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ABSTRACT 

Uncertainty in the amount adsorbed in manometric adsorption isotherm measurements is well 

established. Here, we extend uncertainty methodologies from adsorption isotherm data 

uncertainty and apply them to calculate pore size distributions based on adsorption integral 

methods. The analyses consider as variables: uncertainty in adsorption isotherm data, 

regularization parameter, molecular potential model, and the number of single pore isotherms 

calculated with an associated quadrature interval. We demonstrate how the calculated pore 

size distribution is quite insensitive to the uncertainty in experimental data, but in contrast, 

the uncertainty in the experimental data affects the calculated value of the optimized 

regularization parameter which, in turn, leads to considerable variation in the calculated pore 

size distribution. The calculated pore size distribution is also shown to be highly dependent 

on the potential model selected and on the number of single pore isotherms applied to the 

inversion process. We conclude and suggest a quantitative comparison between calculated 

pore size distributions should be discouraged unless the uncertainty in the experimental data 

is relatively small and, default values for regularization parameters, potential models, the 

number of single pore isotherms and their distribution are exactly the same for each pore size 

distribution evaluation. 

Keywords: Adsorption; Pore size distribution; Uncertainty; Porous solids 

 

1. INTRODUCTION 

Gas adsorption measurement has been applied to a diverse range of powders and porous 

materials for surface characterization in terms of surface chemistry and surface density of 

bound functional groups, and for the determination of physical properties including: specific 

surface area; pore connectivity, and pore size distribution (PSD) [1]. Over the past 2-3 
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decades, elaborate computer programs for molecular modelling have resulted in significant 

advances in porous materials characterization, particularly for PSD determination. 

Porous materials offer challenging experimental and theoretical demands for an 

unequivocal interpretation of the PSD. In most cases, the anticipated complex internal 

structure, due to interconnected, irregularly-shaped pores of different sizes are simplified by 

assuming a distribution of equivalent, regularly-shaped, entities such as slit or cylinder pores. 

Porous materials derived from naturally-sourced materials usually offer more complex 

internal structures than those developed synthetically via a well-established recipe. In 

addition to this, pore connectivity is not considered in PSD determination models, effect of 

functional groups and their distribution on the surface is ignored and interaction between 

neighbouring pores is neglected. Hence, calculated PSD must be regarded as “effective pore 

size distribution” [2]. Despite the above shortcomings and simplifying assumptions, 

adsorption based PSD determination methods are still considered powerful tools for PSD 

determination. These methods can be classified into two main categories: classical methods 

and the integral equation approach. 

Due to differences in pore filling and fluid-solid interaction mechanisms, the classical 

thermodynamics-based methods for PSD determination developed separately for micropores 

and mesopores [3]. The more recent methods for PSD determination are based on an 

inversion of the adsorption integral equation; for a single component adsorptive it can be 

written as: 

   (1) 

Here, N(T,P) is the experimental adsorption isotherm data at a given temperature T and 

pressure P. The function ρ(w,T,P) represents a series of simulated isotherms nominally as 

single pore isotherms or SPIs (kernels) for the same adsorptive within an ideal-shaped pore of 



 4 

a specified dimension, w, and f(w) is a pore size distribution function. The integration limits 

as cited are typically adjusted to accommodate the minimum and maximum pore sizes to be 

defined via the simulated SPIs. A PSD derived from the adsorption integral equation method 

is classified via the approach taken to calculate the SPI. These isotherms can be developed 

via either molecular dynamics (MD) calculations, a Monte Carlo (MC) simulation, or using a 

Density Functional Theory approach. The inversion of the adsorption integral equation is 

independent of the SPI-generation method. 

The MD method solves Newton’s equations of motion to calculate velocities and positions 

of a set of particles that are adsorbed by a simulated porous solid [1]. In MC simulation, SPIs 

are calculated by using a Grand Canonical ensemble (GCMC) as a μVT ensemble [4]. This 

method usually has shorter processing times compared to the MD method. The density 

functional theory correlates the whole system energy (Grand Potential Energy or GPE) as a 

function of particle density distribution within the system. The particular density distribution 

of particles that minimizes the GPE is considered to be the equilibrium density distribution 

[2]. DFT calculations require considerably less computational time than MD or MC methods, 

and yields equivalent equilibrium predictions. Wu presented a review of DFT applied to 

various molecular simulations [5]. 

Evans et al. introduced DFT to model gas adsorption as capillary condensation in well-

defined pores [6, 7], with the method subsequently extended by Seaton et al. using a local 

DFT to define the PSD in a porous activated carbon [8]. Lastoskie et al. [9] modified this 

approach using a non-local DFT (NLDFT) model proposed by Tarazona et al. [10] for PSD 

calculation. A comparison of these methods indicates the provision for short-ranged 

correlations in the fluid density within the NLDFT yields a superior estimation of adsorbed 

phase density. This method has been widely used for PSD determination in the literature and 
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is now adopted as a standard for PSD analysis by the International Standard Organization 

(ISO) [11]. 

The NLDFT and previous molecular modelling methods assumed homogeneous, 

structurally smooth pore walls at the atomic scale. As a consequence of this simplifying 

assumption, NLDFT-modelled SPIs exhibit steps corresponding to molecular layering 

effects, eventually resulting in the appearance of artificial gaps in the calculated PSD. 

Neimark and co-workers later proposed the Quenched Solid Density Functional Theory 

(QSDFT) for silica-based [12] and carbon-based [13] materials by accounting for surface 

heterogeneity and roughness effects as a distribution of solid atoms on the surface and via the 

introduction of a single roughness parameter. The resulting SPIs for nitrogen and argon 

resulted in “smoother” isotherms with no layering steps, and a superior fit to the experimental 

data [14]. Landers et al. provide a review of recent advances in DFT methods for porous 

material characterization [15]. 

An application advantage of the adsorption integral equation method over the classical 

thermodynamics-based methods for PSD analysis derives from the uninterrupted range of 

pore sizes, from the smallest micropore to the largest mesopore, based on a gas adsorption 

isotherm from the lowest measureable relative pressure up to saturation. A disadvantage is 

due to the limited number of SPI libraries available in the literature confined to a few 

adsorptives at specific temperatures. Nonetheless, since the integral methods accommodate 

the entire (nitrogen-based) pore size distribution(s) and pedagogically are based on fewer 

initial assumptions compared to classical methods, the adsorption community is accepting 

them as standard characterization methods. 

For gas adsorption analysis of adsorbents, we suggest that at least two distinct categories of 

uncertainties need to be recognized. Experimental data uncertainty is the variation of the 

actual measured parameter leading to a combined uncertainty in the experimental result. Only 
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a few studies of adsorption uncertainty are available in the literature. Loebenstein and Deitz 

introduced large dead-spaces in sampling tubes as the main sources of uncertainty in 

adsorption data [16]. Ross and Olivier addressed uncertainty corresponding to apparatus 

calibration [17]. Robens et al. investigated the non-ideal behaviour contributions of helium 

and nitrogen [18]. The effect of liquid nitrogen level control on adsorption results was first 

reported by Killip et al. [19]. Badalyan and Pendleton built an automated manometric gas 

adsorption apparatus, calibrated dosing and sample volumes and propagated uncertainty for 

each adsorption isotherm result [20, 21]. They introduced sample mass measurement, liquid 

nitrogen-level control, and dead-volume determination as the main sources of uncertainty in 

experimental data. Secondly, further analysis derived from the isotherm data, such as BET 

specific surface area, αS-analyses, and pore volume showed an increase in their respective 

values [22, 23]; PSD analysis would also introduce additional combined uncertainty. 

Recently Caguiat et al. suggested an interpretation of PSD in nanoporous adsorbents. They 

suggested that a proper interpretation of the PSD relies on the correct selection of SPIs and 

adsorptives [24]. Their study examined four different carbon porous materials and their PSDs 

were calculated by using commercial and DFT theory. 

In contrast with uncertainty in PSD analyses due to the application of classical 

thermodynamics methods [25], the present work begins by identifying the optimum 

parameters for the inversion of the adsorption integral equation to define an optimized PSD. 

To make a parametric analysis, we consider holding all but one of the variables constant at 

the optimized value, then examine the effect of variation of the variable on the resulting PSD. 

In some cases, it was necessary to adjust two of the variables to fully appreciate the impact of 

change on the resulting PSD. The variables considered were the combined standard 

uncertainty in the amount adsorbed, the value of the regularization parameter, the molecular 

model employed to calculate the SPIs, and the influence of the number of SPIs on the PSD. 
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2. METHODS 

2.1. Experimental measurements 

Single sheet, plain-weaved activated carbon cloth (ACC) FM1/250 (ex. Calgon Carbon, 

Pittsburgh, PA, USA) was used as it showed a narrow PSD in the micropore range [26]. 

Samples were degassed prior to the experiments at 200 ºC and a background vacuum of 0.1 

mPa for 8 h. Thermal transpiration effects were accounted for at pressures below 266 Pa. 

Throughout the adsorption–desorption process the liquid nitrogen level was controlled 

constant ± 0.15 mm. Ultra-high purity (99.999%) helium and nitrogen (ex. BOC Gases, 

Adelaide, Australia) were used for dead-space measurements and adsorption experiments, 

respectively. The adsorption isotherm data were obtained using the adsorption apparatus 

presented in [20], and the uncertainty in the amount adsorbed propagated from the measured 

volumes and pressures using these authors’ methods [21]. 

2.2. Theoretical approach 

The theoretical approach consisted of two stages: firstly, a MC simulation method to 

calculate the SPIs, and secondly, an integral inversion procedure to calculate the PSD. 

2.3. Simulation methods 

A set of local isotherms was calculated for nitrogen adsorbed by a simulated carbon pore 

system using a GCMC algorithm [4]. In all cases, the simulation was regarded as equilibrated 

after ≥ 5 x 105 moves (or iterations) with a similar number of moves required to calculate the 

amount adsorbed at each pre-defined pressure. The isotherms were calculated for a carbon 

containing slit-shaped pores. The pore model was a smooth, parallel-surfaced slit comprised 

of ordered carbon atoms. The interaction potential (energy), usf , for each nitrogen (particle), 

f, with the surface, s, was evaluated via a Steele function defined in Eq (2): 
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where, ρs is the surface density of the carbon centre (38.2 nm-2), ∆ is the interlayer spacing 

between two adjacent graphene layers (0.3354 nm), z is the distance of the particle centre 

normal to the surface plane, σsf and εsf are the cross solid-fluid molecular parameters 

calculated using the Lorentz-Berthelot rule. The Lennard-Jones (L-J) parameters for carbon 

are σss = 0.34 nm and εss = 28 K. 

Considering the shape of the nitrogen molecule, either of two distinct L-J potential models 

could be used for SPI simulation: a single-centre model or a two-centre model. For the 

former, the collision diameter (σff) and well depth (εff) parameters are 0.3615 nm and 101.5 K, 

respectively [27]. For the latter, the two centres are each nitrogen atom 0.11 nm apart, with σff 

= 0.331 nm and εff = 36 K. This model also accounts for charge distribution as + 0.963e at the 

centre and – 0.482e at each edge along the N≡N axis (as the L-J sites) [28]. 

The fluid-fluid interaction potential was calculated by Eq (3), 
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where uij is the interaction energy between fluid molecules i and j. A and B are the number 

of charges on the molecules i and j, and C and D are the number of L-J sites on the molecules 

i and j. Also, ε0 is the permittivity of a vacuum, ab
ijr  is the separation between the charge a on 

molecule i and the charge b on molecule j having charges a
iq  and b

jq  respectively, and cd
ijr  is 

the separation between the L-J site c on molecule i and the L-J site d on molecule j with 

combined L-J well depth of cd
ijε  and combined L-J collision diameter of cd

ijσ  for the two 

sites. 
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2.4. Integral Inversion procedure 

The inversion of the integral within Eq (1) can be made as a matrix application [29]: 

 N AWF=   (4) 

where N is a vector including amount adsorbed values from the measured adsorption 

isotherm, W is a diagonal matrix, defined by Eq (5), wherein its non-zero components are 

calculated from spaces between two adjacent quadrature intervals, and A is a matrix 

consisting of the SPIs. 

 ( )1j jW diag w w+= −   (5) 

Each column in A includes an isothermal amount adsorbed for a single pore with a size 

equal to the average corresponding quadrature interval, wj. Each SPI would be calculated (or 

interpolated) for the entire pressure range of the isotherm. The term F is the PSD function 

vector. From Eq. (4), the solution for F would be calculated by minimizing the residuals 

function: 

 ( ) ( )TR N AWF N AWF= − −   (6) 

Two mathematical dilemmas exist for the inversion of the integral in Eq. (1) via the 

minimization of the residuals in Eq. (6). Firstly, Eq. (1) is mathematically ill-conditioned and 

any subtle changes in the experimental data (N) could result in a substantially different PSD 

(F). Secondly, the PSD function would be expected to be a continuous function with 

relatively smooth peaks. A solution of this system as presented on Eq (6) would actually 

result in a spiky PSD, regarded as a mathematical artefact [29]. These undesirable effects can 

be removed by applying an appropriate regularization method, such as that due to Tikhonov 

[30-32]. In the current work, regularization was incorporated in the PSD calculation by 

adding the smoothing term (αS) to the residual in Eq. (6), where S is a discrete second 
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derivative of the PSD function (F) and α is an adjustable coefficient known as the 

“regularization parameter”, associated with the degree of smoothness. 

 ( ) ( )TR N AWF N AWF S= − − +α   (7) 

3. RESULTS AND DISCUSSION 

Inversion of the integral in Eq (1) is the core of the analysis towards a PSD. The discussion 

below presents our procedures to initially produce what we regarded was the optimum PSD 

for the activated carbon cloth. We discuss the methods employed to define the optimum value 

for the smoothing coefficient α used in the regularisation expression Eq. (7). The optimised 

PSD is subsequently derived then used as the basis for parametric analyses. Variables to be 

discussed include: adsorbed volume uncertainty, regularisation parameter, molecular 

(simulation) model, and the number of SPIs. 

3.1. Experimental isotherm 

Figure 1 shows the high-resolution nitrogen adsorption isotherm for FM1/250 activated 

carbon at 77K. Low pressure data is also included for clarity. The sample exhibits classical 

type I isotherm based on IUPAC classification [33] indicating highly microporous structure 

with negligible contribution of mesopores. The figure includes the uncertainty associated 

with the amount adsorbed at each pressure point as vertical intervals [21]. Since the data were 

collected progressively with increasing equilibrium pressure, the uncertainty in each 

adsorption point accumulates.  

 

3.2. Integral inversion results 

A total of 53 calculated SPIs for nitrogen adsorbed by carbon slit-shaped pores were 

considered at equilibrium after ≥ 5 x 105 configurational moves, with each SPI regarded as 

exact and accurate with no associated, discernable uncertainty. Thus, the SPIs do not 
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contribute to the uncertainty of a calculated PSD. The only simulation source of uncertainty 

would be the molecular model and the number of SPIs used in the fitting process. 

The minimization of the first term in Eq (7) would improve the experimental data fitting 

but also produce an unstable, spiky PSD with sharp peaks. If the second term were to be 

minimized this would result in wider peaks and a smoother and more stable PSD but with a 

poorer experimental data fit. Some peaks may disappear as a result of regularization and 

some closely-located peaks may merge to form a single peak with a maximum at a value 

between the two initial peaks. Clearly, the objective is to select a regularization parameter 

that leads to a relatively smooth and stable PSD and with a relatively good fit of the 

experimental data. Davies et al. suggested two possible methods to obtain an optimum 

regularization parameter: the “fitting error” method and/or the “Generalized Cross 

Validation” (GCV) method [29]. 

The fitting error method uses a plot of the error as a function of regularisation parameter α 

(Figure 2). The plot shows an almost constant error value from low α values up to a threshold 

value above which the error increases substantially with α. The optimum α value would be 

identified as the threshold value. The shape of the curve is very similar to surface tension-

(log) concentration plots to identify the critical micelle concentration; intersection of two 

linear imprints on the curve yields a value for α = 4.64 x 10-7. 

The GCV method is based on the premise that the optimum-valued regularisation 

parameter can be defined via a balance between closeness of (data) fit and complexity. The 

former is simply the residual sum of squares; a decrease in the number of variables applied to 

the selected model would reduce complexity [32]. Such analysis yields a minimum in the 

GCV source function located at the optimum α value = 4.64 x 10-7. 

The PSD was calculated using the optimum regularisation parameter in conjunction with 

the fitting error plot and the GCV score function plot [29, 34]. 
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Inversion of Eq (1) via Eq (2), with an application of the optimum-valued regularization 

parameter α (=4.64 x 10-7) and SPI models based on the double site and charges model, gave 

the PSD shown in Figure 3. The resulting distribution indicates the principal volume of pores 

were contained in the range 1.2 ± 0.15 nm with secondary volumes contained in pores 

ranging from 1.7 ± 0.1 nm to 2.3 ± 0.1 nm. A parametric analysis of the PSD is focused on 

the principal volume of pore’s peak. The presence of the secondary volume of pores’ peaks 

could be a result of contributions from one or more of at least three sources: the porous nature 

of the adsorbent; the regularisation parameter value selected; or, the optimisation procedure 

used to solve the AIE. Deconvolution of this trio of contributions will be the subject of a 

future publication. 

 

3.3. Parametric analysis 

We have calculated the PSD based on the experimental data and a set of SPIs obtained 

from simulation. This method is similar to those used as an analytical function in commercial 

adsorption characterization equipment. The following represents a parametric analysis of our 

(ergo the commercial) routines for calculating a PSD, where PSD = f(uC(Vi), α, molecular 

potential model, number SPIs). Within each analysis, only one of the variables is considered 

with the remainder held either constant or at the optimised values. 

3.3.1. Effect of the uncertainty in amount adsorbed on the PSD 

For this analysis, α, molecular model, and the number of SPIs were the optimised values 

(for isotherm data set pi, Vi) and maintained constant. Figure 1 shows that for each pressure 

point, pi, there is an uncertainty in the amount adsorbed ΔVi. Each amount adsorbed, Vi, is 

located between the minimum amount adsorbed Vi−ΔVi and the maximum Vi+ΔVi, whence Vi 

is the usual amount adsorbed reported in the literature. The PSDs calculated for isotherms 
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represented by (pi, ΔVi), (pi, Vi−ΔVi) and (pi, Vi+ΔVi) are given in Figure 4. Essentially the 

PSDs overlap with each other suggesting uncertainty in the amount adsorbed actually has a 

minor influence on the intensity of the distributions and, as shown by the inset in Figure 4, 

negligible effect on the location of the maximum in each peak. 

 
3.3.2. Effect of the regularization parameter on the PSD 

For this analysis, the isotherm data were (pi, Vi) only with optimized molecular model 

(Double LJ sites) and fixed number of SPIs. Regularization parameter, α, sensitivity was 

considered in two separate analyses: Firstly, PSD analysis of the (pi, Vi) adsorption data set 

with selected α-values and secondly, α-values for the amounts adsorbed as (pi, Vi) and (pi, Vi 

± ΔVi). This latter analysis differs from that in Section 3.3.1 via use of optimized α-values for 

each data set compared with the application of the same α-value for all of the data sets in 

Section 3.3.1. 

The error and GCV factor plots in Figure 2 shows their sensitivity to the α-value; the 

precise definition of the optimum value can be challenging. The shallow character of the 

GCV curve suggests it could be chosen from values varying between 1.0×10-7 and 1.0×10-6. 

Fitting linear imprints onto the error curve and identifying their intersection, as suggested in 

Figure 2, may also approximate an optimum regularization parameter. Curvature in the 

imprinted linear sections would greatly impact on optimum regularization parameter 

selection. 

The effect of α-value selection on PSD for a given set of adsorption data, (pi,Vi), is shown 

in Figure 5. In this case, α was selected from the 4 pints bounded by 1.0×10-7 to 1.0×10-6. 

Figure 5(a) shows the calculated PSD for each α and Figure 5(b) the resultant fitting to the 

experimental data. Figure 5(a) shows that there are relatively significant changes in the PSD 

with the apparently small changes in the α-value. Smaller α-values resulted in a spikier PSD. 
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The effects are seen here in two forms: the volume adsorbed in the width range 1.1-1.3 nm 

decreases with increasing α-value; for the smallest values in the set considered, pores are 

apparent at 1.5 nm but “disappear” for the α-value of 4.64×10-7, the optimum value for the 

(pi,Vi) data set. Interestingly, the overall fit to the isotherm data in Figure 5(b) is less sensitive 

to the α-value where the calculated isotherms fit reasonably closely to the (pi, Vi ± ΔVi), i.e. 

approximately within the uncertainty of the measured amounts adsorbed. This observation is 

somewhat expected on inspection of the generally shallow minimum in the GCV curve. A 

sharp minimum would give an opposite result. 

We now contrast the uncertainty in amount adsorbed as a variable (Figure 4) with the effect 

in conjunction with regularization parameter, i.e. consider the effect of optimizing the α-value 

for the equivalent three isotherms as (pi, Vi) and (pi, Vi ± ΔVi). The fitting was again made 

with the two-centre L-J model and the same number of SPIs for each isotherm data set. The 

result is shown in Figure 6. Distributions due to (pi, Vi) and (pi, Vi + ΔVi) are essentially 

equivalent with α=4.64×10-7. In contrast, that due to (pi, Vi – ΔVi), with α=2.15×10-7, shows a 

slight increase in the peak intensity attributed to the smaller pore centered around 1.2 nm at 

the expense of those at 1.7 and 2.2 nm, with these larger pores showing an apparent 

narrowing in width. 

Due to the lack of PSD sensitivity to the uC(Vi), we attribute these observations to the 

different α-values. The commercial equipment offering similar PSD analyses typically 

employ a list of default regularization parameters. Clearly, this observation implies a single 

α-value selection may be more of a guess and comparisons should be made with pre-

conceived (or calculated) tolerance before any conclusions are drawn from the PSD results. 

 

3.3.3. Effect of the molecular model of nitrogen on the PSD 
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To assess the effects of molecular probe-model on PSD, the (pi, Vi) isotherm data set was 

fixed with the optimum α-value. The molecular model for nitrogen could be either a single 

(L-J) sphere model or a two-center L-J model. In the analyses to present, we only considered 

this latter model. For both molecular model analyses, we calculated and employed the same 

number (53) SPIs.  

The nitrogen molecule consists of two nitrogen atoms connected through a triple bond and 

geometry more similar to a rod rather than a sphere. Considering the nitrogen molecule as 

single sphere (single L-J site) introduces at least two problems: 1. Since the parameters 

available for the spherical model are calculated statistically they are not as realistic as the 

double L-J center model; 2. The single sphere model presents a very different packing model 

to that for the rod-shaped, two-center model. The former results in a larger excluded volume 

and thus a more open structure than that due to the latter in pores of similar dimensions, 

across the micropore width range. Figure 7(a) shows calculated PSD based on both models. 

The PSD due to optimized conditions, i.e. the 2-center model contained 5 peaks in the range 

0.80 ≤ pore width ≤ 2.80 nm. The single-center model also gave 5 peaks with a primary peak 

centered at the same position as the former as 1.2 ± 0.1 nm. The position and intensity of the 

remaining 4 peaks are quite different, with the reduction in volume intensity for the primary 

peak accounted for by increases in the larger pores which are moved to slightly lower mean 

values, except for the largest pore at 2.3 nm which moved to approximately 2.5 nm. These 

changes are, on the whole, attributable to the difference in the model-dependent packing 

within the pores and the volume adsorbed matched via the SPIs. 

The apparent modeling of the adsorption isotherm data for both models is shown in Figure 

7(b). Again, the fit is very close to the uncertainty bounds of the measured data; an exception 

exists in the low-pressure range 1×10-5pº ≤ p ≤ 5×10-5pº, due to the relatively low combined 

standard uncertainty in the amount adsorbed. The apparent fluctuations in the curve fit at the 
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higher pressures 5×10-4pº ≤ p ≤ 1×10-2pº are reflected in the differences in the PSD for pores 

> 1.30 nm. 

3.3.4. Effect of the number of SPIs on the PSD 

For this analysis, optimum regularization was used and the conditions maintained constant 

were: data set (pi, Vi) and the two-center L-J model. A variation in the number of SPIs used in 

the overall isotherm data modeling has a considerable effect on the computing expense and 

application capacity. 

The optimized number of SPIs for the (pi, Vi) data fit was defined over the range 0.6-0.32 

nm with a quadrature interval (Eq. (5)), wj = 0.05 nm, giving 53 SPIs identified as Set 1. A 

second Set, 2, was defined with wj = 0.1 nm giving 27 SPIs. Figure 8(a) shows the resulting 

PSDs. Set 2 SPIs suggests the adsorbent contains a bi-modal distribution as a primary peak 

mean width at 1.2 nm, but with decreased intensity and moderately wider range as 1.2 ± 0.2 

nm, compared with 1.2 ± 0.1 nm for Set 1. A relatively broad, second peak is suggested at 2.3 

± 0.2 nm, with no indication of possible pores between these two ranges. Clearly, the smaller-

valued quadrature interval provides scope for fitting (identifying) finer-grained pores within a 

material, interpreted as a higher-resolution PSD. 

Figure 8(b) shows and compares the overall data fit across the isotherm. The loss of 

sensitivity due to the larger quadrature interval is again reflected in the relatively poorer fit 

compared with Set 1, with departures exceeding the combined standard uncertainty in the 

amount adsorbed. Overall, the smaller-valued interval gives a larger number of SPIs 

increasing the sensitivity and flexibility to fit the adsorption isotherm data. 

Our analyses initially designed the optimum parameters for integral inversion of the 

adsorption data set (pi, Vi). Such a procedure differs from (our understanding of) the 

commercial equipment methods where one method employs a macro to calculate the PSD 

using an optimized (but unspecified) α-value applied with (also unspecified) quadrature 
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interval and number of SPIs to fit the adsorption data. From a detailed inspection of the data 

fitting, the user could determine the approximate values for the quadrature interval and the 

number of applied SPIs. A second commercial approach is to provide an error curve from 

which the experimentalist selects the α-value by inspection but must also apply a fixed 

(unknown) quadrature interval and a suite of pre-calculated SPIs. 

 

4. CONCLUSIONS 

The sources of uncertainty likely to contribute to the combined standard uncertainty in the 

PSD are due to variations in the amount adsorbed, the value of the regularization parameter, 

the molecular model used to define the probe molecule, and the quadrature interval within a 

particular width range to generate a set of SPIs. Provided these parameters are optimized, a 

reasonable facsimile of the PSD could be expected. 

Parametric analyses indicated where a decrease in PSD precision might occur: 

a) On using optimized parameters for the (pi, Vi) data set, the inclusion of the combined 

standard uncertainty in amount adsorbed had negligible effect on PSD reproducibility. 

b) An inclusion of uC(Vi) affects regularization parameter optimization which, in turn, 

results in uncertainty in calculated PSD. A correct selection of the value of the 

regularization parameter was essential for identifying probable mean pore widths 

within a porous adsorbent containing relatively narrow and possibly specific pore 

widths. Reporting the value of regularization parameter used in the inversion 

calculations is encouraged; 

c) The molecular model used to calculate the SPIs greatly influences the calculated PSD. 

The model used should be one that, as closely as possible, represents the physical 

shape as well as intra and inter atomic and/or molecular forces; and, 
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d) The quadrature interval value defines the number of SPIs to be used in the curve 

fitting of the adsorption data. The smaller the value, the larger the number of PSIs in a 

given pore range or width leading to a more detailed definition of pores within a given 

adsorbent. A smaller number of SPIs resulted in a decreased sensitivity to fit the 

adsorption isotherm data. 

e) A quantitative comparison between calculated pore size distributions should be 

discouraged unless the uncertainty in the experimental data is relatively small and, the 

default value for the regularization parameter, the applied potential model, and the 

number of SPIs and their distribution are exactly the same for each pore size 

distribution evaluation. 
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FIGURE CAPTIONS 

Figure 1. Adsorption isotherm of nitrogen on the microporous ACC FM1/250 at 77K; the 

inset amplifies the data points showing the combined standard uncertainty in the amount 

adsorbed as Vi and Vi ± ΔVi 

Figure 2. Guides for optimum regularization parameter selection; GCV score function (─) 

and fitting error (–  –) 

Figure 3. PSD derived from the nitrogen isotherm at 77K. The figure was calculated via an 

optimum-valued regularization parameter α = 4.64×10-7 and the double size and charges 

model to simulate the nitrogen SPIs 

Figure 4. Effect of the uncertainty on the adsorption amount on PSD; V–ΔV (–  –), V 

(─),V+ΔV (•••) 

Figure 5. Effect of the regularization parameter on PSD (a) and isotherm fitting (b); α=1×10-

7 (─), α=2.15×10-7 (–  –), α=4.64×10-7 (•••), α=1×10-6 (–•–), experimental data (▬) 

Figure 6. PSD calculated from V-ΔV (–  –), V (─),V+ΔV  (•••) and using the optimum 

regularization parameter at each case 

Figure 7. Effect of the potential model on the calculated PSD (a) and isotherm fitting (b); 

data derived from double LJ potential (─), single LJ (–  –) potential, and experimental data 

(▬) 

Figure 8. Effect of the number of SPIs on PSD (a) and isotherm fitting (b); set 1 with 0.05 

nm interval between SPIs (─), set 2 with 0.1 nm interval between SPIs (–  –), experimental 

data (▬) 
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Figure 1. Adsorption isotherm of nitrogen on the microporous ACC FM1/250 at 77K; the 

inset amplifies the data points showing the combined standard uncertainty in the amount 

adsorbed as Vi and Vi ± ΔVi 
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Figure 2. Guides for optimum regularization parameter selection; GCV score function (─) 

and fitting error (–  –) 

 
Figure 3. PSD derived from the nitrogen isotherm at 77K. The figure was calculated via an 

optimum-valued regularization parameter α = 4.64×10-7 and the double size and charges 

model to simulate the nitrogen SPIs 
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Figure 4. Effect of the uncertainty on the adsorption amount on PSD; V–ΔV (–  –), V 

(─),V+ΔV (•••)

 

Figure 5. Effect of the regularization parameter on PSD (a) and isotherm fitting (b); α=1×10-

7 (─), α=2.15×10-7 (–  –), α=4.64×10-7 (•••), α=1×10-6 (–•–), experimental data (▬) 
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Figure 6. PSD calculated from V-ΔV (–  –), V (─),V+ΔV  (•••) and using the optimum 

regularization parameter at each case 

 

Figure 7. Effect of the potential model on the calculated PSD (a) and isotherm fitting (b); 

data derived from double LJ potential (─), single LJ (–  –) potential, and experimental data 

(▬) 
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Figure 8. Effect of the number of SPIs on PSD (a) and isotherm fitting (b); set 1 with 0.05 

nm interval between SPIs (─), set 2 with 0.1 nm interval between SPIs (–  –), experimental 

data (▬) 

 


