• :

..... 1 2 ω

.

: .

.

4

J

. . . .

·

3.4. Crystal structure determination of the

tetrachloro(methanol)nitrosyltechnetium(II) anion.

The anion $\{Tc(NO)Cl_{4}(CH_{B}OH)\}^{-}$ has a distorted octahedral geometry with the four chlorine atoms lying in an equatorial plane and the other two ligands in axial directions. The nitrosyl group is bonded almost linearly to the technetium and the coordinated methanol trans to it was found to be hydrogen bonded to a methanol of solvation.

Two forms of bright green crystals were grown from the methanol/diethylether mixture, rectangular plates and needles. A single crystal, $(0.63 \times 0.39 \times 0.13 \text{ mm})$, of the rectangular plate form was mounted about a.

Formula: [(C4H9)4N][Tc(NO)Cl4(CH3OH)];

Formula weight: Mr=545.3;

Space group: monoclinic, P21/n;

Cell dimensions: a=11.350(10), b=11.450(5), c=22.154(10)Å;

Cell volume: U=2878.85Å³;

Z=4;

Density: D_m = not measured, D_{\times} =1.256 gcm⁻³;

Radiation: λ (MoK α)=0.7107Å;

µ=8.0cm-1;

F(000)=932;

T=293K;

R=0.051 for 2282 observed reflexions with I>3r(I);

Stoë Weissenberg diffractometer, sin0/X<0.6Å-1;

lattice parameters by maximising fit of axial row reflexions in the range sin θ/λ 0.2 to 0.5;

3797 reflexions measured, 2283 with I>3r(I);

h 0 \rightarrow 8, k 0 \rightarrow 13, 1 -26 \rightarrow +26;

standard check reflexions on each layer with no significant changes;

no absorption corrections applied;

Tc positions found by Patterson and other atoms by successive difference-Fourier methods, refined by full-matrix least squares on F to R=0.051, wR=0.051;

all atoms anisotropic, unit weighting (based on weight analysis and rapid convergence of refinement),

15 H atoms located by difference map and not refined;

remaining H atoms omitted;

max $\Delta/\sigma=0.009$,

 $\Delta \rho$ excursions +0.3 to -0.6eÅ⁻³;

Final atomic coordinates are given in Table 3.4. bond lengths and angles in Tables 3.5. and 3.6. respectively. H atom coordinates are given in Table 3.7. and the anisotropic thermal parameters in Table 3.8.

The numbering schemes of the atoms of the anion and cation are shown in Figures 3.5. and 3.6. respectively. A view of the unit cell is shown in Figure 3.7. Observed and calculated structure factors are given in Appendix I

- 74 -

Table 3.4.

Final positional parameters (X104) and isotropic thermal

parameters $(Å^2)$ for $[(C_AH_{\Im})_AN][T_C(NO)C]_A(CH_{\Im}OH)]$,

 $\mathbb{B}_{aq}{\approx}811^2(1/_3)\left(\Sigma u_{11}\right)$

	x	У	Z	Bea
Тс	318(1)	1095(1)	-1537(0)	4.9(1)
CI (1)	10667(3)	582(2)	1188(1)	6.4(2)
C1 (2)	8638(3)	-2826(2)	1751(1)	6.0(2)
C1 (3)	7865(3)	-175(2)	1319(2)	7.8(2)
Cl (4)	11470(3)	-2110(2)	1632(2)	7.3(2)
N(1)	9770(9)	-628(8)	2260(5)	7.0(6)
0(1)	9901(13)	-269(9)	2752(5)	13.2(8)
0(2)	9679(6)	-1595(7)	612(3)	6.5(4)
N(2)	5107(7)	1074(6)	7476(3)	4.7(4)
C(1)	6014(9)	1196(8)	6982(4)	5.4(5)
C(2)	5861(10)	341(9)	6466(5)	6.4(7)
C(3)	6927(13)	462(11)	6042(6)	9.0(9)
C(4)	6785(15)	-284(12)	5477(6)	8.0(10)
C(5)	3861(9)	1131 (8)	7240(4)	5.0(5)
C(6)	3514(10)	2234 (9)	6900(5)	6.4(7)
C(7)	2256(10)	2100(10)	6597(5)	6.7(7)
C(8)	2185(14)	1181(13)	6104(6)	9.9(9)
C(9)	5387(9)	2074(8)	7913(5)	5.0(6)
C(10)	4670(11)	2110(9)	8478(5)	6.2(6)
C(11)	5117(12)	3144(10)	8861(5)	7.4(7)
C(12)	4464 (15)	3197(13)	9464 (6)	10.0(10)
C(13)	5197(10)	-121 (8)	7783(4)	5.1(5)
C(14)	6445(10)	-401(9)	8042(5)	6.6(7)
C(15)	6362(12)	-1591(10)	8370(7)	8.0(8)
C(16)	5710(14)	-1548(14)	8952(7)	10.2(10)
C(17)	8886(15)	-2302(12)	269(6)	10.2(10)
C(18)	2406(14)	3844(15)	4917(6)	10.1(10)
0(3)	8577(9)	1315(8)	119(4)	8.9(6)

<u>Table 3.5.</u>

Bond Distances for [(CaHa) ANITC(NO)Cla(CHaOH)].

Anion

	¥
Tc-Cl(1)	2.363(3)
Tc~Cl (2)	2.364(3)
Tc-Cl (3)	2.355(3)
Tc-C1(4)	2.344(3)
Tc-N(1)	1,689(11)
Tc-0(2)	2.128(7)
N(1)-O(1)	1.171(15)
0(2)-C(17)	1.417(17)

Cation

N(2)-C(1)	1.53(1)
C(1)-C(2)	1.51(1)
C(S)-C(S)	1.56(2)
C(3) - C(4)	1.52(2)
N(2)-C(5)	1,50(1)
C(5)-C(6)	1,52(1)
C(6)-C(7)	1.57(2)
C(7)-C(8)	1.52(2)
N(2)-C(9)	1.53(1)
C(9)-C(10)	1.51(2)
C(10)-C(11)	1.54(2)
C(11)-C(12)	1.54(2)
N(2)-C(13)	1.53(1)
C(13)-C(14)	1.55(2)
C(14)-C(15)	1.55(2)
C(15)-C(16)	1.50(2)

Solvent

C(18)-O(3) 1.403(19)A

<u>Table 3.6.</u>

Bond Angles for [(CaHs) ANI [Tc(NO)Cla(CH3OH)].

٠

Anion

0(1)-N(1)-Tc	175.5(10)
C1(1)-Tc-C1(2)	172.5(1)
C1(1) - Tc - C1(3)	89.4(1)
C1(1) - Tc - C1(4)	90.9(1)
C1(1) - Tc - N(1)	92.1(3)
Cl(1)-Tc-O(2)	83.8(2)
C1(2)-Tc-C1(3)	88.6(1)
Cl(2)-Tc-Cl(4)	90,2(1)
C1(2)-Tc-N(1)	95,3(3)
C1(2)-Tc-O(2)	88,8(2)
C1(3) - Tc - C1(4)	172.8(2)
Cl(3)-Tc-N(1)	94.7(4)
C1(3)-Tc-O(2)	86,8(2)
C1(4) - Tc - N(1)	92.4(3)
Cl(4)-Tc-O(2)	86.1(2)
N(1) - Tc - O(2)	175.6(4)

Cation

5

104.6(7) 111.2(7)
111.2(7)
111.6(7)
104.2(7)
112.2(7)
114.6(8)
108.8(9)
112.3(11)
116.1(8)
110.6(9)
114.0(11)
115.9(8)
107.5(9)
110.4(10)
113.6(8)
106.8(11)
114.3(11)

Table 3.7.

Final positional parameters $(X10^4)$ and isotropic thermal parameters $(Å^2)$ for the hydrogen atoms of $((C_4H_3)_4N)[Te(NO)Cl_4(CH_3OH)]$.

B≈8∏≈u

	x	У	Z	B
H(1)0(2)	10571	-1398	387	7.3
H(1)	5857	2002	6871	5.9
H(3)	5037	418	6196	7.3
H(5)	7124	1187	5839	9.1
H(10)	3777	470	6954	5.9
H(11)	3182	1040	7664	5.9
H(13)	4058	2216	6565	9.9
H<14>	1780	1650	7033	9.9
H(19)	5249	2854	7633	6.0
H(20)	6347	1916	8060	6.0
H(22)	4726	1254	8793	7.1
H(28)	4778	~9	8186	6.0
H(29)	4849	-617	7442	6.2
H(33)	5655	-2202	8178	8.2
H(40)C(18)	7465	981	-561	10.8

Table 3.8.

Anisotropic thermal parameters* (X10³, Å²) for {(CaH₃)_ANIITc(NO)Cl_(CH₃OH)].

	U11	U22	U33	U23	U13	U12
Тс	63(1)	44(1)	79(1)	-1(1)	-1(1)	-1(1)
Cl (1)	73(2)	58(2)	112(2)	10(2)	5(2)	-10(1)
C1 (2)	73(2)	49(1)	107(2)	12(1)	-4(2)	-2(1)
C1 (3)	68(2)	64(2)	163(3)	31(2)	17(2)	10(2)
C1(4)	63(2)	64(2)	150(3)	4(2)	-24(2)	1(1)
N(1)	112(9)	66(6)	96(8)	-2(6)	15(6)	-25(6)
0(1)	286(17)	121 (8)	97(8)	-34(7)	25(9)	-76(9)
0(2)	60(6)	106(6)	81(5)	-12(4)	-1(4)	-19(4)
N(2)	52(6)	45(4)	81(5)	-3(4)	-6(4)	-1(4)
C(1)	72(8)	47(5)	86(7)	-1(5)	19(6)	-4(5)
C(2)	78(10)	75(7)	89(8)	4(6)	3(6)	-1(6)
C(3)	154(14)	86(9)	101(10)	13(8)	61(10)	-13(9)
C(4)	169(16)	105(10)	99(10)	-4(9)	29(10)	14(10)
C(5)	60(9)	58(6)	72(6)	4(5)	-8(5)	-5(5)
C(6)	71(9)	62(7)	109(9)	19(6)	-9(7)	-3(6)
C(7)	64(10)	82(8)	109(9)	28(7)	-17(7)	-10(6)
C(8)	144 (15)	109(11)	122 (11)	-19(10)	-52(10)	-1(10)
C(9)	56(8)	50(6)	86(8)	2(5)	-11(6)	-1(5)
C(10)	86(10)	65(7)	84(8)	-13(6)	5(6)	-5(6)
C(11)	117(12)	80(8)	84(8)	-15(7)	1(7)	4(7)
C(12)	154 (15)	125(12)	101(11)	-29(9)	10(9)	-5(10)
C(13)	80(9)	44(5)	70(7)	7(5)	-10(6)	-6(5)
C(14)	72(9)	61(7)	120(10)	30(6)	-20(7)	2(6)
C(15)	100(12)	62(7)	143 (12)	25(8)	-28(9)	-6(7)
C(16)	128(14)	146(14)	114 (11)	37(10)	-4(10)	-8(10)
C(17)	159(15)	121 (11)	109(11)	-21(9)	-26(10)	-70(11)
C(18)	94 (13)	190(16)	101(10)	-10(11)	-8(8)	10(11)
0(3)	99(8)	146(8)	94(6)	10(6)	14(5)	12(6)

* The form of the anisotropic thermal parameter is given by $\exp\{-2 \Pi^{2} \langle U_{11} a^{*2} h^{2} + \dots .. 2 U_{23} b^{*} c^{*} k l + \dots \rangle\}$

Molecular structure and atom numbering for the tetrachloro(methanol)nitrosyltechnetium(II) anion and solvated methanol showing hydrogen bonding. Figure 3.6.

Molecular structure and atom numbering for the

tetrabutylammonium cation

Figure 3.7.

A view of the unit cell contents of the tetrabutylammonium salt of the tetrachloro(methanol)nitrosyltechnetium(II) anion.

Ţ

3.5. <u>Discussion.</u>

The reaction of [""Tc/"""Tc][TcO4]" with HCl gives [TcCl6]"" when the reaction is heated for a prolonged period (158). The yellow ammonium salt may be isolated from the ""Tc reaction solution. [99TcCl₆]²⁻ disproportionates in the absence of large chloride excess to TcO_2 and $[TcO_4]^-$. On this paper chromatography system with saline eluant there is evidently sufficient chloride for the complex to remain intact at least on a ^{som}Tc scale (Table 3.1). With the organic eluant decomposition to $[TcO_4]^-$ may occur but no TcO_2 was observed. Reaction of [99TcCls]2- with NH2OH gives quantitatively [Tc(NO)Cl4]-. This is similar to the results reported by Armstrong and Taube (30). The same complex is also formed when [99TcOCl4] is reacted with NH2OH in methanol. From the solution a green solid was obtained and after recrystallisation from methanol/diethylether green crystals were obtained which had infra red absorptions at 1805cm-' [v(NO)] and 326cm-' [v(Tc-Cl)]. This concurs with the reported absorptions for [Tc(NO)Cl4]-. The single crystal X-ray determination indicates that in the crystalline form there is a methanol ligand trans to the NO group. The nature of a sixth ligand trans to the NO with the four chlorides in an equatorial plane which may be chloride, water or alcohol depending on the solution conditions is unimportant since it will be labile and so in vivo will be readily replaced (157).

- 83 -

It seems likely that in the final ^{Sym}Tc injection solution the methanol will be displaced and possibly replaced by water.

On a no carrier added \Im Tc scale the reaction proceeds in a similar manner. The R_r values obtained are identical to the carrier added \Im Tc preparation except at the $[TcCl_5]^{2-}$ stage. To check that one species was formed HPLC was performed and showed only a single species which is only weakly retained on the reversed phase column. There is no evidence of any other species in the solution and only minimal losses of radioactivity on the column.

Electrophoretic measurements proved impossible for $[TcCl_6]^{z-}$ due to decomposition but $[^{99m}Tc/^{99}Tc][Tc(NO)Cl_4]^{-}$ moved as an anion with a mobility half that of TcO_4^{-} and in all preparations only one species was observed.

The animal biological distribution data for $[\Im = \Im T \subset \mathbb{NOCl}_{4}]^{-}$ is given in Table 3.2. and dissections were carried out at 2 and 60 minutes. Gamma camera scintigraphs were taken at 0, 10, 20, 30 and 60 minutes post injection (Figure 3.4). Both the images and the dissection data show that while there is some renal clearance the majority of the material remains in the muscle and carcass. There is evidence in all the animals studied of some specific accumulation of activity in the leg joints although whether or not this is of any significance is not clear. After 60 minutes there is also considerable blood retention and there

- 84 -

is comparatively little change in the biological distribution during the period of the experiment. These comments also are applicable to the $(Tc(NO)Br_4]^-$ biodistribution data (Table 3.3) which shows that the majority of the complex remains in the muscle and carcass, with a high percentage also in the blood. The tetrabromide complex is known to be five coordinate with no ligand trans to the nitrosyl (65,66) but there appears to be little difference in biological activity in these two complexes.

Protein binding experiments revealed that 90% of the complex is associated with the initial plasma fraction with the remainder in the cellular pellet. 92% of the activity is bound to plasma after partition. These results are as expected, since the gamma camera study reveals extensive blood and muscle activity even after 1 hour post injection. Lability of the ligand trans to the nitrosyl and the other chloride ligands presumably lead to rapid ligand exchange with the large number of possible ligating moieties in the plasma proteins.

The exact structure of the $[Tc(NO)X_{4-5}]^{1-cr2-}$ complexes has been a matter of some discussion. The ESR data for the complexes where X = Br or I suggests that the species are 5 coordinate with no ligand trans to the nitrosyl (65,66). Since the data for X = Cl is difficult to assign to either 5 or 6 coordinated species (70,27) it was decided to undertake a structure determination. In addition this has confirmed the identity of a species prepared by the same methods for both ^{99}Tc and ^{95m}Tc .

- 85 -

The X-ray data of the monoclinic crystal shows that the tetrachloro(methanol)nitrosyltechnetium(II) anion has a distorted octahedral geometry with the nitrosyl and coordinated methanol mutually trans and the four chlorines in an equatorial plane with the technetium 0.15Å above towards the nitrosyl.

The bond angles of 172.5(1)* (Cl(1)-Tc-Cl(2)) and 172.8(2)* (Cl(3)-Tc-Cl(4)) reflect this. In other Tc(NO) complexes, namely $(Tc(NO)(NH_3)_4(H_2O))^{2+}$ (69) and $Tc(NO)Br_2(CNCMe_3)_3$ (68) similar distortions have been observed. The Tc-N-O bond angle of 175.5(10) confirms that the ligand should be considered as NO+ rather than NO⁻. The Tc-N bond length of 1.689(11)A appears shorter than in the two complexes above which are 1.716(4)A and 1.726(15)& respectively but this may not be statistically significant while the N-O bond is intermediate between the other two, 1.203(6) A and 1.136(17) A. The Tc-O bond is probably elongated, due to the trans effect of the nitrosyl, although a lack of suitable other technetium complexes prohibits a quantitative assessment of the effect. However a long axial bond has been observed in the analogous rhenium complex (159). The contact distance of 2.610(2)A for O(2)-O(3) is attributed to hydrogen bonding between coordinated and solvated methanols.

- 86 -

In conclusion while this formulation is rather involved from the radiopharmaceutical point of view the complex may be made in a form amenable to intravenous injection and may therefore find use as a precursor to a series of novel radiopharmaceuticals through ligand exchange reactions.

CHAPTER 4

SYNTHESIS, CHARACTERISATION AND BIOLOGICAL STUDIES OF THE CATION [Tc(1)(NO)(NH3)4(H2O)]2+ AND RELATED COMPOUNDS

4.1. Introduction.

The cation trans-aquonitrosyltetraaminetechnetium(I), $[Tc(NO)(NH_3)_4(H_2O)]^{2+}$, has been well characterised by Taube (30) following the work by Eakins (44). The compound is found to be stabilised by the π -acid character of the NO group, the nitrosyl group being inert to nucleophilic attack while the ammonia ligands, although themselves not susceptible to ligand exchange, may be replaced in a modified synthesis. Hence, this compound would appear to be an ideal model for a range of novel potential radiopharmaceuticals with the technetium nitrosyl core but enabling variation of charge, lipophilicity, size and shape of the complex.

Here a modified synthesis of $[Tc(NO)(NH_{2})_{4}(H_{2}O)]^{2+}$ is described from $[Tc(NO)Cl_{4}]^{-}$ as prepared in the preceding chapter and its identity confirmed by crystal structure determination. In addition a range of compounds of the general formula $[Tc(NO)(RNH_{2})_{4}(H_{2}O)]^{2+}$ is prepared and the biological activity of some of the compounds is studied.

- 88 -

4.2. Synthesis of the trans-aquonitrosyltetraaminetechnetium(I) cation.

4.2.1. Synthesis of no carrier added $[^{99m}Tc(MO)(MH_3)_4(H_2O)]^{2+}$

To 1 ml of generator eluant was added 1 ml of concentrated HCl. The mixture was heated in a pressure cooker for 30 minutes. The product of the reaction is sodium hexachlorotechnetate. The resulting solution was cooled, diluted with water (1ml), mixed with a solution of hydroxylamine hydrochloride (1ml, 2.3M) and heated for a further 30 minutes. The resulting solution contains the species $[Tc(NO)Cl_4X]^-$ (X = Cl⁻, H₂O). By neutralising the solution to 7.5 pН with 5M NHAOH the complex $[Tc(NO)(NH_3)_4(H_2O)]^{2+}$ is formed. To ensure reaction the solutions were heated for 15 minutes on a waterbath.

After each stage of the reaction the product formation was monitored by the standard chromatographic procedures described earlier.

4.2.2. Preparation of the complex for biological studies.

It was not possible to inject the complex as formulated above because of the high concentration of chloride ions in the solution. These were removed by shaking the solution with an ion exchange resin (Amberlite IRA-67). The product was then passed though a Millipore filter before use in the biological studies.

- 89 -

4.2.3. Synthesis of carrier added [99TcORO) (NH₃)₄ (H₂O)]Cl₂.

An aqueous solution of the green $[Tc(NO)Cl_4]^-$ anion was prepared as described earlier (3.2.3). The complex was not isolated as the tetrabutylammonium salt but instead the solution was neutralised using 5M NH₄OH as for the no carrier added preparation. A purple solution formed. The product crystallised as hexagonal plates on slow evaporation of the solution after the addition of ethanol.

4.2.4 Synthesis of the no carrier added derivatives of the formula [Tc(NO)(RNH₂)₄(H₂O)]²⁺

Derivatives of the type $[Tc(NO)L_4(H_2O)]^{2+}$ are formed by neutralisation of the tetrachloronitrosyltechnetium(II) anion solution with solutions of other amines (RNH₂) to pH 7.5. (R = methyl-, ethyl- etc).

4.2.5. Analogous no carrier added complexes

Complexes of the type $[Tc(NO)L_2(H_2O)]^{2+}$ where L is a derivative of ethylenediamine (en) may be prepared by neutralising the tetrachloronitrosyltechnetium(II) anion solution with the diamine to pH 7.5. The reaction mixture was heated for 15 minutes on a waterbath to ensure reaction.

- 90 -

4.3. <u>Results</u>.

4.3.1. Paper chromatography.

Paper chromatography results are summarised in Table 4.1. for the amine derivatives and Table 4.2. for the diamine derivatives.

4.3.2. Electrophoresis.

All of the compounds were found to move as cations under the standard electrophoretic conditions

Results for the diamine derivatives are given in Table 4.3.

4.3.3. Infra-red spectrum.

Absorption at 1795cm^{-1} for v(NO) in the complex $[Tc(NO)(NH_{\odot})_4(H_2O)]Cl_2$.

<u>Table 4.1</u>

benzyl-

Paper chromatography results for amine derivatives of [==m Tc (NO)(RNH2)4 (H2O)]2+

Complex R_f in R. in R= butan-2-one saline H 0.02 methyl-0.05 ethyl-0.05 n-propyl-0.04 n-butyl-0.04 t-butyl-0.02 n-pentyl-0.06 n-hexyl-0.06 0.66 n-heptyl 0.05 n-octyl-0.06 0.48 1-methylheptyl-0.07 0.48 dimethyl-0.02 0.77

0.96

0.81

0.83

0.80

0.80

0.84

0.75

0.68

0.68

Standard deviations have not been calculated for these mean Rr values of several experiments.

0.03

Table 4.2

Paper chromatography results for diamine derivatives of 1^{99m} Tc (NO) (NH₃)₄ (H₂O) 1^{2+}

Complex	Rr in	R. in
	butan-2~one	saline
ethylenediamine	0.05	0.89
triethylenetetramine	0.04	0.88
N,N-dimethylethylenediamine	0.03	0.85
N,N,N'-trimethylethylenediamine	0.03	0.80
N,N,N',N',tetramethylen	0.02	0.84
cyclohexane-1,2-diamine	0.02	0.83
N,N'-dimethylethylenediamine	0.00	0.93
N,N-dimethyl-N'-ethylen	0.02	0.80

Standard deviations have not been calculated for these mean R_r values of several experiments.

Table 4.3

Electrophoretic movement of the diamine derivatives of $[35m T_{\rm C}(\rm NO)(\rm NH_3)_4(\rm H_2O)]^{2+}$

Complex	Distance moved	Volts/
	in 1 hour (cm)	Cm
ethylenediamine	0.60	1.82
triethylenetetramine	0.92	1.82
N,N-dimethylethylenediamine	0.40	1.82
N,N,N'-trimethylethylenediamine	0.20	1.82
N,N,N',N',tetramethylen	0.20	1.82
cyclohexane-1,2-diamine	0.23	1.82
N,N'-dimethylethylenediamine	0.33	1.82
N,N-dimethyl-N'-ethylen	0.16	1.82

4.3.4. Octanol/saline partition experiments.

The results for $[99m Tc(NO)(RNH_2)_4(H_2O)]^{2+}$ are given in Table 4.4.

Table 4.4.

Octanol/saline partition experiments - % activity in organic layer

Complex	% activity in organic layer
R =	mean (S.D.)
mothwl-	0.60.(8)
meenAr	0.02(6)
ethyl-	0.83(27)
n-propyl-	1.91(11)
n-butyl-	2.81(16)
t-butyl-	5.82(-)
n-pentyl-	6.68 (-)
n-hexyl-	7.95(-)
n-heptyl-	10.25(15)
n-octyl-	10.66(12)

4.3.5 Biodistribution studies.

The animal biodistribution data for $[^{99m} Tc(NO)(NH_3)_4(H_2O)]^{2+}$, $[^{99m} Tc(NO)(ethylNH_2)_4(H_2O)]^{2+}$, $[^{99m} Tc(NO)(n-butylNH_2)_4(H_2O)]^{2+}$ and $[^{99m} Tc(NO)(t-butylNH_2)_4(H_2O)]^{2+}$ are given in Tables 4.5., 4.6., 4.7. and 4.8. respectively.

Gamma camera scintiphotographs of $[\Im_{m} Tc(NO)(NH_{\Im})_{4}(H_{2}O)]^{2+}$, $\Im_{m} Tc(NO)(n-buty1NH_{2})_{4}(H_{2}O)]^{2+}$ and $[\Im_{m} Tc(NO)(t-buty1NH_{2})_{4}(H_{2}O)]^{2+}$ are shown in Figures 4.1., 4.2. and 4.3. respectively.

- 95 -

Table 4.5.

Animal biodistribution data for [SSmTc(NO)(NH3)4(H2O)]2+

% injected dose/organ

	2 min sacrifice		60 min sacrifice	
	mean	S.D.*	mean	S.D.*
Muscle	28.87	2.87	13.60	3.94
Blood	17.61	0.92	5.79	1.07
Kidneys	4.09	0.92	5.47	2.31
Bladder	0.29	0.15	34.24	17.21
Lung	1.56	0.23	0.66	0.25
Liver	4.52	0.74	5.06	0.86
Spleen	0.23	0.05	0.13	0.04
Stomach	0.91	0.14	0.60	0.28
S. intestine	3.89	0.64	3.14	0.59
L.intestine	2.27	0.63	1.38	0.65
Heart	0.44	0.08	0.19	0.03
Thyroid	0.17	0.03	0.08	0.03
Brain	0.07	0.02	0.03	0.00
Carcass	35.08	2.36	29,64	7,82
Injection site	3.28	0.70	2.86	1.15
Counts/gram ratio				
Heart/blood	0.36	0.03	0.46	0.02
Heart/muscle	1.61	0.17	1.50	0.22
Heart/liver	0.89	0.50	0.38	0.02
Brain/blood	0.03	0.00	0.03	0.00
Brain/muscle	0.13	0.00	2.86	1.15

= standard deviation of three animals

- 96 -

Table 4.6.

Animal biodistribution data for (99m Tc(NO) (ethylNH2) (H2O)]2+

% injected dose/organ

	2 min sacrifice		60 min
	mean	S.D**	sacrifice*
Muscle	30.15	0.51	9.81
Blood	18,04	0.48	7.04
Kidneys	3.35	0.55	3.29
Bladder	0.15	0.04	45.75
Lung	1.70	0.00	0.81
Liver	5.16	0.13	5.13
Spleen	0.24	0.02	0.20
Stomach	1.21	0.01	0.78
S. intestine	2.79	0.11	3.12
L.intestine	3.02	0.31	1.14
Heart	0.64	0.09	0.17
Thyroid	0.18	0.00	0.05
Brain	0.10	0.03	0.02
Carcass	33.30	0.52	22.70
Injection site	3.19	0.37	2.52

Counts/gram ratio

,

Heart/blood	0,42	0.04	0.24
Heart/muscle	1,83	0.10	1.26
Heart/liver	1,20	0.05	0.28
Brain/blood	0,03	0.01	0.02
Brain/muscle	0.16	0.05	0.13

= standard deviation of three animals

* = results for one animal only

Table 4.7.

Animal biodistribution data for [99m Tc(NO)(n-buty1NH2)4(H2O)]2+

% injected dose/organ

	2 min sacrifice		60 min sacrifice	
	mean	S.D*	mean	S.D.*
Muscle	25.77	0.67	12.94	2.65
Blood	15.94	0.48	6.41	1.55
Kidneys	6.61	1.68	5,99	3.81
Bladder	0.20	0.08	30.68	14.67
Lung	1.85	0.07	0.80	0.30
Liver	9.55	1.31	12,36	1.35
Spleen	0.25	0.04	0.13	0.02
Stomach	0.96	0.08	0.46	0.08
S. intestine	3.90	0.66	4.84	0.05
L.intestine	2.79	0.41	1.37	0.16
Heart	0.44	0.04	0.20	0.03
Thyroid	0.15	0.01	0.06	0.01
Brain	0.08	0.03	0.02	0.00
Carcass	31.52	2.18	23.74	4.91
Injection site	2.45	0.15	2.98	1.65
Counts/gram ratio				
Heart/blood	0.42	0.02	0.57	0.06
Heart/muscle	2.12	0.62	1.53	0.02
Heart/liver	1.43	0.07	0.64	0.06
Brain/blood	0.03	0.00	0.04	0.00
Brain/muscle	0.13	0.05	0.10	0.01

= standard deviation of three animals

Table 4.8.

Animal biodistribution data for (SSM Tc(NO)(t-buty1NH2)4(H2O)]2+

% injected dose/organ

	2 min sacrifice		60 min sacrifice	
	nean	S.D*	mean	S.D.*
Muscle	26.45	1,22	12.24	4,62
Blood	16.62	4,69	4.36	1.35
Kidneys	5.35	2.14	4.39	1.54
Bladder	0.23	0.09	41.95	19.41
Lung	1.80	0.41	0.63	0.21
Liver	4.29	1.16	3.27	1.10
Spleen	0.26	0.04	0.14	0.06
Stomach	1.13	0.02	0.53	0.19
S. intestine	4.49	0.98	2.86	1.17
L.intestine	3.28	0.37	1.36	0.41
Heart	0.64	0.18	0.19	0.08
Thyroid	0.18	0.02	0.06	0.03
Brain	0.08	0.03	0.02	0.00
Carcass	32.19	5.73	28.02	8.86
Injection site	3.38	1.01	3.34	2.06
ounts/gram ratio				

Counts/gram ratio

Heart/blood	0.39	0.01	0.45	0.02
Heart/muscle	1.79	0.09	1.66	0.11
Heart/liver	0.54	0.04	0.18	0.03
Brain/blood	0.03	0.00	0.03	0,00
Brain/muscle	0.14	0.04	0.10	0.02

= standard deviation of three animals

Figure 4.1.

Gamma camera images of [39m Tc(NO)(NH3)4(H20)]2+

Time post injection	Image No.
0 min.	1
10 min.	2
20 min.	3
30 min.	4
60 min.	5

ω

4

ى

Figure 4.2.

Gamma camera	images of	[^{99m} Tc (NO) (n-butvlNH ₂) ₄	(H_20)] ²⁺

Time post injection	Image No.
0 min.	1
10 min.	2
20 min.	3
30 min.	4
45 min.	5
60 min.	6

۰.

•

. .

•

2

,

•• .

ŝ

ŝ,

Figure 4.3.

Ganma camera images of [99mTc(NO)(t-buty1NH2)4(H2O)]2+

Time post injection	Image No.
0 min.	1
10 min.	2
20 min.	3
30 min.	4
60 min.	5

.

.

η

• ŝ ŕ

4.4. <u>Crystal structure determination of the trans-</u> aquonitrosyltetraaminetechnetium (I) cation.

The crystal structure determination of the above compound has already been reported by Radonovich and Hoard (69) on the crystals prepared by Taube (30). In order to confirm that the complex produced by the alternative synthesis described above (4.2.3.) was in fact the trans-aquonitrosyltetraaminetechnetium (I) cation it was decided to undertake a structure determination.

The cation has an octahedral geometry with the almost linear Tc-NO linkage trans to the coordinated water while the four amine groups lie in the equatorial plane and, as prepared, crystallises as the dichloride salt.

Slow evaporation of the aqueous purple solution resulted in the formation of hexagonal plate shaped crystals which appeared to be suitable for crystal structure determination. A single crystal, $(0.19 \times 0.19 \times 0.07 \text{mm})$ was selected and mounted about a.

Cell dimensions calculated from Veissenberg photographs and refined on the diffractometer were comparable with those already reported and confirmed the structure to be solved. Rather than locating the technetium and chlorine atoms by the Patterson method, the reported coordinates were used immediately in least squares refinement calculations. These coordinates were revised by subsequent refinements and the coordinates of the other atoms

- 103 -

determined. A reliability factor of R=0.02 was achieved (literature R=0.042)

The crystal data are summarised below:

Formula: $[Tc(NO)(NH_3)_4(H_2O)]Cl_2;$

Space group: monoclinic, P21/m;

Cell dimensions: a=6.86, b=10.62, c=6.63Å, β=93.99*;

Cell volume: 482.03Å³;

Z=2;

Density: D_m not measured, D_x=1.969 gcm⁻³;

Radiation: λ (MoK α)=0.7107Å;

µ=18.58cm⁻¹;

F(000)=283.98;

T=273K;

R=0.020 for 1202 observed reflexions with I>3*(I) out of 1329 measured reflexions;

standard check reflexions on each layer with no significant changes;

no absorption correction applied;

 $T_{min} = 0.7019$, $T_{max} = 0.8778$;

All atoms anisotropic, unit weighting (based on weight analysis); 8 H atoms located by difference map and refined, remaining H atoms omitted. Final atomic coordinates are given in Table 4.9., bond lengths and angles in Table 4.10. H atom coordinates are given in Table 4.11. and the anisotropic thermal parameters in Table 4.12.

The numbering scheme of the atoms of the cation is shown in Figure 4.4. A view of the contents of the unit cell is given in Figure 4.5.

Observed and calculated structure factors are given in Appendix II

<u>Table 4.9</u>.

Final positional parameters $(X10^4)$ and isotropic thermal parameters (λ^2) for trans-[Tc(NO)(NH₃)₄(H₂O)]Cl₂

$B_{mq}=8\Pi^{2}(1/2)(\Sigma u_{11})$

	x	У	Z	Beq
Tc	2173(0)	2500(0)	1773(0)	1.7(0)
C1(1)	2700(1)	-207(1)	6981(1)	2.7(3)
N(1)	2307(4)	463 (2)	1948(4)	2.6(1)
N (2)	4186(5)	2500(0)	-602(6)	2.7(1)
N(3)	639(5)	2500(0)	4496(5)	2.8(1)
N (4)	142(5)	2500(0)	114 (5)	2.1(1)
0(1)	4741(5)	2500(0)	3855 (5)	2.0(1)
0(2)	-1256(4)	2500(0)	-1073(5)	3.3(1)

<u>Table 4.10</u>.

Principal bond distances and angles for trans-

$[T_{C}(NO)(NH_{\odot})_{4}(H_{\odot}O)]C]_{2}$

Bond Lengths

Tc-0(1)2.161(3)Tc-N(1)2.168(2)Tc-N(2)2.165(4)Tc-N(3)2.149(3)Tc-N(4)1.174(3)N(4)-O(2)1.197(4)

X

Bond Angles

0(2)-N(4)-Tc	178.8(3)
0(1)-Tc-N(4)	179.8(1)
0(1)-Tc-N(1)	86.3(1)
0(1)-Tc-N(2)	86.1(1)
0(1)-Tc-N(3)	83.7(1)
$0(1) - T_{c} - N(1)$	86.3(1)
$N(1) - T_{C} - N(4)$	93.7(1)
N(1)-Tc-N(2)	90.7(1)
N(1)-Tc-N(3)	88.7(1)
$\mathbb{N}(1) - \mathbb{T}_{C} - \mathbb{N}(1)$	172.4(1)
$N(4) - T_{C} - N(2)$	93.7(1)
N(4)-Tc-N(3)	96.6(1)
N(2)-Tc-N(3)	169.7(1)

Table 4.11.

Final positional parameters (X10⁴) for the hydrogen atoms of [Tc(NO)(NH₃)₄(H₂O)]Cl₂

	x	у	Z
H1N1	2421	-10	670
H2N1	3340	256	2709
H3N1	1311	40	2610
H1N2	5479	2500	-360
H1N3	4109	1832	-1252
H1N3	2052	2500	5397
H2N3	-555	2062	4406

Table 4.12.

Anisotropic thermal parameters* (X10³, Å²) for [Tc(NO)(NH₃)₄(H₂O)]Cl₂

	U11	022	U33	U23	U13	U12
Tc	21(0)	19(0)	28(0)	0(0)	1(0)	0(0)
C1(1)	34(1)	32(1)	38(1)	-2(0)	2(0)	1(0)
N(1)	38(1)	21 (1)	40(1)	1(1)	-12(1)	0(0)
N(2)	28(2)	33(2)	44 (2)	0(0)	9(1)	0(0)
N (3)	29(2)	45(2)	34 (2)	0(0)	6(1)	0(0)
N (4)	25(2)	24(2)	33 (2)	0(0)	2(1)	0(0)
0(1)	28(2)	27(1)	50 (20	0(0)	-9(1)	0(0)
0(2)	Sð (5)	53(2)	44 (2)	0(0)	-12(1)	0(0)

* The form of the anisotropic thermal parameter is given by $\exp\left(-2\pi^2\left(U_{1,1}a^*H^2+....2U_{2,2}b^*c^*kl+....\right)\right)$

Figure 4.4.

Molecular structure and atom numbering for the trans-aquonitrosyltetraaminetechnetium(I) cation

Figure 4.5.

A view of the unit cell contents of

trans-aquonitrosyltetraaminetechnetium(I) dichloride

4.5. Discussion.

Paper chromatography results show that by increasing the length of the amine chain, more lipophilic complexes were produced - the R_r in saline decreases with increasing carbon chain length. For all neutralisation products, no movement was seen when the paper chromatograms were developed in butan-2-one. As expected, this lipophilic trend is also seen in the octanol/saline experiments.

Biodistribution data for $(Tc(MO)(NH_{\odot})_{4}(H_{2}O))^{2+}$ are given in Table 4.4. and the gamma camera images in Figure 4.1. Both the images and the dissection data show renal clearance (34% after 60 minutes) with the majority of the remaining activity in the muscles and carcass. There is some clearance through the liver but this is not significant. Heart uptake is not significant either.

Biodistribution data for $[Tc(MO)(ethylNH_2)_4(H_2O)]^{2+}$ are given in Table 4.5. Initially there is very high blood and muscle uptake with the lungs and liver quite low. After 60 minutes this has decreased significantly through mainly renal clearance with little hepatobiliary system clearance. Again heart retention is poor.

Biodistribution data for $(Tc(NO)(n-buty1NH_2)_4(H_2O))^{2+}$ are given in Table 4.6. and gamma camera images are shown in Figure 4.2. This compound shows significantly more liver clearance than the analogous samples described above with similar high initial blood and muscle uptake. A large proportion of the activity remains in

- 110 -

the carcass at sixty minutes with mostly renal clearance of the complex.

Biodistribution data for $(Tc(NO)(t-buty1NH_2)_4(H_2O)]^{2+}$ are given in Table 4.7. and gamma camera pictures are shown in Figure 4.3. Again, rapid urinary excretion of this complex, although little liver clearance is apparent, unlike the n-butyl analogue. There also appears to be some bone uptake of this complex, the backbone being clearly visible.

These results are not unexpected given the similarity of the complexes and whilst it can be demonstrated that even small variations in the basic tetraamine complex produces different biological activity none of the complexes demonstrate the heart uptake sought.

The structure determination of the transaquonitrosyltetraamintechnetium dichloride crystal provided confirmation of the effectiveness of the preparation method. The Tc-N-O linkage is almost linear (178.8(3)) and essentially the complex conforms to $C_{4\nu}$ geometry. The extent of π bonding in the complex is reflected by the combination of a short Tc-N bond (1.714(3)Å) and longer N-O bond (1.197(4)Å). Together with the observed infra red absorption of v(NO) at $1795cm^{-1}$ this would confirm NO+. The Tc-OH2 and Tc-NH3 represent o bonding with Tc-0 at 2.161(3) A and averaged Tc-NH3 of 2.163(8) A. The amine ligands in the equatorial plane are bent slightly away from the

- 111 -

nitrosyl and toward the coordinated water and this could well be as a result of the extent of the π bonding of the Tc-NO linkage.

CHAPTER 5

SYNTHESIS, CHARACTERISATION AND BIOLOGICAL STUDIES OF THE TRICHLORONITROSYL (ACETYLACETONATO) -TECHNETIUM (11) ANION

5.1. Introduction.

The reaction of [Tc(NO)Cl4] with acetylacetone was found to give the complex (Tc(NO)(acac)Cl₃]⁻ which was isolated as its tetraphenylarsonium salt. This complex has been fully I-ray crystallography FABcharacterised by and mass spectrometry. The former shows that one of the oxygens of the acac is trans- to the nitrosyl which is essentially linear, although disorder in the crystal prohibits accurate measurements of the bond angle. The latter shows facile loss of a single chlorine which suggests that ligand exchange of this may also be facile. The ESR spectrum at room temperature shows the expected 10 lines due to splitting by the technetium. At -196°C the spectrum may be modelled as having three g values, $g_{\times} = 2.0107$, $g_{y} = 2.02225$ and $g_{z} = 1.9460$.

- 113 -

5.2. <u>Synthesis of the trichloronitrosyl</u>

(acetylacetonato)technetium(II) anion.

5.2.1. Synthesis of no carrier added [99m Tc(IIO) (acac)Cl₃]-.

To generator eluant (1 ml) was added concentrated HCl (1ml). The mixture was heated for 30 minutes. The resulting solution was cooled, diluted with water (1ml), mixed with a solution of hydroxylaminedihydrogensulphate (1ml, 2.3M) and heated for a further 30 minutes. The resulting solution containing the species $[Tc(NO)Cl_{5}]^{2-}$ was cooled and acetylacetone (0.5nl, 5mM) added. Further heating for 30 minutes produced the [Tc(NO)(acac)Cl3]which was extracted into dichloromethane cation (5ml). dichloromethane Evaporation of the solution followed bγ redissolution in methanol:water (50:50) yielded the complex in a form suitable for HPLC.

The reaction was monitored at each stage by the standard chromatographic methods.

5.2.2. Synthesis of carrier added [99TcONO)(acac)Cl_3]-.

To an aqueous solution of ammonium pertechnetate (1ml., 0.15mM) was added concentrated hydrochloric acid (1ml) and the mixture heated for 30 minutes. The product of the reaction is $[TcCl_5]^{2-}$ as the yellow ammonium salt. The resulting solution was cooled, diluted with water (1ml), mixed with a solution of hydroxylamine

- 114 -

in water (iml, 2.3M), and heated for a further 30 minutes. The resulting green solution contains the species $(Tc(NO)Cl_4X)^-$ (X = Cl^- , H₂O). To this solution was added acetylacetone (0.5ml, 5mN) and the solution heated under pressure for a further 30 minutes. The product was extracted from the resulting red solution into dichloromethane (10ml) leaving the unreacted $(Tc(NO)Cl_4X)^-$ in the aqueous phase. Evaporation of the dichloromethane layer gave a red oily residue which was redissolved in methanol:water (80:20) (5ml). Addition of tetraphenylarsonium chloride (0.02g in 1ml of methanol) followed by evaporation of the solution to a low volume gave a red precipitate. Recrystallisation of this red solid from methanol/water gave kite shaped plates suitable for X-ray analysis.

5.2.3. Preparation of the complex for biological studies.

6.2mg of the carrier added [99 Tc(NO)(acac)Cl₉][(C₆H₅)₄As] complex was dissolved in ethanol;water (50:50, 2ml).

5.3. <u>Results</u>.

5.3.1. Paper chromatography.

For the no carrier added complex.

	R _f in	R _f in	
	butan-2-one	saline	
[Tc(NO)(acac)Cl ₃]-	0.03(2)	0.80(4)	

5.3.2. Electrophoresis.

Both the carrier added and no carrier added complexes decomposed under electrophoretic conditions.

5.3.3. HPLC.

For the no carrier added complex, retention time on system X (Amersham) 4.0 minutes.

5.3.4. Infra-red spectrum.

(KBr Disc) Absorptions at 1770 cm^{-1} for v(NO) and 320 cm^{-1} for v(Tc-Cl). Other absorptions as expected for co-ordinated acetylacetone.

1770(s), 1570(m), 1520(m), 1480(m), 1435(m), 1365(m), 1275(m), 1180(m), 1160(m), 1080(m), 1020(w), 995(m), 930(w), 895(m), 845(w), 785(w), 740(s), 685(s), 475(sh), 450(m), $320(m)cm^{-1}$.

5.3.5. Analysis.

Found (calculated for C₂₉H₂₇NO₉Cl₃TcAs) C 48.81(48.50); H 3.79(3.76); N 1.89(1.95)

5.3.6. FAB- mass spectrum.

The FAB- mass spectrum has a major ion at $M_z=333$ with other lower mass ions at $M_z=298$,

m/z = 269,m/z = 262,m/z = 233,m/z = 204.

The FAB mass spectrum is shown in Figure 5.1.

Figure 5.1.

FAB- mass spectrum of [Tc(NO)(acac)Cla]-

Mass

5.3.7. Electron Spin Resonance spectra.

The ESR spectra of the complex in ethanol were recorded at ambient temperature (Figure 5.2.) and -195°C (Figure 5.3.). The $g_{**} = 2.12$ and $a_{**} = 135$ gauss were measured directly. Since the complex has a low symmetry the frozen solution gave a complex spectrum which could only be resolved into its component parameters using the POWDER simulation program.

The results are summarised in Table 5.1.

The ESR spectra at ambient temperature and at -196 °C are shown in Figures 5.2. and 5.3. The simulated spectrum from the POWDER program is shown in Figure 5.4.

5.3.8. Biodistribution studies.

The animal biodistribution data for $[^{99}Tc(NO)(acac)Cl_9]^-$ is given in Table 5.2.

Table 5.1.

ESR Parameters for [Tc(NO) (acac)Clal-

Par	ameter
-----	--------

Value

<g></g>	2.12
<a>	94.0G
8×	2.0107*
87	2.02225*
8=	1.9460*
â×	105.4G*
ay	105.4G*
âz	258.4G*

* values from the POWDER simulation program.

Figure 5.2.

The ESR spectrum of an ethanolic solution of [Tc(NO)(acac)Clal at

ambient temperature.

- 121 -

-196°C

- 122 -

[Tc(NO) (acac)Cl_1]

Table_5.2.

Animal biodistribution data for (95Tc(NO)(acac)Cl3]-

% injected dose/organ

	2 min. sacrifice		60 min. sacrifice	
	mean	S.D.*	nean	S.D.*
Muscle	27.62	3.24	14.38	0.03
Blood	3.57	0.00	2.03	0.08
Kidney	0.76	0.14	1,07	0.47
Bladder	0.83	0.35	12.48	1.91
Lung	0.73	0.03	0.53	0.13
Liver	3.16	0.64	8.27	0.72
Spleen	0.27	0.00	0.21	0.00
Heart	0.57	0.07	0.23	0.02
Brain	0.10	0.00	0.05	0.00
Tail	0.91	0.19	0.59	0.36
Carcass and gut	62.10	4.44	60.74	3.21

Counts/gram ratios

Heart/blood	2.36	2.04	2.06	1.47
Heart/nuscle	1.99	2.22	2.07	1.60
Heart/liver	1.96	2.61	0.41	0.37
Heart/lung	1.13	1.11	0.63	0.84

= standard deviation of two animals

5.4. <u>Crystal structure determination of the</u> <u>tetraphenylarsonium salt of the trichloronitrosyl</u> <u>(acetylacetonato)technetium(II) anion.</u>

The anion $[Tc(NO)Cl_{\Im}(acac)]^{-}$ has a distorted octahedral geometry with three chlorine atoms, a bidentate acac ligand and the nitrosyl trans to either of the equivalent oxygens. The other trans position is occupied by a chlorine atom resulting in a disordered structure.

The analysis of the data proved a non routine problem because of the disorder. As chlorine and nitrosyl have a similar number of electrons differentiation was not possible from a Fourier map. However, the positions of the individual atoms were eventually determined through careful analysis of difference maps and the atoms refined isotropically with occupancy factors of 0.5.

This refinement showed that the chlorine and nitrosyl ligands opposite the oxygen atoms of the acac group were disordered with random reversal. Attempts to refine the structure in space group P1 rather than P1 showed the same disorder. Full matrix least squares refinement was carried out with bonds of the disordered nitrosyl fixed at conventional values (Tc-N 1.69 and N-O 1.17Å).

- 125 -

Red crystals grown from methanol/water mixture proved suitable for crystal structure determination. A kite shaped plate crystal (0.31 x 0.19 x 0.08mm) was mounted about a.

The crystal structure data are as follows:

```
Formula: [(C_6H_5)_4A_5][T_C(NO)Cl_3(C_5H_7O_2)];
Formula weight: Mr=717.5;
Space group: triclinic, PI;
Cell dimensions: a=10.261(4), b=11.261(10), c=13.686(10)Å,
\alpha = 101.7(5), \beta = 91.9(5), \gamma = 97.3(5)^{\circ};
Cell volume: U=1532.931<sup>3</sup>;
Z=2;
Density: D_m=not measured, D_{x}=1.554 gcm<sup>-3</sup>;
Radiation: \lambda (MoK\alpha)=0.710691:
μ=18.17cm<sup>-</sup>;
F(000)=717.87;
T=293K:
R=0.076 for 2008 observed reflexions with I>3v(I).;
Stoë Weissenberg diffractometer, \sin\theta/\lambda < 0.6 A^{-1};
lattice parameters by maximising fit of axial row reflexions in .
range \sin\theta/\lambda 0.1 to 0.4;
3958 reflexions measured, 2008 with I>3r(I);
h 0 \rightarrow 8, k -12 \rightarrow +12, 1 -15 \rightarrow +15;
standard check reflexions on each layer with no significant
changes;
absorption correction applied, t_{min}=0.717, t_{max}=0.866;
```

Tc and As positions found by Patterson and other atoms by successive difference-Fourier methods, refined by full-matrix least squares on F to R=0.076, wR=0.079;

overall scale factor and inter-layer scale factors refined; all atoms anisotropic except disordered and H, unit weighting (based on weight analysis and rapid convergence of refinement); 20 H atoms in calculated positions, remaining H atoms omitted; max $\Delta/\sigma = -0.378$, $\Delta\rho$ excursions +0.9 to -1.0eÅ⁻³;

Final atomic coordinates are given in Table 5.3., bond lengths and angles in Tables 5.4. and 5.5. respectively, atomic coordinates for the hydrogen atoms are given in Table 5.6. and anisotropic thermal parameters in Table 5.7.

The numbering scheme of the atoms of the anion is shown in Figure 5.5. N(3), O(3) and N(4), O(4) refer to the disordered nitrosyls and Cl(3) and Cl(4) to their respective chlorines. The numbering scheme of atoms of the cation is given in Figure 5.6.

Observed and calculated structure factors (x10) are given in Appendix III.

Table 5.3.

Final positional parameters (X104) and isotropic thermal parameters (λ^2) for [(C₆H₅)₄As][Tc(NO)(acac)Cl₃]

$B_{mq}=8\Pi^{2}(1/_{3})(\Sigma u_{11})$

* isotropic thermal parameter=8112u (atoms at half occupancy)

	x	У	z	Berg
Тс	10910(2)	3166(2)	1944(1)	5.3(1)
As	4414(2)	8117(2)	2911(1)	4.9(1)
C1(1)	9884(7)	4871(5)	1685(5)	7.4(4)
C1(2)	11782(8)	1329(6)	2007(6)	9.8(5)
C1 (3)	13046(21)	4221(16)	2402(12)	5.6*
C1(4)	10390(16)	3426(14)	3584(10)	6.8 #
0(1)	11335(15)	2912(13)	458 (9)	6.2(7)
0(2)	9089(13)	2101(11)	1514(10)	5.0(7)
C(1)	11178(26)	2289(23)	-1293(15)	7.3(11)
C(2)	10600(22)	2280(18)	-280(15)	5.2(9)
C(3)	9407(28)	1592(19)	-222(16)	6.8(11)
C(4)	8684 (23)	1520(18)	633(16)	5.7(6)
C(5)	7475(26)	641(21)	567(20)	7.4(12)
C(6)	15818(22)	2590(17)	8487(13)	4.8(9)
C(7)	16921(19)	3403(19)	8863(14)	4.7(9)
C(8)	17053(28)	3944 (20)	9861(18)	6.9(11)
C(9)	16003(28)	3649(22)	10447(16)	6.8(11)
C(10)	14839(28)	2829(22)	10094(17)	7.1(12)
C(11)	14771 (23)	2276(20)	9089(16)	5.8(11)
C(12)	12712(23)	8147(19)	3459(14)	5.1(10)
C(13)	12028(26)	7085(20)	3663 (15)	5.8(11)
C(14)	10790(25)	7126 (21)	3970(16)	5.6(18)
C(15)	10155 (35)	8130(30)	4095(18)	9.2(13)
C(16)	10885(28)	9202(22)	3882(18)	6.8(12)
C(17)	12172(28)	9182(24)	3555(16)	6.5(11)
C(18)	15405(19)	9714(16)	3064 (13)	4.0(9)
C(19)	14900(22)	10588(20)	2615(15)	5.8(10)
C(20)	15544 (26)	11752(20)	2750(19)	4.3(12)
C(21)	16790(26)	11991(19)	3231(19)	6.5(11)
C(22)	17319(26)	11094(23)	3692(18)	4.6(11)
C(23)	16618(25)	9971(17)	3592(16)	5.5(10)
C(24)	14608(29)	2846(19)	6431(14)	6.9(10)
C(25)	13784(19)	3637(20)	7016(16)	4.7(10)
C(26)	13046(30)	4310(21)	6546(18)	7.7(11)
C(27)	13024(26)	4169(24)	5530(20)	7.0(11)
C(28)	13717(32)	3409(27)	4961 (17)	8.3(12)
C(29)	14510(26)	2724 (24)	5421(16)	7.3(11)
N(3)	12425(24)	4076(31)	2282(27)	5.2*
0(3)	13594 (27)	4332(37)	2436(30)	7.3*
N(4)	10442(54)	3377 (51)	3144 (21)	10.6#
0(4)	9805(30)	3793 (29)	3780(22)	6.6 #
Table 5.4.

Bond Distances for [(CeHs)_ASITC(NO)(acac)Cla]

Anion

Å
2.385(7)
2.372(8)
2.36(2)
2.29(1)
1.74(3)
1.71(3)
1.20(4)
1.16(5)
2.06(1)
2.08(1)
1.27(2)
1.28(2)
1.53(3)
1.38(3)
1.42(3)
1.47(3)

Cation

As-C(6)		1.91(2)
As-C(12	>	1.93(2)
As-C(18	>	1.92(2)
As-C(24	>	1.90(4)
C(6)-C(7)	1.37(3)
C(7)-C(8)	1.37(3)
C(8)-C(9)	1.44(4)
C(9)-C(10)	1.43(3)
C(10)-C	(11)	1.39(3)
C(6)-C(11)	1.43(3)
C(12)-C	(13)	1.39(3)
C(13)-C	(14)	1.35(4)
C(14)-C	(15)	1.36(4)
C(15)-C	(16)	1.42(4)
C(16)-C	(17)	1.41(4)
C(12)-C	(17)	1.34(4)
C(18)-C	(19)	1.40(3)
C(19)-C	(20)	1.36(3)
C(20)-C	(21)	1.39(4)
C(21)-C	(22)	1,45(4)
C(22)-C	(23)	1.35(3)
C(18)-C	(23)	1.39(3)
C(24)-C	(25)	1.45(3)
C(25)-C	(26)	1.37(4)
C(26)-C	(27)	1.37(4)
C(27)-C	(28)	1.33(4)
C(28)-C	(29)	1.41(4)
C(24)-C	(29)	1.36(3)
average	C-C	1.39(3)

Table 5.5.

Bond angles for [(C_H_)_ASI[Tc(NO)(acac)Cla]

Anion

	•
Tc-N(3)-0(3)	158.6(33)
$T_{C-N}(4) - O(4)$	152.1(47)
C1(1)-Tc-C1(2)	172.6(2)
Cl(1)-Tc-Cl(3)	97.5(5)
Cl(1) - Tc - Cl(4)	93.0(5)
C1(1)-Tc-0(1)	86.8(5)
Cl(1)-Tc-O(2)	86.9(4)
Cl(1)-Tc-N(3)	92.1(12)
C1(1)-Tc-N(4)	90.6(20)
C1 (2)-Tc-Cl (3)	87.8(5)
C1(2) - Tc - C1(4)	92,0(5)
C1(2)-Tc-O(1)	88.1(5)
C1(2)-Tc-0(2)	87.7(4)
C1(2)-Tc-N(3)	93.3(12)
C1(2) - Tc - N(4)	94.2(20)
C1(3)-Tc-O(1)	89.8(6)
C1(3)-Tc-O(2)	175.3(6)
C1(3) - Tc - N(4)	93,8(17)
C1(4)-Tc-O(1)	178.7(6)
C1(4) - Tc - O(2)	89.7(5)
C1(4)-Tc-N(3)	91.2(12)
0(1) - Tc - 0(2)	89.0(5)
O(1) - Tc - N(3)	90.1(13)
O(1) - Tc - N(4)	175.8(19)
O(2) - Tc - N(3)	178.6(14)
O(2) - Tc - N(4)	87.6(17)
Tc-D(1)-C(2)	126.3(14)
$T_{C}=0(2)=C(4)$	126.9(14)
C(1)-C(2)-C(3)	120.3(18)
C(2)-C(3)-C(4)	128.4(19)
C(3)-C(4)-C(5)	120.8(19)

Cation

C(12)-As-C(18)	113.1(8)
C(12)-As-C(6)	108.9(9)
C(12)-As-C(24)	108.7(11)
C(18)-As-C(6)	107.8(8)
C(18)-As-C(24)	108.4(9)
C(6)-As-C(24)	109.9(9)
C(7)-C(6)-C(11)	123.0(16)
C(6)-C(7)-C(8)	119.9(20)
C(7)-C(8)-C(9)	118.0(21)
C(8)-C(9)-C(10)	122.8(20)
C(9)-C(10)-C(11)	117.0(23)
C(10)-C(11)-C(6)	119.3(19)
C(13)-C(12)-C(17)	121.6(23)
C(12)-C(13)-C(14)	118.0(23)
C(13)-C(14)-C(15)	125.0(25)
C(14)-C(15)-C(16)	115.5(29)
C(15)-C(16)-C(17)	120.6(26)
C(16)-C(17)-C(12)	119.3(24)
C(19)-C(18)-C(23)	121.4(17)
C(18)-C(19)-C(20)	120.8(20)
C(19)-C(20)-C(21)	117.5(23)
C(20)-C(21)-C(22)	121.4(21)
C(21)-C(22)-C(23)	119.0(23)
C(22)-C(23)-C(18)	119.3(22)
C(25)-C(24)-C(29)	117.5(24)
C(24)-C(25)-C(26)	119.1(21)
C(25)-C(26)-C(27)	120.0(24)
C(26)-C(27)-C(28)	122.7(28)
C(27)-C(28)-C(29)	118.8(23)
C(28)-C(29)-C(24)	121.6(24)

average C-C-C

120.0(22)

Table 5.6.

Final positional parameters (X10⁴) and isotropic thermal parameters (Å²) for the hydrogen atoms of [(C₅H₅)₄As)[T_C(NO)(acac)Cl₃]

B≔8¶2u

	x	У	Z	В
H(7)	17680	3618	8374	4.6
H(8)	17924	4563	10178	6.5
H(9)	16091	4087	11230	6.5
H(10)	14058	2645	10574	6.8
H(11)	13936	1614	8762	5.6
H(13)	12468	6254	3579	6.1
田(14)	10270	6297	4126	6.5
H(15)	9162	8116	4341	8.3
H(16)	10447	10035	3977	7.3
H(17)	12713	9996	3385	6.4
H(19)	13988	10336	2159	5.8
H(20)	15101	12461	2493	7.3
H(21)	17378	12867	3266	6.1
H(22)	18258	11318	4113	7.4
H(23)	16998	9281	3921	5.2
H(25)	13751	3695	7811	5.4
H(26)	12478	4953	6979	6.9
H(27)	12421	4700	5179	6.8
H(28)	13673	3316	4157	7.6
H(29)	15053	2084	4963	5.8

Table 5.7.

Anisotropic thermal parameters* (X10³, 1²) for [(C=Hs)_ASHTC(NO)(acac)Cla]

	U11	U22	U 33	U23	U13	U12
Tc	97(3)	58(1)	48(1)	6(1)	-6(1)	-21(1)
As	92(3)	54(1)	39(1)	8(1)	-3(1)	-17(1)
C1 (1)	122(6)	67 (4)	92(4)	2(3)	-22(4)	-8(4)
C1 (2)	158(8)	62(4)	149(7)	29(4)	-49(5)	-8(4)
0(1)	114(12)	76(9)	47 (8)	8(7)	-3(8)	-33(8)
0(2)	52(9)	62(8)	76(9)	1(7)	15(7)	-24(7)
C(1)	122(17)	112(15)	44 (11)	23(11)	14(11)	-6(13)
C(2)	84(15)	58(11)	55(11)	-1(9)	~4(11)	-17(11)
C(3)	144(18)	55(12)	58(12)	2(10)	~3(13)	-8 (13)
C(4)	100(16)	59(12)	59(12)	4(10)	-16(12)	-36(11)
C(5)	100(16)	63(13)	118(16)	-7(12)	-16(13)	-30(12)
C(6)	86(15)	54(11)	42(10)	4(8)	-20(10)	-13(10)
C(7)	44(12)	83 (13)	51(10)	2(10)	7(9)	-13(10)
C(8)	125(17)	63(13)	74(13)	3(11)	-19(13)	-11 (12)
C(9)	115(17)	89(14)	55(12)	2(11)	15(12)	21 (14)
C(10)	130(17)	90(14)	57(12)	1(11)	-9(12)	-35(13)
C(11)	72(15)	78(13)	69(12)	3(11)	18(11)	-6(11)
C(12)	97(15)	50(11)	46(10)	13(9)	-13(10)	-18(12)
C(13)	75(16)	84(14)	63(12)	1(11)	11(11)	-30(12)
C(14)	63(16)	71(13)	80(13)	-9(11)	12(12)	-24(12)
C(15)	188 (20)	110(17)	52(12)	-12(13)	-29(14)	-29(17)
C(16)	91(17)	75(14)	92(14)	12(12)	1(13)	12(13)
C(17)	92(17)	92(15)	62(12)	25(11)	2(12)	-12(13)
C(18)	50(13)	51(11)	51(10)	7(9)	2(8)	-19(9)
C(19)	74(14)	79(13)	69(12)	30(11)	-14(10)	-2(11)
C(20)	90(16)	63 (12)	115(15)	40(11)	12(13)	-22(12)
C(21)	76(16)	52(12)	118(15)	-9(12)	62(13)	-13(11)
C(22)	106(16)	69(13)	85(14)	3(11)	-19(12)	-18(13)
C(23)	106(16)	35(10)	67(12)	2(9)	-8(11)	-7(11)
C(24)	181(18)	53(12)	29 (9)	7(9)	-13(12)	-26(13)
C(25)	17(12)	80(13)	81(13)	21(11)	10(10)	-16(10)
C(26)	161(19)	63(13)	67(13)	11(11)	-9(14)	-3(14)
C(27)	93(16)	90(14)	84(14)	37(12)	-3(13)	-1(13)
C(28)	142(18)	122 (16)	51(12)	31(12)	-4(13)	31 (15)
C(29)	118(17)	111(15)	49(11)	22(11)	20(12)	37 (14)

* The form of the anisotropic thermal parameter is given by $\exp\{-2\Pi^2(U_{11}a^{*2}h^2+.....2U_{23}b^*c^*kl+....)\}$

.

Figure 5.5.

Molecular structure and atom numbering for the trichloronitrosyl (acetylacetonato)technetium(II) anion showing one of the disordered arrangements where N(3), O(3) and Cl(4) are the disordered atoms.

Figure 5.6.

Molecular structure and atom numbering for the

tetraphenylarsonium cation of [(C_H_s)_As][Tc(NO)(acac)Cl_a]

5.5. <u>Discussion</u>.

The preparation of acetylacetonato containing technetium complexes been noted previously. Nazzi reacted [TcXs]2has and $T_{CX_4}(PPh_3)_2(X = Cl^-, Br^-)$ with acacH and isolated a series of including [TcCl4(acac)]⁻ and other species technetium(IV) species with mixtures containing of chloride. PPha and acetylacetonato ligands (23). Interestingly the technetium(III) complex TcX(acac)₂(PPh₃) and TcX₂(acac)(PPh₃)₂ were also isolated depending upon the conditions employed (97). Davison, Jones and coworkers isolated Tc(acac)₃ directly from pertechnetate reduction by sodium dithionite (111). However, [Tc(NO)(acac)Cl₃] is the first example of a technetium (II) acetylacetonato complex where the lower oxidation state is being stabilised by the presence of the nitrosyl group.

The infra red spectrum of the complex has a strong absorption at 1770 cm^{-1} typical of the v(NO) stretching vibration for linear nitrosyls, which may be considered as NO⁺. The similar absorption in $(\text{Tc}(\text{NO})\text{Cl}_4\text{X})^{n-}$ varies between 1805cm^{-1} and 1795cm^{-1} depending upon the nature of the trans ligand, X (160).

The X-ray data of the triclinic crystal shows that the trichloro(acetylacetonato)nitrosyltechnetium(II) anion has a distorted octahedral geometry with two chlorides mutually trans and the other chloride and the nitrosyl occupying disordered

- 136 -

positions trans to the chemically equivalent oxygens of the acetylacetonato ligand.

As described above (5.4.) the solving of the crystal structure was not staightforward due to the disordered arrangement. Final matrix least squares refinement was carried out with bonds of the disordered nitrosyl fixed at conventional values (Tc-N 1.69 and N-0 1.17Å). This refinement showed that the chlorine and nitrosyl, while occupying the same geometrical position are slightly axially displaced Cl(3)-Tc-0(2) 174.7(6)*, N(3)-Tc-0(2) 178.1(12)* and Cl(4)-Tc-0(3) 175.4(7)*, N(4)-Tc-0(3) 170.5(11)*.

The bond angles for Tc-N(3)-O(3) and Tc-N(4)-O(4) are 154.0(30) and 155(30)* respectively which is considerably different from that of $(Tc(NO)Cl_4(CH_3OH))^-$ which has a bond angle of 175.5(10)°. The i.r. vibration v(NO) of the former is at 1770cm⁻¹ while that of the latter is 1805 cm⁻¹. Both may be considered as NO⁺ instead of NO⁻. The disorder and slight axial displacement of the two ligands result in some loss of accuracy in the bond lengths and angles and detailed discussion of these is therefore not appropriate.

The acac ligand bond distances and angles are comparable with those reported for other technetium complexes containing this ligand and the non-disordered chlorines have bond distances to the technetium which are unremarkable.

- 137 -

The FAB⁻ mass spectrum of the complex (Figure 5.1.) has a major ion at $^{\prime\prime}/_{x}$ =333 due to (Tc(NO)(acac)Cl₃]⁻ with the expected isotope pattern due to the 3 chlorine atoms. Fragmentation occurrs via the loss of 1 chlorine to $^{\prime\prime}/_{x}$ =298. The ions at $^{\prime\prime}/_{x}$ =269 and 262 correspond to (M-Cl-NO+H)⁻ and (M-2Cl+H)⁻ respectively. The other lower mass ions at 233 and 204 are due to [TcCl(acac)]⁻ and [TcCl₃]⁻. The facile loss of a single chlorine indicates that the parent complex may readily undergo exchange of this ligand while loss of the acac group may be difficult.

The electron spin resonance spectra of the complex recorded at ambient temperature is that expected with the signal split into 10 by the $I=^{9}/_{2}$ technetium nuclear spin (Figure 5.2.). The $g_{n,v}=2.12$ and $a_{n,v}=135$ gauss were measured directly. The complex has low symmetry and the frozen solution gave a complex spectrum (Figure 5.3.) which could only be resolved into its component parameters using the POWDER simulation program (Figure 5.4.).

Several other technetium(II) nitrosyl complexes have been prepared and their ESR spectra measured. Kirmse and coworkers (65,71) reported the spectrum of $Tc(NO)Cl_{3}(PNe_{2}Ph)_{2}$ which appears to have the two phosphines mutually trans. However it was assumed that their spectrum could be modelled as axially symmetric. The complexes $[Tc(NO)X_{5}]^{2-}$ (X = halide, NCS⁻) were modelled in a similar fashion. The $[Tc(NO)Cl_{3}(acac)]^{-}$ is unusual since one of the oxygens of the acac ligand is trans to the nitrosyl and thus the spectrum cannot satisfactorily be modelled as axial.

- 138 -

The animal biodistribution data collected from the sampling of the carrier added complex showed only moderate heart uptake which washes out with time whilst liver uptake increases with time. Initially the blood and muscle activity levels are high but these clear. Significant urinary excretion takes place over the period of the distribution, but not as high as in the tetrachloro- and tetrabromonitrosyltechnetium(II) anions or the technetium(I) nitrosyltetraamine analogues.

CHAPTER 6

SYNTHESIS, CHARACTERISATION AND BIOLOGICAL STUDIES OF TWO TECHNETIUM(I)NITROSYL CATIONS --THE CHLORONITROSYL-BIS-(DPPE)TECHNETIUM(I) AND CHLORONITROSYL-BIS-(DIARS)TECHNETIUM(I) CATIONS

6.1. Introduction.

Work by Deutsch's group has already demonstrated that technetium (III) cations of the type $[TcL_2X_2]^+$, where L = ditertiary phosphines or diarsines and X = Cl or Br, yield excellent images of the myocardium in dogs (25). Unfortunately in humans the Tc(III) complexes undergo reduction in vivo to the neutral Tc(II) complexes which are not taken up by the heart. However, it has been found that the neutral complexes and particularly the bis-diars complex are able to cross the blood brain barrier which makes them potential brain perfusion agents.

In an attempt to produce similarly lipophilic technetium(I) cations containing the $(Tc-NO)^{2+}$ core $(Tc(NO)Cl_4)^-$ was reacted with dppe and diars. The complexes have been fully characterised by FAB⁺ mass spectrometry and, in the case of the diars complex X-ray crystallography.

6.2. <u>Synthesis of the chloronitrosyl-bis-(dppe)technetium (I)</u> cation.

6.2.1. Synthesis of no carrier added [^{95m}Tc(I)(IIO)(dppe)₂Cl]⁺.

To 1 ml of generator eluant was added 1 ml of concentrated HCl. The mixture was heated in a pressure cooker for 30 minutes. The product of the reaction is sodium hexachlorotechnetate. The resulting solution was cooled, diluted with water (1ml), mixed with a solution of hydroxylamine sulphate (1ml, 2.3M) and heated for a further 30 minutes. The resulting solution contains the species $(Tc(NO)Cl_4X)^-$ (X=Cl⁻, H₂O). To this solution was added dppe (30mg, 0.075mM) and ethanol (1.0 ml) and the mixture heated in the pressure cooker for 30 minutes.

The reaction was monitored at each stage using the standard chromatographic procedures described above.

6.2.2. Preparation of the no carrier added complex for biological studies.

As prepared above the complex is 85% radiochemically pure. The complex was adsorbed onto a millipore filter and eluted with 50:50 ethanol:water to give a pure complex free of starting materials. 6.2.3. Synthesis of carrier added [⁹⁹Tc(I)(IIO)(dppe)₂Cl]⁺.

6.2.3.a. Nethod 1.

To an aqueous solution of ammonium pertechnetate (1ml., 0.15mN) was added concentrated hydrochloric acid (1ml) and the mixture heated for 30 minutes. The product of the reaction is [TcCls]²⁻ as the yellow amnonium salt. The resulting solution was cooled, diluted with water (1ml), mixed with a solution of hydroxylamine in water (iml, 2.3M), and heated for a further 30 minutes. The resulting green solution contains the species $[Tc(NO)Cl_4X]^-$ (X = Cl~, H₂O). To this solution was added tetrabutylanmonium chloride solution in water (1ml, 75%) followed by dichloromethane (10 ml). The anion can be quantitatively extracted as the tetrabutylammonium salt. The dichloromethane is evaporated off leaving a green solid. To this solid was added ethanol (20 ml) and dppe (120mg, 0.30mM) and the mixture refluxed under nitrogen for 4 hours during which time the solution became yellow in colour. The solvent was evaporated to a small volume (3ml) and an equal volume of dichloromethane added. A solution of sodium tetraphenylboron (250ng in 1ml 50:50 dichloromethane:ethanol) was added until a cream coloured precipitate was obtained from the The precipitate was removed by filtration, yellow solution. redissolved in dichloromethane and pale orange needles of [Tc(NO)(dppe)_2Cl)[(C6H5)4B] recrystallised by slow evaporation of the solvent.

6.2.3.b Method 2.

To an aqueous solution of ammonium pertechnetate (1ml., 0.15mN) was added concentrated hydrochloric acid (1ml) and the mixture heated for 30 minutes. The product of the reaction is [TcCls]²⁻ as the yellow ammonium salt. The resulting solution was cooled, diluted with water (1ml), mixed with a solution of hydroxylamine hydrochloride (1ml, 2.3M) and heated for a further 30 minutes. То 2nl of the resulting green solution containing the species $[Tc(NO)Cl_4X]^-$ (X = Cl⁻, H₂O) was added dppe (60mg, 0.15mM) and ethanol (1.0 ml). The mixture was heated in a pressure cooker for 30 minutes. A yellow solid resulted which was suspended in the aqueous solution. This yellow product containing the cation $[Tc(IIO)(dppe)_2C1]^+$ can be extracted into dichloromethane. (6.2.3.a. precipitated as above method 1) with sodium tetraphenylboron and allowed to crystallise.

6.3. <u>Synthesis of the chloronitrosyl-bis-(diars)technetium(I)</u> cation

6.3.1. Synthesis of no carrier added [95m Tc(I)(MO)(diars)_2C1]+.

To 1 ml of generator eluant was added 1 ml of concentrated HCl. The mixture was heated in a pressure cooker for 30 minutes. The product of the reaction is sodium hexachlorotechnetate. The resulting solution was cooled, diluted with water (1ml), mixed with a solution of hydroxylamine sulphate (1ml, 2.3M) and heated

- 143 -

for a further 30 minutes. The resulting solution contains the species $[Tc(NO)Cl_4X]^-$ (X = Cl⁻, H₂O). To this solution was added diars (0.05ml, 0.16mM) and ethanol (1.0ml). The mixture was heated for 30 minutes in the pressure cooker. The product was adsorbed onto a Millipore filter and eluted with 50:50 ethanol:water to give a pure product free of starting materials.

6.3.2. Synthesis of carrier added [99Tc(I)(IIO)(diars)₂Cl]⁺.

6.3.2.a Method 1.

To an aqueous solution of ammonium pertechnetate (1ml., 0.15mN) was added concentrated hydrochloric acid (1ml) and the mixture heated for 30 minutes. The product of the reaction is $[TcCl_6]^{2-}$ as the yellow ammonium salt. The resulting solution was cooled, diluted with water (1ml), mixed with a solution of hydroxylamine in water (1ml, 2.3M), and heated for a further 30 minutes. The resulting green solution contains the species $[Tc(NO)Cl_4X]^-$ (X = Cl^- , H₂O). To 2ml of this solution, deoxygenated with nitrogen, was added diars (0.05 ml, 0.16mM) and the mixture heated in the pressure cooker for 30 minutes. A yellow oil formed which extracted into dichloromethane. Evaporation of the solvent yields a yellow solid.

- 144 -

6.3.2.b. Method 2.

To an aqueous solution of anmonium pertechnetate (1ml., 0.15mM) was added concentrated hydrochloric acid (1ml) and the mixture heated for 30 minutes. The product of the reaction is [TcCls]2as the yellow amnonium salt. The resulting solution was cooled, diluted with water (iml), mixed with a solution of hydroxylamine in water (1ml, 2.3M), and heated for a further 30 minutes. The resulting green solution contains the species $[Tc(NO)Cl_{\lambda}X]^{-}$ (X = Cl-, H₂O). Addition of tetrabutylammonium chloride solution (75% water) allowed extraction of the [Tc(NO)Cl_X]⁻ into in dichloromethane (5ml). This solution was deoxygenated with nitrogen and diars (0.2ml, 67mM) added. The solution became yellow-green on standing and yellow rhomboid shaped crystals formed on slow evaporation of the solvent.

6.3.3. Preparation of the carrier added complex for biological studies.

4.3mg of the crystalline solid was dissolved in 50:50 ethanol:water to give a solution which was used without further purification. 6.4. Results.

6.4.1. Paper chromatography.

For both carrier added and no carrier added complexes.

Complex	R, in	R, in
	butan-2-one	saline
(Tc(I)(NO)(dppe)2C1]+	0.73(2)	0.03(2)
[Tc(I)(NO)(diars)2C1]+	0.69(3)	0.04(3)

6.4.2. Electrophoresis.

For carrier added and no carrier added preparations of both cations, the complex does not move under electrophoresis conditions presumably due to its insolubility.

6.4.3. HPLC.

For the no carrier added preparation of [Tc(NO)(dppe)₂Cl]+.

Retention time on system X (Amersham) 10.7 minutes Retention time on system X2 (Amersham) 12.6 minutes

,

For the carrier added and no carrier added preparations of $(T_{C}(I)(MO)(diars)_{2}CI)^{+}$

Retention time on system X (Amersham) 7.3 minutes

6.4.4. Infra-red spectra.

```
For [Tc(NO)(dppe)2C1]+
```

(KBr disc) Absorptions at 1775cm⁻¹ for v(NO), Tc-Cl low.

For [Tc(I)(NO)(diars)2C1]+

(KBr disc) Absorption at 1720cm⁻¹ for v(NO).

6.4.5. Analysis.

For (Tc(NO)(dppe)₂Cll⁺ (calculated for C₇₆H₆₀NOClTcBP₄) C 70.31(71.28); H 5.57(5.32); N 1.37(1.09)

For [Tc(I)(NO)(diars)₂Cl]⁺ (calculated for C₃₆H₆₆NOClTcAs₄) C 40.53(41.14); H 6.80(6.48); N 2.76(2.67)

FAB+ mass spectra 6.4.6.

(Tc(NO)(dppe)2C1]+ $[Tc(I)(NO)(diars)_2C1]^+$

Major ion (^M /z)	960	736
Lower mass ions (M/z)	925	706
	562	450

mass [Tc(N0)(dppe)2Cl]+ The FAB spectra for and (Tc(I)(NO)(diars)₂Cll⁺ are given in Figures 6.1. and 6.2. respectively.

Biodistribution studies. 6.4.7.

The biodistribution data for the no carrier added preparation of [Tc(NO)(dppe)_2Cl]+ are given in Table 6.1.

The biodistribution data for the carrier added preparation of [Tc(I)(NO)(diars)₂Cll⁺ are given in Table 6.2.

6.4.8 'H MAR of the carrier added complexes.

The spectrum of the dppe complex shows broad, unresolved singlets at 2.95, 2.80, 2.50, and 1.70 ppm.

The spectrum of the diars complex shows multiplets at 8.20 and 7.80 ppm and poorly resolved multiplets at 1.95, 1.65, 1.40, and 1.05.

- 148 -

- 149 -

Figure 6.2.

FAB+ mass spectrum of [Tc(NO)(diars)2C11+.

Mass

- 150 -

Table 6.1.

Animal biodistribution data for [99m Tc(NQ) (dppe)=C11+

% injected dose/organ

	2 min sacrifice		60 min sac	rifice
	mean	S.D.*	nean	S.D.*
Muscle	10.64	0.86	11.27	0.46
Blood	34.72	6,01	6.13	0.83
Kidneys	1.91	0.16	1.72	0.06
Bladder	0.07	0.00	0.79	0.08
Lung	6.04	0.31	3,41	0.26
Liver	41.67	2.51	53.76	1.08
Spleen	1.29	0.18	3.16	0.46
Stomach	0.48	0.18	0.54	0.10
S. intestine	1.58	0.45	10.63	0.25
L. intestine	1.09	0.21	0.83	0.16
Heart	0.63	0.11	0.47	0.03
Thyroid	0.09	0,05	0.05	0.01
Carcass	0.00	0.00	7,21	0.58
Injection site	11.79	15.54	2.34	0.45
Counts/gram ratio				
Heart/blood	0.26	0.06	1.13	0.08
Heart/muscle	6.08	0.67	4.53	0.33
Heart/liver	0.17	0.03	0.10	0.00
Brain/blood	0.02	0.00	0.03	0.00
Brain/muscle	0,52	0.02	0.11	0.00

= standard deviation of three animals

Table 6.2.

Animal biodistribution data for [99Tc(NQ)(diars)2Cl]+

% injected dose/organ

	2 min sacrifice		60 min sacı	rifice
	mean	S.D.*	nean	S.D.*
Muscle	25.54	4.81	30.99	7.65
Kidneys	8.80	1.74	3.38	2.60
Bladder	2.45	2.08	4.54	3.80
Lung	0.66	0.23	0.08	0.01
Liver	11.86	0.54	4.62	1.40
Spleen	0.91	0.12	0.71	0.24
Heart	1.33	0.00	1.14	0.25
Brain	0.06	0.09	0.07	0.01
Carcass and gut	48.48	4.12	55.81	6.37
Injection site	0.70	0.09	2.75	2,74

Counts/gram ratio

Heart/muscle	6.35	0.83	5.41	3.38
Heart/liver	1.40	0.08	3.13	0.05
Heart/lung	2.68	0.40	19.42	5,18

= standard deviation of two animals

= standard deviation of three animals

6.5. Crystal structure determinations.

6.5.1. Attempted crystal structure determination of the chloronitrosyl-bis-(dppe)technetium(I) cation.

A fine needle shaped crystal was selected for the structure determination. From the preliminary Veissenberg photographs it was found that the tetraphenylboron bis (bisdiphenylphosphinoethane)chloronitrosyltechnetium(I)

 $[(C_6H_5)_4B][Tc(NO)(C_{26}H_{24}P_4)_2C]]$ crystal is monoclinic, space group P21/a, with cell dimensions of a=25.75, b=24.21, c=10.97Å, β =98.11^{*}.

However early in the solution of the structure it became clear that because of the similarity, electronically, of P, Cl and NO that the structure was disordered. The technetium core was confirmed to be six co-ordinate but the ligands could not be resolved with the data collected from the crystal selected.

6.5.2. Crystal structure determination of chloronitrosyl-bis-(diars)technetium(I)chloride tetrabutylammonium chloride.

The chunky rhomboid shaped crystals appeared suitable for X-ray analysis and after preliminary observation under a polarising microscope were passed to Birmingham University for a structure determination. The compound crystallises in the space group C2/c and it is found that the nitrosyl and chloride are again disordered. The technetium is confirmed to be six coordinate with the two diars ligands in the axial plane and the disordered nitrosyl and chlorine atoms trans to each other.

A summary of the crystal structure determination is described in Appendix IV.

6.6. Discussion.

The preparation and biological distribution of technetium complexes with diphosphine and diarsine ligands has been well explored by Deutsch and his coworkers. Reaction of the ligand (L) with either $[^{99}TcX_6]^{2-}$ (X = Cl or Br) or $[^{99m}TcO_4]^{-}$ leads to the series of complexes of the general formula $[Tc(III)L_2X_2]^+$. Where the ligand acts both as the reductant and chelating agent.

 $[Tc(NO)Cl_4]^-$ reacts with dppe or diars in ethanolic solution to give $[Tc(I)(NO)(dppe)_2Cl]^+$ and $[Tc(I)(NO)(diars)_2Cl]^+$ respectively. Infra red spectra of the complexes show strong absorptions at $1775cm^{-1}$ for the dppe complex and $1720cm^{-1}$ for the diars complex which is typical of the v(NO) stretching vibration in linear nitrosyls as seen in Table 1.3.

Confirmation of the linear nitrosyl is provided by the crystal structure of the diars complex which crystallises as

- 154 -

 $(Tc(NO)(diars)_2CllCl.((C_4H_2)_4N)Cl.$ Due to disorder of chlorine and nitrosyl in the crystal the solution was refined by calculating the position of the nitrogen and oxygen atoms relative to a chlorine atom with occupancy factors of 0.5.

Using this model, the Tc-N-O bond angle is virtually linear (179.9') and because of this detailed discussion would not be However, the average Tc-As distance of 2.492(12) & is appropriate. agreement in close with the comparable bonds in [Tc(III)(diars)₂Cl₂]⁺ (2.512(2))(106)[Tc(diars)2Cl4]+ and (2.514(3)Å) (21). The Tc-Cl bond length of 2.411(13)Å is slightly longer than those in the above technetium(III) complexes. This would be expected of a ligand trans to the nitrosyl and particularly where the ligands in the equatorial plane are competing for electron density from the technetium with the nitrosyl. Both the To-N backbonding and the chelating effect of the two diars ligands will be stabilising the complex in oxidation state 1.

The As-Tc-As bond angle of $83.1(1)^{\circ}$ is also comparable with those reported for the above complexes ($82.4(1)^{\circ}$ and $83.5(1)^{\circ}$ respectively).

Ortep diagrams of the complex cation and of both cations as positioned in the unit cell are given in Figures 1. and 2. of Appendix IV together with bond lengths and angles in Tables 1. and 2. respectively.

- 155 -

As noted above a combination of disorder in the crystal and poor quality data prevented a structure determination on $[Tc(I)(NO)(dppe)_2Cll((C_{GH_{S}})_4B]$. However, during their parallel studies, Amersham International isolated and solved the crystal structure of the chloride salt (162) confirming, as expected, a slightly distorted octahedral geometry with the dppe ligands in the equatorial plane and the nitrosyl and chloride occupying the axial positions (Figure 6.3).

The FAB+ mass spectrum of $(Tc(I)(NO)(dppe)_2CI]^+$ has a major ion at m/z=960 calculated for $(C_{s_2}H_{Ae}NOCITcP_A)$ m/z=960 due to $(Tc(NO)(dppe)_2CI]^+$. Fragmentation occurs via the loss of one chlorine to m/z=925. The ion at m/z=562 is due to the loss of a dppe ligand to give $(TcNO(dppe)CI)^+$. It would appear therefore that loss of the chloride ligand is facile and would be amenable to ligand exchange which would not be unexpected due to the trans labilising effect of the nitrosyl.

The FAB+ mass spectrum of $[Tc(I)(NO)(diars)_2Cl]^+$ has a major ion at M/z=736 (calculated for $C_{20}H_{32}As_2NOClTc$ M/z=736). Fragmentation occurs via the loss of the nitrosyl to M/z=706 and the ion at M/z=450 is due to $[Tc(NO)(diars)Cl]^+$.

The 'H NMR spectra of the complexes are complicated. The spectrum of the dppe complex shows broad unresolved singlets at 2.95, 2.80, 2.50 and 1.70 ppm. as the protons of the ligand are not equivalent due to the positioning of the phenyl groups.

- 156 -

The diars spectrum shows clearly the two types of proton of the phenyl groups. However the methyl groups are not clearly resolved and appear as four multiplets around 2 ppm.

The animal biodistribution data of the no carrier added $[Tc(NO)(dppe)_2Cl]^+$ cation shows that initially blood and liver values are very high although there does appear to be some heart uptake. This however could be largely due to blood pool. Over time the level of activity in the blood clears whilst liver activity increases and muscle uptake remains virtually the same. The lipophilic complex clears through the liver, hence the increase in activity in the small intestine and the heart/muscle ratio does improve over time.

The biodistribution of the carrier added $(Tc(NO)(diars)_2Cl]^+$ complex also shows interesting results. Initially high liver uptake clears significantly and muscle uptake remains constant over the 60 minutes. The heart/lung and heart/liver ratios improve over time and genuine heart uptake of this complex is again observed.

The presence of the Tc-ND molety significantly alters the biodistribution of these complexes from their $(Tc(III)L_2X_2]^+$ equivalents as heart uptake and clearance from the blood and liver are not normally associated with these complexes.

- 157 -

In conclusion then lipophilic technetium(I) cations containing phosphine and arsine chelating ligands can be prepared from the ligand exchange reaction of $[Tc(NO)Cl_4]^-$. The biological distribution of these complexes is found to differ from their analogous complexes where the nitrosyl is replaced by chlorine.

The molecular structure of the [Tc(I)(NO)(dppe)_2Cll+ cation.

(Extracted from reference 163.)

CHAPTER 7

SYNTHESIS, CHARACTERISATION AND BIOLOGICAL STUDIES OF TECHNETIUM NITROSYL COMPLEXES OF 1.10-PHENANTHROLINE AND 2.2'-BIPYRIDINE

7.1. Introduction.

As noted in chapter 1, until recently very few low valent technetium complexes containing phen or bipy had been reported. Taube has reported the only nitrosyl complexes $ITc(NO)(NH_3)(phen)_2]^{2+}$ and $[Tc(NO)(NH_3)_2(phen)(H_2O)]^{2+}(30)$ but that area of work was not expanded.

Depending on the reaction conditions the complexes $(Tc(NO)(phen)_2Cl]^+$, $[Tc(NO)(phen)Cl_3]$ and $[Tc(NO)(bipy)Cl_3]$ have been prepared where the technetium atom is in oxidation states (I), (II) and (II) respectively. The complexes have been characterised by mass spectrometry and the biological distribution of the neutral complexes studied

7.2. Synthesis of the complexes.

7.2.1. Synthesis of carrier added [⁹⁹Tc(I)(II())(phen)₂Cl]⁺.

To an aqueous solution of ammonium pertechnetate (1ml., 0.15mM) was added concentrated hydrochloric acid (1ml) and the mixture heated for 30 minutes. The product of the reaction is [TcCls]2as the yellow ammonium salt. The resulting solution was cooled, diluted with water (1ml), mixed with a solution of hydroxylamine in water (1ml, 2.3K), and heated for a further 30 minutes. The resulting green solution contains the species $[Tc(MO)Cl_4X]^-$ (X = Cl-, H₂O). Addition of tetrabutylammonium chloride solution (75% water) allowed extraction of the {Tc(N0)C1_X]~ in into dichloromethane (5ml). The dichloromethane was evaporated off to leave a green solid which was redissolved in methanol (10m1) and 1,10-phenanthroline (54mg, 3mM) added. The mixture was stirred until a dark green colour resulted. Slow evaporation of the solvent led to the formation of dark green crystals.

7.2.2. Synthesis of no carrier added [95m Tc(1) (WO) (phen)2C1]+.

To 1 ml of generator eluant was added 1 ml of concentrated HCl. The mixture was heated in a pressure cooker for 30 minutes. The product of the reaction is sodium hexachlorotechnetate. The resulting solution was cooled, diluted with water (1ml), mixed with a solution of hydroxylamine hydrochloride (1ml, 2.3M) and heated for a further 30 minutes. The resulting solution contains

- 161 -

the species $[Tc(NO)Cl_4X]^-$ (X = Cl⁻, H₂O). To this solution was added a solution of 1,10-phenanthroline (1ml, 80mM in 50:50 ethanol:water). The reaction proceeds at room temperature over 1.5 to 2 hours or after heating in the pressure cooker for 30 minutes.

7.2.3. Synthesis of carrier added [99Tc(II)(IIO)(phen)Cl_2].

To an aqueous solution of ammonium pertechnetate (1ml., 0.15mM) was added concentrated hydrochloric acid (1m1) and the mixture heated for 30 minutes in a pressure cooker . The product of the reaction is $[TcCl_s]^{2-}$ as the yellow annonium salt . The resulting solution was cooled, diluted with water (1ml), mixed with a solution of hydroxylamine in water (1ml, 2.3M), and heated for a further 30 minutes in a pressure cooker. The resulting green solution contains the species $[Tc(NO)Cl_4X]^-$ (X = Cl⁻, H₂O). To this solution was added 1,10-phenanthroline (33mg, 2nl of 0.18mM) and ethanol (1ml). The mixture was heated in the pressure cooker for 30 minutes. The reaction mixture was allowed to cool undisturbed while the product crystallised out as dark green needles.

7.2.4. Synthesis of no carrier added [99m Tc(II) (NO) (bipy)Cl_3].

To 1 ml of generator eluant was added 1 ml of concentrated HCl. The mixture was heated in a pressure cooker for 30 minutes. The product of the reaction is sodium hexachlorotechnetate. The

- 162 -

resulting solution was cooled, diluted with water (1ml), mixed with a solution of hydroxylamine hydrochloride (1ml, 2.3M) and heated for a further 30 minutes. The resulting solution contains the species $(Tc(NO)Cl_{4}X)^{-}$ (X =Cl⁻, H₂O). To this solution was added bipy (1.5ml, 0.1M in 50:50 ethanol:water) and the reaction allowed to proceed at room temperature for 2 hours.

7.2.5. Synthesis of carrier added [⁹⁹Tc(II)(MO)(bipy)Cl₂].

To an aqueous solution of ammonium pertechnetate (1ml., 0.15mN) was added concentrated hydrochloric acid (1ml) and the mixture heated for 30 minutes. The product of the reaction is $[TcCl_6]^{2-}$ as the yellow ammonium salt. The resulting solution was cooled, diluted with water (1ml), mixed with a solution of hydroxylamine in water (1ml, 2.3M), and heated for a further 30 minutes. The resulting green solution contains the species $[Tc(NO)Cl_4X]^-$ (X=Cl, H₂O). To 2ml of this solution was added bipy (32mg, 0.2mM) and ethanol (1ml) and the mixture heated in the pressure cooker for 30 minutes. The resultion solution was allowed to cool undisturbed while the product crystallised out as green needles.

7.2.6. Preparation of carrier added [⁹⁹Tc(II)(NO)(phen)Cl₃] for biodistribution studies.

3.6mg of the crystals as prepared above (7.2.3.) were dissolved in 50:50 ethanol:water to give a solution which was not purified further before injection.

- 163 -

7.2.7. Preparation of carrier added [⁹⁹Tc(II)(IIO)(bipy)Cl₂] for biodistribution studies.

3.3mg of the crystals as prepared above (7.2.5) were dissolved in 50:50 ethanol:water to give a solution which was not purified further before injection.

7.3. <u>Results</u>.

7.3.1. Paper chromatography.

Complex	R, in	R _f in
	butan-2-one	saline
[Tc(NO)(phen) ₂ Cl]+	0.85(2)	0.89(4)
[Tc(NO)(phen)Cla]	0.54(3)	0.73(5)
(Tc (NO) (bipy)Cl3]	0.82(3)	0.85(4)

7.3.2. Electrophoresis.

.

The complex $[Tc(NO)(phen)_2Cl]^+$ moves a distance of 2.2cm per hour $(2.68Vcm^{-2})$ towards the cathode.

No electrophoretic movement is observed for [Tc(NO)(phen)Cl₃] or [Tc(NO)(bipy)Cl₃]
7.3.3. Infra-red spectra.

(As KBr disc)

 $[Tc(NO)(phen)_2Cl]^+$ has v(NO) at $1800cm^{-1}$ and v(Tc-Cl) at $340cm^{-1}$ $[Tc(NO)(phen)Cl_3]$ has v(NO) at $1770cm^{-1}$ and v(Tc-Cl) at $330cm^{-1}$. $[Tc(NO)(bipy)Cl_3]$ has v(NO) at $1780cm^{-1}$ and v(Tc-Cl) at $326cm^{-1}$

7.3.4. Analysis

(Tc(NO) (phen)Cl3]

(calculated for C12HaN4OClaTc.HCl)

C 31.3(31.8), H 1.8(2.0), N 9.7(9.3)%

[Tc(NO)(bipy)Clal

(calculated for CioHaNaOClaTc)

C 31.2(30.6), H 2.3(2.1), N 10.5(10.7)%

7.3.5. FAB mass spectra.

	Najor ion	Lower mass ions
	M/Z	^M /z
(Tc(NO)(phen)2C1]+	524	
[Tc(NO)(phen)Cl3]	414	379
		344
		309
[Tc(NO)(bipy)Cl ₃]	434	399
		320
		290

The FAB mass spectra for $[Tc(MO)(phen)Cl_3]$ and $[Tc(MO)(bipy)Cl_3]$ are given in Figures 7.1. and 7.2. respectively.

7.3.6. Biodistribution studies.

The animal biodistribution data for $[Tc(NO)(phen)Cl_3]$ and $[Tc(NO)(bipy)Cl_3]$ are given in Tables 7.1. and 7.2. respectively.

Figure 7.1.

- 167 -

Figure 7.2.

FAB mass spectrum of [Tc(NO)(bipy)Cla].

Table 7.1.

Animal biodistribution data for [SSTc(NO)(phen)Cla].

% injected dose/organ

	2 min sacrifice		60 min sacrifice		
	mean	S.D.*	mean	S.D.*	
No. and A		·			
Ruscie	22.83	5.35	17.02	0.99	
Blood	3.98	1.37	3.49	0.67	
Kidney	1.47	0.70	1.88	0.57	
Bladder and urine	0.50	0.47	14.17	1.64	
Lung	0.67	0.45	0.23	0.11	
Liver	0.16	0.03	0.46	0.26	
Spleen	0.21	0.07	0.23	0.03	
Heart	0.40	0.13	0.29	0.03	
Brain	0.08	0.03	0.04	0.00	
Carcass and gut	67.70	4.72	62.20	0.96	
Counts/gram ratio					
Heart/blood	1.59	0.38	1.36	0,19	
Heart/muscle	1.99	0.47	4.68	4.53	
Heart/liver	35.14	17.06	10.63	5.60	
Heart/lung	1.55	1.16	2.57	1.11	

= standard deviation of three animals

Table 7.2.

Animal biodistribution data for [""Tc(NO)(bipy)Clal.

% injected dose/organ

	2 min sacrifice		60 min sacı	sacrifice		
	mean	S.D.*	mean	S.D.#		
Muscle	24.17		18.95	3.76		
Blood	7.17		2.02	0.36		
Kidneys	2.64		1.08	0.24		
Bladder and urine	8.66		21.88	6.88		
Lung	0.45		0.10	0.03		
Liver	3.43		3.35	0.53		
Spleen	0.20		0.31	0.06		
Heart	0.32		0.30	0.05		
Brain	0.06		0.04	0.01		
Carcass and gut	52.92		51.97	5.21		
Count/gram ratio						

Heart/blood 0.99 2.12 0.92 Heart/muscle 1.69 2.02 0.36 Heart/liver 1.31 1.09 0.18 Heart/lungs 1.30 4.13 0.87

* = two animals only (poor injection in one of the three)

= standard devitation of three animals

7.4. Crystal structure - preliminary investigations

A suitable crystal was selected for X-ray analysis and it was established that the bipyridyltrichloronitrosyltechnetium(II) $(Tc(NO)(C_1 \circ H_{\odot}N_2)Cl_{\odot})$ crystal is monoclinic, space group P2₁/c, with cell dimensions of a=8.18, b=6.90, c=13.124Å, β =112.16^{*}.

The crystal structure was abandoned because of the poor quality of data from the crystal.

7.5. Discussion.

The reaction of $[Tc(NO)Cl_4]^-$ with phen or bipy proceeds to either $[Tc(NO)(phen)_2Cl]^+$, $[Tc(NO)(phen)Cl_3]$ or $[Tc(NO)(bipy)Cl_3]$ depending on the reaction conditions.

 $[99m Tc(NO)(phen)_2Cl]^+$ is prepared in the presence of chloride with an excess of ligand relative to the technetium concentration. For the reaction to proceed on a carrier added scale it was found necessary to remove excess chloride from the aqueous preparation or to start the reaction from solid $[Tc(NO)Cl_4][(C_4H_9)_4N].$

In aqueous high chloride concentrations the neutral species $[^{99}Tc(NO)(phen)Cl_{3}]$ and $[^{99}Tc(NO)(bipy)Cl_{3}]$ are formed even with forcing conditions (heat and pressure).

The FAB+ mass spectrum of $[Tc(NO)(phen)_2Cl]^+$ has a major ion at $^{M}/_{Z}=524$ (calculated for $C_{24}H_{16}N_5OClTc$ $^{M}/_{Z}=524$) confirming the structure of the cation.

The $(Tc(NO)(phen)Cl_3)$ and $(Tc(NO)(bipy)Cl_3)$ complexes have two possible configurations, (a) with the one of the nitrogens of the ligand cis to the nitrosyl or (b) trans as in the nitrosyl acac complex described in chapter 5.

(a)

(b)

Evidence that a cis complex is formed is provided by the FAB mass spectrum of $[Tc(NO)(bipy)Cl_3]$. This was obtained by dissolving the complex in pyridine and as a result the spectrum shows a major ion at $m_{z}=434$ (calculated for $[Tc(NO)(bipy)Cl_2py]^+$). Fragmentation occurs by loss of chlorine to $m_{z}=399$ (calculated as $[Tc(NO)(bipy)Cl_2py]$), loss of pyridine to $m_{z}=320$ (calculated

- 172 -

for [Tc(NO)(bipy)Cl]) and loss of the nitrosyl ligand M/z=290 (calculated for [Tc(bipy)Cl]).

The trans labilising effect of the nitrosyl ligand has been observed in other complexes and, given the chelating effect of the bipyridine ligand, it would not be unexpected that ligand exchange of the chloride opposite the nitrosyl would take place in solution.

The spectrum also shows an ion at M/z=514 which may be attributable to a pyridinium salt of the complex.

The FAB mass spectrum of $(Tc(NO)(phen)Cl_{2}]$ has a major ion at $^{m}/_{z}=414$ (calculated for $C_{1,2}H_{0}N_{2}OCl_{2}Tc$ $^{m}/_{z}=414$). Fragmentation occurs by the successive loss of each chlorine to $^{m}/_{z}=379$ $(Tc(NO)(phen)Cl_{2}]$, $^{m}/_{z}=344$ $(Tc(NO)(phen)Cl_{1}]$ and $^{m}/_{z}=309$ (Tc(NO)(phen)]. In addition there is for each of the above ions the corresponding ion through loss of the nitrosyl group. The fragmentation scheme is set out in Figure 7.3.

The FAB mass spectrum of $[Tc(NO)(phen)Cl_{3}]$ suggests from the facile loss of the chlorine that this too may be trans to the nitrosyl with the phenanthroline ligand cis.

- 173 -

Figure 7.3.

FAB mass spectrum - fragmentation ions ($^{m}/_{Z}$) of [Tc(NO)(phen)Cl₃]

The animal biodistribution data for the $[Tc(NO)(phen)Cl_{2}]$ complex shows initial high muscle uptake which clears a little with time through the kidneys. There is almost no liver uptake and the level of activity in the blood does not clear. Heart uptake is modest.

The biodistribution data for the $[Tc(WO)(bipy)Cl_{2}]$ is slightly different showing higher blood uptake and more liver. Muscle uptake is higher and the complex appears to clear more quickly. Again heart uptake of the complex is not significant.

Neither complex shows significant brain uptake which may be expected of a neutral complex, however, this could be an indication that they are not lipophilic enough, or that the nitrosyl is causing this change in the biological activity.

Without solutions of the crystal structures the configurations of the neutral complexes cannot be confirmed.

CHAPTER 8

SYNTHESIS. CHARACTERISATION AND BIOLOGICAL STUDIES OF THE CHLORONITROSYLTETRA(t-BUTYLISONITRILE) TECHNETIUM(I) CATION

8.1. Introduction.

The series of complexes of the general formula $[Tc(CNR)_6]^+$ have been well studied and characterised because of their potential as myocardial imaging agents. The parent compound where R = t-butyl is clinically the most advanced. Efforts to alter the disadvantages associated with these complexes, mostly high lung and liver uptake, have resulted in attempts to exchange one or more of the isonitrile ligands for a different isonitrile or entirely different ligand altogether.

Earlier efforts had resulted in the exchange of all six isonitriles for another isonitrile but more recently mixed complexes of the formula $[Tc(CMR^{1})_{k}(CMR^{2})_{G-k}]^{+}$ where R¹ and R² may be t-butyl-, cyclohexyl-, or (ethoxycarbonyl)methyl- and k = 0 - 6 have been prepared on a carrier added scale at least (129).

- 176 -

The mixed isonitrile/diphosphine complex $[Tc(CNR)_2(DEPE)_2]^+$ has been prepared on a no carrier added scale and has been tested in animals and humans for biological activity (83,84).

Mixed isonitrile/triphenylphosphine complexes have also been prepared and characterised and are described in more detail in chapter 1 (1.3.4).

Other studies of the reaction of $[99mTc(CNt-butyl)_{el}]$ with NO gas at various temperatures found that a mixture of products is formed. Biological studies in rats of each component of the mixture showed different biological distributions but none with significant heart uptake. One of the complexes produced good images of the gall bladder in a human subject. The same reaction was attempted with the cyclohexyl- and benzyl- isonitrile analogues, the latter showing some myocardial uptake in the same human volunteer (162).

The nitrosyl/isonitrile complexes $(Tc(NO)(CNt-butyl)_S)^{2+}$ and $(Tc(NO)(CNt-butyl)_SBr_2)$ have been prepared. The latter complex was prepared from $[Tc(NO)Br_4]^-$ in an attempt to displace all four bromides by t-butyl isonitrile.

It has been found here that the reaction of $[Tc(NO)Cl_4]^-$ with tbutyl isonitrile does undergo complete ligand exchange to give $[TC(I)(NO)(CNt-butyl)_4Cl]^+$. The complex has been characterised by

- 177 -

spectra. The biological distribution of the complex has also been examined.

8.2. Synthesis of the complex.

8.2.1. Synthesis of carrier added [99Tc(I)(IIO)(CIt-buty1)_CII+

To an aqueous solution of ammonium pertechnetate (1ml., 0.15mM) was added concentrated hydrochloric acid (1ml) and the mixture heated for 30 minutes. The product of the reaction is $[TcCl_6]^{2-1}$ as the yellow ammonium salt. The resulting solution was cooled, diluted with water (1ml), mixed with a solution of hydroxylamine in water (1ml, 2.3M), and heated for a further 30 minutes. The resulting green solution contains the species $[Tc(NO)Cl_4X]^-$ (X = Cl-, H₂O). Addition of tetrabutylammonium chloride solution (75% water) allowed extraction of the [Tc(NO)Cl₄X]⁻ in into dichloromethane (5ml). The dichloromethane was evaporated off to leave a green solid which was redissolved in ethanol (20ml) and t-butylisonitrile (0.055ml, 0.9mM) added. The mixture was refluxed under nitrogen for 3 hours undergoing a colour change from bright green through dark green to pale yellow. The reaction mixture was cooled in ice and sodium hexafluorophosphate (100mg in 1ml) added. The white precipitate of tetrabutylammonium hexafluorophosphate was removed by filtration. The solvent was evaporated down to 10ml and the product crystallised as fine pale yellow needles on cooling.

- 178 -

8.2.2. Preparation of carrier added [⁹⁹Tc(I)(MO)(MCt-butyl)₄Cl]⁺ for biological studies.

5.3 mg of the crystals prepared at 8.2.1 above were dissolved in 2 mls of 50:50 ethanol:water. No further purification was performed before injection of the complex.

8.3. Results.

8.3.1. Electrophoresis.

The complex moves 2.0cm (8.75Vcm⁻¹) in 1 hour toward the cathode.

8.3.2. Infra-red spectrum.

(KBr Disc) Absorptions at 1765cm⁻¹ for v(NO), 2195cm⁻¹ for v(CN).

8.3.3. ¹H MMR.

1.65 (singlet) ppm.

8.3.4. FAB+ mass spectrum.

The FAB mass spectrum (Figure 8.1.) has a major ion at m/z = 496and lower mass ion at m/z = 413.

8.3.5 HPLC.

HPLC was performed under the following conditions: Hamilton PRP-1 column (150 x 4.1 mm), flow rate = 1.0 ml/min, gradient from 0.1M sodium acetate to 100% acetone over 17 min.

Retention time: 8.1 min.

8.3.6 Biodistribution studies.

The data for the carrier added animal biodistribution data for $[^{99}Tc(I)(NO)(CNt-butyl)_4Cl]^+$ are given in Table 8.1.

Figure 8.1.

FAB+ mass spectrum of [Tc(NO)(CNt-buty1)_C1]+

Kass

Table 8.1.

Animal biodistribution data for ("STc(I)(NO)(CNt-buty1)_C1]+

% injected dose/organ

2 1	in sacrifice	9	60 min sa	crifice	
	mean	S.D.*	nean	S.D.*	
Muscle	21.45	3.44	18.30	3.07	
Blood	0.40	0.66			
Kidney	2.60	0.81	1.13	0.58	
Bladder and urine	4.26	6.58	7.02	5.95	
Lung	0.64	0.40	0.12	0.09	
Liver	5.82	1.84	5.89	0.36	
Spleen	0.56	0.23	0.26	0.09	
Heart	1.09	0.28	1.37	0.28	
Brain	0.04	0.01	0.04	0.02	
Carcass and gut	63.14	4.02	65.76	2.66	

Counts/gram ratio

Heart/muscle	6.19	1.73	8.98	2.95
Heart/liver	2.58	0.20	2.97	0.34
Heart/lung	3.34	2.35	26.02	20.69

= standard deviation of three animals

· •

8.4. Discussion.

The reaction of $[Tc(NO)Cl_4]^-$ with t-butylisonitrile in refluxing ethanol produces $[Tc(NO)(CNt-butyl)_4Cl]^+$. There are two possible dispositions of the isonitrile ligands in the complex. Either all four ligands positioned meridionally with the chloride ligand trans to the nitrosyl or with an isonitrile ligand trans to the nitrosyl with the remaining three and a chloride in the equatorial plane.

¹H NMR spectrum of the complex shows a singlet at $\delta 1.65$ indicating that all of the isonitriles are equivalent. The chemical shift compares well with that of the complex [Tc(NO)(CNt-butyl)₃Br₂] where two singlets are shown at $\delta 1.43$ and 1.47 in the ratio of 1:2, and is as expected for the two types of isonitrile in that complex (axial and equatorial) (68).

One strong C=N stretch is seen in the infra red spectrum at 2195cm^{-1} . The high frequency of the absorption relative to the hexa-kis-t-butylisonitriletechnetium(I) complex (2090 and 2045 cm⁻¹) is indicative of a lack of backbonding to the technetium which is already being stabilised by backbonding to the nitrosyl. This, together with the fact that only one absorption is seen also implies the isonitrile ligands are positioned meridionally about the technetium. The infra red spectrum of (Tc(NO)(CNt-butyl)₃Br₂) shows two C=N absorptions at 2230 and 2160 cm⁻¹, both at high

. - 183 -

frequency, as expected, with the higher frequency absorption being assigned to the isonitrile trans to the nitrosyl.

The FAB+ mass spectrum has a major ion at $^{M}/_{Z} = 496$ (calculated for (C₂₀H₉₆N₅ClOTc $^{M}/_{Z} = 496$). Fragmentation occurs via loss of a t-butylisonitrile group to [Tc(NO)(CNt-butyl)₉Cl]⁺ $^{M}/_{Z} = 413$. This would not be expected given the evidence provided by the IR and NMR spectra as facile loss of the ligand trans to the nitrosyl is normally expected. However, the mass spectrum does confirm the presence of four isonitrile ligands.

The animal biodistribution data show good heart uptake and retention. In addition none of the initial lung uptake associated with the hexa-kis-t-butylisonitriletechnetium(I) cation is seen and liver uptake is only moderate.

CHAPTER 9

CONCLUSION

A simple method for the preparation of $[Tc(NO)Cl_4]^-$ as an alternative starting material for the synthesis of technetium complexes has been devised. The preparation works quantitatively for both carrier added [⁹⁹Tc] and no carrier added [⁹⁵Tc] technetium concentrations starting from the readily available pertechnetate ion. The preparation is a two stage one proceeding first to the hexachlorotechnetate anion which, following reaction with hydroxylamine, produces the nitrosyltetrachloride technetium(II) anion.

The π acid character of the nitrosyl ligand stabilises the low oxidation state of the technetium by metal-ligand backbonding. A crystal structure determination has shown the anion to be six coordinate with the four chlorines positioned equatorially to the nitrosyl. The occupancy of the position trans to the nitrosyl depends on the environment of the anion as the trans labilising effect associated with such compounds has been demonstrated.

The $[Tc(NO)Cl_4]^-$ anion readily undergoes ligand exchange with a variety of ligands. The final oxidation state of the complex depends upon the nature and character of the replacement ligands.

- 185 -

Both technetium (I) cations and technetium(II) neutral complexes have been prepared by the reactions described in this work.

This potential for complex variation gives rise to an great number of possible new radiopharmaceuticals containing the Tc-NO molety where choice of size, shape and charge is important in the design of these agents.

Biological studies in rats of the complexes prepared show that the presence of the nitrosyl significantly changes the biodistribution of the complexes where the coordinated ligand are diphosphines, diarsines or isonitrile. However, as most commercial radiopharmaceuticals come in the form of a freeze dried kit which is reconstituted on the addition of generator eluant, in its present formulation the two stage reaction is a disadvantage.

Regardless of this disadvantage, which could be overcome, this preparation of $[Tc(NO)Cl_4]^-$ provides a low valent alternative to the oxo- and dioxo- cores common in the higher oxidation state complexes of technetium which is readily amenable to ligand exchange both at carrier added and no carrier added concentrations.

- 186 -

CHAPTER 10

FURTHER WORK

This project can now be developed in two directions. There is obviously a great potential to fully explore the chemistry of technetium nitrosyls and to prepare and characterise a vast range of complexes from $(Tc(NO)Cl_4)^-$. ⁹⁹Tc NMR is not widely used and the technetium(I) complexes provide another opportunity for this line of research.

However, many of the groups currently studying the inorganic chemistry of technetium do so with one eye on the radiopharmaceutical chemistry and the potential application of their complexes for this purpose.

As already mentioned the two stage preparation of [Tc(NO)Cl4]⁻ is not ideal from a radiopharmaceutical point of view. Ideally, the reaction should be one step from pertechnetate. This project has already been developed in this direction by Amersham and their findings have been published (163, 164). However, forcing conditions and high concentrations of hydroxylamine are still to be overcome before a suitable commercial kit version of the reaction can be prepared.

REFERENCES

- W. Noddack, I. Tacke and O. Berg, Naturwissenschaften, 1925, <u>13</u>, 571.
- W. Prandtl et al, Z. Angew, Chemistry, 1926, <u>39</u>, 1049.
 O.E. Zvyagintsev, Nature, 1926, <u>118</u>, 226.
 M. Hersztinkeil, Compt. Rend., 1927, <u>184</u>, 968.

í

- C. Perrier and E. Segre, J. Chem. Phys., <u>5</u>, 712, 1937.
 C. Perrier and E. Segre, Nature, <u>140</u>, 193, 1937.
 C. Perrier and E. Segre, Nature, <u>159</u>, 24, 1947.
- 4. C. Moore, Science, 1951, <u>114</u>, 59.
- 5. P.W. Menill, Science, 1952, <u>115</u>, 484.
- 6. Fowler et al, Astrophys., 1955, 122, 271.
- 7. P. Jordan, Naturwissenschaften, 1954, <u>40</u>, 407.
- 8. W.Z. Herr, Naturfursch, 1954, <u>9a</u>, 907.
- 9. B.T. Kenna and J. Kuroda, Inorg. Nucl. Chem., 1961, 23, 142.
- 10. K. Schwochau, Radiochimica Acta, 1983, 32, 139.
- A. Lavrukhina and A.A. Dozdnyakov, 'The Analytical Chemistry of Tc, Pr, At and Fr.', Ann Arbor-Humphrey Science Publ. 1970.
- F.A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry', Third Edition, Wiley Interscience, 1972, 972.
- 13. B. Krebs, Z. Anorg. Allg. Chem., 1971, <u>380</u>, 146.
- R. Fraggiani, C.J. Lock and J. Poce, Acta Cryst., 1980, <u>B36</u>, 231.
- 15. R. Colton, Nature, 1962, 193, 872.
- 16. D. Hughill, A.J. Edwards and R.D. Peacock, Nature, 1963, <u>200</u>, 672.

- F.A. Cotton, A. Davison, V.W. Day, L.D. Gage and H.S. Trop, Inorg. Chem., 1981, 20, 3051.
- 18. R.W. Thomas, A. Davison, H.S. Trop and E. Deutsch, Inorg. Chem., 1980, <u>19</u>, 2840.
- A. Davison, A.G. Jones and M.J. Abrans, Inorg. Chem., 1980, <u>20</u>, 4300.
- 20. M.E. Kastner, M.J. Lindsay and M.J. Clarke, Inorg. Chem., 1982, <u>21</u>, 2037.
- K.A. Glavan, R. Whittle, J.F. Johnson, R.C. Elder and E. Deutsch, J. Am. Chem. Soc., 1980, <u>102</u>, 2103.
- C. Keller and B. Kenellakopulos,
 J. Inorg. Nucl. Chem., 1965, <u>27</u>, 787.
- U. Mazzi, E. Roncari, G. Bandoli and L Magon, Trans. Net. Chem., 1979, 4, 151.
- J. Dalziel, N.S. Gill, R.S. Nyholm and R.D. Peacock, J. Chem. Soc., 1958, 4012.
- E. Deutsch, W. Bushong, K.A. Glavan, R.C. Elder, V.J. Sodd, K.L. Scholz, D.L. Fortman and S.J. Lukes, Science, 1981, 214, 85.
- J.E. Fergusson and J.H. Hickford, Australian J. Chem., 1970, <u>23</u>, 453.
- C. Orvig, A. Davison and A.G. Jones,
 J. Labelled Compounds and Radiopharm., 1981, <u>18</u>, 148.
- M.J. Clarke and P.H. Fackler, Structure and Bonding, 1982, <u>50</u>, 57.
- 29. J.E Fergusson and R.S. Nyholm, Nature, 1959, 183, 1039.
- 30. R.A. Armstrong and H. Taube, Inorg. Chem., 1976, 15, 1904.
- 31. C. Palm, E.O. Fischer and F. Baumgartner, Naturwissenschaften, 1962, <u>49</u>, 279.
- 32. M.F. Bailey and L.F. Dahl, Inorg. Chem., 1965, 4, 1140.
- 33. D.K. Huggins and H.D Kaesz, J. Am. Chem. Soc., 1964, 86, 2734.
- J.R. Thornback and A.E. Theobald, Int. J. Appl. Radiat. Isot., 1981, <u>33</u>, 833.
- 35. D.P. Nowotnik, R.D. Pickett, and C.D.R. Allen, Bur. J. Nucl. Med., 1985, <u>11</u>, 285.

- R. Münze and I. Hoffmann, Radiochem. Radioanal. Letters, 1981, <u>48</u>, 289.
- B. Deutsch, R.C. Elder and B.A. Lange, Proc. Natl. Acad. Sci. U.S.A., 1976, <u>73</u>, 4287.
- B. Deutsch, K. Libson and C.B. Becker, J. Nucl. Med., 1980, 21, 859.
- J. Smith, E.F. Byrne, F.A. Cotton and J.C. Sekutowski, J. Am. Chem. Soc., 1978, <u>100</u>, 5571.
- A.G. Jones, A. Davison and M.J. Abrans, U.S. Patent No. W083/03761, 1983.
- A.G. Jones, C. Orvig, H.S. Trop, A. Davison and M.A. Davis J. Nucl. Med., 1980, 21, 279.
- A.R. Fritzberg, D.M. Lyster and D.H. Dolphin, J. Nucl. Med., 1977, <u>18</u>, 553.
- J. Baldas, J. Bonnyman, P.M. Pojer, M.F. Mackay J. Chem. Soc. Dalton Trans., 1981, 1798.
- 44. J.D. Eakins, D.G. Humphries and C.E. Mellish, J. Chem. Soc., 1963, 6012.
- J. Baldas and J. Bonnyman, Int. J. Appl. Radiat. Isot., 1985, <u>36</u>, 133.
- J. Baldas, J.F. Boas, J. Bonnyman, G.A. Williams, J. Chem. Soc. Dalton Trans., 1984, 2395.
- M. Kalincak, V. Machan and S.Vilcek, Int. J. Appl. Radiat. Isot., 1981, <u>32</u>, 493.
- 48. S. Vilcek, V. Machan and M. Kalincak, Int. J. Appl. Radiat. Isot., 1984, <u>35</u>, 228.
- 49. E. Sundrehagan, Int. J. Appl. Radiat. Isot., 1982, <u>33</u>, 89.
- 50. M.J. Abrams, A. Davison, A.G. Jones, C.E. Costello and H. Pang, Inorg. Chem., 1983, 22, 2798.
- 51. E. Deutsch, K.A. Glavan, V.J. Sodd, H. Nishiyama, D.L. Ferguson and S.J. Lukes, J. Nucl. Med., 1981, 22, 897.
- 52. J. Galvez, R.G. Domenech and J.L. Moreno, Int. J. Appl. Radiat. Isot., 1980, <u>31</u>, 715.
- R.G. Robinson, D. Bradshaw, B.A. Rhodes, J.A. Spicer, R.J. Visentin and A.H. Gobuty, Int. J. Appl. Radiat. Isot., 1977, <u>28</u>, 919.

- 54. M.J. Abrams, A. Davison, R. Faggiani, A.G. Jones and C.J. Lock, Inorg. Chem., 1984, <u>23</u>, 3284.
- 55. W. de Kievert, J. Nucl. Med., 1981, 22, 703.
- 56. S. Seifert, R. Künze and B. Johannsen Radiochem. Radioanal. Letters, 1982, <u>54</u>, 153.
- 57. J. Rimmer, Eur. Pat. No. 82305639.5, 1982.
- 58. S.C. Srivastava, P. Richards, 'Radiotracers for Medical Applications', CRC Press, Boca Raton FL, 1981.
- 59. M. Erjavec, J. Nucl. Med., 1977, 18, 346.
- 60. D.L. Golday and J. Ash, Radiology, 1975, 117, 93.
- 61. A.R. Fritzberg and D Lewis, J. Nucl. Med., 1980, 21, 1180.
- 62. E. Deutsch and K. Libson, Comm. Inorg. Chem., 1984, 3, 83.
- A.F. Kurzina, A.A. Oblova and V.I. Spitsyn, Russ. J. Inorg. Chem., 1972, <u>17</u>, 2630.
- A.G. Jones and A. Davison, Int. J. Appl. Radiat. Isot., 1982, <u>33</u>, 867.
- 65a. R. Kirmse, J. Stach, U. Abram and I.N. Marov, Z. Anorg. Allg. Chem., 1984, <u>518</u>, 210.
- 65b. R. Kirmse, J. Stach, B. Lorenz and I.N. Marov, Z. Chem., 1984, 24, 36.
- 66. R. Kirmse, J. Stach and U. Abran, Polyhedron, 1985, 4, 1275.
- C. Orvig, A. Davison and A.G. Jones,
 J. Labelled Compounds and Radiopharm., 1981, 24, 36.
- 68. K.E. Linder, A. Davison, J.C. Dewan, C.E. Costello and S. Maleknia, Inorg. Chem., 1986, <u>25</u>, 2085.
- 69. L.J. Radonovich and J.L. Hoard, J. Phys. Chem., 1984, 88, 6711.
- G.C. Yang, M.W. Heitzmann, L.A. Ford and W.R. Benson, Inorg. Chem., 1982, 21,3242.
- 71. R. Kirmse, B. Lorenz and K. Schmidt, Polyhedron, 1983, 2, 935.
- J.E. Fergusson and P.F. Heveldt, J. Inorg. Nucl. Chem., 1976, <u>38</u>, 2231.
- M.J. Abrams, A. Davison, J.W. Brodack, A.G. Jones, R. Faggiani and C.J. Lock, J. Labelled Compounds and Radiopharm., 1982, 14, 1596.

- 74. T.H. Tulip, J. Calabrese, J.F. Kronauge, A. Davison and A.G Jones, J. Nucl. Med. All. Sci., 1985, 29, 215.
- 75. A.G. Jones, A. Davison, M.J. Abrans, J.W. rodack, C.E. Costello, A.I. Kassis, R.F. Uren, M. Simon, L. Stemp and B.L. Holman, J. Labelled Compounds and Radiopharm., 1982, <u>14</u>, 1594.
- A.G Jones, A. Davison, M.J. Abrans, J.W. Brodack, C.E. Costello, A.I. Kassis, S.Z. Goldhaber, B.L. Holman, L. Stemp, T. Manning, H.B. Hetchman, J. Nucl. Med., 1982, 23, 16.
- 77. M.N. Khalil, J.R. Thornback, N.Y. Early, D.B. Norton, J.M. Berry and P.J.B. Hubner, Nucl. Med. Comm., 1985, <u>6</u>, 615.
- D.R. Whalley, K. Priestly, M. Frier, M.L. Wastie and R.G. Wilcox, Nucl. Med. Comm., 1987, <u>8</u>, 234.
- P. Garundini, A. Savi, M.C. Gilardi, A. Margonato, G, Vicedomini, L. Zecca, W. Hirth, K. Libson, J.C. Bhatia, F. Fazio and B. Deutsch, J. Nucl. Med., 1986, 27, 409.
- B.L. Holman, A.G. Jones, A. Davison, J. Lister-James and J.F. Kronauge, J. Nucl. Med., 1987, 28, 13.
- S.J. Williams, S.A. Mousa, R.A. Morgan, T.R. Carroll and L.J. Maheu, J. Nucl. Med., 1986, 27, 877.
- A.D. van den Abbeele, C. Solorzano, A.G. Jones, D.S. Beardsley, S. Treves and A. Davison, J. Nucl. Med., 1985, <u>26</u>, 131.
- G.D. Zanelli, A. Lahiri, N.M. Patel, T. Smith, F. Brady, Gitti Radfar, N. Cook, J.C.V. Crawley, D.J. Silvester, Eur. J. Nucl. Med., 1987, <u>13</u>, 12.
- G.D Zanelli, F. Brady, N.M. Patel, A. Lahiri, Eur. Pat. Appl. No. EP 226,259, 1987.
- 85. W. Heiber. F. Lux and C. Herget, Z. Naturforch, 1965, <u>20B</u>, 1159.
- J.C. Hileman, D.K. Huggins and H.D. Kaesz, J. Am. Chem. Soc., 1961, <u>83</u>, 2953.
- J.C. Hileman, D.K. Huggins and H.D. Kaesz, Inorg. Chem., 1962, <u>1</u>, 933.
- U. Mazzi, A. Bismondo, N. Kostev and D.A Clemente, J. Organometal. Chem., 1977, <u>135</u>, 177.
- 89. M. Tsutsui and C.P. Hung, J. Am. Chem. Soc., 1973, 95, 5777.
- 90. M. Tsutsui, C.P. Hung, D. Ostfeld, T.S. Srivastava, D.L. Cullen and E.F. Neyer, J. Am. Chem. Soc., 1975, <u>97</u>, 3952.

- 91. E.O. Fischer and H.W. Schmidt, Angew. Chem., 1967, 79, 99.
- 92. U. Zahn, E.O. Fischer and F. Baumgartner, Naturwissenschaften, 1962, <u>49</u>, 156.
- E.O. Fischer and W. Fellmann,
 J. Organometal. Chem., 1963, <u>1</u>, 191.
- 94. C. Palm, E.O. Fischer and F. Baumgartner, Tetrahedron Letters, 1962, 253.
- 95. F Baumgartner, E.O. Fischer and U. Zahn, Naturwissenschaften, 1961, <u>48</u>, 478.
- 96. J.E. Fergusson and J.H. Hickford, Inorg. Chem., 1966, <u>28</u>, 2293.
- 97. G. Bandoli, D.A. Clemente and U. Mazzi, J. Chem. Soc. Dalton, Trans., 1978, 373.
- G. Bandoli, D.A. Clemente, U. Mazzi and E. Roncari, Acta Cryst., 1978, <u>B34</u>, 3359.
- 99. M.L. Thakur, Int. J. Appl. Radiat. Isot., 1983, 34, 617.
- 100. M.L. Thakur, C.H. Park, F. Gerundini, A. Margonato, G. Vicedomini, R. Columbo, M. Gilardi, F. Fregoso, R Bencivelli and G. Taddei, Int. J. Appl. Radiat. Isot, 1984, <u>35</u>, 507.
- 101. J.L. Vanderheyden and E. Deutsch, Eur. J. Nucl. Med., 1985, <u>9</u>, 403.
- 102. K. Libson, B.L. Barnett and E. Deutsch, Inorg. Chem., 1983, 22, 1695.
- 103. J.L. Vanderheyden, A.R. Ketring, K. Libson, M.J. Heeg, L. Roecher, P. Motz, R. Whittle, R.C Elder and E. Deutsch, Inorg. Chem., 23, 3184.
- 104. M.N. Doyle, K. Libson, M. Woods, J.C. Sullivan, and E. Deutsch, Inorg. Chem., 1986, <u>25</u>, 3367.
- 105. J.E. Fergusson and R.S Nyholm, Chem. Ind. (London), 1960, 347.
- 106. R.C. Elder, R. Whittle, K.A. Glavan, J.F. Johnson and E. Deutsch, Acta Cryst., 1980, <u>B36</u>, 1662.
- 107. S.A Zuckman, G.M. Freeman, D.E Troutner, W.A Volkert, R.A. Holmes, D.G. van Derveer and E.K. Barefield, Inorg. Chem., 1981, 20, 2386.
- 108. R.W. Thomas, G.W. Estes, R.C. Elder and E. Deutsch, J. Am. Chem. Soc., 1979, <u>101</u>, 4581.

- 109. R.W. Thomas. A. Davison, H.S. Trop. and E. Deutsch Inorg. Chem., 1980, <u>19</u>, 2840.
- 110. A.B. Packard, S.C Srivastava, P. Richards and Y. Hung J. Nucl. Med., 1981, 22, 70.
- 111. M.J. Abrams, A. Davison, A.G. Jones and C.E. Costello Inorg. Chim. Acta, 1983, <u>77</u>, L235.
- 112. K. Yoshihara, T. Omori, H. Kido, J. Inorg. Nucl. Chem., 1981, <u>43</u>, 639.
- 113. G. Sbrignadello, Inorg. Chim. Acta, 1981, 48, 237.
- 114. B. Johannsen and R. Syhre, Radiochem, Radioanal, Letters, 1978, <u>36</u>, 107.
- 115. L. Hwang, N. Ronca, N.A. Solomon and J. Steigman, Int. J. Appl. Radiat. Isot., 1985, <u>36</u>, 475.
- 116. A. Marosova, P. Altman, P. Komarek and J. Lepej, Chem. Abs., 1990, <u>113</u>, 148118s.
- 117. R.J. English and B.L. Holman, J. Nucl. Med., 1987, 15, 30.
- 118. P.A.G. Hammersley, V.R. McCready, J.W. Babich and G. Coghlan, Eur. J. Nucl. Med., 1987, <u>13</u>, 90.
- 119. U. Abram and R. Kirmse, J. Radioanal. and Nucl. Chem., 1988, <u>122</u>, 311.
- 120. U. Abram, R. Kirmse, K. Köhler, B. Lorenz and L. Kaden, Inorg. Chim. Acta, 1987, <u>129</u>, 15.
- 121. R. Kirmse and U. Abram, Z. Anorg. Allg. Chem., 1989, 573, 63.
- 122. A.M. Roseberry, A. Davison and A.G. Jones, Inorg. Chim. Acta, 1990, <u>176</u>, 179.
- 123. N. de Vries, J. Cook, A. Davison, T. Nicholson and A.G. Jones Inorg. Chem., 1990, 29, 1062.
- 124. C.M. Kennedy and T.C. Pinkerton, Int. J. Appl. Radiat. Isot., 1988. <u>39</u>, 1179.
- 125. L.A. O'Connell and A. Davison, Inorg. Chim. Acta, 1990, 176, 7.
- 126. U. Abram. R. Beyer, R. Münze, M. Findeison and B. Lorenz, Inorg. Chim. Acta, 1989, <u>160</u>, 139.
- 127. L.A. O'Connell, J. Dewan, A.G. Jones and A. Davison, Inorg. Chem., 1990, <u>29</u>, 3539.

- 128. K. Libson, M.N. Doyle, R.V. Thomas, T. Nelesnik, M. Woods, J.C Sullivan, R.C. Elder and E. Deutsch, Inorg. Chem., 1988, <u>27</u>, 3614.
- 129. T. Konno, M.J. Heeg and E. Deutsch, Inorg. Chem, 1988, <u>27</u>, 4113.
- 130. J.R. Kirchoff, W.R. Heinmann and E. Deutsch, Inorg. Chem., 1988, <u>27</u>, 3608.
- 131. A. Roodt, J.C. Sullivan, D. Meisel and E. Deutsch, Inorg. Chem, 1991, <u>30</u>, 4545.
- 132. L. Kaden, B. Lorenz, R. Kirmse, J. Stach, H. Behm, P.T. Beurskens and U. Abram, Inorg. Chim. Acta, 1990, <u>169</u>, 43.
- M. Neves, K. Libson and E. Deutsch, J. Nucl. Med. Biol., 1987, <u>14</u>, 503.
- 134. E. Deutsch, Int. Pat. Appl. No. WO 89 12640, 1989.
- 135. C.M.Archer, J.R. Dilworth, J.D. Kelly and M. McPartlin, J. Chem. Soc. Chem. Comm., 1989, 375.
- 136. C.M. Archer, J.R. Dilworth, J.D. Kelly and N. McPartlin, Polyhedron, 1989, <u>8</u>, 1879.
- A.I. Breikss, T. Nicholson, A.G. Jones and A. Davison, Inorg. Chem., 1990, <u>29</u>, 640.
- 138. B.E. Vilcox, D.M. Ho and E. Deutsch, Inorg. Chem., 1989, <u>28</u>, 1743.
- 139. B.E. Vilcox and E. Deutsch, Inorg. Chem., 1991, 30, 688.
- 140. K. Hashimoto, Y. Yamada, T. Omori and K. Yoshihara, J. Radioanal. Nucl. Chem. Letters, 1989, <u>135</u>, 187.
- 141. J. Baldas, J. Bonnyman and G.A. Williams, Inorg. Chem., 1986, <u>25</u>, 150.
- 142. U. Abram. R. Münze, R. Kirmse, K. Köhler, W. Dietzsch and L. Golic, Inorg. Chim. Acta., 1990, <u>169</u>, 49.
- 143. A. Alagui, N Apparu, A. du Moulinet d'Hardemare, F. Riche and M. Vidal, Int. J. Appl. Radiat. Isot., 1989, <u>40</u>, 813.
- 144. J. Baldas and J. Bonnyman, Inorg. Chim. Acta, 1988, 141, 153.
- 145. S. Abram, U. Abram, H. Spies and R. Münze, J. Radioanal. Nucl. Chem., 1986, <u>102</u>, 309.
- 146. U. Abram. S. Abram, H. Spies, R. Kirmse, J. Stach and K. Köhler, Z. ANorg. Allg. Chem., 1987, <u>544</u>, 167.

- 147. V.Y.T. Struchkov, A.S Bazanov, L. Kaden, B. Lorenz, M. Wahren and H. Neyer, Z. Anorg. Allg. Chem., 1982, <u>494</u>, 91.
- 148. J. Baldas, J. Bonnyman, M.F. Mackay and G.A. Williams, Aust. J. Chem., 1984, <u>37</u>, 751.
- 149. K. Laden, B. Lorenz, R. Kirmse, J. Stach and U. Abram. Z. Chem., 1985, <u>25</u>, 29.
- 150. U. Abram. R. Kirmse, K. Köhler, B. Lorenz and L. Kaden Inorg. Chim. Acta, 1987, <u>129</u>, 15.
- 151. U. Abram, J. Hartung, L. Beyer, R. Kirmse and K. Köhler Z. Chem., 1987, <u>27</u>, 101.
- 152. 'Geigy Scientific Tables', Seventh Edition, Geigy Pharmaceuticals, 1975.
- 153. G.M. Sheldrick, SHELX program for crystal structure determination, University of Cambridge, 1976.
- 154. International Tables for X-Ray Crystallography, Vol (IV), Birmingham, Kynock Press (present distributors D Reidel, Dortrecht), 1974.
- 155. J.M. Stewart, G.J. Kruger, H.L. Ammon, C.W. Dickinson and S.R. Hall, 1972, 'The X-RAY system version of 1972', Tech. rep. TR-192 Computer.
- 156. C.K. Johnson, 'ORTEP', Report ORNL-3794, Oak Ridge National Laboratory Tenessee, 1965.
- 157. W.R. Robinson, D.E. Wigley and R.A Walton, Inorg. Chem., 1988, 24, 918.
- 158. J. de Liverant and W. Wolf, Int. J. Appl. Radiat. Isot, 1982,<u>33</u>, 857.
- 159. G. Ciano, D. Guisto, M. Manasero and M. Sansomi, J. Chem. Soc. Dalton Trans., 1975, 2156.
- 160. B.T. Cheah, J.L. Newman, D.P. Nowotnik and J.R. Thornback, J. Nucl. Med. Biol., 1987, <u>14</u>, 573.
- C. Daul, C.W. Schlapfer, B. Mohos, J. Ammeter and E. Gamp, Comp. Phys. Comm. 1987, 21, 385.
- 162. G.F.E. Morgan, Ph. D. Dissertation, Loughborough University of Technology, 1987.
- 163. I.A. Latham, J.L. Newman and J.R. Thornback, Eur. Pat. Appl. No. 291,281, 1988.

164. K.W. Chiu, J.D. Kelly, I.A. Latham, I. Andrews, D. Vaughan, P.G. Edwards, Eur. Pat. Appl. No. 311,532, 1989

APPENDIX I

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR

[(CaHa)aN][Tc(NO)Cla(CHaOH)]

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR TONOCLA

H	к	٤	FC	FC	н	к	L	FO	FC	н	к	L	FO	FC	н	к	Ĺ	FO	FÇ	н	ĸ	٤	۴ŋ	FC	
_		-			,		~	21	37		e	1	77	-71	-5	o	1	15	14	- 3	2	2	75	74	
U	2	ũ	22	<u>د ک</u>	4	10	0	24	- 74		, 	1	10	-0	-6	ó	1	1.8	-18	- 2	र	2	18	2.0	
1	2	0	43	-36	2	10	0	20	-20	- 2	, E	4	24	22	-2	ò	1	20	21	-1	ź	2	18.8	-179	
2	Z	õ	8	18	6	19	U	24	24	- (2	4	20 54	-55	-1	á	-	12	14	'n	ź	5	53	-44	
4	2	0	115	108		10	0	14	-14	1	2	1	10	- 2 2	- 1	0		22	22	1	7	2	52	4.8	
1	3	0	49	-44	4	11	0	15	-13	1	2	4	411	-41	3	ó	4	12	17	2	2	2	72	67	
S	3	0	66	-64	• 4	11	D D	12	-12	2	2	1	77	-77	<u>د</u>	7	+	45	47	<u>د</u>	ź	2	40	-46	
3	3	0	47	-45	0	12	0	57	- 19	د ′	2	1	20		4	0	4	16	11	ć	ž	2	1.4.1	130	
4	3	0	93	-92	1	12	0 0	14	-14	4 7	2		20	-01 77	د ۲	7	1	49	70	5	ž	5	56	-58	
5	3	0	32	-34	1	15	U A	14	-17	ſ	2	1	22	- E D		10	4	10	10	4	ź	5	35	38	
6	3	0	107	-105	-4	5	1	177	1/5	6	2	1	37	- 70	- 4	10	1	17	_19	7	ź	5	Å 1	-62	
7	3	0	38	-37	- 2	2	1	95	100	-8	0	1	27	- : O 		10	4	17	12	, ,	, *	5	15	10	
υ	4	0	19	-26	-1	2	1	- 85	200	- (\$	4	12	- 22		10	4	.0	12	- 2	i	5	só	śń	
1	4	0	77	-73	0	2	1	214	21.2	-4	0		20	- 67	- u -	10	4	20	ر بہ כ ج	- 6	7	5	30	Å C	
2	4	0	131	-124	1	- Z	1	20	5.5	- 4	0	1	. Y J			10	4	20	37	-0	ĩ	Š	.1	20	
3	4	D	74	-73	Z	Š	1	112	113	-1	6	1	44	*45		10	4	21	20	ر ۱	7	2	100	105	
4	4	0	76	-74	4	S	1	11	11	U A	<u>,</u>		0U 27		د ،	10	4	18	17		ī.	5	22	-22	
5	4	0	9	-7	S	Z	1	54	54	1	ġ.	1	>>		4) C	10	1	10	11	- 2	7	2	67	64	
7	4	Û	25	-25	~8	3	1		- C	2	?	2	60		2	10		17	- 16	- 1	7	2	35	- 34	
1	5	0	102	-79	-7	3	1	38	38	5	÷	F	24	-01	ç	10		24	- 14	- 1	7	5	31		
2	5	0	42	-42	-6	3	1	13	12		- 0	1	20	-24	<u> </u>	10	1	21	74	1	;	ŝ	24	- 57	
3	5	0	89	-85	-5	3	1	138	135	8	2	1	27	20	- 2	11	1	23	- 10	2	~	2	21	25	
5	5	-0	11	-12	-4	3	1	82	82	-7	<u> </u>	1	19	-17	- 2	11		70	- 19	,	3	2	40	- 40	
7	5	0.	19	-17	-3	3	1	182	181	-6	7	1	14	74	- 7	11	1	24	22	4 5	4	2	25	-07	
8	5	٥	29	31	-2	- 3	1	87	-36	- 5	~ 7	1	24	-24	1	11		28	28	2	4	2	23	-50	
Û	6	0	37	-39	-1	3	1	71	73	-4	7	1 .	12	11		11	1	15	15	0	4	4	21	- 70	
1	6	0	16	13	0	3	1	54	~57	- 3	7	1	73	-73	-2	17	1	20	20	(4	2	1 /. C 0	1.5	
Z	6	0	59	-55	1	- 3	1	40	31	- Z	7	1	89	-81	U	12) r 4 F	17	°	а. Е	2	27	- ,0	
3	6	0	54	52	- 3	- 3	1	77	75	-1	<u></u>	1	29	-25		12	1	12	- 13	+0 7	2	2	23		
7	6	ο	36	35	4	3	1	74	~71	0		1	15	12	4	16	1	7.5	11		2	2	16	16	
2	7	0,	22	23	5	3	1	10	50	1	~	1	>>	->8	1		4		17/	-?	2	2	24		
3	7	0	12	-12	6	3	1	64	-64	2	- 7	7	54	>>	2		2	147	01	-4	2	2	4 3 4	4 7 4	
4	7	0	38	39	7	- 3	1	45	~45	3	7	1	33	-55	\$. 1	2	02	- eu 76	- 3	2	2	50		
5	7	0	18	16	-8	4	1	18	23	7	7	1	25	20	4		2	75	00 71	- 4	2	5	74	76	
6	7	C	29	26	-7	4	1	32	32	8		1	19	19	~ ` `	< 1	4	22	10	- 1	7 C	2	70	-74	
8	7	υ	46	46	-6	4	1	28	25	-8	8	1	13	-12	~ 5	્ર	4	\sim	- 51	2	2	5	27	- 0 3	
0	8	ΰ	36	36	- 5	4	1	34	32	- 7	3	1	21	-19	~ 2	<u> </u>	4	24	* 7 !	2	2	5	74	- 4 2	
1	8	0	34	-35	-4	4	1	50	49	-6	8	1	28	-28	-1	1	4	147	- 11	2	2	2	37	-43	
2	8	0	16	16	-3	4	1	37	-40	-4	- 5	1	41	-42	U	<u> </u>	4	14	- 1 1		7	2		- 34	
4	8	0	32	31	-2	4	1	91	71	- 2	- 8	1	40	-40	1	2	2	225	218	07	2	2	20	- 7 7	
S	8	0	43	44	- 1	4	1	53	-54	- 1	8	1	11	-10	2	- S	2	1 3 1	-121	6	2	2	15	-22	
6	8	0	14	15	0	4	1	41	40	0	3	1	51	->5	3	2	2	85	100	5	2	5	11	70	
7	8	0	21	·20	1	4	1	25	-30	1	<u> </u>	1	48	51	4	2	2	116	-107	- 5	2	5		>U 0	
· 1.	9	0	12	14	S	4	1	26	- 22	2	8	1	52	-54	5	2	2	66	65	-/	0	4	12	17	
3	9	û	14	13	3	4	1	150	-149	3	8	1	40	40	6	ŝ	2	39	38	-6	6	<	15	12	
5	9	0	32	35	4	4	1	20	20	5	8	1	42	41	-8	3	Z	22	- 23	-5	6	4	12	~11	
8	9	0	12	12	5	4	1	68	-66	7	8	1	Z6	27	-7	3	2	29	28	-4	0	4	22	20	
0 1	10	0	53	54	7	4	1	63	-63	-7	ç	1	12	-11	-5	3	Z	70	69	- 3	6	Ś	57	~>>	
2 '	10	G	56	26	- 8	5	1	56	58	- 6	9	1	40	-40	- 4	- 3	2	93	89	- 2	6	2	51	22	

.

- 199 -

.

. . -

PAGE 1

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR TONOCL4

H K L FC FC	H K L FO FC	H K L FO	FC HKL FO FC	HKL FO FC
-1 6 2 57 -53	-6 10 2 36 -35	-5 2 3 8	-3 -8 5 3 21 20	1 4 3 19 -17
0 6 2 40 39	-4 10 2 36 -35	-4 ? 3 59 -	-55 -6 5 3 15 18	3 º 3 15 -16
1 6 2 114 -117	-3 10 2 14 14	-3 2 3 36 -	-34 -4 5 3 63 62	4 8 3 35 -36
2 6 2 29 31	-2 10 2 37 -37	-2 ? 3 58 -	-54 -3 5 3 31 -32	6 * 3 34 -33
3 6 2 104 -104	-1 10 2 33 32	-1 2 3 29 -	-27 -2 5 3 104 98	8 8 3 14 -16
4 6 2 17 -18	0 10 2 33 ~34	0 2 3 47 -	-39 -1 5 3 84 -83	-6 9 3 27 -26
562108	1 1 7 2 24 22	1 2 3 46 -	-38 C 5 3 45 50	-5 9 3 1? 9
3 6 2 21 -21	4 19 2 22 20	2 2 3 81 -	-65 1 5 3 63 -60	-4 9 3 56 -58
-8722524	5 1 0 2 23 23	3 2 3 147 -1	143 2 5 3 96 100	-2 9 3 50 -59
+s 7 2 11 10	6 10 2 21 22	4 2 3 123 1	19 3 5 3 34 - 37	-1 9 3 19 -19
-37215-15	-3 11 2 11 -5	5 2 3 62 -	-62 4 5 3 21 22	0 9 3 34 -34
-2 7 2 67 -65	-2 11 2 19 19	6 2 3 91	91 5 5 3 10 12	
-1 7 2 58 -60	-1 11 2 22 -72	7 2 3 66	66 6 7 3 4 7	2 4 3 20 **20
0 7 2 64 -67	0 11 2 58 61	8 2 3 40		4 4 5 44 - 45
1 7 2 58 58	1 11 2 12 10	-6 3 3 13	10 -0 0 0 04 10 -11 - 12 - 13 - 14 - 15	
2 7 2 91 -92			-44 -7 0 3 21 71 -31 -44 3 30 9	-1 10 3 20 -24
	2 (1 2 (0 20		-57 -5 6 3 10 0	-5 10 3 27 -28
4 (<u>2</u> 3(-))		-4 3 3 77	74 -2 -6 -3 -34 -34	-3 10 3 13 -14
872 $14 - 13$	0.12 2 16 17		-74 -1 6 3 68 64	-2 10 3 13 14
-8 8 2 18 -16	1 1 2 2 4 1 4 2	-2 3 3 134 1	128 1 6 3 101 99	-1 10 3 45 -47
-6 8 2 44 -41	3 12 2 23 25	-1 3 3 121 -1	14 2 6 3 116 -1 17	0 10 3 19 19
-5 8 2 18 18	-1 13 2 14 12	0 3 3 27 -	-27 3 6 3 39 38	1 10 3 29 -29
-4 8 2 42 -41	-5 0 3 50 -51	1 3 3 107 1	100 4 6 3 37 - 36	3 10 3 14 10
-3 8 2 40 -41	-3 0 3 26 27	2 3 68	66 5 6 3 11 10	4 10 3 19 19
-2 8 2 60 -59	-1 0 3 163 -177	3 3 3 76	77 7 6 3 23 24	6 10 3 24 25
-1 8 2 39 -36	1 0 3 159 -195	4 3 3 33 -	-35 8 6 3 38 - 37	-5 11 3 14 -16
0 8 2 17 -19	3 0 3 32 -26	5 3 3 88	88 -7 7 3 33 33	0 11 3 17 -19
1 8 2 12 - 12	5 0 3 27 25	6 3 3 16	15 -6 7 3 21 -74	1 11 3 27 28
2 8 2 15 17	7 0 3 19 16	7 3 3 67	65 -5 7 3 37 37	
3 8 2 30 -30	-7 1 3 22 -23	8 3 3 23 -	-23 -4 7 3 13 -10	
4 8 2 14 15	-6 1 3 41 -44	-8 4 5 21 -		1 1 2 2 2 2 2 2
5 8 2 30 -30				2 1 2 3 47 10
6 8 2 54 57 7 9 7 19 -10		-04513-		-2 13 3 16 16
		- 4 3 40		0 13 3 20 20
		-3 4 3 172 1		1 1 7 7 1 7 1 7
			128 5 7 3 39 39	-8 0 4 65 71
	1 1 3 70 70	-1 4 3 83	76 6 7 3 14 15	-6 0 4 47 50
-3 9 2 36 -39	2 1 3 67 -68	9 4 3 11 -	-11 7 7 3 46 -46	-4 1) 4 27 -19
-2 9 2 16 -18	3 1 3 66 74	1 4 3 68	69 -8 8 3 19 72	-2 11 4 64 67
0 9 2 15 -17	4 1 3 127 -129	2 4 3 62	58 -7 8 3 12 -12	0 0 4 195 -208
2 9 2 17 -20	5 1 3 61 62	3 4 3 118 1	121 -6 8 3 35 36	2 0 4 107 -113
3 9 2 19 18	6 1 3 13 -12	4 4 3 30	31 -5 8 3 48 -47	4 0 4 64 -70
5 9 2 47 47	7 1 3 31 30	54324	25 -4 8 3 49 49	6 0 4 22 -25
6 9 2 16 -15	8 1 3 10 10	6 4 3 21	23 -3 8 3 41 -40	8 0 4 13 -12
7 9 2 36 36	-7 2 3 75 77	7 4 3 22 -	-22 -2 8 3 20 -21	-8 1 4 20 -20
-7 10 2 14 -15	-6 2 3 72 -69	84330	30 -1 8 3 44 -45	-7 1 4 50 49

- 200 -

PAGE 2
нк∟	FC FC	нкс	FO FC	нкц	. FO FC	Ηĸ	L FO FC	нк	L FO FC
-ó 1 4	70 -72	-1 4 4	114 -113	174	35 - 35	-8 1	5 19 20	-5 4	5 68 -69
-5 1 4	23 24	044	10 5	274	39 39	-7 1	5 40 -42	-4 4	5 45 -42
-4 1 4	14 -13	144	60 -57	374	11 ~13	-6 1	5 84 98	-34	5 80 -80
-3 1 4	12 -15	244	97 97	874	31 -32	-5 1	5 32 -33	-1 4	5 29 -28
-2 1 4	61 -61	344	20 ~20	-8 -8 4	14 14	-4 1	5 25 77	34	5 18 -16
-1 1 4	146 -145	444	87 87	-7 8 4	25 26	-3 1	5 32 29	14	5 7? -69
	20 -00	544	48 45	-5 8 4	49 49	-2 1	5 16 -6	2 4	5 10 -11
2 1 4	00 -00 17 -0	244	15 15	-4 3 4	20 -23	-1 1	5 131 -134	3 4	5 34 33
3 1 4	72 -69		20 20	1 0 4	40 40	U 1	5 16 <u>3</u>	4 4	5 10 11
4 1 4	29 29	-7 5, 4	21 -21	284	17 22	2 1	5 6 <u>1)</u> - 79 5 63 - 39	54	5 33 33
514	136 -134	-6 5 4	12 -8	4 9 4	30 - 32	ب ۲ 1	3 47 TOD 5 35 27	7 /	5 12 14
-8 2 4	38 37	-4 5 4	18 15	5 8 4	20 -20	4 1	ננ (נ א א א	3 4	5 17
-724	60 -63	-354	17 20	684	30 -29	5 1	5 11 -11		5 66 -65
-6 2 4	73 73	-2 5 4	20 -26	7 8 4	23 -23	6 1	5 11 -13	-6 5	5 21 -22
- 524	106 -107	-1 5 4	12 10	8 9 4	13 -13	7 1	5 28 -29	-5 5	5 23 -23
-4 2 4	25 -23	054	12 -11	-394	18 -19	8 1	5 10 10	-4 5	5 64 -62
-3 2 4	64 -69	1 5 4	157 156	-1 ° 4	50 -50	-8 2	5 9 8	-35	5 47 43
-224	55 51	254	20 22	0 9 4	22 26	-7 2	5 18 15	-2 5	5 38 -40
-1 2 4	128 -122	5 5 4	124 150	194	28 -30	-4 ?	5 48 -49	-1 5	5 45 46
224	4 11	4 3 4	11 10	2 4 4	18 17	-3 2	5 23 73	1 5	5 70 71
3 2 4	57 47	754	40 42	3 9 4	23 -24	-2 2	5 82 - 45	25	5 110 108
5 2 4	96 94	8 5 4	26 - 26	5 0 4	<u>κι</u> - κι	-1 2	> 02 " >Y S 04 _ PT	\$ 5	5 51 52
624	10 13	-8 6 4	26 - 28	794	30 -29	12	⊃ <u>60 −∼2</u> 5 130 –135	4 7	5 20 10
724	32 32	-7 6 4	31 32	-7 10 4	13 -9	2 2	5 11 -10	6 5	5 17 14
8 2 4	2.2 2.1	-6 5 4	12 -12	-5 10 4	23 -23	3 2	5 83 78	8 5	5 63 62
-834	10 -9	-564	10 9	-1 10 4	22 -21	4 2	5 53 -55	-7 6	5 31 -33
-0 3 4	54 -53	-4 6 4	19 -18	0 10 4	20 -23	6 2	5 47 -44	-5 5	5 29 -30
-5 3 4	31 -28	-3 6 4	70 71	1 10 4	12 -13	72	5 33 -31	-4 6	5 26 25
-4 3 4	141 -138	-2 5 4	31 30	2 10 4	15 -14	-7 3	5 9 9	-3 6	5 27 -28
-3 5 4	447 -141	-1 6 4	81 75	3 1 1 4	19 -21	~6 3	5 17 -17	-5 4	5 45 45
-2 5 4	64 40	1 4 A	10 17	4 10 4	32 - 31	~5 3	5 54 - 53	-1 6	5 14 -13
1 3 4	9 –11	2 6 6	36 16	-511 /	20 - 10	-4 3	5 64 -68	0 6	5 31 33
2 3 4	58 53	3 6 4	12 10	-2 11 4	27 = 10	-7 7 6		1 6	5 16 -18
3 3 4	57 56	4 4 4	33 34	0 11 4	20 - 32		אר האך ביאב באיד	2 0	5 106 106
4 3 4	26 - 30	5 6 4	20 21	1 11 4	24 - 25		5 32 -31) N 2 4	5 47 45 5 34 97
534	62 64	6 6 4	17 19	-1 12 4	29 - 29	1 3 9	5 - 24 - 23	4 0 5 4	5 13 10
634	53 53	764	24 - 24	1 12 4	13 -12	2 3	5 25 -19	7 6	5 15 17
734	42 39	864	11 12	1 13 4	24 23	3 3	77 -77	-4 7	5 19 -17
834	47 45	-874	32 35	-7 0 5	104 111	4 3	25 20	-3 7	5 63 63
-844	30 -28	-6 7 4	34 34	-505	35 39	5 3 5	5 47 - 47	-2 7	5 53 53
-744	11 -10	-574	48 -49	-3 0 5	105 -102	6 3 5	29 30	-1 7	5 76 75
-044	21 -20	-474	60 59	-1 0 5	76 71	7 3 5	17 -16	07	5 14 12
- 3 4 4	29 -28 69 -67	-2 (4	49 51	105	11 -8	8 3 5	17 18	17	5 108 109
-2 4 4	110 11/		47, 48 55 cC	2 4 5	128 -127	-7 4 5	26 - 25	27	5 51 -51
	112 114	U ' 4	<i>א</i> כ כג	1 1 2	y -(-0 4 5	29 - 29	37	5 80 77

PAGE 3

- 201 -

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR TONOCLA

	HKLF	O FC	н к	L	FO FC	н	ĸ	ι	FO FC	у н	Ł	FO	FC	н	ĸ	ι	۴D	FC
	5754	5 47	2 0	6	54 56	- 2	4	6	106 -102	-58	6	52	-53	-4	1	7	26	-24
	7751	8 16	4 0	6	36 - 36	- 1	4	6	45 44	-4 9	6	45	44	- 3	1	7	33	35
	-7 8 5 2	5 24	8 0	6	29 30	2	4	6	38 -37	-2 8	6	56	55	÷ 2	1	?	21	-14
	-5852	5 55 -	-7 1	6	27 27	3	4	6	30 -26	-1 8	6	33	32	-1	1	7	<u>μ</u> 8	83
	-4 8 5 1	6 15 -	5 1	6	68 65	4	4	6	9 -8	0 8	6	34	36	0	1	7	138	147
	-3852	1 20 -	• 4 1	, o	34 57	2	4	6	1/3 - 9	5 ×	6	55	55	1	1	4	100	134
	-2854	15 45 " "n 17	0 1	Ŷ	92 92	ſ	4	0	21 -19	25	ò	26	- D1	2	1	r 7	51	- 63
	* 1 6 5 4	1C 4.2	1 1	0 6	28 25	د * ـ	4	Å	21 -17	2 P	4	71	- 21	2	1	2	6 / 6 /	- 20
	2854	0 41	2 1	6	16 -16	- 7	ś	Ă	30 ~31	8 8	6	12	- 12	4 5	1	2	34	+ 7 4
	3852	7 -26	3 1	6	54 59	-6	Ś	ě	30 -30	-7 9	6	10	20	5	1	7	20	18
	4 8 5 2	6 27	4 1	ó	43 -49	- Š	5	6	25 -25	-5 9	6	52	51	8	1	7	10	11
	5854	6 -47	5 1	6	39 36	- 4	5	6	32 -31	-39	6	62	53	-7	2	7	37	-35
	6 8 5 3	50 30	6 1	- 5	55 - 53	- 3	5	6	78 - 80	-1 9	6 -	66	- 67	- ċ	S	7	44	44
	7 8 5 3	18 -38 -	-8 Z	6	16 -16	- 2	5	6	3? 31	1 0	6	34	35	- 5	S	7	0	11
	-ú ? 5 4	<u> </u>	7 2	6	47 39	-1	5	6	82 -79	3 9	6	11	10	-4	?	7	75	74
1	-4 ? 5 5	3 52 -	-6 2	6	12 -12	0	5	6	31 32	7 9	6	14	- 16	- 3	Ş	7	24	50
80	-2952	2 24 -	2	5	30 29	1	2	6	15/ -155	~7 10	٥ ۲	21	21	- 2	Ś	~	74	72
Ñ		C 16 -	4 4	ů v	34 32	2	ר ז	2	21 21	-e 10	0	43	<u> </u>	- 1			165	~) / 7
ł	4 9 5 1		0 2	0 4	4.5 -57	ر ک	5	0 4	04 -00 18 -16	-4 10	6	14	14	2	2	7	41	76
	2 9 5 1	G -10	1 2	6	25 22	7	Ś	Å	11 -12	-4 10	6	24	2 M	7	Ś	2	60	43
	-710 5 2	2 22	3 2	6	44 -41	-8	6	ě	17 -16	-1 10	6	25	- 75	ű.	2	2	23	-24
	-5 10 5 2	5 26	4 2	- 6	101 99	-7	6	6	29 -28	0 10	6	43	47	5	ž	7	50	47
	-3 10 5 1	6 16	5 2	6	105 -103	- 5	6	6	15 -16	5 10	6	34	- 36	6	S	7	67	-65
	-210 5 2	25 -27	6 2	6	31 -33	-4	6	6	28 -29	-5 11	6	13	12	7	5	7	Q	-10
	-1 10 5 3	32 32	7 2	6	67 -65	- 3	6	6	17 -16	-1 11	6	18	18	9	5	7	36	-36
	U 10 5 3	58 -39	8 2	6	23 -24	- 2	- 6	6	17 -16	0 11	6	34	- 35	÷8	3	7	14	-13
	3 10 5 3	3C +30 -	-8 3	6	14 14	0	é	6	38 -40	2 11	6	31	- 32	- 7	3	?	14	15
	4 10 5 3	51 -31 -	7 3	6	21 -22	1	6	5	46 48	4 1 7	6	29	~ 31	-6	- S - I	7	78	18
	2 10 5 1	>/ −3¥ − I0 –10 –		0 A	17 -17	2	2	6	20 °00	1 1 2	٥ ۲	19	- 21		, ,	5	27	0) 71
			- 1 - 3	6	41 44	7	4	~	36 36	3 12	6	22	- 20	-4	3	2	110	110
	-111 5 4	6 - 47 -	3 3	6	72 -71	8	ĥ	6	17 16	-1 13	6	10	- 20	-2	7	7	6.6	-67
	011 5 1	2 13 -	1 3	6	10 -12	-8	7	6	34 -34	0 13	6	14	-13	- 1	3	7	61	42
	1 1 1 5 4	3 -46	0 3	6	34 -33	-6	7	6	32 -32	1 13	6	18	-18	0	3	7	54	-48
	3 1 1 5 2	27 -26	1 3	6	78 -76	- 5	7	6	21 20	-7 0	7	36	- 37	1	3	7	19	17
	511 5 2	2 C - 20	2 3	6	48 -47	-4	7	6	32 -32	-5 A	7	14	- 12	2	3	7	30	-34
	-2 12 5 1	2 -14	3 3	6	14 12	-2	7	6	14 13	-3 G	7	48	- 50	3	3	7	38	37
	0 12 5 3	5 -37	4 3	6	56 -56	-1	~	6	27 7.7	-1 0	~ `	124	1 31	5	3	<u> </u>	24	-23
	2 12 5 2	05 - 5	5 3	6	17 9	0	7	6	37 38	10	7	159	167	5	- 5	7	53	-51
	212 2 1 12 5 7	2 FC	0 5	0 4	57 -57 51 -57	2	5	0 4	1.3 1.3 70 70	5 13	7	120	1.54	۲ ن	5	4	47	-40
	4 12 3 2	L 14 -	ις Ο λ 8.	6	18 - 20	4	2	6	20 77 27 26	ວ ບ 7 ກ	7	60 40	90 38	- 8	ì	2	14	-16
		2 68 -	.7 1	4	18 19	۳ ۲	7	6	15 -15	-8 1	7	20	- 22	-0	2	7	19	10
	-4 0 6 7	°C -73 -	5 4	6	45 -46	6	7	6	25 27	-7 1	7	56	59	-6	4	ż	Ġ.	8
	-2067	4 -71 -	4 4	6	115 -111	8	7	6	22 22	-6 1	7	8	-9	- 5	4	7	11	12
	0 0 6 19	- 203 -	3 4	6	26 28	-6	3	6	30 30	-5 1	7	52	53	- 3	4	7	52	-48

FAGE 4

н	к	L	FO	FC	н	ĸ	L	FO	FC	н	ĸ	Ł	FO	FC	н	к	L	FO	FC	н к	L	FO	FC
- 2	4	7	85	83	2	7	7	13	13	4	0	8	111	113	-4	4	8	64	61	-5 8	8	17	-16
-1	4	~ 7	. 26	-33	5	- 7	7	11	11	6	0	8	23	22	-3	4	8	42	42	-4 8	8	13	-12
U Q	4	7	17	-14	5	~ ~	7	29	-79	-7	1	8	56	-59	-2	4	8	32	31	-3 R	8	43	-41
1	4	7	13	-16	7	7	7	30	31	-6	1	8	41	41	-1	4	8	24	24	-2 8	8	30	-30
2	4	{	28	-20	8		4	14	20	<u> </u>	T	8	58	-57	Ŭ	4	8	32	- 34	-1 8	8	37	-36
د	4	<u>,</u>	20	-74	- 6	- M - M		13	-17	- 3	1	ŏ	96	-98	1	4	ి స	29		1 8	×.	21	-21
4	4	',	22	-54	-0	ر. م	',	23	-25	- 2	1	0	2.5	48	2	4 2	۵ ه	40	-43	4 7	ð	21	- 71
ر م	4	5	20	-/0		2	÷	26	- 6 6	-1	1	0 9	178	12.0	2	4	9	20	40	5 ×	С 9	24	-)
7	ž	;	Ĩ.	-43	-3	8	÷	27	20	1	1	a a	- 135 83	82	5	ž	8	26	- 26		c g	25	24
Å	2	÷	35	-36	-1	Ŕ	2	रर	रंग	;	1	å	50	62	Ã	ž	8	71	- 71	-7 0	с Я	27	-72
~8	5	7	1 é	15	ò	ŝ	ż	22	-24	3	1	8	25	25	7	4	8	17	- 20	-5 9	ิล์	35	-73
- 7	ś	7	16	-16	Ť	3	7	22	23	4	1	8	- Ô	- 8	8	4	8	63	- 62	~ 3 0	ĕ	27	-27
- 5	5	7	21	-19	3	8	7	33	33	5	1	8	60	62	-7	5	8	32	34	4 0	8	21	21
-4	5	7	23	-23	4	8	7	20	19	6	1	8	0	8	-6	5	8	23	25	5 Q	8	41	42
- 3	5	7	34	-35	5	8	7	31	30	7	1	8	21	23	-5	5	8	27	28	7 9	8	32	- 1
- 2	5	7	31	-30	7	3	7	15	12	8	1	8	0	10	- 4	5	8	16	- 16	-3 10	8	17	15
-1	5	7	29	31	8	- 8	7	13	14	- 8	2	8	14	-11	- 3	5	8	21	21	-1 10	8	32	23
υ	5	7	68	-69	-5	9	7	12	- 8	- 6	5	8	36	-38	-1	5	8	42	41	3 10	8	21	20
Z	5	7	140	-141	-4	9	7	12	11	5	- S	8	56	57	1	5	8	26	- 26	4 1 0	8	27	25
3	5	7	37	-30	-2	9	7	4 9	48	- 3	2	8	111	108	2	5	8	59	- 58	5 10	8	15	15
4	5	7	51	-50	0	9	7	51	55	- Z	2	8	14	- 7	3	5	8	62	- 61	6 1 0	8	56	25
5	5	7	36	-36	1	2	7	16	-17	-1	- 2	8	93	98	4	- 5	8	45	- 43	-2 11	8	21	21
8	>		30	-29	د ،	9	4	15	16	10	1	8	119	120	7	5	8	20	- 21	0 1 1	8	43	44
-8	0	<u>_</u>	20	-30	4		<u>_</u>	28	27	1	4	8	05	65	8	>	8 3	11	37	2 11	3	~ ~ ~	11
-0	0	4	20	-20	0	10	1	24	>>	2	<u>د</u>	ð	14	16	-8	6	ð	23		4 1 7	ð	14	۲۲,
- 3	o ∠	<u>_</u>	11	~/ 4	-0	10	,	11	19	2	· ·	5 0	42	40		0	0	24	72	-3 12	С 0	12	20
-4	4	÷	11	-40	- 6	10	7	14	12	2	2	ŝ	20	70	. =)	0	3	 	- 2	-1 12	0	21	10
	6	2	72	- 71	-4	10	7	13	15	2	2	C B	13	12	-4	0 6	e e	26	- 72	3 1 2	с 9	27	72
- <u>-</u>	6	7	17	-15	-1	10	7	31	32	- 8	7	8	.,	- 3	- 2	~	8	21	-18	. 13	с 5	15	~16
1	6	ż	52	-51	i	10	7	30	30	~6	ź	8	25	26	-1	Ă	8	23	- 21	-7 0	č	6.6	-74
ż	6	ż	20	źż	ż	10	7	18	18	-5	3	8	58	58	1	6	8	64	- 44	-5 0	ç	76	- 52
3	6	7	49	-49	5	10	7	20	24	-4	3	8	93	83	2	6	š	42	- 41	-3 n	ģ	63	-61
4	6	7	24	53	6	10	7	18	-15	- 3	3	8	28	5.5	3	6	8	61	- 59	-1 n	, ç	132	-136
6	6	7	23	24	- 5	11	7	25	56	- 2	3	8	105	103	4	6	8	43	-42	1 0	ç	67	-58
7	6	7	15	-15	-4	11	7	14	12	-1	3	8	10	-10	5	6	8 .	41	- 41	3 n	9	24	-25
8	6	7	32	31	- 3	11	7	15	14	C	3	8	84	81	6	6	8	55	-?2	7 0	9	16	-16
- 8	7	7	13	-12	-1	11	7	24	22	1	3	8	51	50	8	6	8	13	-13	-8 1	ç	19	-21
- 7	7	7	35	-37	5	11	7	13	-16	S	3	8	37	37	- 8	7	8	15	-16	-7 1	9	24	-26
~6	7	7	21	24	- 2	12	7	15	17	4	3	8	64	62	- 5	7	8	24	23	-6 1	9	63	-65
- 5	7	7	50	-48	Ő	13	7	15	-15	5	3	8	20	-21	-4	7	8	37	- 36	-5 1	9	15	-16
- 4	7	7	29	29	- 8	0	8	39	-43	6	<u>र</u>	8	24	-24	-3	7	8	11	-9	-4 1	9	32	-33
- 3	7	<u>{</u>	61	-65	-6	0	8	64	-67	7	3	8	44	-43	-2	7	8	31	- 29	-3 1	ç	34	-29
-2	<u>_</u>	<u>,</u>	40	-40	-4	0	ŏ	51	45	8	3	8	11	-11	-1	7	8	54	- 53	-2 1	5	61	-65
	2	÷	24	-24	-2	0	5 2	52			4	ö	20	27	U 2	<u>'</u>	8	27	- 59	U 1	۶ ۵	17	-15
1	7	'z	26	-24	ບ ອ	0	2	20	20	-0	4	0	20	23	²	'	0	74	- 73	1 1	У С	4 (44
		1	L 4	- W	2	- V	0		• 7	-,	-4	0	37	21	- 4	1	Q	e (;	- cu	2	7	<u> </u>	- 21

+ 203 -

. .

-

URSERVED AND CALCULATED STRUCTURE FACTORS FOR TONOCLA

н	ĸ	L	FC	FC	н	ĸ	L	FO	FC	ч	ĸ	L	FO	FC	н	ĸ	L	F D	FC	ч	ĸι	FO	FC
3	1	9	52	54	-8	5	Ŷ	3.5	36	- 8	ç	9	11	- 6	- 3	?	10	46	- 46	- 2	6 10	24	23
4	1	9	14	-22		Ž	9	16	18	-6	9	9	17	-17	-2	Ş	10	11	-8	- 1	6 10	30	30
د	1	4	40	42	-6	2		31	35	- 4	Ģ	9	20	-26	- 1	5	10	56	- 58	9	A 10	17	16
5	1	9	4	4	->	2	4	413	38	- 2	ç	9	54	-55	1	<u> </u>	10	11	-11	1	6 10	14	-12
1	1	. Y	18	40	-4	Š	9	56	60	9	<u> </u>	9	33	- 7.5	5	2	10	15	-14	2	- 4 1 C	47	47
- U	~	Ý	25	22	-2	2		30	30	. 2	<u></u>	9	14	-11	3	S	10	19	19	5	6 1C	44	-45
-0	1	1	26	-27	- 7	2	9	19	21	- 5	3	Ģ	1 •	17	4	2	10	39	-40	4	5 10	22	25
- 4	2	9	21	18	Ģ	- 5	9	58	50	5	<u>.</u>	С -	50	20	5	2	10	45	43	6	6 10	21	23
ز -	2	9	19	+17	1	2	9	55	-54	- 5	10	Ģ	26	-75	7	Ş	10	42	42	7	- <u>6</u> - 1 C	1 ଦ	-19
-2	2	- 9	4.6	47	2	2	9	35	35	- 3	10	9	21	-30	+8	3	10	25	- 27	- 8	7 10	32	۲۲
0	2	9	57	55	5	2	- 9	51	-30	-1	10	Ŷ	44	-44	-6	3	10	21	-55	- 6	7 10	42	61
T			29	55	4	2	9	12	-12	9	10	Q	28	27	- 5	3	10	29	- 30	- 5	7 1 C	24	-24
2	2	9	53	51	?	5	9	14	-15	1	10	9	27	-77	- 4	2	10	6.6	- 65	- 4	7 1 C	3.9	۲ ۶
5	2	2	01	-62	6	2	0	23	-29	4	10	9	22	23	-3	3	10	5 %	59	-2	710	14	15
4	6	Š	31	× 4	(2		17	-17	5	10	3	18	19	+2	3	10	72	- 71	0	7 10	13	15
2	~	9	3C 77	- 50	0	2	y y	51	- 51	-1	11	9	18	16	-1	3	10	61	61	1	7 1C	50	- ? 1
0	4		17	24	-8	2	Y	23	29	0	11	ò	15	⊶1 j	Ç	3	10	26	- 25	2	7 10	20	-24
	ŝ	ž	20	21	- (2	y .	19	17	1	11	Ŷ	21	22	1	3	10	40	45	3	7 10	20	-29
. J	~	Š	10	22	-0	2	~	17	15	3	11	ž	27	29	5	5	10	4	7	4	7 10	22	-25
- 3	٠ -	3	14	19	-2	2	9	17	16	5	11	9	23	25	4	3	10	25	26	5	7 10	14	16
- /	2	<u> </u>	12	-12	-2	Ċ.	ž	15	11	U	12	9	14	20	5	3	10	31	30	6	7 10	2 र	- 2.8
- 5	2	Š	11	11	1	2	×	19	-18	2	12	~	21	24	6	3	10	40	50	7	7 10	13	12
- 4	2	о У	47	27	,	2	ÿ	10	14	4	17	- ×	21	28	8	5	10	58	58	8	7 10	2 ?	-55
) 7		3L 77	20	2	2	ž	103	-198	-8	U A	10	15	15	-6	4	10	11	-16	- 8	8 10	17	14
- 2	2	9	47	40	د ر	2	7	20	- < 5	-0	5	10	28	- 51	->	4	10	10	17	~5	8 1 C	42	42
-1	2	2	20	24	4	2	2	204	-01	-4	0	10	57	- 54	-4	4	10	4.6	42	-4	8 10	24	-56
1	7	7	77	20	ບ ຊ		7	10	- 10	-2		10	61	- 74	- 2	4	10	17		- 5	× 10	24	28
5	י ז	0	20	77	-7	7	0	17	4 7	. U		10	91	40.0	- {	4	10	93	×7	-2	8 10	39	-37
2	7			ינ		, ,	7	74	20	<i>2</i> ,	0	10	90. 67	-199	-1	4	10	21	- /4	. 0	× 10	33	- 34
ر. ۱	י. ד	7	1.6	12	-2	7	0	21	-19	4		10	7)	- 7 7	U 7	4	10	41	40		× 10	16	-23
5	, z	ů,	7.6	د ا ۲۸	0	,	3	27	-74			10	10		ŝ	4	10	79	-0	\$	* 10	15	-13
	_? *	0	10	22	1	7	6	2) 61	- 47	_ 0	- U - 1	10	כו	-74	4	4	10	51	4.Y E - 3	4		24	-23
7	י ז	ó	1.8	10	- 	÷,	ó	4.6	-07		-	10	20	- 40	с 7	4	10	012	10	,	P 10	14	-16
, ,	3	ú	21	-21	ŝ	7	ó	28	-27	-0	1	10	14	-17	r g	2	10	11	19	0 7	0 10	10	- 9
~ 3	í	ģ	19	-17	6	7	ò	25	25	- 1	1	10	20	-80	_ G	č	10	10	17		^ IL	21	-/1
- 0	4	ó	23	22	7	7	ý	23	-22	0	i.	10	49	-54	 	ç	10	72	24	- >	9 10	12	- / /
- 5	4	ý	41	41	- 5	ė,	ģ	32	-31	ĭ	1	10	41	- 4 5	-5	ś	10	20	1 Q	- 1	0 10	67	
-4	Å.	ý	51	53	-3	8	ý	45	-45	2	t	ຳຄັ	14	-11	- 4	Ś	10	20	20		9 10	27	- ר - ר
- 3	4	ģ	111	10.5	- 2	Å	ý	40	-38	र	1	10	40	-72	_3	ś	10	17	41	ź	0 10	13	- 1 7
- 1	4	ý	2 8	29	~1	8	ģ	48	-46	í	Í	10	ँर्ष	50	, 1	ś	10	0.0	62	,	0 10	76	- 1 5
ů	4	9	24	24	Ó	Ŗ	ý	23	-25	5	1	10	62	-63	2	ś	10	10	- 20	-5	10 10	20	-17
ĩ	4	9	14	16	1	8	9	zó	-20	6	1	1õ	17	17	3	ś	10	57	67	- 4		17	-15
ż	4	9	41	42	Z	٩	9	15	-13	7	1.	tū	11	-15	Ř	ś	10	17	-18	- 2	10 10 10 10	10	-19
3	4	9	17	17	3	3	9	16	-17	8	1	10	10	8	-7	6	10	21	21	-2	10 10	22	-22
5	4	9	26	29	4	8	9	25	-26	- 7	2	10	32	-34	- 5	6	10	33	33	้กับ	10 10	35	-70
7	4	9	45	-44	6	8	9	34	-34	- 5	2	tò	47	-43	-4	6	10	17	18	ź	10 10	Ĩá	-15
ô	4	ò	25	25	7	8	9	21	19	- 4	2.1	10	14	13	- 3	6	10	41	40	4	0 10	14	-15

- 204 -

~

PAG 6

н к с	FO FC	H K L	FO FC	ΗĸL	FO FC	H K L	EO EC	н қ Г	FO FC
5 10 10	14 13	4 3 1 1	13 10	1711	34 34	-3 2 1 2	34 - 32	5 5 1 2	33 34
-2 11 10	15 -15	5 3 1 1	17 17	3 7 11	55 50	-2 2 12	59 58	6 5 1 2	20 19
1 11 10	14 -13	6 3 1 1	35 38	-8 9 11	11 3	-1 2 12	V1 - 04	7 5 12	25 26
4 11 10	15 18	7 3 11	27 28	-7 8 11	12 13	515 0	52 -55	-5 4 12	12 -12
-5 12 10	12 -10	8 5 1 1	15 14	-4 9 11	35 35	1 2 1 2	55 -55	-6 5 12	21 -22
-7 3 11	57 75	*6 4 1 1	15 -12	-2 × 11	27 26	2 2 12	12 -12	-> 6 12	21 27
	77 79	-2 4 11	34 - 13	1 2 2 1 1	27 23	2 2 1 2	27 * 32 17 17	-9 6 12	16 - 16
1 0 11	27 - 7/	-2 4 1 1	30 71	5 9 1 1	16 -15	5 2 1 2	40 -48	1 6 1 2	27 - 21
3 0 11	01 -94	0 4 1 1	20 -22	6 9 1 1	16 16	7 2 1 2	26 - 25	1 6 12	57 60
5 1 1 1	1116 -109	1 4 1 1	52 53	-6 9 1 1	16 14	8 2 1 2	17 -15	3 6 12	40 48
7 0 11	19 -20	2 4 1 1	39 - 39	0 9 11	22 -23	-8 3 1 2	22 24	5 6 12	20 19
-3 1 11	29 30	3 4 1 1	61 61	4 0 11	13 -13	-5 3 1 2	25 - 26	7 6 12	18 15
-7 1 11	30 -34	5 4 1 1	36 34	6 9 11	50 -50	-3 3 1 2	15 -15	8 6 1 2	11 5
-ó 1 11	3 P 37	6 4 1 1	25 23	-2 10 11	25 -24	-2 3 12	47 -41	-6 7 12	12 -12
-5 1 11	38 -40	7 4 1 1	47 45	0 10 11	12 -9	-1 3 12	11 - 1	-4 7 12	12 9
-4 1 11	32 34	-8 5 1 1	41 -41	5 10 11	22 -21	C 312	68 - 70	-2 7 12	17 18
-3 1 1 1	13 -12	-6 5 1 1	30 -29	-1 11 11	23 - 21	1 3 1 2	22 - 24	-1 7 12	13 12
-1 1 11	86 -85	-4 - 5 11	23 -20	1 11 11	16 -18	2 3 1 2	41 - 40	0 7 1 2	25 26
0 1 11	27 -32	-3 5 1 1	12 11	3 11 11	14 -12	4 1 1 2	35 - 36	2 7 12	44 44
1 1 11	76 -78	-1 5 1 1		-2 12 11	14 -16	5 5 1 2	14 17	5 7 12	25 25
2 1 11	37 - 34	2 7 1 1	15 15	6 62 63	14 -14	7 7 7 7 7	20 71	4 7 12	43 66
3 1 1 1	11 11	4 5 1 1	51 70	- 4 12 11	14 -11	8 3 12	22 - 23	5 7 12	28 28
4 1 1 1	45 -48	5 5 1 1	10 18	-6 0 12	80 88	-9 4 1 2	19 - 21	-6 9 12	14 14
8 1 1 1	18 -17	6 5 1 1	26 26	-4 0 12	37 42	-6 4 1 2	21 -21	-5 8 12	18 -15
-8 2 11	10 -10	8 5 1 1	32 32	-2 7 12	16 14	-5 4 1 2	23 - 25	-4 9 12	22 22
-7 2 11	10 8	-8 6 1 1	11 9	0 0 12	27 27	-4 4 12	73 - 69	-3 9 12	11 8
-6 2 11	34 -34	-6 6 1 1	28 26	4 0 12	49 -48	-3 4 1 2	29 - 29	-2 8 12	36 35
-4 2 1 1	67 -68	-5 6 1 1	17 -15	6 0 12	25 -27	-2 4 1 2	65 - 62	-1 8 12	20 18
-3 2 11	46 48	-4 611	53 51	-8 1 12	16 16	-1 4 1 2	31 - 31	0 R 12	19 20
-2 2 11	144 -142	-3 511	16 15	-7 1 12	42 46	G 4 1 2	35 - 39	1 8 12	20 19
-1 2 11	25 -24	-2 6 1 1	27 24	-5 1 12	41 44	1 4 1 2	21 -?2	2 8 1 2	14 16
0 2 11	87 -94	0 6 1 1	20 79	-4 1 12	19 -20	3 4 1 2	33 - 31	5 8 1 2	36 34
1 2 11	45 -47	1 5 1 1	24 24	-3 1 12	35 36	4 4 1 2	10 -8	6 8 12	15 -15
2 2 1 1	44 -45	2 7 (43 43	-2 1 (2	37 - 20 20 - 21	2 4 1 2	27 27	0 0 1 2	14 19
6 7 1 1	23 - 23 11 15	2 0 1 1	41 46	-1 1 12	57 -50	-7 5 1 7	27 - 24		12 12
1 2 11	14 -13	5 6 1 1	14 14	1 1 1 2	1/ -13	-6 5 1 2	10 -10	-3 -12	21 20
8 2 11	19 18	7 6 1 1	14 13	2 1 12	39 - 61	-5 5 12	41 - 41	-1 9 12	36 36
-6 3 11	23 -24	-8 7 1 1	17 15	3 1 12	16 -15	-4 5 1 2	13 -13	-2 10 12	18 17
-5 3 11	29 -28	-7 7 1 1	15 14	4 1 12	39 - 39	-3 5 1 2	26 ->2	-1 10 12	27 - 21
-4 3 1 1	17 -16	-5 7 1 1	17 17	5 1 12	37 - 37	-2 5 12	12 14	0 10 12	24 24
-3 3 1 1	75 -73	-4 7 1 1	23 -20	5 1 12	24 -25	-1 5 12	19 -20	2 10 12	12 7
-2 3 11	38 39	-3 7 1 1	25 23	7 1 12	11 -10	C 512	17 17	5 10 12	20 -19
-1 3 11	73 -73	-2 7 11	19 19	-7 ? 12	10 7	1 5 1 2	24 - 26	2 1 1 1 2	18 -16
1 3 11	41 -40	-1 7 11	31 30	-6 2 12	13 13	2 5 1 2	23 22	4 11 12	24 -21
3 3 1 1	41 -42	0711	14 15	-4 2 12	22 20	4 5 1 2	24 24	1 12 12	13 -12

,

- 205 -

. .

PAGE 7

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR TONOCLA

нкц	FO FC	н К L	FO FC	нкг	FO FC	н к ц	FO FC	нкι	<u> </u>
3 13 12	21	-7 / 13	50 -57	-/ 10 17		3 7 4 (.		
-7 0 13	24 31	-3 4 13	17 14	-1 10 12	14 10	r 514	21 - 20	2 8 14	12 15
-5 1 13	49 42	-1 4 13	64 - 43	1 10 13	20 20	-6 1 14	27 - 79	4 0 14	12 11
-1 0 13	27 28	1 4 13	61 -63	3 10 13	24 23	-6 4 14	17 12		24 22
-1 0 13	56 54	3 4 1 3	23 -24	2 1 1 1 3	12 12	-6 6 1 6	21 20	-3 10 14	17 17
1 0 13	53 56	5 4 13	22 -23	2 1 1 2 2	21 -17	~3 6 16	27 27	0 10 14	14 ()
3 0 13	53 56	8 4 13	19 -16	-8 0 14	18 -19	-2 4 1 4	16 18		14 15
5 0 13	17 14	-5 5 13	18 -20	-6 0 14	18 -17	-1 4 14	30 28	-6 11 16	12 7
7 0 13	16 14	-4 5 13	34 - 32	-4 0 14	12 -11	C 4 14	30 - 31	-2 11 14	17 19
-7 1 13	32 34	0 5 13	37 -38	0 0 14	20 21	1 4 1 4	34 37	-7 0 15	47 -66
-6 1 13	37 36	1 5 1 3	20 19	2 0 14	60 61	2 4 1 4	45 - 47	-5 0 15	34 - 35
-5 1 13	14 12	2 5 1 3	60 -59	4 C 14	87 86	3 4 1 4	28 30	-3 0 15	33 - 32
-4 1 13	27 29	4 5 1 3	29 -29	6 3 14	27 24	6 4 1 4	24 - 23	-1 0 15	23 -25
-2 1 13	37 37	7 5 1 3	14 13	-7 1 14	13 -16	7 4 1 4	15 -17	3 0 1 5	36 36
0 1 13	44 46	-8 6 1 3	17 -17	-6 1 14	28 28	8 4 1 4	21 -?0	S 0 1 5	40 41
1 1 1 3	29 31	-6 5 1 3	28 -28	-4 1 14	19 19	-7 514	18 17	-3 1 15	18 -18
2 1 1 3	21 23	-4 6 13	37 -38	-3 1 14	23 -21	-4 514	26 -21	-6 1 15	23 -24
5 1 1 3	38 ~38	~3 6 1 3	17 -18	-2 1 14	17 16	-3 5 1 4	28 - 28	-5 1 15	15 15
4 1 1 3	38 39	-2 6 15	55 - 58	-1 1 14	30 29	C 514	13 10	-4 1 15	37 -36
5 1 15	49 -49	1 6 1 3	51 - 50	0 1 14	33 36	1 5 1 4	46 -46	-3 1 15	24 25
2 1 1 2	10 17	2 5 1 5	30 30	1 1 14	25 28	2 5 1 4	17 18	-2 1 15	45 -46
-2 7 13	10 - 44	2 0 13	20 17	2 1 14	21 21	5 5 1 4	52 - 53	-1 1 15	25 25
-6 2 12	17 17	4 0 1 3	40 17	5 1 14	45 46	5 5 1 4	33 - 53	1 1 15	30 32
-6 2 13	42 45	5 6 1 3	2/ 25	5 1 1/	17 15	-7 - 7 - 14	21 -21	3 1 15	39 40
-1 2 13	16 13	8 6 1 3	12 12	2 1 14	47 43 30 70	-/ 014	15 -14	4 1 15	31 33
0 2 13	1 - 15	~8 7 13	12 -13	-7 7 14	18 21		70 - 79	5 1 15	10 19
1 2 13	21 -21	-7 7 13	19 -19	-5 2 14	28 27	- 5 6 1 4	17 12	0 1 1 J 9 1 1 5	14 20
2 2 13	25 -24	-5 7 13	33 -31	-4 7 14	23 -23	-3 6 1 4	36 - 36	-7 2 15	11 - 3
4 2 1 3	26 -26	1 7 13	15 10	-3 2 14	50 50	-1 6 14	16 - 15	-4 2 15	12 14
6 2 1 3	33 -33	2 7 1 3	16 16	-1 2 14	46 46	1 6 1 4	23 -25	-3 2 15	30 - 27
8 2 13	24 -22	3 7 1 3	19 19	0 2 1 4	27 30	2 6 1 4	18 - 19	-2 2 15	52 51
-7 3 13	13 15	5713	25 25	1 2 14	40 41	4 6 1 4	23 - 19	0 2 15	55 60
-5 3 13	13 11	6713	27 - 23	2 2 14	13 14	6 6 1 4	20 - 19	1 2 15	24 24
-4 3 13	18 -19	7 7 13	27 27	3 2 14	13 13	-6 7 1 4	21 -?2	2 2 1 5	44 45
-3 3 13	29 29	-6 8 1 3	11 -12	6 2 14	17 17	-5714	18 16	4 2 1 5	3? 32
-2 3 13	37 -37	-5 8 13	16 11	8, 2, 14	23 22	-4 714	35 - 36	-5 3 15	11 6
-1 3 13	19 -20	-4 8 13	23 -23	-5 3 14	23 23	-3714	14 15	-4 3 15	11 -6
0 3 1 3	55 -58	-3 8 13	14 15	-4 3 14	44 44	-2 7 1 4	23 - 23	-3 3 15	47 47
1 5 1 5	30 -32	~1 8 13	25 25	-3 3 14	16 ~15	0 7 1 4	32 - 36	-1 3 15	58 56
2 3 1 3	21 -28	1 8 13	18 18	-2 3 14	57 54	2 7 1 4	20 -22	0 3 1 5	13 13
5 5 1 5	31 ~30 1∡ …11	5 7 7 3		-1 3 14	27 -22	4 7 1 4	13 -11	1 3 15	51 51
0 3 13 7 7 47	10 -10	-2 0 47	18 16	0 5 14	50 31	8 7 1 4	13 10	3 3 15	40 41
()) 7 7 17	46 46	-2 4 13	40 58	1 14	22 -20	-8 8 1 4	12 -10	. 5 3 15	22 25
-8 6 13	15 14	2 0 1 7	40 42	2 3 14	29 28	-5 K 14	12 - 13	7 3 15	76 16
-6 4 13	12 0	2 7 1J 4 9 13	14 14	9 2 14	20 72	-3 × 14 1 ¢ 17	24 - 78	5 5 1 5 - 9 4 4 5	15 ~12
-5 4 13	29 -30	6 9 13	12 0	5 2 14	13 -10	- 1 0 14 C 9 17	30 778 17 10	-8 4 15	14 -16
			••• •	· · · · · · · · · · · · · · · · · · ·	12 -10	Ç 0 14	11 17	-1 4 12	11 12

- 206 -

PAGE 8

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR TONOCLA

н к с	FC FC	н К Ц	FÓ FC	ЧКГ	FO FC	нкг	FO FC	нкс	FO FC
-5 4 15	34 30	-8 1 16	17 -16	5 6 16	23 -22	6 3 1 7	17 13	4 1 18	15 -13
-3 4 15	49 46	-7 1 16	13 -13	7 6 16	14 -13	7 3 1 7	12 10	5 1 18	19 -17
-1 4 15	21 20	-6 1 16	22 -21	-6 7 16	19 17	0 4 1 7	11 - 12	6 1 18	17 -13
0 4 15	15 13	-5 1 16	2323	2 7 16	13 -12	1 4 1 7	33 36	7 1 18	11 -12
1 4 15	11 -4	-3 1 16	44 -44	3716	16 - 15	2 4 1 7	24 - 25	-4 2 18	15 13
2 4 1 5	38 39	-1 1 16	36 -34	4 7 16	23 -21	3 4 1 7	2.2 21	-2 2 18	18 17
6415	12 -8	4 1 16	32 31	6716	23 -22	5 4 1 7	21 72	-1 2 18	32 -31
7 4 15	23 -25	-7 216	17 -19	-5 8 16	15 12	7 4 1 7	13 15	1 7 18	35 -30
-8 5 15	16 16	-6 2 15	11 -11	-2 8 16	19 -13	-5 5 17	14 7	3 2 18	27 - 24
-6 5 15	28 26	-5 2 16	22 -24	0 9 16	17 -18	-1 5 17	13 12	5 7 18	18 -17
~4 5 15	36 34	-3 2 16	18 -16	2 * 16	18 -20	2 5 17	24 75	7 2 18	11 -6
-2 5 15	18 17	-2 2 16	20 -28	-3 9 16	14 -14	4 5 17	25 21	-5 5 7 8	15 -17
9 5 15	20 21	1 2 10	12 14	-1 9 10	37 - 53		10 10		24 - 24
5 5 15	11 2	5 2 10	19 21	7 7 10	10 -10		2'+ 2U 17 10	0 3 1C	2/ -25
0 5 15	24 -22	2 2 10	43 66	-7 10 14	12 - 7	-4 0 17	17 19	4 7 18	24 - 73
-7 4 15	17 10	-8 3 16	21 -20	-2 10 16	12 -12	-2 6 17	11 11	-4 3 10	17 -15
-7 0 15	10 28	-6 7 16	11 -12	0 10 16	18 -19	3 6 1 7	17 14	-6 4 18	13 -12
-/ 6 15	21 -18	-6 3 16	12 -10	-5 0 17	12 13	5 6 1 7	18 16	-2 4 18	13 -11
-3 6 15	19 21	-3 3 16	11 11	-1 0 17	17 -16	6 6 17	17 -17	1 4 18	22 - 23
-2 6 15	11 11	-1 3 16	28 27	3 0 17	36 - 75	-5 7 1 7	29 76	2 4 18	17 19
-1 6 15	14 15	C 3 16	20 20	5 0 17	40 -38	-3 7 1 7	25 23	3 4 18	25 - 25
1 6 15	15 15	2 3 16	16 13	-7 1 17	12 -12	-1 7 1 7	24 24	6 4 18	19 18
2 6 1 5	29 -30	5 3 16	18 20	-5 1 17	17 -15	-2 8 1 7	18 19	8 4 1 8	14 15
4 6 1 5	18 -19	6 3 16	17 17	-2 1 17	11 -11	-1 8 1 7	18 -17	-7 5 18	15 -13
5 6 1 5	14 -14	8 3 1 6	24 25	-1 1 17	24 -23	0 8 1 7	12 14	-5 5 18	57 -59
-3715	21 -18	-7 4 16	14 -14	0 1 17	12 -14	1 8 1 7	19 -19	-2 5 18	11 6
-1 7 15	18 -19	-4 4 16	16 15	1 1 17	25 -25	3 8 1 7	16 -14	0 5 1 8	11 7
1 7 15	28 -28	-2 4 16	18 17	2 1 17	17 -16	-2 9 17	20 ~16	5 5 18	19 18
2 7 15	12 -14	-1 4 16	21 20	4 1 17	28 - 29	C 9 1 7	27 - 76	7 5 18	18 15
3715	26 -24	0 4 16	22 24	6 1 17	30 -29	2 9 1 7	15 -15	-5 6 18	20 19
5 7 15	22 -21	2 4 16	15 17	8 1 17	12 -14	-2 10 17	14 -10	-3 6 18	16 14
7 7 15	12 -12	3 4 16	13 14	-8 2 17	14 -14	1 10 17	14 -15	-1 5 18	12 11
-3 8 15	15 -15	-5 5 16	31 50	-6 2 17	15 -18	5 10 17	15 -14	1 5 78	27 20
	17 -16	* 5 16	42 41	-4 2 17		-6 0 10	1 <u>5</u> 13	7 6 10	10 12
0 8 1 5	23 -24	-1 5 16	24 20	-3 2 17	17 12		21 24	5 0 18	24 22
4 8 15	15 -15	1 2 10	41 42	-2 2 17	27 -76	-4 U I O	34 30	4 0 (0	17 16
	10 -17	2 2 10	17 -13	0 2 17	15 15	2 0 1 9	17 13	-6 7 18	17 17
-2 9 15	10 -17	8 5 14	12 - 2	-4 7 17	11 - 8	2 0 10	29 - 26	-4 7 10	20 20
-1 11 15	12 12	-7 6 16	12 13	-5 3 17	16 -13	6 1 18	22 - 23	0 7 18	20 23
3 11 15	20 18	-6 6 16	11 7	-3 3 17	42 -40	-8 1 18	11 6	2 7 18	14 14
-6 0 16	32 -33	-4 6 16	19 18	-2 17	20 21	-5 1 18	12 15	4 7 18	15 12
-4 0 16	20 -19	-1 6 16	15 14	-1 3 17	36 - 38	-3 1 18	33 31	-1 8 18	16 16
-2 0 16	48 -48	0 6 16	15 14	0 3 17	23 23	-2 1 18	25 - 25	-3 9 18	12 8
0 0 16	33 -36	1 6 16	17 -17	1 3 17	16 -18	-1 1 18	24 22	-7 0 19	13 14
2 0 16	30 -29	2 6 1 6	11 11	2 3 17	14 15	C 118	18 - 19	-5 0 19	27 26
4 0 16	22 -21	3 6 16	32 -31	3 3 17	22 -20	2 1 18	21 - 21	-3 0 19	21 17

- 207 -

FAGE 9

_ _

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR- TONOCLA

.

н	ĸ	L	FC	FC	н	к	Ł	£0	F C	н	к	L	FD	FC	н	к	Ĺ	FO	F C	н	к	٤	FQ	FC
-1	0	19	14	11	~1	4	19	23	-22	-4	1	20	16	14	4	٨	20	17	~8	3	n	~ ~	16	- 1 7
1	Q	19	21	20	1	4	19	21	-21	~1	1	20	12	10	È	Å	20	1 2	12	_ 7	4	20	40	
3	ŋ	19	12	15	-4	5	19	29	-27	'n	÷.	20	14	12	- 6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	12		- 2		62		-10
-7	1	19	12	14	-2	Ś	10	15	-14	2	-	20	17	12	- 4	, '	20	10	- 15	- I	1	26	16	-16
-4	1	19	20	20	ō	5	19	12	-17	7	4	20	17	, r 0	- 2	4	24	14	-15	2	י	22	35	75
~2	1	10	30	37	2	Ś	10	12	-11		5	20	47		3	}	<u> </u>	13	¥	4	1	22	20	18
ด้	1	10	1.6	17	Ā	5	10	17				20	17	13	4	1	21	14	12	- 1	2	5.5	14	13
ט ז	1	10	18	_10	_5	2	10	12	- 1 C	- 3	4	20	16	10	- 2	2	21	18	17	1	2	2 Z	21	19
5	4	10	17	-16	- 1	4	40	12	-10	~4	2	20	11	10	U	- 2	Z 1	21	23	3.	- 5	22	21	17
د ۲	2	17	11	4 7		2	19	14	-11	~2	2	20	19	17	Z	2	21	18	18	-1	3	<u>5</u> 5	12	9
-0	ŝ	19	10	13	4	9	19	15	15	~1	3	20	14	-11	4	2	21	15	19	2	3	22	ΣŬ	18
-4	2	14	10	14	0	6	19	16	15	7	3	20	14	-13	- 3	3	21	13	11	- 2	4	2.2	20	16
-1	2	19	14	14	2	7	19	13	10	2	- 3	20	11	- 7	-1	- 3	21	18	16	0	4	22	13	15
0	6	19	19	-19	5	7	19	14	13	- 4	- 4	50	11	- 8	1	3	21	20	17	-3	5	22	16	13
2	S	19	27	-23	-1	- 8	19	12	1 C	-1	- 4	20 -	11	- 8	3	3	21	13	9	-2	- 6	22	14	7
4	- Ş	19	22	-23	1	- 3	19	12	12	Ð	4	20	24	-52	2	4	21	12	12	3	6	22	12	- ġ
6	2	19	55	-20	3	-8	19	14	12	. Ż	6	20 -	28	-28	-3	5	21	12	-8	- 1	ń	23	10	-17
8	S	19	12	~12	~2	9	19	21	18	4	4	20	14	-16	-2	6	21	13	- 12	~ 2	ĩ	23	17	-13
-5	3	19	11	11	Ũ	9	19	17	16	-4	5	20	13	-9	1	6	21	12	1	5	ż	22	12	10
-3	3	19	15	14	~8	Ø	50	11	-11	-2	5	20	17	-14	ż	ő	21	14	- 1 3	- 1	ĩ	22	17	4 7
- 1	3	19	13	- 9	÷2	Ð	50	18	14	1	Ś	20	19	-18	- 1	7	21	16	~ 12	1	2	22	12	1 1
Û	3	19	17	-21	0	0	20	14	18	3	Ś	20	ż'n	-17	÷1	7	21	4 5	- 4 4	, ,	E	2.3	17	10
1	3	19	23	-24	2	3	20	20	19	ŝ	ŝ	20	17	-10	-2	8	21	12	-10	4	2	23	11	14
3	3	19	15	-13	4	õ	20	31	30	- 5	Â	20	17	-15		0	35	12	-10	_ 4	2	24	13	- 4
-s	4	19	15	-15	Å	ñ	20	1.6	12	- 3	ž	20	10	.12	2	- 0	22	11	- 17	-1	4	12	14	4
-3	4	19	17	-15	-6	1	20	12	13	- 3	C	20	()	-12	C,	Q	٢٢	14	- 16	7	5	25	13	-12

PAGE 10

- 208 -

APPENDIX II

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR

[Tc(NO)(NH3) (H2O)]C12

н	κ	L	FO	FC	н	ĸ	L	FO	FC	н	ĸ	٤	FO	FC	н	κ	ι	FO	FC	н	ĸ	٤	FO	۶C
1	ŋ	0	19	17	3	7	0	35	-35	3	0	1	4	- 1	- 4	- 4	1	35	-35	2	7	1	4	- 3
3	0	0	30	-30	4	7	Ô	17	-16	4	0	1	50	49	-3	4	1	23	-23	3	7	1	- 32	-32
4	Ő	à	71	71	5	7	0	30	30	5	0	1	23	24	-2	4	1	21	50	4	7	1	- 6	- 5
Š	ň	ñ	23	23	6	7	ō	16	16	6	ō	1	40	-40	~1	4	1	46	44	5	7	1	27	27
	Ä	ň	20		ŏ	è	ŏ	6.6	4.4	ž	ň	1	13	-12	'n	Ĺ	1	27	26	~	7	1	17	17
0,00	v v		4 5	- 4 4			~		00	- 7	1	÷	2 3	22	1	7		1.8		7	,	4	23	27
	0	ů,		-10		<u></u>	0	70	- 70				20	23		7	4	50	- 10	- 4		4	10	10
1	1	U		- 50	2	2	ů,	20	- 30	-0			<u> </u>	20	ć			20	-47	-0	2		17	, ,
2	1	0	15	-13	3	8	Ū,	16	-16	- 5	1	1	17	-10	4	4	1	41	41	~>		1	21	21
3	1	0	32	34	4	- 8	0	27	27	-4	1	1	63	-63	5	4	1	18	18	- 4	8	1	18	-18
4	1	0	40	41	5	- 8	0	17	16	- 2	1	1	47	47	6	- 4	1	33	-33	÷3	- 8	1	18	-17
5	1	0	33	-33	6	8	0	9	-10	- 1	1	1	23	22	7	4	1	11	-11	~ 1	- 8	1	28	28
6	1	0	38	-38	7	弓	0	12	-12	1	1	1	36	-36	- 7	5	1	16	16	0	8	1	16	16
ō	>	ñ	61	-63	1	Ģ	0	21	-21	2	1	1	63	62	-6	5	1	30	30	1	- 8	1	13	-13
1	5	ň	26	-24	2	0	ñ	14	-15	3	1	1	56	54	- 5	5	1	8	-9	2	8	1	26	-26
2	5	ŏ	7.1	-30		ó	ň		ŝ	Ĩ.	÷	1	26	-25	-4	ŝ	i	<u> </u>	- 60	i.	ġ	i	26	26
2	<u>د</u>	ŏ	, 0	- 37	,	ő	ň	20	20	2	÷.	4	30	- 20	_ 7	ś	i.	7	-7	Ę	â	1	ő	č
2	<	0	40	40	4	~	Š	20	20	,	1	4		- , ,	- 5	é	4				0		÷	_ 11
5	2	U	45	-43	2	¥	U 0		-10	<u> </u>					- 4	2		04	04	2	2		21	- 21
6	2	0	- 5	-4	6	9	0	28	-28	<u> </u>	1	1	28	28	-1	2	1	20	<>	<u>{</u>	3	1	0	- /
7	- 2	0	3Z	32	7	9	Ø	5	-4	~ 7	5	3	8	8	Q	- 5	1	85	-85	+7	9	1	ý.	9
1	3	0	71	71	0	10	0	43	-43	-6	2	1	4	- 4	1	- 5	1	35	~ 33	~ 6	9	1	22	<u>21</u>
2	3	0	5	5	1	10	0	8	- 8	- 5	2	1	48	-49	2	5	1	65	65	- 4	9	1	40	-40
3	3	0	35	-37	2	10	0	20	20	~ 3	2	1	60	61	3	5	1	48	47	- 3	9	1	7	-6
ī	ž	ň	26	-27	3	10	ň	19	20	-2	2	1	16	14	4	5	1	34	-33	-2	9	1	44	44
5	2	ň	25	35	L.	10	ň	10	-19	-1	5	1	100	-101	Ś	ŝ	1	32	- 32	~1	9	1	17	17
	,	Š	24	34		10	õ	22	- 22	ò	5	4	52	-50	2	ŝ	1	2.	24	, n	ó	1	5 3	-52
0	2	0	20	20	2	10	U A	~ ~ ~	- 23	4	5		07	- 10		2	4			1	á		22	-22
Ű	4	0	155	102	°,	10	U Q		4 2	ļ	4		60	04	- (2	1	7	_ 0		~	4	23	- 2 2
1	4	0	14	15		10	ů,	18	18		4		22	21	- 0	0	1		- 2	4	ž	3	4 6	46
2	- 4	0	66	-67	1	11	0	41	42	5	2	1	24	-55	-5	0	1	40	-40	5	y y	1	29	29
3	- 4	0	24	-24	2	11	0	5	5	4	2	1	27	-25	- 4	6	1	6	5	4	9	1	24	-24
- 4	- 4	0	53	53	3	11	0	27	-28	5	5	1	14	14	-3	6	1	48	48	5	9	1	20	-21
5	4	0	20	20	4	11	0	11	-12	6	2	1	17	17	- 2	- 6	1	8	9	6	9	1	5	4
6	4	0	22	-2.2	5	11	0	21	21	7	5	1	8	- 8	-1	6	1	75	-74	7	9	1	15	15
7	6	Ō	14	-14	6	11	0	12	12	+7	3	1	27	-27	0	6	1	35	-34	-7	10	1	- 6	7
4	ς	ň	49	-49	ñ	12	Õ	2.8	28	- 6	3	1	18	-18	1	6	1	58	58	- 6	10	1	11	-11
, 2	ś	ň	10	+10	1	12	ñ	4	ž	- 5	3	1	24	22	2	ň	1	39	3.8	- 5	10	1	26	-26
2	, ,	0			, ,	12	ň	+ 2	-12	-1	2	4	70	7.9	7	Ă	1	37	- 37	- 6	10	1	8	7
ز	2	0	21	22	2	12	0	1 4	-12	- 4	2	4	17	-17	ر ،	4	-	20	- 20	_ 7	10	4	30	20
4	2	0	40	40	Ş	12	U O		-11		2		14	~1.5	4	0		40	- 27		10	4	20	1
5	5	0	22	÷2 2	4	12	U	14	12	- <u>-</u> - <u>-</u>	2	1	10	-1	2	<u></u>		10	10	- 1	10	1	91	-41
6	- 5	0	38	-38	5	12	0	14	14	-1	3	1	2	- 4	6	6	1	20	19	U	10	1	19	-19
0	6	0	56	-56	- 7	0	1	5	- 4	0	3	1	27	27	7	6	1	4	- 4	1	10	1	31	31
1	6	0	17	-17	-6	0	1	38	38	1	3	1	18	18	-7	7	1	25	-24	2	10	1	26	25
2	6	0	7	8	-5	0	1	35	34	2	3	1	20	-19	-6	7	1	11	-11	3	10	1	21	-21
3	6	Ó	34	34	- 4	0	1	44	-44	3	3	1	44	-44	- 5	7	1	24	24	4	10	1	24	-23
- L	6	Ō	14	-14	- 3	Ō	1	32	-31	Ś	3	1	35	34	- 4	7	1	21	21	6	10	1	17	18
5	ž	õ	35	-35	-2	ñ	1	33	32	Á	3	1	17	17	- 3	7	1	15	-15	- 6	11	1	9	-9
7	ž	ň	24	27	_1	ň	1	57	58	ž	ž	· ·	27	-27	-2	7	1	Ŕ	- A	- 5	11	1	17	1 7
	7	0	2.U 5./	57	- 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	24	-22		ĩ	4	27	21	5	, ,	÷	11	11	-1	11	1	1.6	1.6
1	<u>_</u>	0	20	21	ļ	0	1	20	- 61	-0	4	4	26	1 1	U 4	5	-	47	4 7		44	4	10	
	1	11		3		11		7.2	-/1		4	1	64	6.4		1		1 3	<u>د</u> ا	- 3	1 1		11	- 1 6

- 210 -

нкі	FO FC	нкц	FO FC	HKL	FO FC	ΗКЦ	FO FC	н к с	FO FC
-211 1	10 -11	2 2 2	26 25	-7 6 2	17 -18	392	4 4	4 0 3	23 -23
011 1	11 11	3 2 2	42 -41	-6 6 2	22 -22	492	26 - 26	5 0 3	38 -39
111 1	12 12	4 2 2	31 -31	-5 6 2	18 18	592	22 -22	6 0 3	20 20
511 1	22 - 23	2 2 2	18 17		47 - 43	202	10 10	-7 1 3	23 5 5 5
615 1	10 11	7 2 2	22 -22	~1 6 2	20 - 21	-710 2	10 +10	-6 1 3	ر ۲۶ س۲۶
-5 12 1	16 15	-7 3 2	21 -21	1 6 2	26 26	-6 10 2	20 -19	-5 1 3	12 +11
-4 12 1	8 -7	-5 3 2	32 32	2 6 2	4 4	-5 10 2	6 6	-4 1 3	24 24
-3121	15 -15	-4 3 2	12 12	362	41 -40	-4 10 2	23 23	-313	36 37
-1 12 1	20 21	-3 3 2	44 -43	4 6 2	18 -17	-3 10 2	6 6	-2 1 3	42 - 42
0 12 1	10 11	-2 3 2	45 -44	562	20 19	-2 10 2	33 -33	-1 1 3	56 -57
1 12 1	13 -14	-1 3 2	40 40	0 0 2	22 22	-1 10 2	19 - 20	7 1 3	27 27
3 12 1	8 8	1 7 2	20 -20	-772	17 -17	1 10 2	23 24	د ۱ د ۲ ۱ ۵	27 - 26
4 12 1	15 16	2 3 2	61 -63	-5 7 2	26 26	2 10 2	7 -7	5 1 3	25 25
-6 0 2	35 34	3 3 2	27 26	-4 7 2	15 14	3 10 2	31 - 31	6 1 3	21 21
-502	13 14	432	40 40	-372	37 -37	4102	6 -5	713	5 -5
-4 0 2	57 -57	5 3 2	15 16	-2 7 2	35 -34	5 10 2	17 17	-7 2 3	21 -22
-3 0 2	51 -51	632	17 -16	-1 7 2	38 37	6 10 Z	11 11	-6 2 3	18 +18
-1 0 2	86 -86	-6 6 2	29 29	1 7 2	25 -26	-2 11 2	20 20	-2 2 3	22 28
202	64 62	-5 4 2	9 10	2 7 2	44 -44	-3 11 2	28 - 28	- 7 2 3	39 -40
302	79 79	-4 4 2	44 -44	372	23 23	-2 11 2	24 -24	-2 2 3	84 - 84
4 0 Z	24 -22	-3 4 2	37 -37	472	30 30	-111 2	29 29	-1 2 3	32 32
50Z	29 -29	-2 4 Z	38 88	572	5 6	011 2	23 23	023	67 68
702	23 23	-1 4 2	69 69	672	13 -13	1 11 2	19 -19	1 2 3	6 -6
-/ 1 2	25 25	0 4 2	45 -45		6 -6	217 2	51 - 51	223	55 - 55
-5 1 2	76 - 76	2 6 2	47 41	-6 8 2	25 -25	2 11 2	21 22	2 (7 7
+4 1 2	5 -3	342	61 61	-3 8 2	17 -17	6 11 2	11 - 11	5 2 3	2, 2, 2
-3 1 2	50 48	4 4 2	15 -14	-2 8 2	42 42	-4 12 2	13 -13	6 2 3	19 -19
-2 1 2	43 43	542	23 -23	~1 8 2	32 32	-3 12 2	4 -5	723	9 -9
-1 1 2	52 -51	7 4 2	19 19	082	19 -18	-2 12 2	50 50	-6 3 3	28 28
1 1 2	13 13	-7 5 2	23 23	1 8 2	32 - 32	-1 12 2	14 14	-4 3 3	17 -16
212	73 F2 21 -10	-0 7 2	10 -10	2 5 2	10 10	U 12 2	16 -16	-3 3 3	10 10 35 - 75
4 1 2	50 -48	-4 5 2	6 6	5 8 2	14 -14	2 1 2 2	4 4	-2 3 3	27 23
5 1 2	26 - 26	-3 5 2	39 39	6 8 2	7 -6	3 12 2	20 20	0 3 3	3 3
6 1 2	22 22	-2 5 2	21 21	782	13 13	5 1 2 2	9 -9	1 3 3	30 -30
7 1 2	18 18	-1 5 2	34 -33	-7 9 2	15 16	-703	33 34	2 3 3	14 -14
-7 ? 2	25 -25	0 5 2	17 -17	-6 9 2	14 -14	-6 0 3	9 -9	3 3 3	31 31
-6 2 2	21 -21	152	7 7	~5 9 2	20 -20	-5 0 3	32 - 32	4 3 3	34 33
-> < <	20 20	2 3 2	24 23	-4 7 2	0 8 22 22	-4 U 3 -3 D 3	12 71	> > > > 6 7 7	10 - 10 26 - 26
	16 -17	452	42 -42	-2 9 2	7 7	-203	40 40	-7 4 3	20 - 20
-2 2 2	46 -45	5 5 2	28 -29	-1 9 2	15 -15	ĩõĩ	32 -30	-6 4 3	7 -7
-1 2 2	12 -13	652	23 23	0 9 2	10 -10	203	33 33	-5 4 3	26 - 26
122	13 14	752	20 20	292	29 29	303	37 37	-4 4 3	87

- 211 -

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н	к	L	FO	FC	н	ĸ	L	FO	FC	н	к	L	FO	€ C	н	ĸ	L	FO	FC	н	к	٤	FO	FC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	4	3	33	32	1	7	3	16	-16	- 4	11	3	12	-12	-3	2	4	13	-12	4	ş	4	5	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	4	3	32	31	2	7	3	17	-18	- 3	11	3	5	- 5	-1	Z	4	5		2	2	4	31	54
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	4	3	10	-11	3	7	3	19	19	~ 2	11	3	12	11	0	S	4	25	25	5	2	4	20	- 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ប	4	3	22	-5.5	4	7	3	29	29	-1	11	3	10	10	1	2	4	10	- 72		2	*	20	-21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4	3	25	-24	5	7	3	10	-10	1	17	5	13	-14	2	ŝ	4	12	- 12	- 5	4	*	4 C 8	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	4	3	27	28	6	7	3	24	-24		11	3	11	-11	2	2	4	25	-12	- 4	~	4	20	-20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	4	3	30	30	-7	8	5	20	20	د ،	11	2	14	20	4	5	2	,	-5	- 3	6	2	19	-19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	4	3	18	-18	- 2	5	5	37	-17	4	11	ר ז	20 Q	~ 0	2	2	L.	32	- 32	-2	6	4	3	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Š	4	5	32	-52	- 3	÷	2	21	20	, ,	14	ž	17	-17	ž	2	4	9	-8	-1	6	4	18	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>0</u>	4	2	10	10	- 2	्व	2	د ع 7		-5	12	ž	11	-11	-7	3	4	16	16	Ď	6	4	14	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	4	2	20	20	-1	g	7	17	-17	- 3	12	3	13	13	-6	3	4	19	19	1	6	4	24	-23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 4	2	د ۲	30	-29	1	8	ž	12	-11	~ 2	12	ž	18	18	- Š	3	4	14	-14	2	6	4	24	-24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5	5	7	10	-18	2	8	3	20	20	-1	12	3	6	- 6	-4	3	4	32	- 32	4	6	4	27	28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	ś	ž	25	26	3	8	3	18	17	Ó	12	3	15	-15	~ 3	3	4	9	9	5	6	4	9	- 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3	ś	ŝ	45	44	4	8	3	12	-12	2	12	3	16	16	- 2	3	4	32	31	6	6	4	25	~26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~2	ś	3	42	-41	5	8	3	20	-20	3	12	3	8	8	0	3	4	54	-55	7	6	4	4	- 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	Ś	3	60	-59	6	٦	3	11	10	4	15	3	9	-10	1	3	4	11	-11	-7	7	4	11	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	û	5	3	23	23	7	8	3	18	18	S	12	3	10	-10	Z	3	4	35	34	-0	4	4	17	-10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5	3	60	60	-7	9	3	8	8	- 7	0	- 4	18	18	3	3	4	25	22	->	5	4	70	-10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	5	3	8	- 9	-6	9	3	20	-20	-6	0	4	17	-17	4	3	4	10	-10	- 4	'	4	30	-29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	5	3	51	-51	- 5	9	3	16	-15	~ 5	Q	4	39	~40	Š	2	4	20	-20	- 2	7	4	, 17	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	5	3	13	-13	-4	9	3	18	18	-4	0	4	21	20	°	2	4	12	12	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	7	4	45	-45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	5	3	26	27	- 5	9	5	55	33	- 3	0	4	0.7 K	- 7		2	4	15	15	Ť	7	2	6	+6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	5	3	13	13	-2	ž	2	20	-20	-2	0	4	22	9 2	- 6	2	ž	15	-15	;	7	4	30	31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	5	5			-1	Å	2	42	-41	2	- U	4	10	്റ്റ	-5	4	2	31	- 32	3	7	4	15	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-(6	3	21	- 2 1	1	0	2	1.1	41	- 7	ň	2	33	-33	- 4	Ä	4	16	16	4	7	4	11	-11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0	ç	2	33	21-	2	ő	7	7	-7	4	ň	4	14	-14	+3	4	4	54	54	5	7	4	13	-13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 7	4	2	22	22	<u>د</u>	ó	ž	34	-34	5	ŏ	4	30	30	- 2	4	4	3	- 3	6	7	4	5	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	Ă	ž	34	-34	á	ģ	3	ŝ	-6	6	ō	4	15	15	-1	4	4	58	- 57	7	7	4	8	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	4	ž	60	-58	Ś	9	3	19	19	7	0	4	4	- 2	0	4	4	7	-6	-7	8	4	8	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	6	ž	24	24	6	q	3	7	7	- 7	1	4	20	-21	1	4	4	63	62	- 6	8	4	11	-11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ò	6	3	51	51	7	9	3	5	- 5	- 6	1	4	15	-16	2	4	4	11	11	-5	8	4	18	-18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ĭ	6	3	5	~ 5	-7	10	3	17	-17	~5	1	4	20	20	3	4	4	24	-24	-4	8	4	10	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ż	6	3	47	-47	-6	10	3	5	- 5	- 4	1	4	28	5.8	4	4	4	14	-14	- 3	8	4	30	30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	6	3	28	28	-5	10	3	18	17	- 3	1	4	14	-14	5	4	4	23	24	-1	8	4	51	- 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	6	3	7	8	-4	10	3	11	12	-2	1	4	27	-26	6	4	4	14	14	U	8	4	77	-0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	6	3	18	-18	- 3	10	3	2.2	-2 2	1	1	4	16	16	- (2	4	21	-22	2	9	4	33	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	6	3	11	-1 1	- S	10	3	33	-35	2	1	4	54	- 7 3	-0	2	4	24	21	د ح	- 12 - 12	7	10	-11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-7	7	3	6	5	- 1	10	5	14	14	5	1	4	34	- 5 5	- >	2	4	19	10	6	9	7	13	_14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 6	7	3	23	23	Ŏ	10	\$	50	-10	4 E	7	4	20	20	-4	2	4	10	14		8	4	12	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5	7	3	6	-6	2	10	2	30		2		4	24 F	2. Y	- 2	2	7	10	-10	~	8	ž	12	13
-3 7 3 15 15 5 10 3 10 10 -6 2 4 24 25 1 5 4 18 17 -6 9 4 4 -5 -1 7 3 13 12 6 10 3 13 -13 -5 2 4 4 3 2 5 4 24 -23 -5 9 4 16 16 0 7 3 6 6 -6 11 3 17 17 -4 2 4 23 -24 3 5 4 34 -35 -4 9 4 10 10	-4	4	\$	13	-15	5	10	2	10		0	1	4	1 9	-10	- <u>-</u> 2	ś	4 L	38	37	-7	9	4	16	-17
-1 7 3 13 12 6 10 3 13 -13 -5 2 4 4 3 2 5 4 24 -23 -5 9 4 16 16 0 7 3 6 6 -6 11 3 17 17 -4 2 4 23 -24 3 5 4 34 -35 -4 9 4 10 10	- 5	<u>_</u>	2	10	4 0	4 C	10	ر ۲	10	10			4	24	25	1	ś	i,	18	17	-6	9	4	4	- 5
0 7 3 6 6 -6 11 3 17 17 -4 2 4 23 -24 3 5 4 34 -35 -4 9 4 10 10	-2	,	2	12	12	ر ۸	10	ž	13	-13		2	4	4	3	2	5	4	24	-23	-5	9	4	16	16
	-1	7	3	6	6	-6	11	3	17	17	- 4	2	4	23	-24	3	5	4	34	-35	-4	9	4	10	10

- 212 -

_ _ _ _ _

нк	L	FÓ	FC	н	к	L	FO	FC	н	к	f,	FQ	FC	н	к	L	FO	FC	н	ĸ	L	FO	FC
-3 9	4	10	-10	-2	D	5	9	-9	-7	4	5	16	-16	0	7	5	16	-16	-4	11	5	5	5
-2 9	4	10	-10	1	0	5	30	29	-6	4	្ទុ	7	- 8	1	7	-5	8	7	- 3	11	Ş	9	9
19	4	14	14	3	a a	s	35	-34	-4	4	5	26	26	23	2	5	10	10	- 6	11	5	11	-11
2 9	4	11	-1 1	4	ō	Ś	7	-6	- 2	4	5	8	- 8	4	7	5	22	-22	1	11	5	5	6
39	4	25	-25	5	0	5	33	32	-1	4	5	14	-13	5	7	5	11	-10	Ş	11	5	17	17
5 Y 7 Q	4	2.5	-17	0 7	0	5	14	-23	1	4	2	26	25	07	7	2	15	15	5	11	י ג	0 16	-16
-7 10	4	6	- s	-7	1	5	11	-11	3	4	ś	29	-29	~7	8	ś	10	-10	5	11	ś	6	-6
-6 10	4	14	15	-6	1	5	8	8	4	4	5	7	- 6	-6	8	S	7	-7	- 4	12	5	15	15
-5 10	4	12	11		1	5	27	28	5	4	\$	28	27	-5	8	5	20	20	-2	12	5	9	-9
-3 10	4	21	-20	- ź	i	5	7	-8	7	4	ś	19	-19	-2	8	5	7	-8	ō	12	5	10	11
~2 10	4	5	4	-1	1	5	29	28	-7	5	5	13	-13	-1	8	5	10	-10	1	12	5	11	11
~1 10	4	20	21	1	1	5	37	-37	~6	5	5	5 71	21	0	8 9	5	11	10	-7	12	5	11	-11
1 10	4	24	-24	3	1	5	- 34	-34	-3	5	5	40	-39	3	8	5	19	-19	-6	0	6	5	- 5
2 10	4	14	-14	4	1	5	27	26	~ 2	5	5	9	- 9	4	8	5	4	- 4	- 5	0	6	30	30
3 10	4	17	8	5	7	5	4	-15	-1	5	5	38	37	5	8	5	18	18	-4	0	6	19	19
5 10	4	8	-9	7	1	5	9	~8	1	ŝ	5	42	-41	7	8	5	11	-12	-2	0	6	31	-31
6 10	4	16	-16	-6	5	5	19	19	2	5	5	28	-28	-7	9	5	10	~11	1	0	6	20	-20
-6 11	4	13	13	-4	2	5	49	~48	3	Ş	5	13	13	-5	9	5	23	23	2	0	6	28	-28
-4 11	4	22	-22	-2	ź	5	37	37	5	ŝ	5	22	-3	-2	ģ	5	30 8	-29	4	0	0 6	25	25
-311	4	5	6	-1	S	5	24	24	6	5	5	13	-13	- 1	9	5	28	28	6	D	6	8	- 8
-2 11	4	26	26	0	Ś	5	45	-45	7	5	5	5	- 5	a	9	ş	15	15	7	0	6	8	- 8
111	4	32	- 32	2	2	5 5	24 26	26	- 6	6	5	16	16	2	9	5	30 19	-29	-6	1	0 6	15	15
2 11	4	23	24	3	Z	ŝ	19	19	- 5	5	ŝ	4	- 3	3	9	5	11	11	-4	1	6	21	-21
3 1 1	4	9	10	4	Z	S	14	-14	-4	ó	5	40	-39	4	9	5	15	14	- 3	1	6	11	-11
4 1 7 5 1 1	4	10	-11	7	2	5	15	+15 8	-3	6 6	2	31	-8 30	د ۸	9	5	4	-4	-2	1	6	21	21
-5 12	4	7	- 8	- 7	3	5	7	7	- 1	6	5	18	18	-7	10	ś	6	6	1	1	6	27	-27
-4 12	4	7	7	-6	3	S	10	-10	Q	6	5	36	-36	-6	10	5	11	11	S	1	6	5	- 5
-3 12	4	15	14 14	-5	ک ۲	5	18	-18	1	6	5	22	-22	-5	10	5	5 25	-26	3	1	6	27	27
0 12	4	6	-6	- 3	3	5	21	21	3	6	5	19	19	-3	10	s	4	+3	5	1	6	13	-13
1 12	4	16	16	- 5	3	5	6	6	4	6	5	10	-10	-2	10	5	19	19	6	1	6	15	-15
2 12	4	10	10	-1	3 *	5	12	-11	5	6	5	16	-16 10	-1	10	5	11	11	7	1	6	7 10	7
4 12	4	11	-12	ĩ	3	ś	19	19	-7	7	Ś	5	4	1	10	5	16	-16	~6	ź	6	10	~10
5 12	4	5	5	Ş	3	5	32	32	- 6	7	5	11	-1 1	Z	10	5	13	12	-5	5	6	13	-13
-70	5	19	÷20	3	3 z	5	8 ∠⊂	-24	- 5	7	5	12	-12	3	10	5	16	16	÷3	2	6 4	9	9
-50	5	zó	20	5	3	5	10	-10	-3	7	5	12	11	\$	10	ś	14	-14	-1	2	6	2	1
-4 0	5	29	29	6	3	5	16	16	- 2	7	5	4	3	-6	11	5	8	-9	Ó	2	6	16	-16
-30	5	4	~ 4	7	3	5	12	11	- 1	7	5	4	- 4	- 5	11	5	Q	-9	1	2	6	17	-17

- 213 -

н	ĸ	L	FO	FC	н	ĸ	ι	FO	FC	н	ĸ	L	FO	FC	н	ĸ	٤	FO	FC	н	κ	L	FO	FC
z	S	6	19	19	- 6	6	6	7	-7	6	ģ	6	13	-13	3	1	7	9	9	3	5	7	4	4
3	2	6	14	14	-5	6	6	15	-15	- 5	10	6	13	÷14	4	1	7	11	-12	4	5	7	12	-12
4	5	6	55	-2.2	- 3	- 6	6	13	13	- 3	10	6	13	13	5	1	7	12	-12	5	5	7	ዳ	- 8
S	S	5	22	-2.5	- 2	6	6	11	11	-2	10	6	10	10	- 6	2	7	15	-15	6	5	7	4	4
6	2	6	10	10	-1	6	6	6	-6	- 1	10	6	10	-10	-5	5	7	16	-17	-6	6	7	13	-14
7	S	6	18	18	0	6	6	17	-16	0	10	6	14	-14	- 4	2	7	9	10	- 5	6	7	13	-13
- 6	3	6	14	-14	1	6	6	7	-7	2	10	6	15	15	- 3	2	7	22	23	-4	6	7	9	9
- 5	3	6	6	~ 6	S	6	6	19	18	4	10	6	15	-15	- 2	2	7	13	-13	- 3	6	7	18	18
-4	3	6	21	21	3	6	6	7	7	5	10	6	- 6	- 8	-1	2	?	30	-31	-2	6	7	12	-11
-3	3	6	15	15	4	- 6	6	20	~20	6	10	6	- 5	7	0	2	7	5	5	-1	6	7	26	-59
-2	3	6	23	-23	5	6	6	16	-15	-6	11	6	10	-10	1	Ş	7	19	19	0	6	7	4	3
-1	3	6	24	-24	6	6	6	. 9	9	- 5	11	6	6	- 5	2	2	7	3	0	1	- 6	7	17	17
0	3	6	14	14	7	6	6	14	14	- 4	11	6	15	15	3	2	7	18	-18	3	6	2	14	-17
1	3	6	25	25	6	<u> </u>	6	13	-13	- 3	11	6	11	11	4	S	7	5	- 4	4	6	<u> </u>	5	- 5
3	3	6	24	÷23	- 5	7	6	7	-7	- 2	11	6	16	-16	5	2	1	6	6	5	6	<u></u>	2	
4	3	6	4	- 3	-4	7	6	20	19	- 1	11	6	15	-15	6	2	1	×	9	~ 5	4	{		` 8
5	3	6	. 9	9	- 5	7	6	15	15	0	11	0	12	12	~>	5	1		70	-4	4	1	4	2
6	3	6	12	11	2	7	6	21	-21	1	11	<u>\$</u>	16	15	-4	5	5	¢	<u>è</u>	- 5	4	<u>,</u>	10	- 2
<u> </u>	5	6	4	- 4	÷ (4	6	21	20	2	11	°,	4	- 4	÷ 3	3	4		->	- 6	4	4	4.3	-10
-7	4	6	14	-14	0	4	6	75	15	5	11	0	14	-15	-2	5	4	10	-16	U 1	4	4	12	12
- 5	4	0	23	23	1	4	÷.	<1	2)		11	°,	0	0		2	5	4	10	-	÷.	7	(4	
-4	4	ó	10	- 20	~ ~	5	ç	10	-40		10		, Y	9 E	1	2	7	17	10	2	5	7	1 2	- 0
- 2	4	ç	20	-24	2	, ,	2	10	- 10	-4	4.2	4	4	- 9		2	2	4 4	-12	6	, ,	2	7	- 14
~~~	4	°,	27	- 20	2	5	2	ä	ģ		12	4	0	- 0	3	2	,	14	- 16	5	2	2	14	1 4
- 1	4	Ŷ	20	27	- 7	é	٥ ٨	,	-0	-1	12	Å	Å	- 4	Ĩ	ž	2		- 14	-6	Ŕ	, ,	10	11
1	4	4	11	-14	- 7	8	6	15	16	n	12	Ă	11	11	ς	2	. 7	15	15	-5	R	7	៍ទ័	
יכ	4	6	24	- 2 4	- 4	8	6	10	10	2	12	Å	10	-10	-6	Ĺ	7	15	15	-4	Ŕ	7	ś	- 5
7	7	4	12	12	- 7	Ř	Ä	17	-16	2	12	Ă	ģ	10	- 4	6	7	6	-6	+ 3	8	7	8	- 7
4	2	~	21	21	-2		6	17	-16	- 6	0	7	16	17	-3	4	7	ž	- 7	-1	8	7	13	13
5	4	Ä	- 4	۲,	-1	8	6	15	14	-4	õ	7	7	- 8	~ Ž	4	7	5	4	ò	8	7	6	5
Ś.	à	6	7	- 7	0	8	6	19	18	-3	Ō	7	7	- 6	-1	4	7	16	16	1	8	7	8	- 8
7	4	6	. 8	- 8	1	8	6	5	- 4	- 2	Ō	7	5	Š	Ó	4	7	8	8	2	8	7	ģ	-10
-7	5	6	8	7	Z	8	6	17	-16	1	0	7	11	-11	1	4	7	10	-10	3	8	7	10	10
- 6	5	6	13	13	4	8	6	15	15	2	0	7	16	-17	2	4	7	14	-15	4	8	7	12	12
-4	5	6	17	-17	5	8	6	6	6	3	0	7	16	17	3	4	7	14	14	5	8	7	4	- 4
- 3	5	6	7	-6	7	8	6	8	-8	4	0	7	19	2.0	4	4	7	17	17	<del>-</del> 5	9	7	10	-10
-2	5	6	16	15	-7	9	6	6	6	5	0	7	8	- 9	5	4	7	7	-7	+4	9	7	11	-12
-1	5	6	18	17	-6	9	6	8	9	6	0	7	19	-20	6	4	7	16	-17	<del>~</del> 3	Ģ	7	9	9
0	5	6	6	- 5	- 4	9	6	11	-11	+6	1	7	6	8	-6	5	7	8	9	- 2	9	7	19	19
1	5	6	24	-23	- 3	9	6	4	-4	<del>+</del> 5	1	7	13	-13	- 5	5	7	14	-14	-1	9	7	10	-10
S	5	6	8	- 8	-2	9	6	8	8	- 4	1	7	11	-11	-4	5	7	13	-14	0	9	7	19	-19
3	5	6	25	25	- 1	9	6	11	11	-3	1	7	10	10	~ 3	5	7	13	13	2	9	7	13	14
4	5	6	10	10	1	9	6	16	<del>-</del> 16	- 2	1	7	22	23	- 2	5	7	25	25	4	9	7	9	-9
5	5	6	14	-14	2	9	6	8	- 8	- 1	1	7	10	-10	-1	S	7	14	-13	- 4	10	7	7	7
6	5	6	16	-16	3	9	6	18	17	0	1	7	23	-25	0	5	7	25	-26	-3	10	7	11	11
7	5	6	9	8	4	9	6	10	9	1	1	7	. 9	- 9	1	5	7	3	-2	~ 2	10	7	7	- 7
- 7	6	6	10	10	5	9	6	11	-11	2	1	7	17	18	2	5	7	18	79	-1	10	7	16	-17

____

- 214 -

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR COMPOUND 1 HKL FO FC 1 10 7 12 12 3 10 7 11 -12

### APPENDIX III

# OBSERVED AND CALCULATED STRUCTURE FACTORS (X10) FOR

[(C_H_)_AGI[Tc(NO)Cl_(acac)]

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR TONOACAC

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	н	ĸ	Ł	10F0 1CFC	н	ĸ	L	10F0	10FC	н	ĸ	L	10F0	10FC	H	ĸ	Ĺ	1070	10FC	н	κ	L	10F0 10FC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	·						_													•			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	0	1220-1206	Z	5	0	459	469	<b>7</b> 5	-9	1	199	530	-6	~ 4	1	349	-322	- 5	Z	1	234 -139
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	0	449 -439	3	5	O.	230	244	- 4	-9	1	175	222	- 5	-4	1	127	~130	- 4	5	1	202 220
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	ΰ	407 375	- 4	5	0	282	289	-2	÷9	1	280	289	-4	-4	1	310	-337	- 3	2	1	289 -284
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1	0	249 -194	6	5	0	- 306	297	1	-9	1	252	<del>~</del> 242	<del>,</del> 3	- 4	1	298	-293	-1	2	1	176 174
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1	0	124 155	8	5	0	157	-168	3	-9	1	267	-358	-1	=4	1	155	-150	0	2	1	425 403
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	Z	0	112 -122	-3	6	Q	590	-247	8	-9	1	150	-36	0	+4	1	719	773	1	S	1	242 217
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	Ζ	Q	943 -885	<del>-</del> 2	6	0	411	431	-6	+8	1	182	186	1	- 4	1	729	746	2	5	1	1525 1446
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	2	0	1049 -950	-1	6	0	137	-114	- 3	-8	1	415	-473	2	- 4	1	1602	1603	3	5	1	1073 1017
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2	0	1509-1522	0	6	0	611	641	÷2	-8	1	128	-147	4	-4	1	286	292	4	2	1	360 296
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5	0	928 924	1	6	۵	697	730	-1	- 8	1	442	-421	5	- 4	1	188	-167	5	2	1	387 395
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	0	880 <b>-</b> 832	2	6	0	551	591	3	<del>~</del> 8	1	236	269	. 6	-4	1	223	-285	6	2	1	381 -378
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	2	0	1533 1497	3	6	0	357	340	<u>5</u>	- 8	1	155	187	-4	-3	1	1210	1164	8	2	1	161 -233
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2	0	837 808	4	6	0	225	-229	7	-7	1	187	-189		-3	1	115	125	-7	3	1	131 -216
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2	0	772 728	6	6	Ø	379	-378	-5	-7	1	354	-353	-2	+3	1	823	848	<del>~</del> 5	3	1	336 -338
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2	Û	194 203	- 5	7	đ	154	-166	- 4	-7	1	143	-147	-1	-3	1	163	-142	-4	3	1	327 334
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-6	3	a	154 -176	- 4	7	0	164	_172	<del>,</del> 3	77	1	146	-155	0	- 3	1	475	448	~3	3	1	133 149
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	÷5	-3	Ð	378 -411	2	7	0	639	-667	-2	-7	1	371	381	1	-3	1	1319-	1221	-2	- 3	1	557 584
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4	3	0	555 -491	3	7	0	268	÷275	-1	-7	1	626	669	2	- 3	1	1071-	1001	-1	3	1	147 -125
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	3	0	100 52	4	7	0	486	-538	1	-7	1	465	436	3	-3	1	550	-563	0	3	1	573 -563
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 2	3	0	704 -617	6	7	0	116	-16	2	-7	1	133	+118	. 4	-3	1	793	-766	1	3	1	319 255
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	÷1	3	0	464 501	- 5	8	Ð	347	203	3	-7	1	125	127	<del>~</del> 6	-2	1	553	467	Z	3	1	1253-1170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	3	Ø	106 83	-2	8	0	237	-250	4	-7	1	343	-325	÷4	-2	1	507	466	3	3	1	196 -182
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	0	202 199	<del>~</del> 1	8	D	147	151	. 6	-7	1	130	-161	+3	-2	1	301	-340	4	3	1	992 -981
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3	0	484 462	0	8	0	440	-450	-7	<del>2</del> 6	1	230	-236	-2	-2	1	239	-190	5	3	1	329 -305
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	- 3	0	256 241	3	8	0	221	238	-4	- 6	1	153	148	-1	-2	1	1354-	1363	6	3	1	422 - 375
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	3	0	204 -246	4	8	0	168	165	= 3	~ 6	1	516	554	0	-2	1	943	-991	7	3	1	140 147
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	3	0	431 -397	5	8	a	294	300	-2	-6	1	224	256	1	-2	1	275	313	-6	4	1	241 306
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	3	0	143 -138	6	8	0	379	368	-1	- 6	1	568	588	Ż	-2	1	1241-	1198	-5	4	1	97 55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	- 3	0	441 -490	-4	9	0	322	-334	D	- 6	1	564	-558	3	-2	1	430	427	-4	4	1	345 290
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-6	4	0	167 -171	-2	9	Û	249	-244	1	+6	1	104	-126	4	÷2	1	194	191	-3	4	1	368 374
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5	4	Ð	300 302	-1	9	0	189	182	2	<del>4</del> 6	1	536	-522	5	-2	1	791	823	0	4	1	541 -525
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	4	0	1064 1012	1	9	0	145	128	3	<del>.</del> 6	1	184	-198	6	-2	1	238	293	1	4	1	237 242
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	÷2	4	0	734 744	4	9	0	168	162	5	-6	1	114	-178	7	÷Ζ	1	119	161	2	4	1	592 ÷571
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>-</u> 1	4	0	144 148	5	9	0	234	-265	6	÷ð	1	111	120	- 7	=1	1	347	-195	3	4	1	231 221
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	4	0	99 -113	7	9	0	245	-232	-7	- 5	1	160	139	-6	-1	- t	284	162	4	4	1	101 67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4	Ð	391 -419	-2	10	0	168	143	<b>– 6</b>	= 5	1	120	-112	-5	-1	1	836	-441	5	4	1	440 409
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	4	0	301 312	-1	10	0	249	241	<b>2</b> 5	- 5	1	412	411		-1	1	283	-148	6	4	1	381 347
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	4	0	1307-1264	۵	10	0	240	239	-4	- 5	1	354	-361	-2	-1	1	1068	-996	7	4	1	194 200
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	4	0	221 211	1	10	0	247	+265	-3	-5	1	187	-189	5	0	1	609	-563	8	4	1	177 150
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	4	Ó	450 -442	3	10	0	208	-231	-2	<del>.</del> 5	1	984	-937	6	Ō	1	88	104	-6	s	1	107 -129
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	4	ŏ	324 330	-1	11	Ö	291	-287	-1	-5	1	677	-702	Ë	ð	1	131	175	24	5	1	388 -363
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	4	Ō	162 167	1	11	Ő	278	-261	à	- 5	1	549	-562	Ť	ť	t	1341-	1338	-3	5	Í	359 -369
-5 5 0 122 124 -2-11 1 260 -271 2 -5 1 605 543 3 1 1 297 -287 -1 5 1 99 107 -3 5 0 124 106 0 11 1 197 -178 3 -5 1 488 499 4 1 1 897 782 1 5 1 570 588 -2 5 0 519 -536 1 11 1 196 177 4 -5 1 571 552 5 1 1 306 318 2 5 1 521 519	+6	5	0	124 -202	Ó	12	1	237	-232	1	-5	1	214	-245	ż	1	1	511	-435	- 2	ŝ	1	673 -633
+3 5 0 124 106 0-11 1 197 -178 3 +5 1 488 499 4 1 1 897 782 1 5 1 570 588 +2 5 0 519 -536 1-11 1 196 177 4 -5 1 571 552 5 1 1 306 318 2 5 1 521 519	-5	ŝ	ō	122 124	- 2-	11	1	260	-271	ź	-5	1	605	543	3	1	1	297	-287	-1	5	1	99 107
-2 5 0 519 -536 1-11 1 196 177 4 -5 1 571 552 5 1 1 306 318 2 5 1 521 519	-3	5	Ó	124 106	. a ²	11	1	197	-178	3	÷5	1	488	499	4	1	1	897	782	1	5	1	570 588
	- 2	Ś	Ō	519 -536	1-	11	1	196	177	4	-5	1	571	552	Ś	1	1	306	318	ż	5	i	521 519
-1 5 0 958 -946 -1-10 1 147 153 5 -5 1 183 -186 7 1 1 143 141 4 5 1 223 211	+1	5	Ó	958 -946	-1-	10	1	147	153	5	-5	1	183	-186	. 7	1	1	143	141	4	5	1	223 211
1 5 0 973 -944 0-10 1 277 251 6-5 1 158 184 -6 2 1 288 -140 5 5 1 225 -227	1	5	0	973 -944	0-	10	1	277	251	6	÷5	1	158	184	-6	2	1	288	-140	5	5	1	225 -227

FAGE 1

.

- 217 -

.....

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR TCNGACAC

нк	L	10F0 10FC	нк	Ł	10F0	10FC	н	ĸ	Ł	10F0	10FC	н	ĸ	L	10F0	10FC	H	ĸ	ι	10F0 10FC
				_			٠	• .			• • • •		• •	_			• •			
75	1	351 -355	÷3 <del>,</del> 10	2	153	155	÷7.	74	2	255	-306	4	-1	2	763	-802	- <del>7</del> 7	4	ž	188 +197
85	1	207 -238	-1-10	2	. 270	267	-6	-4	2	362	-345	6	-1	2	540	-672	+ 4	4	4	204 166
-6 6	1	177 -187	0-10	- Z	185	-183	<del></del>	-4	Z	197	208	-5	0	2	221	-233	- 3	4	2	514 -524
<del>,</del> 46	1	172 -159	2 <del>_</del> 10	2	227	216	-4	74	2	486	-471		0	2	323	574	÷2	4	2	415 -401
<del>,</del> 36	1	161 169	3+10	2	137	-134	-3	-4	2	322	331	<del>,</del> -2	0	2	1015	-697	•1	4	2	679 -605
-26	1	210 210	-6 -9	2	125	121	-2	-4	2	322	-285	-1	0	2	404	472	1	4	2	146 103
-1 6	1	296 281	-5 -9	2	290	297	-1	-4	2	426	444	0	0	2	1162-	1361	Z	4	2	238 211
06	1	636 618	0 -9	2	326	=333	0	- 4	2	198	212	1	0	Z	145	-167	3	4	2	603 610
16	1	229 242	1 - 9	Z	332	-328	1	-4	2	302	307	2	0	2	160	-185	4	4	Š	238 219
26	1	118 102	4 - 9	2	264	285	3	-4	Z	1279	-1260	3	0	2	350	336	5	4	2	664 643
36	1	499 ~513	-6 -8	2	139	-138	4	-4	2	133	-122	4	0	Z	135	-154	7	4	2	133 122
46	1	132 -130	-5-8	2	135	-139	5	- 4	2	516	÷565	5	0	2	363	365	. 8	4	Ž	201 -203
56	1	369 -351	-4 -8	2	288	-277	- 8	-3	2	162	-175	ć	0	2	387	343	- 6	5	4	178 167
-4 7	1	155 156	-3 -8	2	251	-246	-7	-3	2	286	326	8	0	Z	172	177	- 5	5	2	231 -233
-3 7	1	118 -97	. 0 -8	2	502	<b>489</b>	- 6	- 3	Z	146	-128	-2	1	Z	1154-	1101	<del>,</del> 3	5	2	279 -272
-1 7	1	251 <del>-</del> 243	1 -8	2	342	-347	÷5	73	2	695	690	0	1	2	1124-	1147	÷ 2	5	2	286 261
17	1	639 -664	2 -8	2	339	349	-4	-3	Z	134	141	1	1	2	1090	967	•1	5	Ž	637 600
27	1	273 <del>-</del> 267	4 - 8	2	128	139	- 3	-3	2	720	.719	2	1	2	743	730	1	5	Z	719 737
37	1	289 -314	5 -8	2	154	-216	+2	2	z	601	<del>-</del> 552	3	1	Z	907	854	2	Š	2	178 -206
S 7	1	280 296	<del>7</del> 6 <b>-</b> 7	2	120	-161	0	73	2	497	389	4	I	Ž	964	903	3	2	2	111 117
77	1	313 316	-4 -7	2	301	323	1	÷3	2	1878	-1876	6	1	Z	230	266	4	5	~ ~	535 -515
-38	1	261 -272	-3 -7	Ž	174	176	3	-3	- Z	751	-711	7	1	2	286	-316	6	- S	2	409 - 398
<del>,</del> 28	1	128 174	-2 -7	2	905	926	4	÷3	Z	295	293	-4	Z	2	456	-333	- 7	5	2	241 -216
-1 8	1	236 -217	-1 -7	Z	218	227	5	₩ <u>3</u>	2	147	167	3	Z	2	292	340	<b>74</b>	, Ś	2	112 100
08	1	166 163	0 -7	2	516	469	6	-3	2	468	537	- 2	2	2	655	-584	-3	6	2	371 366
18	1	233 228	1 -7	_ S	166	-188	. 7	-3	2	112	216	-1	2	2	400	379	- 2	6	2	151 110
28	1	161 190	3 -7	2	256	-318	-7	<b>7</b> 2	Z	518	. 294	1	2	2	484	-473	-1	6	Š	552 514
38	1	470 494	4 = 7	Z	210	-215	<b>7</b> 0	÷2	2	270	-141	2	2	2	439	456	0	6	2	284 - 265
48	1	145 182	-6 -6	2	227	216	-4	÷2	2	291	-267	3	2	Z	505	-557	2	6	2	650 -665
58	1	300 317	-4 -6	Z	309	<u>302</u>	- 5	- Z	2	738	-774	4	2	Ž	519	-479	3	6	Ś	274 -298
68	1	146 -162	-2 -6	Ž	197	216	<b>*</b>	2	2	176	155	2	2	4	747	-007	4	0	2	158 -175
88	1	185 -159	-1 -6	Z	539	2574	-1	ΨŽ.	2	239	-257	6	2	2	266	-215	6	6	4	337 335
1 9	1	228 232	6 -6	Ž	783	-793	U	= Z	- 2	190	196	7	2	2	128	+130	ð	6	~	254 275
29	1	158 -116	1 = 6	Z	284	-269	1	Z	2	299	525	-8	5	Ž	341	-212	->	1	2	142 208
4 9	1	238 -281	2 -6	2	483	-492	2	τZ.	Z	205	-155	- 72	5	2	283	251	-4	4	4	187 - 155
5 9	1	140 - 198	3 76	2	300	, 331	5	-2	Z	349	338	- 74	2	4	446	578	- 5	4	Ś	119 91
69	1	186 -184	4 -6	2	135	=113	4	- 2	- Z	252	287	-3	5	2	279	200	- 2	4	4	299 +274
-3 10	1	18G 186	5 -6	2	225	266	Š	- <u>z</u>	Z	393	376	<u>-</u> 2	5	Ž	589	>62	0	4	2	396 -378
0 10	1	331 - 321	<b>₹</b> § ₹5	2	181	127	- <u>-</u> <u>-</u>	74	2	286	-309	-1	2	2	957	-836	ĩ	4	2	304 - 303
-1 11	1	163 -153	70 75	Z	220	195		71	Ž	543	7243	Ū	5	~	217	214	2	1	~	208 288
0 11	1	135 -137	-5 -5	2	196	-181	- 2	•1	2	1103	<b>#</b> 567	Ĩ	5	2	395	-407	4	1	~	348 383
1 11	1	136 -134	-5-5	2	217	-231	- 5	- 1	2	509	-189	z	5	2	141	-142	6	(	4	285 288
2 11	1	129 141	-2 -5	2	726	-157	- <b>-</b>	-1	2	800	871	3	د ج	4	072	-033	-4	8	4	223 -273
0,12	1	261 226	-1 -5	Ž	486	488	-1	÷1	1	1035	1078	4	2	<u></u>	120	+112	~2	ō	2	123 83
- 5-11	Z	149 -142	1 -5	2	1212	11/6	Ű	-1	2	1049	1125	5	2	4	217	107	Ŭ	0	2	200 270
0-11	Z	151 146	2 - 5	2	539	200	1	-1	2	1119	1185	6	2	2	187	104	2	0	\$	444 401
1-11	2	294 510	3 7 2	2	870	891	4		<u>ح</u>	280	-271	• • •	Ş	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	422	430	4	0	4	130 130
2-11	- 2	151 105	4 + 5	- 2	100	141	د		2	272	209	-6	4	۷.	175	6 C Y	>	8	۷.	105 -178

- 218 -

· •

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR TCNOACAC

нк	L	10F0 10FC	н	к	L	10F0	10FC	н	κ	L	10F0	10FC	н	ĸ	L	10F0	10 F C	н к	L	10F0 10FC
۰ ۵	2	351 - 740	n d	<u>'</u>	z	74.8	247	52	21	7	556	531	<b>1</b> 2	z	र	504	-506	-2 9	र	129 -67
-	2	231 -247	1.		ž	180	22.4	1	<u>_</u> 1	7	442	678	-1	ž	ž	130	109	ñó	ž	233 -178
-3 0	2	230 231		-0	7	766	745	-,		3	156	157	'n	7	ž	164	-153	1 ý	ž	217 -242
-2 3	2	240 671		- 6	7	224	222	1	1	7	1212	1225	ž	ž	- <del>.</del>	587	604	2 0	ĩ	135 120
1 9	2	208 - 200		-0	2	128	2305	;		्र २	1612	145	Ę	- <del>7</del>	ž	266	250	-3 10	3	145 -119
( 9	2	200 -207			7	222	-303	2 7		7	213	-230	, ,	7	ž	664	630	-1 10	ž	243 -242
4 9	5	192 -172		26	2	360	- 337	1	-1	1	78	-83		4	ر ۲	274	-254	0 10	3	182 181
-1 10	2	162 -172		22	7	440	2102		1	- ž	86	86	1 č	ž	ž	130	-1.09	1 10	ĩ	129 -149
2 10	2	105 -140			7	5/4	552	24	7	ר. ד	371	378 278		7	7	670	-596	-2 15	7	179 171
3 10	4	193 (97		- 2	2	920	704	-0	ň	ر ۲	5/ 8	-172	- 7	2	7	714	-672	0 11	7	208 205
-2 11	~	102 104	1	- 2	2	473	440	1	ă	2	1620	- 1756	-2	7	ž	381	-358	0 12	3	165 -129
1 11	2	172 170		22	7	374	2259		ň	7	1020			7	ž	120	-120	0-13	4	157 -82
÷1,12	ç	160 101		- 2	2	449	133	4	0	- 3	604	- 20 4		6	7	147	168	1-12	7	174 158
-2-11	2	210 220	, ,	- 2	7	120	-232	2	ň	2	227	-180	1	7	ž	321	- 334	1 1	2	180 180
0-11	3	412 372	-7	- 2	7	376	- 315	2	ŏ	7	225	350	5	7	ž	566	645	0-11	7	157 -150
-4-10	2	4/7 1/4		1	7	203	425	5	ň	7	333	330	2	7	1	405	-388	1-11	2	182 - 191
-2-10	2	142 100	-5	- 4	2	174	423	~	ň	7	214	314	2	ž	ž	217	253	3-11	7	150 -123
-1-10	2	486 -469		- 4	2	477	-130	, ,	ň	7	20%		۳ ۲	ž	ž	301	-243	-1-10	7	275 -269
0-10	2	104 -120		37	7	433	467	7	č		477	167	,	7	ž	301	-348	0-10	2	171 -136
1-10	2	213 210	-2	74	2	/ 4 9	2105	ģ	ň	ر ۲	427	-155	é	2	7	772	- 340	1-10	7	213 -196
2=10	2	230 -273		-4	2	705	-403		4	7	1087		-7	č	1	340	354	4-10	7	195 107
-8-9	5	1// 1/0	2	-4	2	393	-424		4	2	1007	-010	-2	5	ر ح	7/9	710		7	150 -160
- 6 - 9	్త	160 172		77	2	1272-		- 27		2	7/2	- 277	-2	5	7	907	P 10	1, -0	7	277 - 274
-2 +9	5	174 -109	4 ·	⇒4 ,	2	372	- 242			2	4775	4240	- L - 4	2	2	274			7	207 107
0 -9	<u></u>	195 -105	2.	-4	2	110	202	4	4	2	4/74	4/40		5	2	477	-190	-2 - 7	7	147 177
1-9	5	3/1 340	••• 5 • •• 4	- 2	2	221	247	2	-	2	1420	1419	4 7	2	<u>ר</u>	757	208	1 + 9	ž	120 100
5 -9	5	408 445	<u> </u>	ຼຸ	2	210	202	2		2	432	440	24	2	7	177	174		2	150 107
4 - 9	5	1/2 150	÷? '	- 2	2	401	200	د ،	4	2	222	233	<b>7</b> 0	2	2	777	7/4	2 - 7	7	157 1/2
-6 -8	5	139 -110	-, ,		2	102	- 234	-		7	470	-102	- 4	4	7	140	_1 00	5 - 7	7	157
-4 -8	5			- <u>-</u>	2	323	- 220	2	1	2	272	-194		۰ ۲	2	107	-705	4 - 7	7	155 -175
- 5 - 8	5	240 229	4	- 3	2	279	200	2	1	2	366	145	-1	2	2	201	-275	* 7 m 9	4	240 - 204
~1 ~8	5	4/1 407		- 3	2	232	434		5	27	2/1	2103	4	۰ د	2	420	- 445	0	ž	240 -204
0 -8	2	136 -170	4 .	- 2	2	205	021	- T_	2	2	704			2	2	7470	- 4 ) )	24 - 0	7	108 208
7 -8	2	222 202	· · ·	• <u>-</u> _	3	202	411	-0	2	27	460	- 373	2	Ŷ	2	3/5	-300	-2 -0	1	319 212
4 - 8	2	242 -270			2	303	-704		2	2	177	-232	2	4	7	450	-103		1	210 212
5 -8	2	240 -323	77		2	407	1007		5	2	407	210		4	2	221	-172	2 - 9	7	217 210
- <del>-</del> 2 - (	2	344 357			2	1061-	240			2	240		د ، ــــ	2	2	424	-17/	2 - 0	4	709 - 700
-3 -7	3	403 404		- <	2	200	207		2	2	441	-427	-4	5	2	410	-134	4 - 0	4	345 370
-1 -7	2	109 -100	-2.		2	211	-207	2	5	2	5012	-410	4	5	2	117	540	-6 -7	7	470 449
172	2	223 -224	-1	Ξ <u>ζ</u>	2	100	107	<u>,</u>	~	2	200	1010		4	2	222	200		7	474 00
3 -7	3	468 -440	0 •	-2.	د	311	300	3	5	2	833	7//2	2	<u></u>	2	439	400		4	131 00
4 -7	3	185 214	1.	- 2	3	188	-185	4	2	5	399	- 100		6	2		-167	-2 -7	4	200 - 200 200 - 202
-7-6	3	211 501	<u> </u>	- <	2	432	-435	2	. 5	5	172	-170		0	2	101	-103	u = r 1 = 7	14 1	COC 00C
-6 -6	5	187 -180	3.	τζ.	2	439	-439	0	4	2	121	130		0	2	243	2.36	1 - 7	4	304 323
-5 -6	5	186 217	4 .	-2	2	187	171	- <u>- </u>	4	_ 5	272	335		ō	2	172	-1/6	2 - 7	4	133 -142
-4 -6	3	112 -101	5 '	-2	5	877	- 755	-{	5	5	528	197	+1	8	5	241	241	4 - 7	4	190 194
-3 -6	3	480 -494	6.	-2	5	226	-248	-0	3	2	225	205	1 F	8	2	744	124	6 <b>-</b> (	4	102 179
-2 -6	3	445 -462	. <u>.</u> .	-]	2	499	-301	72	2	<u>_</u>	201	220	<u></u>	0	2	278	- 320	<b>-</b> 0 - 0	4	190 -182
-1 -6	- 3	665 -670	-3	<b>≠</b> 1	- 3	>76	450		- 3	- 3	588	398	- 5	9	\$	141	129	•> •6	- 4	181 187

.

. . . .

- 219 -

- - - -

PAGE 3

3

____

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR TCNOACAC

нк	L	10F0	10FC	н	κ	L	10F0	10FC	н	к	L	10F0	10FC	۲	к	L	10F0	10 F C	н	к	ι	10F0	10fC
4				,	· ~	,	434	*	,	2	,	704	-701	10	7	6	778	250	- 3	- 6	<	150	157
-4 -6	4	484	-251	0	- 2	4	427	-107	4	2	4	202	-301	-2	2	7	5/1	528	-2	- 4	ś	286	271
~3 =6	4	186	- 747	- 4	-4	4	133	240	,	5	1	200	2/7	1	,	7	313	328	-1	- 6	5	\$77	602
-2-6	4	347	- 30 3	-0		4	407	200		2	7	400	104	2	2	7	377	256	'n	- 6	ŝ	128	-107
-1 -6	4	564	377		31	7	209	102	20	7	4	261	-100	1	7	7	191	193	1	- 6	s	\$11	497
0 = 6	, 4	129	120	-4		4	/ 140	-133	- 22	2	2	195	-240		2	7	212	-254	2	- 6	ś	223	-239
1 -6	4	521	214		-1	4	432	-1074	- 4	2	2	412	-107	Å	2	7	240	-257	- 5	-š	ś	302	310
2 - 6	4	343	-140	4	21	7	704	1020	= = = = = = = = = = = = = = = = = = = =	7	7	424	-421	÷	ģ	7	207	205	- 4	-5	Ś	174	160
5 ~0	4	133	-150			4	272	5 2 0	-2	ر ح	7	370	-252		2	2	276	-253	- 3	-ś	ś	643	677
2 - 6	4	121	- 120	2		4	- 475	-254	1	1	7	761	375	ž	8	4	471	-483	-2	-ś	ŝ	229	-223
-8 -3	4	220	-240	د ۸	- 1	7	525	562	2	ž	2	117	-100	L.	Ř	4	203	-226	-1	- Ś	Ś	403	411
70 72	4	431	-404			7	27	444	2	7	2	888	880	<u>,</u> ב	ŏ	Å	220	+215	ò	- 5	5	661	-641
*> *>	4	122	17/	ر ۲		7	137	144	2	ž	4	183	189	č	ó	4	238	-231	1	<b>-</b> 5	ŝ	478	-428
-3 -3	4	142	292	-7	- 1	7	370	250		ž	7	425	426	1	ó	4	223	226	2	-5	5	625	-585
-2-2	4	213	410		ň	7	300	163	ĥ	ž	2	126	97	ò	10	i.	131	106	4	-5	5	231	234
· · · · · ·	- 4 - 1	474	-/71		ň	7	585	1541	7	ž	2	134	-179	-1	12	4	149	-131	6	- 5	5	247	304
1 ***	. 4	- 470 227		-7	ň	7	475	509	<u> </u>	ĩ	7	130	-165	ċ.	.11	5	385	-346	- 7	-4	ŝ	201	166
2 = 2	• ••	264	-213		ň	7	331	-344	- 6	ž	4	421	-420	- 3 -	-10	Ś	132	129	- Ś	-4	5	266	227
- 7 - 1	· 4	157	125		ň	7	1214	-1235	+ 3	2	Ā	357	337	- 2-	•10	Ś	264	-301	- 4	-4	5	497	-517
	1	200	20.6	'n	ň	4	75	-25	-1	4	4	894	814	1	10	5	163	166	- 3	- 4	5	115	116
- / - /		570	AC0	1	ň	2	240	-257	ò	4	4	330	-304	2.	-10	ŝ	229	221	- 2	+4	5	289	-295
		224	-320	2	ň	2	641	720	ĩ	4	4	229	229	4.	-10	5	136	120	1	-4	5	253	-236
-3 -4		304	328	3	ŏ	2	121	-103	ż	4	4	215	-220	-6	-9	ŝ	303	-301	ź	-4	Ś	827	808
		205	-505	Ĩ.	ŏ	4	210	229	3	4	4	277	-271	-4	-9	5	204	-203	4	-4	5	515	467
0 =/		173	-138	Š	ŏ	4	271	-269	4	4	4	108	75	3	<b>~9</b>	5	141	135	<u>-</u> 8	<del>-</del> 3	5	135	-187
1 -/		547	-525	7	ŏ	à	140	-194	5	4	4	356	-348	1	-9	5	210	-204	-6	-3	5	547	-529
		274	292		ŏ	4	178	-193	2	4	4	180	-195	Ź	-9	5	193	213	-5	-3	5	415	-397
5 -4	2	395	437	<b>~</b> 7	Ť	Å	344	\$229	45	Ś	4	342	408	3	+9	5	297	<del>•</del> 323	<b>1</b> 4	- 3	5	245	-263
7 -1	4	113	194	÷5	1	4	307	-92	-4	5	4	170	195	4	-9	5	127	-123	- 3	- 3	5	135	-165
-8 -3	4	268	272	-4	1	4	401	326	-3	5	4	612	632	-7	-8	5	171	181	- 2	-3	5	263	276
-5 -1	4	707	-683	- 3	1	4	274	-261	-2	S	4	197	207	-6	-8	5	131	118	-1	- 3	5	201	-201
- <u>1</u>	4	754	-735	-2	1	4	927	997	1	5	4	461	-481	-5	-8	5	222	243	0	-3	5	881	883
-2 -3	s 4	248	263	-1	1	4	555	605	3	5	4	401	-411	- 4	-8	5	328	347	1	- 3	5	170	-182
-1 -3	5 4	292	-265	0	1	4	707	756	4	5	4	308	296	-2	-8	5	238	249	2	<del>.</del> 3	5	522	478
1 - 3	5 4	642	614	1	1	- 4	245	₽254	5	5	4	177	-165	-1	- 8	5	309	-320	3	-3	5	352	-334
3 -	3 4	751	709	2	1	- 4	598	565	6	5	4	262	255	C	-8	5	270	290	4	-3	5	157	-142
4 - 3	\$ 4	91	-64	3	1	4	558	-532	7	5	4	140	183	1	-8	5	279	-264	5	-3	5	393	-404
5 - 3	\$ 4	125	109	4	1	- 4	310	-308	- 4	6	4	122	-95	_ 5	-8	5	132	134	<u></u> 6	<del>,</del> 3	5	220	-246
6 -	5 4	312	-335	6	1	- 4	256	-260	- 3	6	- 4	434	-440	<del>~</del> 6	-7	5	194	214	<del>.</del> 6	<del></del> 2	5	412	197
-5-3	2 4	618	-488	7	1	- 4	196	203	<del>-</del> 1	6	4	654	-619	-5	-7	5	292	<del>~</del> 288	- 5	÷2	5	281	277
-4 -7	2 4	146	154	-5	2	- 4	105	67	. 1	6	4	262	-252	-3	-7	5	621	-647	- 4	-2	5	875	874
-3 -2	2 4	659	601	-4	2	- 4	677	638	2	6	4	497	515	<del>,</del> 2	-7	5	229	-245	-2	÷2	5	441	489
- <u>-</u> 2 - 2	2 4	170	-153	÷3	2	4	333	-344	3	6	4	121	<del>,</del> 100	+1	-7	5	358	-359	-1	<del>•</del> 2	5	365	-337
-1 -	2 4	677	687	-2	2	4	520	498	6	6	- 4	246	-218	e	-7	5	262	228	1	-2	5	369	-371
1 =2	2 4	430	389	-1	2	4	530	-527	8	6	4	213	-173	3	-7	5	271	268	2	-2	5	184	-194
2 - 2	2 4	420	-458	1	2	4	342	-343	<del>,</del> 5	7	4	161	-260	, 6	-7	5	137	-127	4	<u>-</u> 2	5	436	-416
4 -	2 4	504	-530	2	2	- 4	845	-849	- 4	7	4	126	68	-7	-6	5	225	-242	5	- Z	5	193	194
5 -	2 4	307	-344	3	2	4	173	-146	- 3	7	4	164	-162	- 5	-6	5	246	- Z 36	7	<b>-</b> 2	5	202	256

-

, OBSERVED AND CALCULATED STRUCTURE FACTORS FOR TCNOACAC

H K L 10F0 1CFC	нкг	10F0 10FC	H K L 10F0 10FC	H K L 10FO 10FC	H K L 10F0 10FC
0 4 5 70/ 404	<u>_</u>	102 -214	5 7 5 108 -167	-5 -5 6 155 -191	-5 -1 6 281 -278
	-0 3 3	746 - 781		-4 -5 6 214 236	-4 -1 6 454 -452
		202 2281			<b>43 -1</b> 6 753 -714
-3 -1 5 492 -502	-4 J J	272 -201			-2 -1 6 177 -167
	-3 3 3	102 -070			-1 -1 6 535 -562
	<u>-</u> 2 3 3	277 -22/	3 9 5 1/0 02	0 - 5 6 682 - 703	0 -1 6 819 848
	0 7 5	175 174		1 =5 6 213 =213	2 -1 6 227 234
	4 7 5	433 430		3 = 5 6 400 384	3 -1 6 142 149
	2 2 5	227 200		4 -5 6 124 +118	4 -1 6 128 -126
	2 3 3	172 167	1 9 5 162 163	-5 -4 6 360 -373	6 -1 6 266 -277
		178 -177	3 0 5 204 204		-7 0 6 417 -220
	5 7 5	136 -126	m1 10 5 231 241	-2 -4 6 103 -60	-5 0 6 126 -147
	2 2 2 2	771		-1 -4 6 705 00 -1 -4 6 297 303	-4 0 6 417 410
	 	175 -161		C +4 6 249 240	-3 0 6 242 292
	- 4 5	173 -141		1 = 4 6 1076 1040	-2 0 6 993 1062
-3 U 5 285 250	-7 / 5	400 303		2 = 4 6 244 242	-1 0 6 730 780
		402 373		3 -4 6 675 645	0 0 6 602 639
-1 U 5 1514 1369	14 J	4/0 470	1-10 4 251 235		2 0 6 745 -739
	-1 4 2	140 130		5 = 6 1 6 165 700	4 0 6 451 -448
1 U 5 1579 1469	3 4 5	320 - 303		7 =4 6 146 161	5 0 6 181 166
2 0 5 115 100	243	125 140			6 0 6 209 <del>-</del> 216
3 0 3 113 91	242	429 4490			-6 1 6 373 295
4 0 5 208 - 200	443	151 1/4		-5 -3 6 702 -100	-4 1 6 146 147
3 0 5 135 - 171	7 4 5	176 160		-3 -3 6 270 300	<b>•3</b> 1 6 371 372
	4 3	464 444		-1 -7 4 314 359	m 2 1 6 353 m 377
	- 4 5 5	400 224		1 - 7 6 310 - 275	-1 1 A 288 -310
	-/ 5 5	170 221		2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	0 1 6 1200~1265
		100 100 647 1575		3 - 3 6 520 - 509	2 1 6 934 -949
		070 -003		4 + 3 6 176 -155	4 1 6 185 163
-3 1 3 907 923	2 5 5	221 -204		5 - 3 6 325 - 350	5 1 6 162 157
	7 5 5	201 -204		6 -3 6 170 177	-4 2 6 423 -441
	, , , , , , , , , , , , , , , , , , ,	213 212	-3 -7 6 305 -297	7 - 3 6 255 - 60	+3 2 6 102 33
	, , , , , , , , , , , , , , , , , , ,	455 454		7 - 7 6 283 334	-2 2 6 504 -511
3 + 3 - 344 = 322	<u> </u>	321 - 316	0 +7 K 303 324	+6 -2 6 122 158	-1 2 6 320 300
2 4 7 7 101 173 2 4 5 177 - 176	-2 6 5	100 -180	1 -7 6 170 -163	-5 -2 6 644 670	1 2 6 730 759
	-1 6 5	330 205	2 - 7 6 291 292	-4 -2 6 96 126	2 2 6 786 797
27 2 5 549 375	0 6 5	146 141	3 -7 6 180 -185	L2 -2 6 491 -465	3 2 6 654 628
	1 6 5	573 557	5 -7 6 126 -151	-1 -2 6 624 -647	4 2 6 551 503
-/ 5 5 558	2 4 5	416 469	6 -7 6 143 -129	0 -2 6 479 -468	6 2 6 158 166
	5 4 5	207 -208	-5 -6 6 141 108	1 -2 6 334 -347	7 2 6 270 -286
	7 6 5	244 271	44 46 6 465 481	2 -2 6 382 372	-6 3 6 226 -245
		145 167	-3 -6 6 273 286	3 -2 6 377 -349	-4 3 6 368 -374
U 2 J 104 00 4 3 5 070 - 674	-175	206 215	-2 -6 6 698 730	4 -2 6 529 514	-3 3 6 232 248
3 3 5 525 524	- i j 0 7 5	370 344	-1 -6 6 133 -132	5 -2 6 221 219	-2 3 6 469 431
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	175	375 3354	0 -6 6 268 288	A = 2 A 266 26A	0 3 6 254 241
2 2 2 173 174	, , , , , , , , , , , , , , , , , , ,	187 151	1 - 4 4 382 - 337	7 - 2 6 200 200	1 3 6 318 -289
4 2 3 322 303	272	103 131		-7 -1 6 375 218	2 3 6 157 161
	, , , , , , , , , , , , , , , , , , ,	124 -144			3 3 6 831 +829
8 2 3 210 +225	4 7 3	164 -101	-0-0 100 103		

.

PAGE 5

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR TCNOACAC

н к	L	10F0	1CFC	H	κ	٤	10F0	10FC	н	ĸ	L	10F0	10FC	н	ĸ	L	10F0	10 FC	н	ĸ	L	1060	10FC
4 3	6	140	-132	-1	-0	7	943	÷154	6	-4	7	191	-223	2	1	7	472	434	0	6	7	229	214
 	6	478	-451	'n	÷,	7	236	÷218	7	-4	7	134	170	3	ì	ż	773	779	1	6	7	239	-242
-5 6	ň	243	268	ž	 -	÷	275	-285	-8	- 3	7	152	107	4	1	7	137	107	3	6	7	259	-224
-6 6	6	371	358	3	~ ý	7	156	157	-6	- ž	7	284	287	Ś	1	7	398	390	7	6	7	195	181
47 4	6	215	184	Š	É.	7	139	140	±2	-3	7	560	553	ē	1	7	274	-232	-4	7	2	143	122
-1 4	6	332	-300	-4	-8	7	167	-174		- 3	7	119	-85	8	1	7	201	-225	-3	7	7	201	-199
1 4	6	749	-706	- 3	-8	7	236	-236	ō	-3	7	960.	-1010	-5	2	7	234	-253	-1	7	7	271	-251
3 4	6	236	-230	-2	-8	7	326	-327	- 2	-3	7	844	-859	-4	2	7	205	228	0	7	7	354	-352
54	6	228	237	-1	28	7	324	295	4	- 3	7	313	-294		2	7	378	-381	1	7	7	128	-144
64	6	252	272	0	- 8	7	225	-198	5	- 3	7	335	363	-2	2	7	281	300	3	7	7	199	179
74	6	321	285	1	-8	7	303	285	-6	-2	7	248	298	-1	2	7	407	437	-2	8	7	130	-87
-35	ó	528	~500	3	-8	- 7	295	294	-4	- 2	7	350	-334	0	2	7	117	109	-1	8	7	166	150
÷2 5	6	251	-218	- 3	-7	7	576	607	- 2	- 2	7	785	-793	1	5	7	553	576	1	8	7	257	254
-1 5	6	343	-339	-2	-7	7	160	119	— <b>−</b> 1	-2	7	156	-148	3	5	7	249	255	3	8	7	245	251
15	6	317	296	-1	-7	7	480	470	0	-2	?	346	-363	4	2	7	462	-457	-1	9	7	182	167
25	6	126	133	0	<del></del> 7	7	113	<b>~</b> −62	1	÷5	7	649	676	5	2	7	121	-105	, 1 <del>.</del> 1	12	8	143	104
35	6	520	515	2	-7	7	162	<del>-</del> 136	3	- 2	7	272	283	. 6	2	7	223	-200	-1-	11	8	334	301
45	6	199	-224	- 3	-7	7	228	-213	4	- 2	7	537	536	-6	3	7	129	145	1+	11	8	134	102
65	6	135	-163	5	-7	~ 7	167	-193	6	- <u>2</u>	- 7	136	143	-4	3	?	151	196	- 3-	10	8	185	184
85	6	197	-178	<del>,</del> 7	- 6	7	178	153	• ⁷	<u>-</u> 2	7	140	-18Z	-3	3	7	419	404	0-1	10	8	133	-126
-5 6	6	129	+193	- 5	76	7	412	416	-6	-1	7	305	-326	-2	3	?	181	-174	1-1	10	8	224	-213
-2 6	6	136	145	-4	-6	~ 7	161	156	-4	-1	7	381	+396	0	3	7	396	-413	3-	10	8	138	-138
-1 6	6	385	369	3	-6	_ 7	283	278	-3	-1	7	320	300	1	3	7	159	-158	-4 -	-9	8	124	~140
0 6	6	258	248	-1	<b>.</b>	<u> </u>	322	-35(	-2	71	- 2	110	87	2	2	4	782	-//3	- <u></u>	- 4	ð	121	-165
1 6	6	562	556	0	-0		270	7262	- <u>-</u> ]	<b>7</b> 1	1	119	857	2	3	4	595	-418	-2-	* 9	č	158	-162
26	6	240	-235	1	-0	1	584	-580	0	-1	5	506	244	4	2	4	127	-159	*1 •	- 9	5	210	-215
4 6	6	223	-203	5		4	132	-149	6		4	227	- 606	2	2	4	270	-276	2	- 9	0	400	289
5 6	0	203	7220	4		4	200	475	2	21		024	-034	0 4	2	4	213	272	3		0	100	475
0 0	ò	109	-122	^	70		123	133	4	31	7	120	2122		2	<u>'</u>	207	200		- 9	ç	124	132
U Y	Ŷ	300	-327	-0	-5	- <del></del>	131	-775	27	<u> </u>	<b>'</b>	492	-274		4	5	144	-192	- 7	-0	0	146	-147
		220	-717	- 4	- 5	÷	537	-235	-5	- 1	- 7	127	103	12	Å	5	375	- 765	- 1	- 0 - 8	8	761	75.8
2 7	o ∡	172	-100		22	÷	222	2354		ñ	7	181	104	2	ž	7	254	-238	- 2	- 8	8	182	100
5 r	6	253	247			7	332	202		ñ	2	811	856	2	4	7	484	507	4.	- 8	8	186	-189
<u> </u>	~	168	-173	1	-5	÷	327	304	-1	กั	7	510	-523	ž	Ā	7	550	563	6.	- 8	Ř	151	-163
-4 0 -2 8	~	139	-150	2	-5	7	585	578	Ó	กั	2	83	-100	5	4	7	174	158	- 7 -	-7	ē	136	-139
2 8	Ă	243	259	6	-5	7	172	-191	1	อ้	7	608	-660	é	4	7	312	283	-6 -	-7	ě	133	128
ก้อ้	6	165	165	8	-5	7	154	-116	ż	ň	7	347	-326	-4	Ś	7	294	-282	-4.	- 7	ē	393	401
-2 10	Ă	154	149	-7	-6	7	174	-181		õ	7	205	195	- 3	Š	7	143	-113	-3.	-7	ŝ	311	317
0-12	7	160	-131	-6	-4	7	176	-192	Ś	õ	7	149	144	ō	ŝ	7	603	578	-2-	-7	š	129	132
0-11	7	233	214	±š	-4	7	499	-532	7	Ď	7	249	291	ž	ŝ	7	271	287	0 -	2	ē	201	-197
2-11	7	164	170	-4	-4	7	244	247	-6	Ť	7	123	144	3	5	7	225	-209	1 -	- 7	8	131	-114
-2-10	7	28G	299	-2	-4	7	400	408	~5	1	7	141	-122	5	5	7	317	-297	2 •	- 7	8	438	-413
0-10	7	187	. 140	-1	-4	7	328	312	-4	1	7	234	218	6	5	7	288	-240	.4 -	- 7	8	179	<del>, 1</del> 72
1-10	7	16C	-136	0	-4	7	820	819	-3	1	7	689	<del>-</del> 714	7	5	7	168	-1 20	-4 -	-6	8	119	-104
-6 -9	7	237	235	1	-4	7	517	488	-1	1	7	702	-716	8	5	7	191	-144	- 2 -	- 6	8	535	-553
-4 -9	7	155	183	2	-4	7	222	-218	0	1	7	169	-173	-4	6	7	240	275	-1 -	- 6	8	145	-149
-3 -9	7	150	-196	4	-4	7	546	-530	1	1	7	330	-331	-2	6	7	375	378	0 -	• 6	8	544	-\$42

- 222 -

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR TCNOACAC

нк	Ł	10F0	1 G F C	н	κ	L	10F0	10FC	н	κ	L	10F0	10FC	н	ĸ	L	10F0	10FC	н	κ	L	10F0	10fC
<b>.</b> ,		211	25.2	,			797	- 747	4		8	1.91	1.8 3	- 5		٥	21.9	-246	t	n	c	570	547
7 - 4	0	204	222	4	Ξ.	9	210	100	2	Å	8	158	120		- 5	ő	226	186	7	ñ	ć	147	-135
3 <del>-</del> 0	9	125	240	2	2	8	186	231	3	7	8	287	296	+1	-5	á	440	420	- 6	1	ŝ	114	-122
-4 -0	о 8	143	-140	-5	'n	8	210	190	6	2	8	184	-135	1	-5	ģ	345	333	-4	1	9	273	-280
-6-5	8	195	-420	-3	ň	Ř	378	340	7	2	Ř	236	-203	ż	÷5	ģ	484	-477	- 3	1	ŝ	319	346
13 45	8	155	123	-2	ň	8	632	-641	<b>4</b> 3	5	8	198	205	- 4	-5	9	131	-122	- 1	1	ç	614	630
+1 -5	ă	432	449	-j	ŏ	8	252	-265	÷1	ŝ	8	474	451	Ś	-5	ġ	175	-165	1	1	s	491	508
0 - Ś	ě.	433	445	Ó	ō	8	341	-370	1	ŝ	8	126	149	- 5	-4	9	144	205	3	1	9	296	-287
1 - 5	8	527	486	1	0	8	200	-205	2	5	8	146	-137	-4	-4	9	159	-146	_ 5	1	9	309	-260
2 ÷5	8	353	352	2	0	8	121	101	4	5	8	201	<del>,</del> 204		-4	9	160	2 05	÷5	Z	9	279	312
3 - 5	8	148	-151	4	0	8	519	516	5	5	8	260	-241	+2	-4	9	316	+310	- 4	2	ş	131	-140
4 -5	8	121	139	6	0	8	383	365	-5	6	8	142	173	0	-4	9	544	<del>-</del> 5 38	- 3	2	9	468	482
5 -5	8	207	-225	7	0	8	130	-106	0	6	8	190	<del>,</del> 198	1	- 4	9	318	-287	1	2	9	328	-369
-6 -4	8	147	+147	<del>-</del> 7	1	8	124	<b>_</b> 92	1	6	8	359	-355	- 3	-4	9	145	-106	2	2	9	272	-297
-5 -4	8	204	211	-6	1	8	183	-206	4	6	8	217	230	- 4	-4	9	284	278	3	2	9	444	-476
-3 -4	8	188	168	-4	1	8	317	-326	-1	7	8	184	-168	6	-4	9	237	244	6	2	9	267	248
-2 -4	8	215	214	- 3	1	8	130	98	0	7	8	133	157	7	- 3	9	160	189	- 3	3	~	200	-270
-1 -4	8	111	61	÷2	1	8	120	-134	1	7	8	145	-156	- 5	- 3	ý	152	120	•1	5	9 6	170	~164
0 -4	8	196	182	-1	1	8	144	122	2	7	ð	298	320	~ 4	- 5	<u> </u>	432	-429	U 4	5	Š	110	103
1 -4	8	832	~798	0	1	8	394	391	Ű	č	8	191	-1/4	~7	~ 3	~	757	-1/3		2	0	709	-144
3 - 4	8	692	-709	1	1	8	405	398	0	, Y	0	140	-117	U 2	23	<b>9</b>	221	244	2	2	6	431	404
6 -4	8	11/	129			8	812	847	0+- 3 (		9	103	100	ć,		, Y	629	517	2 /	2	2	124	337
-6 -5	8	1//	185	2		0	100	-191		F 1	0	100	-201		-3	6	140	-171	5	7	á	1.69	113
<u>-5 -5</u>	ð	107	134	0	4	0	444	121			6	190	-125	م ا		ó	283	-204	Ŕ	z	ć	188	-155
-4 -3	0	260	-210	<u>:</u> ,	2	0 2	174	187			ó	228	-100	-0	=2	ó	401	416	<u> </u>	í.	Ś	251	-268
-3 -3	8	240	-480	-2	2	8	50.3	\$20	-2 -		ó	152	-185	ñ	-2	ó	364	386	- 2	Ā	ġ	253	255
1 - 3	0	250			2	8	367	390	1 4		9	194	186	ĭ	-2	ģ	280	-295	-1	4	9	138	-165
2 2 7	8	390	402	1	2	ă	277	-269	2	9	9	266	244	3	-2	9	387	-371	Ó	4	9	303	311
4 - 3	Ř	24.6	229	ż	2	8	197	-203	-6 -	8	9	126	-140	4	-2	9	307	-318	4	4	ç	177	-179
5 - 1	8	409	424	3	2	8	306	-281	-3 -	-8	9	198	176	5	-2	9	297	-302	6	4	ç	305	+272
-7 -2	8	127	-173	4	Ž	8	517	-530	-2 -	- 8	9	185	216	. 6	- 2	9	219	-219	- 4	5	9	270	266
<u> </u>	8	435	-421	7	2	8	244	232		8	9	380	-378		-1	9	219	198	= 3	5	ç	133	119
-3 -2	8	376	-391	-6	3	8	180	236	÷s -	•7	9	143	118	<b>-</b> 4	-1	9	377	381	<b>⊷1</b>	5	9	177	151
0 -2	8	160	138	-4	3	8	378	341	-4 -	-7	9	264	259	<del>•</del> 3	-1	9	143	-118	2	5	9	281	-281
1 -2	8	417	441	- 3	3	8	148	-164	<del>,</del> 2 ;	7	9	156	_180	÷2	+1	9	389	427	3	5	9	165	180
2 -2	8	196	-173	-1	- 3	8	292	-306	-1-	-7	9	401	-396	-1	-1	9	420	-405	4	5	9	203	+204
3 = 2	8	444	461	1	- 3	8	177	-214	0 -	7	9	129	145	Ó	<del></del> 1	9	252	-267	- 2	6	9	266	-261
4 -2	8	390	-388	2	3	8	300	-323	1 -	7	9	353	-333	3	=1	9	262	282	0	6	9	409	-383
6 <del>-</del> 2	8	332	-344	3	- 3	8	207	193	5 -	• 7	9	153	191	5	+1	9	451	445	1	6	9	191	171
-7 -1	8	139	-202	5	3	8	399	366	- 5 -	-6	9	200	-218	7	-1	9	208	2 09	2 2	6	9	164	-189
-4 -1	8	240	241	6	3	8	174	166	-3-	•6	9	440	-439	-6	Ō	9	194	2 35	3	6	9	176	191
-3 -1	8	260	282	7	3	8	192	176	0 -	-6	9	171	162	-5	0	9	266	-290	0	7	9	152	141
-2 -1	8	197	232	- 5	4	8	144	-145	1	6	9	269	256	73	Ő	9	368	-574	7	7	9	194	162
-1 -1	8	405	447	-4	4	8	284	286	3	6	9	153	139	₹2	0	9	538	-557	2	7	Ŷ	1.59	87
0 -1	8	300	-333	-3	4	8	221	-257	4 •	••	ž	159	-155	-1	0	y o	125	-102	- 7	у 	7 1 M	120	-140
2 -1	8	502	-538	-2	4	ŏ	323	- 320		0	y o	143	-135	U A	0	¥	274	-202	2-1	F) F0 -	10	150	-120
5 -1	8	507	-283	0	4	o,	[4]	-120	- / •	• >	y	170	-100		0	7	209	<b>C</b> 1 f	- ۲	10		1.74	137

- 223 -

L

L

PAGE 7

ĥ.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR TONOACAC

н к г	10F0 10FC	н	ĸ	L	1050	10FC	н	κ	ι	10F0	10FC	н	ĸ	L	10F0	10FC	нк	Ľ	10F0	10FC
3-10 10	177 179	-5	-2	10	192	197	-1	5	10	342	-331	2	-2	11	374	-372	2 -7	12	149	-134
1 -9 10	194 173	-3	-2	10	403	456	1	5	10	227	-242	3	+2	11	291	270	0 -6	12	252	-246
2 -9 10	130 -125	-1	-2	10	118	145	-3	6	10	151	-147	5	- 2	11	175	147	2 - 6	12	199	-175
-3 -8 10	215 209	. 0	-2	10	239	-233	. 0	6	10	147	179	-4	-1	11	287	-257	-4 -5	12	221	-183
-2 -8 10	216 -212	3	- 2	10	486	486	÷2	7	10	143	138	÷2	-1	11	391	-378	-2 -5	12	338	-340
-1 -8 10	142 152	-7	-1	10	157	233	-1	7	10	254	254	3	-1	11	127	97	1 - 5	12	192	204
0 - 8 10	181 -163	5	-1	10	189	206	0	8	10	201	-201	4	-1	11	151	146	-6 -4	12	500	-211
1 -8 10	121 -86	-2	-1	10	130	-152	_ 0-	10	11	180	194	7	-1	11	152	-138	-4 -4	12	147	-178
2 -8 10	214 -182	<b>–</b> 1	÷1.	10	509	-555	- 2	÷9	11	135	139	-6	0	11	155	-163	-3 -4	12	239	249
6 - 8 10	139 147	1	-1	10	309	-342	-3	#8	11	137	-147	3	0	11	245	241	-1 -4	12	234	230
-6 -7 10	257 -70	Ź	-1	10	331	325	2	- 8	11	124	-93	~2	0	11	199	Z 34	0 -4	12	319	295
-4 -7 10	226 -221	4	-1	10	332	280	. 3	- 8	11	275	259	-1	0	11	198	207	1 - 4	12	145	124
-2 - 7 10	257 -257	6	÷1	10	145	129	-4	÷7	11	224	-214	C	0	11	230	246	2 - 4	12	188	172
2 -7 10	240 216	-5	Ó	10	180	-153	<u></u> 2	-7	11	145	-162	1	0	11	166	-187	3 - 4	12	145	-133
4 -7 10	273 248	-3	Ō	10	337	-338	-1	-7	11	197	194	3	0	11	409	-393	5 -4	12	221	-211
-6 -6 10	140 -168	-2	ō	10	251	251	1	-7	11	227	210	5	Ö	11	209	-205	-5 -3	12	177	194
-2 -6 10	251 251	ō	ō	10	303	301	5	- 6	11	172	154	5	1	11	136	131	-2 -3	12	129	142
0 -6 10	449 433	ž	õ	10	346	344	÷3	-6	11	445	432	-3	1	11	124	125	-1 -3	12	278	-303
1 -6 10	124 -122		ō	10	229	-225	-1	+6	11	340	372	-1	1	11	324	-351	1 - 3	12	297	-337
3 #6 10	125 -144		õ	10	182	-185	Ó	+6	11	155	=126	1	1	11	400	- 393	3 - 3	12	275	-276
6 = 6 10	176 -175	<u> </u>	Ĭ	10	135	125	ž	46	11	210	-176	3	1	11	197	-194	-7 -2	12	149	145
8 - 6 10	154 -53	÷ž	÷	10	237	221	17 × 7	÷š.	11	143	163	÷s	2	11	148	-173	-3 -2	12	272	-273
-4 -5 10	386 377	-2	i	10	401	392	- 5	-5	11	174	197	-3	ž	11	331	-326	-1 -2	12	334	-343
-2 -5 10	320 340	-1	ŕ	10	220	214	41	-ŝ	11	310	-305	ō	ž	11	147	153	0 - 2	12	177	174
1 5 10	155 -144	;	÷	10	334	-329	ò	45	11	182	-176	1	2	11	210	236	2 - 2	12	160	173
1 = 5 10	470 +420	2	i	10	225	2214	Ĭ	- 5	11	303	-298	ż	2	11	196	224	3 - 2	12	219	204
4 -5 10	113 -07	ŝ	i	10	160	134	2	-5	11	120	5.8	3	2	11	328	340	4 - 2	12	149	130
5 - 5 10	263 277	7	1	10	251	239	4	- Ś	12	171	131	Š	ž	11	149	1 6 9	5 -2	12	132	147
1 A 4 A 10	184 171	-4	2	10	123	126	<b>\$</b>	-4	11	154	-140	6	2	11	225	-190	-5 -1	12	183	-165
-5 -6 10	124 -104	- 3	2	10	184	2220	- 3	- 4	11	296	-303	- 5	3	11	183	-224	-3 -1	12	153	-120
-6 -6 10	121 100	-2	2	10	188	-204	-2	-4	11	178	172	2	3	11	154	170	-2 -1	12	267	279
-3 -4 10	233 -260	กั	2	10	370	-386	-1	-4	11	246	-238	· -1	3	11	169	1 84	-1 -1	12	236	243
	228 -212	2	5	10	226	2221	'n	44	44	386	396	1	3	11	232	2.05	1 -1	12	209	205
0 = 4 10	257 -274	3	5	10	198	194	ž	-4	11	362	360	ź	3	11	177	-181	ź - 1	12	135	-123
	302 374	š	5	łň	135	141	ž	- 4	11	141	142	-3	- Ā	11	171	177	4 -1	12	294	-252
3 #4 10	297 307	-5	3	10	135	+102	6	-4	11	181	-170	-2	4	Ξİ.	168	-130	6 -1	12	149	-133
5 - 4 10	172 141	46	ž	10	276	271	<b>4</b> 7	ž÷.	11	133	-129	ō	Ĺ	11	276	-296	-4 0	12	182	169
-6 -3 10	161 -183		ž	10	212	2215	- 4	- 3	11	247	263	2	Å	11	194	-191	-3 0	12	269	271
-5 -3 10	264 -273	1	ž	10	148	180	- 2	- <del>.</del> .	11	238	250	-2	5	11	263	-2.60	-1 0	12	232	201
-6 -3 10	118 -115	'n	ž	10	120	105		= 3	11	218	221	2	ŝ	11	218	220	o o	12	286	-317
-3-310	132 00	1	3	10	200	256	2	23	11	166	-158	12	Á	11	142	113	ž 0	12	336	- 743
2 - 3 10	260 -243	, ,	ž	10	208	226	2	-3	11	350	-320	ē	Ă	11	326	281	6 0	12	169	166
	535 537	4	ž	10	224	217	-6	- 2	11	231	250	1	-9	12	226	-195	-4 1	12	185	-174
1 -3 10	495 402	5	ž	10	240	-235	-4	-2	11	120	86	- 3	~ 8	12	165	-181	-3 1	12	122	-40
3 -3 10	223 100	7	ž	10	169	-150		÷2	11	180	154	÷1	-8	12	130	-135	-2 1	12	442	-415
6 - 7 10	309 -270	É.	ĩ	10	175	190	÷2	-2	11	267	-298	'n	-8	12	124	100	ō t	12	182	-157
s = 3 10	232 -221	1	. 4	10	240	-274	ō	-2	11	329	-388	ž	-8	12	261	230	ž i	12	140	156
7 -3 10	134 -145	ंर	4	10	296	-331	ĭ	-2	11	145	153	~ Ž	-7	12	312	307	4 1	12	265	278

- 224 -

#### OBSERVED AND CALCULATED STRUCTURE FACTORS FOR TCNOACAC

н	ĸ	ι	1050	10FC	н	ĸ	L	10F0	10FC	н	К	L	10F0	10FC	н	ĸ	٤	10F0	10FC	· +	e )	( L	10F0	10FC
-6 -4	2 2	12	132 256	-142 -247	-3 1	-7 -7	13 13	139 264	139 ±252	1 2	-1 -1	13 13	276 130	-292	0 2	-7 -6	14 14	193 141	-177 151	1	; 2	1 14	132 134	-133 -119
-2 0	2 2	12	145 333	110 345	3 -3	-7 -6	13 13	166 199	-158 -209	3 -3	-1 0	13 13	327 126	-306 -116	-2 0	-5 -5	14 14	183	168 223	3	; -1 3 - 1	14	129	-117
1 2	2 2	1 2 1 2	217	185 310	-1 -3	6 5	13 13	260 185	-266 -180	-1 0	0 0	13 13	235 121	-216 -155	1 -1	-5 -4	14 14	128 277	-101 -243	-1 0	' ( ) (	) 14 ) 14	192 112	-208
-2	2	12	165	-173	0	-5	13	236 188	220 178	1	0	13 13	166 146	~165 136	1 2	-4 -4	14 14	147 159	-161 -133	- 2 2	: C : 1	) 14   14	239 220	229 193
3	3	12	293	-300	-3 -1		13	139	108	-1 -1	1	13	166	-160	-3	-3 -3	14	206	-185	0	i 1	1 14	305 151	279 -139
-1	4	12	205	-201	±2	-3	13	322	341	- 3 - 3	1	13	290	282 170	+3	-2	14	188	341	1	-6	5 14	151	-161
3 	4	12	252	277	-1	-2	13	137	101	-1	23	13 13	318	307	1	-2	14	155	337 145 -176	0	, -1   -1	15	217	-216
-i 0	6 -9	12	204	225	2 -2	-2	13 13	330	314 382	, 1 - 1	3	13 13	265	-258	-3 0	-1 -1	14	215	237	، 0 – 1	/ 1 ;	15	136	141
0	- 8	13	152	115	Ō	-1	13	196	182	Ó	4	13	160	163	Ū	,	• •	. , , , ,		•	•		())	

PAGE 9

- 225 -

#### APPENDIX IV

# THE CRYSTAL STRUCTURE OF CHLORONITROSYL-BIS-(O-PHENYLENE)-BIS-(DIMETHYLARSINE) TECHNETIUM(I) CHLORIDE. TETRABUTYLAMMONIUMCHLORIDE

Thomas A. Hamor and Hilary J. Banbery, Department of Chemistry, University of Birmingham.

#### Abstract

 $[Tc (C_1 \circ H_1 \in A \otimes_2)_2 ClNOICL.(N (C_4 H_9)_4]Cl, M_r=1049.9, monoclinic, space$  $group C 2/c, a=20.069(5), b=13.249(2), c=20.431(12)A, \beta=116.03(5)^{\circ},$  $V=4881.4A^3, z=4, D_c=1.429gcm^{-3}, \lambda(MoK\alpha)=0.71069A, F(000)=361,$ R=0.084 for 2703 unique observed reflexions.

#### Experimental

A crystal of size 1.0 x 0.2 x 0.2 mm was selected from the material for X-ray analysis. Measurements were made on an Enraf-Nonius CAD-4 diffractometer with MoK $\alpha$  radiation. Lattice parameters were determined from the setting angles of 25 reflexions (0 9-15). Intensity data were measured with  $\omega$ -20 scans in the range 2<0<25', index range h -21+23, k 0+15, l -24+3.

- 226 -

Three standard reflexions, measured every 2h, showed no significant variation over the period of data collection. 5363 reflexions were scanned, of which 4301 were unique,  $R_{int}=0.08$ , and 2703 were considered observed (F>5r(F)] and were used in the analysis. No absorption correction was applied.

The structure was solved using Patterson and Fourier methods. The H atoms were placed in calculated positions, riding on their bonded C atoms. Coordinates for all non-H atoms were refined using full-matrix least squares on F values with weights  $w=1/r^{2}(F)$  from counting statistics. H atoms of methyl groups were placed in calculated positions and refined subject to rigid group restraints.

The non-H atoms of the complex cation and the tetrabutylamnonium cation were assigned anisotropic thermal parameters. H atoms were assigned one overall isotropic temperature factor  $(0.07\lambda^2)$ . The weighting scheme used was  $w=1/(v^2(F)+0.001F^2)$ . The refinement was terminated when all shift/e.s.d. ratios were less than 0.02 and R=0.084, wR=0.116, for the 2703 observed reflexions. The residual electron density in a final difference map was within  $\pm 1.28 \text{ e} \lambda^{-3}$ , with all main peaks close to the technetium or arsenic atoms.

Atomic scattering factors were taken from International Tables for X-Ray Crystallography (1974); computations were carried out

- 227 -

using SHELX (Sheldrick, 1978) and PLUTO78 (Motherwell and Clegg, 1978).

Bond lengths and angles for the complex cation are given in Tables 1. and 2. respectively. Figure 1. shows the numbering scheme of the atoms in the complex cation and Figure 2. shows the relative positions of both the complex cation and tetrabutylammonium cation in the unit cell.

#### Discussion

The packing of the molecules shows disorder, the technetium atom lying on an inversion centre, with the nitrosyl and chlorosubstituents becoming equivalent. Consequently the chlorine atom and nitrosyl group were indistinguishable on a Fourier difference map. A large peak at 2.4Å from technetium was taken to represent the chloro- substituent. The positions of the oxygen and nitrogen atoms in the nitrosyl group were then calculated using the coordinates of the chlorine atom, and the known covalent radii of the atoms, such that the Tc-N-O angle was close to  $180^{\circ}$ .

Thermal parameters for all carbon atoms are high, and this can be accounted for by the disordered structure. Thus bond lengths are not accurate enough to warrant detailed discussion. There is also evidence for disorder in the positions of the atoms of the tetrabutylammonium cation with some unrealistically high thermal vibration parameters.

# Table 1.

Bond distances for ITC(NU) (diars) 2C1 C1.[(C4H9) ANC1
--------------------------------------------------------

	Å
Tc-As(1)	2.480(1)
Tc-As(2)	2.504(2)
Tc-Cl(1)	2.411(13)
Tc-N(1)	1.979
As(1)-C(12)	1.922(17)
As(1)-C(1)	1,935(21)
As(2)-C(21)	1.898(18)
As(2)-C(22)	1.896(18)
As(2)-C(6)	1,942(16)
Cl(1)-N(1)	0.434(13)
Cl(1)-O(1)	0.730(13)
N(1)-O(1)	1.158
C(1)-C(2)	1.411(20)
C(1)-C(6)	1.415(26)
C(2)-C(3)	1.299(43)
C(3)-C(4)	1.466(44)
C(4)-C(5)	1.386(26)
C(5)-C(6)	1,398(34)
N(1C)-C(1C)	1.512(36)
<b>▼(1C)-C(1D)</b>	1.445(38)
C(1C)-C(2C)	1,188(39)
C(2C)-C(3C)	1.419(42)
C (3C) - C (4C)	1.299(51)
C(1D)-C(2D)	1.183(94)
C (2D) -C (3D)	1.594(94)
C (2D) -C (4D)	1.967(3)
C(3D)-C(4D)	1.103(82)

# <u>Table 2.</u>

Bond angles for [Tc(NO)(diars)2Cl]Cl.[(CaHe)AN]Cl

	•
As(1)-Tc-As(2)	83.1(1)
As(1)-Tc-Cl(1)	89.0(3)
As(2)-Tc-Cl(1)	89.3(4)
As(1)-Tc-N(1)	88.6
As(2) - Tc - N(1)	88.1
Cl(1)-Tc-N(1)	1.3(4)
Tc-As(1)-C(12)	119.3(4)
Tc-As(1)-C(1)	109.1(4)
C(12)-As(1)-C(1)	102.6(8)
Tc-As(2)-C(21)	119.6(8)
Tc-As(2)-C(22)	119.4(7)
C(21)-As(2)-C(22)	103.2(9)
C(22)-As(2)-C(6)	99.2(9)
$T_{C}-C_{1}(1)-N(1)$	5.7(16)
$T_{C-Cl}(1) - O(1)$	174.6(16)
F(1)-Cl(1)-O(1)	168.8(31)
Tc-N(1)-Cl(1)	173.0(19)
Cl(1)-N(1)-O(1)	7.0(19)
C1(1)-O(1)-N(1)	4.2(12)
As(1)-C(1)-C(2)	120.6(15)
As(1)-C(1)-C(6)	120.1(11)
C(2)-C(1)-C(6)	119.3(19)
C(1)-C(2)-C(3)	120.6(20)
C(2)-C(3)-C(4)	121.4(20)
C(3)-C(4)-C(5)	119.4(26)
C(4)-C(5)-C(6)	118.2(22)
As(2)-C(6)-C(1)	118.2(15)
As(2)-C(6)-C(5)	120.6(13)
C(1)-C(6)-C(5)	121.0(15)

Figure 1.

Molecular structure and atom numbering for the chloronitrosyl-bis-(o-phenylene)-bis-(dimethylarsine)technetium(I) cation.



# Figure 2.

View of the complex cation and tetrabutylammonium cation in their relative positions in the unit cell.



#### APPENDIX V

#### PUBLICATIONS

Synthesis and biological studies of the (^{95m}Tc)Tetrachloronitrosyltechnetium(II) anion - an alternative low valent technetium starting material.

C.T. Cheah, J.L. Newman, D.P. Nowotnik and J.R. Thornback, J. Nucl. Med. Biol., 1987, 14, 573.

Structure of the tetra-n-butylammonium salt of the tetrachloro(methanol)nitrosyltechnetium(II) anion.

D.S. Brown, J.L. Newman, J.R. Thornback and A. Davison, Acta. Cryst., 1987, <u>C43</u>, 1692.

The structure of the tetraphenylarsonium salt of the trichloro(pentane-2,4-dionato)nitrosyltechnetium(II) anion.

D.S. Brown, J.L. Newman and J.R. Thornback, Acta. Cryst., 1988, <u>C44</u>, 973.

The synthesis and characterisation of the trichloronitrosyl(acetylacetonato)-technetium(II) anion, a novel technetium(II) complex.

D.S. Brown, J.L. Newman, J.R. Thornback, R.M. Pearlstein, A. Davison and A. Lawson, Inorg. Chim. Acta., 1988, <u>150</u>, 193.

Preparation of ^{SSm}Tc radiopharmaceuticals European Patent Number 0 291 281 (1988) I.A. Latham, J.L. Newman and J.R. Thornback.