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Abstract 

Two commercial carbons, coconut shell- and wood-based were chosen to evaluate the 

mechanisms of carbamazepine (CBZ) and sulfamethoxazole (SMX) adsorption from low (ppm 

level) concentration of these pharmaceuticals. The initial sample and those after adsorption were 

extensively characterized using potentiometric titration, thermal analysis combined with mass 

spectroscopy, FTIR, and XPS. It was found that not only porosity but also surface chemistry 

plays an important role in the adsorption process. The results show that extensive surface 

reactions take place during adsorption and adsorbates undergo significant transformations in the 

pore system. The ability of carbon surfaces to form superoxide ions results in the oxidation of 

CBZ and SMX, and their partial decomposition.  Surface chemistry also promotes dimerization 

of the latter species. Moreover, functional groups of CBZ and SMX, mainly amines, react with 

oxygen groups of the carbon surface. Thus not only microporous carbons with sizes of pores 

similar to those of adsorbate molecules, but the carbons with large pores, rich in oxygen groups, 

can efficiently remove these pharmaceuticals following the reactive adsorption mechanism. 

 

1. Introduction 

Removal of pharmaceuticals and their metabolites from water has become an important 

challenge for contemporary society. Even though they are usually present at very low 

concentrations of a few ppb, their long term effect on human health and on aqueous organisms 

can be detrimental [1]. Therefore, it is generally accepted that an increased attention should be 

put on the removal of these compounds from waste-water and drinking water [2, 3]. Adsorption 

on powdered activated carbons (PAC) is a traditional and well-known method of water 

purification. However, as undesired pharmaceuticals and their metabolites are usually present in 
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very small concentrations (ppb), the ‘standard’ activated carbons may not be sufficient to achieve 

the desired water purity. Even though ozonation is an often used alternative method to remove 

micropollutants from water, recent reports suggest that, for the purpose of drinking water 

purification, adsorption on activated carbons may be ‘safer’ as it does not lead to undesired 

oxidation-derived products [4]. 

 

Recently biochars have been investigated as water purification media [5-7]. There is practically 

no difference between these materials and activated carbons, generally and from the points of 

view of a porous structure and surface chemistry; essentially only the names differ. In fact, 

organic precursors of activated carbons are often “bio” materials, for instance, wood or peat. The 

literature on the removal of pharmaceuticals on activated carbons is quite extensive [8-11]. To 

evaluate their adsorption performance a dose amount [12], surface charge [13], polarity [7] and 

porosity [14] are the most often considered parameters. It is well known that the latter is of 

paramount importance for any physical adsorption process [15]. In pores similar in size to the 

adsorbate molecules, the dispersive interactions are enhanced and the efficiency of the separation 

process increases. On the other hand, polarity provides specific interactions when the adsorbate 

is polar [16]. The pH of water from which the pharmaceuticals have to be removed and the 

pHPZC of the carbon surface are also important since a change in pH can cause a 

deprotonation/protonation of certain functional groups on the molecule and carbon surface 

leading to a change in charge on the groups. [17]. 

 

Considering all the findings published to date on the role of activated carbon surfaces in 

pharmaceutical removal [10, 18], the objective of this paper is a detailed analysis of the role of 
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the surface functional groups, mainly oxygen-containing, and their location in the pore system, 

on the adsorption process. As target pharmaceuticals carbamazepine (CBZ) and 

sulfamethoxazole (SMX) are chosen. The latter is a sulfonamide bacteriostatic antibiotic used 

often to treat urinary infections whilst carbamazepine is an anti-seizure medicine. The molecular 

masses are similar (253 g/mol for SMX and 236 g/mol for CBZ) and their sizes and boiling 

points are also comparable. A significant difference is in their chemical composition. 

Carbamazepine (C15H12N2O) contains an amide group and nitrogen present in a cyclic ring 

(azepane). Sulfamethoxazole (C10H11N3O3S) on the other hand, exhibits more linear shape with 

sulfone and amine moiety linking amino-substituted cyclohexane and a methylated isoxazolidine. 

The pKa value for CBZ is 13.90  [19] and for SMX 1.7 and 5.6 [12]. Thus differences in the 

specific interactions/reactive adsorption are expected. To evaluate the role of these interactions 

in the separation process, two commercial activated carbons were chosen.  They differ 

significantly in their pore structure and surface chemistry. Taking into account their features and 

the adsorptive performance, the mechanism of the adsorption process is proposed.  The results 

are expected to cast some new light on the importance of activated carbons fine surface 

features/chemical groups and their distribution in the pore system for the effective removal of 

micropollutants of various chemistries. 
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2. Experimental 

2.1. Materials 

2.1.1. Chemicals 

Carbamazepine (CBZ) was obtained from Sigma-Aldrich (St. Louis, MO) and sulfamethoxazole 

(SMX) from Spectrum (USA) with a purity of ≥98% and 99%, respectively. Their detailed 

chemical formulas are presented below: 

 

  

 

2.1.2 Adsorbents 

As adsorbents, two commercial activated carbons were chosen. WVA-1100 is a wood based 

carbon manufactured by Mead-Westvaco. This carbon was obtained using chemical activation 

with phosphoric acid. Another adsorbent chosen is S208C, manufactured by Calgon Carbon. 

This carbon was obtained from coconut shells by physical activation. The carbons are referred to 

as WVA and S208. 

 

2.2 Methods 

2.2.1 FT-IR spectroscopy. Fourier transform infrared (FT-IR) spectroscopy was carried out using 

a Nicolet Magna-IR 830 spectrometer using the attenuated total reflectance (ATR) method. The 
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spectrum was generated and collected 64 times and corrected for the background noise. The 

experiments were done on the powdered samples, without KBr addition. 

2.2.2.Thermal analysis/mass spectroscopy. Thermogravimetric (TG) curves were obtained using 

a TA Instruments (2950 Thermogravimetric) thermal analyzer. The initial and exhausted samples 

were exposed to an increase in temperature (10 oC/min) while the nitrogen flow rate was held 

constant (100 mL/min). From the TG curves, differential DTG curves were derived. 

Simultaneously the gasified products desorbed from the surface of the adsorbents were identified 

by a ThermoStar Gas Mass Spectrometer (GSD; Pfeiffer Vacuum)), connected to the thermal 

analyzer. The off-gas collected was scanned with a secondary electron multiplier (SEM) detector 

and a Faraday detector. The molecules identified in the MS were correlated in real time with its 

corresponding temperature in the TA. 

2.2.3. Potentiometric titration. Potentiometric titration measurements were performed with a 

DMS Titrino 716 automatic titrator (Metrohm). The instrument was set at the mode where the 

equilibrium pH is collected. Subsamples of the initial materials (~ 0.100 g) were added to 

NaNO3 (0.01 M, 50 mL) and placed in a container maintained at 25 oC overnight for equilibrium. 

During the titration the suspension was continuously saturated with N2 to eliminate the influence 

of atmospheric CO2. The suspension was stirred throughout the measurements, and each sample 

acidified to pH 3 before titration. Volumetric standard 0.1M NaOH was used as the titrant of the 

materials suspension up to pH 11. The experimental data was transformed into a proton binding 

curve, Q, representing the total amount of protonated sites. Then the SAIEUS deconvolution [20] 

procedure was applied to calculate the pKa distributions of the  acidic species present on the 

surface of the adsorbents. 
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2.2.4.Surface pH. A 0.1 g sample of dry adsorbent was added to 5 mL of deionized water and the 

suspension stirred overnight to reach equilibrium. The pH of suspension was measured using an 

Accumet Basic pH meter (Fisher Scientific). 

2.2.5. XPS. X-ray photoelectron spectroscopy analyses of the carbons were conducted using a 

Kratos Axis-Ultra spectrometer, using a monochromatic Al Kα source (1487 eV) operating at 15 

kV and 14 mA, 10−8 Pa vacuum in the analyser chamber and an analysis spot size of 300×700 

μm. Spectrometer pass energy of 40 eV was used for all elemental spectral regions, whilst 160 

eV pass energy was used for the survey spectra used for surface atomic concentration calculation. 

The binding energy scale of spectrometer was calibrated using the metallic Cu 2p3/2 and Cu 3p3/2 

lines and Au Fermi Edge of the respective reference metals. All measurements were performed 

at a take-off angle of 90°. The CasaXPS (version 2.3.5) and Multipack software was used to fit 

photoelectron spectra. Many organic materials, and their surfaces, contain species that are 

sensitive to prolonged X-ray exposure, particularly under ultra-high vacuum conditions. In all 

analyses presented in this study, the sample stage temperature was reduced to less than -120 oC 

using a liquid nitrogen cooling system. This has been shown to preserve the chemical 

environment of matrix and adsorbed elements for periods far longer than data collection times 

[21], even with X-ray intensities experienced on synchrotron sources [22].   

2.2.7. Adsorption of pharmaceuticals. Kinetic studies were conducted in a shaker bath (100 rpm 

at 30 °C) using 0.05 g of activated carbon with 100 mL of a pharmaceutical compound solution 

(100 mg/L). Samples were filtered at time points ranging from 0 to 72 hours, and the 

concentration of pharmaceutical compounds in the filtrate was determined by high-performance 

liquid chromatography (Waters 2695) with a Licrocart C18 column. A mobile phase consisted of 
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65 % methanol and 35% trifluoroacetic acid (0.1%) for use in the case of CBZ, and 35 % 

methanol and  65 % trifluoroacetic acid (0.1%) for SMX.  

Batch adsorption tests were conducted to determine equilibrium isotherms. 250 mL Erlenmeyer 

flasks with 0.05g activated carbon and 200 mL CBZ or SMX solutions at 8 concentrations (1-

100 mg/L) were placed in a shaker bath (100 rpm at 30 °C) for 72 hours. Samples were filtered 

and the filtrate analyzed for pharmaceutical concentrations as outlined above. The equilibrium 

adsorption capacity was calculated, and then fitted to the Langmuir-Freunlich equation: 

      (1) 

where Ce is the equilibrium concentration (mg/L), qo the maximum amount adsorbed (mmol/g), 

K is the adsorption equilibrium constant (L/mg), and n is a parameter related to the energetic 

heterogeneity of the adsorption sites. 

 

3. Results and Discussion 

3.1. Adsorption kinetics  

The results of the adsorption kinetic studies are presented in Fig. 1S in Supplementary 

Information. Adsorption equilibrium on WVA was reached more rapidly than that on S208, 

which might be related to a difference in porosity and surface chemistry between these two 

carbons. Based on the kinetics studies the equilibration time was chosen as 72 hours for the 

adsorption of both adsorbates on both adsorbents. The results also indicate that CBZ is adsorbed 

faster than SMX, which suggests a more complex adsorption process of the latter species. 
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Fig. 1. SMX and CBZ adsorption isotherms on the WVA (A) and S208 (B) carbons. The solid 

lines represent the goodness of the fit to L-F equation. 

 

3.2. Analysis of the adsorption isotherms 

The adsorption isotherms are collected in Fig. 1. In the case of WVA adsorbent, significant 

differences in the shapes of the isotherms for the two adsorbates are visible. While the isotherm 

for SMX is almost linear, CBZ is rather adsorbed following the Langmuir-Freundlich adsorption 

isotherm model where the high-energy centers are responsible for a steep rise in the amount 

adsorbed at low surface coverage. Even though at low equilibrium pressure more CBZ than 

SMX is adsorbed on WVA, the linear shapes of the SMX isotherm suggests that at higher 

concentrations more of this species will be retained than CBZ. Both CBZ and SMX exhibit 

similar shapes of the isotherms on S208 indicating the presence of a significant amount of the 

high-energy adsorption centers. Then the gradual occupation of the centers with decreasing 

adsorption energy takes place. Even though on S208 at very low surface coverage slightly more 

CBZ is adsorbed than SMX, overall the surface of this carbon has higher affinity to remove the 
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latter species (Figure 1, Table 1). With an increasing coverage (equilibrium concentration) on 

both carbons more SMX is adsorbed than CBZ. These results do not agree with those published 

in the literature, where higher hydrophobicity of CBZ was considered by Serrano and co-workers 

as an enhancing factor for its adsorption on activated carbons [23]. On the other hand, Li and co-

workers found the similar amounts adsorbed of both compounds in the range of 280 g/g [24]. 

These values are not far from the measured amounts adsorbed on our carbons. However, Li and 

co-workers also pointed out that the efficiency of CBZ removal was higher than that of SMX 

owing to higher hydrophobicity of this compound.  

 

Table 1. Fitting parameters of the experimental data to Langmuir-Freundlich equation.  

Sample q0[mmol/g] K [l/mg] n R2 

WVA     

CMZ 1.41 0.1124 1.10 0.9799 

SMX 63.57 0.0003 0.89 0.9930 

S208     

CMZ  1.27 0.1181 0.58 0.9761 

SMX  7.51 0.0004 0.48 0.9809 

 

The results of fitting the experimental isotherms to Langmuir-Freundich model are collected in 

Table.1. The order of magnitude difference in the maximum adsorption capacity of SMX on 

WVA is related to almost linear shape of the isotherm on the latter sample. This is also visible in 

an n value close to 1.  Since the n values smaller than 1 indicate the energetic heterogeneity of 

the adsorption system, the results suggest that SMX adsorption on S208 involves the most 

complex mechanism. 
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3.3. Adsorption mechanism 

To understand the adsorption mechanism and especially the role of specific interactions/reactive 

adsorption, the surfaces of our carbons and changes in these surfaces after interactions with the 

target adsorbates have to be analyzed in detail. Even though some results on the porosity and 

surface chemistry of WVA [25] and S208 [26] have been published and analyzed while 

addressing the adsorption mechanism of other species, we consider that for better understanding 

of our system, the summary of some these data has to be reintroduced to this  paper. 

 
Table 2. The parameters of porous structure for the initial carbons calculated from nitrogen 

adsorption isotherms. 

Sample SBET              
[m2/g] 

Vmic  [cm3/g] Vmic < 10 Å 
[cm3/g] 

Vmeso 
[cm3/g] 

Vt  [cm3/g] Vmic/Vt 

WVA 1648 0.61 0.11 0.54 1.15 0.53 

S208 1042 0.40 0.27 0.13 0.53 0.75 

 

 
Fig. 2. Pore size distributions for the carbons studied. 
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For every adsorption system for removal of a micropollutant, the porosity of the adsorbent 

should be of paramount importance. Table 2 collects the parameters of the porous structure 

calculated from nitrogen adsorption isotherms. The surface area of WVA is 60 % larger than that 

of S208. A similar trend (50 % difference) is found for the volume of micropores. On the other 

hand, the volume of pores smaller than 10 Å is 40 % higher in S208 than that in WVA. While the 

smallest pores should be more active in physical adsorption and they create high-energy physical 

adsorption centers, functional groups can exist only in larger pores and thus they may affect the 

surface interaction at higher surface coverages [27].  Thus the porous structure of WVA might be 

more favorable for specific interactions/reactive adsorption than that of S208, providing that the 

active surface chemistry exists in large pores. 

 

The details on pore size distributions are seen in Fig. 2. In S208 almost all pores are smaller than 

20 Å and its degree of microporosity is 75 %. WVA has a significant volume of pores larger than 

20 Å. The range of pore sizes for this carbon reaches 300 Å. The trends in the amounts adsorbed 

of each adsorbate on both carbons are largely unrelated to the differences in the surface areas or 

volumes of micropores. The only clearly visible trend is more SMX adsorbed on WVA than that 

on S208, which might suggest that large micropores/mesopores and the extent of their volume 

are important for the adsorption of this species. CBZ is considered as much more hydrophobic 

than SMX and the trend in its amounts adsorbed might agree with the predominance of 

dispersive interactions. Nevertheless, the shapes of the isotherms indicate that the surface 

interactions with CBZ are stronger in WVA than those in S208. This behavior would not be 

expected taking into account that much smaller pores are present in the latter sample and they 



 13 

should enhance the adsorption potential for dispersive interaction. Therefore, there should be 

other specific/chemical factors, which affect the adsorption mechanism of CBZ on WVA.  

 

The isotherm of SMX on WVA shows a linear trend (Fig. 1), which might be related to the 

occupation of the highest energy adsorption centers at the concentration range used for our 

experiments. They might be specific functional groups undergoing reactions with SMX. On the 

other hand, one has to take into account that the dispersive adsorption forces for SMX in the 

pores larger than 2-3 diameters of this molecule (small mesopores) should be rather weak and 

they are not expected to contribute significantly to the adsorption process, if only dispersive 

interactions play a role.  

 

The fact that based on LF-fitting much more CBZ than SMX can be adsorbed on S208, in spite 

of similar molecular sizes and masses, suggests that some chemical forces are involved in the 

adsorption process of the target pharmaceuticals. At low surface coverage the isotherms overlap 

but with an increasing coverage the differences are seen. With the increasing coverage the larger 

pores are filled where the functional groups can exist and they must contribute to the specific 

interactions of CBZ with the S208 surface. This is an interesting observation taking into account 

that CBZ has only two moieties (from the urea part of the molecule), which can interact in a 

specific way with surface functional groups.  
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Fig. 3. DTG curves in nitrogen for WVA (A) and S208C (B) initial carbons and those after SMX 

and CBZ adsorption. 
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main peak between 200-400 oC and the long tail almost through a whole temperature range. The 

tail is also visible on the decomposition pattern of pure SMX, which we link to its dimerization 

[28] during heating and to the decomposition of the dimers/polymers formed. This is because the 

ratio of its intensity to the intensity of the main peak on the carbons studied is much greater than 

for the pure substances. Since this effect is especially visible for S208, it suggests that 

dimerization may be partially responsible for the smaller adsorption of SMX than that of CBZ 

caused by an inaccessibility of the small pores of S208 to the dimers formed, and by blocking the 

pore entrances with these surface reaction products. The weight loss pattern for WVA over 600 

oC was not analyzed since this carbon was not exposed to these temperatures during its 

production. Much as for S208, we link the first peak on the DTG curve for WVA exposed to 

SMX to the removal of physically adsorbed SMX and the enhanced tail to the decomposition of 

the species formed as a result of its dimerization/polymerization and chemical interactions with 

surface groups of carbons. Even though we cannot comment on the involvement of carboxylic 

groups in these reactions owing to overlapping of their decomposition temperatures [29] with 

that of SMX decomposition, the involvement of groups decomposing between 800 and 1000 oC, 

probably phenols [30], is seen. 

 

Interestingly, the desorption patterns from the carbons with CBZ adsorbed on the surface are 

much more complex than those for SMX. On the DTG curve for S208 two peaks are revealed, at 

about 200 oC and between 450 and 600 oC.  Moreover, an indication of peaks is also seen at 

about 270 and 370 oC. Since we cannot expect that adsorbed species in their unreacted form 

decompose/sublimate at a lower temperature than those in the bulk, we link the low temperature 

peak at 200 oC to the changes in the chemistry of adsorbed species, caused likely by oxidation 
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reactions. It is well known that an activated carbon surface catalyzes the formation of superoxide 

ions [31]. These ions could oxidize urea moiety in some CBZ molecules resulting in the 

formation of either urea, or when oxidation goes further, of ammonia and CO2 [32]. The narrow 

peak indicates the chemical homogeneity of the species desorbed and the temperature range 

rather suggests that urea is formed. It starts to decompose at about 150 oC [33] and when 

adsorbed in small pores the higher temperature of weight loss associated with this process can be 

observed. Then the carbamazepine and phenanthrene, the latter which might be the product of 

oxidative surface reactions, are removed. In the broad temperature range between 400 oC and 

600 oC thermal transformations of strongly adsorbed/reacted with carbon surface CBZ takes 

place and the removal of decomposition products is detected.  The large shift in the removal 

temperature suggests the existence of the specific interaction of CBZ with the carbon surface. 

The consumption of the oxygen groups decomposed at higher temperature in surface reactions is 

also noticed in this case. They could be quinones, which are known as participating in oxygen 

activation [34]  or groups reacting directly with amine groups of CBZ as phenols. 

 

A weight loss pattern for CBZ on WVA differs from that for S208. A broad peak between 100 

and 500 oC is revealed with visible three components with maxima at 190, 290 and 430 oC. The 

last component is likely CBZ reacted with the carbon surface. Its removal temperature is lower 

than that for S208 owing to the larger micropore sizes in WVA than those is S208 and thus less 

energy needed to remove the adsorbate retained on the surface. The peak at 290 oC might 

represent the removal of CBZ physically/weakly adsorbed in the pore system. The first peak at 

190 oC, as in the case of S208, must represent the removal of the product of CBZ reactive 

adsorption, likely urea. Apparently on this carbon the extent of chemical surface transformations 
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is different since the intensity of the low temperature peaks is much smaller than that for the 

peak at 430 oC. The high intensity of the latter peak suggests the reactive adsorption of CBZ on 

the surface of this carbon. 

 

More qualitative information about the desorption/decomposition of the products adsorbed on 

the surface of our carbons can be derived from the analysis of m/z thermal profiles of the species 

removed from the surface. They are collected in Fig. 4. Only m/z 15, 17, 48 and 64 were chosen 

since they relate to heteroatoms of the adsorbates and on their patterns some visible changes after 

CBZ and especially, SMX adsorption were noticed. These profiles can represent CH3 and/or NH, 

NH3 and/or OH, SO and SO2, respectively. These species are expected to be released when CBZ 

(only first two of them) or SMX (all of them) decompose/are desorbed from the surface. Thus 

CBZ adsorption on S208 results in the release of water and ammonia at temperatures lower than 

200 oC. The high temperature shoulder likely represents the latter species originated from the 

decomposition of urea. The m/z profiles are featureless at high temperature, even though the well 

defined weight loss is found between 400- 600 oC (Fig. 3). The absence of signals might be 

related to the removal of high molecular weight products of surface reactions, which are not 

detected by our MS (m/z limit is 100). After SMX adsorption, the removal of ammonia at low 

temperature is detected indicating that some decomposition reactions take place on the surface. 

The peak from the removal of SO2 is noticed between 250 and 450 oC with the maximum at 350 

oC. This overlaps with the most intense weight loss for this sample, which was linked to the 

removal sublimation and boiling of SMX. Some traces of SO are also removed at temperatures 

over 800 oC and it must be related to the removal of dimers and thermal transformations of 

sulfones on the surface. 
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In the case of the initial WVA sample, the most intense peak at m/z 17 represents the removal of 

physically adsorbed water and water from the decomposition of carboxylic acids. Adsorption of 

CBZ decreases the intensity of the peak, which might be related to the involvement of the 

carboxylic acids in the surface reactions with the urea moiety. The lack of signals on the 

analyzed m/z thermal profiles at the temperature ranges where significant weight losses were 

measured, suggests that either other fragments representing hydrocarbons (not chosen for 

analysis) are released, or m/z are too large to be detected by our mass spectrometer. 

 

.  
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Fig. 4. MS patterns during thermal analysis in helium for carbons WVA and S208.  
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Fig. 5. Comparison of FTIR spectra for the initial carbons, WVA (A) and S208 (B), and those 

after SMX and CBZ adsorption. 
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decrease and a new strong band appears at 756 cm-1, which corresponds to the NH2 out-of-plane-

bend [35].  SMX adsorption, besides decreasing the intensity of the C-O and C=O bands, also 

results in the appearance of new bands at 1590, 1510, 1160, 1090 and 825 cm-1. They are linked 

to the presence of C=N, C-N, N-H, and -SO2- bonds [36]. The appearance of these bands and the 

decrease in the intensity of carbon-oxygen bands, especially those at 1560 cm-1 and 1050 cm-1 

representing quinones and C-O bonds, supports the reactivity of SMX and CBZ with this carbon 

surface. 

 

 

Fig. 6. Proton uptake curves for WVA (A) and S208 (B) initial adsorbents and those exposed to 

carbamazepine (CBZ) and sulfamethoxazole (SMX).   
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Potentiometric titration results confirm the differences in the chemistry of WVA and S208 

carbons (Fig. 6). Positive values of Q represent a proton uptake on basic groups and a negative 

proton release from the acidic groups [37]. The pHPZC for WVA is 7.4 and for S208 it is 8.5, 

indicating higher basicity of the latter sample. After exposure to CBZ and SMX the pHPZC values 

decrease for WVA and the shape of the proton uptake curve after adsorption of SMX is 

significantly altered, indicating an increase in surface acidity. It looks like the surface groups 

dissociating at pH> 5 are introduced. When SMX is adsorbed on the S208 only a small decrease 

in the amount of basic groups dissociating at pH< 6 is noticed. On the other hand, a significant 

change in the acidity of the surface after CBZ adsorption is seen. The total number of acidic 

groups decreases, and the surface become more basic. This is an important observation 

suggesting different binding mechanism of SMX and CBZ on the surfaces of both carbons. 

Interestingly, while adsorption of CBZ on WVA does not change in a marked way the nature of 

surface acidic groups, on the surface of S208 a significant number of groups are involved in 

surface reactions (Fig. 7). This supports the data from TA analysis which showed the 

consumption of groups which decompose at high temperatures, and which might represent 

phenols with pKa greater than 9.  

 



 23 

 

Fig. 7. The comparison of the pKa distributions for the initial and spent carbons, WVA (A) and 

S208 (B).  
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number of groups dissociating in the whole pH range increases, the most marked changes are 

visible at pKa greater than 7. Apparently adsorption of SMX resulted in acidification of the 

samples. These acids were introduced to the surface probably due to the protonation of the 

nitrogen group of the sulfamide moiety. The number of groups on WVA increased by 0.437 

mmol/g. This number cannot be directly related to the amount adsorbed since in reactive 

adsorption the consumption of some groups is expected, as was clearly seen on the DTG curves 

(Fig. 3).  In fact, taking into account that the surface of WVA is rich in carboxylic groups, their 

reactions with amines of SMX likely took place, resulting in the formation of species such as 

amides and water. Oxidation of sulfones to sulfonic acids is also a plausible scenario. Moreover, 

phenolic groups can react with amines leading to the formation of aniline and the corresponding 

alcohol.  The carboxylic groups of the surface can also catalyze other transformations involving 

the products of CBZ oxidation. 

 

Taking into account the pHPZC of both our carbons is greater than 7, and the experiments were 

run in water without adjusting the pH, the surface of carbons should be positively charged, 

favoring adsorption of anions via electrostatic interactions [12]. Considering the chemistry of our 

molecules, we do not expect these kinds of interactions to play a predominant role in the 

adsorption process. Therefore the dispersive and polar interactions, or surface reactions, will be 

considered in derivation of the adsorption mechanism. 
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Table 3. Content of elements on the surface (in atomic % from XPS analysis). 
 

Sample C O N S P Na 

S208 92.6 7.4 ND ND ND ND 

S208+CBZ 91.4 6.5 2.1 ND ND ND 

S208+SMX 90.3 7.9 1.6 0.25 ND ND 

WVA 89.9 8.4 ND ND 0.59 1.08 

WVA+CBZ 89.5 8.2 1.8 ND 0.42 ND 

WVA+SMX 88.7 9.1 1.8 0.37 ND ND 
 

To further support the hypothesis discussed above, the XPS analysis of the initial carbons and 

those with adsorbed CBZ and SMX were carried out. The elemental compositions, in atomic %, 

on the surface of our carbons are presented in Table 3. S208 is richer in carbon in C-C bonds and 

has less oxygen than WVA which is in agreement with the results discussed above. The trace of 

P and Na in WVA are the results of its activation with phosphoric acid followed by 

neutralization during the manufacturing process of this carbon. After adsorption of SMX the 

ratio of nitrogen to sulfur on WVA is 4.9, and on S208 is 6.4.  Taking into account that this ratio 

in SMX is 3:1, these results suggest significant transformations of the adsorbate on the surface 

towards incorporation of stable nitrogen. This is especially visible for the WVA carbon.  More 

nitrogen and sulfur on the surface of this carbon can be also linked to its higher affinity to retain 

SMX than that of S208. After CBZ adsorption the nitrogen content on the surface of S208 is 

greater than that on WVA. Since the differences in the adsorption capacities between these two 

carbons are rather small we link these differences to the reactivity of WVA surface.  It is possible 

that some nitrogen got released from the surface as a result of urea oxidation to ammonia and 

CO2. 
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The complexity of the chemical environment of nitrogen remaining on the surface is evidenced 

from the deconvolution of N1 s core energy level for the carbons after CBZ adsorption (Table 4, 

Fig. 8). Apparently pyridine species are formed, and the ratio of conversion from amines is much 

greater on WVA than that on S208. The results support the hypothesis formulated based on the 

results of surface analyses discussed above. Thus ammonia evolved from the decomposition of 

the carbamazepine/urea moiety must contribute to pyridine functionality formation in the acidic 

environment of these carbon nanoreactors/pores. On the other hand, the conversion of nitrogen 

groups to pyridine in the case of SMX reactive adsorption is similar on both carbons. 

Interestingly, in the case of the adsorption of these species on S208, the conversion rate for SMX 

is higher than that for CBZ. Since an acidic environment catalyzes pyridine formation, the 

appearance of sulfonic acids on this carbon can trigger these transformations. Oxidation of 

sulfones to sulfonic acids is even more pronounced on S208 than on WVA (Fig.  8), which may 

be  linked to the formation of superoxide ions, and enhanced electron transfer on a more 

aromatized carbon surface. The presence of sulfones/sulfonic acid is also visible in an increase in 

the oxygen content after SMX adsorption.  However, the content of oxygen decreased after CBZ 

adsorption and it must be linked to the above-mentioned consumption of some oxygen groups in 

surface reactions. 
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Fig. 8. Deconvolution of S2 p and N1 s core energy levels for the carbons studied with adsorbed 

SMX and CBZ 
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Table  4. The results of deconvolution of C 1s, O 1s, N 1s and S 2p core energy levels. 

   S208   WVA  
Energy, 
eV  Bond assignment Initial +CBZ +SMX Inital +CBZ +SMX 

C 1s        
284.8 C-(C, S) (graphitic carbon)  83.7 84.3 81.6 86.9 83.1 87.0 
285.9 C-(O, N, H) (phenolic, alcoholic, 

etheric) 11.6 10.5 13.0 7.2 9.6 9.1 

286.9 C=O (carbonyl or quinone) 4.7 5.3 5.4 3.6 4.6 4.6 
288.7 O-C=O (carboxyl or ester)    2.2 2.8  
O 1s        
530.7 Ketone, lactone, carbonyl 43.5 22.2  37.7 22.0 20.9 
532.1 O=C/O=S (in carboxyl/carbonyl or 

sulfoxides/ sulfones) 56.5 33.7 57.0 34.5 48.3 47.8 

533.6 O-C (in phenol/epoxy, ether, ester, 
anhydride, carboxyls  44.1 43.0 27.8 29.7 31.3 

N 1s        
398.7 N-6 (in pyridine)  3.7 11.9  33.7 10.5 
400.2 N-5 (in pyrrolic/pyridone and amide, 

amines)  96.3 88.1  66.3 89.5 

S 2p3/2        
167.8 R2-S=O/R-SO2-R (in sulfoxides, 

sulfones)   56.0   42.7 

168.3 R-SO3H (in sulfonic acids)   44.0   57.3 
 

Thus, based on the above, disproportionation of the amide bond of carbamazepine with a 

subsequent release of phenanthrene and urea can take place on the surface of our carbons as a 

result of oxidation with superoxide ions formed in the process of oxygen activation [31]: 
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That disproportionation of the amide bond of carbamazepine can even go further and NH3 and 

CO2 can be released: 
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Another obvious scenario is the reactions of amine groups of CBZ with surface carboxylic acids. 

The reaction is also expected to take place in the case of SMX: 

 

Moreover, the results suggest amide formation is occurring and that superoxide ions are able to 

oxidize sulfones to sulfonic acid, accompanied by the breaking of S-N bonds. 
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4. Conclusions 

The results presented in this paper show that not only the charge on the pollutant molecules and 

their level of hydrophobicity should be considered as important parameters governing their 

adsorption capacity on activated carbons. We have shown for the first time that depending on the 

chemical affinity between the adsorbate and the carbon surface, important transformations of the 

adsorbed molecules determined as reactive adsorption take place. This is owing to the oxygen 

groups incorporated to the carbon matrix. These species, besides attracting polar molecules, also 

react with functional groups of  the pollutants, especially with amines, resulting in very strong 

adsorption forces/covalent bonds. Moreover, the ability of a carbon surface to activate oxygen 

results in the partial oxidation of the adsorbed species. Dimerization is also a possible surface 

reaction, especially in the case of SMX. Since these oxygen-containing groups should exist in 

large micropores and in mesopores where dispersive interactions are rather weak, they enhance 

significantly the ability of activated carbons to remove these functional micropollutants. 
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Fig. S1. Kinetics curves for carbamazepine (CBZ) and sulfamethoxazole (SMX) adsorption on 

the surface of carbon adsorbents WVA and S208. 
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Fig. S2. DTG curves for carbamazepine and sulfamethoxazole in nitrogen. 
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Table S1 . Peak position and numbers of groups (in parentheses; [mmol/g]). 

Sample pH pKa 4-5 pKa 5-6 pKa 6-7 pKa 7-8 pKa 8-9 pKa 9-10 pKa 10-11 All 

WVA1100 7.41 
4.76 

 (0.102) 

 

 

6.10 

(0.077) 

7.10 

(0.139) 

8.37 

(0.046) 

9.26 

(0.066) 

10.24 

(0.150) 
0.580 

WVA1100+CBZ 6.47 
4.44 

(0.113) 

 

 

6.10 

(0.156) 

7.21 

(0.082) 

8.76 

(0.77) 

9.77 

(0.112) 
 0.541 

WVA100+SMX 6.41 
 

 

5.22 

(0.141) 

6.70 

(0.172) 

7.74 

(0.212) 

8.85 

(0.208) 

 

 

10.01 

(0.289)  
1.023 

S208C 

 
7.52   

6.12 

(0.077) 

7.90 

(0.066) 
 

9.46 

(0.122) 

10.52 

(0.401) 
0.665 

S208C + CBZ 7.50 
4.76 

(0.053) 
  

7.80 

(0.060) 
 

9.92 

(0.113) 
 0.226 

S208C + SMX 7.28   
6.89 

(0.100) 
 

8.88 

(0.073) 

 

 

10.31 

(0.339) 
0.511 

 

 



 

Fig. S3. FTIR spectra for carbamazepine and sulfamethoxazole 

 


