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Since its first report by Grubbs and co-workers Ring 

Rearrangement Metathesis (RRM) has become a powerful 

method for the synthesis of bicyclic systems with defined 

stereochemical outcomes.
1,2

 Typically, RRM utilises the intrinsic 

ring strain within a cyclic olefin (e.g. norbornene
3
) to affect ring 

opening which can then subsequently ring close onto an 

exocyclic double-bond within the same substrate. This can be 

achieved with complete transfer of stereochemical information 

with the product outcome being defined by both thermodynamic 

and kinetic factors.  Consequently, RRM strategies involving 

strained olefins have become an increasingly attractive tactic for 

the synthesis of sesquiterpenes, alkaloids and carbocyclic 

scaffolds.
2
 

Recently, as part of a study into the total synthesis of natural 

products containing bicyclic frameworks, we described an 

efficient approach to cis-fused [3.0.3]-carbocycles (Scheme 1, 

1→3). This approach utilised a diastereoselective allylation of a 

key [2.2.1]-norbornenone (1), in conjunction with a 

thermodynamically controlled and highly regioselective 

ruthenium catalyzed (using Grubbs’ second generation catalyst 

G2) RRM transformation when performed on the addition 

products (2).
4
  

 

 

Scheme 1. cis-Fused [3.0.3]-carbocycle synthesis from 1. 

This letter will describe our preliminary studies when this 

protocol is applied to bicyclic-[2.2.2]-oct-2-en-7-one 4 (Scheme 

2). While the allylation of 4 has been described by Snowdon and 

co-workers the diastereoselectivity of the addition was not 

reported.
5
  

 

 

Scheme 2. Organometallic addition and subsequent RRM 

outcome. 

Additionally, of significant interest is the product outcome of the 

RRM process when performed on alcohols of the type 5, and 

whether the configuration of this alcohol (i.e. exo or endo) has a 

significant impact on product outcome (i.e. giving 6 or 7). 

Bicyclo-[2.2.2]-oct-2-en-7-one 4 was prepared in a 3-step 

sequence and gram quantities in 65% overall yield (Scheme 3).
6
 

With 4 in-hand the addition of allylmagnesium chloride gave two 

separable alcohols exo-8a and endo-8b in a diastereomeric ratio 

(d.r.) of 2:1, and isolated yields of 53% and 24%, respectively.
7,8a 

Similarly, the addition of homoallylmagnesium chloride 

proceeded in a good yield giving the addition products exo-9a 

and endo-9b in a d.r. of 2.6:1 and in an isolated yield of 45% and 

15%, respectively; whereas, 2-methylallyl magnesium chloride 

gave exo-10a and endo-10b in yields of 42% and 20%, and a d.r. 

of 2:1. The addition of 2-vinyl phenyllithium, prepared from the 

addition of 
n
BuLi to 2-bromostyrene (11) to 4, gave the addition 

products exo-12a and endo-12b in a d.r. of 3:1 and in isolated 
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 2 
yields of 42% and 15%, respectively.

8b
 Finally, the addition of 2-

allyl phenyllithium, prepared from the addition of 
n
BuLi to 2-

allylbromobenzene (13), gave predominantly the addition 

product exo-12 in an isolated yield of 48%.  

 

 

Scheme 3. The diastereoselectivity of the addition to 4. 

While the addition of Grignard reagents (e.g. methylmagnesium 

and allylmagnesium bromide) to 4 has been reported previously
5,9

 

the product distributions shown in scheme 3 indicate a moderate 

to good degree of diastereoselectivity in favour of the exo-

addition product, and is presumably due to the approach of the 

nucleophile to the less hindered face of the carbonyl, i.e. over the 

alkene. 

Having investigated the addition of organometallic reagents to 4 

next we explored the RRM transformations on the isolated 

products (Scheme 4). Consequently, exo-8a was exposed to 10 

mol% of Grubb’s second generation catalyst in PhMe at room 

temperature, under an atmosphere of ethene
4a

 and gratifyingly the 

starting material was consumed within 48h to give a new product 

as detected by tlc. This was subsequently isolated in 70% yield 

and shown to be the rearranged product 15 by a combination of 
1
H and 

13
C NMR. Specifically, spectroscopic data for 15 showed, 

inter alia, 
1
H NMR signals at 5.73 ppm (ddd, J = 6.4, 10.4, 

17.2Hz, 1H), 4.98 ppm (dt, J = 1.6, 17.2Hz, 1H) and 4.90 ppm 

(dt, J = 1.6, 10.4Hz, 1H), respectively, indicative of the exocyclic 

olefin. Additionally, signals for the endocyclic double bond were 

present within the 
1
H NMR spectrum at 5.65 ppm and 5.57 ppm, 

respectively. Importantly, the bridge head proton was shown to 

couple to two distinct CH2 environments which provides further 

proof for the formation of the [3.3.1]-carbocycle 15.
10

 With this 

result in-hand the exposure of diastereoisomer endo-8b to these 

conditions failed to give the rearranged product, with only 

starting material being isolated. However, upon heating the 

reaction mixture to     C for 16h all starting material was 

consumed and the rearranged product 16 was isolated in a 

moderate yield of 24%. The increase in temperature to effect 

rearrangement of endo-8b is presumably due to the formation of 

the strained trans-fused carbocycle (16). The homoallyl analogue 

exo-9a readily underwent rearrangement at room temperature to 

give 17 in 55% isolated yield but its diastereoisomer endo-9b 

failed under all conditions to undergo RRM. It must be noted that 

Phillips and co-workers observed difficulty in the cyclisation of 

similar bicyclo-[2.2.2]-octene derivatives to indane and decalin 

systems.
4f 

 Due to the poor yield when the RRM transformation 

was performed on endo-8b, along with the failure of  endo-9b  to 

undergo any rearrangement, all subsequent RRM reactions were 

performed solely on the exo-addition products. The 2-methallyl 

substrate exo-10a gave the rearranged product 18 in a moderate 

isolated yield; however, the aryl addition product exo-12a failed 

to rearrange under all conditions. The failure of the 2-aryl 

substituted substrate exo-12a to undergo the RRM transformation 

required further examination. The fact that starting material was 

returned in all cases implies that the required initial ring opening 

of the strained bicycle-[2.2.2]-octene, analogous to norbornenes,
3
 

was not occurring. This was further confirmed by performing the 

reaction in the presence of an excess of styrene to effect cross 

metathesis (CM), and under these conditions only starting 

material was isolated. A possible explanation is the interaction of 

the ruthenium alkylidene with the tertiary hydroxyl group, 

reminiscent to the Hoveyda-Grubbs catalysts, giving an 

intermediate such as 19. 

 

 

Scheme 4. Product outcome for the RRM transformation. 

 



For exo-8a and endo-8b a mechanistic rationale for the formation 

of each carbocycle is shown below in scheme 5. Reminiscent of 

[2.2.1]-norbornenyl derivatives,
3
 the exposure of exo-8a to G2 

and ethene should deliver 20. This triene has two possible 

cyclisation pathways to follow under our reaction conditions; 

pathway (a) will yield a cis fused [4.0.3]-carbocycle (21) while 

pathway (b) will deliver the observed [3.3.1]-carbocycle 15. 

Calculated energies for each regioisomer indicate that the [3.3.1]-

carbocycle 15 is some 17.49 kJmol
-1

 more stable than 21, 

indicating that product formation is under thermodynamic control 

possibly via the chair conformation depicted in 22.
11

  This is 

further supported by Grubbs
12a

 and Goldring
12b

 who 

independently demonstrated that similarly substituted precursors 

undergo RCM to give [3.3.1]-carbocycles. 

 

 

Scheme 5. Plausible mechanistic hypothesis and energy 

minimized conformations of 15, 16 and 21.
11

 

 

The exposure of endo-8b to G2 and ethene will also deliver a 

triene (23) which can cyclise either via pathway c and d. 

However in this case pathway c is the only available avenue for 

cyclisation, since in pathway d the desired olefins involved in the 

cyclisation are adversely orientated. Moreover  the increased 

tem erature to effect cyclisation         via pathway c and the 

moderate yield of the product 16, can be attributed to the 

increased strain of having a trans fused 5,6-ring system as 

reflected in the energy minimization value shown. 

Finally, we utilised the rate difference between the RRM 

cyclisation of exo-8a and endo-8b. Consequently, the allylation 

of 4 gave a diastereomeric mixture of alcohols which were 

directly exposed to our RRM conditions at room temperature to 

deliver the bicycle 15 exclusively in 56% yield over the 2-steps, 

with none of 16 being detected by 
1
H NMR (Scheme 6). 

 

 

Scheme 6. Exploiting reaction rate. 

 

In summary, we have successfully added a range of 

organometallic reagents to bicyclo-[2.2.2]-oct-2-en-7-one 4 and 

demonstrated that a moderate degree of diastereoselectivity is 

displayed in favour of the exo-addition products. These exo-

addition products successfully undergo a ruthenium catalyzed 

RRM transformation at room temperature to give [3.3.1]- and 

[4.3.1]-carbocycles, while the endo-addition product (endo-8b) 

gave the corresponding trans fused-[4.0.3]-carbocycle in 

moderate yield and crucially at elevated temperatures. Further 

use of this metathesis tactic in the assembly of carbocyclic 

scaffolds and the use of ab initio calculations to determine RRM 

product outcome will be reported in due course.  
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