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ABSTRACT: This article presents a novel asymmetrical functionalization 

strategy for the construction of dipolar molecules via efficient regio-selective 

functionalization along Z-axis of pyrene at both the 1,3- and 6,8-positions. Three 

asymmetrically substituted 1,3-diphenyl-6,8-R-disubsituted pyrenes were fully 
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characterized by X-ray crystallography, photophysical properties, 

electrochemistry, and DFT calculations. 

Introduction 

The construction of dipolar molecules with donor-acceptor (D-A) type structures 

are of interest given their potential application in organic optoelectronic devices.1 

Such dipolar architectures can, via a suitable choice of the D/A units, fine-tune the 

electron redistribution, facilitate simultaneous manipulation of the HOMO-LUMO 

energy gap and the emission color by intramolecular charge transfer (ICT),2 control 

crystallinity,3 and be used to self-assemble molecular morphologies.4  

Pyrene5 belongs to a family of polycyclic aromatic hydrocarbons (PAHs) with a 

natural electron-donating and an electron-accepting role.6 Apart from other PAHs 

such as anthracene,7 fluorene,8 pyrene possess the equivalent activity of the sites at 

the 1-, 3-, 6- and 8-positions, it is different to develop an effectively rational synthetic 

strategy to asymmetric functionalization of pyrene. Typically, tetrabromopyrene and 

pyrene tetraone derivatives as key precursor were extensively utilized in the 

construction of PAHs for semiconductor applications, via the introduction of terminal 

moieties.5,9 Up to date, few examples on pyrene chemistry focus on constructing 

“push-pull” system and investigating the effect of the electron-donating/accepting 

strength to emission color of dipolar molecules, and the region-chemical relationship 

between donor and acceptor units.  

Recently, Kim group and Lee group developed a set of tetrakissubstituted pyrenes 

functionalized with electron-donor and electron-acceptor moiety located at 1,6- and 
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3,8-positions randomly in nature, respectively.10 However, reports focus on 

regio-selective substituted pyrene derivatives for bipolar materials are scant, due to 

the lack of straightforward strategies to modify the pyrene core. Müllen et al. reported 

the selective asymmetric functionalization of pyrene at the K-region for use in organic 

field-effect transistors via a two step chemical functionalization.11 Meanwhile, 

Bodwell et al. reported a regioselective synthesis of 4,5-dialkoxy-1,8-dibromopyrenes 

for preparing 1,8-pyrenylene-ethynylene macrocycles.12 After that, a series pyrene 

derivatives with D-A substituents of pyrene derivative in the K-region was presented 

as follows.13 Very recently, both strong donors and acceptors were introduced into the 

K-region and the 2,7-positions respectively, via 2,7-dibromo- and 2,7-diiodopyrene- 

4,5,9,10-tetraones as the key intermediates.14 Such novel synthetic procedures at the 

pyrene core not only greatly enrich our knowledge of synthetic chemistry, but also 

stimulate further research into semiconductor materials.  

Unlike the previously mentioned studies, our interest stems from exploring new 

effective strategies for preparing asymmetric substituted pyrene along the Z-axis to be 

used in high-performance electroluminescence material applications. Previously, we 

have released a novel approach for modifying both at the 1-, 3- and 4-, 5-, 9-, 

10-positions using classical methods from 1,3-dibromo-7-tert-butylpyrene in 

considerable yield,15 in this case, a tert-butyl group plays a role for protecting the ring 

against electrophilic attack at the 6- and 8-positions.16 Herein, we further present a 

novel synthetic strategy to realize regio-selective substitution at the 1,3- and 

6,8-positions of pyrene for the construction of dipolar molecules,  
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Results Discussion sections 

Assuming that the tert-butyl group can be removed by an effective approach, the 

effective approach to regio-selective substitution at the 1,3- and 6,8-positions of 

pyrene would be achievable. Based on our knowledge, the bulky tert-butyl group can 

be removed by using Nafion-H as catalyst.17 Following this inspiration, the 

1,3-diphenylpyrene (3) was successfully synthesized in 85 % yield from 

7-tert-butyl-1,3-diphenylpyrene, which is a key step for building dipolar architectures 

along the Z-axis.18 The detailed synthetic procedure is illustrated in Scheme 1. Further 

bromination of 3 afforded 1,3-dibromo-6,8-diphenylpyrene (4) in high yield (79 %).19 

Compound 4 is a novel bromide precursor used for synthesizing the desired dipolar 

architectures (5). This is the first example for the regio-selective, stepwise, and 

asymmetric substitution of pyrene at the active 1,3-, and 6,8-positions. Compared 

with along short axis (4,5,9,10-position) or at 2,7-positions, introduces dipole to 

pyrene as well, asymmetric functionalization both at 1,3-positions and 6,8-positions 

of pyrene show potential advantages, a) more artificial dipolar molecules 

pyrene-based would be synthesized from bromopyrene intermediations by 

Pd-catalyzed; b) introduce the substitutions at 1,3,6,8-positions would lead to a 

special influence on both the S2←S0 and S1←S0 transition18,19 compared with other 

substitution pattern, c) this strategy is beneficial to tune the band gap of the dipolar 

architectures to realize color control by introducing the substitution groups. For 

comparison, 1,3,6,8-tetraphenylpyrene (TPPy, 6)20 was synthesized.  
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Scheme 1. Synthetic route for the preparation of 5 and 6. (a) Nafion-H, o-xylene, 

160 °C, 24 h, (b) BTMABr3 (benzyltrimethylammonium tribromide), CH2Cl2/MeOH, 

room temp., 12 h, (c) NHPh2F, Pd(OAc)2/(tBu)3P/K2CO3, o-xylene, 160 °C, 24 h, (d) 

4-Ethynyl-1,1'-biphenyl, [PdCl2(PPh3)2], CuI, PPh3, Et3N/DMF (1:1), 48 h, 100 °C, 

(e) CuCN, NMP, 48 h, 180 °C, (f) phenylboronic acid, toluene, Pd(PPh3)4, K2CO3, 

90 °C, 24 h. 

 

Figure 1. X-ray structures of molecules 3 and 5b 

Suitable single crystals were obtained by slow evaporation of CH2Cl2/hexane 

solvent for 2,16 5b (CCDC 1025083) and 6 (CCDC 1025084), CH2Cl2/acetone for 3 

(CCDC 1025085) at RT. The crystal structures are presented in Figure 1 and the 

supporting information. Generally, the packing of the structures, and the molecular 
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conformation in the crystal were influenced by short intermolecular interactions or the 

π-stacking present. For instance, the phenyl moieties located at the pyrene 

1,3-positions in 2, are all twisted with torsion angles in the range 45–65° relative to 

the pyrene plane; which is arranged in a herringbone motif with a slip angle of 28°;16 

molecules of 3 are held together by strong face-to-face π···π stacking interactions with 

a shortest separation of 3.31 Å; the dipolar molecule 5b exhibited a π-stacked packing 

motif with π–π distances in the range 3.38–3.51 Å; but no π···π stacking was observed 

in 6 (see SI). Interestingly, 5b is remarkably planar with a twist angle of 

approximately 40.49(3)° between the adjacent rings of the biphenyl moiety, which is 

consistent with reported values.21 The intriguing conformations of the dipolar 

molecules can also lead to special optical properties. 

The effect on the photophysical properties of a series of 1,3-diphenyl- 

6,8-donor/acceptor asymmetrically substituted pyrenes 3, 5 and 6 are discussed. 

Figure 2 exhibits the absorption spectra of 3, 5 and 6 in dilute dichloromethane. In the 

D-π-A type molecules, with a strong –NPh2F donor in 5a, the absorption spectra 

exhibited a weak but broad band in the low energy absorption (375-400 nm), which 

indicated a charge-transfer (CT) excitation between the donor and acceptor moieties. 

For 5b, a broad band around 332 nm is mainly due to a localized π-π* excitation of 

the biphenylethynyl group with high extinction coefficients (ε = 48400 mol-1 cm-1 L). 

In contrast, the strong acceptor group -CN in 5c has a strong influence on both the S1

←S0 and S2←S0 excitations, consistent with the large extinction coefficients with 

oscillator strengths. However, the compounds 3 and 6 exhibited a similar absorption 
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pattern with little influence on both the S1←S0 and S2←S0 excitation, as reflected in 

the similar extinction coefficients (Table 1). Obviously, with an electron withdrawing 

group asymmetriclly substituted at the 6,8-positions, the S1←S0 excitation has high 

extinction coefficients, while the electron donors play a significant role in influencing 

both the S1←S0 and S2←S0 excitation by lowering the extinction coefficients. 

Table 1. The photophysical and electrochemical properties of compounds 3, 5 and 6. 

R 
λ(S1←S0)

a / ε 

,nm / M-1 cm-1 L 

λ(S2←S0)
 a / ε 

nm / M-1 cm-1 L 

λmax Abs
b 

(nm) 

λmax PL 

(nm) 

Stokes shift 

nm 
Φf

c 
HOMO c (IP) d 

(eV) 

LUMO 

(eV) 

Energy gap 

(eV) 

3 357 (28000) 286 (41000) 359 396a (462) b 39 (103) 0.27a (0.03)b -5.14 (-5.83) -1.58 e (-2.76) f 3.56c (3.07) g  

5a 433 (18500) 285 (27000) 438 488 (469) 55 (31)   0.92 (0.42)                                                              -4.84 (-5.70) -1.88 (-3.15) 2.97 (2.55) 

5b 437 (12900) 332 (48400) 455 462 (510) 25 (55) 0.90 (0.44)                                                                        -4.93 (-5.77) -2.12 (-3.24) 2.80 (2.53) 

5c 411 (46100) 296 (41000) 425 456 (537) 45 (112) 0.96 (0.32) -5.90 (---) -2.69 (---) 3.21 (2.69) 

6 394 (29500) 304 (41200) 400 421 (464) 27 (64) 0.87 (052) -5.01 (-5.76) -1.69 (-2.93) 3.32 (2.83) 
a Measured in dichloromethane at room temperature. b As a thin film. c DFT/B3LYP/6-31G* using Gaussian. d determined using AC-3. e LUMO = 

Eg+HOMO.  f LUMO (eV) = Eg – IP, g Calculated from λedge in thin film. dotted line: IP>6.2eV. 

 

Figure 2. (a) Absorption (b) fluorescence spectra of 3, 5 and 6 in CH2Cl2, (c) PL 

spectra and (d) cyclic voltammograms of 5. 

The emission maxima of 3, 5 and 6 were in the range of 396-488 nm in dilute 

dichloromethane solution with a systematic bathochromic shift following the order 

3<6<5c<5b<5a, suggesting that the energy gap could be fine-tuned between the 

ground and excited states by choosing the substituent group. The fluorescence of 5a 
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exhibited pronounced positive solvatochromism with an 

intramolecular-charge-transfer (ICT) state, in which the emission wavelength display 

a large red shift from 464 (in cyclohexane) to 503 (in DMF) (see SI); whereas the 

D-π-A conjugated compound 5b displayed a maximum emission peak at 462 nm with 

a shoulder at 488 nm, and contributed to an efficient mesomeric 

intramolecular-charge-transfer (MICT) emission, due to a twist angle (40.49(3)°) of 

the Franck–Condon vertical state between the diphenyl moieties.22 The dipolar 

molecule 5 exhibits solvent dependency of the spectroscopic and photophysical 

properties. The linear relationship of the Stokes shift (∆Vst) against the solvent 

parameters (ε, n) of 5 were determined by a Lippert–Mataga plot.16 Obviously, the 

MICT of the solvent polarity dependence of the fluorescence bands is weaker than for 

the TICT case (See SI). 

Compounds 5b and 5c as films exhibited green emission and displayed a λ,film max at 

510 nm and 537 nm, respectively, which is significantly red shifted relative to their 

solutions due to the planar structure of the molecule which tends to form dimers. 

However, the maximum of 5a was blue-shifted by 19 nm compared with 

measurement in solution, due to the presence of the bulky electron-donor –NPh2F 

moiety which not only plays a role in suppressing aggregation in solid, but also 

affects the conformation of the electronic structures, so can tune energy gap. 

Additionally, in solution, the dipolar molecules 5 have similar PL quantum yields (> 

0.90), suggesting displays excited state ICT character. The red shifted emission with 

decreased quantum yields of 5 (0.32–0.44) in the solid state attribute to the π-π 
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stacking interactions. Whereas 3, both in solution and in thin films, exhibited the 

lowest PL efficiencies, attributed to the strong molecular aggregation. 

The electrochemical properties of 5 were investigated by cyclic voltammetry (CV). 

The oxidation of 5a and 5b displayed a quasi-reversible oxidation process with 

HOMO energy levels of 5.15 eV and -5.51eV, respectively. For compound 5c, the 

oxidation wave was not clearly observed owing to the presence of the strongly 

electron-withdrawing -CN group. The result was further confirmed by photoelectron 

spectroscopy. The ionization potential of 3, 5a, 5b and 6 are measured in thin film, 

and IP = 5.83, 5.70, 5.77 and 5.76 eV (Table 1). However, in the presence of the 

strong electron withdrawing group -CN in 5c, the maximum IP range was greater than 

the instrument full-scale (6.2 eV). The optical gap of the 3, 5 and 6 were calculated 

from the absorption spectra of their thin films at 3.07, 2.55, 2.53, 2.69 and 2.83 eV, 

respectively. 

 
Figure 3. Computed molecular orbital plots (B3LYP/6–31G*) of 5a-c. 

The energy gap was further evaluated by density functionalized theory (DFT) 
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calculations. As shown in Figure 3, Obviously, due to the substituents asymmetrically 

located at the 1,3- and 6,8-positions, the HOMO of 5a mainly spread over the -NPh2F 

moiety and the pyrene ring, whereas the LUMO extended on pyrene core and 

fragment phenyl ring, respectively, which implies a partial charge separation between 

donor (-NPh2F moiety) and acceptor (phenyl moiety); for 5b, the HOMO and LUMO 

were delocalized in the pyrene moiety; However, with strong acceptor -CN in 5c, the 

HOMO located at entire molecular skeleton and the LUMO mostly existed at pyrene 

and cyano group. Obviously, the ICT states would be formed in molecular 5a and 5c 

along Z-axi with a strong donor at 1,3-positions and an acceptor at 6,8-positions. The 

calculated HOMO-LUMO gap of 5 is 2.97, 2,81 and 3,21 eV. In addition, the fully 

optimized structure of 5b is shown to exhibit a twist angle for C21-C22-C25-C26 of 

36o, very close to the X-ray structure. 

Conclusion 

In summary, a facile synthetic strategy for the construction of dipolar 

architectures was explored, in which the asymmetric unit including phenyl 

rings and NPh2F/biphenylethynyl/CN moieties are introduced into the 

1,3-positions and 6,8-positions along the Z-axis of the pyrene core by 

regio-selective substitution. X-ray analysis has confirmed the novel asymmetric 

substitution of the pyrene core. The small dipolar molecules pyrene-based 

compounds possess fine ICT state between D-A units in the ground state. This 

article presents a revolutionary methodology for the functionalization of the 

pyrene core and has potential application in organic photonics. 
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Experimental Section 

General: All melting points are uncorrected. 1H / 13C NMR spectra were recorded on 

a FT- NMR spectrometer (300 MHz and 400MHz), respectively and referenced to 

7.26 and 77.0 ppm for chloroform-D solvent with SiMe4 as an internal reference: 

J-values are given in Hz. IR spectra were measured for samples as KBr pellets in a 

FT-IR spectrophotometer. Mass spectra were obtained with a Mass Spectrometer at 

75 eV using a direct-inlet system. UV/Vis spectra were obtained with a UV/Vis/NIR 

spectrometer in various organic solvents. Fluorescence spectroscopic studies were 

performed in various organic solvents in a semimicro fluorescence cell (Hellma®, 

104F-QS, 10 × 4 mm, 1400 µL) with a spectrophotometer. Fluorescence quantum 

yields were measured using absolute methods. Differential scanning calorimeter (DSC) 

was performed under nitrogen atmosphere at a heating rate of 10 °C min-1. 

Photoluminescence spectra were obtained using a luminescence spectrometer. 

Ionization potential was determined by atmospheric photoelectron spectroscopy. 

Electrochemical properties of HOMO levels were determined by Electrochemical 

Analyzer. The cyclic voltammetry was carried out in 0.10 M tetrabutylammonium 

perchlorate in anhydrous dichloromethane and THF with a scan rate of 100 mV s 1 at 

room temperature. The quantum chemistry calculation was performed on the 

Gaussian 03W (B3LYP/6–31G* basis set) software package. Crystallographic data of 

titled compound were collected by graphite monochromated Mo Kα radiation (λ = 

0.71073 Å) in the ω scan mode. Data (excluding structure factors) on the structures 

reported here have been deposited with the Cambridge Crystallographic Data Centre 
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with deposition numbers. CCDC 1025083-1025085 contain the supplementary 

crystallographic data for this paper. These data can be obtained free of charge from 

The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif.  

Film preparation: The thin films were prepared by solution process. Dissolve 10 mg 

sample in 1 mL toluene solution, the solution is placed on the substrate, which is then 

rotated at high speed in order to spread the fluid by centrifugal force. 

Material: Unless otherwise stated, all other reagents used were purchased from 

commercial sources and were used without further purification. The preparations of 

2-tert-butylpyrene (1)23 and 7-tert-butyl-1,3-dibromopyrene (2)16 were described 

previously.  

Synthesis of 7-tert-butyl-1,3-diphenylpyrene (2) 

A mixture of 7-tert-butyl-1,3-dibromopyrene (1) (200 mg, 0.5 mmoL), phenylboronic 

acid (250 mg, 2.0 mmoL) in toluene (12 mL) and ethanol (4 mL) at room temperature 

was stirred under argon, and K2CO3 (250 mg, 1.8 mmoL) and Pd(PPh3)4 (70 mg, 0.06 

mmol) were added. After the mixture was stirred for 30 min at room temperature 

under argon, the mixture was heated to 90 °C for 24 h with stirring. After cooling to 

room temperature, the mixture was quenched with water, extracted with CH2Cl2 (2 × 

30 mL), washed with water and brine. The organic extracts were dried with MgSO4 

and evaporated. The residue was purified by column chromatography eluting with 

(CH2Cl2/hexane,1:1) to give 2 as white prisms (CH2Cl2/hexane, 1:2) (124 mg, 63 %). 

M.p. 186 °C; IR (KBr): νmax = 2958, 2900, 2866, 1766, 1597, 1484, 1462, 1442, 1396, 
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1360, 1227, 1151, 875, 837, 810, 764, 702, 613, 503, 457 cm-1; 1H NMR (300 MHz, 

CDCl3): δH = 1.59 (s, 9H, tBu), 7.44–7.69 (m, 10H, Ar-H), 7.94 (s, 1H, pyrene-H2), 

8.01 (d, J = 9.2 Hz, 2H, pyrene-H4,10), 8.18 (d, J = 9.2 Hz, 2H, pyrene-H5,9), 8.20 ppm 

(s, 2H, pyrene-H6,8); 13C NMR(75 MHz, CDCl3): δ = 149.2, 141.1, 137.1, 131.2, 

130.6, 129.0, 128.3, 127.8, 127.6, 127.2, 125.3, 125.1, 123.4, 122.2, 35.2, 31.9 ppm; 

MS: m/z 410.2 [M]+; elemental analysis calcd. (%) for C32H26 (410.2): C 93.62, H 

6.38; found: C 93.81, H 6.19. 

Synthesis of 1,3-diphenylpyrene (3) 

A mixture of 1,3-diphenyl-7-tert-butylpyrene (2) (410 mg, 0.09 mmoL), Nafion-H 

(400 mg), and o-xylene (4 mL) were refluxed for 24 h, and then cooled to room 

temperature. The solid was removed in vacuo and the mother solution collected. The 

crude product was purified by column chromatography using hexane as eluent to 

afford a yellow solid (300 mg, 85 %). M.p. 136.5–137.2 °C. 1H NMR (300 MHz, 

CDCl3): δ = 7.45–7.50 (m, 2H, Ar-H), 7.53–7.58 (m, 4H, Ar-H), 7.66-7.68 (m, 4H, 

Ar-H), 8.00 (d, J = 8.8 Hz, 2H, pyrene-H), 8.05 (d, J = 2.9 Hz, 2H, pyrene-H), 8.16, (s, 

1H, pyrene-H), 8.20 (d, J = 2.9 Hz, 2H, pyrene-H) and 8.22 (s, 1H, pyrene-H) ppm; 

13C NMR (100 MHz, CDCl3): δ  = 141.01, 137.30, 131.28, 130.65, 129.35, 128.40, 

127.93, 127.46, 127.32, 126.13, 125.27, 125.16 and 124.98 ppm. FABMS: m/z: 

354.22 (M+). C28H18 (354.44): calcd C 94.88, H 5.12; found: C 94.85, H 5.11. 

Synthesis of 1,3-dibromo-6,8-diphenylpyrene (4) 

To a mixture of 1,3-diphenylpyrene 3 (300 mg, 0.85 mmol) in dry CH2Cl2 (30 mL) 

was added dropwise a solution of BTMABr3 (benzyltrimethylammonium tribromide) 
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(1.0 g, 2.6 mmol) in CH2Cl2 (10 mL) and methanol (5 mL) at 0 °C for 1 h under argon 

atmosphere. The resulting mixture was allowed to slowly warm up to room 

temperature and stirred overnight. The reaction mixture was poured into ice-water (60 

mL) and neutralized with an aqueous 10 % Na2S2O3 solution. The mixture solution 

was extracted with dichloromethane (2 × 20 mL). The organic layer was washed with 

water (2 × 20 mL) and saturated brine (20 mL), then the solution was dried (MgSO4) 

and condensed under reduced pressure. The crude compound was washed with hot 

hexane to afford pure 1,3-dibromo-6,8-diphenylpyrene 3 (330 g, 79 %) as a yellow 

solid. M.p. 184–186°C. 1H NMR (400 MHz, CDCl3): δ = 7.49 (m, 2H, Ar-H), 

7.53–7.57 (m, 4H, Ar-H), 7.62–7.67 (m, 4H, Ar-H), 8.03 (s, 1H, pyrene-H), 8.29 (d, J 

= 9.2 Hz, 2H, pyrene-H), 8.33 (d, J = 9.6 Hz, 2H, pyrene-H) and 8.49 (s, 1H, 

pyrene-H) ppm; 13C NMR (100 MHz, CDCl3): δ = 140.41, 138.61, 133.60, 130.58, 

130.47, 129.29, 128.45, 127.91, 127.61, 127.17, 127.10, 125.70, 124.30 and 119.24 

ppm. FABMS: m/z: 510.05 (M+). C28H16Br2 (512.23): calcd C 65.65, H 3.15; found: C 

65.35, H 3.34. 

Synthesis of 1,3-bis[di(4-fluorophenyl)amino]-6,8-diphenylpyrene (5a) 

The corresponding 1,3-dibromo-6,8-diphenylpyrene (150 mg, 0.29), bis(4-fluoro- 

phenyl)amine (180 mg, 0.87 mmoL), Pd(OAc)2 (40 mg, 0.18 mmoL), (t-Bu)3P (0.05 

mL), sodium tert-butoxide (200 mg, 2.05mmoL), and toluene (10 mL) were mixed 

together and heated at 120 °C for 24 h. The reaction was quenched with water (30 mL) 

and the organic layer taken into 100 mL of CH2Cl2, washed with brine solution, and 

dried over MgSO4. Evaporated of the solvent under vacuum resulted in a solid residue. 
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The residue was adsorbed in silica gel and purified by column chromatography using 

hexane as eluent and recrystallization from ethyl acetate to afford the corresponding 

desired compound 5a as green powder (125 mg, 56 %); M.p. 161.1–162.5 °C. 1H 

NMR (400 MHz, CDCl3): δ = 6.84–6.94 (m, 20H, Ar-H), 7.40-7.44 (m, 2H, Ar-H), 

7.49 (t, J = 7.4 Hz, 8H, Ar-H), 7.53 (s, 1H, pyrene-H), 7.56 (d, J = 7.2 Hz, 8H, Ar-H), 

7.94 (s, 1H, pyrene-H), 8.00 (d, J = 9.6 Hz, 2H, pyrene-H) and 8.03 (d, J = 9.6 Hz, 2H, 

pyrene-H)) ppm; 13C NMR (100 MHz, CDCl3) δ = 159.27, 156.86, 144.67, 144.65, 

141.56, 140.63, 137.89, 130.47, 129.97, 128.48, 128.34, 128.04, 127.40, 126.55, 

125.60, 123.19, 123.11, 122.80, 116.07 and 115.85 ppm. FABMS: m/z: 760.31 (M+). 

C52H32F4N2 (760.82): calcd C 82.09; H 4.24, N 3.68; found: C 82.16, H 4.39 N 3.55. 

Synthesis of 1,3-bis[(3-biphenyl)ethynyl]-6,8-diphenylpyrene (5b) 

Mixture of 1,3-dibromo-6,8-diphenylpyrene (50 mg, 0.10 mmoL), PdCl2(PPh3)2 (21 

mg, 0.03 mmoL), CuI (10 mg, 0.05 mmoL), PPh3 (20 mg, 0.08 mmoL), and 

4-ethynyl-1,1'-biphenyl (53 mg, 0.30 mmoL) was added into a degassed solution of 

triethylamine (5 mL) and N,N-dimethylmethanamide (5 mL) under argon atmosphere. 

The resulting mixture was stirred at 100 oC for 48 h. After cooling to room 

temperature, the mixture was quenched with water, extracted with CH2Cl2 (2 × 30 

mL), washed with water and brine. The organic extracts were dried with MgSO4 and 

evaporated. The residue was purified by column chromatography eluting with 

(CH2Cl2/hexane, 2:1) to give 5b as dark yellow powder (CH2Cl2/hexane, 1:2) (28 mg, 

40 %). M.p. 263.1–264.9 °C. 1H NMR (300 MHz, CDCl3): δ = 7.39 (m, 1H, Ar-H), 

7.49 (m, 5H, Ar-H), 7.58 (m, 5H, Ar-H), 7.65–7.71 (m, 13H, Ar-H), 7.77 (d, J = 8.2 
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Hz, 4H, Ar-H), 8.06 (s, 1H, pyrene-H), 8.38 (d, J = 9.3 Hz, 2H, pyrene-H), 8.50 (s, 

1H, pyrene-H), 8.67 (d, J = 9.3 Hz, 2H, pyrene-H); 13C NMR (100 MHz, CDCl3) δ = 

141.92, 141.19, 140.64, 140.31, 140.06, 138.57, 133.31, 132.90, 132.08, 131.98, 

130.67, 129.96, 128.87, 128.41, 128.11, 127.82, 127.66, 127.51, 127.13, 127.07, 

127.00, 125.43, 122.22, 120.60, 117.65, 95.38 and 88.72 ppm. FABMS: m/z: 706.33 

(M+). C56H34 (706.87): calcd C 95.15, H 4.85; found: C 95.07, H 5.03. 

Synthesis of 1,3-dicyano-6,8-diphenylpyrene (5c) 

A mixture of 1,3-dibromo-6,8-diphenylpyrene (2) (100 mg, 0.20 mmoL), CuCN (42 

mg, 0.49 mmoL), and N-methyl-2-pyrrolidone (10 mL) for 24 h, and then cooled to 

room temperature. The solid was removed in vacuo and the mother solution collected. 

the water was added into the solution and extracted with CH2Cl2 (2 × 30 mL), washed 

with water and brine. The organic extracts were dried with MgSO4 and evaporated. 

The residue was purified by column chromatography eluting with (CH2Cl2/hexane, 

4:1) to give 5c as yellow powder (43 mg, 54 %). M.p. up to 300 °C. IR: 1H NMR (400 

MHz, CDCl3): δ = 7.56–7.67 (m, 10H, Ar-H), 8.24 (s, 1H, pyrene-H), 8.50 (d, J = 9.6 

Hz, 2H, pyrene-H), 8.56 (s, 1H, pyrene-H), 8.63 (d, J = 8.8 Hz, 2H, pyrene-H); 13C 

NMR (100 MHz, CDCl3) δ = 141.95, 139.34, 135.60, 133.55, 131.94, 131.44, 130.71, 

128.76, 128.33, 127.41, 124.34, 123.69, 123.58, 117.11 and 105.60 ppm. FABMS: 

m/z: 404.35 (M+). C30H16N2 (404.46): calcd C 89.09, H 3.99; N, 6.93; found: C 89.19, 

H 3.69; N, 6.53. 

Synthesis of 1,3,6,8-tetraphenylpyrene (6) 

1,3,6,8-tetrabromopyrene (200 mg, 0.386 mmoL), phenylboronic acid (254 mg, 2.08 
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mmoL), and Pd(PPh3)4 (50 mg, 0.04 mmoL) and aqueous 2.0 M NaOH (2 mL) were 

mixed in a flask containing with argon saturated toluene (10 mL). The reaction 

mixture was stirred at 90 °C for 20 h. After it was cooled to room temperature, the 

reaction mixture was extracted with dichloromethane (40 mL × 2). The combined 

organic extracts were dried with anhydrous MgSO4 and evaporated. The crude 

product was purified by column chromatography using hexane/dichloromethane (1:4) 

as eluent to provide a pale powder and recrystalized from hexane to afford 

1,3,6,8-tetraphenylpyrene 6 as light yellow powder (146 mg, 74 %). M.p 

300.1–301.8 °C. νmax (KBr)/cm-1 2952, 1608, 1513, 1494, 1459, 1286, 1245, 1176, 

1106, 1035, 835, 549 and 476. 1H NMR (400 MHz, CDCl3): δ = 7.43–7.47 (m, 2H, 

Ar-H), 7.53 (t, J = 7.6 Hz, 8H, Ar-H), 7.66 (d, J = 8.0 Hz, 8H, Ar-H), 8.00 (s, 2H, 

pyrene-H) and 8.17 (s, 4H, pyrene-H) ppm; 13C NMR (100 MHz, CDCl3) δ = 141.04, 

137.22, 130.613, 129.498, 128.31, 128.10, 127.26, 125.91 and 125.28 ppm. FABMS: 

m/z: 506.30 (M+). C40H26 (506.63): calcd C 94.83, H 5.17; found: C 94.77, H 5.29.  
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