multiple integrals of the period. As the random periodic
solution is not explicitly constructible, it is useful to study the numerical approximation. We discretise the SDE using
the Euler–Maruyama scheme and modified Milstein scheme. Subsequently, we obtain the existence of the random periodic
solution as the limit of the pull-back of the discretised SDE. We prove that the latter is an approximated random periodic

solution with an error to the exact one at the rate of
√

Δt in the mean square sense in Euler–Maruyama method and Δt in
the Milstein method. We also obtain the weak convergence result for the approximation of the periodic measure.
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1. Introduction

Periodic solution has been a central concept in the theory of dynamical systems since Poincaré’s pioneering
work [18–21]. As the random counterpart of periodic solution, the concept of random periodic solutions
(RPS) began to be addressed recently for a C1-cocycle in [28]. Later, the definition of random periodic
solutions and their existence for semi-flows generated by non-autonomous SDEs and SPDEs with additive
noise were given in [5,6]. Denote by Δ := {(t, s) ∈ R

2, s ≤ t}. Let X be a separable Banach space and
(Ω,F , P, (θt)t∈R) be a metric dynamical system. Consider a stochastic periodic semi-flow u : Δ×Ω×X → X

of period τ , which satisfies the semi-flow relation

u(t, r, ω) = u(t, s, ω) ◦ u(s, r, ω), (1.1)

and the periodic property

u(t + τ, s + τ, ω) = u(t, s, θτω), (1.2)

for all r ≤ s ≤ t. SDEs and SPDEs with time-dependent coefficients which are periodic in time generate
periodic semi-flows satisfying (1.1) and (1.2) [5–7].

Definition 1.1. [5,6] A random periodic path of period τ of the semi-flow u : Δ × Ω × X → X is an
F-measurable map Y : R × Ω → X such that for a.e. ω ∈ Ω,

u(t, s, ω)Y (s, ω) = Y (t, ω), Y (s + τ, ω) = Y (s, θτω), for any (t, s) ∈ Δ.

It has been proved that random periodic solutions exist for many SDEs and SPDEs [5–7]. Recently,
“equivalence” of random periodic paths and periodic measures has been proved in [8] and some results
of the ergodicity of periodic measures have been obtained. Note many phenomena in the real world have
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both periodic and random nature, e.g. daily temperature, energy consumption, airline passenger volumes,
CO2 concentration. The concept and its study are relevant to modelling random periodicity in the real
world.

In the literature, there have been a number of recent works such as [3] on random attractors of the
stochastic TJ model in climate dynamics; [2] on stochastic lattice systems; [4] on stochastic resonance;
[7] for SDEs with multiplicative linear noise; and [25] on bifurcations of stochastic reaction diffusion
equations. All these results are theoretical on the existence of random periodic paths.

In general, neither stationary solutions nor random periodic solutions can be constructed explicitly,
so numerical approximation is another indispensable tool to study stochastic dynamics, especially to
physically relevant problems. It is worth mentioning here that this is a numerical approximation of an
infinite time horizon problem. There are numerous works on numerical analysis of SDEs on a finite horizon,
and a number of excellent monographs [14,17]. However, there are only a few works on infinite horizon
problems. A numerical analysis of approximation to the stationary solutions and invariant measures of
SDEs through discretising the pull-back was given in [16,22–24,26]. Numerical approximations to stable
zero solutions of SDEs were given in [10,14].

In this paper, we study stochastic differential equations, which possess random periodic solutions, and
approximate them by Euler–Maruyama and Milstein schemes. As far as we know, this is the first paper
addressing analysis of numerical approximations of random periodic solutions. Consider the following
m-dimensional SDE

dXt0
t = [AXt0

t + f(t,Xt0
t )]dt + g(t,Xt0

t )dWt (1.3)

with Xt0
t0 = ξ, where f : R × R

m → R
m, g : R × R

m → R
m×d, A is a symmetric and negative-definite

m × m matrix, Wt is a two-sided Wiener process in R
d on a probability space (Ω,F ,P). The filtration

is defined as follows: F t
s = σ{Wu − Wv : s ≤ v ≤ u ≤ t}, F t = F t

−∞ =
∨

s≤t F t
s, the random variable

ξ is F t0-measurable. We assume that the functions f and g are τ -periodic in time. By the variation of
constant formula, the solution of (1.3) is given

Xt0
t (ξ) = eA(t−t0)ξ + eAt

t∫

t0

e−Asf(s,Xt0
s )ds + eAt

t∫

t0

e−Asg(s,Xt0
s )dWs. (1.4)

Denote the standard P -preserving ergodic Wiener shift by θ : R × Ω → Ω, θt(ω)(s) := W (t + s) −
W (t), t, s ∈ R. The solution X of the non-autonomous SDE does not satisfy the cocycle property, but
u(t, t0) : Ω × Rm → Rm given by u(t, t0)ξ = Xt0

t (ξ) satisfies the semi-flow property (1.1) and periodicity
(1.2). Denote by X−kτ

r (ξ, ω) the solution starting from time −kτ . We will show that when k → ∞, the
pull-back X−kτ

r (ξ) has a limit X∗
r in L2(Ω) and X∗

r is the random periodic solution of SDE (1.3). It
satisfies the infinite horizon stochastic integral equation (IHSIE)

X∗
r =

r∫

−∞
eA(r−s)f(s,X∗

s )ds +

r∫

−∞
eA(r−s)g(s,X∗

s )dWs.

We separate the linear term AX from the nonlinear term in (1.3) to enable us to represent the random
periodic solution by IHSIE [5,7]. This is helpful to formulate the scheme for SPDEs for which random
periodic solutions were considered in [6].

Numerical analysis for random periodic solutions was not considered in previous work. The infinite
horizon stochastic integral equation (IHSIE) method can deal with anticipated cases [5–7]. But it is still
not clear how to numerically approximate two-sided IHSIE and anticipating random periodic solutions.
The pull-back method used in this paper is a popular way to study random attractors. Here we use
this to deal with stable adapted random periodic solutions of dissipative systems for the first time. The
pull-back method has some advantages. First, stability can be obtained immediately. Secondly, it can deal
with some dissipative equations that cannot be dealt with by the IHSIE; especially, the current IHSIE
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technique requires equations to have multiplicative linear noise or additive noise and f being bounded.
Thirdly in this paper, we study numerical approximations of random periodic solutions of dissipative
SDEs and with the pull-back idea, a random periodic solution of the discretised system can be obtained
as well.

We will first study the Euler–Maruyama numerical scheme in infinite horizon and obtain an approxi-
mating r.p.s. X̂∗

r . We will prove that the latter converges to the exact r.p.s. in L2(Ω) at the rate of
√

Δt

when the time mesh
√

Δt tends to zero. This result will be numerically verified. Despite its lower order
of the approximation only at the rate of

√
Δt, the advantage of this scheme is its simplicity and it is

relatively easy to implement in actual computations. It works well for the SDE we consider in this paper.
We also consider more advanced numerical schemes, e.g. Milstein scheme [13,14,24], for high-order

convergence. We improve the rate of approximation from
√

Δt in Euler scheme to Δt.
We will also do some numerical simulations to sample paths of the r.p.s. (Fig. 1). However, simulation

of one pathwise trajectory is not a reliable way to tell whether or not it is random periodic though it
looks very much like to be. Here we provide two reliable methods for this from numerical simulations.
One method is to simulate {X∗

t (ω), t ∈ R} and {X∗
t (θ−τω), t ∈ R} for the same ω. These two trajectories

should be repeating each other, but with a shift of one period of time. See Fig. 1 as an example. The
other way is to simulate {X∗

t (θ−tω), t ∈ R}, which is periodic if and only if X∗
t (ω) is random periodic. As

an example, see Fig. 2. These two approaches would apply to any other stochastic differential equations
should they have a random periodic solution.

It was known from the recent work [8] that the law of the random periodic solution is the periodic
measure of the corresponding Markov semi-group. Thus, we will consider the convergence of transition
probabilities generated by (1.3) and its numerical scheme along the integral multiples of period to the
periodic measure and discretised periodic measure, respectively, and error estimate of the two periodic
measures in the weak topology.

2. Assumptions and preliminary results

First we fix some notation. Let p ≥ 1 and denote the Lp-norm of a random variable ξ by ‖ξ‖p = (E |ξ|p)1/p,

and the Frobenius norm of any d1 × d2 matrix B by |B| = (
∑d1

i=1

∑d2
j=1 B2

ij)
1
2 .

2.1. Conditions for the SDE

We assume the following conditions.
Condition (A). The eigenvalues of the symmetric matrix A, {λj , j = 1, 2, . . . ,m}, satisfy 0 > λ1 ≥ λ2 ≥
. . . ≥ λm.
Condition (1). Assume there exists a constant τ > 0 such that for any t ∈ R, x ∈ R

m, f(t + τ, x) =
f(t, x), g(t + τ, x) = g(t, x) and there exist constants C0, β1, β2 > 0 with β1 + β2

2
2 < |λ1| such that for any

s, t ∈ R and x, y ∈ R
m,

|f(s, x) − f(t, y)| ≤ C0 |s − t|1/2 + β1 |x − y| ,
|g(s, x) − g(t, y)| ≤ C0 |s − t|1/2 + β2 |x − y| .

Condition (2). There exists a constant K∗ > 0 such that ‖ξ‖2 ≤ K∗.
From Condition (1) it follows that for any x ∈ R

m, the linear growth condition also holds: |f(t, x)| ≤
β1 |x| + C1, |g(t, x)| ≤ β2 |x| + C2, where the constants C1, C2 > 0 are constants. It is easy to see that
there exists a constant α such that β1 + β2

2
2 < α < |λ1|. In the following, we always assume that α satisfies

this condition in all the following proofs. Set ρ := |λm|.
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For the SDE case, the quantity ρ is certainly finite, and for simplicity, we choose numerical schemes
to treat the linear part explicitly, which simplify the proof of the pull-back convergence to the random
periodic solutions for the discretised systems. However, in a case of SPDEs, this technical assumption
is no longer true, but can be removed by employing exponential Euler–Maruyama method and Milstein
scheme [1,12]. This will be studied in future work.

2.2. Existence and uniqueness of random periodic solution

We first consider the boundedness of the solution in L2(Ω).

Lemma 2.1. Assume Conditions (A), (1) and (2). Then there exists a constant C > 0 such that for any
k ∈ N, r ≥ −kτ , we have E

∣
∣X−kτ

r

∣
∣2 ≤ C.

Proof. First, using Itô’s formula to e2αr
∣
∣X−kτ

r

∣
∣2, we have

e2αr
∣
∣X−kτ

r

∣
∣2 = e−2αkτ |ξ|2 + 2α

r∫

−kτ

e2αs
∣
∣X−kτ

s

∣
∣2 ds + 2

r∫

−kτ

e2αs
(
X−kτ

s

)T
AX−kτ

s ds

+2

r∫

−kτ

e2αs
(
X−kτ

s

)T
f(s,X−kτ

s )ds +

r∫

−kτ

e2αs
∣
∣g(s,X−kτ

s )
∣
∣2 ds

+2

r∫

−kτ

e2αs
(
X−kτ

s

)T
g(s,X−kτ

s )dWs. (2.1)

Firstly, note the sum of the second and third terms of the right-hand side is non-positive as the matrix
αI + A is non-positive definite. Take the expectation of both sides of (2.1), apply the above inequality
and use linear growth conditions to obtain

e2αr
E
∣
∣X−kτ

r

∣
∣2 ≤ e−2αkτ ‖ξ‖2

2 + (2β1 + β2
2)

r∫

−kτ

e2αs
E
∣
∣X−kτ

s

∣
∣2 ds

+2(C1 + β2C2)

r∫

−kτ

e2αs
E
∣
∣X−kτ

s

∣
∣ ds + (2α)−1C2

2

(
e2αr − e−2αkτ

)
.

Also, there exits ε > 0, such that
(
β1 + β2

2
2

)
(1 + ε) < α < |λ1| . By Young’s inequality

2(C1 + β2C2)
∣
∣X−kτ

s

∣
∣ ≤ (C1 + β2C2)2

ε(2β1 + β2
2)

+ ε(2β1 + β2
2)

∣
∣X−kτ

s

∣
∣2 .

Then we have

e2αr
E
∣
∣X−kτ

r

∣
∣2 ≤K1 + K2e

2αr + K3

r∫

−kτ

e2αs
∥
∥X−kτ

s

∥
∥2

2
ds,

where

K1 = e−2αkτ ‖ξ‖2
2 −

(
C2

2

2α
+

(C1 + β2C2)2

2αε(2β1 + β2
2)

)

e−2αkτ ,

K2 =
C2

2

2α
+

(C1 + β2C2)2

2αε(2β1 + β2
2)

, K3 = (2β1 + β2
2)(1 + ε) < 2α.
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Now applying Gronwall’s inequality, we have

e2αr
E
∣
∣X−kτ

r

∣
∣2 ≤K1 + K2e

2αr +

r∫

−kτ

(
K1 + K2e

2αs
)
K3e

r∫

s

K3dr
ds

≤ (K1e
2αkτ + K2)e2αr +

K2K3

2α − K3
e2αr.

Here we notice that K1e
2αkτ + K2 = ‖ξ‖2

2 . Therefore, by Condition (2)

E
∣
∣X−kτ

r

∣
∣2 ≤ ‖ξ‖2

2 +
2αK2

2α − K3
≤ K∗ +

2αK2

2α − K3
,

�
In the next lemma, we will also obtain a bound on the norm

∥
∥X−kτ

t1 − X−kτ
t2

∥
∥

2
for any fixed time

t1, t2. This will be essential for us to estimate the error of the numerical approximation in Sect. 4.

Lemma 2.2. Assume Conditions (A), (1) and (2). Then there exist constants C3 > 0, C4 > 0, such that
for any positive k ∈ N and any t1, t2 ≥ 0, t1 ≥ t2, the solution of (1.3) satisfies

∥
∥X−kτ

t1 − X−kτ
t2

∥
∥

2
≤

C3(t1 − t2) + C4

√
t1 − t2.

Proof. From (1.4), we see that
∥
∥X−kτ

t1 − X−kτ
t2

∥
∥

2
≤ e2Akτ ‖ξ‖2

∣
∣eAt1 − eAt2

∣
∣

+

∥
∥
∥
∥
∥
∥
eAt1

t1∫

−kτ

e−Asf(s,X−kτ
s )ds − eAt2

t2∫

−kτ

e−Asf(s,X−kτ
s )ds

∥
∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥
∥
eAt1

t1∫

−kτ

e−Asg(s,X−kτ
s )dWs − eAt2

t2∫

−kτ

e−Asg(s,X−kτ
s )dWs

∥
∥
∥
∥
∥
∥

2

. (2.2)

We evaluate each term on the right-hand side of (2.2). First, we consider the first term. By Lemma 1 in
[26],

∣
∣eAt1 − eAt2

∣
∣ ≤ |A| (t1 − t2). Now we estimate the third term with the Minkowski inequality, Itô’s

isometry and the linear growth property:
∥
∥
∥
∥
∥
∥
eAt1

t1∫

−kτ

e−Asg(s,X−kτ
s )dWs − eAt2

t2∫

−kτ

e−Asg(s,X−kτ
s )dWs

∥
∥
∥
∥
∥
∥

2

≤
∥
∥
∥
∥
∥
∥

t2∫

−kτ

(
eAt1 − eAt2

)
e−Asg(s,X−kτ

s )dWs

∥
∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥
∥

t1∫

t2

e−A(s−t1)g(s,X−kτ
s )dWs

∥
∥
∥
∥
∥
∥

2

≤

√
√
√
√
√

t2∫

−kτ

|(eAt1 − eAt2) e−As|2 E [
β2

(∣
∣X−kτ

s

∣
∣
)

+ C2

]2
ds

+

√
√
√
√
√

t1∫

t2

∣
∣e−A(s−t1)

∣
∣2 E

[
β2

(∣
∣X−kτ

s

∣
∣
)

+ C2

]2
ds

≤

√
√
√
√
√

t2∫

−kτ

|(eAt1 − eAt2) e−As|2
(
2β2

2E
∣
∣X−kτ

s

∣
∣2 + 2C2

2

)
ds
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+

√
√
√
√
√

t1∫

t2

∣
∣e−A(s−t1)

∣
∣2
(
2β2

2E
∣
∣X−kτ

s

∣
∣2 + 2C2

2

)
ds

≤ K4

√
√
√
√
√

t2∫

−kτ

|(eAt1 − eAt2) e−As|2 ds + K4

√
√
√
√
√

t1∫

t2

∣
∣e−A(s−t1)

∣
∣2 ds.

≤ K4

√
Tr(−A)

2
(t1 − t2) + K4

√
t1 − t2.

Here we take some constant K4 because E
∣
∣X−kτ

s

∣
∣2 is bounded above according to Lemma 2.1.

Lastly, we consider the second term of (2.2) with Minkowski inequality
∥
∥
∥
∥
∥
∥
eAt1

t1∫

−kτ

e−Asf(s,X−kτ
s )ds − eAt2

t2∫

−kτ

e−Asf(s,X−kτ
s )ds

∥
∥
∥
∥
∥
∥

2

≤
∥
∥
∥
∥
∥
∥

t2∫

−kτ

(eAt1 − eAt2)e−Asf(s,X−kτ
s )ds

∥
∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥
∥

t1∫

t2

e−A(s−t1)f(s,X−kτ
s )ds

∥
∥
∥
∥
∥
∥

2

≤
t2∫

−kτ

∥
∥(eAt1 − eAt2)e−Asf(s,X−kτ

s )
∥
∥

2
ds +

t1∫

t2

∥
∥
∥e−A(s−t1)f(s,X−kτ

s )
∥
∥
∥

2
ds

≤
t2∫

−kτ

∣
∣(eAt1 − eAt2)e−As

∣
∣
∥
∥f(s,X−kτ

s )
∥
∥

2
ds +

t1∫

t2

∣
∣
∣e−A(s−t1)

∣
∣
∣
∥
∥f(s,X−kτ

s )
∥
∥

2
ds

≤ K5

⎛

⎝

t2∫

−kτ

∣
∣
(
eAt1 − eAt2

)
e−As

∣
∣ ds +

t1∫

t2

∣
∣
∣e−A(s−t1)

∣
∣
∣ ds

⎞

⎠

≤ 2K5(t1 − t2),

for a constant K5 > 0. Combining the above estimates we obtain the lemma with the constants C3, C4

being independent of k and t1, t2. �

Now we continue to consider the difference of the solutions under various initial values. For simplicity,
we here study two different initial values ξ and η.

Lemma 2.3. Denote by X−kτ
r and Y −kτ

r two solutions of (1.3) with different initial values ξ and η, respec-
tively. Assume Conditions (A), (1) and Condition (2) for both initial values. Then

∥
∥X−kτ

r − Y −kτ
r

∥
∥

2
≤

e

(

β1+
β2
2
2 −α

)

(r+kτ) ‖ξ − η‖2 .

Proof. According to (1.4) we have

X−kτ
r − Y −kτ

r = eA(r+kτ) (ξ − η) + eAr

r∫

−kτ

e−As
(
f(s,X−kτ

s ) − f(s, Y −kτ
s )

)
ds

+ eAr

r∫

−kτ

e−As
(
g(s,X−kτ

s ) − g(s, Y −kτ
s )

)
dWs.
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For simplicity, denote ζ−kτ
r = X−kτ

r − Y −kτ
r . Then according to the method used in Lemma 2.1, and the

global Lipschitz condition, we have

e2αr
∥
∥ζ−kτ

r

∥
∥2

2
≤ e−2αkτ ‖ξ − η‖2

2 + 2

r∫

−kτ

e2αs
E

[
(ζ−kτ

s )T (f(s,X−kτ
s )

− f(s, Y −kτ
s ))

]
ds +

r∫

−kτ

e2αs
E
∣
∣g(s,X−kτ

s ) − g(s, Y −kτ
s )

∣
∣2 ds.

≤ e−2αkτ ‖ξ − η‖2
2 +

(
2β1 + β2

2

)
r∫

−kτ

e2αs
∥
∥ζ−kτ

s

∥
∥2

2
ds.

Then the result follows from the Gronwall inequality. �

Now we can prove the following theorem.

Theorem 2.4. Assume Conditions (A), (1). Then there exists a unique random periodic solution X∗(r, ·) ∈
L2(Ω), r ≥ 0 such that for any initial value ξ satisfying Condition (2), the solution of (1.3) satisfies
limk→∞

∥
∥X−kτ

r (ξ) − X∗(r)
∥
∥

2
= 0.

Proof. Condition (2) implies that the initial value ξ belongs to L2(Ω). According to Lemma 2.1, X−kτ
r (·)

maps L2(Ω) to itself. Now we use the semi-flow property to get that for any r, k, p ≥ 0, X−kτ−pτ
r (ξ) =

X−kτ
r (ω) ◦ X

−(k+p)τ
−kτ (ω, ξ). Thus, we can apply Lemma 2.3 to have for any ε > 0 there exists k∗ > 0

such that for any k ≥ k∗,
∥
∥
∥X−kτ

r (ξ) − X
−(k+p)τ
r (ξ)

∥
∥
∥

2
< ε. This means that there exists N > 0 such

that for any l,m ≥ N , we have
∥
∥X−lτ

r (ξ) − X−mτ
r (ξ)

∥
∥

2
< ε, i.e. {X−kτ

r (ξ)}k∈N is a Cauchy sequence, so
converges to some X∗(r, ω) in L2(Ω), when k → ∞.

Set u(t, r)(ξ) = Xr
t (ξ), then u(t, r) : Ω × R

m → R
m defines a semi-flow of homeomorphism (Kunita

[15]). By the continuity of Xr
t (ω) : L2(Ω,Rm) → L2(Ω,Rm), t ≥ r, then u(t, r, ω)

(
X−kτ

r (ξ, ω)
) k→∞−−−−→

L2(Ω)

u(t, r, ω) ◦ (X∗(r, ω)) . But

u(t, r, ω)
(
X−kτ

r (ξ, ω)
)

= X−kτ
t (ξ, ω) k→∞−−−−→

L2(Ω)
X∗(t, ω).

So u(t, r, ω) (X∗(r, ω)) = X∗(t, ω), P − a.s.
Taking some other initial value η satisfying Condition (2), we have

∥
∥X∗

r − X−kτ
r (η)

∥
∥

2
≤ ∥

∥X∗
r − X−kτ

r (ξ)
∥
∥

2
+
∥
∥X−kτ

r (ξ) − X−kτ
r (η)

∥
∥

2
.

Applying Lemma 2.3 again, we can make the right-hand side small enough when k → ∞. Therefore, the
convergence is independent of the initial value.

Now we need to prove the random periodicity of the X∗(r, ω). Note by the continuity of f and g,

X
−(k−1)τ
r+τ (ξ) = eA(r+kτ)ξ +

r∫

−kτ

eA(r−s)
[
f(s,X−(k−1)τ

s+τ (ξ))ds + g(s,X−(k−1)τ
s+τ (ξ))dW̃s

]
,

where W̃s := (θτω)(s) = Ws+τ − Wτ . On the other hand,

θτXr
−kτ (ξ) = eA(r+kτ)θτξ +

r∫

−kτ

eA(r−s)
[
f(s, θτX−kτ

s )ds + g(s, θτX−kτ
s )dW̃s

]
.
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By pathwise uniqueness of the solution of (1.3), we have

X−kτ
r (θτω, ξ(θτω)) = θτX−kτ

r (ξ) = X
−(k−1)τ
r+τ (ω, ξ(ω)). (2.3)

From the proof of convergence we have

X
−(k−1)τ
r+τ (ω, ξ) k→∞−−−−→

L2(Ω)
X∗(r + τ, ω), X−kτ

r (θτω, ξ(θτω)) k→∞−−−−→
L2(Ω)

X∗(r, θτω).

Therefore, X∗(r + τ, ω) = X∗(r, θτω), P − a.s. �

3. Numerical approximation for random periodic solution

3.1. Euler–Maruyama scheme

In this section, we will introduce the basic Euler–Maruyama method to approximate the solution on
infinite horizon. Take Δt = τ/n, which will be taken to be sufficiently small such that Δt ≤ 1

ρ , for some
n ∈ N, in the remaining part of the paper. Let N = kn. The time domain from time −kτ to time 0 is
divided into N intervals of length Δt such that NΔt = kτ . The scheme starts from an F−kτ -measurable
random variable ξ at a time −kτ . At each of the points iΔt we set the value X̂−kτ

−kτ+iΔt with the iteration
formula

X̂−kτ
−kτ+(i+1)Δt = X̂−kτ

−kτ+iΔt + AX̂−kτ
−kτ+iΔtΔt + f

(
iΔt, X̂−kτ

−kτ+iΔt

)
Δt

+g
(
iΔt, X̂−kτ

−kτ+iΔt

) (
W−kτ+(i+1)Δt − W−kτ+iΔt

)
, (3.1)

where i = 0, 1, 2, . . . , and X̂−kτ
−kτ+0Δt = ξ.

It is easy to see that for any M ≥ 0,

X̂−kτ
−kτ+MΔt = (I + AΔt)Mξ + Δt

M−1∑

i=0

(I + AΔt)M−i−1f
(
iΔt, X̂−kτ

−kτ+iΔt

)

+
M−1∑

i=0

(I + AΔt)M−i−1g
(
iΔt, X̂−kτ

−kτ+iΔt

) (
W−kτ+(i+1)Δt − W−kτ+iΔt

)
. (3.2)

Moreover, we can set up a discrete semi-flow given by ûi,j(ξ) = X̂jΔt
iΔt (ξ), i ≥ j, i, j ∈ {−kn,−kn +

1, · · · }, θ̂ = θΔt, θ̂n = θ̂θ̂ · · · θ̂. Then it is easy to see that u satisfies the semi-flow property ûi,j(ω) ◦
ûj,l(ω) = ûi,l(ω), for i ≥ j ≥ l, and the periodic property ûi+n,j+n(ω) = ûi,j(θ̂nω) for i ≥ j.

In order to prove the convergence of the discretised semi-flow to a random periodic solution, we first
derive some similar estimates as in Lemmas 2.1 and 2.3. Then a discrete analogue of Theorem 2.4 will
give us the result.

Lemma 3.1. Assume Conditions (A), (1) and (2). Then there exists a constant Ĉ > 0 such that for any
natural numbers k ≥ 0, M ≥ 0, and sufficiently small Δt, the numerical solution X̂−kτ

−kτ+MΔt defined by

(3.2) satisfies E

∣
∣
∣X̂−kτ

−kτ+MΔt

∣
∣
∣
2

≤ Ĉ.

Proof. We still choose α such that β1 + β2

2 < α < |λ1| . Then for any M ≥ 0,

(1 − αΔt)−2M
∣
∣
∣X̂−kτ

−kτ+MΔt

∣
∣
∣
2

= |ξ|2 +
M−1∑

i=0

(1 − αΔt)−2i

⎛

⎜
⎝

∣
∣
∣X̂−kτ

−kτ+(i+1)Δt

∣
∣
∣
2

(1 − αΔt)2
−
∣
∣
∣X̂−kτ

−kτ+iΔt

∣
∣
∣
2

⎞

⎟
⎠ . (3.3)
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This is not hard to verify by expanding the sum and noting cancellations. Notice that

∣
∣
∣X̂−kτ

−kτ+(i+1)Δt

∣
∣
∣
2

(1 − αΔt)2
−
∣
∣
∣X̂−kτ

−kτ+iΔt

∣
∣
∣
2

=
((

X̂−kτ
−kτ+iΔt

)(I + AΔt

1 − αΔt
− I

)

+
Δt

1 − αΔt
f(iΔt, X̂−kτ

−kτ+iΔt)
T

+

(
W−kτ+(i+1)Δt − W−kτ+iΔt

)T
g(iΔt, X̂−kτ

−kτ+iΔt)
T

1 − αΔt

)

×
((

I + AΔt

1 − αΔt
+ I

)

X̂−kτ
−kτ+iΔt +

Δt

1 − αΔt
f(iΔt, X̂−kτ

−kτ+iΔt)

+
g(iΔt, X̂−kτ

−kτ+iΔt)
(
W−kτ+(i+1)Δt − W−kτ+iΔt

)

1 − αΔt

)

. (3.4)

Note
(

I+AΔt
1−αΔt − I

)(
I+AΔt
1−αΔt + I

)
is non-positive definite, where Δt satisfies 0 < Δt ≤ 1

ρ as

defined before, and for each i, f(iΔt, X̂−kτ
−kτ+iΔt) and g(iΔt, X̂−kτ

−kτ+iΔt) are both independent of
(
W−kτ+(i+1)Δt − W−kτ+iΔt

)
. Take expectation on both sides of (3.3), consider (3.4), apply the linear

growth property and Young’s inequality to have

(1 − αΔt)−2M
E

∣
∣
∣X̂−kτ

−kτ+MΔt

∣
∣
∣
2

(3.5)

≤ ‖ξ‖2
2 +

M−1∑

i=0

(1 − αΔt)−2i

(
Δt

1 − αΔt

)2

E

∣
∣
∣f(iΔt, X̂−kτ

−kτ+iΔt)
∣
∣
∣
2

+
M−1∑

i=0

(1 − αΔt)−2i Δt

(1 − αΔt)2
E

∣
∣
∣g(iΔt, X̂−kτ

−kτ+iΔt)
∣
∣
∣
2

+
M−1∑

i=0

(1 − αΔt)−2i 2Δt

(1 − αΔt)2
E

[(
X̂−kτ

−kτ+iΔt

)T

(I + AΔt) f(iΔt, X̂−kτ
−kτ+iΔt)

]

≤ K̂1 + (1 − αΔt)−2M
K̂2 + K̂3

M−1∑

i=0

(1 − αΔt)−2i
E

∣
∣
∣X̂−kτ

−kτ+iΔt

∣
∣
∣
2

,

where

K̂1 = ‖ξ‖2
2 , K̂3 =

Δt

(1 − αΔt)2
(1 + ε̂)

(
2β1 + β2

2 + Δt
(
β2

1 + 2β1 |A|)) ,

K̂2 =
C2

1 (Δt)2 + C2
2Δt

2αΔt − α2 (Δt)2
+

Δt

2αΔt − α2 (Δt)2
(C1 + β2C2 + ΔtC1 (β1 + |A|))2
ε̂ (2β1 + β2

2 + Δt (β2
1 + 2β1 |A|)) .

Here Δt and ε̂ need to be chosen small enough such that

(1 + ε̂)
(
2β1 + β2

2 + Δt
(
β2

1 + 2β1 |A|)) + α2Δt < 2α.
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This guarantees that (1 − αΔt)2
(
1 + K̂3

)
< 1. By the discrete Gronwall inequality,

(1 − αΔt)−2M
E

∣
∣
∣X̂−kτ

−kτ+MΔt

∣
∣
∣
2

≤ K̂1 + K̂2 (1 − αΔt)−2M +
M−1∑

i=0

(
K̂1 + K̂2 (1 − αΔt)−2i

)
K̂3

(
1 + K̂3

)M−i−1

.

It turns out that

E

∣
∣
∣X̂−kτ

−kτ+MΔt

∣
∣
∣
2

≤ K̂2 + K̂1

((
1 + K̂3

)
(1 − αΔt)2

)M

+
K̂2K̂3 (1 − αΔt)2

(

1 −
((

1 + K̂3

)
(1 − αΔt)2

)M
)

1 −
(
1 + K̂3

)
(1 − αΔt)2

≤ Ĉ.

Note the choice of the constant Ĉ is independent of k and the lemma holds for sufficiently small time
step Δt and constant ε̂. �

The following lemma is a discrete analogue of Lemma 2.3.

Lemma 3.2. Denote by X̂−kτ
−kτ+MΔt and Ŷ −kτ

−kτ+MΔt solutions of the Euler scheme with initial values ξ and
η, respectively. Assume Conditions (A), (1) and Condition (2) for both initial values. Let Δt = τ/n,
n ∈ Z

+, be sufficiently small such that 0 < Δt ≤ 1
ρ . Then for any ε > 0, there exists an integer M∗ > 0

such that for any M ≥ M∗, we have
∥
∥
∥X̂−kτ

−kτ+MΔt − Ŷ −kτ
−kτ+MΔt

∥
∥
∥

2
< ε.

Proof. According to scheme (3.2) we have

X̂−kτ
−kτ+MΔt − Ŷ −kτ

−kτ+MΔt = (I + AΔt)M (ξ − η) + Δt
M−1∑

i=0

(I + AΔt)M−i−1
F̂i

+
M−1∑

i=0

(I + AΔt)M−i−1
Ĝi

(
W−kτ+(i+1)Δt − W−kτ+iΔt

)
.

Here F̂i = f(iΔt, X̂−kτ
−kτ+iΔt) − f(iΔt, Ŷ −kτ

−kτ+iΔt), Ĝi = g(iΔt, X̂−kτ
−kτ+iΔt) − g(iΔt,

Ŷ −kτ
−kτ+iΔt). Denote ζ̂i = X̂−kτ

−kτ+iΔt − Ŷ −kτ
−kτ+iΔt. Then by Condition (1), we have

∣
∣
∣F̂i

∣
∣
∣ ≤ β1

∣
∣
∣ζ̂i

∣
∣
∣ and

∣
∣
∣Ĝi

∣
∣
∣ ≤

β2

∣
∣
∣ζ̂i

∣
∣
∣. According to the method used in Lemma 3.1, we get the following result similar to inequality

(3.5)

(1 − αΔt)−2M
E

∣
∣
∣ζ̂M

∣
∣
∣
2

≤‖ξ − η‖2
2 +

M−1∑

i=0

(1 − αΔt)−2i

(
Δt

1 − αΔt

)2

E

∣
∣
∣F̂i

∣
∣
∣
2

+
M−1∑

i=0

(1 − αΔt)−2i Δt

(1 − αΔt)2
E

∣
∣
∣Ĝi

∣
∣
∣
2

+
M−1∑

i=0

(1 − αΔt)−2i 2Δt

(1 − αΔt)2
E

[(
ζ̂i

)T

(I + AΔt) F̂i

]

≤‖ξ − η‖2
2 + K̂4

M−1∑

i=0

(1 − αΔt)−2i
E

∣
∣
∣ζ̂i

∣
∣
∣
2

,
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where K̂4 = Δt
(1−αΔt)2

(
2β1 + β2

2 + Δt
(
β2

1 + 2β1 |A|)) . We choose Δt small enough such that 2β1 + β2
2 +

Δt
(
β2

1 + 2β1 |A|) + α2Δt < 2α. Then, we have (1 − αΔt)2
(
1 + K̂4

)
< 1. Again the discrete Gronwall

inequality implies

(1 − αΔt)−2M
E

∣
∣
∣ζ̂M

∣
∣
∣
2

≤ ‖ξ − η‖2
2

M−1∏

i=0

(
1 + K̂4

)
= ‖ξ − η‖2

2

(
1 + K̂4

)M

.

Finally, E
∣
∣
∣ζ̂M

∣
∣
∣
2

≤ ‖ξ − η‖2
2

(
(1 − αΔt)2

(
1 + K̂4

))M

< ε with sufficiently large M . �

In the numerical scheme we consider the process as two parts, [−kτ, 0) and [0, r]. Define

X̂−kτ
r := X̂(r, 0, ω) ◦ X̂−kτ

0 , (3.6)

where X̂(r, 0, ω), r ≥ 0, is finite time Euler approximation of the solution of stochastic differential
equation with time step size Δt, till N ′Δt ≤ r, where N ′ is the unique number such that N ′Δt ≤ r and
(N ′ + 1)Δt > r. If N ′Δt < r, define

X̂(r, 0, ω) = X̂(N ′Δt, 0, ω) + f(N ′Δt, X̂(N ′Δt, 0, ω))(r − N ′Δt)

+g(N ′Δt, X̂(N ′Δt, 0, ω))(Wr − WN ′Δt). (3.7)

Lemma 3.3. (Continuity of the discrete semi-flow with respect to the initial value) Denote by X̃0
r and Ỹ 0

r

the solutions of the finite time Euler scheme with the initial values ξ̃ and η̃ at time 0. Assume Conditions
(A), (1) and Condition (2) for both initial values. Let Δt be sufficiently small, p ≥ 1. Then for any ε > 0,
there exists a δ > 0 such that for any

∥
∥
∥ξ̃ − η̃

∥
∥
∥

p
< δ, we have

∥
∥
∥X̃0

r (ω, ξ̃) − Ỹ 0
r (ω, η̃)

∥
∥
∥

p
< ε. (3.8)

Proof. Note that X̃0
N ′Δt and Ỹ 0

N ′Δt satisfy analogues of (3.2), with initial value ξ̃ and η̃ at time 0 instead
of −kτ . Apply the Euler scheme on the finite time r′ = N ′Δt to obtain

∣
∣
∣X̃0

r′(ω, ξ̃) − Ỹ 0
r′(ω, η̃)

∣
∣
∣
p

≤ 3p−1
∣
∣
∣(I + AΔt)pN ′

∣
∣
∣
∣
∣
∣ξ̃ − η̃

∣
∣
∣
p

+ 3p−1(Δt)p
∣
∣
∣(I + AΔt)pN ′

∣
∣
∣

∣
∣
∣
∣
∣
∣

N ′−1∑

i=0

(I + AΔt)−i−1F̃i

∣
∣
∣
∣
∣
∣

p

+3p−1
∣
∣
∣(I + AΔt)pN ′

∣
∣
∣

∣
∣
∣
∣
∣
∣

N ′−1∑

i=0

(I + AΔt)−i−1G̃i

(
W(i+1)Δt − WiΔt

)
∣
∣
∣
∣
∣
∣

p

, (3.9)

where F̃i := f(iΔt, X̃0
iΔt) − f(iΔt, Ỹ 0

iΔt), G̃i := g(iΔt, X̃0
iΔt) − g(iΔt, Ỹ 0

iΔt). Denote ζ̃i := X̃0
iΔt − Ỹ 0

iΔt.

For convenience, we denote Cp = 3p−1, Cp,N ′ = 3p−1N ′p−1
. Taking expectation on both sides of (3.9),

and noting the Lipschitz condition of function f and g, we have

(1 − αΔt)−pN ′
∥
∥
∥ζ̃N ′

∥
∥
∥

p

p
≤ Cp

∥
∥
∥ξ̃ − η̃

∥
∥
∥

p

p
+ Cp,N ′(Δt)p

N ′−1∑

i=0

(1 − αΔt)−(i+1)pβp
1

∥
∥
∥ζ̃i

∥
∥
∥

p

p

+ Cp,N ′(Δt)p/2
N ′−1∑

i=0

(1 − αΔt)−(i+1)pβp
2

∥
∥
∥ζ̃i

∥
∥
∥

p

p

= Cp

∥
∥
∥ξ̃ − η̃

∥
∥
∥

p

p
+ K̃

N ′−1∑

i=0

(1 − αΔt)−ip
∥
∥
∥ζ̃i

∥
∥
∥

p

p
,
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where K̃ =
Cp,N′((Δt)pβp

1+(Δt)p/2βp
2)

(1−αΔt)p , which is bounded for any 1 ≤ p < +∞. Then by the Gronwall

inequality, we have
∥
∥
∥ζ̃N ′

∥
∥
∥

p

p
≤ Cp

∥
∥
∥ξ̃ − η̃

∥
∥
∥

p

p

(
(1 + K̃)(1 − αΔt)p

)N ′

. Note (1 + K̃)(1 − αΔt)p ≤ (1 −
αΔt)p + Cp,N ′

(
(Δt)pβp

1 + (Δt)p/2βp
2

) ≤ 1 + Cp,N ′ . Result (3.8) at r′ = N ′Δt follows by taking δ =
ε

Cp
(1 + Cp,N ′)−N ′

. Finally, (3.8) at time r follows from (3.7) and the estimate at r′ = N ′Δt. �

Theorem 3.4. Assume that Condition (1) and Δt is fixed and small enough. The time domain is divided
as τ = nΔt. Then there exists X̂∗

r ∈ L2 (Ω) such that for any initial values ξ satisfying Condition (2),
the solution of the Euler–Maruyama scheme satisfies

lim
k→∞

∥
∥
∥X̂−kτ

r (ξ) − X̂∗
r

∥
∥
∥

2
= 0, (3.10)

and X̂∗
r satisfies the random periodicity property.

Proof. Firstly, we note that the proof of the convergence of the process X̂−kτ
0 can be made similarly as

that of Theorem 2.4. According to Lemma 3.1 we know that for any M , we have X̂−kτ
−kτ+MΔt ∈ L2 (Ω).

We use a similar construction of a Cauchy sequence as in Theorem 2.4. As we assume that τ = nΔt and
kτ = knΔt =: NΔt, we have the following result by using semi-flow property, for any m ≥ 1,

X̂
−(k+m)τ
0 = X̂

−(N+mn)Δt
0 = X̂−NΔt

0 ◦ X̂
−(N+mn)Δt
−NΔt .

It is a same process as X̂−NΔt
0 with a different initial value. By Lemma 3.2 we have that for any ε > 0

there exists N∗ such that for any N ≥ N∗,Δt > 0, we have
∥
∥
∥X̂−kτ

0 − X̂
−(k+m)τ
0

∥
∥
∥

2
=

∥
∥
∥X̂−NΔt

0 − X̂
−(N+mn)Δt
0

∥
∥
∥

2
< ε.

Then we construct the Cauchy sequence X̂i = X̂−iτ
0 , which converges to some X̂∗ in L2 (Ω). We now use

the same method to prove the convergence is independent of the initial point. Note for fixed Δt,
∥
∥
∥X̂∗ − X̂−kτ

0 (η)
∥
∥
∥

2
≤

∥
∥
∥X̂∗ − X̂−kτ

0 (ξ)
∥
∥
∥

2
+
∥
∥
∥X̂−kτ

0 (ξ) − X̂−kτ
0 (η)

∥
∥
∥

2

N→∞−−−−→ 0,

where N → ∞ is equivalent to k → ∞.
Define X̂∗(r, ω) := X̂(r, 0, ω) ◦ X̂∗, r ≥ 0. According to Lemma 3.3, we have

X̂−kτ
r (ω) = X̂(r, 0, ω) ◦ X̂−kτ

0 (ω) k→∞−−−−→
L2(Ω)

X̂(r, 0, ω) ◦ X̂∗(ω) = X̂∗(r, ω),

so (3.10) holds. On the other hand, similar to the proof of (2.3), we obtain

X̂τ
r+τ (ω, ξ(ω)) = X̂0

r (θτω, ξ(θτω)) = θτ X̂0
r (ω, ξ(ω)).

Therefore,

X̂−kτ
r (θτω) = X̂(r, 0, θτω) ◦ X̂−kτ

0 (θτω) k→∞−−−−→
L2(Ω)

X̂(r, 0, θτω) ◦ X̂∗(θτω) = X̂∗(r, θτω).

But,

X̂−kτ+τ
r+τ (ω) k→∞−−−−→

L2(Ω)
X̂∗(r + τ, ω), and X̂−kτ+τ

r+τ (ω) = X̂−kτ
r (θτω),P − a.s;

thus, we have X̂∗(r + τ, ω) = X̂∗(r, θτω),P − a.s. �

Example 3.5. Consider a specific SDE

dXt0
t = −πXt0

t dt + sin(πt)dt + Xt0
t dWt. (3.11)

According to Theorem 2.4, (3.11) has a random periodic solution. By Theorem 3.4, its Euler–Maruyama
dissertation also has a random periodic path. To see the “periodicity” numerically, we provided two
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Fig. 1. Simulations of the processes {X̂∗
t (ω), −5 ≤ t ≤ 0} and {X̂∗

t (θ−2ω), −5 ≤ t ≤ 2}

methods. One approach is to simulate the processes X̂∗
t (ω) = X̂−6

t (ω, 0.5),−5 ≤ t ≤ 0, and X̂∗
t (θ−2ω) =

X̂−6
t (θ−2ω, 0.5),−5 ≤ t ≤ 2, with the same ω and step size Δt = 0.01 (Fig. 1). One can see that these two

trajectories exactly repeat each with a time shift of one period (only comparing the graph of X̂∗
t (θ−2ω)

for −3 ≤ t ≤ 2). The second method is the simulation of {X̂∗
t (θ−tω), 0 ≤ t ≤ 6} for the same realisation ω

and step size as before (Fig. 2). One can easily see that Fig. 2 is a perfect periodic curve. This agrees with
the fact that if X̂∗

t (ω) is a random periodic path iff X̂∗
t (θ−tω) is periodic, i.e. X̂∗

t+τ (θ−(t+τ)ω) = X̂∗
t (θ−tω).

Note in theory X̂∗
t = X̂−∞

t , but we take pull-back time −6 as this is already enough to generate a good
convergence to the random periodic paths X̂∗

t (·) for t ≥ −5 by the solution starting at −6 from 0.5 for
both cases. The choice of the initial position does not affect random periodic paths, but the time to take
for the convergence.

3.2. Modified Milstein scheme

We will consider the Milstein scheme which will increase the convergence order for the infinite horizon
problem.
Condition (1′). Assume there exists a constant τ > 0 such that for any t ∈ R, x ∈ R

m, f(t + τ, x) =
f(t, x), g(t + τ, x) = g(t, x), and there exist constants C0, β1, β2 > 0 with β1 + β2

2
2 < |λ1| such that for

any s, t ∈ R and x ∈ R
m,

|f(s, x) − f(t, y)| ≤ C0 |s − t| + β1 |x − y| ,
|g(s, x) − g(t, y)| ≤ C0 |s − t| + β2 |x − y| .

Meanwhile, we assume the boundedness of first-order partial derivative of function f and g with respect
to x.



119 Page 14 of 32 C. Feng, Y. Liu and H. Zhao ZAMP

Fig. 2. Simulation of the process {X̂∗
t (θ−tω), 0 ≤ t ≤ 6}

The iteration formula for the modified SRK scheme is

X̂−kτ
−kτ+(i+1)Δt = X̂−kτ

−kτ+iΔt + AX̂−kτ
−kτ+iΔtΔt + f(iΔt, X̂−kτ

−kτ+iΔt)Δt

+g(iΔt, X̂−kτ
−kτ+iΔt) (ΔW i) (3.12)

+
ΔZi

2
√

Δt

[
f
(
iΔt, Υ̂+(X̂−kτ

−kτ+iΔt))
)

− f
(
iΔt, Υ̂−(X̂−kτ

−kτ+iΔt)
)]

+
(ΔW i)2 − Δt

4
√

Δt

[
g
(
iΔt, Υ̂+(X̂−kτ

−kτ+iΔt))
)

− g
(
iΔt, Υ̂−(X̂−kτ

−kτ+iΔt)
)]

,

with

Υ̂±(X̂−kτ
−kτ+iΔt) = X̂−kτ

−kτ+iΔt + AX̂−kτ
−kτ+iΔtΔt + f(iΔt, X̂−kτ

−kτ+iΔt)Δt

± g(iΔt, X̂−kτ
−kτ+iΔt)

√
Δt

and

ΔW i =

−kτ+(i+1)Δt∫

−kτ+iΔt

dWs = W−kτ+(i+1)Δt − W−kτ+iΔt,

ΔZi =

−kτ+(i+1)Δt∫

−kτ+iΔt

s∫

−kτ+iΔt

dWuds,

where i = 0, 1, 2, . . . , and X̂−kτ
−kτ+0Δt = ξ. Here we used the approximation of ΔZi by the method of

Kloeden and Platen in [14].

Theorem 3.6. Assume that Conditions (A), (1′) hold and Δt is fixed and small enough. The time domain
is divided as τ = nΔt. Then there exists X̂∗

r ∈ L2 (Ω) such that for any initial values ξ satisfying Condition
(2), the solution of the Milstein scheme satisfies

lim
k→∞

∥
∥
∥X̂−kτ

r (ξ) − X̂∗
r

∥
∥
∥

2
= 0, (3.13)

and X̂∗
r satisfies the random periodicity property.

Proof. The proof is by a similar argument as Theorem 3.4. As it is tedious and there is no special difficulty,
so omitted here. �
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Remark 3.7. For the Milstein scheme, the existence of constants as K̂1, K̂2, K̂3, K̂4 in the proof of Euler–
Maruyama scheme is guaranteed by the boundedness of partial derivatives of functions f and g. Then we
still have the convergence for different initial values and the boundedness of the discrete processes. The
addition term ΔZi

2
√

Δt
[f
(
iΔt, Υ̂+(X̂−kτ

−kτ+iΔt))
)

−f
(
iΔt, Υ̂−(X̂−kτ

−kτ+iΔt)
)
] in the scheme does not influence

the result of the convergence. However, when we analyse the error between approximation and the exact
solution of random periodic solutions, this term is necessary for infinite horizon case to satisfy the order
of error.

4. The error estimate

4.1. Euler–Maruyama method

In the last two sections, we proved the existence of random periodic solutions of SDE (1.3) and its
discretisations as the limits of semi-flows when the starting times were pushed to −∞. The next step
is to estimate the error between these two limits. Now we need to consider the difference between the
discrete approximate solution and the exact solution. The exact solution at time −kτ + MΔt is as
follows

X−kτ
−kτ+MΔt(ω, ξ) = eAMΔtξ + eA(MΔt−kτ)

MΔt−kτ∫

−kτ

e−Asf(s,X−kτ
s )ds

+eA(MΔt−kτ)

MΔt−kτ∫

−kτ

e−Asg(s,X−kτ
s )dWs. (4.1)

Lemma 4.1. Assume Conditions (A), (1) and (2). Choose Δt = τ/n for some n ∈ N and N = kn. Then
there exists a constant K > 0 such that for any sufficiently small fixed Δt and N ′ ∈ N, , we have

lim sup
k→∞

∥
∥
∥X−kτ

N ′Δt − X̂−kτ
N ′Δt

∥
∥
∥

2
≤ K

√
Δt,

where X−kτ
N ′Δt and X̂−kτ

N ′Δt are the exact and the numerical solutions given by (4.1) and (3.2), respectively,
K is independent of N ′ and Δt.

Proof. In the following proof, we always denote by K̂· the constant derived from the underlining compu-
tation unless otherwise stated. For any M ∈ N, we have

X−kτ
−kτ+MΔt − X̂−kτ

−kτ+MΔt =
(
eAMΔt − (I + AΔt)M

)
ξ + eA(MΔt−kτ)

MΔt−kτ∫

−kτ

e−Asf(s,X−kτ
s )ds

−
M−1∑

i=0

(I + AΔt)M−i−1
f
(
iΔt, X̂−kτ

−kτ+iΔt

)
Δt + eA(MΔt−kτ)

MΔt−kτ∫

−kτ

e−Asg(s,X−kτ
s )dWs

−
M−1∑

i=0

(I + AΔt)M−i−1
g
(
iΔt, X̂−kτ

−kτ+iΔt

) (
W−kτ+(i+1)Δt − W−kτ+iΔt

)
.

Similar to the method of Lemma 3.1, firstly consider
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(1 − αΔt)−2M
∣
∣
∣X−kτ

−kτ+MΔt − X̂−kτ
−kτ+MΔt

∣
∣
∣
2

(4.2)

=
M−1∑

i=0

(1 − αΔt)−2i

⎛

⎜
⎝

∣
∣
∣X−kτ

−kτ+(i+1)Δt − X̂−kτ
−kτ+(i+1)Δt

∣
∣
∣
2

(1 − αΔt)2
−
∣
∣
∣X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∣
∣
∣
2

⎞

⎟
⎠ .

For simplicity we denote

B1 =
1

1 − αΔt

(i+1)Δt−kτ∫

iΔt−kτ

(
e−A(s+kτ−(i+1)Δt)f(s,X−kτ

s ) − f(iΔt, X̂−kτ
−kτ+iΔt)

)
ds,

B2 =
1

1 − αΔt

(i+1)Δt−kτ∫

iΔt−kτ

(
e−A(s+kτ−(i+1)Δt)g(s,X−kτ

s ) − g(iΔt, X̂−kτ
−kτ+iΔt)

)
dWs.

Therefore,

X−kτ
−kτ+(i+1)Δt − X̂−kτ

−kτ+(i+1)Δt

= eAΔtX−kτ
−kτ+iΔt − (I + AΔt) X̂−kτ

−kτ+iΔt + (1 − αΔt) (B1 + B2) .

Now we consider

∣
∣
∣X−kτ

−kτ+(i+1)Δt − X̂−kτ
−kτ+(i+1)Δt

∣
∣
∣
2

(1 − αΔt)2
−
∣
∣
∣X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∣
∣
∣
2

=
(
X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

)T
(

eAΔt

1 − αΔt
− I

)(
eAΔt

1 − αΔt
+ I

)(
X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

)

+
(
X̂−kτ

−kτ+iΔt

)T
(

eAΔt − I − AΔt

1 − αΔt

)2 (
X̂−kτ

−kτ+iΔt

)
+ BT

1 B1 + BT
2 B2

+2
(
X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

)T
(

eAΔt

1 − αΔt

)(
eAΔt − I − AΔt

1 − αΔt

)(
X̂−kτ

−kτ+iΔt

)

+2
(
(
X−kτ

−kτ+iΔt

)T
(

eAΔt

1 − αΔt

)

−
(
X̂−kτ

−kτ+iΔt

)T
(

I + AΔt

1 − αΔt

))

B1

+2
(
(
X−kτ

−kτ+iΔt

)T
(

eAΔt

1 − αΔt

)

−
(
X̂−kτ

−kτ+iΔt

)T
(

I + AΔt

1 − αΔt

))

B2 + 2BT
1 B2. (4.3)

We note that the matrix
(

eAΔt

1−αΔt − I
)(

eAΔt

1−αΔt + I
)

can be non-positive definite when we choose the Δt

small enough. Now we consider each term in (4.3). First,

E

[
(
X̂−kτ

−kτ+iΔt

)T
(

eAΔt − I − AΔt

1 − αΔt

)2

X̂−kτ
−kτ+iΔt

]

≤
∥
∥
∥X̂−kτ

−kτ+iΔt

∥
∥
∥

2

∣
∣
∣
∣
∣

1
2A2 (Δt)2

1 − αΔt

∣
∣
∣
∣
∣

2 ∥
∥
∥X̂−kτ

−kτ+iΔt

∥
∥
∥

2
≤ K̂5(Δt)4.
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Next,

E
[
BT

1 B1

]
= E |B1|2 ≤ 2(1 + μ)

μ (1 − αΔt)2

⎛

⎜
⎝

(i+1)Δt−kτ∫

iΔt−kτ

∣
∣
∣e−A(s+kτ−(i+1)Δt) − I

∣
∣
∣
∥
∥f(s,X−kτ

s )
∥
∥

2
ds

⎞

⎟
⎠

2

+
2(1 + μ)

μ (1 − αΔt)2

⎛

⎜
⎝

(i+1)Δt−kτ∫

iΔt−kτ

∥
∥f(s,X−kτ

s ) − f(iΔt,X−kτ
−kτ+iΔt)

∥
∥

2
ds

⎞

⎟
⎠

2

+
1 + μ

(1 − αΔt)2

⎛

⎜
⎝

(i+1)Δt−kτ∫

iΔt−kτ

∥
∥
∥f(iΔt,X−kτ

−kτ+iΔt) − f(iΔt, X̂−kτ
−kτ+iΔt)

∥
∥
∥

2
ds

⎞

⎟
⎠

2

, (4.4)

where μ is a small number from Young’s inequality, which will be fixed later. By linear growth property
of f and Lemma 2.1, we know that

∥
∥f(s,X−kτ

s )
∥
∥

2
is bounded. So for the first term in (4.4) we only need

to estimate

(i+1)Δt−kτ∫

iΔt−kτ

∣
∣
∣e−A(s+kτ−(i+1)Δt) − I

∣
∣
∣ ds ≤ (Δt)2

2
Tr (−A) .

By Condition (1) and Lemma 2.2, the second term in (4.4) becomes

(i+1)Δt−kτ∫

iΔt−kτ

∥
∥f(s,X−kτ

s ) − f(iΔt,X−kτ
−kτ+iΔt)

∥
∥

2
ds

≤
(i+1)Δt−kτ∫

iΔt−kτ

(
∥
∥f(s,X−kτ

s ) − f(iΔt,X−kτ
s )

∥
∥

2

+
∥
∥f(iΔt,X−kτ

s ) − f(iΔt,X−kτ
−kτ+iΔt)

∥
∥

2
)ds

≤
(i+1)Δt−kτ∫

iΔt−kτ

C0 |s − iΔt + kτ |1/2
ds +

(i+1)Δt−kτ∫

iΔt−kτ

β1

∥
∥X−kτ

s − X−kτ
−kτ+iΔt

∥
∥

2
ds

≤
(i+1)Δt−kτ∫

iΔt−kτ

(C0 + β1C4)
√

s − iΔt + kτds

≤ K̂6 (Δt)
3
2 .

Applying the global Lipschitz condition, the third term of (4.4) becomes

(i+1)Δt−kτ∫

iΔt−kτ

∥
∥
∥f(iΔt,X−kτ

−kτ+iΔt) − f(iΔt, X̂−kτ
−kτ+iΔt)

∥
∥
∥

2
ds

≤ β1Δt
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2
.
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We summarise the above inequalities to have

E
[
BT

1 B1

] ≤ K̂7 (Δt)3 +
(1 + μ)β2

1 (Δt)2

(1 − αΔt)2
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
. (4.5)

This term is of the third order of Δt and second order of Δt with
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
.

Similar to the E
[
BT

1 B1

]
, the following term can be estimated as

E
[
BT

2 B2

]
= E |B2|2

≤ 2(1 + μ)
μ (1 − αΔt)2

(i+1)Δt−kτ∫

iΔt−kτ

∣
∣
∣e−A(s+kτ−(i+1)Δt) − I

∣
∣
∣
2 ∥
∥g(s,X−kτ

s )
∥
∥2

2
ds

+
2(1 + μ)

μ (1 − αΔt)2

(i+1)Δt−kτ∫

iΔt−kτ

∥
∥g(s,X−kτ

s ) − g(iΔt,X−kτ
−kτ+iΔt)

∥
∥2

2
ds

+
1 + μ

(1 − αΔt)2

(i+1)Δt−kτ∫

iΔt−kτ

∥
∥
∥g(iΔt,X−kτ

−kτ+iΔt) − g(iΔt, X̂−kτ
−kτ+iΔt)

∥
∥
∥

2

2
ds, (4.6)

where μ is a small number from Young’s inequality, which will be fixed later. By the linear growth
property of g and Lemma 2.1, we know that

∥
∥g(s,X−kτ

s )
∥
∥2

2
is bounded. So we only need to estimate

(i+1)Δt−kτ∫

iΔt−kτ

∣
∣
∣e−A(s+kτ−(i+1)Δt) − I

∣
∣
∣
2

ds ≤ 2
3

(Δt)3 Tr
(
A2

)
.

By Condition (1) and Lemma 2.2, the second term in (4.6) becomes

(i+1)Δt−kτ∫

iΔt−kτ

∥
∥g(s,X−kτ

s ) − g(iΔt,X−kτ
−kτ+iΔt)

∥
∥2

2
ds

≤
(i+1)Δt−kτ∫

iΔt−kτ

2(C2
0 + β2

2C2
4 ) |s − iΔt + kτ | ds ≤ K̂8 (Δt)2 .

The third term follows from the global Lipschitz condition

(i+1)Δt−kτ∫

iΔt−kτ

∥
∥
∥g(iΔt,X−kτ

−kτ+iΔt) − g(iΔt, X̂−kτ
−kτ+iΔt)

∥
∥
∥

2

2
ds

≤ β2
2Δt

∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
.

Conclude the above results to obtain

E
[
BT

2 B2

] ≤ K̂9 (Δt)2 +
(1 + μ)β2

2Δt

(1 − αΔt)2
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
. (4.7)
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The fifth term of (4.3) can be estimate as follows

E

[

2
(
X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

)T
(

eAΔt

1 − αΔt

)(
eAΔt − I − AΔt

1 − αΔt

)(
X̂−kτ

−kτ+iΔt

)]

≤ 2
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

1
2

∣
∣A2

∣
∣ (Δt)2

(1 − αΔt)2

∥
∥
∥X̂−kτ

−kτ+iΔt

∥
∥
∥

2

≤ K̂10 (Δt)2
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2
.

To estimate the sixth term of (4.3),

E

[

2
(
(
X−kτ

−kτ+iΔt

)T
(

eAΔt

1 − αΔt

)

−
(
X̂−kτ

−kτ+iΔt

)T
(

I + AΔt

1 − αΔt

))

B1

]

(4.8)

= E

[

2
(
X−kτ

−kτ+iΔt

)T
(

eAΔt

1 − αΔt
− I + AΔt

1 − αΔt

)

B1

]

+ E

[

2
(
X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

)T
(

I + AΔt

1 − αΔt

)

B1

]

.

Now we discuss these two terms separately,

E

[

2
(
X−kτ

−kτ+iΔt

)T
(

eAΔt

1 − αΔt
− I + AΔt

1 − αΔt

)

B1

]

≤ 2
∥
∥X−kτ

−kτ+iΔt

∥
∥

2

∣
∣
∣ 12A2 (Δt)2

∣
∣
∣

1 − αΔt
‖B1‖2

≤ K̂12(Δt)7/2 +
√

1 + μβ1K̂11(Δt)3

(1 − αΔt)2

∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2
.

And,

E

[

2
(
X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

)T
(

I + AΔt

1 − αΔt

)

B1

]

≤ 2
√

K̂7(Δt)3/2

1 − αΔt

∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2
(1 + Δt |A|) (4.9)

+
2
√

1 + μβ1Δt

(1 − αΔt)2

∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
(1 + Δt |A|) .

We use the conditional expectation to eliminate the seventh term

E

[(
(
X−kτ

−kτ+iΔt

)T
(

eAΔt

1 − αΔt

)

−
(
X̂−kτ

−kτ+iΔt

)T
(

I + AΔt

1 − αΔt

))

B2

]

= E

[(
(
X−kτ

−kτ+iΔt

)T
(

eAΔt

1 − αΔt

)

−
(
X̂−kτ

−kτ+iΔt

)T
(

I + AΔt

1 − αΔt

))

E
[
B2|F iΔt−kτ

]
]

= 0.

For the last term,

E
[
2BT

1 B2

] ≤ 2
∥
∥BT

1

∥
∥

2
· ‖B2‖2

≤ K̂13(Δt)5/2 + K̂14(Δt)3/2
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
.
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Combining all the estimation above, we have
∣
∣
∣X−kτ

−kτ+(i+1)Δt − X̂−kτ
−kτ+(i+1)Δt

∣
∣
∣
2

(1 − αΔt)2
−
∣
∣
∣X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∣
∣
∣
2

≤
(

(1 + μ)β2
2Δt

(1 − αΔt)2
+

2
√

(1 + μ)β1Δt

(1 − αΔt)2
+ K̂16(Δt)3/2

)
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2

+ K̂15 (Δt)2 +

⎛

⎝
2
√

K̂7(Δt)3/2

1 − αΔt
+ K̂17(Δt)2

⎞

⎠
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2
.

Now we notice that the term
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
has coefficients, the largest of which contains a

constant multiplied by Δt. The largest free term contains a constant multiplied by (Δt)2. Choosing μ

and Δt small enough and applying Young’s inequality for the term (Δt)3/2
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2
,

and from (4.2) we get

(1 − αΔt)−2M
∥
∥
∥X−kτ

−kτ+MΔt − X̂−kτ
−kτ+MΔt

∥
∥
∥

2

2

≤
M−1∑

i=0

(1 − αΔt)−2i

(

K̂20Δt
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
+ K̂18(Δt)2

)

≤ K̂19(Δt)(1 − αΔt)−2M + K̂20(Δt)
M−1∑

i=0

(1 − αΔt)−2i
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
, (4.10)

where

K̂19 =
K̂18(1 − αΔt)2

2αΔt − α2 (Δt)2
(Δt) =

K̂18(1 − αΔt)2

2α − α2 (Δt)
, K̂20 =

(1 + μ)(2β1 + β2
2 + ε)

(1 − αΔt)2
.

Here μ, ε and the time step Δt are chosen small enough such that
(
K̂20Δt + 1

)
(1 − αΔt)2 < 1. Now

using the discrete time Gronwall inequality, from (4.10), we have
∥
∥
∥X−kτ

−kτ+MΔt − X̂−kτ
−kτ+MΔt

∥
∥
∥

2

2

≤ K̂19Δt + K̂19K̂20(Δt)2
1 −

((
1 + K̂20Δt

)
(1 − αΔt)2

)M

1 −
(
1 + K̂20Δt

)
(1 − αΔt)2

≤ K̂21Δt.

We can find a constant K̂21 which is independent of M and Δt. Finally, we take M = N + N ′, where
NΔt = kτ , N ′ ∈ Z, then

lim sup
k→∞

∥
∥
∥X−kτ

N ′Δt − X̂−kτ
N ′Δt

∥
∥
∥

2
= lim sup

N→∞

∥
∥
∥X−kτ

−kτ+(N+N ′)Δt − X̂−kτ
−kτ+(N+N ′)Δt

∥
∥
∥

2

≤
√

K̂21

√
Δt.

So we get the result. �

We have proved the estimation of error from −kτ to N ′Δt as k → ∞ can be controlled under the 1/2
order of the time step. And the upper bound is uniform in time. The following theorem will give us a
more general result, which is from −kτ to time r. Let X̂−kτ

r , r > 0 be given by (3.6).
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Theorem 4.2. Assume Conditions (A), (1) and (2). We choose Δt = τ/n for some n ∈ N, N = kn. For
any r ≥ 0, there exists a constant K̃ > 0 such that for any sufficiently small fixed Δt,

lim sup
k→∞

∥
∥
∥X−kτ

r − X̂−kτ
r

∥
∥
∥

2
≤ K̃

√
Δt,

where X−kτ
r is the exact solution, while X̂−kτ

r is the numerical solution and K̃ is independent of Δt and
r.

Proof. Assume for any r ≥ 0, N ′ is the unique integer such that N ′Δt ≤ r, (N ′ + 1)Δt > r. According
to the semi-flow property, we have

X−kτ
r (ω) − X̂−kτ

r (ω) =XN ′Δt
r (ω) ◦ X−kτ

N ′Δt(ω) − X̂N ′Δt
r (ω) ◦ X̂−kτ

N ′Δt(ω),

where X̂N ′Δt
r is finite time Euler approximation of solution of (1.3) from N ′Δt to r and X̂−kτ

N ′Δt is defined
as before. So,

∥
∥
∥X−kτ

r − X̂−kτ
r

∥
∥
∥

2
(4.11)

≤
∥
∥
∥XN ′Δt

r ◦ X−kτ
N ′Δt − XN ′Δt

r ◦ X̂−kτ
N ′Δt

∥
∥
∥

2
+
∥
∥
∥XN ′Δt

r ◦ X̂−kτ
N ′Δt − X̂N ′Δt

r ◦ X̂−kτ
N ′Δt

∥
∥
∥

2
.

For the first term on the right-hand side, by Lemma 4.1, we have
∥
∥
∥X−kτ

N ′Δt − X̂−kτ
N ′Δt

∥
∥
∥ ≤ K

√
Δt. By the

continuity of XN ′Δt
r (·) with respect to initial values in L2(Ω) [15], then
∥
∥
∥XN ′Δt

r ◦ X−kτ
N ′Δt − XN ′Δt

r ◦ X̂−kτ
N ′Δt

∥
∥
∥

2
≤ C

∥
∥
∥X−kτ

N ′Δt − X̂−kτ
N ′Δt

∥
∥
∥

2
≤ C5

√
Δt,

where C5 is independent of Δt. For the second term on the right-hand side of (4.11), it is finite time
Euler approximation with same initial value. By Theorem 10.2.2 in Kloeden and Platen [14], there exists
a constant C6 > 0 such that for sufficiently Δt > 0,

∥
∥
∥XN ′Δt

r ◦ X̂−kτ
N ′Δt − X̂N ′Δt

r ◦ X̂−kτ
N ′Δt

∥
∥
∥

2
≤ C6

√
Δt,

where the choice of C6 is independent of Δt. The result follows by taking K̃ = C5 + C6. �

Corollary 4.3. For any r ≥ 0, the exact and numerical approximating random periodic solutions of
Eq. (1.3), X∗

r and X̂∗
r , given in Theorems 2.4 and 3.4, respectively, satisfy

∥
∥
∥X∗

r − X̂∗
r

∥
∥
∥

2
≤ K̃

√
Δt.

Proof. The result follows from
∥
∥
∥X∗

r − X̂∗
r

∥
∥
∥

2
≤ lim sup

k→∞

[∥
∥X∗

r − X−kτ
r

∥
∥

2
+
∥
∥
∥X−kτ

r − X̂−kτ
r

∥
∥
∥

2
+
∥
∥
∥X̂−kτ

r − X̂∗
r

∥
∥
∥

2

]
.

�

4.2. Modified Milstein method

For Milstein method, we can use the similar calculation as Euler–Maruyama scheme to get an improved
error estimate between discrete approximate solution and the exact solution.

Theorem 4.4. Assume Conditions (A), (1′) and (2). Then there exists a constant K∗ > 0 such that for
any sufficiently small fixed Δt, the error between the exact solution X−kτ

r and the numerical solution
X̂−kτ

r given by Milstein scheme (3.12) is lim supk→∞
∥
∥
∥X−kτ

r − X̂−kτ
r

∥
∥
∥

2
≤ K∗Δt, for all r ≥ 0, where K∗

is independent of Δt.



119 Page 22 of 32 C. Feng, Y. Liu and H. Zhao ZAMP

Proof. In the following proof, we always denote by K̂· the constant derived from the underlining compu-
tation unless otherwise stated. We consider the error in the similar way as Lemma 4.1.

(1 − αΔt)−2M
∣
∣
∣X−kτ

−kτ+MΔt − X̂−kτ
−kτ+MΔt

∣
∣
∣
2

=
M−1∑

i=0

(1 − αΔt)−2i

⎛

⎜
⎝

∣
∣
∣X−kτ

−kτ+(i+1)Δt − X̂−kτ
−kτ+(i+1)Δt

∣
∣
∣
2

(1 − αΔt)2
−
∣
∣
∣X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∣
∣
∣
2

⎞

⎟
⎠ . (4.12)

For simplicity we denote

B̃1 =
1

1 − αΔt

(i+1)Δt−kτ∫

iΔt−kτ

[

e−A(s+kτ−(i+1)Δt)f(s,X−kτ
s ) − f(iΔt, X̂−kτ

−kτ+iΔt)

−
s∫

iΔt−kτ

F
(1)
i (X̂−kτ

−kτ+iΔt)dWυ

⎤

⎦ ds.

B̃2 =
1

1 − αΔt

(i+1)Δt−kτ∫

iΔt−kτ

[

e−A(s+kτ−(i+1)Δt)g(s,X−kτ
s ) − g(iΔt, X̂−kτ

−kτ+iΔt)

−
s∫

iΔt−kτ

G
(1)
i (X̂−kτ

−kτ+iΔt)dWυ

⎤

⎦ dWs,

with

F
(1)
i (x) =

1
2
√

Δt

(
f
(
iΔt, Υ̂+(x)

)
− f

(
iΔt, Υ̂−(x)

))
,

G
(1)
i (x) =

1
2
√

Δt

(
g
(
iΔt, Υ̂+(x)

)
− g

(
iΔt, Υ̂−(x)

))
.

Therefore,

X−kτ
−kτ+(i+1)Δt − X̂−kτ

−kτ+(i+1)Δt

= eAΔtX−kτ
−kτ+iΔt − (I + AΔt) X̂−kτ

−kτ+iΔt + (1 − αΔt)
(
B̃1 + B̃2

)
.

Now we consider
∣
∣
∣X−kτ

−kτ+(i+1)Δt − X̂−kτ
−kτ+(i+1)Δt

∣
∣
∣
2

(1 − αΔt)2
−
∣
∣
∣X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∣
∣
∣
2

=
(
X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

)T
(

eAΔt

1 − αΔt
− I

)(
eAΔt

1 − αΔt
+ I

)

×
(
X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

)

+
(
X̂−kτ

−kτ+iΔt

)T
(

eAΔt − I − AΔt

1 − αΔt

)2 (
X̂−kτ

−kτ+iΔt

)
+ B̃T

1 B̃1 + B̃T
2 B̃2

+2
(
X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

)T
(

eAΔt

1 − αΔt

)(
eAΔt − I − AΔt

1 − αΔt

)(
X̂−kτ

−kτ+iΔt

)
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+2
(
(
X−kτ

−kτ+iΔt

)T
(

eAΔt

1 − αΔt

)

−
(
X̂−kτ

−kτ+iΔt

)T
(

I + AΔt

1 − αΔt

))

B̃1

+2
(
(
X−kτ

−kτ+iΔt

)T
(

eAΔt

1 − αΔt

)

−
(
X̂−kτ

−kτ+iΔt

)T
(

I + AΔt

1 − αΔt

))

B̃2 + 2B̃T
1 B̃2. (4.13)

By the similar analysis as (4.5) and (4.7), we have

E

[
B̃T

1 B̃1

]
≤ K̂22 (Δt)4 +

(1 + μ)β2
1 (Δt)2

(1 − αΔt)2
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2

+ K̂2
23(Δt)3

∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
,

and

E

[
B̃T

2 B̃2

]
≤ K̂24 (Δt)3 +

(1 + μ)β2
2Δt

(1 − αΔt)2
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2

+ K̂25(Δt)2
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
.

The crossing product terms in (4.13) are estimated similar as (4.8) as follows:

E

[

2
(
(
X−kτ

−kτ+iΔt

)T
(

eAΔt

1 − αΔt

)

−
(
X̂−kτ

−kτ+iΔt

)T
(

I + AΔt

1 − αΔt

))

B̃1

]

≤ K̂26(Δt)4 +
√

1 + μβ1K̂27(Δt)3

(1 − αΔt)2

∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

+
2
√

K̂22(Δt)2

1 − αΔt

∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2
(1 + Δt |A|) (4.14)

+
2
√

1 + μβ1Δt

(1 − αΔt)2

∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
(1 + Δt |A|)

+ 2K̂23(Δt)3/2
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
(1 + Δt |A|) .

The seventh term remains 0 under conditional expectation.

E

[(
(
X−kτ

−kτ+iΔt

)T
(

eAΔt

1 − αΔt

)

−
(
X̂−kτ

−kτ+iΔt

)T
(

I + AΔt

1 − αΔt

))

B̃2

]

= 0.

For the last term,

E

[
2B̃T

1 B̃2

]
≤ 2

∥
∥
∥B̃T

1

∥
∥
∥

2
·
∥
∥
∥B̃2

∥
∥
∥

2

≤ K̂28(Δt)7/2 + K̂29(Δt)3/2
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
.

Combining all the estimation above, we have
∣
∣
∣X−kτ

−kτ+(i+1)Δt − X̂−kτ
−kτ+(i+1)Δt

∣
∣
∣
2

(1 − αΔt)2
−
∣
∣
∣X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∣
∣
∣
2

(4.15)

≤
(

(1 + μ)β2
2Δt

(1 − αΔt)2
+

2
√

(1 + μ)β1Δt

(1 − αΔt)2
+ K̂40(Δt)3/2

)
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2

+ K̂41 (Δt)3 + K̂42(Δt)2
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2
.
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Choosing μ and Δt small enough and applying Young’s inequality to the term
(Δt)2

∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2
, and from (4.12) we get

(1 − αΔt)−2M
∥
∥
∥X−kτ

−kτ+MΔt − X̂−kτ
−kτ+MΔt

∥
∥
∥

2

2
(4.16)

≤
M−1∑

i=0

(1 − αΔt)−2i

(

K̂43Δt
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
+ K̂44(Δt)3

)

≤ K̂45(Δt)2(1 − αΔt)−2M + K̂43(Δt)
M−1∑

i=0

(1 − αΔt)−2i
∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
,

where

K̂45 =
K̂44(1 − αΔt)2

2αΔt − α2 (Δt)2
(Δt) =

K̂44(1 − αΔt)2

2α − α2 (Δt)
, K̂43 =

(1 + μ)(2β1 + β2
2 + ε)

(1 − αΔt)2
.

Here μ, ε and the time step Δt are chosen small enough such that
(
K̂43Δt + 1

)
(1−αΔt)2 < 1. Applying

the discrete time Gronwall inequality, from (4.16), we have
∥
∥
∥X−kτ

−kτ+MΔt − X̂−kτ
−kτ+MΔt

∥
∥
∥

2

2

≤ K̂45(Δt)2 + K̂45K̂43(Δt)2
1 −

((
1 + K̂43Δt

)
(1 − αΔt)2

)M

1 −
(
1 + K̂43Δt

)
(1 − αΔt)2

≤ K̂46(Δt)2. (4.17)

We can find a constant K̂46 which is independent of M and Δt. We take M = N , where NΔt = kτ , then

lim sup
k→∞

∥
∥
∥X−kτ

0 − X̂−kτ
0

∥
∥
∥

2
= lim sup

N→∞

∥
∥
∥X−kτ

−kτ+NΔt − X̂−kτ
−kτ+NΔt

∥
∥
∥

2
≤

√

K̂46Δt.

The discussion about the convergence from time −kτ to r is the same as Theorem 4.2 as we know that
the Milstein scheme with addition term also has strong order 1.0 for finite horizon. �

Remark 4.5. Compared with Euler–Maruyama scheme, the order 1.0 Milstein method improved the
order by replacing terms B1 and B2 with more accurate approximation B̃1 and B̃2. If we did not have
the additional term

ΔZi

2
√

Δt

[
f
(
iΔt, Υ̂+(X̂−kτ

−kτ+iΔt))
)

− f
(
iΔt, Υ̂−(X̂−kτ

−kτ+iΔt)
)]

,

we would only have the result with B1 and B̃2.
Here if we compare the scheme without additional term, it is important to notice that the term∥

∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2
in (4.14) is multiplied by (Δt)2. But in (4.9) it is multiplied by (Δt)3/2. When

we apply the Young’s inequality in (4.15), to make sure the free term with (Δt)3, we have

K̂42(Δt)
3
2

∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2
≤ K̂47(Δt)3 + K̂48

∥
∥
∥X−kτ

−kτ+iΔt − X̂−kτ
−kτ+iΔt

∥
∥
∥

2

2
.

This will influence the constant K̂43 in (4.16) to fail the inequality
(
K̂43Δt + 1

)
(1 − αΔt)2 < 1. On the

finite horizon, K̂46 is still bounded by the boundedness of M . But in the case of the infinite horizon, the
scheme is under the risk of instability. For this reason, we modify the scheme with the additional term
from higher-order scheme.



ZAMP Numerical approximation of random periodic solutions Page 25 of 32 119

Fig. 3. Root-mean-square error versus step size as log–log plot for the SDE (3.11)

Corollary 4.6. For any r ≥ 0, the exact and numerical approximating random periodic solutions of
Eq. (1.3), X∗

r and X̂∗
r , given in Theorems 2.4 and 3.6, respectively, satisfy

∥
∥
∥X∗

r − X̂∗
r

∥
∥
∥

2
≤ K∗Δt.

Here K∗ is independent of Δt and r.

Example 4.7. To illustrate the errors in Theorems 4.2 and 4.4, we simulate the random periodic solution
of Example 1 with 2000 different noise realisations by both Euler–Maruyama method and modified
Milstein method. We then apply Monte Carlo method to obtain the root-mean-square errors between
the exact random periodic solution and the respective numerical schemes with 12 different step sizes:
1×10−5, 2×10−5, 3×10−5, 4×10−5,1×10−4, 2×10−4, 3×10−4, 4×10−4, 1×10−3, 2×10−3, 3×10−3, 4×10−3,

where the exact one is given explicitly as X∗
t =

t∫

−∞
e−(π+ 1

2 )(t−s)+Wt−Ws sin(πs)ds. The relationship

between the root-mean-square errors and the step size is shown in the log–log plot in Fig. 3. The difference
of the orders of convergence between the Euler–Maruyama method and Milstein method is clear from the
numerical simulations.

5. Periodic measures

Let P(Rm) denote all probability measures on R
m. For P1, P2 ∈ P(Rm), define metric dL as follows:

dL(P1, P2) = sup
ϕ∈L

∣
∣
∣
∣
∣
∣

∫

Rm

ϕ(x)P1(dx) −
∫

Rm

ϕ(x)P2(dx)

∣
∣
∣
∣
∣
∣
,

where

L = {ϕ : Rm → R : |ϕ(x) − ϕ(y)| ≤ |x − y| and |ϕ(·)| ≤ 1}.
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From [11], it is not difficult to prove that the metric dL is equivalent to the weak topology. This useful
observation was made in [27].

We can define the transition probability of the semi-flow u which is generated by the solution of (1.4)
as follows:

P (t + s, s, ξ,Γ) := P ({ω : u(t + s, s, ω)ξ ∈ Γ}) = P (Xs
t+s(ξ) ∈ Γ), (5.1)

for any Γ ∈ B(Rm). For any ϕ being bounded and measurable

P (t + s, s)ϕ(ξ) =
∫

Rm

P (t + s, s, ξ, dη)ϕ(η) = Eϕ(Xs
t+s(ξ))

defines a semi-group satisfying

P (t + s + r, s + r) ◦ P (s + r, s) = P (t + s + r, s), r, t ≥ 0, s ∈ R.

Recall the following definition of periodic measure given in [8] .

Definition 5.1. [8] The measure function ρ· : R → P(Rm) is called periodic measure if it satisfies for any
s ∈ R, t ≥ 0, and Γ ∈ B(Rm),

ρs+τ = ρs,

∫

Rm

P (t + s, s, x,Γ)ρs(dx) = ρt+s(Γ).

From Theorem 2.4, we know that the random periodic solution of (1.4) exists. So by the result in
[8], we know that the periodic measure ρ. exists, which can be defined as the law of random periodic
solutions, i.e.

ρr(Γ) = P (X∗
r ∈ Γ). (5.2)

Similarly, we can define the transition probability of the discrete semi-flow û from Euler–Maruyama
scheme by

P̂ (t + s, s, ξ,Γ) := P ({ω : û(t + s, s, ω)ξ ∈ Γ}) = P (X̂s
t+s(ξ) ∈ Γ). (5.3)

For any ϕ being bounded and measurable

P̂ (t + s, s)ϕ(ξ) =
∫

Rm

P̂ (t + s, s, ξ, dη)ϕ(η) = Eϕ(X̂s
t+s(ξ))

defines a semi-group satisfying

P̂ (t + s + r, s + r) ◦ P̂ (s + r, s) = P̂ (t + s + r, s), r, t ≥ 0, s ∈ R,

Similar to the result in [8], the measure function defined by

ρ̂r(Γ) = P (X̂∗
r ∈ Γ) (5.4)

is a periodic measure for Markov semi-group P̂ (t+s, s). It satisfies for any s ∈ R, t ≥ 0, and Γ ∈ B(Rm),

ρ̂s+τ = ρ̂s,

∫

Rm

P̂ (t + s, s, x,Γ)ρ̂s(dx) = ρ̂t+s(Γ).

We have following error estimate of ρ. and ρ̂.. Consider the Euler–Maruyama scheme (3.1) first.

Theorem 5.2. Assume Conditions (A), (1) and (2). Then periodic measures ρ. and ρ̂. of the Markov
semi-group generated by the exact solution of (1.3) and approximation (3.1) are weak limits of transition
probabilities along integral multiples of period, i.e.

P (r,−kτ, ξ) → ρr, P̂ (r,−kτ, ξ) → ρ̂r, as k → ∞, (5.5)
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weakly and the error estimate is

dL(ρr, ρ̂r) ≤ K̃
√

Δt, (5.6)

where K̃ is independent of Δt and r.

Proof. To prove (5.5), by (5.1), (5.2), Theorem 2.4 and Jensen’s inequality, we have

dL(P (r,−kτ, ξ), ρr)

= sup
ϕ∈L

∣
∣
∣
∣
∣
∣

∫

Rm

ϕ(x)P (r,−kτ, ξ, dx) −
∫

Rm

ϕ(x)ρr(dx)

∣
∣
∣
∣
∣
∣

= sup
ϕ∈L

∣
∣E[ϕ(X−kτ

r ) − ϕ(X∗
r )]

∣
∣

≤ sup
ϕ∈L

E|ϕ(X−kτ
r ) − ϕ(X∗

r )|

≤ E
∣
∣X−kτ

r − X∗
r

∣
∣

≤ ∥
∥X−kτ

r − X∗
r

∥
∥

2

→ 0,

as k → ∞. So P (r,−kτ, ξ) → ρr weakly as k → ∞ from the well-known result in [11]. Similarly, we can
have for the discrete system, P̂ (r,−kτ, ξ) → ρ̂r weakly as k → ∞. Now we consider the metric between
these two periodic measures ρ. and ρ̂.,

dL(ρr, ρ̂r) = sup
ϕ∈L

∣
∣
∣
∣
∣
∣

∫

Rm

ϕ(x)ρr(dx) −
∫

Rm

ϕ(x)ρ̂r(dx)

∣
∣
∣
∣
∣
∣

≤ sup
ϕ∈L

∣
∣
∣
∣
∣
∣

∫

Rm

ϕ(x)ρr(dx) −
∫

Rm

ϕ(x)P (r,−kτ, ξ, dx)

∣
∣
∣
∣
∣
∣

+ sup
ϕ∈L

∣
∣
∣
∣
∣
∣

∫

Rm

ϕ(x)P (r,−kτ, ξ, dx) −
∫

Rm

ϕ(x)P̂ (r,−kτ, ξ, dx)

∣
∣
∣
∣
∣
∣

+ sup
ϕ∈L

∣
∣
∣
∣
∣
∣

∫

Rm

ϕ(x)P̂ (r,−kτ, ξ, dx) −
∫

Rm

ϕ(x)ρ̂r(dx)

∣
∣
∣
∣
∣
∣

= sup
ϕ∈L

∣
∣E[ϕ(X∗

r ) − ϕ(X−kτ
r )]

∣
∣ + sup

ϕ∈L

∣
∣
∣E[ϕ(X−kτ

r ) − ϕ(X̂−kτ
r )]

∣
∣
∣

+ sup
ϕ∈L

∣
∣
∣E[ϕ(X̂−kτ

r ) − ϕ(X̂∗
r )]

∣
∣
∣

≤E
∣
∣X∗

r − X−kτ
r

∣
∣ + E

∣
∣
∣X−kτ

r − X̂−kτ
r

∣
∣
∣ + E

∣
∣
∣X̂−kτ

r − X̂∗
r

∣
∣
∣

≤ ∥
∥X∗

r − X−kτ
r

∥
∥

2
+
∥
∥
∥X−kτ

r − X̂−kτ
r

∥
∥
∥

2
+
∥
∥
∥X̂−kτ

r − X∗
r

∥
∥
∥

2
. (5.7)

By Theorems 2.4, 3.4, 4.2, we have for any ε > 0, there exists N > 0 such that when k ≥ N ,
∥
∥X∗

r − X−kτ
r

∥
∥

2
≤ ε

3
,
∥
∥
∥X̂−kτ

r − X∗
r

∥
∥
∥

2
≤ ε

3
,

and
∥
∥
∥X−kτ

r − X̂−kτ
r

∥
∥
∥

2
≤ K̃

√
Δt +

ε

3
.
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Then taking k ≥ N in (5.7), we have

dL(ρr, ρ̂r) ≤ K̃
√

Δt + ε.

Note in the above inequality, the left-hand side does not depend on k and ε is arbitrary. So (5.6) is
obtained. �

Remark 5.3. There are a number of works about approximating of invariant measures for SDE using
Euler–Maruyama method and Milstein method [16,22,23,27]. For finite horizon, the order of weak con-
vergence of Euler–Maruyama method was proved to be 1.0, a significant improvement from the order 0.5
in the strong convergence (c.f. [14]). However, the order of 1.0 is not guaranteed in the infinite horizon
case, see [16] for the case of the invariant measures. On the other hand, in some work such as [22,23],
the order of error of Euler–Maruyama method was managed to increase to 1.0 under the non-degenerate
condition. Here we do not have such an assumption, and we have order 0.5 in the weak convergence
formulation. However, in the case of the modified Milstein method, we will see that the error is of order
1.0 in the next theorem. Note that the error estimate with the Milstein scheme is also 1.0 in the weak
convergence formulation even in the non-degenerate case [22,23].

Theorem 5.4. Assume Conditions (A), (1′) and (2). Consider the modified Milstein scheme (3.12). Then
the periodic measure ρ̂. of the Markov semi-groups generated by the discretised semi-flow is the weak limit
of its transition probability along integral multiples of period, i.e.

P̂ (r,−kτ, ξ) → ρ̂r, as k → ∞,

weakly and the error estimate between the approximating periodic measure ρ̂. and the exact periodic
measure is

dL(ρr, ρ̂r) ≤ K∗Δt,

where K∗ is independent of Δt and r.

Proof. The proof is similar to the proof of Theorem 5.2, but using Theorem 4.4 instead of Theorem 4.2. �

6. Transformation of the periodic SDE via Lyapunov–Floquet transformation

In this section, we consider the following m-dimensional system

dXt0
t = A(t)Xt0

t dt + f̃(t,Xt0
t )dt + g̃(t,Xt0

t )dWt, t ≥ t0, (6.1)

with Xt0
t0 = ξ. We assume that the matrix A(t) is a continuous τ -periodic m × m real matrix and the

functions f̃ and g̃ are both τ -periodic in time, i.e.

A(t + τ) = A(t), f̃(t + τ, ·) = f̃(t, ·), g̃(t + τ, ·) = g̃(t, ·), for any t ∈ R.

To solve this problem we need to apply the Floquet theorem to transfer this system to a system with
the linear part having a time-invariant generator.

6.1. The transformation

The well-known Floquet theorem can be found in many books, such as [9]. It says that if Φ(t) is a
fundamental matrix solution of the periodic system Ẋ = A(t)X, then so is Φ(t + τ). Moreover, there
exists an invertible τ -periodic matrix P (t) such that Φ(t) = P (t)eRt, where R is a constant matrix.
The matrix P (t) is called the Lyapunov–Floquet transformation matrix, and X = P (t)Z is called the
Lyapunov–Floquet transformation.
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Proposition 6.1. Under Lyapunov–Floquet transformation X(t) = P (t)Z(t), periodic system (6.1) is trans-
ferred to the following system with constant coefficient matrix linear part

dZt0
t = RZt0

t dt + P (t)−1f̃(t, P (t)Zt0
t )dt + P (t)−1g̃(t, P (t)Zt0

t )dWt, (6.2)

with Zt0
t0 = P (t0)−1ξ.

Proof. The proof follows some elementary calculations. �

From the periodicity of P , we know that

Φ(t + τ) = P (t + τ)eR(t+τ) = P (t)eRteRτ = Φ(t)eRτ .

Since eR+2πkiI = eRe2πkiI = eR for any k ∈ Z, the constant matrix R is not unique. It is also not
necessarily real, even if eRτ is real. So we need the following corollary to guarantee such a real constant
matrix exists.

Corollary 6.2. Let B = R+R
2 , S(t) = Φ(t)e−Bt. Then S(t) is real and 2τ -periodic. Under the transforma-

tion Xt0
t = S(t)Zt0

t , periodic system (6.1) is transferred to the following system with constant coefficient
matrix linear part

dZt0
t = BZt0

t dt + S(t)−1f̃(t, S(t)Zt0
t )dt + S(t)−1g̃(t, S(t)Zt0

t )dWt, (6.3)

with Zt0
t0 = S(t0)−1ξ,

Proof. Because A(t) is real, so the matrix C = eRτ = Φ(τ)Φ−1(0) is real. Thus, for the real matrix
B = R+R

2 , C2 = eRτeRτ = e2Bτ . Note S(t) is real since B is real. And notice that

S(t + 2τ) = Φ(t + 2τ)e−B(t+2τ) = Φ(t)C2e−2Bτe−Bt = Φ(t)e−Bt = S(t).

Then we can obtain the time-invariant system in a similar way as in the Corollary 6.1. The only difference
is that the system with real constant coefficient matrix linear part becomes 2τ -periodic. �

6.2. Convergence theorem of the periodic parameter matrix system

Condition (A′). The matrix function A(t) is τ -periodic, the corresponding matrix B is symmetric with
eigenvalues satisfying 0 > λ1 ≥ λ2 ≥ . . . ≥ λm.

Because S(t) is continuous and periodic, so S(t) is bounded. The periodicity and continuity of S(t)−1

are obtained from the properties of S(t), and it is concluded that S(t)−1 is bounded as well. Thus, there
exists a constant M such that

∣
∣S(t)−1

∣
∣ |S(t)| ≤ γ. For the periodic parameter matrix system, we give the

following condition
Condition (1′). Assume there exists a constant τ > 0 such that for any t ∈ R, x ∈ R

m, f̃(t + τ, x) =

f̃(t, x), g̃(t + τ, x) = g̃(t, x). There exist constants C̃0, β̃1, β̃2 > 0 with β̃1γ + β̃2
2
γ2

2 < |λ1|, such that for
any s, t ∈ R and x, y ∈ R

m,
∣
∣
∣f̃(s, x) − f̃(t, y)

∣
∣
∣ ≤ C̃0 |s − t|1/2 + β̃1 |x − y| ,

|g̃(s, x) − g̃(t, y)| ≤ C̃0 |s − t|1/2 + β̃2 |x − y| .
From this condition it follows that for any x ∈ R

m, the linear growth condition also holds
∣
∣
∣f̃(t, x)

∣
∣
∣ ≤

β̃1 |x| + C̃1, |g̃(t, x)| ≤ β̃2 |x| + C̃2, where the constants C̃1, C̃2 > 0, which are independent of time t.

Theorem 6.3. Assume that Conditions (A′), (1′). Then there exists a unique random periodic solution
X∗

r ∈ L2(Ω) of period 2τ such that for any initial value ξ(ω) satisfying Condition (2), the solution of
(6.1) satisfies lim

k→∞
∥
∥X−2kτ

r (ξ) − X∗
r

∥
∥

2
= 0.
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Proof. We only need to verify that the corresponding time-invariant system

dZt0
t = BZt0

t dt + f
(
t, Zt0

t

)
dt + g

(
t, Zt0

t

)
dWt, (6.4)

with Zt0
t0 = S(t0)−1ξ, where f (t, x) = S(t)−1f̃(t, S(t)x), g (t, x) = S(t)−1g̃(t, S(t)x), satisfies the condi-

tions of Theorem 2.4. It is easy to see that f(t + 2τ, x) = f(t, x), g(t + 2τ, x) = g(t, x). For Condition
(1), the largest eigenvalue of the matrix B is λ1. By the Lipschitz condition on function f̃ and g̃, we have
following result in the time-invariant system |f(t, x) − f(t, y)| ≤ β̃1γ |x − y| . This means the function f

will preserve the Lipschitz property with constant β1 = β̃1γ. Similarly, we can prove that the function
g possesses the Lipschitz condition with constant β2 = β̃2γ. Meanwhile, from Condition (1′), we have
β1 + β2

2
2 < |λ1| . Moreover, for any x ∈ R

m,

|f(t, x)| =
∣
∣
∣S(t)−1f̃(t, S(t)x)

∣
∣
∣ ≤ β̃1

∣
∣S(t)−1

∣
∣ |S(t)x| +

∣
∣S(t)−1

∣
∣ C̃1 ≤ β1 |x| + C1.

Therefore, we can verify the linear growth property of f and g with the constants C1, C2 > 0.
The constants β1 and β2 are both independent of time t. For Condition (2), the initial value of the
time-invariant system will preserve the boundedness because of the boundedness of S(t)−1. Accord-
ing to Theorem 2.4, there exists a random periodic solution Z∗

r ∈ L2(Ω) with period 2τ such that
limk→∞

∥
∥Z−2kτ

r (ξ) − Z∗
r

∥
∥

2
= 0. It turns out that

lim
k→∞

∥
∥X−2kτ

r (ξ) − X∗
r

∥
∥

2
≤ ‖S(r)‖ lim

k→∞
∥
∥Z−2kτ

r (ξ) − Z∗
r

∥
∥

2
= 0.

The 2τ -periodicity of S(r) and Z−2kτ
r give us the random periodicity of solution X∗(r, ω). So X∗

r is a
random periodic solution of (6.1) of period 2τ . �

6.3. Numerical approximation scheme and error estimate

With the existence of the random periodic solutions, we now consider the scheme to simulate the process
Z of equation (6.3). Similar as before, we can consider strong and weak convergence in Euler–Maruyama
and modified Milstein methods. Due to the length of the paper, we only consider strong convergence in
the Euler scheme given by

Ẑ−2kτ
−2kτ+(i+1)Δt = Ẑ−2kτ

−2kτ+iΔt + [BẐ−2kτ
−2kτ+iΔt + S(iΔt)−1f̃(iΔt, S(iΔt)Ẑ−2kτ

−2kτ+iΔt)]Δt

+S(iΔt)−1g̃(iΔt, S(iΔt)Ẑ−2kτ
−2kτ+iΔt)

(
W−2kτ+(i+1)Δt − W−2kτ+iΔt

)
. (6.5)

Theorem 6.4. Assume Conditions (A′), (1′) and (2), S(t) ∈ C1(R). Then there exists Ẑ∗
r , which is a

random periodic solution of period 2τ for discrete random dynamical system generated from (6.4), such
that

lim
k→∞

∥
∥
∥X−2kτ

r − S(r)Ẑ−2kτ
r

∥
∥
∥

2
≤ K̃

√
Δt, and

∥
∥
∥X∗

r − S(r)Ẑ∗
r

∥
∥
∥

2
≤ K̃

√
Δt, r ∈ [0, T ],

for a constant K̃ > 0, which is independent of Δt, where X∗
r is the exact random periodic solution of

(6.1).

Proof. By Theorem 3.4, there exists Ẑ∗
r ∈ L2(Ω) such that lim sup

k→∞

∥
∥
∥Ẑ−2kτ

r − Ẑ∗
r

∥
∥
∥

2

= 0, where Ẑ∗
r is the random periodic solution of period 2τ for discrete random dynamical system

generated from (6.4). According to Theorem 4.2, we have the conclusion that there exists a constant
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K1 > 0 such that limk→∞
∥
∥
∥X−2kτ

r − S(r)Ẑ−2kτ
r

∥
∥
∥

2
≤ K1 ‖S(r)‖2

√
Δt̃ ≤ K̃

√
Δt. Thus, it follows that

∥
∥
∥X∗

r − S(r)Ẑ∗
r

∥
∥
∥

2
≤ lim sup

k→∞

∥
∥X∗

r − X−2kτ
r

∥
∥

2
+ lim sup

k→∞

∥
∥
∥X−2kτ

r − S(r)Ẑ−2kτ
r

∥
∥
∥

2

+ lim sup
k→∞

∥
∥
∥S(r)Ẑ−2kτ

r − S(r)Ẑ∗
r

∥
∥
∥

2
≤ K̃

√
Δt.
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[19] Poincaré, H.: Memoire sur les courbes definier par une equation differentiate. J. Math. Pures Appl. 8, 251–296 (1882)
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