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Abstract 

 

In the construction of diabatic vibronic Hamiltonians for quantum dynamics in the excited-state 

manifold of molecules, the coupling constants are often extracted solely from information on 

the excited-state energies. Here, a new protocol is applied to get access to the interstate vibronic 

coupling constants at the time-dependent density functional theory level through the overlap 

integrals between excited-state adiabatic auxiliary wavefunctions. We discuss the advantages 

of such method and its potential for future applications to address complex systems, in 

particular those where multiple electronic states are energetically closely lying and interact. As 

examples, we apply the protocol to the study of prototype rhenium carbonyl complexes 

[Re(CO)3(N,N)(L)]n+ for which non-adiabatic quantum dynamics within the linear vibronic 

coupling model and including spin-orbit coupling have been reported recently. 

                                                 
* Author to whom correspondence should be addressed: egindensperger@unistra.fr 
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INTRODUCTION 

 

Excited-state non-adiabatic quantum dynamic simulations for transition metal 

complexes are very challenging for current state-of-the-art methods, due to specificities of this 

class of molecules: i) high density of electronic excited states; ii) multiple relevant spin 

multiplicities; and often iii) high nuclear dimensionality; and iv) low symmetry. For this 

purpose the linear vibronic coupling model1,2,3,4 (LVC) has been augmented to include spin-

orbit coupling (SOC) and was recently used for describing ultrafast intersystem crossing (ISC) 

processes driven by spin-vibronic mechanism in various complexes.5,6,7,8 In such LVC models, 

the potential energy surfaces of all considered states are constructed from some potential for 

the ground state, augmented by constant and linear terms in the diabatic potential energy matrix. 

In the investigations of these complexes, these terms include intrastate and interstate coupling 

as well as SOC, in order to take into account interactions within and between different spin 

multiplicities. The results of the simulations reproduce well the time-scales of the luminescent 

decays observed experimentally for a series of Re(I) -diimine carbonyl complexes,9,10,11,12 

namely [Re(CO)3(N,N)L]n+ (either L = Cl, Br, I; N,N = 2,2'-bipyridine (bpy); n=0 or L= 

imidazole (im); N,N = 1,10-phenanthroline (phen); n= 1).   

However, the employed protocol—the LVC model in combination with the way in which the 

model parameters are obtained—might encounter a number of limitations in the case of 

transition metal complexes. One difficulty often occurring in these complexes is related to the 

high density of electronic states, which leads to a large number of non-zero coupling terms. 

This is not very problematic in the Re(I) -diimine carbonyl halides [Re(CO)3(bpy)X] (X= Cl, 

Br, I), as they can be treated by a model involving only sets of pairwise interacting states for 

symmetry reasons related to the selected electronic states.5,6 On the contrary, the Re(I) -
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diimine carbonyl imidazole [Re(CO)3(phen)(im)]+ complex additionally exhibits interstate 

coupling between electronic states of the same symmetry that cannot be neglected7,8 and, in 

addition, the states cannot be considered strictly to interact pairwise. Another shortcoming of 

the LVC model is the neglect of second-order terms in the Taylor expansion of the potential 

energy matrix that might be important if the excited state potentials have very different 

curvature than the electronic ground state one. This is true in particular when totally symmetric 

normal modes couple closely lying states of the same symmetry, as we shall discuss in this 

paper.  

The vibronic coupling terms can and are usually obtained by a fit of the computed adiabatic 

potential energy surfaces3,4,13, or by analytical formulas based on the computed gradients and 

hessians of these surfaces1,14 when the pairwise interacting states approximation is valid. These 

approaches extract the coupling terms by exploiting information about the energetics of the 

problem, and discard information contained in the electronic wavefunction. 

The purpose of the present work is to propose a new protocol for the computation of linear 

interstate vibronic coupling constants from the many-electron wavefunctions computed by 

means of electronic structure methods. The central idea of the protocol is to employ the overlap 

matrix between the electronic wavefunctions at close-lying geometries as an adiabatic-to-

diabatic transformation matrix, such that the LVC parameters can be obtained by means of 

numerical differentiation. The protocol, which uses ideas borrowed from trajectory surface 

hopping,15,16,17 is applicable to wavefunction based methods and time-dependent density 

functional theory (TDDFT) alike, where in the latter case the wave functions are replaced by 

auxiliary many-electron wavefunctions.18,16 

The first two Sections of the paper are devoted to the theory and to the computational 

methodology. In the third Section, the new technique is applied to two prototype molecules, 

namely [Re(CO)3(phen)(im)]+ and [Re(CO)3(bpy)Br] for which several ultrafast luminescence 
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experiments and theoretical studies have been recently reported.5-12 We focus here on energy 

and symmetry considerations for the selection of active normal modes and the computation of 

the linear interstate coupling constants either by means of the standard LVC approach1 or 

following the new strategy based on the overlap between auxiliary wavefunctions. The non-

adiabatic quantum dynamics is performed using coupling constants extracted from both 

approaches. The results agree well, despite some differences in the numerical values of the 

coupling constants which are discussed.  

 

THEORY 

 

Vibronic coupling theory 

 

Vibronic coupling theory1 is used to build a model Hamiltonian based on a diabatic 

representation of the electronic states. The diabatic Hamiltonian describing nel coupled 

electronic states is written as 

 

𝑯(𝑸) =  (𝑇𝑁 + 𝑉0(𝑸))𝕀 +  𝑾(𝑸)   (1) 

    

where TN is the kinetic energy operator, 𝑉0(𝑸) is the potential energy of some reference 

electronic state, 𝕀 is the nel  nel identity matrix and 𝑾(𝑸) the coupling matrix. Q collects the 

nuclear degrees of freedom. The adiabatic potential energy surfaces 𝑉𝑛(𝑸) are provided as the 

eigenvalues of 𝑉0(𝑸)𝕀 +  𝑾(𝑸). 

The reference potential 𝑉0(𝑸) is in general not restricted to any particular form. In typical 

applications however, we consider photoexcitation from the ground electronic state to 
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electronically excited state(s). In that case, and as will be in our applications to be discussed 

below, the reference potential V0 is often described using the harmonic approximation for the 

ground state, written in terms of mass- and frequency-weighted (dimensionless) normal 

coordinates Qi. We then have1,3,4 

 

𝑇𝑁 + 𝑉0(𝑸) =  ∑
𝜔𝑖

2𝑖
 (−

𝜕2

𝜕𝑄𝑖
2 + 𝑄𝑖

2)   (2) 

 

with i the harmonic frequency of mode i. Vibronic-coupling effects arise from the mixing 

between electronic states along nuclear displacements and become significant at (near)-

degeneracy critical geometries such as conical intersections. The elements of the coupling 

matrix 𝑾(𝑸) represent the changes in the excited state potentials with respect to 𝑉0(𝑸)  and 

vary smoothly as a function of nuclear displacements. They are expanded in Taylor series 

around the reference geometry (here taken to be the Franck-Condon point, Q=0): 

 

𝑊𝑛𝑛(𝑸) =  𝜀𝑛 + ∑ 𝜅𝑖
(𝑛)𝑄𝑖 +

1

2
∑ 𝛾𝑖𝑗

(𝑛)
𝑖,𝑗𝑖 𝑄𝑖𝑄𝑗 + ⋯   (3) 

 

𝑊𝑛𝑚(𝑸) = ∑ 𝜆𝑖
(𝑛𝑚)

𝑄𝑖 + 𝑖  ⋯                      𝑛 ≠ 𝑚   (4) 

 

where in Eq. (3) εn is the vertical excitation energy for state n, 𝜅𝑖
(𝑛)

 is the first-order (linear) 

intrastate coupling constant along mode i for state n, 𝛾𝑖𝑗
(𝑛)

 the bilinear intrastate coupling 

constant for mode i and j for state n, etc. In Eq. (4), 𝜆𝑖
(𝑛)

 corresponds to the linear interstate 

coupling between states n and m, for n≠m. When only linear terms are included in the expansion 

of 𝑾(𝑸), we refer to the model as linear vibronic coupling (LVC) model. The vibronic-

coupling model has been applied to study numerous organic systems (see, eg, pyrazine19, 
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butatriene cation20, benzene cation21 and its fluoroderivatives,22,23,24 naphthalene and 

anthracene cations,25…), and also transition metal complexes.26,27,28,29 

In molecules with symmetry, selection rules strongly restrict the number of non-zero electronic-

vibrational coupling constants which largely simplifies the problem of parametrizing these 

constants. For the linear terms, for a two-state problem, one gets.1 

 

Γ𝑛 ⊗ Γ𝑄⊗ Γ𝑚 ⊃ Γ𝐴      (5) 

 

where Γ𝑛 and Γ𝑚 refer to the electronic state symmetry, Γ𝑄 to the normal mode symmetry and 

Γ𝐴 is the totally symmetric irreducible representation of the symmetry point group of the 

molecule. For molecules with CS symmetry for instance -with electronic states of A’ and A” 

symmetry and normal modes of a’ and a” symmetry- the active coupling modes (𝜆𝑖
(𝑛𝑚)

 ≠ 0) will 

be the non-totally symmetric ones (a”) between electronic states of different symmetry and the 

totally symmetric ones (a’) between electronic states of same symmetry. Eq. (5) also implies 

that only totally symmetric modes can lead to intrastate coupling 𝜅𝑖
(𝑛)

. A given mode will not 

couple all pairs of states at first order, unless there is no symmetry at all. 

 

The coupling constants 𝜅𝑖
(𝑛)

 and 𝜆𝑖
(𝑛𝑚)

 can be obtained as the first derivatives of the diabatic 

coupling matrix elements taken at the reference geometry. However, electronic structure 

calculations give access to adiabatic potential energy surfaces. The question is then how to 

extract the vibronic coupling constants from quantum chemical calculations. This question is 

addressed below. 
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Interstate coupling from Hessians 

 

The vibronic-coupling parameters can be extracted from a fitting of the adiabatic potential 

energy surfaces.3 This approach is widely employed, using codes such as VCHAM.13 When 

only two electronic states are involved, or if only pairs of states interact, one can use analytical 

formulas instead.1,14 They have the advantage of providing a clear picture on the role of the 

intrastate and interstate vibronic coupling. The coupling constants can be deduced from 

electronic structure calculations using the first and second derivatives of the adiabatic potential 

energy surfaces 𝑉𝑛(𝑸) with respect to Qi at the ground state equilibrium geometry:  

 

𝜅𝑖
(𝑛)
= 

𝜕𝑉𝑛(𝑸)

𝜕𝑄𝑖
|
0
                             (6) 

𝜆𝑖
(𝑛𝑚)

= √
1

8
 
𝜕2(𝑉𝑚(𝑸)−𝑉𝑛(𝑸))2

𝜕𝑄𝑖
2 |

0

   (7) 

The determination of 𝜅𝑖
(𝑛)

is relatively straightforward from the calculation of the gradients at 

Franck-Condon, provided analytically by many quantum chemistry methods. However, 𝜆𝑖
(𝑛𝑚)

, 

which measures the repulsion between states n and m along the mode i, involves the second 

derivative of the potential-energy surfaces.1 

 

The analytical formula Eq. (7) is subject to two approximations: (i) it is a two-state formula that 

is not valid if more than two states interact, (ii) it assumes that second-order effects described 

by the terms 𝛾𝑖𝑗
(𝑛) are negligible. The second point is related to the fact that Eq. (7) involves 

second derivatives, which are also used to determine the second-order coupling constants 𝛾𝑖𝑗
(𝑛). 

To illustrate this problem, we consider the case of two interacting states of the same symmetry 

along a totally symmetric mode. This situation is unlikely to occur in small systems with high 
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symmetry, but may become important when dealing with a high density of electronic states and 

low symmetry. Evaluating the sum and difference of the second derivatives at Q=0 of the 

adiabatic potentials one gets: 

 

1

2
 (
𝜕2

𝜕𝑄𝑖
2  𝑉𝑚 + 

𝜕2

𝜕𝑄𝑖
2  𝑉𝑛)|

0

= 
𝛾𝑖𝑖

(𝑚)+ 𝛾𝑖𝑖
(𝑛)

2
+ 

𝜕2

𝜕𝑄𝑖
2  𝑉0|

0

 (8) 

1

2
 (
𝜕2

𝜕𝑄𝑖
2  𝑉𝑚 − 

𝜕2

𝜕𝑄𝑖
2  𝑉𝑛)|

0

= 
𝛾𝑖𝑖

(𝑚)− 𝛾𝑖𝑖
(𝑛)

2
+ 

2𝜆𝑖
(𝑛𝑚)2

𝜀𝑚−𝜀𝑛
  (9) 

 

Eq. (8) shows the average change in the second derivatives of the two states as compared to the 

ground-state reference potential. In Eq. (9), we can see that 𝛾𝑖𝑖 terms and 𝜆𝑖
(𝑛𝑚)

 appear. Since 

there are three unknowns (𝛾𝑖𝑖
(𝑚), 𝛾𝑖𝑖

(𝑛) and 𝜆𝑖
(𝑛𝑚)

) but only two equations, Eqs. (8) and (9) are 

not sufficient to extract 𝛾𝑖𝑖
(𝑚), 𝛾𝑖𝑖

(𝑛) and 𝜆𝑖
(𝑛𝑚)

. Under the assumption of 𝛾𝑖𝑖 terms equal to zero 

(or less restrictive, 𝛾𝑖𝑖
(𝑚) = 𝛾𝑖𝑖

(𝑛)) then Eq. (9) allows to extract 𝜆𝑖
(𝑛𝑚)

 and is equivalent to Eq. 

(7). Within the harmonic approximation for 𝑉0, 𝛾𝑖𝑖 terms represent the change in frequency of 

the excited states with respect to the ground state and would affect the values of 𝜆𝑖
(𝑛𝑚)

 extracted 

from Eq. (7) given that the changes in shape of the potential is due to both (intrastate) quadratic 

coupling and (interstate) linear coupling. For a more detailed discussion of the Hessian-based 

approach and evaluation of the error in 𝜆𝑖
(𝑛𝑚)

 due to 𝛾𝑖𝑖
(𝑚)  ≠ 𝛾𝑖𝑖

(𝑛), see Ref [14]. 

This example shows that alternative ways to extract interstate vibronic coupling constants may 

be useful, in particular to extract 𝜆𝑖
(𝑛𝑚)

 terms without evaluating the second derivative of the 

potentials, but also in order to reduce the number of electronic structure calculations as 

compared to a fitting procedure. 
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Interstate coupling from energies and overlaps 

 

In the approach discussed above, the two-state analytical formulas or fitting strategies only 

consider energetic information and ignore the information that is contained in the electronic 

wavefunctions or the TDDFT response vectors. One alternative is thus to consider how this 

information can be exploited. This can be achieved through the use of overlaps between 

wavefunctions computed for different molecular structures. First, it should be pointed out that 

the 𝑊𝑛𝑚 matrix elements of the above equations can be expressed in the following form, 

 

𝑊𝑛𝑚 = ⟨Φ𝑛|𝐻𝑒𝑙|Φ𝑚⟩    (10) 

 

where Φ𝑛 is the diabatic electronic wavefunction for state n and 𝐻𝑒𝑙 the electronic Hamiltonian. 

It follows that the 𝜆𝑖
(𝑛𝑚)

 values can be expressed as 

 

𝜆𝑖
(𝑛𝑚)  =  

𝜕𝑊𝑛𝑚(𝑸)

𝜕𝑄𝑖
|
0
= 

𝜕

𝜕𝑄𝑖
⟨Φ𝑛|𝐻𝑒𝑙|Φ𝑚⟩|

0
 (11) 

 

This term is closely related to the non-adiabatic coupling (NAC) vector. A direct evaluation of 

𝜆𝑖
(𝑛𝑚) values from the NAC vectors or the related interstate coupling vectors has been used 

extensively by Yarkony and coworkers30,31 in the context of computations at the multi-reference 

configuration interaction (MRCI) level32 and has also been achieved in the context of coupled-

cluster computations by Ichino et al.33 and Tajti et al.34 However, this type of approach is 

hampered by the fact that interstate coupling vectors or NAC vectors have only been 

implemented for a few electronic structure methods based mainly on wavefunction based 

approaches.  Therefore, we will follow a somewhat different route that does not require 

computation of these coupling vectors. Instead, a finite difference scheme based on the use of 
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wavefunction overlaps is carried out. This scheme is applicable to wavefunction based methods 

as well as to TDDFT. In the latter case, the response vector is used to construct auxiliary many-

electron wavefunctions (see below). For each normal mode i of interest, a finite displacement 

of the geometry quantified by 𝛿𝑄𝑖 is performed yielding vertical transition energies 𝐸𝑛(𝛿𝑄𝑖). 

In addition, the overlap, 

 

𝑆𝑖
(𝑛𝑚)

= ⟨Ψ𝑛(0)|Ψ𝑚(𝛿𝑄𝑖)⟩    (12) 

 

is computed, where Ψ𝑛(0) =  Φ𝑛(0) is the wavefunction at the reference geometry (where 

adiabatic and diabatic states coincide) and Ψ𝑚(𝛿𝑄𝑖) is the auxiliary wavefunction of the 

adiabatic state at the displaced geometry. As a next step, a transformation matrix 𝑼 is 

constructed by a Löwdin orthogonalization35 of the overlap matrix 𝑺. Following Granucci et 

al.15 and Plasser et al.,36 the diabatic Hamiltonian at the displaced geometry is obtained as 

 

𝑾(𝛿𝑄𝑖) =  𝑼(

𝐸1(𝛿𝑄𝑖) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐸𝑛𝑒𝑙(𝛿𝑄𝑖)

)𝑼𝑻   (13) 

 

A similar approach to construct diabatic potentials has been proposed by Neugebauer et al.37,38 

in the context of linear response theory within TD-DFT, by exploiting overlap between 

adiabatic transition densities and applied to the computation of vibronic spectra. Here, we shall 

use auxiliary wavefunction overlaps instead, see the Section Computational Methods below. 

 

The 𝜆𝑖
(𝑛𝑚) values are obtained by a numerical differentiation 
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𝜆𝑖
(𝑛𝑚)

= 
𝑊𝑛𝑚(𝛿𝑄𝑖)

𝛿𝑄𝑖
.        (14) 

 

The vibronic coupling model discussed so far allows for a diabatization by ansatz of the 

potential energy surfaces, which are thus constrained to a specific mathematical form. A 

generalization of the diabatization can be done by exploiting the so-called regularized diabatic 

states.
39,40,41 Here, the LVC model is used only to define the adiabatic-to-diabatic mixing 

angle1,42: far from the intersection, the diabatic potentials tend to the adiabatic onces. The 

overlap technique to extract linear coupling constants can be efficiently exploited in this context 

as well, leading to more flexibility in the construction of diabatic potentials. 

Finally, note that it is also possible to obtain the 𝜅𝑖
(𝑛)

from the overlaps. This is not discussed 

here since we employ the traditional approach by considering the gradients of the adiabatic 

potentials in all cases, see Eq. (6). Indeed, analytical gradients are nowadays easily available 

for numerous quantum chemistry methods. 

 

 

COMPUTATIONAL METHODS 

 

Auxiliary wavefunction overlaps 

 

We start by commenting on the auxiliary wavefunction overlaps as shown in Eqs.(12-14). In 

the case of TD-DFT, approximate auxiliary many-electron wavefunctions18,16 are constructed 

in the form 

 

Ψ𝑛(𝑸) =  ∑ 𝑋𝑗𝑎
(𝑛)(𝑸) 𝜙𝑗

𝑎(𝑸)𝑗𝑎 .    (15) 
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Here, 𝑋𝑗𝑎
(𝑛)

 is the element of the TD-DFT response vector of state n that pertains to the excitation 

from the occupied orbital j to the virtual orbital a, and 𝜙𝑗
𝑎 is the corresponding Slater 

determinant. The auxiliary wavefunction overlap Eq. (12) is computed as a double sum of the 

form 

 

𝑆𝑖
(𝑛𝑚)

=  ∑ ∑ 𝑋𝑗𝑎
(𝑛)

𝑘𝑏𝑗𝑎 (0)𝑋𝑘𝑏
(𝑚)(𝛿𝑄𝑖)⟨𝜙𝑗

𝑎(0)|𝜙𝑘
𝑏(𝛿𝑄𝑖)⟩ (16) 

 

where ⟨𝜙𝑗
𝑎(0)|𝜙𝑘

𝑏(𝛿𝑄𝑖)⟩ is the overlap between two Slater determinants expressed with respect 

to non-orthogonal Kohn-Sham orbitals.  

 

In practice, the computation proceeds by first computing the overlap between the atomic 

orbitals at the two geometries then using these values together with the molecular orbital (MO) 

coefficients to compute the MO overlaps. The overlap between the Slater determinants is in 

turn computed as the determinant of the matrix containing all mutual MO overlaps. The 

evaluation of Eq. (12) can be very costly as it scales with the square of the size of the CI-vector. 

However, an efficient algorithm, 43 which allows computing the auxiliary wavefunction overlap 

at a feasible computational cost by applying a prescreening algorithm and by taking advantage 

of recurring intermediates, is employed here.  

 

Model Hamiltonian 

 

The model Hamiltonian used in the present work has been introduced recently5-7 and includes 

SOC and vibronic coupling within the LVC model. The Hamiltonian is given by Eqs. (1-2) and 

the particular form of the 𝑾(𝑸) matrices for our applications are provided in Appendix A. The 
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SOC constants are taken to be constant at the Franck-Condon values. The 𝑾(𝑸) matrices used 

in this work account for a total of seventeen electronic states for [Re(CO)3(phen)(im)]+ and 

eleven states for [Re(CO)3(bpy)(Br)] when considering the triplet’s components explicitly. 

The intrastate coupling terms, 𝜅(𝑛), are extracted from the gradients of the excited states, Eq. 

(6). The interstate coupling constants, 𝜆(𝑛,𝑚), are either obtained from the Hessian of the excited 

states using Eq. (7) (named  Hessian-based approach), or computed from the overlap integrals 

between the excited-state adiabatic wave-functions, Eq. (14) for 𝛿𝑄𝑖 = 0.1 (named Overlap-

based approach).  

The details about the electronic structure data used here are reported elsewhere44,5,7 and are 

briefly recall below. Calculations were performed by means of DFT including water or 

acetonitrile solvent corrections based on a conductor-like screening model (COSMO).45,46,47 

The calculations were performed using the B3LYP functional,48 the D3 parametrization of 

Grimme49 and all-electron triple- Slater-type basis set.50 The scalar relativistic effects were 

taken into account within the zeroth-order regular approximation (ZORA).51 The vertical 

transition energies were computed within TD-DFT52,53 at the same level described above under 

the Tamm-Dancoff approximation (TDA)54. The SOCs were computed as matrix elements of 

the scalar relativistic TD-DFT states.55,56 The normal modes of the singlet electronic ground 

state S0 (a1A’) are used to build the model multidimensional potential energy surfaces. All 

calculations were done with the ADF2013 code.57 

 

Wavepacket propagation 

 

The time-dependent Schrödinger equation for the nuclei is solved by employing the 

multiconfiguration time-dependent Hartree (MCTDH) method.58,59,60 Here the 

multiconfiguration nuclear wavefunction is expressed as a linear combination of sums of 
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Hartree products of time-dependent basis functions, known as single-particle functions (SPF). 

The wavepacket ansatz adapted to the present non-adiabatic problem corresponds to the 

multiset formulation. The mode combination, number of primitive basis and SPF used in the 

simulations are given in Appendix B, Tables 3 and 4. The choice is adapted to the small energy 

differences between the excited states and to the small displacement of the potentials due to 

modest 𝜅(𝑛) coupling terms. Harmonic-oscillator basis sets were employed. The initial 

wavepacket corresponds to the harmonic ground vibrational state of the ground electronic state 

S0, promoted at time zero to the S2 absorbing state (see below). The Heidelberg MCTDH 

Package is used (version 8.4.13).61 

 

 

RESULTS AND DISCUSSION 

 

Energy and symmetry considerations for interstate vibronic coupling between excited states 

of [Re(CO)3(N,N)(L)]n+ 

 

The role of the different ligands on the properties of the low-lying excited-states of 

[Re(CO)3(N,N)(L)]n+ complexes has been analyzed in previous work5-8,44,62 and is briefly 

recalled here. These complexes are characterized by excited states of different character: singlet 

and triplet intra-ligand (IL) states and metal-to-ligand charge transfer (MLCT) states. For the 

complexes with halides, additional contributions of halide-to-ligand charge transfer (XLCT) 

character mix with the MLCT states. The previous studies led to two main conclusions: (i) the 

axial L ligand, being X or im, modulates the absorption energy of the optically active singlet 

state and (ii) the N,N ligand, either phen or bpy, determines the relative stability of the IL and 
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MLCT states with respect to the optically active singlet state. These conclusions are extracted 

from TD-DFT data reported for different [Re(CO)3(N,N)(L)]n+ complexes, including the two 

complexes discussed here,  [Re(CO)3(bpy)(Br)] and [Re(CO)3(phen)(im)]+, for which the 

results are collected in Table 1. For details about the excited-state electronic structure data we 

refer to Ref. [44] and Ref. [7] respectively. The optically active singlet state around 400 nm 

corresponds to the S2 state. The complexes are of Cs symmetry. 

 

 

 

 

Table 1. TD-DFT transition energies (eV) associated to the low-lying singlet and triplet states 

of [Re(CO)3(bpy)(Br)] in acetonitrile44 and [Re(CO)3(phen)(im)]+ in water.7 

[Re(CO)3(bpy)(Br)] [Re(CO)3(phen)(im)]+ 

T1 (A”) MLCT/XLCT 2.84 T1 (A”) MLCT 2.98 

T2 (A’) MLCT/XLCT 2.93 T2 (A’) MLCT 3.07 

S1 (A”) MLCT/XLCT 2.96 S1 (A”) MLCT 3.11 

S2 (A’) MLCT/XLCT 3.13 T3 (A”) MLCT/IL 3.24 

T3 (A”) IL 3.22 S2 (A’) MLCT 3.40 

T4 (A’) MLCT 3.34 T4 (A’) MLCT 3.42 

   T5 (A’) MLCT 3.45 

 

 

In the case of [Re(CO)3(bpy)(Br)], the absorbing S2 state is below T3 in energy and the model 

is truncated such that T4 is not considered. Within this set of states, three possible interstate 

vibronic coupling potentially couple different symmetry (but same spin) excited states: 
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S1(A”)/S2(A’), T1(A”)/T2(A’) and T2(A’)/T3(A”), along a” modes and one interstate vibronic 

coupling between same symmetry states, T1(A”)/T3(A”), along a’ modes. Although potentially 

active, T2(A’)/T3(A”) and T1(A”)/T3(A”) coupling constants are small and are neglected in the 

model: T3 is only coupled by SOC to the other states. . This brings us to the scenario depicted 

in Figure 1. In the case of [Re(CO)3(phen)(im)]+, the absorbing S2 state is nearly degenerate 

with T4 and strongly coupled through SOC7,60 and thus T4 has to be included in the model. Two 

additional interstate vibronic couplings arise from the inclusion of T4 in the model, that is 

T3(A”)/T4(A’) and T2(A’)/T4(A’), as depicted in Figure 2. Note that the S2<T3<T4 excited state 

manifold of [Re(CO)3(bpy)(Br)] becomes T3<S2<T4 in [Re(CO)3(phen)(im)]+. As a 

consequence, T3 is ascribed to an intermediate state in [Re(CO)3(phen)(im)]+ actively driving 

population from S2 to T1, in contrast to the case of [Re(CO)3(bpy)(Br)]. In addition, T4 is 

coupled to the higher lying T5 state. The impact of this coupling onto the potential energy 

surfaces and the dynamics shall be discussed below. 

 

 

Figure 1. Excited states and interstate vibronic coupling considered for [Re(CO)3(bpy)(Br)]. 

SOC (not shown) additionally couple the states. The ordinate is the exited-state energy in eV. 
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Figure 2. Excited states and interstate vibronic coupling between different symmetry states 

(left) and between same symmetry states (right) considered for [Re(CO)3(phen)(im)]+. SOCs 

(not shown) additionally couple the states. The ordinate is the exited-state energy in eV. 

 

Interstate vibronic coupling from hessian model approach and overlap matrix for 

[Re(CO)3(bpy)(Br)] and [Re(CO)3(phen)(im)]+ 

 

From the 78 and 108 normal modes of [Re(CO)3(bpy)(Br)] and [Re(CO)3(phen)(im)]+, 

respectively, 14 (12 a’ and 2 a”) and 15 (12 a’ and 3 a”) were selected in previous work as the 

most important ones driving the ultrafast excited state decay from S2 down to the lowest excited 

state T1.
5-8 This selection was performed by means of analyzing the contribution to the shift in 

position and energy of the low-lying excited state minima for all the a’ modes (obtained from 

the intrastate couplings ). Then, the excited states dynamics were simulated including some 

interstate vibronic coupling  between different symmetry states (along the a” modes) and 

between same symmetry states (along the a’ modes).8 As already pointed out, the model used 

for [Re(CO)3(bpy)(Br)] does not include interstate vibronic coupling between same symmetry 

states, because the computed coupling constants values are small. The intrastate vibronic 

couplings were deduced from the gradient of the excited state (see Eq. (6)), and the interstate 
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vibronic coupling  from the Hessians (see Eq. (7)). Herein, the interstate vibronic couplings 

are also obtained by means of the overlap method. The interstate  values computed by means 

of both approaches, namely Hessian and Overlap (see previous Sections) are compared in Table 

2 for [Re(CO)3(bpy)(Br)] and Figure 3 for [Re(CO)3(phen)(im)]+ for all the coupling modes 

included in the 14-modes and 15-modes models, respectively. 

 

Table 2. Interstate vibronic coupling  (in eV) for the selected a” normal modes (frequency 

given in cm-1) of [Re(CO)3(bpy)(Br)] between different symmetry excited states computed 

within the Hessian and Overlap approaches. 

 95 (cm-1) a” 486 (cm-1) a” 

 Hessian Overlap Hessian Overlap 

S1/S2 0.0114 0.0016 0.0237 0.0240 

T1/T2 0.0086 0.0013 0.0190 0.0268 

 

 

For the bromide complex, only two a” modes are considered, one very low frequency mode at 

95 cm-1 and one at 486 cm-1 corresponding to carbonyl motions6. We see in Table 2 that for the 

mode at 95cm-1 the  values extracted from the overlap method are significantly smaller than 

those obtained from Eq. (7). We attribute this difference to the fact that for such a low frequency 

mode, the importance of second-order terms with respect to the harmonic approximation can 

be substantial. As a consequence, the coupling extracted from the Hessians is increased since 

it artificially incorporates some second-order contributions, see Eqs. (8)-(9) and the discussion 

in the Theory section). For the mode at 486 cm-1, the 𝜆(𝑆1𝑆2) values are almost exactly the same 

because second-order contributions and coupling to higher lying state (S3) are negligible. For 

𝜆(𝑇1𝑇2) the agreement is less good probably due to some additional indirect coupling to T3 which 
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is not included in the Hessian-based approach. We shall see below that the quantum dynamics 

using both sets of parameters nearly coincide. 

 

 

Figure 3. Interstate vibronic coupling  (in eV) for the selected a’ and a” normal modes 

(frequency given in cm-1) of [Re(CO)3(phen)(im)]+ between same symmetry and different 

symmetry excited states, respectively, computed within the Hessian and Overlap approaches. 

 

The interstate coupling constants between different symmetry states for three a” modes in the 

case of the [Re(CO)3(phen)(im)]+ complex are given in Figure 3a. The values obtained from 

the Hessian-based approach and the overlap approach are rather similar, the former being 

generally slightly larger than the latter, in particular for 𝜆(𝑆1𝑆2). Notice that within the Hessian-

based approach the computed 𝜆(𝑇2𝑇3) values are zero while those computed with the overlap 

method are small, less than 0.01 eV, and shall not affect the dynamics (see below). 

The three other panels of Figure 3 represent the 𝜆 values for same-symmetry interacting states 

along all 12 a’ normal modes. For the T1(A”)/T3(A”) and T4(A’)/T5(A’) cases the agreement 
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between the two approaches is good. The only discrepancy is for 𝜆(𝑇1𝑇3) along two modes at 92 

cm-1 and 1336 cm-1 for which the Hessian-based values are zero as opposed to the overlap 

approach. We believe that this is again due to the non-negligible quadratic coupling 𝛾𝑖𝑖
(𝑛)

which 

makes the effective frequency in T3 smaller or almost equal than that of T1 leading to 𝜆(𝑇1𝑇3) =

0 in the Hessian based approach (see Appendix C, Figure 7). Indeed, as previously discussed, 

the 𝜆(𝑛𝑚) coupling constant is affected by the quadratic coupling in this approach. In this 

context, the evaluation of 𝜆(𝑛𝑚) through the overlap integral between the adiabatic wave 

functions provides a Hessian-independent estimation of 𝜆(𝑛𝑚) that would allow, in turn, to 

unequivocally extract 𝛾𝑖𝑖
(𝑛)

. 

Finally, we inspect the results for the T2(A’)/T4(A’) coupling (Figure 3d). Using the overlap 

approach, all 12 a’ modes exhibit non-vanishing coupling constants, while only 4 modes do so 

in the Hessian-based approach. This is an artifact of the pairwise interacting state approximation 

done in Eq. (7). Indeed, we have seen that T4 interacts with T5. As a consequence of this 

repulsion, the curvature of T4 is lowered. In turn, when computing the T2/T4 coupling this 

change in curvature may lead to a zero or negative value of the (square of the) interstate 

coupling constant (see Eq. (9) in the case 𝛾𝑖𝑖
(𝑛)
= 𝛾𝑖𝑖

(𝑚)
), resulting in 𝜆(𝑛𝑚) = 0. This 

corresponds to a three-state problem and is illustrated by the T2/T4/T5 coupling in 

[Re(CO)3(phen)(im)]+ along some particular a’ normal modes. The ab initio adiabatic potentials 

along the modes at 1554, 1623 and 1660 cm-1 are compared to the “SO free” adiabatic potentials 

obtained within the LVC model in Figure 4. It can be seen that the proper shape of the T4 

potential is recovered only when the T4/T5 coupling is considered. Note that T3 model potentials 

(orange curve) deviate from the ab initio potentials at Q < -1 and Q > 1 along the modes at 1623 

cm-1 and 1660 cm-1, respectively, also because of coupling with higher excited states which are 

not included in the present study. 
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Figure 4. Comparison of the model potentials within the triplet manifold of 

[Re(CO)3(phen)(im)]+ with the ab initio “spin-orbit free” adiabatic potentials along modes at 

1554 (Q88), 1623 (Q91) and 1660 (Q93) cm-1 when including or not T4/T5 vibronic coupling. 

Color code: T1 blue, T2 grey, T3 orange, T4 yellow (T5 not shown). The thin lines correspond to 

the Hessian-based model approach and the dotted lines to the ab initio data. 

 

 

Overall, when more than two excited states are vibronically coupled, the pairwise interacting 

state approach based on the Hessian difference at FC can lead to underestimated  couplings or 

even the neglect of some of them (as for T2/T4). In this context, the overlap between the excited 

state adiabatic auxiliary wavefunctions at displaced geometries allows to numerically extract 

all  couplings at once including cooperative effects of multiple coupled states. Despite this, 

the pairwise model approach provides a qualitatively correct representation of the spin-orbit 
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free adiabatic potentials used for the 12 a’ modes considered for the [Re(CO)3(phen)(im)]+ 

complex, which are compared in Appendix C, Figure 7.  

Overall, we believe that this protocol will be highly valuable to study complex systems for 

which non-zero ii
(n) are important, and/or i

(n,m) beyond the pairwise interacting state approach 

must be considered. The consequences on the ultrafast excited state dynamics are discussed in 

the next section.  

 

Quantum dynamics of [Re(CO)3(bpy)(Br)] and [Re(CO)3(phen)(im)]+ 

 

In order to assess the role of T5 in the excited state dynamics of the [Re(CO)3(phen)(im)]+ 

complex, quantum dynamics by means of wave-packet propagations were performed using the 

15-mode model including T4/T5 interstate vibronic coupling. The evolution of the diabatic 

electronic populations as a function of time is shown in Figure 5a. All the interstate vibronic 

coupling constants used in this case were computed within the Hessian-based approach (Figure 

3) and thus the results are directly comparable with the previous ones reported in Ref [8] where 

the same data was used but excluding T4/T5 couplings. The dynamics is characterized by an 

ultrafast decay of S2, accompanied by a fast temporary population of the higher-lying T4 and T5 

states during a few tens of fs and followed by population transfer to T3 and T1. Then, the T3 

population decays to T1 on a longer time-scale. The results presented in Ref 8 where T5 is 

neglected (thus ignoring the T4/T5 coupling and its effect in the potential surface shape of T4 as 

discussed previously) show that T4 plays alone the role of both T4 and T5. We conclude that, 

while the inclusion of T5 and T4/T5 coupling in the model is necessary in order to obtain a 

realistic representation of the T4 potential along some a’ modes, it does not modify the ultrafast 

excited state decay of S2 and neither the population of T1 in this case. This is encouraging since 
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one has to truncate the number of states included in the model, and this truncation can be done 

without affecting the population transfer to the low-lying states. 

 

Figure 5. Diabatic electronic populations of the low-lying excited states of 

[Re(CO)3(phen)(im)]+ as a function of time using a 15-modes model (a) considering the 

interstate vibronic couplings obtained via the Hessian-based approach. (b) considering the 

interstate vibronic couplings obtained via the Overlap-based approach. Triplet-component 

contributions are summed up. 

 

 

After comparing our previous results to the new ones, we now turn to the comparison of the 

dynamics of the [Re(CO)3(phen)(im)]+ complex obtained using the coupling constants extracted 

from the Hessian-based approach and the overlap approach 

When substituting these values of  by the values computed by means of the overlap approach 

(Tables 2 and Figure 3) we can see that the small differences discussed in the former section do 

not influence drastically the ultra-fast non-adiabatic dynamics, both for [Re(CO)3(phen)(im)]+ 

(compare Figure 5a vs. Figure 5b) and [Re(CO)3(bpy)(Br)] (Figure 6a vs. 6b) complexes. For 
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the two complexes the model is robust against small modifications of the coupling constants 

and unless very precise results are needed –in which case the use of the LVC model is 

questionable anyway- it allows to simulate intricate ultrafast decay processes involving many 

electronic states. 

 

 

Figure 6. Diabatic electronic populations of the low-lying excited states of [Re(CO)3(bpy)(Br)] 

as a function of time using a 14-modes model:6 (a) considering the interstate vibronic couplings 

obtained via the Hessian-based approach. (b) considering the interstate vibronic couplings 

obtained via the Overlap-based approach. Triplet-component contributions are summed up. 

Panel (a) reprinted (adapted) from Ref [6]. Copyright (2016) American Chemical Society. 

 

Conclusions 

The construction and use of model vibronic Hamiltonians is very useful in studying the quantum 

dynamics in the coupled manifold of electronically excited states. The pertinence of the model 

relies on the adequacy between the shapes of the actual potential energy surfaces with respect 

to those constructed by ansatz in the model. The coupling constants entering the model are 

extracted from electronic structure data, most often using only the energies, gradients, etc of 
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the excited states. There computation might become quite involved, in particular when many 

electronic states interact in molecular system of low or even no symmetry.  

Here we propose an alternative approach that makes use of information about the vibronic 

coupling which is embedded in the electronic wavefunctions. More specifically, the vibronic 

coupling constants are extracted from the overlap of wavefunctions at displaced geometries 

along the normal modes of interest. While being general, we employ here this strategy in the 

context of density functional theory, through the use of auxiliary wavefunctions built from the 

TD-DFT response vector. 

The values of the coupling constants obtained from a well known pairwise state-interaction 

picture and those obtained by the proposed overlap protocol are compared in the case of two 

prototype rhenium complexes. The values agree qualitatively well and almost quantitatively 

well for some states and for some modes. The discrepancy, when present, comes from the 

interaction with more than two states on the one hand, and the inability of the pairwise model 

to disentangle linear coupling terms from possible contributions of second-order terms. The 

quantum dynamics performed using the two sets of values for the two complexes show however 

very little differences as far as the electronic population dynamics is concerned. The model is 

robust against minor changes in the coupling constants. 

We believe that the proposed method is of general interest for computing vibronic coupling 

constants, and specifically when dealing with complex systems involving a high density of 

states and low symmetry. 
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APPENDIX A 

 

The W matrix used for [Re(CO)3(phen)(im)]+ when including the two lowest singlets and five 

lowest triplets read as follows, where the star stands for the conjugate transpose:  

 

𝐖 =

(

 
 
 
 
 

𝐖T1,T1 𝐖T1,T2

𝐖∗T1,T2 𝐖T2,T2
𝐖T1,S1 𝐖T1,T3

𝐖T2,S1 𝐖T2,T3

𝐖T1,S2 𝐖T1,T4 𝐖T1,T5

𝐖T2,S2 𝐖T2,T4 𝐖T2,T5

𝐖∗T1,S1 𝐖∗T2,S1

𝐖∗T1,T3 𝐖∗T2,T3
𝐖S1,S1 𝐖S1,T3

𝐖∗S1,T3 𝐖T3,T3

𝐖S1,S2 𝐖S1,T4 𝐖S1,T5

𝐖T3,S2 𝐖T3,T4 𝐖T3,T5

𝐖∗T1,S2 𝐖∗T2,S2

𝐖∗T1,T4

𝐖∗T1,T5
𝐖∗T2,T4

𝐖∗T2,T5

𝐖∗S1,S2 𝐖∗T3,S2

𝐖∗S1,T4

𝐖∗S1,T5
𝐖∗T3,T4

𝐖∗T3,T5

𝐖S2,S2 𝐖S2,T4 𝐖S2,T5

𝐖∗S2,T4

𝐖∗S2,T5
𝐖T4,T4

𝐖∗T4,T5
𝐖T4,T5

𝐖T5,T5)

 
 
 
 
 

 

Note that we explicitly consider the triplet’s components, yielding a seventeen states W matrix. 

The different sub-matrices are defined as follows: 

𝐖n,n = 𝜀𝑛 +∑𝜅𝑖
(𝑛)𝑄𝑖

i∈a′

 

𝐖S1,S2 =∑𝜆𝑗
(S1,S2)𝑄𝑗

j∈a"

 

𝐖Sn(A′),Tm(A′) = 𝐖Sn(A"),Tm(A") = (0; 𝜂Sn,Tm; 0) 

𝐖Tm(A′),Sn(A′) = 𝐖Tm(A"),Sn(A") = (
0

𝜂Sn,Tm
0

) 

𝐖Sn(A′),Tm(A") = 𝐖Sn(A"),Tm(A′) = (𝜂Sn,Tm
∗ ;  0; 𝜂Sn,Tm) 

𝐖Tm(A′),Sn(A") = 𝐖Tm(A"),Sn(A′) = (

𝜂Sn,Tm
∗

0
𝜂Sn,Tm

) 
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𝐖Tn(A′),Tm(A") = 𝐖Tn(A"),Tm(A′) =

(

 
 
 
 
 

∑𝜆𝑗
(Tn,Tm)

𝑄𝑗
j∈a"

𝜂Tn,Tm 0

−𝜂Tn,Tm
∗ ∑𝜆𝑗

(Tn,Tm)𝑄𝑗
j∈a"

𝜂Tn,Tm

0 −𝜂Tn,Tm
∗ ∑𝜆𝑗

(Tn,Tm)𝑄𝑗
j∈a" )

 
 
 
 
 

 

𝐖Tn(A"),Tm(A") = 𝐖Tn(A′),Tm(A′)

=

(

 
 
 
 

∑𝜆𝑖
(Tn,Tm)𝑄𝑖

i∈a′

+ 𝜂Tn,Tm 0 0

0 ∑𝜆𝑖
(Tn,Tm)𝑄𝑖

i∈a′

0

0 0 ∑𝜆𝑖
(Tn,Tm)𝑄𝑖

i∈a′

+ 𝜂Tn,Tm
∗

)

 
 
 
 

 

 

where the SOC 𝜂n,m constants (complex-valued) are obtained from electronic structure 

calculations at FC. The W matrix used for [Re(CO)3(bpy)(Br)] when including the two lowest 

singlets and three lowest triplets has 11x11 terms analogous to the ones presented above. 
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APPENDIX B 

 

Table 3. Number of basis functions for the primitive basis as well as for the time-dependent 

(SPF) basis used in the MCTDH calculation for the lowest 17 electronic states of 

[Re(CO)3(phen)(im)]+ using the 15-modes model Hamiltonian described in the Results section 

of the main text. 

Modes Primitive basis SPF basis 

(Q9, Q22, Q27) (23, 19, 15) (11,11,17,11,17,11,11,11,11,11,11,9,9,9,9,9,9) 

(Q8, Q24, Q
eff

36-37) (13, 13, 13) (8,8,8,8,8,8,8,8,8,8,8,7,7,7,7,7,7) 

(Q38, Q70, Q81) (17, 17, 17) (8,8,13,8,13,8,8,8,8,8,8,7,7,7,7,7,7) 

(Q88, Q91, Q93) (17, 17, 17) (8,8,11,8,11,8,8,8,8,8,8,7,7,7,7,7,7) 

(Q18, Q32, Q77) (21, 19, 19) (9,9,9,9,9,9,9,9,9,9,9,7,7,7,7,7,7) 

 

Table 4. Number of basis functions for the primitive basis as well as for the time-dependent 

(SPF) basis used in the MCTDH calculation for the lowest 11 electronic states of 

[Re(CO)3(bpy)(Br)] using the 14-mode model Hamiltonian described in the Results section of 

the main text. 

Modes Primitive 

basis 

SPF basis 

(Q8, Q23, Q58) (17, 15, 11) (7,7,7,7,7,7,7,7,7,7,7) 
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(Q7, Q30, Q64) (17, 13, 11) (7,7,7,7,7,7,7,7,7,7,7) 

(Q2, Q11) (31, 17) (9,9,9,9,9,9,9,9,7,7,7) 

(Q12, Q13, Q16) (17, 17, 17) (7,7,7,7,7,7,7,7,7,7,7) 

(Q24, Q47, Q63) (15, 11, 11) (7,7,7,7,7,7,7,7,7,7,7) 
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APPENDIX C 

 

Figure 7. Comparison of the model potentials with the ab initio “spin-orbit free” adiabatic 

potentials of the low-lying triplets of [Re(CO)3(im)(phen)]+ along the 12 a’ normal modes 
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selected. Color code: T1 blue, T2 grey, T3 orange, T4 yellow. The lines correspond to the model 

and the dotted lines to the ab initio data. Singlet states are not shown. 
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