

A STUDY OF THE CO-ORDINATION BEHAVIOUR OF THE CHALCOGENOCYANATE IONS

```
                    by
                        S. J. ANDERSON
                    A thesis
            submitted for the degree of
            Doctor of Philosophy
of Loughborough Unıversity of Technology
```

Loughborough Unversty of Techrouny Ltary
[-a* Ar. 15
Clans
$\operatorname{cicc}_{\substack{\text { a }}} 066402 \% 1$

ACKNOWLEDGEMENTS

I am deeply indebted to Dr. A. H. Norbury for has encouragement and guidance throughout the course of this work. I thank the Science Research Council for a research studentship and Johnson and Mathey Ltd. for the generous loans of rhodium and iridium salts. I wish to extend my sincerest thanks to Dr. D. S. Brown for his anvaluable assistance in the X-ray crystallographic studies and to Professor T. King of Nottingham University for the collection of X-ray intensity Data. $-r^{\prime}$

Finally, I wish to extend my deep appreciation to the technical staff of the Chemistry department for their assistance and to my wife for her help and encouragement.

PUBLICATIONS

Part of the work reported in this thesis has been published as the following papers:
(1) 'A convenient method for the analysis of organometallic and related compounds' by S.J. Anderson, D.S. Brown and A.H. Norbury, J. Organometal. Chem., 64, 301 (1974).
(ii) 'Linkage isomers of the cyanate group: o-cyanato- and N-cyanato-tris(triphenylphosphine)rhodium(I)' by S.J. Anderson, A.H. Norbury and J. Songstad, Chem. Comm., 37 (1974).

SUMMARY

The co-ordination behaviour of the pseudohalide ions ($\mathrm{NCO}^{-} \mathrm{NCS}^{-} \mathrm{NCSe}^{-}$ NCTe^{-}) has been studied. A number of $\mathrm{N}-$ and S -bonded thiocyanate complexes of rhodium(I), of the type $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{CNS}(\mathrm{L}=$ ligand), have been prepared. The mode of linkage of the thlocyanate group has been established by means of infrared spectral measurements. The preparation of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (piperidine)NCS clearly demonstrates that a strongly π-accepting ligand such as $C O$ is not a prerequisite for a N-thiocyanato complex of the type $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{NCS}$. In addition, the complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{SCN}$ and $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)} \mathbf{O}_{2} \mathrm{SCN}$, which are of special interest from the point of view of their bonding and co-ordinating number respectively, have been prepared, Some selenocyanato complexes of rhodium(I), of the type $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(L) S e C N$, have also been synthesised similarly. Cyanato-tris(triphenyl phosphine)rhodium(I) and its linkage isomer have been prepared in the solid state, and characterised by means of infrared spectral measurements. Attempts have been made to prepare tellurocyanate complexes of rhodium(I) and the results are discussed.

The co-ordination behaviour of organic thiocyanates and isothiocyanates to a class 'a' metal has been studied by means of proton magnetic resonance. spectroscopy and the use of the lanthanide shift reagent Eu(fod) $3^{.}$. A number of inorganic-thiocyanate complexes have also been examined, and it has been found that N - and S -bonded thiocyanate complexes containing organic ligands can be readily distinguished by virtue of differences observed in chemical shift by the nuclei of the organic
ligands. The method has been extended in order to provide a means of determining the mode of co-ordination in cyanate complexes.

Thiocyanate complexes of rhodium(III) and irıdium(III) have been prepared by the oxidative addition reactions of organic thiocyanates and isothlocyanates to rhodium(I) and iridium(I) complexes, and the mode of co-ordination of the thiocyanate group has been established by infrared measurements. Complexes have been prepared where the bonding of the thiocyanate group in organic isothiocyanates occurs through carbon, and sulphur. The oxidative addition reactions of allyl thiocyanate or allyl isothiocyanate to rhodium(I) and iridium(I) complexes is followed by the reductive elimination of allyl chloride. Simlar behaviour occurs when ethyl cyanate is used.

The X-ray crystal and molecular structures of $(\pi-c p)_{2} \mathrm{Ti}(\mathrm{NCO})_{2}$ have been determined. The cyanate groups are shown to be N-bonded in the solid state.

A convenient method of analysis by X-ray spectrometry has been developed, where small amounts of sample are presented as borax discs. The method is especially suitable for compounds which are not amenable to conventional combustion analysis.

CONTENTS

Summary i
Contents i11
Nomenclature 1v
Chapter 1 - An introduction to the co-ordination behaviour of the chalcogenocyanate ions in metal complexes 1
Chapter 2 - Thoocyanate complexes of rhodium(I) 29
Chapter 3 - Co-operative ligand effects in rhodium(I)-thio- cyanate complexes 56
Chapter 4 - Co-operative ligand effects in rhodium(I)-seleno- cyanate complexes 81
Chapter 5 - Linkage isomers of the cyanate group: 0-cyanato and N -cyanato-tris(triphenylphosphine)rhodium(I) 90
Chapter 6 - The preparation of tellurocyanate complexes 103
Chapter 7 - A study of the co-ordination behaviour of organac thiocyanates and isothiocyanates by means of n.m.r. spectroscopy lanthanide shift reagents 110
Chapter 8 - The reactions of organce isothiocyanates and thiocyanates with $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ and trans $\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ 131
Chapter 9 - The reaction of allyl isothiocyanate with trans- $\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ where $\mathrm{M}=\mathrm{Rh}, \mathrm{Ir}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ 151
Chapter 10 - The preparation of 0 - and N -cyanatotris(triphenyl- phosphine) rhodium(I) from the reaction of ethyl cyanate with $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ 173
Chapter 11 - The X-ray crystal and moleculer structures of $(\pi \sim \mathrm{cp})_{2} \mathrm{Tı}(\mathrm{NCO})_{2}$ 177
Chapter 12 - A convenzent method for the analysis of organometa- llic compounds 198
Appendix 207
References 227

NOMENCLATURE

The formula for an N-bonded thiocyanate complex will be written M-NCS and an S-bonded or normal thiocyanate will be written M-SCN. The corresponding formalism will apply to the selenocyanate and cyanate ions. Where the mode of co-ordination is not known or is undecided, the complex will be written $M-C N X$, where $X=0, S$, or $S e$, and should not be confused, with fulmanates or thiofulminates etc.

```
The following abbreviations will be used:
    bipy = 2,2-dıpyridane.
    bu = butyl.
    cp = cyclopentadienyl, C}\mp@subsup{\textrm{C}}{5}{}\mp@subsup{\textrm{H}}{5}{
    dien = diethylenediamane.
    DH = dimethylglyoximato anion (univalent).
    DMSO = dimethyl sulphoxide.
    dpm = 2,2,6,6,-tetramethylheptane-3,5,-dione.
    Et = ethyl, C2 H5
    L = ligand.
    Me = methyl.
    plc = plcoline.
    Ph = phenyl.
    phen = 1,10-phenanthroline.
    py. = pyridine.
    R = alkyl or aryl.
    trien = triethylenetetraamıne.
```


CHAPTER 1

AN INTRODUCTION TO THE CO-ORDINATION BEHAVIOUR
OF THE CHALCOGENOCYANATE IONS IN METAL COMPLEXES

AN INTRODUCTION TO THE CO-ORDINATION BEHAVIOUR OF THE

CHALCOGENOCYANATE IONS IN METAL COMPLEXES

The chalcogenocyanates or pseudohalides have the general formula $\mathrm{NCX}^{-}(X=0, S$, Se or $T e)$. They are all potentially ambidentate, that is they can form a co-ordinate bond to a Lewis acid through N or X. Thus, for example, the thiocyanate ion may form N -or S -bonded complexes depending on the nature of the ligand, and this preference may be modified by the presence of other ligands, or by whether the complex is in the solid state or in solution. The chalcogenocyanates can also be present in a variety of bridging modes. There are many examples of complexes containing the thiocyanate group, and a variety of reasons have been proposed, sometimes conflicting, to explain the co-ordination behaviour. The remaining chalcogenocyanates have not been studied to the same extent, but they show similar co-ordination characteristics, and similar arguments have been applied.

1) Thiocyanate Complexes

The varying co-ordination behaviour of the thiocyanate ion towards different types of metals was first observed by Lindquist and Strandberg(1). This behaviour parallels the division of metals into class ' a ' and class ' b ' acceptors(2). The general pattern found is one where "soft acceptors" or class 'b' metals form S-thiocyanate complexes, whilst "hard acceptors" or class 'a' metals form N-thiocyanato complexes as observed in the mode of co-ordination of the thiocyanate group in known homogeneous anionic complexes(3).

However, the co-ordination behaviour of the thiocyanate group may be influenced by the nature of other ligands present, as exemplified by some examples presented in Table l.l. This does not occur for every metal but if the metal belongs to class ' b ', or shows characteristics between class ' a ' and class ' b ', then ligand effects may be important in determining the co-ordination behaviour, for which a variety of explanations have been proposed.

(a) Steric Effects

The thiocyanate group co-ordinated through sulphur makes greater steric demands than the N-thiocyanate group, because the M-SCN bond is usually bent (bond angles of 100° are common) whereas the M-NCS bond is usually linear. It is, of course, impossible to separate steric arguments from electronic factors completely. Nevertheless, steric arguments have been applied to explain the co-ordanation behaviour in a variety of complexes. The formation of $\mathrm{Pd}\left(\mathrm{SbPh}_{3}\right)_{2}(\mathrm{SCN})_{2}$, in contrast to $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{NCS})_{2}$, has been attributed to the larger antimony atom reducing the steric effects of the phenyl groups, whereas with the smaller phosphorus atom overcrowding round the central atom is ancreased, which is reduced by the thiocyanate group adopting a linear Pd-NCS bond(5). A clearer example of such an effect is demonstrated by the cations $[\mathrm{Pd} \text { dien }(S C N)]^{+}$and $\left[\mathrm{PdEt}_{4} \text { dien(NCS) }\right]^{+}$where the introduction of four ethyl groups around the vacant co-ordination position cause the only example of a linear Pd-NCS group in an amine complex of $\operatorname{Pd}(I I)$ (6).

The Effect of Ligand on Thiocyanate Co-ordination in Some Complexes*

$\operatorname{Pd}(S C N)_{4}^{2-}$
$\mathrm{Co}(\mathrm{NCS})_{4}^{2-}$
$\left.\mathrm{Pd}_{\mathrm{NH}}^{3}\right)_{2} \mathrm{SCN}_{2}$
$\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NCS}^{2+}\right.$
$\left.\mathrm{Pd}_{\mathrm{PEt}}^{3}\right)_{2} \mathrm{NCS}_{2}$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{NCS})\right]_{i}^{+}{ }^{+}$
$\left[\mathrm{Co}(\mathrm{en})_{2}(\mathbb{N a C S}]^{2+}\right.$
$\mathrm{Pd}_{\mathrm{b}} \mathrm{biby}_{-} \mathrm{NCS}_{2}$
$\mathrm{L}=\mathrm{Cl}^{-}$or NCS^{-}
Pd (4,4 Me 2 bipy)(NCS)(SCN
${ }^{1} \mathrm{Co}(\mathrm{DH}){ }_{2}^{(\mathrm{L}) \mathrm{NCS}}$
$\mathrm{Pd}($ phen $)(\mathrm{SCN})_{2}$
$\operatorname{Pd}\left(5, \mathrm{NO}_{2}-\right.$ phen $)(\mathrm{NCS})_{2}$
$[\mathrm{CO}(\mathrm{DH})(\mathrm{L}) \mathrm{SCN}$
$\left.\mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{NCS}}^{2}\right)_{2}$
$\mathrm{Co}(\mathrm{bipy})_{2}$ (SCN).
$\mathrm{I}_{\mathrm{Pd}\left(\mathrm{AsPPh}_{3}\right)_{2}} \mathrm{NCS}_{2}$
$\left.\mathrm{Pd}_{(\mathrm{SbPh}}^{3}\right)_{2} \mathrm{SCN}_{2}$
$\left[\mathrm{Rh}^{*}(\mathrm{SCN}) 6_{6}^{3-}\right.$
$\left[\mathrm{Rh}\left(\mathrm{NH}_{3}^{\prime}\right)_{5} \mathrm{NCS}^{2+}\right]^{2+}$
$[\mathrm{Pd} \text { dien }(\mathrm{SCN})]^{+}$
$\left[\mathrm{Pd}_{\mathrm{Et}}^{4} \text { dien)(NCS }\right]^{+} \mathrm{SCN}^{-} \quad \mathrm{Mn}(\mathrm{CO})_{5} \mathrm{NCS}$
$\left[\mathrm{Pofet}_{4} \text { dien }(\mathrm{SCN})\right]^{+} \mathrm{PBh}_{4}^{\prime} . \quad \mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$
$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}$
$\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}$

[^0]The importance of steric effects becomes apparent in the series of $\mathrm{Pd}(\mathrm{II})$ - diphosphine complexes $\left(\mathrm{Pd} \mathrm{Ph}_{2} \mathrm{P}_{\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{PPh}_{2}\left(\mathrm{NCS}_{2}\right)_{2} \mathrm{n}=1-3 \text { reported } \mathrm{r}}\right.$ by Meek, et al.(7), where the thlocyanate groups are each trans to two equivalent phosphorus atoms. The donor atom changes from sulphur to nitrogen as the carbon chain between the phosphorus atoms is lengthened, (see Table 1.2.); this leads to a large increase in the P-Pd-P angle whilst still maintaining essentially constant electronic character. The increase in the $P-P d-p$ angle results in an increasing steric interaction between the phenyl groups and the co-ordinated thiocyanates which is reduced by the formation of Pd-NCS bonds. Simllarly, the existence of $\mathrm{Pd}\left(\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right) \mathrm{SCN}_{2}$ as the S -bonded isomer may be attributed to the shorter length of the $C=C$ bond $\left(1.33^{\circ} \mathrm{A}, \mathrm{cf} 1.54^{\circ} \mathrm{A}\right.$ for $\mathrm{C}-\mathrm{C}$ bond) which in essence pulls the phenyl groups away from the thiocyancate group allowing both thiocyanates to be S-bonded(8).

(b) Electronic Effects

The co-operative effect of ligands was originally introduced by Turco and Pecile(9). They attributed the differing modes of co-ordination of the thiocyanate group in $\operatorname{Pd}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{SCN})_{2}$ and $\operatorname{Pd}\left(\mathrm{PEt}_{3}\right)_{2}(\mathrm{NCS})_{2}$ to the π-withdrawing ability of the other ligands present. They argued that although the sulphur atom is a weaker σ-donor than the nitrogen atom the metal sulphur covalent bond may be stabilised by back-bonding as in $\mathrm{Pd}\left(\mathrm{NH}_{3}\right)(\mathrm{SCN})$ since NH_{3} as a σ donor ligand would increase the electron density on the central metal atom. On the other hand, the central metal atom in $\mathrm{Pd}\left(\mathrm{PEt}_{3}\right) \mathrm{NCS}_{2}$ has reduced electron density and

The Effect of Steric Control on Thiocyanate

 Co-ordination in $\mathrm{Pd}(\mathrm{I}$) Complexes```
PhP}2(\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{)}{n}{}\mp@subsup{\textrm{PPh}}{2}{}\quad\textrm{P}-\textrm{Pd}-\textrm{P}\quad\mathrm{ Mode of Co-ordination
n=1 73.20
n =`
 85.1 }\mp@subsup{}{}{\circ
 Pd(NCS)(SCN)
n}=
89.1 }\mp@subsup{}{}{\circ
Pd(NCS)}
```

Table 1.2.
assumes more ionic character, due to back-bonding between the filled metal and empty phosphorus d orbitals, and hence the more ionic Pd-NCS linkage is favoured.

However, steric effects could provide as valid an explanation for the $\operatorname{Pd}(I I)$ complexes as does the $\pi$-bonding hypothesis. This is exemplified by cis- $\mathrm{Pd}\left(\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPh}_{2}\right)(\mathrm{SCN})_{2}(8)$ which involves a phosphine with better $\pi$-acceptor properties than that in cis- $\mathrm{Pd}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$ (NCS) (SCN)(7), but whose steric requirements are less.

Nevertheless, there are a number of amine complexes where the $\pi$ bonding hypothesis does provide an explanation for thiocyanate coordination behaviour. The presence of electron withdrawing substituents, like the nitro group in phenanthroline, increases the ability of the ligand to take part in $\pi$-backbonding and thus explains the co-ordination behaviour in $\operatorname{Pd}(\mathrm{phen})(\mathrm{SCN})_{2}$ and $\operatorname{Pd}\left(5-\mathrm{NO}_{2}\right.$ phen)(NCS) $\mathbf{N}_{2}(6)$. Conversely the presencerof electron donating substituents would decrease the ability of a ligand to form a mbond with a metal, as observed in Pdbipy(NCS) $)_{2}(10)$ and $\operatorname{Pd}(4,4$ dimethylbipy)(NCS)(SCN)(6).

On the other hand, octahedral cobalt (III) complexes, exemplified by the stable isomers $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NCS}\right]^{2+}$ and $\left[\mathrm{Co}(\mathrm{CN})_{5} \mathrm{SCN}\right]^{3-}(12)$, also clearly illustrate a co-operative ligand effect. In contrast to the previous discussion on class ' $b$ ' metals, cobalt is a class ' $a$ ' metal and ligands of strong $\pi$-bonding ability favour S-thiocyanate co-ordination, whereas $\sigma$ donors such as $\mathrm{NH}_{3}$ favour thiocyanate bonding through
nitrogen.

The co-ordination behaviour of metal carbonyl thlocyanates reported by Wojcicki and Farona(13), is in general agreement wath that of Cobalt (III). Thus, of the two linkage isomers $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{SCN}$ and $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{NCS}$, the S-bonded isomer is the more stable, and substitution of two $C O$ groups by weaker $\pi$-bonding ligands, such as amines and phosphines, generally yields N -bonded complexes, $\mathrm{Mn}(\mathrm{CO})_{3} \mathrm{~L}_{2} \mathrm{NCS}(14)$. [In order to explain apparent exceptions i.e. cis-Mn(CO) ${ }_{3} \mathrm{~L}_{2} \mathrm{SCN}\left(\mathrm{L}_{\mathrm{A}} \mathrm{AsPh}_{3} \mathrm{SbPh}_{3}\right)$ it is suggested that steric factors play a major role in stabilising the angular M-SCN linkage in these compounds.] Similarly, the co-ordination of the thlocyanate group in the stable linkage 1 somers of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{CNS})$ and $\left.\left(\pi^{-} \mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mr}\left(\mathrm{CO}_{3}\right)^{(C N S}\right)(15)$ is through sulphur.

These examples for class ' $a$ ' metals are in disagreement with the $\pi$-bonding hypothesis of Turco and Pecile, but may be explained in terms of symbiosis, as proposed by Jorgenson(18), such that like ligands "flock" together. Therefore, in the ion $\left[\left(\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NCS}\right]^{2+}\right.$, the hard $\mathrm{NH}_{3}$ and $N$-bonded thiocyanate co-ordinate to cobalt, whilst in $[\mathrm{CO}(\mathrm{CN}) \mathrm{SCN}]^{3-}$ the soft cyanide and S-bonded thiocyanate are found. However, when the palladium (II) complexes are considered symbiosis predicts the wrong effect.

Pearson has extended his princıple of hard and soft acids and bases (19, 20) and introduced the idea of antisymbiosis(21) by applying the original concept of Chatt and Heaton(22), "that groups of high


#### Abstract

trans effect, such as ethylene in $\mathrm{Pt}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{3}^{-}$render the position in mutual trans position more susceptible to bonding by what are known as hard bases". Whether a trans activating group is a $\sigma$-donor or $\pi$-acceptor is of little consequence. In either case it is advantageous to have an ionic ligand trans to a strongly covalent ligand. Pearson states "two soft ligands in mutual trans position will have a destabilising effect on each other when attached to class ' $b$ ' metals". This concept, like symbiosis, has wider chemical application but when used to explain thiocyanate co-ordination behaviour $1 t$ would thus predict that cis-palladium-phosphine complexes would contain $N$-thiocyanate groups while the corresponding trans compounds would be $S$-bonded. Burmeister and Melpolder(23) have prepared a series of thlocyanate gold complexes of the type LAu(SCN) containing lagands of varying trans influence, where the steric environment remains essentially constant. They concluded that the proportion of $N$-bonded isomer in the complexes increased as the trans influence of the complex increases, in accordance with Pearson's antisymbiolic principle.


Norbury, however, provides a semi-quantitative approach to explain thlocyanate co-ordination behaviour for both class ' $a$ ' and class ' $b$ ' metals(24), based on Klopman's polyelectron pertubation theory(25). Molecular orbital calculations show that the electron distrabution in the two most energetically available orbitals of the thiocyanate ion is unequal, being concentrated more on the nitrogen atom in $\sigma_{4}$ and on the sulphur atom in $\sigma_{3}(26)$. It is argued that both these orbitals would play an important part in thiocyanate co-ordination. Although these
orbitals energies are constant for each orbital, regardless of which atom acts as a donor, the de-solvation energy, however, will be very much dependent upon whether the nitrogen or sulphur atom 1 s being desolvated before co-ordination. Calculation of hardness and softness parameters of each donor atom in each avallable orbital, shows that there are four softness parameters, depending upon which atom is coordinated and on which orbital is considered. It also takes into account the variation of softness or hardness with dielectric constant of the solvent used, as the results illustrate in Fig. 1.3.

It is thus argued that since the hardest centre avallable is the nitrogen end of the $\sigma_{4}$ orbital, this is the most likely donor to the hardest lewis acids, namely class ' $a$ ' metals, surrounded by hard lıgands e.g. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NCS}\right]^{2+}$. The softest centre is also a nitrogen atom but now that of the $\sigma_{3}$ orbital, which will bond to the softest Lewis acid available, namely a class 'b' metal surrounded by soft ligands (e.g. Pd(II) - phosphine complexes). Intermediate situations involving a class 'a' metal with soft ligands or class 'b' with hard ligands would each prefer to co-ordinate with the sulphur atom e.g. $\left[\mathrm{Co}\left(\mathrm{CN}_{5} \mathrm{SCN}\right]^{3-}\right.$.

The major disadvantage of all previous arguments is that they neglect any $\pi$-bonding between the thiocyanate group and the metal. Gutterman and Gray(27) have suggested that S-bonded thlocyanates act not as a $\pi$-acceptor as indicated for 2 nd and 3rd row complexes but iwo rather as a $\pi$-donor ligand due to the availability of $8 \pi$ electrons on


#### Abstract

sulphur. Marzilli et al.(28) have used these conclusions to explain the influence of trans ligands of varying $\pi$-acceptor ability in $\mathrm{Co}(\mathrm{DH})_{2}(\mathrm{~L}) \mathrm{SCN}$ on the equilibrium between N -and S -bonded isomers. However, such behaviour may equally be explained in terms of the semiquantitative approach discussed previously as applied by Norbury et al. to a more extended series of results on $\operatorname{Co}(\mathrm{DH})_{2}(\mathrm{~L}) \mathrm{SCN}(29)$.


It is evident that no one explanation seems satısfactory. Although the co-operative ligand effect is electronic in nature, the factors governing such an effect are complex, and further understanding $1 s$ required.

## (c) Solvent effects

The advantage of the semi-quantıtative approach by Norbury(24) is that not only does it allow a description for both class 'a' and class ' $b$ ' metals, but also the effect of solvents. Burmeister et al. $(30,31)$ observed that the co-ordination behaviour of $\mathrm{Pd}_{\left(\mathrm{Ph}_{3} \mathrm{As}\right)}^{2}(\mathrm{NCS})_{2}$ and similar Pd(II) complexes may be modified in solution by the solvent. They conis
cluded that the $S$-bonded thiocyanate complex was favoured by solvents of high dielectric constant, whilst in solvents of low dielectric constant, the N -bonded isomer predominates.

On the other hand, experimental evadence for $\mathrm{Co}(\mathrm{DH})_{2}$ pySCN indicates the reverse and that solvents of high dielectric constant favours the thiocyanate group bonded through nitrogen and in solvents of low

## Variation of Hardness or Softness of the NCS-Group with Dielectric Constant



Fig. 1.3.


#### Abstract

dielectric constant through sulphur(32). However, evidence for a solvent effect is limited, but it does appear that for linkage isomers in a high duelectric constant M-NCS bonding is favoured for class 'a' metals and M-SCN for class ' $b$ ' metals. The opposite effect is observed in solvents of low dielectric constant. By applying the semiquantitative approach of Norbury, Fig. l.3.shows that, assuming the metal is unaffected by changes in the solvent, for a class 'a' metal, increasing the dielectric constant changes the preference from M-NCS to M-SCN (dotted Ine Fig. 1.3.). For class 'b' metals the opposite effect is observed, consistent with the experimental evidence obtained.


Since the factors governing the co-ordination behaviour of the thiocyanate group will be in approximate balance for linkage isomerism to occur, other small energy changes may be important, which are not taken into account by the above treatment. For anstance, the fine balance of ligational effects may be perturbed by the solvent.
(d) Counter-Ion Effects $1 /$

The mode of the co-ordination of the thiocyanate group may be affected by the nature of the counter ion in charged complexes. Solid $\left.\left[\mathrm{PdFt}_{4} \mathrm{dien}\right)(\mathrm{SCN}]\right]_{6}$ does not readily isomerise whereas isomerisation does occur in $\left[\mathrm{Pd}_{\mathrm{Et}}^{4}\right.$ dien)(SCN)] NCS(33). Similar behaviour is exhibited by $\left[\mathrm{PaEt}_{4}\right.$ dien)(NCS $\left.)\right] \mathrm{BPh}_{4}$ to gave $\left[\mathrm{PdEt}_{4}\right.$ dien $\left.(\mathrm{SCN})\right] \mathrm{BPh}_{4}$ in the solid state where isomerisation is ascribed to the interaction of the sulphur with the phenyl groups in the crystal which over-rides its inter-
action with the co-ordinated amine(34). A similar type of effect has been observed with cations. $\mathrm{K}_{3} \mathrm{Co}(\mathrm{CN})_{5} \mathrm{SCN}$ is the stable isomer in the solid state(12), although its linkage isomer is known(35). When the cation is replaced by $n-\mathrm{Bu}_{4} \mathrm{~N}^{\boldsymbol{+}}$, isolation of a pure S -bonded isomer was found impossible, and further isomerisation to give ( $\left.\mathrm{Bu}_{4} \mathrm{~N}\right)_{3} \mathrm{Co}(\mathrm{CN})_{5} \mathrm{NCS}$ was rapid(37). It was suggested(36) that the stabilisation of the $N$ bonded isomer was due to an electronic effect in which the polarisable end of the thiocyanate group is better accommodated by the soft nonpolar environment of the $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}$ cation while the hard $\mathrm{K}^{+}$undergo'es a more favourable interaction with the hard nitrogen atom. This explanation would predict the wrong results if applied to the Pd complexes, and steric arguments do not apply to the latter. Unfortunately, there are too few examples to make generalisations.

## 2) Selenocyanate Complexes

Although the selenocyanate group has not been so well studied, certain comparisons can be made with the thiocyanate group. The homogeneous anionic selenocyanate complexes show a similar behaviour to the thiocyanate complexes, in that the selenocyanate ion prefers coordination to class 'a' metals through nitrogen, whilst in class 'b' metals bonding through selenium is preferred(3). In mixed ligand complexes, although the selenocyanate group is less sensitive to ligand effects, it is subject to the same differences in co-ordination behaviour in class ' $a$ ' and class ' $b$ ' metals which prevail in thiocyanate co-ordxnation(3).

## 3) Cyanate Complexes

Of the homogeneous anionic cyanate complexes, only the compounds, namely $\left[\operatorname{Re}(O C N)_{6}\right]^{2-},\left[\operatorname{Re}(O C N)_{6}\right]^{-}$and $\left[\mathrm{MO}(\mathrm{OCN})_{6}\right]^{3-}(37)$ and $\left[\mathrm{Hg}(\mathrm{OCN})_{4}\right]^{2-}(38)$ have been reported to contain the O-bonded cyanate group based on the fundamental cyanate vibrations. The others are regarded as isocyanate complexes metal -N bonding. Only for the latter compound has any confirmatory measurement been attempted, in which case ${ }^{14} \mathrm{~N}$ nmr showed a relatively small upfield shift characteristic for an $N$-bonded compound(39).

The cyanate group seems insensitive to variations in the electronic environment of the metal in mixed ligand complexes. Norbury and Sinha have studied a variety of $P d(I I)$ and $P t(I I)$ complexes of the type $\mathrm{ML}_{2}(\mathrm{NCO})_{2}$ containing a variety of $\sigma$-and $\pi$-bonding ligands, and without exception all were $N$-bonded $(40,41)$. The few reported mixed ligand 0 cyanate complexes are $K\left[\mathrm{Cu}(\text { picoline })_{2} \mathrm{OCN}\right](42)$ and the series of complexes $\mathrm{Cp}_{2} \mathrm{M}(\mathrm{OCN})_{2}[\mathrm{M}=\mathrm{Ti}, \mathrm{Zr}, \mathrm{Hf}](43,44)$. However, there is conflicting evidence on the co-ordination behaviour of the cyanate group in the latter series which will be discussed further in chapter 11. The existence of an oxygen-bonded complex has not been unambiguously demonstrated by an $X$ ray crystal structure determination. The preparation and crystal structure determination of $\left[\mathrm{Na}_{2} \operatorname{tren}_{2}(\mathrm{NCO})_{2}\right] \mathrm{BPh}_{4}(45)$ is the only unequivical proof that the oxygen of the cyanate group is involved in bonding where the cyanate group is acting as an end-to-end bridge(I) Fig. 1.4.(I).



#### Abstract

The other type of bridging normally found in cyanate complexes is of a single atom variety where the nitrogen atom is involved(II)(46). These facts suggest that the oxygen atom of the cyanate group is involved in co-ordination only with reluctance, and hence no comparison can be made with the other pseudohalide complexes.


4) Tellurocyanate Complexes

The existence of the TeCN ion has only recently been established ( $47,48,49$ ). No tellurocyanate complexes have as yet been reported.

## 5) Physical Methods for Determining the Mode of Co-ordination of the Chalcogenocyanate Ions <br> The mode of co-ordination of the chalcogenocyanate ligands has been determined by a number of techniques. However, in certain cases, e.g. assignment of O -and N -bonded cyanates, anomalies and difficulties arise, and X-ray crystallography remains the only relıable method.


H proton n.m.r.n and dipole moments have been applied in order to determine the mode of co-ordination but, of these, the former has the widest application, and has been used extensively in this work. For these reasons it is convenient to survey only infrared spectrophotometric measurements for determining the mode of co-ordination of the chalcogenocyanate group.

## Infrared spectroscopy

This technique is the most important for making structural assignments and has recently been reviewed by Bailey et al.(50). The normal vibrations of a linear triatomic molecule NCX are:-

|  | ${ }_{1}$ pseudo-assymmetric stretch (VCN) |
| :---: | :---: |
| $N-C^{t}-x$ | $2^{\text {( } \delta N C X)}$ |
| $\overrightarrow{\mathrm{N}}-\overrightarrow{\mathrm{C}}-\stackrel{+}{\mathrm{X}}$ | 3 pseudo-symmetric stretch (véx). |

These vibrations have been examined in order to correlate frequency shifts with the mode of bonding of the various pseudo-halides.

Thiocyanate complexes

The infrared spectra of thiocyanate complexes have been extensively studied, and a number of examples are presented in Table 1.5.

On co-ordination of the thiocyanate group through nitrogen or sulphur the CN stretching frequency is slightly changed from the free ion value ( $\left.(\mathbb{C N}) 2053 / \mathrm{cm}^{1}\right) .$. Whilst $N$-bonding leads to litile change and sometimes a decrease below the free ion value, shifts in the order of $50-70 \mathrm{~cm}^{-1}$ are reported for co-ordination through sulphur. However, it has been observed that overlap between the frequency ranges of $S$ and $N$-bonded complexes may arise and sometimes be reversed, as demonstrated by the linkage isomers $\mathrm{Co}(\mathrm{DH})_{2} \mathrm{py}(\mathrm{CNS})(32)$ (Table l.5). It has been shown that other possible electronic and structural factors prevent

Infra red Spectra of Some Thiocyanate Complexes $\left(\mathrm{cm}^{-1}\right)$ *

|  | V(CN) | (CS) | O(NCS) | $A^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{NCS}$ | $2099{ }_{\text {S }}$ | - | - | 9.80 |
| $\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{SCN}$ | $2114{ }_{m}^{\text {b }}$ | 699w |  | 2.19 |
| $\mathrm{Mn}(\mathrm{CO}){ }_{5} \mathrm{SCN}$ | 2160 | 676w |  |  |
| $\mathrm{Mn}(\mathrm{CO}) 5_{5} \mathrm{NCS}$ (in $\mathrm{CH}_{3} \mathrm{CN}$ ) | 2113 | 813 |  |  |
| $\mathrm{Mn}(\mathrm{CO})_{3}{ }^{\left(\mathrm{AsPh}_{3}\right)_{2} \mathrm{SCN}}$ | $2148_{\mathrm{m}}^{\mathrm{b}}$ | - |  |  |
| $\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{AsPh}_{3}\right)_{2} \mathrm{NCS}$ | 2103 b | 814m |  |  |
| $\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{NCS}$ | $2123_{5}^{b}$ | 830m |  | 6.70 |
| $\mathrm{T}^{-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{SCN}}$ | $2118 \frac{\mathrm{~m}}{\mathrm{~b}}$ | 698w |  | 1.64 |
| trans-Co(DH) $2_{2} \mathrm{pyNCS}$ | 2128s, sp | 837w |  | 10.24 |
| trans-Co(DH) $2^{\text {pySCN }}$ | 2118s,sp |  |  | 1.2 |
| $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NCS}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ | 2125b | 806 |  |  |
| $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SCN}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ | 2100sp | 710w | 426 |  |
| $\mathrm{Pd}_{\left(\mathrm{AsPh}_{3}\right)_{2}(\mathrm{NCS})_{2}}$ | 2089s, br | 845m |  |  |
| $\mathrm{Pd}\left(\mathrm{AsPh}_{3}\right)_{2} \mathrm{SCN}_{2}$ | 2119s,sp |  | . |  |
| $\left[\operatorname{PdEt}_{4} \text { dienNCS }\right]^{+}$ | 2060 | 830 |  |  |
| $\left[\mathrm{PdEt}_{4} \mathrm{dienSCN}\right]^{+}$ | 2125 | 710 |  |  |

The data were recorded as mull spectra unless otherwise indicated. *From Norbury ref. 3.
(a) $\times 10^{-4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}$
(b) In $\mathrm{CHCl}_{3}$
(c) Includes $\psi(C N)$ for cyano-groups
this criterlon from having a general application(51, 52, 53). The CN stretching mode for bridging thzocyanates normally occurs at higher frequencies than in terminal complexes (54, 55).


#### Abstract

If the CS stretching frequency is considered, bands at $70 \mathrm{~cm}^{-1}$ are indscative of bonding through sulphur, whilst those between 800-830 $\mathrm{cm}^{-1}$ suggest N -bonding(56). As well as being subject to possible structural and electronic factors, this frequency also occurs in the same region_of the spectrum as frequencies associated with other ligands or counter-ions, so that beang only of medium or weak intensity it is difficult to assign. A further complication is that it can be sometimes confused with the first overtone of the bending frequency(57).


Finally, a single sharp band at $\sim 48 \mathrm{gcm}^{-1}$ has been assigned to the bending mode in an N -bonded complex in contrast to the several low intensity bands near $42 \mathrm{gcm}^{-1}$ observed in $S$-thiocyanates (56, 58). These splittings in the latter case may be due to the removal of degeneracy attributable to the lower symmetry of the non-linear M-SCN bond. However, it has been shown that the double degeneracy of the bending mode is sometimes resolved in the case of the isothiocyanate complexes as well(59).

It is clear that change in the mass, size of charge on the metal can have profound consequences on the position of a given frequency, not withstanding the further effects due to the size or electronic nature of the ligand. Kharitonov et al.(60) have calculated theoretxcal
changes in the vibrational frequencies with changes in the force constants of $M-N$ and $M-S$ bonds on the assumption that the internal force constants remained unchanged from the free ion values. Their conclusions have been summarised by Bailey et al.(50) and by Norbury(3) in their reviews.

Further clarification of the bonding mode of the thiocyanate group, can be made by measuring the integrated absorption intensaty of the CN stretching frequency, (i.e. the area under the absorption peak) (61, 62). Ramsey's method of direct integration is often used(63). The equation is:

$$
A=\frac{\pi}{2 C l} \log \frac{I_{o}}{I} \Delta v \frac{1}{2}
$$

where $C=$ concentration in moles/latre $l=$ cell thickness, $\frac{I}{I_{0}}=$ frartion of transmitted light, and $\Delta v \frac{1}{2}=\quad$ width of the absorption band at half the height of its peak.

Values in the region $3-5 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}$ are found for the free thiocyanate ion, whilst integrated intensities below this are recorded for $S$-thiocyanate and values of greater than $9 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}$ are found for $N$-bonded complexes (See Table 1.5.) A theoretical justification (61, 64) for such results is that co-ordination through $S$ would favour an increased contribution from $N \equiv C-S$ of the three resonance forms of the ions (see Table 1.6.), such that the dipole moment of the ion would be decreased. Conversely, for the $N$-bonded case, there is an
increase in contribution from the other two resonance forms resulting in an increase of the dipole moment of the 1on. The argument is based on the assumption that a change in the magnitude of the dipole moment causes a corresponding change of the dipole during vibration, and hence a change in the intensity of the band.

## Percentage Contrabution of the Principal Resonance

 Forms of the Chalcogenocyanate Ions*|  | $\mathrm{N} \equiv \mathrm{C}-\mathrm{X}^{-}$ | $\mathrm{N}=\mathrm{C}=\mathrm{X}$ | $2-\mathrm{N}-\mathrm{C} \equiv \mathrm{X}^{+}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{X}=0$ | 75 | 1 | 24 |
| S | 76 | 15 | 19 |
| Se | 88 | 10 | 12 |
| Te | 90 | ' 4 | 6 |

## *From Norbury ref. 3.

- 

Table 1.6.

Since measurements are made in solution, care must be taken in interpreting results as the integrated intensity may be influenced by a number of factors. As discussed previously, the mode of co-ordination may be influenced by the nature of the solvent. Also,line broadening may arise when using hydrogen bonding solvents.

Measurement of integrated intensities has been extended to insoluble compounds using KBr discs(64). Satısfactory results have been obtained for both S -and N -bonded complexes. The method has been refined
by the use of internal standards, such as using the CO stretching frequency of salicylıc acid(65). Integrated intensities in either case are cited per thiocyanate. Problems may arıse in interpretation when a complex contains more than one thiocyanate group. In view of the difficulties, care should be taken in assigning the mode of bonding purely on infrared data alone, and supplementary measurements should also be made.

## Selenocyanate Complexes


#### Abstract

Kharitonov et al.(60) have applied a similar treatment as previously described to selenocyanate complexes, and their conclusions are the same in both cases. Examination of the infrared spectra of some selenocyanate complexes (Table l.7.) indicates a similar situation to the throcyanates.


On co-ordination of the selenocyanate group through either end, the stretching frequency is slightly increased from the free ion value. However, as in the case of the thlocyanate complexes, the change in $C N$ stretching frequency alone does not provide a reliable criterion for the diagnosis of the bonding mode of the selenocyanate group. When the selenocyanate group acts as a bridging ligand, the CN stretching frequency is appreciably increased relative to the free $10 n$ value. The C-Se stretching mode of the selenocyanate ion is increased on N -coordination and decreased on Se-co-ordination. The SeCN bending frequencies show at least one component below $40 \mathrm{~cm}^{-1}$ while the N -bonded complexes, even when split, do not lie this low and generally occur

Infra red Spectra of Some Selenocyanate Complexes $\left(\mathrm{cm}^{-1}\right) *$

| $\underline{v_{\text {CN }}}$ | $v^{v_{\text {CSe }}}$ | $\delta_{\text {NCSe }}$ | $\mathrm{A}^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
| 2120 m | 663 mw |  |  |
| $2107 \mathrm{~m}^{\mathrm{b}}$ |  |  | 5.3 |
| 2112 mm | 532 w |  |  |
| 2117 mm |  |  | 1.7 |


| $\mathrm{cis}-\mathrm{Co}(\mathrm{DH}){ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{NCSe}$ | 2075 | 605 |  |
| :---: | :---: | :---: | :---: |
| trans-Co(DH) ${ }_{2} \mathrm{CH}_{2} \mathrm{O}$ ) SeCN | 2140 |  |  |
| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{CO}(\mathrm{NCSe})$ | 2094 |  | 7 |
| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right){ }_{2} \mathrm{MeCN}(\mathrm{SeCN})$ | 2135 |  | 2.3 |

$\left[\mathrm{PdEt}_{4} \text { dien NCSe }\right]^{+} \quad 2085 \mathrm{~s}, \mathrm{br} \quad 618$
$2089^{\text {c }} \quad 6.6$
$\left[\mathrm{Pd} \mathrm{Et}_{4} \text { dien } \mathrm{SeCN}\right]^{+} \quad 2121 \mathrm{~s}, \mathrm{sp} \quad 533 \mathrm{w} \quad 404 \mathrm{w}$ $2125^{\mathrm{c}} \quad 0.63$

The data äre recorded as mull spectra unless otherwise indicated.
*From Norbury ref.3.
(a) $\times 10^{-4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}$.
(b) In $\mathrm{CHCl}_{3}{ }^{\circ}$
(c) In acetone.

Table 1.7.
above $400 \mathrm{fm}^{-1}$.

The relative contributions of the resonance forms of NCSe (Table 1.6.) are comparable to those of $\mathrm{NCS}^{-}$so that integrated intensities can be used in a similar way.

## Cyanate Complexes


#### Abstract

The use of infrared measurements to determine the mode of coordination in cyanate complexes becomes even more difficult for two reasons: (i) there is more mixing between the cyanate frequencies than is observed for the other ions and this is also observed in complexes, (ii) there are very few reported 0 -bonded cyanates, none of which have been confirmed by X-ray crystallography. Only the complex $(\pi-c p)_{2} T(O C N)_{2}$ has been studied by techniques other than infrared ( $66,44,67$ ), but these measurements gave conflicting results.


The infrared spectra of a number of cyanate complexes are recorded in Table l.8. including the spectra of a number of organic cyanates. Infrared spectral and other measurements indicate that most of the complexes are N -bonded; the CN stretching frequency increases and the NCO bending frequency slightly decreases, as maght be expected from previous arguments. Similarly, the CO stretching frequency slightly increases in N -cyanate complexes.

The percentage contributions of the different resonance forms (Table l.6.) are comparable with those of the other ions, and this

Infra red Spectra of Some Cyanate Complexes ( $\mathrm{cm}^{-1}$ )*

|  | $\underline{v_{\mathrm{CN}}}$ | $\underline{v}^{\text {co }}$ | $\delta_{\text {NCO }}$ | $\mathrm{A}^{\mathbf{a}}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CH}_{3} \mathrm{OCN}$ | 2256 s, sp | $1100 \mathrm{~s}, \mathrm{sp}$ |  |  |
|  |  | 1218 mb |  |  |
| $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCN}$ | 2245 s, sp | $1102 \mathrm{~s}, \mathrm{sp}$ |  |  |
|  |  | 1127 w, sw |  |  |
|  |  | 1173 m , sp |  |  |
| $\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OCN}$ | 2247 s, sp | 1107 ss |  |  |
|  |  | 1165 m |  |  |
| $(\pi-\mathrm{cp})_{3} \mathrm{CeNCO}$ | 2145 s | 1310 |  | - |
| $\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{2} \mathrm{Ce}(\mathrm{NCO})_{2}$ | 2225 m | 1320 m |  |  |
| $\left.(\pi-\mathrm{cp})_{2} \mathrm{Ti}^{(O C N}\right)_{2}{ }^{\mathrm{r}}$ | $2235{ }^{\text {b }}$ | 1132 m | 626 m | 13 |
|  | $2196{ }^{\text {b }}$ |  | 593 m | 18 |
| $(\pi-\mathrm{cp})_{2}{ }^{\text {TiNCO }}$ | $2216{ }^{\text {c }}$ | 1302 ms | 599 m | - |
|  |  |  | 590 m |  |
| $(\pi-\mathrm{cp}) 2_{2}^{\mathrm{Zr}(\mathrm{OCN})_{2}}{ }^{\mathrm{I}}$ | $2233{ }^{\text {b }}$ | 1257 w | 632 m | 12 |
|  | $2200{ }^{\text {b }}$ | 1070 sh | 607 m | 16 |
| $\left.(\pi-\mathrm{cp})_{2} \mathrm{Hf}^{(O C N}\right)_{2}$ | $2246{ }^{\text {b }}$ | 1257 w | 632 m | 12 |
|  | $2211{ }^{\text {b }}$ | 1071 sh | 606 m | 18 |
| $\left[\mathrm{Mo}(\mathrm{OCN})_{6}\right]^{3-}$ | 2205 s | 1296 m | 595 m |  |
|  |  | 1140 m |  |  |
| $\left[\mathrm{Re}(\mathrm{OCN})_{6}\right]^{2-}$ | 2224 s | 1306 w | 595 m |  |
|  |  | 1138 w | - |  |
| $\left[\mathrm{Re}(\mathrm{OCN})_{6}\right]^{-}$ | 2220 s | - | - |  |


|  | ${ }^{v_{\mathrm{CN}}}$ | ${ }^{\nu} \mathrm{CO}$ | $\delta^{\mathrm{NCO}}$ | $A^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Pd} \mathrm{Py}_{2} \mathrm{NSCO}_{2}$ | $\begin{aligned} & 2180-2210 \mathrm{~s} \\ & 2202^{\mathrm{d}} \end{aligned}$ | $1332 \mathrm{~m}, \mathrm{sp}$ | $586 \mathrm{~m}, \mathrm{sp}$ | 21.4 |
| $\mathrm{Pt}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{NCO}_{2}$ | 2230 sh | 1355 vw | 590 |  |
|  | 2200 s,sp | $1312 \mathrm{~m}, \mathrm{br}$ |  |  |
|  | $2258{ }^{\text {e }}$ |  |  | 13.0 |
| $\mathrm{K}\left[\mathrm{Cu} \mathrm{pic}_{2}(\mathrm{OCN})\right]$ | 2143 | 1205 | 630 |  |

The data are recorded as mull spectra unless otherwise indicated. *From Norbury, ref. 3.
(a) $\times 10^{-4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}$.
(b) In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
(c) In acetone.
(d) $\mathrm{In} \mathrm{CHCl}_{2}$.
(e) In $\mathrm{CH}_{3} \mathrm{NO}_{2}$.

IOne or other of these structures is incorrectly formulated.

Table 1.8.
would Indicate that integrated intensity criteria could be used as before. The integrated intensities for a series of palladium and platinum complexes cited per cyanate group are in the range $13-23 \times 10^{4}$ Moles ${ }^{-1} \mathrm{~cm}^{-2}$ and larger than the free ion value of 8.4 , indicating $N$ bonding(40). However, the integrated intensities of ( $\left.\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{M}(\mathrm{OCN}) 2$ ( $\mathrm{N}=\mathrm{Ti}, \mathrm{Zr}, \mathrm{Hf}$ ) are also larger than the free ion values, and it has been suggested that this criterion is inapplicable to cyanate complexes because of the small difference in mass between the nitrogen and oxygen(44).

For the 0 -bonded cyanates reported, $v(C N)$ increases and $\delta(N C X)$ also 1 decreases in the same order as $N$-bonded cyanates. However, two bands are often observed for the bending vibration ( $\sim 60 \mathrm{Ccm}^{-1}$ ) in the 0 -bonded cyanates which maght be expected. The removal of the degeneracy of the corresponding NCS mode due to the lower symmetry of the nonlinear M-SCN group has been used as a criterıon for $S$-bonding in thiocyanate co-ordination(50̣). Simllarly, the M-OCN unft might also be expected to be non-linear, in which case if the degeneracy of the deformation mode is removed then two bands would be predicted. However, splitting of this frequency is sometimes observed in $N$-bonded cyanates.

It is the CO stretching frequency whach has been important in determining 0-cyanate complexes. Fermi resonance occurs between $\mathfrak{Y}(\mathbb{C})$ and $2 \delta \mathrm{NCO}$ in the free ion(70), (e.g. KNCO, (CO) $1300 \mathrm{fm}^{-1}, 1205 \mathrm{~cm}^{-1}-\mathrm{calcu}-$ lated value $1254 \mathrm{~cm}^{-1}(71)$ ). On co-ordination through nıtrogen $v(\mathrm{co})$ generally increases in magnitude and $\delta$ decreases. The medium strong
band at $1302 \mathrm{~cm}^{-1}$ in $\mathrm{cp}_{2}$ TINCO has been attributed to $\mathcal{V}(\mathrm{CO})$ for an $N$-bonded species without Fermi resonance on this basis(44). (See also Table 1.8.) For these or for other reasons, Ferml resonance has not been 'observed in N-cyanate complexes. In O-bonded cyanates there is ample opportunity for the phenomenon of Fermi resonance to be maintalned. Such Fermi resonance is exhıbited in the infrared spectra of organic cyanates where two bands attributed to the $C O$ stretching frequency are observed in the region $1200-1100 \mathrm{~cm}^{-1}(68)$. Similarly, the bands at approximately $130 \mathrm{gcm}^{-1}$ and $1140 \mathrm{qm}^{-1}$ in $\left[\mathrm{Re}(\mathrm{OCN})_{6}\right]^{2-}$ and $\left[\mathrm{Mo}(\mathrm{OCN})_{6}\right]^{3-}$ have been assigned on thisbasis(37). Burmelster et al. have attrıbuted the bands at $-125 \mathcal{f c m}^{-1}$ in $\mathrm{cp}_{2} \mathrm{M}(\mathrm{OCN})_{2}\left[\mathrm{M}=\mathrm{Zr}^{\prime}, \mathrm{Hf}\right]$ to Fermi resonance(44). No such splitting 15 observed in $\mathrm{cp}_{2} \mathrm{Ti}(\mathrm{OCN})_{2}$ and it is argued that Fermi resonance does not occur. However, evadence does suggest that one or more of this series of complexes is incorrectly assigned *wichıwill be. discussed in a later chapter.

Therefore, the determination of the co-ordination of the cyanate group by infrared measurements can only be treated with the utmost caution, finding further data, l.e. crystal structure determination of O-bonded cyanate complex.

## CHAPTER 2

## THIOCYANATE COMPLEXES OF RHODIUM(I)

## THIOCYANATE COMPLEXES OF RHODIUM(I)

A series of complexes of the type $\operatorname{Rh}(L)_{2}(C O) N C S$ ( $L=$ phosphine, arsine or stibine) and $\mathrm{Rh}(\mathrm{L})_{3} \mathrm{NCS}\left(\mathrm{L}=\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{3}\right)$ have been prepared and studied by Jennings and Wojcicki(72). The mode of co-ordination of the thiocyanate group in all the complexes was found to be exclusively through nitrogen. This is in contrast to the isoelectronic Pd(II) complexes where, depending on the other ligand, both Pd-NCS and Pd-SCN linkages have been obtained as have some examples of linkage isomers e.g. trans $\mathrm{Pd}_{\mathrm{g}}\left(\mathrm{AsPh}_{3}\right)_{2}(\mathrm{CNS})_{2}(5,9,10,57)$.

It was observed that there was a great tendency on the part of aryl-arsine and triphenyl-phosphite rhodium(I) derivatıves to form dinuclear thiocyanato-bridged species in solution (Fig. 2.1.) These complexes also showed an abllıty, in the presence of excess thiocyanate ion, to form bis thiocyanate rhodium(I) complexes, as shown in Fig.2.1., although no evidence was offered for the nature of the particular NCSbridge.



No attempts were made, however, to study the thlocyanate trıs(triphenyl phosphine)rhodium(I) system. This chapter describes the preparation and some of the reactions of this compound. Because of the complexity of the system the results-discussion section has been divided in the following manner:-
" (i) An infrared spectral study of the reaction of the $\mathrm{Me}_{4} \mathrm{NSCN}$ with $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$.
(1i) The preparation and reactions of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$

(v) Oxygen adducts of rhodium(I)-thiocyanate complexes.
(vi) Catalytic properties of $\mathrm{Rh}_{\left(\mathrm{PPh}_{3}\right)}{ }_{3} \mathrm{NCS}$.

## Results and Discussion

(i) An Infrared Study of the Reaction of $\mathrm{Me}_{4} \mathrm{NSCN}$ with $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$

When the reaction between $\mathrm{Me}_{4} \mathrm{NSCN}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ in MeCN was followed by infrared spectral measurements the solution spectrum showed that the thiocyanate group co-ordinated initially through nitrogen as indicated by the CN stretching frequency at 2095cm ${ }^{-1}$ (cf Rh(PPh $)_{2}$ (CO)NCS $V(\mathrm{CN}) 2095 \mathrm{~cm}^{-1}$ in $\mathrm{CHCl}_{3}$ ): subsequently a very insoluble bright yellow
compound was formed. The infrared spectrum of this solid exhibits a CN stretching frequency at $2135 \mathrm{~cm}^{-1}$, higher than that for $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) N C S$, (73) and an integrated intensity lower than the free ion value indicating co-ordination of the thiocyanate group through sulphur (See Fig. 2.8.). Further, no bands occur between $700-900 \mathrm{~cm}^{-1}$ which.may be attributable to the CS stretching frequency for an N -bonded complex; $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}$ exhibits a CS stretching frequency at $838 \mathrm{~cm}^{-1}$. The CS stretching frequency range for the $S$-bonded case $1 s$ obscured by triphenyl/phosphine bands. On the basis of analytical data, and the foregoing infrared data, the complex is formulated as $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN}) \mathrm{SCN}$. The CN stretching frequency for acetonitrile in the complex at $2257 \mathrm{~cm}^{-1}$ is slightly shifted from that of the free solvent where $\mathcal{( C N})$ occurs at $2253 \mathrm{~cm}^{-1}$. When the reaction was performed using less solvent (half quantities), a yellow compound was obtained whose analysis is consistent with the formulation $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)$ (CNS)MECN (\%Rhl4.2, \%P8.9, Found, \%Rh14.2, \%P8.7, Calculated), but whose infrared mull spectrum exhibxts two ( $C N$ bands at $2135 \mathrm{~cm}^{-1}$ and $2095 \mathrm{~cm}^{-1}$ attributed to both N - and S -bonded 1 somers.

Approximate Frequency Range for Thiocyanate Co-ordination*
$4(\mathrm{CN})\left(\mathrm{cm}^{-1}\right)$
NCS ${ }^{-}$
M-NCS $\quad 2100-2050 \mathrm{~s}, \mathrm{~b}$
M-SCN $2130-2085 \mathrm{~s}, \mathrm{sp}$
M-NCS-M 2165-2065
*From Norbury (3)
$(\operatorname{ses})\left(\mathrm{cm}^{-1}\right)$
746
870-820 w
760-700
800-750
$(\mathrm{NCS})\left(\mathrm{cm}^{-1}\right)$
486,471
485-475
470-430
470-440
$\frac{A\left(\times 10^{-4} M^{-1} \mathrm{~cm}^{-2}\right)}{3-5} \begin{aligned} & 7-11 \\ & 1-3\end{aligned}$

Fig. 2.2.

The complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{CO}\right) \mathrm{SCN}$ was prepared similarly from the reaction of $\mathrm{Me}_{4} \mathrm{NSCN}$ with $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ in acetone. Its infrared spectrum indicates that the thiocyanate group is again co-ordinated through sulphur (Table 2.8.) and that an acetone molecule is co-ordinated (Table 2.9.), as indicated by the CO stretching frequency for acetone at $1710 \mathrm{~cm}^{-1}$ compared with that for the free solvent at $1718 \mathrm{~cm}^{-1}$. Co-ordinated acetone in $\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CO} \mathrm{Me}_{2} \mathrm{CO}\right)(\mathrm{NCSe})(73)$ exhibuts a CO stretching frequency at $1712 \mathrm{~cm}^{-1}$. It has been shown that the CN stretching frequency for MeCN does increase to higher wavenumbers on co-ordination, as in $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{ClO}_{4}(74)$ where $(\mathrm{CN})$ occurs at $2270 \mathrm{~cm}^{-1}$. Although the shift of this frequency in $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ ( MeCN )SCN is small, it does imply that acetonitrile is co-ordinated, as with acetone. Furthermore, the analyses for these complexes remain unchanged even after drying for several hours under vacuum, and the infrared spectra showed that the acetone or acetonitrile band had not decreased in intensity.

## (ii) The Preparation and Reactions of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$

The complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ can be prepared from the reaction of $\mathrm{Me}_{4} \mathrm{NSCN}$ whth, $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ in acetonitrile containing excess triphenylphosphine. The infrared spectrum öf this complex exhibıts $(C N)$ at $2095 \mathrm{~cm}^{-1}$ and $Y(C S)$ at $811 \mathrm{~cm}^{-1}$, similar to $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}$, and an integrated absorption intensity for the $C N$ stretching mode which is larger than that of the free ion ( $\mathrm{A}=8.5 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}$ in KBr ).
(a) The reaction of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ in solution.

When the complex $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)}{ }_{3} \mathrm{NCS}$ is added to solvents such as acetonitrile, acetone, or diethyl ether under nitrogen the bright yellow compounds $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN} \quad\left[\mathrm{L}=\mathrm{MeCN}, \mathrm{Me}_{2} \mathrm{CO}, \mathrm{Et}_{2} \mathrm{O}\right.$ ] are isolated (Table 2.8.). These will be discussed in greater detail in a later chapter. All these observations are consistent with the following reaction scheme:-

$$
\begin{aligned}
& \mathrm{Rh}_{\mathrm{B}}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}+\mathrm{Me}_{4} \mathrm{NSCN} \rightarrow \mathrm{Rh}_{\mathrm{L}}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS} \rightarrow \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{NCS} \\
& \psi \\
& \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}
\end{aligned}
$$

(b) The reaction of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right) \mathrm{NCS}$ with excess Me ${ }_{4} \mathrm{NSCN}$.

When a solution of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ in $\mathrm{CHCl}_{3} / \mathrm{MeCN}$ was treated gradually with tetramethylammonium thiocyanate, the intensity of the band at $2095 \mathrm{~cm}^{-1}$ decreased and a new peak appeared at $2110-2115 \mathrm{~cm}^{-1}$. When $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ was similarly treated with twice the mole amount of $\mathrm{Me}_{4} \mathrm{NSCN}$, the infrared solution spectrum showed initially a band at $2095 \mathrm{~cm}^{-1}$ and then the appearance of a band at $2115 \mathrm{~cm}^{-1}$ (Fig.2.3.). Both the infrared solution spectra showed eventually the complete disappearance of lonlc thiocyante (as demonstrated in Fig. 2.3.) simultaneously wath the formation of the $(\mathbb{C N})$ band at $2115 \mathrm{~cm}^{-1}$ which gave an integrated intensaty of $15.0 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}\left(\mathrm{~A}=7.5 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}\right.$ per thiocyanate) consistent wath the formation of $\left[\operatorname{Rh}\left(\mathrm{PPh}_{3}\right){ }_{2}(\mathrm{NCS})_{2}\right]^{-}$ However, attempts to 1 solate this species were unsuccessful.

Infrared Solution Spectral Studies of the Reaction between $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{X}$ and $\mathrm{NCS}^{-}$

$\mathrm{Rh}(\mathrm{PPh})_{33} \mathrm{NCS}+\mathrm{NCS}^{-}$


Fig. 2.3
(c) The Reaction of carbon monoxide with $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ and related complexes.

It was found that bubbling carbon monoxide through a suspension of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ or $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}$ [ $\mathrm{L}=\mathrm{MeCN}, \mathrm{Me} \mathrm{M}_{2} \mathrm{CO}$ ] in acetonitrile resulted in the formation of the $N$ bonded complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (CO)NGS from infrared spectral and analytical data. Similar results were obtained by passing carbon monoxide over the $S$-bonded complexes in the solid state. In no case was it possible to detect any bands in the infrared spectrum which might correspond to $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{SCN}$.
(d) The Reaction of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ in Benzene.

The infrared spectral solution of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ in benzene in the presence of air exhibats two $Y(N)$ bands at $2155 \mathrm{~cm}^{-1}$ and $2095 \mathrm{~cm}^{-1}$, the former being consistent with the formation of bridging thiocyante. The gradual addrtion of triphenylphosphine results in the diminution of the band at $2155 \mathrm{~cm}^{-1}$ and eventually the complete disappearance of this absorption. This agrees with the results of Jennings and Wojcicki(72) and is consistent with the type of equilıbrium in Fig. 2.1. Similarly, when the insoluble $S$-bonded complexes are refluxed in benzene for several minutes dissolution results, and their infrared spectra exhabits in solution bands at
$2155 \mathrm{~cm}^{-1}$ and at $2095 \mathrm{~cm}^{-1}$ attributable to bridging
and terminal thiocyanate species respectively.
Addition of triphenylphosphine again results in the
disappearance of the band at $2155 \mathrm{~cm}^{-1}$. When
$R h\left(P_{P h}\right)_{3} N C S$ is added to benzene under nitrogen,
the infrared solution spectrum exhibits only one
band at $2095 \mathrm{~cm}^{-1}$ due to an N-bonded thiocyanate
species. A bright yellow solid eventually precipi-
tates and is described in the next section.
(iii) The preparation of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{(\mathrm{L}) \mathrm{SCN} \text { where } L=\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}}$

The infrared spectrum of the complex isolated from the reaction of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ in benzene, illustrated in Fig. 2.4., exhibits a $(\mathrm{CN})$ band at $2142 \mathrm{~cm}^{-1}\left(\mathrm{~A}=2.9 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}\right.$ in KBr$)$. Analytical data indicate the formulation $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{SCN}$. Because of triphenylphosphine ligand vibrations it is difficult to discern any definite bands attributable to benzene in the complex, although the band at $672 \mathrm{~cm}^{-1}$ could be due to the benzene $\mathrm{Y}(\mathrm{CH})$ vibration. The complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\right) \mathrm{SCN}$ was prepared simılarly. The infrared spectrum exhlbits bands at 1583 and $472 \mathrm{~cm}^{-1}$ which may be assigned to $Y(C C)$ and $X$-sensitive vibrations of cholorobenzene respectively. These bands occur at 1588 and $470 \mathrm{~cm}^{-1}$ in free chlorobenzene (Fig. 2.4.) The analyses of both these complexes after drying for several hours under a flow of nitrogen show no change, and the intensity of the bands in the infrared spectrum attributable to chlorobenzene in $\mathrm{Rh}_{\left(\mathrm{PPh}_{3}\right)}^{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\right) \mathrm{SCN}$ does not decrease. In the

The Infrared Spectra of $\mathrm{Rh}\left(\mathrm{PPh}_{32}\right) \mathrm{SCN}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{32}\right)(\mathrm{L}) \mathrm{SCN}$


$$
\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\right) \mathrm{SCN}
$$



Fig. 2• 4
presence of alr, the complexes readily lose these solvent molecules and the rapid uptake of oxygen occurs.

It has been argued that the complex $\left[\mathrm{RhCO}\left(\mathrm{SbPh}_{3}\right)_{3} \mathrm{Cl}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ is a pentaco-ordinate species stabilised by large stibanes where benzene is present as a tightly held clathrated molecule(75). In the infrared spectra of the complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}\left(\mathrm{L}=\mathrm{CH}_{3} \mathrm{CN}, \mathrm{Me}_{2} \mathrm{CO}\right)$ shifts, albelt slight, are observed in the principle bands of acetonitrile and acetone compared with the free molecules. Shafts in the CN stretching frequency of the thlocyanate group compared with $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$, which wall be discussed shortly, also occur. Simılarly, the CN stretchIng frequency in the benzene and chlorobenzene complexes is different
 shifts are also observed in the principle bands of the chlorobenzene in the complex. It may be concluded, therefore, that the solvent molecules are co-ordinated in the complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}$, where $\mathrm{L}=\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$.
(iv) Preparation of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$ - A Three Co-ordinate Rhodium(I) Complex

Whilst successive washing of the benzene analogue with dry hexane shows no change in its analytical composition, the chlorobenzene complex, on the other hand, seems less stable, and washing with hexane results in a weight loss equivalent to one molecule of chlorobenzene and this is confirmed by subsequent analyses. The infrared spectrum of this complex now shows no bands attributable to chlorobenzene and the $C N$ stretching frequency of the thiocyanate group shifts from $2142 \mathrm{~cm}^{-1}$ to $2137 \mathrm{~cm}^{-1}$.

Similarly, gentle heating of the complex $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{SCN}$ under a natrogen atmosphere results in a weight loss equivalent to one molecule of benzene. Analytical data are consistent with the formulation $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$ and the infrared spectrum also shows a shift of the CN band from $2142 \mathrm{~cm}^{-1}$ to $2137 \mathrm{~cm}^{-1}$. 'The integrated absorption intensity of this vibration is $3.0 \times 10^{4} \mathrm{~m}^{-1} \mathrm{~cm}^{-2}$ in KBr similar to the integrated absorption intensaty of the $\mathrm{V}(\mathrm{CN})$ stretching frequency observed in $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2}}(\mathrm{~L}) \mathrm{SCN}$, indicating that the co-ordination of the thiocyanate group is unchanged l.e. terminal bonding of the thiocyanate group occurs through sulphur.

When the complex is treated with refluxing benzene, it slowly dissolves and the infrared solution spectra exhibit a band at $2155 \mathrm{~cm}^{-1}$, characteristic of a bridged thlocyanate species. When treated with co or with other solvents, $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$ readily takes up a further molecule to form $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}$ or $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}$ where $\mathrm{L}=\mathrm{MeCN}, \mathrm{C}_{6} \mathrm{H}_{6}$ etc.

The evidence does suggest that $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$ 1s a three co-ordinate complex, probably stabilised by the bulky phosphine groups and coordination of the thiocyanate group through the large sulphur, and wath favourable crystal packing in the solid state. The most likely structure for this complex would be one with trigonally disposed ligands.
(v) Oxygen Adducts of Rhodlum(I) - Thiocyanate Complexes -

Oxygen complexes of iridium and rhodium complexes have attracted much interest as a model system for biological oxygen uptake. Since
the inltıal preparation and studies of $\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl} . \mathrm{O}_{2}$ by Vaska(76), a number of related iridıum complexes have been prepared and X-ray structure determinations performed (77, 78, 79). The complexes are shown to contain oxygen bonded sideways on to aridium. The complexes can be depicted by the two geometrically equivalent structures (Fig. 2.5.I \& II , , which are valence bond representations of the limiting
oxidation states iridium (III) and iridium (I) respectively).

The oxygen-oxygen bond length varies considerably with the ligands co-ordinated to iradium. For instance, the $0-0$ bond lengths in the chloride and iodide complexes of $\operatorname{Ir}_{1}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) X . \mathrm{O}_{2},[\mathrm{X}=\mathrm{Cl}, \mathrm{I}]$ are $1.30^{\circ} \mathrm{A}$ and $1.51^{\circ} \mathrm{A}$ respectively(79). The oxygen adducts are characterised by an infrared band of medium intensity between $900-850 \mathrm{~cm}^{-1}$ which is Insensitive to $0-0$ distance, suggesting that it is not a pure 0-0 stretching mode(79).

On bubbling oxygen through a solution of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ in $\mathrm{CH}_{2} \mathrm{CI}_{2}$, brown crystals were obtained, whose infrared spectrum exhibited a band at $400 \mathrm{~cm}^{-1}$ due to co-ordinated oxygen(80). The structure of this complex has also been determined by X-ray crystallography, and shown to contain dimeric units with an unusual $\mathrm{O}_{2}$ bridge (Fig.2.5.III)(81)..' Augustine and Van Peppen(82) showed that uptake of oxygen by $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}}$ in solution was solvent dependent. In methanol a complex, whose analysis indicated a formulation $\mathrm{Rh}_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Cl}_{2} \mathrm{O}_{5}$, was formed, Fig. 2.5.(V), whilst in ethanol extensive oxygen uptake occurred.


I


II


III


IV

Fig. 2.5

The reaction of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ with $\mathrm{Me}_{4} \mathrm{NSCN}$ in acetonitrile containing an excess of triphenylphosphine in the presence of air gives a greenish brown complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}_{2} \mathrm{O}_{2}$. The infrared spectrum of this complex shows a band at $885 \mathrm{~cm}^{-1}$ due to co-ordinated oxygen but no bands attrabutable to PO stretching frequencies. The infrared spectrum, in contrast to the $v(\mathbb{C N})$ band at $2095 \mathrm{~cm}^{-1}$ in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$, exhibits a CN stretching frequency at $2110 \mathrm{~cm}^{-1}$ and a $y(C S)$ band at $825 \mathrm{~cm}^{-1}$. The integrated absorption intensity of both complexes are similar and greater than the free zon value. This andacates that the $N$-bonded co-ordination of the thzocyanate group is retained in the oxygen complex.

Addition of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3}$ NCS to diethyl ether in the presence of air gives the greenish-yellow complex $\mathrm{Rh}_{\mathrm{y}}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Et}_{2} \mathrm{O}\right) \mathrm{SCN} . \mathrm{O}_{2}$. The infrared spectrum exhibits a band at $905 \mathrm{~cm}^{-1}$ due to co-ordinated oxygen. The thiocyanate group is co-ordinated through sulphur, as indicated by the $(\mathbb{C N})$ band at $2146 \mathrm{~cm}^{-1}\left(\mathrm{~A}=3.1 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}\right.$ in KBr$)$. The addition of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right){ }_{3} \mathrm{NCS} . \mathrm{O}_{2}$ to diethyfether or acetonitrile under $\mathrm{N}_{2}$ showed no andication of giving an $S$-bonded product and extraction of the product from acetonitrile showed the presence of $\mathrm{Ph}_{3} \mathrm{PO}$ bands in the infrared spectrum.

The complexes probably have a similar structure to the iridium analogues, as shown in Fig. 2.5., and they further demonstrate the ability of rhodium and irxdium complexes to co-ordanate molecular oxygen.
(vi) Catalytic Properties of $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}}$.

In view of the ability of these complexes to take up oxygen, it was

```
mnteresting to determine whether they exhibited catalytic properties
similar to that of Rh(PPh}\mp@subsup{)}{3}{}\textrm{Cl}(80,83-88)
```

Oxygen was bubbled through a solution of xylene containing triphenylphosphine and a small quantity of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ in the mole ratio of 20:1 for one hour. The infrared spectrum of the residue, after removal of the rhodium(I)-complex, exhibited strong bands due to triphenylphosphine oxide ( $1120 \mathrm{~cm}^{-1}, 720 \mathrm{~cm}^{-1}$ ). Bubbling oxygen through a solution of triphenylphosphine containing no $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ gave no indication of forming trıphenylphosphine oxide.

The complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ has also been shown to readily catalyse the hydrogenation of olefans(83). However, the complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ gave no indication of co-ordinating ethylene or hydrogen.' Bubbling ethylene through a solution of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ in benzene only resulted in the isolation of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{SCN}$. Similarly, passing hydrogen or ethylene over the complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$ as a solid or as a slurry caused no change in its infrared spectrum nor any increase in weight.

However, the complex $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ was found to effectavely catalyse the decarbonylation of benzaldehyde $(83,85)$. Reactions performed using both $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ as catalyst under identical reaction conditions, gave yields of benzene four times greater in the latter case.

## Conclusions

The results described, in this study are summarized in the reaction scheme proposed in Fig. 2.6. and show that the reaction of $N$-thiocyanatoblotrıs(triphenylphosphine) rhodium(I) in solution can proceed in one of two ways: -
(1) The formation of dinuclear-bridged thiocyanate in
_ accordance with the results of Jennings and Wojeicki,
or (2) The formation of four co-ordinate species in which one molecule of $\mathrm{PPh}_{3}^{\prime}$ has been replaced by a solvent molecule.

Such behaviour can be compared with $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$. The latter complex dissolves in strong donor solvents (L), such as pyridine, dimethylsulphoxide and acetonitrile to yield complexes of the type $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{Cl}$. The dimer $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}\right]_{2}$ is obtalned, however, from benzene solutions (83). The dissociation of $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ has been extensively studied $82,83,89-$ 91). Evidence now suggests that dissociation is not extensive in the absence of oxygen(89-91), but is promoted in its presence, and that it Is this reactive dissociated species which is important in explaning its catalytic behaviour (82). It has not yet been established whether the dissociated three co-ordinate species $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ or a complex contalning a weakly donating solvent ligand occupying the vacant fourth site exists in solution.

## The Reaction of $\mathrm{Me}_{4} \mathrm{NSCN}$ with $\mathrm{Rh}\left(\mathrm{PPh}_{33}\right) \mathrm{Cl}$


*
Species identified in solution only.

Fig. 2.6

The complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ behaves in a similar fashion. It readily dissociates in solution, and the products may dimerize to form $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right){ }_{2} \mathrm{NCS}\right]_{2}$ or the fourth vacant site may be occupied by a solvent ligand(L) to form $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (L)SCN. The essential point is that whilst the dimer is formed in the presence of oxygen, the solvated complexes are formed in its absence. This suggests that although the dissociation of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ is extensive, the fourth position may be occupied by a solvent molecule, even a weakly co-ordinating donor molecule such as benzene. Further dissociation only arises in the presence of oxygen. For example, the complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(L) S C N$ in the solid state readily lose the solvent ligand(L) when left in the air i.e. in the presence of oxygen, but may be stored indefinitely under nitrogen.

In terms of the reaction scheme, described in Fig. 2.6., there is evidence to show that $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) N C S \text { is a key intermediate in the }}$ formation of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}$. Whether $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{NCS}$ is also anvolved is not clear, but evidence has been obtalned for the three co-ordinate complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$, which also tends to lend support to hypotheses for the exastence of a dissociated species in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ systems $(82,83)$.

In addition, the complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{SCN}$ is also of particular interest and prompts the question: Is benzene co-ordinated? On balance, when compared with $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (L)SCN [where $\mathrm{L}=\mathrm{MeCN}$ or Me $\mathrm{M}_{2} \mathrm{CO}$ ] evidence does suggest that it could be co-ordinated, but it is not clear how this occurs. The available pr orbitals on benzene are in such a position as to favour a six electron donation as in $\left(\pi-C_{6} H_{6}\right) \operatorname{Cr}(\mathrm{CO})_{3}(92)$, and this

In terms of the E.A.N. rule for the rhodium(I) complex would mean 2 electrons more than the rare gas configuration. However, benzene has been shown to co-ordinate through only one localised pair of $\pi-e l e c t r o n s$ as in $\mathrm{Ag}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) . \mathrm{ClO}_{4}(93), \mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgAlCl}_{4}(94)$ and $\mathrm{C}_{6} \mathrm{H}_{6} . \mathrm{CuAlCl}_{4}$ (95). Also if benzene is regarded as a type of 'wedge' the position of the available orbltals would only allow back donation of electrons from rhodium to benzene.

Finally, this study has established that it is possible to make a series of complexes of the type $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2}(L) S C N}$ containing a variety of ligands(L). These complexes will be discussed in the following chapter.

## Experimental

All the solvents used were carefully dried according to the methods described by Welssberger(96). Tetramethylammonium thiocyanate was prepared according to Songstad and Strangeland(97). The complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ was prepared according to the method of Wılkinson and co-workers(83). All reactions were performed under nitrogen except those for the preparation of the oxygen products.

The Preparation of the Rhodium(I)-Thlocyanate complexes.
N-thlocyanato tris(triphenylphosphine)rhodıum(I).
Tetramethylammonium thiocyanate ( $0.26 \mathrm{~g}, 2 \mathrm{mmole}$ ) and triphenylphosphine ( $0.8 \mathrm{~g}, 1.3 \mathrm{mmole}$ ) were dissolved in degassed acetonitrile ( 80 ml .). Tris(triphenylphosphine)chlororhodium(I) ( $0.46 \mathrm{~g}, 0.5 \mathrm{mmole}$ ) was added
and the reaction mixture stirred at room temperature. The product precipatated as a bright orange solid which was removed by filtration under nitrogen. Yield $=0.38 \mathrm{~g}$, ( $80 \%$ ).

S-thiocyanatobis(triphenylphosphine)(acetonitrile)rhodium(I)
Tetramethylammonium thiocyanate ( $0.066 \mathrm{~g}, 0.5 \mathrm{mmole}$ ) was dissolved in degassed acetonitrile ( $60 \mathrm{ml} \mathrm{t}^{\prime}$ ). Trıs (trıphenylphosphinechlororhodium( $I$ ) ( $0.23 \mathrm{~g}, 0.25$ mole) was added and the reaction mixture stirred at room temperature. The product precipitated as a bright yellow complex which was removed by filtration and dried under nitrogen. Yield $=0.15 \mathrm{~g}$, ( $82.5 \%$ ).

S-thiocyanatobis(triphenylphosphine)(acetone)rhodium(I)
The complex was prepared similarly using 200 mls . of acetone. Yield 0.16g, (88\%).

S-thzocyanatobis(triphenylphosphane)(L)rhodium(I) $\left[L=M e C N, M e C_{2} C\right.$, $\left.\mathrm{Et}_{2} \mathrm{O}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\right]$

N -thiocyanato-tris(triphenylphosphine)rhodium(I) ( 0.5 g ) was added to the respective degassed solvent ( 50 ml .) and the mixture stirred at room temperature for one hour. The products precipitated as bright yellow solids which were removed by filtration under a nitrogen atmosphere. Yields 0.25-0.35g, \% Yield 63-88\%

N-thiocyanatotris(triphenylphosphine)(dioxygen)rhodium(I)
; The complex was prepared similar to N-thiocyanatotrıs(triphenylphosphine)rhodium(I) in the presence of alr. The reaction mixture was stirred over 18 hours. The product precipitated as a greenish brown solid which was removed by filtration. Yield $0.2 \mathrm{~g},(42 \%)$.

S-thiocyanatobis(traphenylphosphane)(diethylether)(dioxygen)rhodium(I)
N-thiocyanatotrıs(triphenylphosphine)rhodium(I) ( 0.5 g ) was added to diethylether ( 30 ml, ) and stirred at room temperature in the presence of air for 30 minutes. The product precipitated as a greenish-yellow solid which was removed by filtration. Yield 0.3 g , ( $80.0 \%$ ). Catalytic reactions of thiocyanate-rhodium(I) complexes 1

Oxygen was bubbled through a solution of triphenylphosphine (5g) , in xylene (5g) in xylene ( $50 \mathrm{ml} . \mathrm{g}$ ) containing $N$-thlocyanato tris (triphenylphosphine)rhodium(I) (0.1g) and stirred for 2 hours.

## Decarbonylation

A suspension of $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} X$ where $X=C l$ or NCS in benzaldehyde ( 40 mls ) was gently refluxed for 10 hours. Fractionation of the solution between $58-70^{\circ} \mathrm{C}$ yzelded small quantities of benzene.

## General Properties

The complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ is a bright orange solid which readily dissolves in benzene, acetone and chloroform. Addition of the complex under nitrogen conditions to solvents such as benzene, acetone and acetonitrale results in the formation of bright yellow complexes of the type $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{LSCN}$ ( $\mathrm{L}=$ solvent molecule). These complexes and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$ are highly insoluble and will only dissolve in chloroform or benzene under reflux conditions. All the compounds slowly decompose in the presence of alr with the uptake of oxygen. However, the compounds are stable when stored under nitrogen conditions, at room temperature, but
decompose without melting on heating

## Analysis

Attempts to characterise the $S$-bonded thiocyanate complex from C, $H$ and $N$ analyses, obtained by combustion* were found unsatisfactory. However, analysis of rhodium, sulphur and phosphorus by X-ray fluorescence spectrometry using a Philips PW1540 vacuum spectrograph (see chapter 12) gave satisfactory results and are recorded in Table 2.7. The brown complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS} . \mathrm{O}_{2}$ have been characterised by both methods.

Infrared spectra

The positions of infrared absorption bands due to the thiocyanate group in these complexes were obtained by a comparison of their spectra
 spectra, and as KBr discs using a Perkin-Elmer 457 spectrophotometer are recorded in Tables 2.8.; those for tetramethylamonium thiocyanate and the known complex $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) N C S$ are also included. The intergrated intensities of the CN stretching frequency were measured as KBr discs; those for $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{CONCS}$ were also recorded in chloroform. All bands were recorded to within an accuracy $\pm 1 \mathrm{~cm}^{-1}$ against a polyethylene film as standard.

[^1]Analytical Data for Rhodium(I)-Thiocyanate Complexes

| - Complex | Found |  |  |  |  |  |  |  | Calculated |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\% \mathrm{Rh}$ | \%P | \%S | \%C | \%H | \%N | \%Rh | \%P | \%S | \%C | \%H | \% N |
| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{CONCS}$ | 14.5 | 8.9 | 4.6 | 63.9 | 4.2 | 2.6 | 14.5 | 8.8 | 4.5 | 63.7 | 4.2 | 1.9 |
| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ | 10.8 | 9.6 | 3.4 |  |  |  | 10.9 | 9.6 | 3.6 |  |  |  |
| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$ | 14.9 | 9.25 | 4.6 |  |  |  | 15.0 | 9.1 | 4.7 |  |  |  |
| $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}(\mathrm{~L})$ |  |  |  |  |  |  |  |  |  | - |  |  |
| $L=M e C N$ | 14.2 | 8.8 | 4.3 |  |  |  | 14.2 | 8.7 | 4.4 |  |  |  |
| $\mathrm{Me}_{2} \mathrm{CO}$ | 13.9 | 8.4 | 4.2 |  |  |  | 13.9 | 8.4 | 4.3 |  |  |  |
| $\mathrm{Et}_{2} \mathrm{O}$ | 13.6 | 8.2 | 4.3 |  |  |  | 13.6 | 8.2 | 4.2 |  |  |  |
| $\mathrm{C}_{6} \mathrm{H}_{6}$ | 13.4 | 8.2 | 4.1 |  |  |  | 13.5 | 8.2 | 4.2 |  |  |  |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ | 13.4 | 8.1 | 4.1 |  |  |  | 12.9 | 7.77 | 4.0 |  |  |  |
| Oxygen Complexes |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right){ }_{3} \mathrm{NCS.O}{ }_{2}$ | 10.3 | 9.7 |  | 65.7 | 4.5 | 1.2 | 10.5 | 9.5 |  | 67.0 | 4.7 | 1.4 |
| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Et}_{2} \mathrm{O}\right) \mathrm{SCN} \cdot \mathrm{O}_{2}$ | 13.3 | 8.0 |  |  |  |  | 13.5 | 8.1 |  |  |  |  |

Table 2.7.

## Infrared Frequencies of the Thiocyanate Group in Rhodium(I) Complexes

|  | (a) $(\mathrm{CN})\left(\mathrm{cm}^{-1}\right)$ | (a) $4(\mathrm{cs})\left(\mathrm{cm}^{-1}\right)$ | $\mathrm{A}\left(10^{-4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}\right)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Me}_{4} \mathrm{NSCN}$ | 2055 s | 746 w |  |
| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{CONCS}$ | $2095{ }^{(b)} \mathrm{s}, \mathrm{b}$ | 838 w | $12.0^{(b)} \quad(73)$ |
| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ | $2095{ }^{(b)} s, b$ | 811 w | $8.5{ }^{\text {(b) }}$ |
|  | 2095 s,b |  | 8.3 |
| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}^{-}$ | 2137 s,sp. | - | 2.5 |
| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}(\mathrm{~L})$ |  |  |  |
| L=MeCN | $2135 \mathrm{~s}, \mathrm{sp}$ | - | 3.0 |
| $=\mathrm{Me}_{2} \mathrm{CO}$ | 2134 s,sp | - | 2.8 |
| $=\mathrm{Et}_{2} \mathrm{O}$ | 2138 s , sp | - | 3.1 |
| $=\mathrm{C}_{6} \mathrm{H}_{6}$ | $2142 \mathrm{~s}, \mathrm{sp}$ | - | 2.9 |
| $=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ | 2142 s , sp | - | 3.2 |

(a) Presented as KBr disc unless otherwise stated.
(b) Chloroform solution.

No bands have been assigned to SNCS due to the complexity of the spectra between $500-400 \mathrm{~cm}^{-1}$.

## Infrared Spectral Data for the Principle Solvent Ligand(L)

 $\underline{\text { Vibrations }\left(\mathrm{cm}^{-1}\right) \text { in the Complexes } \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}}$| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}$ |  | Free Solvent |
| :---: | :---: | :---: |
|  | - |  |
| $\mathrm{L}=\mathrm{Me}_{2} \mathrm{CO}$ | $1710 \mathrm{~s}(\underline{\text { (CO) })}$ ) 1225 m | 1718 s ( $\mathrm{Y}_{( }(0)$ ), 1224 m |
| $=\mathrm{MeCN}$ | 2257 w ( $\chi^{(C N) \text { ) }}$ | 2253 m ( 4 (CN) |
| $\mathrm{FEt}_{2} \mathrm{O}$ | (a) |  |
| $=\mathrm{C}_{6} \mathrm{H}_{6}$ | (a) |  |
| $=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ | 1583 s ( $4(\mathrm{CC})$ ), 472(X-sens) | 1588 s ( $Y(C C)$ ), 470(X-sens) |
|  | $1025,903$ | 1025, 903 |

(a) No bands could be attributed with certainty because of triphenylphosphine lıgand vibrations.

## Electrical Conductivity


#### Abstract

The molar conductivity of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}\left(10.0\right.$ ohms ${ }^{-1} \mathrm{~cm}^{2}$ ) measured in acetonitrile using a Wayne-Kerr Conductivity bridge and platinised electrodes shows that it is a non-electrolyte. No other complex could be measured' because of their high insolubility in all solvents.


## CHAPTER 3

i

Sance the $\pi$-bonding hypothesis put forward by Turco and Pecile to explain the co-operative effect of IIgands in $\mathrm{Pd}(\mathrm{II})$ and Pt(II) complexes on thiocyanate co-ordination(9), other explanations for this phenomenon have been proposed including symbiosis(18), antisymbiosis(21), and the semiquantatative approach of Norbury(24). In the previous chapter it was shown that the lability of triphenylphosphine in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ could be exploxted to glve a number of rhodium(I) complexes of the type $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(L) C N S$. Further complexes of this type have been synthesised using a range of ligands of varying $\sigma$-donor and $\pi$-acceptor ability, so that the effect of the ligand on the mode of throcyanate linkage in these complexes may be evaluated.

## Results

The complexes listed in Table 3.1. were prepared by either or both of the following methods:-
(1) Reaction of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ with the corresponding ligand as solvent, as previously described.
(2) Reaction of $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ with the corresponding lıgand in hexane.

## General Properties

Whalst $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{NCS},[\mathrm{L}=$ piperidine, quinoline $]$ are only moderately soluble in chloroform and acetonitrile, the remaining $S$-bonded complexes


| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{CNS}$ |  | Rh | P | s | c | H | N | Rh | P | s | c | H | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $L=$ pıperıdine | 2 | 13.1 | 8.0 | 4.0 | 64.2 | 5.9 | 3.9 | 13.3 | 8.1 | 4.1 | 65.5 | 5.8 | 3.7 |
| quanoline | 2 | 12.4 | 7.5 | 4.1 |  |  |  | 12.6 | 7.6 | 3.9 |  |  |  |
| DMSO. | 1 | 13.6 | 8.1 | 8.3 |  | - |  | 13.5 | 8.2 | 8.4 |  |  |  |
| $\mathrm{Me}_{2} \mathrm{~S}$ | 2 | 13.5 | 8.4 | 8.3 |  |  |  | 13.7 | 8.3 | 8.6 |  |  |  |
| EtCOOH | 1 | 13.7 |  |  |  |  |  | 13.6 | 8.2 | 4.2 |  |  |  |
| EtOH | 1 | 14.0 |  |  |  |  |  | 14.1 | 8.5 | 4.4 |  |  |  |
| MeCOOEt | 1 | 12.8 | 8.4 |  |  |  |  | 13.0 | 7.9 | 4.1 |  |  |  |
| diacetone alcohol | 1 | 12.6 | 7.9 |  |  |  |  | 12.8 | 7.7 | 4.0 |  |  |  |

$\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}\left[\mathrm{MeCOOH}, \mathrm{MeCOOEf}, \mathrm{Me}_{2} \mathrm{~S}\right.$, DMSO, EtOH, and diacetone alcohol] are insoluble in most solvents. The $S$-bonded complexes are moderately soluble in piperıdine, aniline and pyridine but give $N$ bonded species in solution by the displacement of the ligand (L) by piperıdine etc. All the complexes are air sensitive in the sense that the solvent ligands are lost and oxygen is taken up as indicated by the triphenylphosphine bands in their infrared spectra. However, the complexes remain unchanged over several weeks when stored under $\mathrm{N}_{2}$. The ligand ( $\bar{L}$ ) in many of the complexes is displaced on heating and continual stirring in hexane results in the formation of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$. All the compounds decompose without melting.

## Electrical Conductivity

Electrical conductivities for the complexes $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2} \text { (L)SCN could }}$ not be measured because of their insolubility. The molar conductivities of $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) N C S \quad[\mathrm{~L}=$ quinoline, piperidine $]$ measured in acetonitrile show that the complexes are non-electrolytes (Table 3.2.)

Compound
Solven

$$
\begin{aligned}
& \text { Concentration } \\
& 10^{-3} \text { moles/litre }
\end{aligned}
$$

$\frac{\text { Molar Conductivity }}{\mathrm{ohm}^{-1} \mathrm{~cm}^{2}}$

| $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}($ pıperıdıne $) \mathrm{NCS}$ | MeCN | 0.7 | 6.3 |
| :--- | :--- | :--- | :--- |
| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (quinoline)NCS | MeCN | 0.5 | 7.2 |

Table 3.2.

Inf rared spectra

The positions of the infrared absorption bands due to the thiocyanate group in these complexes were obtained by a comparison of their spectra with those of tris(triphenylphosphane)chloro rhodium(I) and N-thiocyanatobis(triphenylphosphine)carbonylrhodium(I) (see Chapter 2). Bands observed in the mull spectra or as KBr discs are recorded in Tables 3.3. and 3.4. The infrared spectra of all the complexes discussed in the previous chapter are also ancluded. No bands have been attrabuted to the $\delta(N C S)$ bending mode in these complexes because of the complexity of triphenyphosphine ligand vibrations in the same region (500-400c $\mathrm{m}^{-1}$ ).

The infrared spectra of the complexes $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2}(L) N C S ~[L=p i p e r i-~}$ dine and quinoline] have $C N$ and $C S$ stretching frequencies and integrated absorption intensitıes (Table 3.3.) all consıstent with co-ordination of the thzocyanate group through the nitrogen atom, as is found in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$. Complexes containing anmline or pyridine could not be isolated, but addition of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right){ }_{3} \mathrm{NCS}$ or $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$ to aniline or pyridine gave a $\mathrm{Y}(\mathrm{CN})$ band at $2100 \mathrm{an}^{-1}$ and integrated absorption intensity of 8.9 and $10.110^{4} M^{-1} \mathrm{~cm}^{-2}$ respectively, indrating the presence of N -bonded species in solution. On the other hand, the infrared spectra of the complexes $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right){ }_{2}(\mathrm{~L}) \mathrm{SCN}\left(\mathrm{L}_{\mathrm{I}}=\mathrm{Me}_{2} \mathrm{~S}\right.$, EtOH, $\mathrm{EtCO}_{2} \mathrm{H}$, , DMSO. etc) exhibxt similar CN stretching frequencies and integrated absorption intensities i.e. $\sim 2135 \mathrm{~cm}^{-1}, \mathrm{~A}=\sim 3.0^{\circ} \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}$, to those of the complexes $\operatorname{Rh}\left(\operatorname{PPh}_{3}\right)_{2}(L) S C N\left[L=M e n C O, M e C N, C_{6} H_{6}\right.$ etc. $]$, previously descrıbed, andicating that all these complexes are $S$-bonded

Infrared Spectral Data for Rhodium(I)-N-Thiocyanate Complexes Complex


$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{(\mathrm{L}) \mathrm{NCS}}$

a KBr disc and nujol mull
b KBr disc
c $\mathrm{CHCl}_{3} \times 10^{-3}$ molar solution
d obscured by quanoline vibrations
e $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ in quinoline, $\times 10^{-3}$ molar solution
$f \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ in pyridine, $\times 10^{-3}$ molar solution
$\mathrm{g} \quad \mathrm{Rh}\left(\mathrm{PPh}_{3}\right){ }_{3} \mathrm{NCS}$ in aniline, $\times 10^{-3}$ molar solution

## Infrared Spectral Data for Rhodium(I)-S-Thlocyanate Complexes

Complex

$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}$

| $\mathrm{L}=\mathrm{Me}_{2} \mathrm{CO}$ | 2134 s,sp. | - | 2.8 |
| :---: | :---: | :---: | :---: |
| MeCN | 2135 s,sp | - | 3.0 |
| $\mathrm{Et}_{2} \mathrm{O}$ | 2138 s,sp | - | 3.1 |
| $\mathrm{C}_{6} \mathrm{H}_{6}$ | 2142 s,sp | - | 2.9 |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ | 2142 s,sp | - | 3.2 |
| EtOH | 2142 s,sp | - | 2.9 |
| MeCOOH | 2140 s,sp | - | 2.8 |
| MeCOOEt | 2140 s,sp | - | 2.8 |
| diacetone alcohol $\mathrm{MeCOCH}_{2} \mathrm{COH}(\mathrm{Me})_{2}$ | $2140 \mathrm{~s}, \mathrm{sp}$ | - | 3.1 |
| DMSO ' $\mathrm{Me}_{2} \mathrm{SO}$ : | 2132 s,sp | - | 2.3 |
| $\mathrm{Me}_{2} \mathrm{~S}$ | 2138 s,sp | - | 3.5 |

a KBr disc and nujol mull
b KBr disc

Table 3.4.

# Infrared Spectral Bands ( $\mathrm{cm}^{-1}$ ) of the Solvent-Ligand(L) <br> In the Complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (L)CNS 

Complex Ligand(L) vibrations in complex Free ligand

| $\begin{array}{r} L=\text { piperidine } \\ \left(\mathrm{CH}_{2}\right)_{5} \mathrm{NH} \end{array}$ | $\begin{aligned} & 3260 \mathrm{w}, \\ & 1040 \mathrm{~m}, \\ & 1020 \mathrm{NH}, 8 \\ & \end{aligned}$ | $\begin{aligned} & 3280 \text { (YNH) } \\ & 1048 \mathrm{~m}, 1033 \mathrm{~m}, 858 \mathrm{~m} \end{aligned}$ |
| :---: | :---: | :---: |
| $\begin{gathered} \text { quinoline } \\ \mathrm{C}_{9} \dot{\mathrm{H}}_{7} \mathrm{~N} \end{gathered}$ | $1633 \mathrm{~m}, \mathrm{w}, 1620 \mathrm{~m}, 1598 \mathrm{~m} \quad(\mathrm{YC}=\mathrm{C})$ | 1625m, $1595 \mathrm{~m}, 1570 \mathrm{~m}\left(\mathrm{Y}_{(\mathrm{C}=\mathrm{C})}\right)$ |
|  | $1502 \mathrm{~m}, 1390 \mathrm{~m}, 1382 \mathrm{~m}, 872 \mathrm{sm}, 840 \mathrm{~m}$, $825 \mathrm{~m}, 816 \mathrm{sh}, 810 \mathrm{~m}, 790 \mathrm{w}, 640 \mathrm{w}, 610 \mathrm{w}$ | $\begin{aligned} & 1502 \mathrm{~s}, 1390,1375, \\ & 806 \mathrm{~s}, 786 \mathrm{~s}, 760 \mathrm{w}, 738 \mathrm{~m} \end{aligned}$ |
| MeCOOH | 1708s ( $\sim$ COD | 1712s (YCOD |
| MeCOOEt | 1735s ( 4 COD | 1740s (YCOI) |
| diacetone alcohol | 1710-1700s (VCOI) | 1700 (vCOl) |
| EtOH | $3400 b$ ( $\mathrm{YHH}_{\text {) }}$ ) | 3300 ( 1 OH ) |
| DMSO '. | 1060-1030 sb (USOl) | 1100-1050 ( V SO ) sb |
| $\mathrm{Me}_{2} \mathrm{~S}$ | $1315 \mathrm{w}, \mathrm{sh}, 970 \mathrm{w}$ | $1310 \mathrm{~m}, 970 \mathrm{~s}$ |

Table 3.5.
(Table 3.4.).

The infrared spectra of the complexes suggest that the ligands(L) are co-ordinated (Table 3.5.). Small shifts, compared wh the free ligands, are observed in the $C=0$ 'stretching frequencies of acetic acid, ethyl acetate, and diacetone alcohol. The complex $\mathrm{Rh}_{\left(\mathrm{PPh}_{3}\right)}^{2}$ (, DMSO)SCN is of particular interest with respect to whether co-ordination of dimethyl sulphoxide occurs through oxygen or the sulphur atom. The So stretching frequency for DMSỌ in the complex occurs at $1060-1030 \mathrm{~cm}^{-1}$ lower than that for free dimethylsulphoxide which absorbs at $1100-1055 \mathrm{~cm}^{\mathbf{- 1}}$. A downward shift of this metal-sensitive so stretching frequency has been shown to indicate co-ordination through oxygen (98): in contrast, the corresponding halogen complexes $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right){ }_{2}$ (DMSO)X [Where $\mathrm{X}=$ $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}]$ exhibit an upward shift of the so stretching frequency in their infrared spectra indıcating co-ordination through sulphur(99).

Whilst the addition $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ to hexane and stirring for several hours causes little change in the complex, the addition of dimethylsulphide readily gives a complex which analyses as $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{SCN}$ and whose infrared spectrum exhibits bands at 1315 and $970 \mathrm{~cm}^{-1}$ due to $\mathrm{Me}_{2} \mathrm{~S}$ (these bands occur at 1310 and $970 \mathrm{~cm}^{-1}$ in the free ligand). In the case of the N-thiocyanato complexes prepared in a similar manner to the dimethylsulphide adduct the band at $3260 \mathrm{~cm}^{-1}$ in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right){ }_{2}$ (piperidine)NCS is attributed to the $V(N H)$ stretching frequency of piperidine [ $\mathrm{U}(\mathrm{NH})$ in free piperıdine occurs at $3280 \mathrm{~cm}^{-1}$ ], whilst the bands at $1625 \mathrm{~cm}^{-1}, 1595 \mathrm{~cm}^{-1}$ and $1570 \mathrm{~cm}^{-1}$ due to $\mathrm{C}=\mathrm{C}$ stretching frequencies in free quinoline are
shifted to 1633,1620 and $1598 \mathrm{~cm}^{-1}$ in the complex(100). Significant shifts are also observed in the bands at 805 and $786 \mathrm{~cm}^{-1}$ in free quinoInne compared wath the complex where bands are observed at 872,840 , $825,816,810,790$ and $782 \mathrm{~cm}^{-1}$ : one of these bands may be attributable to the $\mathcal{V}(S)$ stretching frequency of the thiocyanate group. The relative intensities of the solvent-ligand bands in the complexes do not decrease after drying the complexes for several hours under nitrogen: indeed the complexes remain unchanged when stored under nitrogen for several months. However, it was found that the solvent ligands could be dis-
 hours. Subsequent addition of the corresponding ligand to $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$ in hexane gave the four co-ordinate complexes again. Further, all the complexes slowly lose thear solvent-ligands when exposed to alr and their infrared spectra indicate bands attrıbutable to traphenylphosphine oxade.

The Geometric Configuration of the, Complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{(\mathrm{L}) \mathrm{CNS}}$

On consideration of trans-effects one would anticıpate that one of the trans-phosphine groups in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ would be labile, and may be replaced by other ilgands(83). For example, carbon monoxide may displace traphenylphosphane in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ to give $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}(83)$ which has been shown to have the trans-square-planar configuration, i.e. Co trans Cl, from dipole measurements(101), X-ray studies(102) and n.m.r. studies of related phosphine complexes(103). Simılarly, an X-ray crystal structure determination of $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CS}) \mathrm{Cl}$ showed such a trans-square-planar con-
figuration.

On this basis, the complex $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) N C S$ has been assumed by Burmeister(73) to have such a configuration, which is further indicated by dipole measurements performed on the complex $R h\left[P\left(C_{6} H_{11}\right)_{3}\right]_{2}(C O) N C S(72)$. It was hoped to confirm the configuration of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}$ and the related complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (L)CNS, from $\mathrm{n} . \mathrm{m} . \mathrm{r}$. studies of the analogous complexes $\mathrm{Rh}\left(\mathrm{PMePh}_{2}\right)_{2}(\mathrm{~L}) \mathrm{CNS}$. Unfortunately, attempts at the preparation of these latter complexes were unsuccessful in the time available. It has been found, however, that the lih.m.r. spectra of the triphenylphosphinerhodium(I) complexes can provide some information concerning their geometric configuration. The n.m.r. spectrum of triphenylphosphine exhibits a singlet at $\tau 2.78$ due to the phenyl protons. In contrast, the complexes trans-Rh $\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) N C S$ both exhibit two distinct sets of peaks at $\tau 2.30$ and 2.62 for trans $-\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ and T2.40 and 2.60 for $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2}}$ (CO)NCS which both integrate in the order of $2: 3$ respectively (Fig. 3.6). This splitting of the phenyl protons is typical of aromatic carbonyl compounds where the effect of a substituent, such as carbonyl, is to cause greater deshzelding of the ortho protons rather than the meta and para protons. Hence the spectrum becomes a lower field two proton and a higher field three proton complex(105, 105), as found, for example, in benzaldehyde ( $\tau \sim 2.1$ and 2.4.). Deshielding of the phenylprotons by the carbonyl group is a magnetic anisotropy effect rather than induction i.e.it acts through space rather than through atoms. It is probably this effect which accounts for the similar behaviour in the rhodium complexes. Such splitting would only arise if the phenyl

The N.M.R. Spectra of $R h\left(P_{3}\right)_{33} X$ and $R h\left(P_{3}\right)_{32}(C O) X$

$\mathrm{Rh}\left(\mathrm{PPh}_{32}\right)(\mathrm{CO}) \mathrm{NCS}$


Fig 3:6
groups on each phosphine are in the same envaronment with respect to the carbonyl group i.e. the traphenylphosphine groups are trans to one another (Fig. 3.7.). If the phosphine ligands were cis to one another

(I)

(II)

Fig. 3.7.
(II) the phenyl groups would be in different magnetic environments relative to the carbonyl group and such distinct splatting of the protons in the ratio of $2: 3$ would not be observed. Therefore, the n.m.r. spectra of the square-planar complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}$ not only indicate that they have the same configuration but also that the phosphine groups are indeed trans to one another.

On the other hand, the n.m.r. spectrum of the complex $R h\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ exhibits only one complex set of peaks centred at $\tau 2.56$ which could not be resolved (Fig. 3.6.). The n.m.r. spectrum of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ is more complicated and exhibits two bands at $\tau 2.55$ and $\tau 2.95$ which integrate approximately in the order of $3: 2$ respectively (Fig. 3.6.). Thus, in nerther $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ nor $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ is it possible to distinguish between the two geometrically different triphenylphosphine ligands. The
nature of the splitting in $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ xs different from that observed in trans- $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ and in aromatic carbonyl compounds. Such behaviour is probably due to an inductive effect stemming from the 'Rh-Cl' moelty, but it is more complicated than that observed normally in substituted aromatic compounds(105) where one might expect a deshielding of the ortho protons and an opposite shielding of the meta and para protons as observed in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$, or alternatively a possible shielding of all the protons. No such simple explanation appears suitable for $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$.

Unfortunately, the conclusions reached for trans- $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) X}$ where $X=C l$ or $N C S$ cannot be applied to other rhodium(I)-thiocyanate complexes. The complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (piperidine)NCS only exhibits one complex set of unresolvable peaks centred at $2.6 \tau$ simılar to $R h\left(\mathrm{PPh}_{3}\right){ }_{3} \mathrm{NCS}$. This is expected since piperidine would not exhabit any magnetic anısotropy and any inductive effect would be small. The two complex sets of peaks due to the protons on piperidine centred at 6.9 and 8.3 T are shifted to lower field on co-ordinatıon ( $\tau 7.3$ and 8.5 in free piperidine). The n.m.r. spectra of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ recorded in solvents such as DASO, acetone $d^{6}$ or $\mathrm{CD}_{3} \mathrm{COOH}$ under normal conditions are similar to those recorded in $\mathrm{CDCl}_{3}$ although the former spectra do give some indication of free triphenylphosphine showing that triphenylphosphine has been displaced. It has been demonstrated previously that these solvent molecules are labile in the rhodium(I) complexes in the presence of oxygen i.e. in air, (see Chapter 2). Preparation of the solutions under a nitrogen atmosphere resulted in the formation of the insoluble s-bonded complexes
making measurements 1 mpossible.

An examination of the infrared spectra of the S-thlocyanato complexes provides possible evadence concerning their geometric configuration. Trans-or,cis-1somers in Pd(II) and Pt(II), arsine, stibine and phosphine complexes can be distinguished using the $X$-sensitive $y$ and $u$ vibrations of the respective arsine, stibine or phosphıne(107). These bands are degenerate and changes in their multiplicity are possible. In the case of trans-Pd(II) complexes e.g. trans-Pd(AsPh $)_{2} X_{2}[\mathrm{X}=\mathrm{NCO}, \mathrm{Cl}]$ which have a $D_{2 h}$ symmetry, the $X$-sensitive $y$ and $u$ vibrations move upfield slughtly. On the other hand, while the $X$-sensitive $y$ and $u$ vibrations of the corresponding $\operatorname{Pt}(\mathrm{II})$ complex move upfield as expected, increased multıplicity of these vibrations occurs because of a lower $C_{2 v}$ symmetry.

These criteria cannot be applied in the same way to $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(L) C N S$ since the square-planar complexes would have a $C_{2 v}$ symmetry for a trans configuration and $C_{s}$ for cis. There is, therefore, no difference in the number of allowed metal-ligand stretching frequencies in the infrared region. Only a general comparison can be made between the X-sensitive vibrations in the infrared spectra of these complexes which are recorded in Fig. 3.8. and Table 3.9. The infrared spectra of trans-Rh( $\left.\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) N C S$ in the region of the X -sensitive vibrations are very similar, as maght be expected where two complexes have the same trans-configuration. The majorlty of the complexes $R h\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{CNS}$ all give identical shafts and multiplacity of the X-sensitive vibrations,

The Far Intrared Spectra(600-250 $\mathrm{cm}^{-1}$ ) of Rhodium(1)-Thiocyanate Complexes

$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)$ (piperidene) NCS


Fig 3.8

The Far-Infrared Spectra (600-250cm ${ }^{-1}$ ) of Rhodium( I ) - Thiocyanate Complexes


Table 3.9.
but the infrared spectra of these complexes, although similar to, are not identical with those of the complexes trans-Rh(PPh $)_{2}(\mathrm{CO}) \mathrm{X}$ or $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{X}$, where $\mathrm{X}=\mathrm{Cl}$ or NCS (Fig. 3.8., and Table 3.9.). It is not possible, therefore, to claim that all these complexes have the same transconfiguration, nor that the $S$-thiocyanato series are cis-complexes. It does appear. though, that the complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L})$ CNS all have the same configuration.

## Discussion

Since the previous evidence suggests that the complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{CNS}$, excluding trans $-\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) N C S$, all have the same configuration, there is no obvious reason why $\operatorname{Rh}^{\left(\mathrm{PPh}_{3}\right)}{ }_{2}(L) N C S[L=$ quinolıne or piperidine $]$ should have different steric requirements from $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}$ $\left[\mathrm{L}=\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{Me}_{2} \mathrm{CO}\right.$, DMSO etc.] whether the complexes have a cis or trans geometry. Indeed, it might be expected that the larger diacetone alcohol or ethylacetate as ligands would exert a greater steric influence than piperidine, but they give $S$ - rather than $N$-bonded products. In the case of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ the presence of the very bulky third phosphine may very well influence the co-ordination behavlour of the thiocyanate group, favouring the sterically less-demanding $N$-bonded thiocyanate. The rhodium complexes, excluding $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS} \text {, provide a clear example }}$ of a co-operative ligand effect which is electronic in nature, but which cannot be explained in terms of the $\pi$-bonding hypothesis. The mode of co-ordination of the thiocyanate group in both $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (CO)NCS and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (piperidine)NCS is through the nitrogen atom and yet piperidine does not have any of the opportunıties for backbondang which
carbon monoxide has. Also, if backbonding is important, opportunities exist when $L=M e_{2} C O$, MeCN or DMSO etc. in $R h\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}$ which are not present in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (piperidine)NCS.

In terms of the semiquantatative approach of Norbury (Chapter 1)(24), It would be expected that the presence of the soft CO ligand in $\mathrm{Rh}\left(\mathrm{PPh}_{3} \mathrm{XCO}\right) \mathrm{NCS}$ would promote bonding through nitrogen. Pearson's study of soft and hard acids and bases(201) classifies piperidıne as a border line case between a soft and hard base, and it may be argued that piperidine in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (piperidine)NCS is a sufficiently soft base when in a phosphine environment to promote bonding of the thiocyanate group through the nitrogen atom. Similar arguments may be applied to the corresponding quinoline complex. In contrast, the ligands $\mathrm{Me}_{2} \mathrm{CO}, \mathrm{Et}_{2} \mathrm{O}$ and EtCOOH are classified as hard bases (20) such that their presence in $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)} \mathbf{L}_{2} \mathrm{LSCN}$ (L $=M e_{2} \mathrm{CO}, E t_{2} \mathrm{O} \mathrm{EtCOOH}$ ) would decrease the softness of rhodium to such an extent as to promote thiocyanate bonding through sulphur. However, such arguments cannot be applied to $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}\left[\mathrm{L}=\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{Me}_{2} \mathrm{~S},\right]$ where benzene and dimethyl sulphide are regarded as soft ligands.

If it is regarded that the complexes have a trans-configuration, arguments based on Pearson's concept of antisymbiosis may also be applied, such that the presence of a stronger trans-directing ligand, such as carbon monoxide or plperıdine, will have a destabilising effect and the $N$-thiocyanate is preferred. It is difficult to account for the S-bonded thiocyanate complexes unless it is assumed that unlake their normal behaviour, the ligands such as MeCN, Me ${ }_{2} \mathrm{CO}$, DMSO, $\mathrm{C}_{6} \mathrm{H}_{6}$ etc.
are weaker trans-directors and cause no antı-symbiotic behaviour.


#### Abstract

It $1 s$ difficult to resolve the lagand effects in the rhodium(I)thiocyanate complexes in terms of the explanations outlined in Chapter 1. This is perhaps explicable if the complexes are considered in terms of a simple thermodyanic approach as depicted in Fig. 3.10. The dafference in free energy $\Delta G$, between $N$ - and $-S$ co-ordination in the case of linkage isomers will undoubtedly be small (I). For example, the difference in free energy between the linkage isomers $C 0$ (DH) ${ }_{2} \mathrm{py}$ (NCS) and $\mathrm{Co}(\mathrm{DH})_{2} \mathrm{py}(\mathrm{SCN})$ was found to be $3.1 \mathrm{kJmol}^{-1}(108)$. On the other hand, the activation energy $\Delta \mathrm{E} *$ may be large or small. In the situation where only one stable isomer is found, $\Delta G$ will be large (II), but changes in ligand e.g. $M X_{2} Y N C S$ to $M X_{2} Z S C N$ may alter $\triangle G$ enough to allow a change in the mode of co-ordination (III).


It 15 possible that the isolation of the complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}$ could result as a consequence of their much greater insolubility, thus obscuring the true values for $\Delta G$ and $\Delta E^{*}$, but since the complexes remain unchanged for several months, this does suggest that they are the thermodynamically stable products. Similarly, the complex $R h\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$ remains unchanged on heating at $120^{\circ} \mathrm{C}$ for several hours. Therefore, sance it has been shown that $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{NCS}$ is formed prior to the S bonded product, and that it has been possible to isolate a mixture of linkage isomers for $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (MeCN)CNS (as discussed in Chapter 2), the difference in free energy between $N$ - and $S$ - co-ordination appears in these $S$-bonded complexes to be small. The 1somerisation is also falrly

Possible Free Energy Changes in the Complexes

$$
\mathrm{Rh}^{\left(\mathrm{PPH}_{3}\right)} \mathrm{C}_{2}(\mathrm{~L}) \mathrm{CNS}
$$

Linkage Isomers (I)


Stable Thiocyanate Complex [e.g. $\mathrm{MX}_{2} \mathrm{YNCS}$ )] (II)

$\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)}{ }_{2}(\mathrm{~L}) \mathrm{CNS}$


- $\mathrm{Rh}\left(\mathrm{PPh}_{32}\right)$ (L)SCN
--- $\mathrm{Rh}\left(\mathrm{PPh}_{32}\right)^{\text {(piperidine) }} \mathrm{NCS}$
$\cdots \cdot \mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}}$

Fig 3.10
rapid and it seems that $\Delta E *$ will also be small. The S-bonded three co-ordinate complex, on the other hand, is of greater stability; no N -bonded 1 somer has been identified. Therefore, excluding any possible changes in $\Delta E^{*}$ the difference in free energy between $N$ - and $S$-co-ordination in the complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}$ will be large favouring the thermodynamically stable $N$-bonded complex. On the other hand, in the complexes $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}$, compared with $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SCN}$, any change in $\Delta \mathrm{G}$ still favours co-ordınation through sulphur. Since $\Delta G$ is fairly small for $\dot{\operatorname{Rh}}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SCN}$ a ligand such as piperidine is sufficient to alter $\Delta G$ and to favour the $N$-bonded product. If $\Delta G$ was very large for this system piperıdine would probably have little effect on the co-ordination behaviour.

The rhodium(I)-thiocyanate complexes thus resemble the situation for linkage isomers, where the energy difference between $N$ - and S-co-ordination are very much in balance. For example, it has been shown that the equilıbrıum between N - and S -co-ordination in the linkage isomers $\mathrm{Co}(\mathrm{DH})_{2} \mathrm{py}(\mathrm{CNS})$ may be altered by small energy changes, as demonstrated by their solvent dependence discussed in Chapter 1(32). Therefore, although the accepted explanations including the $\pi$-bonding hypothesis may be adequate to explain thiocyanate co-ordination where energy differences are large, they must be treated with the utmost caution in the situation where any small energy change may result in a change in the co-ordination of the thiocyanate group as found in the rhodium(I)-thiocyanate complexes.

Finally, the compounds described represent the first examples of mixed ligand thiocyanate complexes in which a conventional solvent molecule is shown to have entered the co-ordination sphere of the metal. A number of studies on the effect of solvents on thiocyanate co-ordination
to class ' $a$ ' $(32)$ and class ' $b$ ' $(30,31)$ metals have been reported., in which isomerisation has been ascribed to some extra-molecular solvent effect as shown in the linkage isomers described above. The possibility of ligand replacement reactions in solution and isomerısation arısing from a co-operative ligand effect can no longer be excluded.

## Experimental

All solvents were dried according to the methods described by Weissberger(96). Tetramethylammonium thiocyanate was prepared according to the method described by Songstad and Strangeland(97). Tris(triphenylphosphine)chlororhodium(I)(83) wa's prepared by the method described by Wilkinson et al. All preparations were performed under nitrogen.

## N-thiocyanatotris(triphenylphosphane)rhodium(I)

The complex was prepared as described in Chapter 2. N-thiocyanatobls(triphenylphosphine)(pıperidine)rhodium(I)

N-thlocyanatotris(triphenylphosphine)rhodium(I) ( 0.5 g ) was added to piperidine ( 3 ml. ) in hexane ( 100 ml .1 ), and the reaction mixture stirred for two hours. The resultant bright yellow solid was filtered, washed with hexane, and dried under nitrogen. Yıeld $=0.36 \mathrm{~g}$ ( $90 \%$ ) . N-thiocyanatobis(trıphenylphosphine)(quinoline)rhodium(I)

The complex was prepared in the same way as N -thiocyanatobis(triphenylphosphine)(pıperıdine)rhodium(I). Yıeld $=0.4 \mathrm{~g}(90 \%)$. $N$-thıocyanatobis(triphenylphosphine)(L)rhodium( $I$ ) ( $L=$ pyridine, aniline)

The attempted preparation of these complexes using the method described for N -thlocyanatobis(triphenylphosphıne(pıperıdıne)rhodıum(I)

```
resulted in the formation of olls and no compounds were isolated in
the solid state.
S-thiocyanatobls(triphenylphosphine)(dimethylsulphide)rhodıum(I)
 The complex was prepared in the same way as N-thiocyanatobis(tri-
phenylphosphine)(plperidine)rhodium(I). Yıeld = 0.35g (90%).
S-thiocyanatobis(triphenylphosphane)(acetic acid)rhodium(I)
 N-thlocyanatotrıs(triphenylphosphine)rhodıum(I) (0.5g) was added
to acetic acid (50ml!) and the reaction maxture stirred for one hour.
The resultant bright yellow precipitate was filtered washed with hexane
and dried under nitrogen. Yıeld = 0.25g (60%).
The complexes \(S\)-thiocyanatobis(triphenylphosphine) (L)rhodium (I)
L= DMSO, MeCOOEt, EtOH, diacetone alcohol were all prepared in
the same way as S-thlocyanatobis(triphenylphosphine)(acetic acid)
rhodium(I). Yield 0.25-0.3g (60-80%).
The attempted preparation of tris(diphenylmethylphosphine)chlororhodium(I)
 The preparation of this complex according to the method of Dewhirst,
Kelm and Reilly(109) resulted in the formation of a light brown solid
and not bright yellow as quoted in the literature. It was found that
the reaction of thls complex with Me NSCN using the methods described
previously was not possible.
```


## Physical Measurements

The infrared spectra and electrical conductances were measured as described'in Chapter 2.N.m.r. spectra were measured on a Perkin. Elmer R32 n.m.r. spectrometer operating at $90 \mathrm{MH}_{z}$.

## Analyses

Rhodium, sulphur and phosphorus were analysed by X-ray fluorescence spectroscopy. Carbon, hydrogen and nitrogen for the complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (plperidine)NCS were analysed by, the Microanalytical Laboratory, Manchester University.

## CHAPTER 4

## CO-OPERATIVE LIGAND EFFECTS IN RHODIUM(I)-SELENOCYANATE

 COMPLEXES

## CO-OPERATIVE LIGAND EFFECTS IN RHODIUM(I)-SELENOCYANATE COMPLEXES

The selenocyanate group is less sensituve to ligand effects than the thiocyanate lon. It has a marked preference to co-ordinate in mixed ligand complexes of class ' $b$ ' metals through the selenium atom. Favourable circumstances to initiate M-NCSe co-ordination are found to exist in the presence of very bulky ligands where steric requirements are important e.g. $\left[\mathrm{Pd}\left(\mathrm{Et}_{4} \text { dien }\right) \mathrm{NCSe}_{4}\right]_{\mathrm{BPh}_{4}}(109)$. Co-operative electronic ligand control of the bonding mode of the selenocyanate group is not so apparent, although, in cobalt(III) complexes, the species $\left[\mathrm{Co}(\mathrm{CN})_{5} \mathrm{SeCN}\right]^{3-}$ $(110,111),\left[\mathrm{Co}(\mathrm{DH})_{2}(\mathrm{SeCN})_{2}\right]^{-}(112)$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NCSe}\right]^{2+}(110)$ parallel the behaviour of the corresponding thiocyanate complexes, except that linkage lsomerism has not been observed in the first of the above compounds.

Co-operative ligand control of the bonding mode of the selenocyanate group in class 'b' metal seems less evident. In linear gold complexes of the type $\mathrm{PPh}_{3} \mathrm{AuXCN}(\mathrm{X}=\mathrm{S}$ or Se$)(23)$, where no steric requirements are in evidence, the selenocyanate complex showed no evidence of isomerisation, in contrast to the analagous thiocyanate complex. This "non-anti-symbiotic" behaviour was attributed to the softer character of the selenium atom. Trans- $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCSe}$, which is the only rhodium(I)selenocyanate complex reported in the literature, has been cited as demonstrating a co-operative electronic ligand effect by comparing it whth trans $-\mathrm{Pd}_{\mathrm{L}}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{SeCN})_{2}$, where essentially the same steric factors are operative(73). However, the consequences of the change in metal were
not discussed, and the N -bonding of the selenocyanate group observed in this system was ascribed to the strongly electron-withdrawing effect of the $C O$ group trans to the $10 n$ in question.

Thus, it seemed of interest to prepare a series of rhodıum(I)selenocyanate complexes of the type $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)(\mathrm{L} S \mathrm{SCN}$, analogous to the rhodium(I)-thiocyanate complexes, in order to evaluate any co-operative electronic ligand effect. Unfortunately, the complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right) 3_{3} \mathrm{NCSe}$ could not be prepared due to extensive deselenation of the selenocyanate group in the presence of excess triphenylphosphine (see preparation and properties of $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$, Chapter 2). However, it has been possible to isolate and characterise the complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SeCN}$ $\left[\mathrm{L}=\mathrm{MeCN}, \mathrm{Me}_{2} \mathrm{CO}\right]$.

## Results

The reaction of $\mathrm{Me}_{4} \mathrm{NSeCN}$ with $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ in acetone or acetonitrile gave, in each case, a very insoluble yellow compound samilar to the thiocyanate complexes. Analyses of the products indicated the similar formulation $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SeCN}$ as shown in Table 4.1.

Analytucal Data for Rhodium(I)-Selenocyanate Complexes

| Complex | \% Found |  |  | \% Calculated |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rh | P | Se | Rh | P | Se |
| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (MeCN)SeCN | 13.2 | 8.0 | 10.1 | 13.3 | 8.0 | 10.2 |
| $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{CO}\right) \mathrm{SeCN}$ | 13.1 | 7.9 | 10.3 | 13.0 | 7.8 | 10.2 |
| Table 4.1. |  |  |  |  |  |  |

## Infrared Spectra

The positions of the infrared absorption bands due to the selenocyanate group in these complexes were obtained by a comparison of their spectra with those of tris(trıphenylphosphine)chlororhodium(I), tetramethylammonium selenocyanate and N-selenocyanatebis(trıphenylphosphine)carbonylrhodium(I) which are also included in Table 4.3. The approximate ranges of the principle selenocyanate vibrations for N -or $\mathrm{Se-co-}$ ordination, as presented by Norbury (3), are included in Table 4.2.

## Approximate Frequency Ranges for Different Types of Selenocyanate Co-ordination

|  | $\frac{v(C N)\left(\mathrm{cu}^{-1}\right)}{}$ | $\frac{v(\mathrm{CSe})\left(\mathrm{cu}^{-1}\right)}{i}$ | $\frac{\delta(\mathrm{NCSe})\left(\mathrm{cu}^{-1}\right)}{}$ | $\frac{\mathrm{A}\left(\times 10^{-4} \mathrm{~m}^{-1} \mathrm{cu}^{-2}\right)}{}$ |
| :--- | :---: | :---: | :---: | :---: |
| NCSe | 2070 | 558 | 424,416 | $2-3$ |
| M-NCSe | $2090-205 \mathrm{~s}, \mathrm{~b}$ | $650-600$ | $460-410$ | $5-12$ |
| M-SeCN | $2130-2070 \mathrm{~s}, \mathrm{sp}$ | $550-520$ | $410-370$ | $0.5-1.5$ |
| M-NCSe-M $2150-2100$ | $640-550$ | $410-390$ |  |  |

Table 4.2.

The Infrared Spectra of Rhodium(I)-Selenocyanate Complexes
a
Complex
$\mathrm{Me}_{4} \mathrm{NSeCN}$
$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ CONCS e
$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (MeCN)SeCN
$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{CO}\right) \mathrm{SeCN} 2135 \mathrm{~s}, \mathrm{sp}$
a
$\underline{\nu\left(\mathrm{CSe}^{2}\right)\left(\mathrm{cu}^{-1}\right)}$
555
566 w $9^{b}$
a KBr disc
b As quoted by Burmeister and DeStefano
Table 4.3.

Burmeister and DeStefano(73), who have prepared and characterised the complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCSe}$, found that the selenocyanate group was co-ordinated through the nitrogen atom from infrared spectral studies. In contrast, the selenocyanate group in the complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SeCN}$ is co-ordinated through the selenium atom from the infrared spectral data. With respect to the free 'ion values, the $\mathcal{V}(\mathbb{N})$ frequency of the complexes are shifted to considerably higher frequencies ( $2135 \mathrm{~cm}^{-1}$ ), and the integrated absorption intensity of this band $1 s$ smaller. The $\nu(C S e) f r e q u e n c y$ regions for Se co-ordination is obscured by triphenylphosphine vibrations. However, no bands were observed between 650-
 The infrared spectra of these complexes also indicate that acetonitrile and acetone are co-ordinated. Slight shifts of the $C=N$ and $C=O$ stretching frequencies of MeCN and $\mathrm{Me}_{2} \mathrm{CO}$ respectively, are observed in the complexes compared with the free ligands (see Table 4.4.) samilar to the thlocyanate complexes. Furthermore, drying the complexes for several hours under a nitrogen atmosphere, caused no change in the intensity of these vibrations nor in the analytical results.

$$
\frac{\text { Principal Vibrations }\left(\mathrm{cm}^{-3}\right) \text { of the Solvent-Ligand(L) }}{\text { in the Complexes } \operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SeCN}}
$$

| Complex | Ligand(L) vibrations in the complex | Free Ligand |
| :---: | :---: | :---: |
| $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN}) \mathrm{SeCN}$ | $2258 \mathrm{w}(\cup(\mathrm{CN})$ | $2253 \mathrm{n}(\cup(\mathrm{N}))$ |
| $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{CO}\right) \mathrm{SeCN}$ | $1708 \mathrm{~s}(\cup(\mathrm{CO}))$ | $1718 \mathrm{~s}(\cup(\mathrm{CO}))$ |

Infrared solution spectral studies of the reaction between $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ and $\mathrm{Me}_{4} \mathrm{MSeCN}$ suggest that initial co-ordination of the selenocyanate ion was through nitrogen, as indicated by the $C N$ stretching frequency at $2100 \mathrm{~cm}^{-1}$ which diminished on formation of the insoluble Se-bonded product. This parallels the behaviour of the analagous thiocyanate reaction.

However, attempts at the preparation of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCSe}$ in the presence of excess triphenylphosphine similar to $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$, resulted in deselenation of the selenocyanate group. The infrared spectra of the products obtained gave a weak $C N$ stretching frequency at $2120 \mathrm{~cm}^{-1}$ attributed to a co-ordinated cyanıde group. Although analytical data showed the absence of selenium, further satisfactory analyses were not obtained. Deselenation also resulted when $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCSe}$ was added to acetonitxile containing excess traphenylphosphine. Such behaviour was noted by Jennings and Wojcicki when the N -bonded complex $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{NCSe}$ was found to readily deselenate in the presence of excess triphenylphosphine and was shown to be due to the formation of $\mathrm{Ph}_{3} \mathrm{PSe}(112)$. Although $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN}) \mathrm{SeCN}$ slowly dissolved in piperidine an infrared spectrum of the resultant solution only exhibits a very weak $v(C N)$ band at $2115 \mathrm{~cm}^{-1}$ similar to the $C N$ stretching frequency observed in the infrared spectra of the deselenated products. It has not been possible, therefore, to extend the series of selenocyanate complexes in the same manner as the corresponding thiocyanate complexes. Tentatavely, this is due to nucleophılic attack by the ligand species being used on the termanal selenium atom.

As for the complex $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (CO)NCS, it was assumed that $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCSe}$ had a trans-square planar configuration. It appears that this is the case since the infrared spectra of the complexes $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{X} \quad[\mathrm{X}=\mathrm{Cl}, \mathrm{NCS}, \mathrm{NCSe}]$ (Table 4.5) are all very similar in the region of their $X$-sensituve triphenylphosphine vibrations (see Chapter 3). The infrared spectra of complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SeCN},[\mathrm{MeCN}$ or $\left.\mathrm{Me}_{2} \mathrm{CO}\right]$ in this region, although similar, are not identical to that of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCSe}$. Thus, it is not possible to infer that the complexes have the same or different configuration.


Table 4.5.

The results show that the co-ordination of the selenocyanate group in rhodium( $I$ )-phosphine complexes is sensitive to a ligand effect. Whether this is steric or electronic in nature is not certain, since It cannot be established if the complexes trans-Rh( $\left.\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCSe}$ and $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SeCN}$ (where $L=\mathrm{MeCN}$ and $\mathrm{Me} \mathrm{C}_{2} \mathrm{CO}$ ) have the same configuration. (Steric arguments could be used to explain the co-ordination behaviour of the selenocyanate group in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{SeCN}$ if the complexes have a cls-configuration). Nevertheless, co-operative ligand control in selenocyanate complexes may be important in determining the mode of co-ordination. In the $\operatorname{Pd}(I I)-t h i o c y a n a t e$ complexes $\operatorname{Pd}($ bipy $)(N C S)_{2}(5,10)$ and trans- $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{NCS})_{2}(5,57,62)$ co-ordanation of the throcyanate ion occurs through the nitrogen atom, but in the corresponding selenocyanate complexes co-ordination is through the larger selenium atom which would be sterically less favourable than $S$-thiocyanate co-ordination. This Is possibly due to a more favourable interaction between a class 'b' metal and selenium than between class ' $b$ ' and sulphur in the selenocyanate and thiocyanate ions respectively. Therefore, an electronic co-operative ligand control by the carbonyl group in trans-Rh(PPh $)_{2}(\mathrm{CO}) N C S e$ could be amportant in determaning $N$-co-ordination, as argued by Burmeister and DeStefano(73), and would certainly be established if it was confirmed


## Experimental

Acetone and acetonatrile were dried as previously described.

Tetramethylammonıum selenocyanate was prepared according to the method described by Songstad and Strangeland(97). Tris(triphenylphosphine)chlororhodium(I) was prepared according to the method of Walkinson co-workers (83). The reactions were performed under a nitrogen atomosphere.

## Se-selenocyanato(acetronitrile)bis(triphenylphosphine)rhodium(I)

Tris(triphenylphosphine)chlororhodium(I) ( 0.46 g 0.5 m mole) was added to tetramethylamoniumselenocyanate ( $0.18,1.0 \mathrm{~m}$ mole) in acetonitrile ( 80 ml ) and the reaction mixture stirred for one hour. The resultant bright yellow precıpitate was filtered and dried thoroughly under a nitrogen atmosphere. Yield 0.25 g (65\%).


Se-Selenocyanato(acetone)bis(triphenylphosphıne)rhodıum(I)

The complex was prepared similarly using 250ml. of acetone. Yield 0.3 g (76\%).

## Physical Measurements

Infrared spectra were recorded in the same manner as the thiocyanate complexes, described in Chapter 2.

Analyses

The complexes, like the corresponding S-thiocyanato complexes, were not amenable to conventional combustion analysis and were thus analysed for rhodium, phosphorus and selenlum by X-ray fluorescence spectrscopy.

## CHAPTER 5

LINKAGE ISOMERS OF THE CYANATE GROUP: o-cyanato - AND N-CYANATO-TRIS(TRIPHENYLPHOSPHINE)RHODIUM(I)

## LINKAGE ISOMERS OF THE CYANATE GROUP: O-CYANATO - AND <br> N-CYANATO-TRIS (TRIPHENYLPHOSPHINE)RHODIUM(I)

0 -bonded cyanates in inorganic systems are rare and are characterised only with difficulty. The hexa-0-cyanates of Mo(III), Re(IV) and $\operatorname{He}(V)$ were assigned on the basis of their lowered (relative to the free ion) Co stretching frequencies(37) (See also Chapter 1). The same arguments were used for $(\mathrm{cp})_{2} \mathrm{M}(\mathrm{OCN})_{2} \quad[\mathrm{M}=\mathrm{Zr}, \mathrm{Hf}],(43,44)$ and, although the peak in question was not identified in (cp) ${ }_{2} \mathrm{Ti}(\mathrm{OCN})$, other spectral measurements indicated its similarity to the corresponding zirocene and hafnocene compounds and it was assigned a simılar structure. However, there is conflicting evidence, and it is possible that one or more of the metallocene complexes may have been assigned incorrectly. This wall be discussed in greater detail in a later chapter.

The first solid linkage isomers to be isolated which involve the cyanate group are reported here with the preparation of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right){ }_{3} \mathrm{NCO}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}$.

## Results

Treatment of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ and $\mathrm{Ph}_{4} \mathrm{AsOCN}$ in $\mathrm{MeCN} / \mathrm{EtOH}$ yields an orange solid, whereas if MeCN alone is used a yellow solid is isolated. The two compounds give identical analyses for $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CNO}$. The former complex $1 s$ very stable and remains unchanged over several months in

[^2]
#### Abstract

the presence of alr, whereas the yellow compound rapidly takes up oxygen and changes to a greenish yellow. Both the complexes are soluble in benzene, chloroform and dichloromethane. The yellow product $1 s$ insoluble in MeCN but the orange product dissolves to give a nonconducting solution. The reflectance spectra of the orange products exhibits a band at $\sim 410 \mathrm{~nm}$, whilst the yellow product exhibits a band at $\sim 425 \mathrm{~nm}$. Both bands appear as shoulders on a strong absorption below 350nm.


## Infrared Spectra


#### Abstract

The positions of the infrared absorption bands due to the cyanate group in these complexes were obtained by a comparison of their spectra with those of the corresponding chloro-complexes. Bands observed as KBr discs are recorded in Table 5.1. The infrared spectra for tetraphenylarsonium cyanate dihydrate, ethyl cyanate and phenyl isocyanate are also included.


```
Approximate frequencies of the fundamental vibrations for different type of cyanate co-ordination are:-
```



The Infrared Spectra of Rhodium(I) - Cyanate Complexes

## and Organic Cyanates



Table 5.1.

In addition to the above results, the orange product exhibits a CN stretching frequency at $2220 \mathrm{~cm}^{-1}\left(\mathrm{~A}=8.1 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}\right.$ ) when measured in acetonitrile. Infrared spectral results for EtOCN and PhNCO show that integrated intensity measurements can be used as a criterion for distinguishing between N - and O -bonded cyanates as for N - and S -bonded thiocyanates (61, 62) since the integrated intensity for the former is below that for the free lon, while considerably greater than the free ion value in the case of PhNCO . Therefore, the orange product may be formulated as $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}$ sance the integrated intensity of the CN
stretching frequency is reduced to or below that of the free ion, whereas the yellow isomer has an integrated intensity, significantly greater than that of the free ion, typical of an $N$-cyanato compound(40).

Further support for these formulations comes from the NCO deformation modes which occur at $592 \mathrm{~cm}^{-1}$ for the yellow isomer but at $607 \mathrm{~cm}^{-1}$ and $590 \mathrm{~cm}^{-1}$ for the orange product. The removal of the degeneracy of the corresponding NCS mode due to the lower symmetry of the non-linear M-SCN group has been used as a criterion for $S$-bonding in thiocyanate co-ordination( $50,56,58$ ). The Rh-OCN unit might also be expected to be non-linear, in which case if the degeneracy of the deformation mode is removed then two bands would be predicted for the orange $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}$ and only one for the yellow $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCO}$, as is andeed observed.

The region in which the $C O$ stretching frequency occurs is obscured to a great extent by triphenylphosphine vibrations. The yellow complex also readily takes up oxygen as indicated by vibrations due to triphenylphosphine oxide which also vibrates in this region. Considerable precautions have to be taken, therefore, to prevent contact with oxygen. However, a band $1 s$ observed at $1330 \mathrm{~cm}^{-1}$ in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCO}$ which is a typical value for the $C O$ stretching frequency in $N$-bonded cyanate com-
 possibly could be due to the CO stretching frequency in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}$ is that at $1318 \mathrm{~cm}^{-1}$. This frequency is towards the lower end of the range observed. for N -cyanato compounds(50, 3), and above the free ion value and the values assigned previously for O-cyanates. However, the low
intensity of the $C O$ stretching frequency in general, and the complications arising from Ferma resonance between $\nu(C O)$ and the overtone of the deformation mode [bands at ${ }^{\sim} 1300$ and $1150 \mathrm{~cm}^{-1}$ have been assigned to $v(C O)$ in hexa-0-cyanates of $M o(I I I)$ and $\operatorname{Re}(I V)$ on this basis(37)] make this an unrealistic criterion in these complexes. Thus, the difficultres of identrfying the fundamental band or bands in question and making a definite assignment in this region of the spectrum preciude any firm conclusions on this point, although an increase in $v(C O)$ on co-ordination through oxygen was predicted theoretically(113).

Further, a medium weak band is observed at $332 \mathrm{~cm}^{-1}$ in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}$ which is assigned to the Rh-O stretching frequency, whereas very weak bands are observed at $340 \mathrm{~cm}^{-1}$ and at $300 \mathrm{~cm}^{-1}$ in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCO}$ and $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ respectively, which are assigned to the $\mathrm{Rh}-\mathrm{N}$ ligand vibration.

Differences are also observed between the infrared spectra of the complexes other than the fundamental cyanate vibrations. Whilst the $X$-sensitive $u$ and $y$ vibrations of the triphenylphosphine ligand in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCO}$ show some increase in multiplicity, which might be expected for a complex with $C_{2} V$ symmetry, there is considerable increase in the number of these vibrations in $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}$ as shown in Fig. 5.2. This increased multiplicity might be due to a lowering of symmetry due to the non-linear M-OCN linkage.

The Far Infrared Spectra (600-250 $\mathrm{cm}^{-1}$ ) of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCO}$


Fig. 5.2

## The Nature of the Cyanate Species in Solution

The infrared solution and U.V. spectra of the two products have been measured in benzene, chloroform and acetonitrile, and the results are presented in Table 5.3.

| Solvent | Infrared $X C N\left(\mathrm{~cm}_{-2}^{-1}\right)$ and $\mathrm{A}\left(\times 10^{-4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}\right)$ | Ultra Violet $\mathrm{nm}^{(c)}$ |
| :---: | :---: | :---: |
| Benzene - | 2227s $(\mathrm{A}=19)^{(a)}$ | (d) |
| Chloroform | 2235s $(A=17)^{(a)}$ | (d) |
| MeCN | 2220 s $(A=8.1)^{(b)}$ | 315 w (b) (e) |

(a) Both compounds are identical in solution
(b) $\mathrm{Rh}\left(\mathrm{PRh}_{3}\right) \mathrm{OCN}$ only: the N -bonded product is insoluble in MeCN
(c) As compared with the U.V. spectra of $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$
(d) There are no new bands in the U.V. spectra of ioth compounds compared with $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$
(e) Appears on a very strong absorption below 300 nm .

Table 5.3.

The infrared solution and U.V. spectra show that the two products are identical in $\mathrm{C}_{6} \mathrm{H}_{6}$ or $\mathrm{CHCl}_{3}$ but that the species observed in these solvents is different from that found in acetonitrile. Integrated intensity measurements indicate that the cyanate group is $N$-bonded in $\mathrm{C}_{6} \mathrm{H}_{6}$ or $\mathrm{CHCl}_{3}$ whalst O-bonded in MeCN. In addation, when the reaction between $\mathrm{Ph}_{4} \mathrm{AsOCN}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ in MeCN was followed by infrared
spectral measurements, the solution spectrum showed a band at $2220 c^{-1}$ similar to that for $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}$. Whereas addition of EtOH gives the orange O-bonded isomer, continual stirring in MeCN eventually gives the insoluble yellow product. The infrared spectrum of the compound, while still moist, not only shows bands attributable to acetonitrile at 2260 and $382 \mathrm{~cm}^{-1}[\mathrm{CN})$ and $\delta\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ occur at 2253 and $378 \mathrm{~cm}^{-1}$ in free MeCN ], but also shows differences in the principle cyanate vibrations [bands are observed at $2125 \mathrm{~cm}^{-1}(\nu \mathrm{CN}), 318 \mathrm{~cm}^{-1}(\nu \mathrm{CO}), 600,590 \mathrm{~cm}^{-1}$ ( $\delta \mathrm{NCO}$ )] from the dried $N$-bond product, which are very similar to the 0 -bonded cyanate.

14
N Nuclear Magnetic Resonance Spectroscopy

An attempt has been made to provide further evidence for the mode of co-ordination of the cyanate group in these rhodium(I)-phosphine complexes by the use of ${ }^{14} \mathrm{~N}$ n.m.r. spectroscopy. The application of ${ }^{14} \mathrm{~N}$ n.m.r. spectroscopy to the problem of determining the mode of coordination of the chalcogenocyanate ions was first demonstrated by Howarth, Richards and Venanzi, in the case of the thiocyanate ion(l14). It was shown that there was only a small downfield nitrogen shift, relative to the free ion af co-ordination occurred through sulphur, whereas nitrogen comordination produced a significant high field shift. In the case of cyanate co-ordination, it was shown simllarly that a high-field shift occurred for $N$-cyanato complexes whereas a downfield shift was observed for EtOCN(115).

The ${ }^{14} \mathrm{~N}$ n.m.r. spectra of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}$ and propyl cyanate have been measured. Unfortunately, in the case of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}$, the complex was not sufficiently soluble to achieve a signal. (Concentrations greater than one molar are required). On the other hand, the ${ }^{14}$ N n.m.r. spectrum of $n$-propyl cyanate, measured as pure liquid or in acetonitrile, exhibits a resonance at +224p.p.m., simılar to that observed for EtOCN (+222p.p.m.)(115).
-Discussion ${ }^{-}$

Although the $C O$ stretching frequency cannot be used as a reliable criterion in these complexes to determane the mode of co-ordination of the cyanate, there 1 s other strong infrared spectral evidence to show that the orange and yellow compounds may be formulated as $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCO}$ respectively. Differences between these two analytically identical products are further shown in their general physical properties and reflectance spectra.

The co-ordination of the cyanate group in these complexes appears to be particularly solvent dependent. Both O - and N -bonded compounds dissolved. in $\mathrm{CHCl}_{3}$ or $\mathrm{C}_{6} \mathrm{H}_{6}$ give identical solutions in which the . cyanate group is found to be $N$-bonded, whereas $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN} \text { dissolved }}$ in MeCN retains 0-co-ordination. Such behaviour parallels the solvent dependence of thiocyanate co-ordination in class 'b'metals(30, 31, 116), - e.g. $\operatorname{Pd}(A s P h)_{2}(C N S)_{2}$, where solvents of high dielectric constant (e.g. MeCN) give the $S$-bonded product, and solvents of low dielectric constant (e.g. $\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{CICl}_{3}$ ) the N -bonded 1 somer $(30,31$ ). Whether the effect


#### Abstract

of solvent in these rhodium(I)-cyanate complexes is purely an extramolecular effect is not certain. The inıtial yellow complex, while still wet with acetonitrile, appears to be 0-bonded from the infrared spectrum, whereas the dried solid is $N$-bonded: the possibility that acetonitrile can co-ordinate i.e. $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{3}(\mathrm{MeCN}) O C N}$ cannot be ignored. Furthermore, the 0-bonded isomer can be recrystallised from saturated chloroform solutions even through the solution spectrum indicates coordination through nitrogen.


An attempt was made to confirm the mode of co-ordination of the cyanate group in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}$ unambiguousiy by X-ray crystallography. However, the bright orange crystals isolated from saturated chloroform solutions were always found to be twinned and in no case was a single crystal found, suitable for X-ray work.

## Experimental

Acetonitrile and ethanol were dried according to the methods of Welssberger(96). Tris(trıphenylphosphine)chlororhodium(I) was prepared as previously described in Chapter 2. Tetraphenylarsonium cyanate dihydrate was prepared according to the method described by Norbury and Sinha(40), and purified by dissolving in $M e C N$ and removing the solvent under vacuum. This procedure was repeated three times before finally allowing the compound to dry under vacuum for several hours. The complex was then added to MeCN again, and allowed to stand for one hour. Any excess solid was filtered and the filtrate taken to dryness to give the anhydrous product. All reactions were performed under nitrogen.

O-cyanatotrıs(triphenylphosphıne)rhodium(I)

Tras(triphenylphosphine)chlororhodlum(I) ( $0.5 \mathrm{~g}, 5.2 \mathrm{mmole}$ ) was added to acetonitrile ( 10 ml.$)$ - ethanol ( 50 ml ) containing tetraphenylarsonium cyanate $(0.25 \mathrm{~g}, 6.0 \mathrm{mmole})$, and the reaction mixture stirred for two hours. The complex precipitated as a bright orange solid, which was filtered and dried thoroughly under vacuums. Yield $0.4 \mathrm{~g}=(80 \%) . \quad \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}$ requires $11.0 \% \mathrm{Rh}, 10.8 \% \mathrm{P} ; 70.6 \% \mathrm{C}, 4.8 \% \mathrm{H}$, $1.5 \% \mathrm{~N}$. Found $11.0 \% \mathrm{Rh} 10.0 \% \mathrm{P}, 70.6 \% \mathrm{C}, 4.8 \% \mathrm{H}, 1.7 \% \mathrm{~N}$.

## N-cyanatotris(triphenylphosphine)rhodium(I)

Tris(triphenylphosphine)chlororhodium(I) ( $0.5 \mathrm{~g}, 6.2 \mathrm{mmole}$ ) was added to tetraphenylarsonium cyanate ( $0.25 \mathrm{~g}, 6.0 \mathrm{mmole}$ ) in acetonitrile ( 50 ml, ) and the reaction maxture stirred for two hours. The complex precipitated as a bright yellow solid which was filtered and dried thoroughly under nitrogen. Yield $0.3 \mathrm{~g}(60 \%)$. $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right){ }_{3} \mathrm{NCO}$ requires: $11.0 \% \mathrm{Rh}, 10.0 \% \mathrm{P}$. Found $10.9 \% \mathrm{Rh}, 10.0 \% \mathrm{P}$.

Electrical Conductivity

The molar conductance of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right) \mathrm{OCN}$ measured in acetonitrıle showed it to be a non-electrolyte ( $7.8 \times 10^{3} \mathrm{ohms}^{-1} \mathrm{~cm}^{2}$ ).

Physical Measurements

Electrical conductivity and infrared spectral measurements were made as described in Chapter 2. U.V. spectra were recorded on a


#### Abstract

Unicam S.P. 8000 using lcm silıca cells. Reflectance spectra were recorded on a Beckman DK-2A spectrophotometer. ${ }^{14} \mathrm{~N}$ mım.r. were recorded by the kind permission of Dr. N. Logan, at Nottingham University on a Varian HA-100 Spectrometer.


Analyses

The compounds were analysed for rhodium and phosphorus by X-ray fluorimetrıc spectroscopy. Carbon, hydrogen and nitrogen analysis were performed by the Microanalytical laboratory, Manchester University.

## CHAPTER 6

THE PREPARATION OF TELLUROCYANATE COMPLEXES

## THE PREPARATION OF TELLUROCYANATE COMPLEXES

The co-ordination behavzour of the chalcogenocyanate ions [ $\mathrm{NCO}^{-}, \mathrm{NCS}^{-}$and $\mathrm{NCSe}^{-}$] in rhodium(I) complexes have been extensively studied and described in the previous chapters. The existence of the tellurocyanate ion ( $\mathrm{NCTe}^{-}$), the remainang member of the chalcogenocyanate series, has only recently been establıshed(47-49), and no complexes containing this group have as yet been reported. Therefore, it was of particular interest to attempt to prepare tellurocyanate complexes of rhodium( $I$ ) and to investigate the co-ordination behaviour $f$ the tellurocyanate group. However, it will, become apparent from the following results that it has not been possible to isolate a compound which can be clearly identified as a tellurocyanate complex.

Results and Discussion

Compared to the other chalcogenocyanates, the tellurocyanate ion is very unstable. It can only be isolated in the presence of large counter-ions, e.g. as $\mathrm{Ph}_{4} \mathrm{AsTeCN}$ or $\mathrm{Ph}_{4} \mathrm{PTeCN}$. In solvents such as alcohols, tellurium is readily displaced as the free element and the cyanide Ion formed, but $\mathrm{TeCN}^{-}$is falrly stable in very dry acetonitrile or acetone. Therefore,it is possible to carry out reactions with the rhodium complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ and trans- $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ in a simılar manner to that described in previous chapters.

Unlike the reactions performed with the throcyanate and selenocyanate Ions, where it was possible to isolate very insoluble complexes of the


#### Abstract

type $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN}) \mathrm{XCN}$ [where $\mathrm{X}=\mathrm{S}$ or Se ]from acetonitrile, the reaction of the tellurocyanate ion with the rhodium complexes resulted in the formation of dark brown solutions. Brown solids were obtained by precipltation in diethyl ether. When either $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ or $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ were added to a solution of the tellurocyanate ion, infrared solution spectra showed the rapid disappearance of the $V(C N)$ band of the free ion at $2083 \mathrm{~cm}^{-1}$, and the appearance of a new weak band at $2115 \mathrm{~cm}^{-1}$, Indicating that the reaction is very fast. Furthermore, it was found that a two mole excess of tellurocyanate ion was needed to react completely with the rhodium starting material. The reactions were performed under varying conditions of time and in the presence of varying amounts of traphenylphosphine; Analytical, anfrared and conductivity data for the products obtained are presented in Table 6.1.


When the reactions wexe performed for short periods, analytical data show that the ratio of $\mathrm{Te}: \mathrm{Rh}$ is $2: 1$, in the products. The infrared spectra of the products show the presence of tetraphenylarsonium or phosphonium ions, and conductivity measurements, although low compared to tetraphenylphosphonium tellurocyanate, andicate that the compounds are ionic: the low condictuvitres may be due to the large size of the ions involved, and a consequent reduction in their ionic mobilities. In addition, analytical data for these compounds indicate that when $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ is reacted with the tellurocyanate 10 n , the third phosphine has been displaced, and similarly the infrared spectra of the compound isolated from the reaction of trans- $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ with $\mathrm{NCTe}^{-}$indicate the displacement of carbon monoxide. Although phosphorus analyses

Analytical, Infrared and Conductivity Data for the Reaction of
the Tellurocyanate Ion with Rhodium(I) Complexes


*     + excess $\mathrm{PPh}_{3}$

Table 6.1.
indicate that two phosphine ligands are present, carbon analyses for these products are too low to account for these ligands, and may be because these compounds are not amenable to conventional combustion analysis in the same way as the rhodium(I) S-bonded thiocyanate and Se-bonded selenocyanate complexes previously described.

When the reactions were allowed to stand for long periods of time, analytical data for the isolated compounds show the presence of more than two tellurium atoms per rhodium and that further displacement of triphenylphosphine has occurred. The data are not consistent though, and one or more simultaneous reactions may be taking place. The resultant compounds are, therefore, possibly mixtures of products.

The infrared spectra of all the compounds exhıbit a weak band at $2115 \mathrm{~cm}^{-1}$. Such a band was found in the infrared spectrum of the product of deselenated trans $-\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCSe}$ and assigned to the CN stretching frequency of the cyano group. Simlarly, the reaction of $\mathrm{Ph}_{4} \mathrm{AsCN}$ with $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ in the mole ratio of $2: 1$ respectively, gave a product whose infrared spectrum also exhibits a band at $2115 \mathrm{~cm}^{-1}$. It has been found that the tellurocyanate ion does indeed readily react with triphenylphosphine to gave $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Te}$ and free cyanide (117). If such a reaction has occurred here and the rhodium compound does contain one or more cyanide groups, the problem of how the tellurium is bonded in these compounds stıll remains.

## Experimental

All solvents were dried according to the methods previously described. Tris(triphenylphosphine)chlororhodium(I) was prepared as previously described (chapter 2). Bis(triphenylphosphine)carbonylchlororhodium(I) was prepared accordang to the literature methods(118). Tetraphenylarsonium and tetraphenylphosphonlum tellurocyanate were kindly donated by Dr. J. Songstad, Chemical Institute, University of Bergen, Norway. The salts may be prepared according to the methods of Songstad and co-workers (48). All reactions were performed under nitrogen.

The reaction of Tetraphenylarsonium tellurocyanate with rhodium(I) complexes.

Tetraphenylarsonium cyanate ( 0.5 mmole) was dissolved in dry acetonitrile (50 mi.i). Tris(trıphenylphosphine)chlororhodium(I) or bis(triphenylphosphine)carbonylchlororhodium(I) (O.25 mmole) was added and the reaction mixture stirred. The resultant dark brown solution was filtered, and the product precaplated in diethyl ether. The compound was washed thoroughly with water, dissolved in chloroform and refiltered. The product was then reprecipitated in diethylether, filtered, and dried under vacuum for 24 hours.

The reaction tame varied between 30 minutes to 48 hours and sometimes in the presence of traphenylphosphine. The reactions were also performed using tetraphenylphosphonium tellurocyanate.

## Physical measurements

## Infrared spectra and conductivity measurements were made as previously described in Chapter 2.

## Analyses

[^3]
## CHAPTER 7

A STUDY OF THE CO-ORDINATION BEHAVIOUR OF ORGANIC THIOCYANATES AND ISOTHIOCYANATES BY MEANS OF N.M.R. SPECTROSCOPY AND LANTHANIDE SHIFT REAGENTS

# A STUDY OF THE CO-ORDINATION BEHAVIOUR OR ORGANIC THIOCYANATES 

AND ISOTHIOCYANATES BY MEANS OF N.M.R. SPECTROSCOPY AND
LANTHANIDE SHIFT REAGENTS

Little work has been reported on the co-ordination of organic thiocyanates and isothiocyanates to metal complexes in comparison to the co-ordination of the thlocyanate ion. Jain and Rivest have reported the 1:1 adducts of ethyl thlocyanate with $\mathrm{TICl}_{4}, \mathrm{TiBr}_{4}$ and $\mathrm{SnBr}_{4}$ and have proposed that ethyl thiocyanate co-ordinates through the sulphur atom (118). They argue that the small increased shift observed in the $C N$ stretching frequency of EtSCN on co-ordination to $\mathrm{TiBr}_{4}$ compared with
 steric reasons, and is evadence for Ti-S bonding. They presume that because of the larger bromine atom, the Tx-S bond is weaker and thereby $\mathrm{V}(\mathrm{CN})$ is increased to a smaller degree in the $\mathrm{TaBr}_{4}$-thiocyanate adduct compared with $\mathrm{TaCl}_{4}:$ EtSCN. Goodall(119), on the other hand, assigned N -co-ordination in $\left[\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}(\mathrm{SCN})_{2} \cdot \mathrm{CoCl}_{2}\right]_{X}$ on the basis of the large shift to hagher wavenumbers of the CN stretching frequency of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{SCN})_{2}$ on co-ordination, but S -co-ordination in $\left[\mathrm{RhCl}_{3} \cdot \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{SCN})_{2}\right]_{2}$ and $\left[\mathrm{IrCl}_{3} \cdot \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{SCN})_{2}\right]_{2}$ because the CN stretching is altered very little. Others have similarly used the $C N$ stretching frequency as being diagnostic for $N$ - or S-bonding (120,121). Recently Walkins has proposed that MeSCN co-ordinates to $\mathrm{NbCl}_{5}$ and $\mathrm{TaCl}_{5}$ through the sulphur atom, and, on the basis of two $C N$ stretching frequencies observed in the infrared spectra of $\mathrm{MeMCl}_{4} . \mathrm{MeSCN}$ and $\mathrm{Me}_{2} \mathrm{MCl}_{3} \cdot \mathrm{MeSCN}[\mathrm{Mmb}, \mathrm{Ta}]$, conc luded that maxtures of isomers were obtained in these compounds where MeSCN can
co-ordinate through $N$ or $S(122)$. However, assignment of the mode of co-ordination of the organic thlocyanate or isothiocyanate based on a shift observed in the $C N$ stretching frequency should be treated with the utmost caution. As discussed previously in Chapter 1, such a criterion is not diagnostic and can be mlsleading in assigning $N$ - or $S$ -co-ordination of the thiocyanate ion.

The use of lanthanide shift reagents in conjunction with proton magnetic resonance spectroscopy provides an alternative means of studying the co-ordination behaviour of organce thlocyanates and isothiocyanates to a class ' $a$ ' metal. The use of lanthanide shift reagents as a means of simplifying complex organic n.m.r. spectra was first initiated by Hanckley(123). Since then numerous papers have been reported on thear use, and have recently been reviewed by Mayo(124) and by Cockerill et al.(125). Lanthanide shift reagents cause shifts to occur to a greater or lesser degree in protons largely by a pseudocontact mechanism (126). The substrate co-ordinates to the lanthanide shift reagent, referred to as the $L S R$, by virtue of the requirement that it contains heteroatoms which exhibit some degree of Lewls basicity, and greater shifts are caused by functional groups which are most basic(127). The basicity factor appears a most important criterion on which to judge the effectiveness with which a group will give a lanthanide induced shift (LIS)(124). Several workers have compared the co-ordinating ability of different functional groups to cause a LIS: for example, amines $>$ hydroxyls>ketones>aldehydes>ethers>esters>natriles.

The chemical shifts induced in a number of organic thlocyanates and isothiocyanates, by the lanthanide shift reagent Eu(fod) ${ }_{3}$ $[$ fod $=1,1,1,2,2,3,3$, heptafluoro $-7,7,-$ dimethyl $-4,6,-$ octane dionato] have therefore., been examined in order to evaluate how the thiocyanate or isothiocyanate co-ordinates to the europxum.

Results and Discussion

## (i) The Calculation of the Shaft Parameters $\triangle B$ and $K$

Addition of a LSR to a solution of the substrate in a normal n.m.r. solvent leads to the formation of an equilibrium mixture as shown in equations (1) and (2):

$$
\begin{align*}
& {[\mathrm{L}]+[\mathrm{S}] \xrightarrow{\mathrm{K}_{\mathrm{K}}}[\mathrm{LS}]}  \tag{1}\\
& {[\mathrm{LS}]+[\mathrm{S}] \xrightarrow{\mathrm{K}_{2}}\left[\mathrm{LS}_{2}\right]} \tag{2}
\end{align*}
$$

Where $[L]$ and $[S]$ are the concentrations of the LSR and substrate respectively, and [LS] the concentration of the complex formed in solution; the ratios of these species depends on $K_{1}$ and $K_{2}$, the binding constants. The latter binding constant $K_{2}$ is usually assumed negligible i.e. a l:l complex is thought to be formed in most cases. Owing to the magnetic interactions with the metal ion in the complexed substrate, the n.m.r. positions of associated nuclei in the substrate differ from those in the uncomplexed state. The equilibrium in solution between these species is rapid on the n.m.r. timescale(129) so that only a sungle average signal is recorded for each nucleus in the different environments.

This does not mean that the whole spectrum is merely displaced since factors such as the distances of the nuclei from the metal ion cause a differential expansion of the spectrum. An expression has been derived for the lanthanide induced shift(LIS), denoted by $\delta \Delta$, of the nuclei of the substrate before and after addition of the L.S.R.(130):

$$
\delta \Delta=\frac{\mathrm{K}[\dot{\mathrm{~L} S}] \Delta \mathrm{B}}{1+\mathrm{K}[\mathrm{LS}]}
$$

$\overline{\text { where }} \Delta B$ is ${ }^{-}$the LIS of the complexed substrate $[L S]$, 1.e. the bound chemical shift, and $K$ the equilibrium constant of expression (1).

The shift parameters derived from experimental methods of adding LSR to substrate have found to be dependent upon the initial substrate concentration. The method of Armitage and co-workers has been adopted in these studies which enables the precise calculation of bound chemical shift $\Delta B$ and $K$, the binding constant (131,132). They use the expression:

$$
\left[S_{0}\right]=\frac{\left[L_{0}\right] \cdot \Delta \mathrm{B}}{\delta \Delta}-\left(\frac{1}{\mathrm{~K}}+[\mathrm{Lo}]\right)
$$

where $[S o] \gg[L C] ;[L o]$ and $[S o]$ are the respective initial concentretrons of lanthanide and substrate, since only under these conditions, they argue, are the relative magnitudes for the various nuclei independent of substrate concentration. Shift parameters are calculated by measuring the chemical shift induced by a constant concentration (approx. 0.005 M - of $\mathrm{Eu}(\mathrm{fod})_{3}$ together with varying concentrations (approx 0.03 0.2 M ) of substrate, and plotting $[\mathrm{So}]$ versus $1 / \delta \Delta$ where the slope equals
[Lo]. $\Delta B$ and the intercept ${ }^{1} / K+[L o]$. Shift parameters for isopropenyl acetate have been calculated by this method [Fig. 7.1. and Table 7.2.] and the value obtained for $K$, the equilibrium constant, within experimental error, is in very good agreement with the value reported by Kelsey(133). The shift parameters for MeOH and EtOH have also been calculated and are included in Table 7.2.

## (ii) Shift Parameters, $\Delta B$ and $K$, Calculated for Organic Thiocyanates and Organic Isothxocyanates.

The shift parameters for a number of organic thiocyanates and isothrocyantes have been calculated by the above method and the results are presented in Table 7.3., and also include values determined for some nitriles and dimethyl sulphide which provide similar donor atoms to those avallable for organic thlocyanates and isothlocyanates.


#### Abstract

It can readily be seen that chemical shifts are induced in organic thlocyanates, although these are small compared to the stronger coordinating alcohols or ethers (as indicated by the differences in $\Delta B$ and $K$; see Table 7.2, and 7.3.), while no LIS are observed in the protons of any of the organic isothiocyanates when measured in $\mathrm{CCl}_{4}$. Sance a LIS is also observed in organic nitriles, but not in dimethyl sulphide, the indication is that co-ordination to europium occurs through nitrogen in organic thlocyanates, whilst in organic isothocyanates, where the sulphur atom is the most available atom, lattle or no co-ordination occurs. 'This is consistent with europium being a class 'a' metal where there is a preference for the thlocyanate group to co-ordinate through


The Calculation of Shift Parameters, $\Delta \mathrm{B} \& \mathrm{~K}$, for Isopropenyl Acetate



1
8
8

Fig. 7.1

## Shift parameters Calculated for Isopropenyl Acetate,

Methanol and Diethyl Ether


Measurements were performed in $\mathrm{CCl}_{4}$
(a) Value quoted by Kelsey(133).

Table 7.2.

| R | R-SCN |  | $\mathrm{R}-\mathrm{NCS}$ |
| :---: | :---: | :---: | :---: |
|  | $\Delta \mathrm{Bppm}$ | K litre Mole ${ }^{-1}$ |  |
| Me | 8.3 | 11.8 | No shift |
| $\mathrm{PhCH}_{2}$ | 7.6 | 11.2 | No shift |
| $\mathrm{C}_{3} \mathrm{H}_{5}$ | - | 1- | No shift |


|  | ,$\Delta \mathrm{Bppm}$ | K Iitre Mole ${ }^{-1}$ |
| :--- | :---: | :---: |
| $\mathrm{Me}_{2} \mathrm{~S}$ | No shift |  |
| $\mathrm{PhCH}_{2} \mathrm{CN}$ | $19.00\left(\mathrm{CH}_{2}\right)$ | 9.3 |
| MeCN | 14.6 | 27.0 |

Table 7.3.
the natrogen atom as found in $\operatorname{Eu}(N C S)_{6}^{3-}(134)$. Some co-ordination may occur between Eu and the sulphur atom since a very small induced shift is observed when measurements are performed in $\mathrm{CS}_{2}$ which is a less donor competing solvent than $\mathrm{CCI}_{4}$. It has been shown that there is a lowering of LIS going from $\mathrm{CS}_{2}<\mathrm{CCl}_{4}<\mathrm{C}_{6} \mathrm{D}_{6}<\mathrm{CDCl}_{3}<\mathrm{CH}_{3} \mathrm{CN}(128)$, as demonstrated by the induced chemical shafts observed in MeSCN measured in these solvents, (Table 7.4.). It appears, therefore, that the nitrogen atom in organic isothlocyanates is not available for co-ordination in the same way as in organic thmocyanates, and if co-ordination does occur through sulphur in organic isothlocyanates to europium, the ligands are very weakly bound.

The results obtained for the chemical shifts induced in organic thiocyanates and isothiocyanates by Eu(fod) 3 are extremely anteresting in another sense. Such differences observed in anduced chemical shдft may be an important means of distinguishing between $\mathrm{N}^{-}$ or $S$ - co-ordination in inorganic thiocyanate complexes containing organic ligands. The chemical shifts induced in a number of inorganic complexes have, therefore, been examined.

## (11i) Chemical Shıfts Induced in Inorganic-Thiocyanate Complexes

It has not been possible to determine shift parameters from the n.m.r. spectra of metal-thiocyanate complexes containing organic ligands, except for $\mathrm{Co}_{0}(\mathrm{DH})_{2}$ pySCN, because the compounds are much less soluble so that accurate measurements over a range of concentrations are

## Chemical Shifts Induced in MeSCN and MeNCS

in Various Solvents

| R | Chemical Shift Observed $\Delta \tau$ |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{CCl}_{4}$ | $\mathrm{CS}_{2}$ | $\mathrm{CDCl}_{3}$ |
| $\operatorname{MeSCN}$ | 0.4 | 1.0 | 0.25 |
|  |  |  |  |
| MeNCS | No shift | 0.05 | No shift |
|  |  |  |  |

Mole Ratio Eu(fod) ${ }_{3} /$ substrate $=0.15$

Table 7.4.
precluded. However, the chemical shifts induced in metal-thiocyanate complexes of known concentration on addrtion of known quantrties of Eu(fod) 3 have been recorded and are presented in Table 7.5., and show that a simplar behaviour is observed to that found for the organic thiocyanates, as is clearly illustrated by the linkage isomers. ( $\pi-\mathrm{cp}$ ) $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{CNS}$ (Table 7.5.). Furthermore, the equilibrium constant K calculated for $\mathrm{Co}(\mathrm{DH})_{2}$ pySCN is similar to that determined for the organic thiocyanates.

In the case of the linkage isomers $\mathrm{Pd}_{\mathrm{Cd}}(\mathrm{AsPh})_{2}(\mathrm{CNS})_{2}$, the mode of co-ordination of the thlocyanate group is dependent on the nature of the solvent(31), and therefore, shift measurements for the $S$-bonded isomer were performed in acetonitrile and for the $N$-bonded case in $\mathrm{CS}_{2}$. Although a small shift is induced in the phenylforotons of $\mathrm{Pd}\left(\mathrm{AsPh}_{3}\right)_{2}\left(\mathrm{NCS}_{2}\right.$ (cf MeNCS in $\mathrm{CS}_{2}$ ) a much larger shift is observed for the $S$-bonded usomer, even though measurements are performed in acetonitrile, which is a much stronger donor competing solvent.

The results, therefore, clearly show that the use of $E u(f o d){ }_{3}$ and n.m.r. spectroscopy provides a reliable means of distinguishing between N - or S - thiocyanate co-ordination.
(1v) A Means of Distinguishing between $N-$ and $S$ - Thiocyanate

The $t$-butyl protons of $\mathrm{Eu}(\mathrm{fod})_{3}$ resonate at $\tau 8.15$ in $\mathrm{CCl}_{4}$ and T8.25 in $\mathrm{CDCl}_{3}$. It has been shown that this resonance moves upfield on

Induced Chemical Shifts in ThIocyanate Complexes


> All spectra were recorded in $\mathrm{CDCl}_{3}$ unless otherwise stated. Concentration of substrate $=0.01$ molar; Mole ratio Eu(fod) ${ }_{3}:$ substrate $=0.5 \quad$ (except for $(\pi-c p){ }_{2} \mathrm{Ti}(N C S)_{2}$ which was 0.005 molar. Mole ratıo $=1.0)$.
(a) recorded in MeCN
(b) recorded in $\mathrm{CS}_{2}$
(c) $K=$ litre mole $e^{-1}$
co-ordinatıon(135). Schwendiman and Zink have attributed this behaviour in $E u(d p m)_{3}$ to changes in geometry of the lanthanıde shaft reagent on complexation, and have shown that the observed shift increases with increasing substrate basicity and concentration. A similar concentration dependence is demonstrated by $E u(f o d) 3$ as is clearly shown in Fig. 7.6. However, it is difficult to correlate the observed shift for the $t$-butyl resonance of $\mathrm{Eu}(\mathrm{fod})_{3}$ with substrate basicity, because smaller shifts of the $t$-butyl resonance are observed in the presence of diethyl ether or $E t_{3} N$ than are found for in the presence of RSCN or isopropenyl acetate, where the latter co-ordinates to a lesser extent.

Nevertheless, there is a marked difference between the shift induced in the t-butyl resonance by RSCN than by RNCS where a significant shift is observed in the t-butyl resonance on organic thiocyanate co-ordination, whereas only a small shift is induced in the presence of organic isothiocyanates, as might be predicted for a weakly co-ordinating substrate. Simılar behaviour is observed for the metal-thiocyanate complexes, as shown in Table 7.7. Therefore, an observation of the shift induced in the $t$-butyl resonance of $E u(f o d)_{3}$ can provide a secondary way of confirming $N$ - or $S-$ co-ordanation in thiocyanate complexes.

## (v) Chemical Shifts Induced in Cyanate Complexes

Since it is possible to distinguish between $N$ - and S-thiocyanate co-ordination, the use of lanthanide shift reagents might also provade a method of distinguishing between $N$ - and $O$-bonded cyanate complexes; this $1 s$ particularly amportant since infrared spectral studies cannot

Variation in Chemical Shift of the $t$-Butyl Resonance of Eu(fod) ${ }_{3}$ with Concentration of Substrate


The Chemical Shift Induced in the $t$-Butyl Resonance of Eu(fod) 3 by Thiocyanate Complexes

| S-Thuocyanato | $\delta \Delta$ | N -Thlocyanato |  |
| :---: | :---: | :---: | :---: |
|  |  |  | $\delta \Delta$ |
| $(\pi-\mathrm{cp})_{2} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{SCN}$ | 0.9 | $(\pi-\mathrm{cp})_{2} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{NCS}$ | 0.07 |
| $\begin{aligned} & \mathrm{Pd}\left(\mathrm{AsPh}_{3}\right)_{2}(\mathrm{SCN})_{2} \\ & \quad \text { (measured in } \mathrm{MeCN} \text { ) } \end{aligned}$ | (a) | $\begin{aligned} & \mathrm{Pd}\left(\mathrm{AsPh}_{3}\right)_{2}(\mathrm{NCS})_{2} \\ & \quad\left(\text { measured in } \mathrm{CS}_{2}\right. \text { ) } \end{aligned}$ | 0.2 |
| $\mathrm{CO}(\mathrm{DH}) 2^{\mathrm{py}(\mathrm{SCN})}$ | 0.65 | $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}$ | 0.15 |
|  |  | $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ | 0.1 |
|  |  | $(\pi-c p){ }_{2} \mathrm{Tz}(\mathrm{NCS})_{2}$ | 0.3 |

Concentration of substrate $=0.01$ molar Mole ratio Eu(fod) $\mathbf{B}^{\text {: }}$ substrate $=0.5$ (except for $\left(\pi^{-c p}\right)_{2} T z(N C S)_{2}=0.005$ molar; Mole ratio 1.0).
(a) Shift not recorded due to donor effect of MeCN.

Table 7.7.
be used with total reliabilaty especially in assigning 0-co-ordination (see Chapter 1).

Shift parameters for EtOCN and PhNCO have been measured in a similar manner to that described previously for organic thiocyanates and 1sothiocyanates (Table 7.3.). It has been found that considerable chemical shifts are induced in EtOCN, larger than those for organic thiocyanates, whereas no shifts are induced in PhNCO (Table 7.8.). This suggests that a similar behaviour is observed to that found for the organic thlocyanates and isothiocyanates.

As previously described, there is conflicting evidence as to whether cyanate co-ordination is through 0 or $N$, in the complexes $(\pi-c p)_{2} \mathrm{Ti}(\mathrm{CNO})_{2}$ and $(\pi-\mathrm{cp})_{2} \mathrm{Zr}(\mathrm{CNO})_{2}$. Recently Burmeister et al., on the basis of dipole measurements, have suggested that cyanate co-ordination is through natrogen in the titanium complex, and 0-bonded in $(\pi-\mathrm{cp})_{2} \mathrm{Zr}(\mathrm{OCN})_{2}(67)$. The X-ray crystal structure determination of the former, described later in this thesis, shows that cyanate co-ordination is indeed through nitrogen. Therefore, an examination of shifts induced in these metallocenes may provide further information concerning the nature of co-ordination of the cyanate group in the zirconium adduct.

Although it was found that small shifts are induced in ( $\pi-\mathrm{cp})_{2} \mathrm{Ti}(\mathrm{NCO})_{2}$ on addition of $\mathrm{Eu}(\mathrm{fod})_{3}$, much larger shifts were observed in the zirconium
compound (Table 7.8.), suggesting 0 -bonding in the latter compound. Similarly, addition of $\mathrm{Eu}(\mathrm{fod})_{3}$ to a solution of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}$ in $\mathrm{CDCl}_{3}$ (the cyanate group is co-ordinated through nitrogen in solution; see Chapter 5) also shows a small induced shift, whereas addition of $\mathrm{Eu}(\mathrm{fod})_{3}$ to a solution of $\mathrm{Rh}\left(\mathrm{PPh}_{3}^{\prime}\right)_{3} \mathrm{OCN}$ in MeCN, where the cyanate group retains O-co-ordination, a larger induced shift is observed.

Although, as the evidence shows, co-ordination to europlum does not occur to any great extent through the sulphur atom in $N$-thiocyanato complexes, in the case of N -cyanato complexes it as possible that coordination can occur through the oxygen atom (cf shift parameters for $M e_{2} S$ and $E t_{2} O$ ). The results indicate the order of co-ordination is:
$M-N C S<M-N C O<M-S C N<M-O C N$ where $M=$ organic or metal, and this is in general accord with that expected for co-ordination to a class 'a' metal.

## Conclusions

Not only does the use of $\mathrm{Eu}(\mathrm{fod})_{3}$ and n.m.r. spectroscopy provide information concerning the nature of co-ordination of RNCS and RSCN to a class 'a' metal but also provides a reliable method other than infrared spectroscopy in determining the mode of co-ordination of the thiocyanate and possibly the cyanate group in inorganic complexes. Although the method is restricted to the examination of complexes which are soluble in very weakly comordinating solvents, such as $\mathrm{CDCl}_{3}, \mathrm{CCl}_{4}, \mathrm{C}_{6} \mathrm{D}_{6}$

Chemical Shifts Induced in O-Cyanato and
N-Cyanato Species

| o-Cyanato |  | N -Cyanato |  |
| :---: | :---: | :---: | :---: |
| EtOCN | $\begin{array}{r} \mathrm{K}^{(\mathrm{a})}=\sim 100, \Delta \mathrm{BCH}_{2} 8.0 \\ \Delta \mathrm{BCH}_{3} 6.0 \end{array}$ | PhNCO | No Shift |
| $\begin{aligned} & (\pi-\mathrm{cp})_{2} \mathrm{Zr}(\mathrm{OCN})_{2} \\ & \operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN} \\ & \quad(\text { in } \mathrm{MeCN}) \end{aligned}$ | $\begin{aligned} & \Delta \tau 0.9^{(\mathrm{c}),(\mathrm{d})} \\ & \Delta \tau 0.5^{(\mathrm{a})} \end{aligned}$ | $\left.\begin{array}{l} (\pi-\mathrm{cp})_{2} \mathrm{Ti}(\mathrm{NCO})_{2}(\mathrm{c}),(\mathrm{e}) \\ (\pi-\mathrm{cp})_{2} \mathrm{Ti}(\mathrm{NCS})_{2} \\ \operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCO} \\ \quad(\mathrm{in} \mathrm{CDCl} \end{array}{ }_{3}\right) \quad .$ | $\begin{gathered} \Delta \tau 0.2 \\ \text { No shift } \\ \sim \Delta \tau 0.3 \end{gathered}$ |

(a) $K=$ litre mole $e^{-1}$
(b) $\Delta B=$ p.p.m.
(c) recorded in $\mathrm{CDCl}_{3}$
(d) Concentration of substrate $=0.01$ molar; Mole ratio Eu(fod) ${ }_{3}$ : substrate $=0.5$
(e) Concentration of substrate $=0.005$ molar; Mole ratio Eu(fod) $\mathbf{B}^{\text {: }}$ substrate $=1.0$

Table 7.8.
and $\mathrm{CS}_{2}$, it has the distinct advantage over ${ }^{14} \mathrm{~N}$ n.m.r. spectroscopy in that much lower concentrations of substrate can be used.

## Experimental

Eu(fod) ${ }_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ was purchased from Lancaster Synthesis Ltd. the presence of water inhlbits the LIS owing to competitive co-ordination, and was therefore removed by drying the shift reagent over $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum for 48 hours. The organic thlocyanates, isothlocyanates and phenyfisocyanate were purchased from Fluka Chemicals. EtOCN was prepared as described by Jensen, Due and Holm(136). Trans-Rh(PPh $)_{2}$ (CO)NCS was prepared according to Burmens'ter et al.(73). $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}$ and $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{CNO}$ were prepared as previously described. The complexes $(\pi-\mathrm{cp})_{2} \mathrm{M}(\mathrm{CNO})_{2}[$ where $\mathrm{M}=\mathrm{Ti}$ and Zr$]$ and $(\pi-\mathrm{cp})_{2} \mathrm{TI}(\mathrm{NCS})_{2}$ were prepared according to Burmeister, Deardoff et al. $(43,44)$ and the linkage isomers $\mathrm{Pd}_{\mathrm{A}}\left(\mathrm{AsPh}_{3}\right)_{2}$ (CNS $_{2}$ according to Burmeister, Haseel and Phelan(31). The linkage isomer ( $\pi-\mathrm{cp}$ ) $\mathrm{Fe}(\mathrm{CO})_{2}^{\prime}$ (CNS ) were prepared according to Sloan and Wojeickl(15), and the complex $\mathrm{Co}(\mathrm{DH})_{2} \mathrm{py}(\mathrm{SCN})$ from the method described by Norbury and Sinha(137). All solvents used were purified and dried in the manner described by Weissberger(96). The n.m.r. spectra were recorded on a Perkin Eimer $\mathrm{R} 32\left(90 \mathrm{MH} Z_{z}\right)$ Spectrometer using TMS : as internal standard.

The procedure for determining values of $\Delta B$ and $K$ in organic substrates

Stock solutions-of organic substrate ( 0.25 molar ) and Eu(fod) 3 ( 0.025 molar) were made up as required in $\mathrm{CCl}_{4}$. The n.m.r. spectra of
pure substrate solution was recorded. A number of solutions of substrate and $E u(f o d)_{3}$ were made up in n.m.r. tubes by maintaining a constant quantity of $E u(f o d){ }_{3}(1.00 \mu l$ of stock solution) and varying the quantity of substrate $(400-50 \mu \mathrm{l})$ of stock solution. The total volume of solution ( 0.5 ml ) was kept constant by the further addition of $\mathrm{CCl}_{4}$. The n.m.r. spectra of solutions were recorded and values of $\delta \Delta$ calculated from $\delta\left(\right.$ substrate $\left.+E u(f o d)_{3}\right)-\delta($ substrate $)$.

The n.m.r. spectra of inorganic substrates of known concentration ( 0.5 ml.$)$. of 0.01 molar solutions) were recorded before and after the addition of small quantities of Eu(fod) ${ }_{3}$ (10-20mg.).

## CHAPTER 8

THE REACTIONS OF ORGANIC ISOTHIOCYANATES AND THIOCYANATES WITH $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ and TRANS- $\mathrm{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$

## THE REACTIONS OF ORGANIC ISOTHIOCYANATES AND THIOCYANATES

WITH $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ AND TRANS-Ir $\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$

Oxidative addxtion of covalent molecules to unsaturated $d^{8}$ complexes of the type $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ and trans- $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ have been extensively studied and reviewed(138-140). On the other hand, oxidative addition reactions which involve the thiocyanate group have only been studied to a small extent. Burmeister and Weleski have investigated the reactions of thiocyanogen with trans-Rh $\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{X}$ (where $\mathrm{X}=\mathrm{Cl}^{-}, \mathrm{NCO}^{-}, \mathrm{NCS}^{-}$) and related complexes and found that co-ordination of the thiocyanate group was exclusively through sulphur in the products(141). Baird and Wilkinson have isolated the complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{PhNCS})_{2} \mathrm{Cl}$, and suggest a structure in which phenyl isothiocyanate is co-ordinated to rhodium as a three-membered ring with rhodium-carbon and rhodium-sulphur bonds, the metal being in the +III oxidation state(142), as shown in Fig. 8.1.


Fig. 8.1.

These studies have been extended, and the reactions of both organic isothiocyanates and thiocyanates with $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ and trans- $\mathrm{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ have been examaned in order to evaluate the effect of change in oxidation state on the mode of co-ordination of the thiocyanate group and to investigate the possibilities of forming pairs of linkage 1somers.by the two routes:

$$
\begin{aligned}
& \mathrm{R}-\mathrm{SCN}+\mathrm{M} \longrightarrow \mathrm{R}-\mathrm{M}-\mathrm{SCN} \\
& \mathrm{R}-\mathrm{NCS}+\mathrm{M} \longrightarrow \mathrm{R}-\mathrm{M}-\mathrm{NCS}
\end{aligned}
$$

The results will be discussed as follows:
(1) The reaction of organic 1 sothiocyanates with rhodium(I) and iridium(I) complexes.
(1i) The reaction of organac throcyanates with rhodium(I) and iridium(I) complexes.

## Results

(1) The Reaction of Organic Isothlocyanates with Rhodium(I) and

Iridium(I) Complexes

Balrd and Walkinson(140) have attributed the $C N$ stretching frequency around $1540 \mathrm{~cm}^{-1}$ in the infrared spectrum of the complex $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{PhNCS})_{2} \mathrm{Cl}$ to the " $\pi$-bonded" phenylisothiocyanate group as shown in Fig. 8.l., whilst the bands at $2155 \mathrm{~cm}^{-1}$ and $925 \mathrm{~cm}^{-1}$ are attributed to the $v$ asym(NCS) and $v$ sym(NCS) of the donor $S$-bonded phenyl isothiocyanate. This complex has been reprepared in the manner described by Baird and Wilkinson, by heating a maxture of $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ and PhNCS , and it has been found that

Infrared Spectral Data for Products obtained from the Reaction of RNCS with $\mathrm{Rh}_{\mathrm{L}}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ or trans-Ir( $\left.\mathrm{PPh}_{3}\right)_{2}$ (CO)Cl


The spectra were recorded as nujol mulls.
(a) Values taken from the results of Baird and Wilkinson.

Table 8.2.
the infrared spectrum of the complex exhabited $v(C N)$, vasym(NCS) and $v a s y m(N C S)$ and $s y m(N C S)$ at $1550 \mathrm{~cm}^{-1}, 2170 \mathrm{~cm}^{-1}$ and $925 \mathrm{~cm}^{-1}$ respectively. Although these differences are reported the complex is clearly formulated as described.

Heating a mixture of either methyl or benzyl isothiocyanate with either $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ or trans $-\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$, on the other hand, afforded a mixture of products which have not been identified. However, it has been possible to isolate complexes from the reaction of MeNCS or $\mathrm{PhCH}_{2} \mathrm{NCS}$ with $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ in acetone whach analyse as $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{RNCS})_{2} \mathrm{Cl}$ [where $\mathrm{R}=\mathrm{Me}$ or $\mathrm{PhCH}_{2}$ ]. Their infrared spectra (Table 8.2.) suggest a structure similar to that for $\mathrm{Rh}_{1}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{PhNCS})_{2} \mathrm{Cl}$ where RNCS co-ordinates to rhodium as shown in Fig.'8.1. and also acts as an unidentate ligand. Similarly, heating maxtures of trans-Ir $\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ and phenyl or benzyl isothiocyanate afforded complexes which are formulated as $\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{RNCS})_{2} \mathrm{Cl}\left[\mathrm{R}=\mathrm{Ph}\right.$ or $\left.\mathrm{PhCH}_{2}\right]$ and are isostructural to the analagous rhodium complexes. (Table 8.2.). Although all these complexes show that RNCS acts as a conventional ligand, no assignments have been made as to whether these ligands co-ordinate through $S$ or N. As pointed out in the previous chapter, assignments based purely on shafts observed in the CN stretching frequency must be treated wath the utmost caution.

On the other hand, the reaction of MeNCS with trans $-\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ gave a complex which analyses as $\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeNCS})_{2}$ NCS. In addition to the $(C N)$ bands ascribed to the " $\pi$-bonded" methyl usothiocyanate and a methyl thiocyanate undentate ligand (Table 8.2.), the infrared spectrum
also exhibits a $v(C N)$ band at $2120 \mathrm{~cm}^{-1}$ attributed to a terminal thiocyanate group probably co-ordinated to iridium through nitrogen: a weak band is also observed at $830 \mathrm{~cm}^{-1}$ attrıbuted to the CS stretching frequency for N -co-ordination. This thus suggests that the reaction not only involves oxidative addition but also that the chloride may have been replaced by a reductive elimination reaction as methyl chloride.

The infrared spectra of the rhodium complexes all exhabit bands at ${ }^{\sim} 300 \mathrm{~cm}^{-1}$ which can be assigned to the $\mathrm{Rh}-\mathrm{Cl}$ stretching mode.

Jenkins and Shaw (143,144) showed in a number of iridium(III) octahedral complexes that the Ir-Cl frequency depends primarily on the ligand trans to chlorine and is insensitive to the cis ligand. Brookes and Shaw(145) demonstrated a similar behaviour in a number of rhodium(III) complexes of the type $\mathrm{RhCl}_{3}(\mathrm{~L})_{3}$ [where $\mathrm{L}=\mathrm{PMe}_{2} \mathrm{Ph}^{\prime}, \mathrm{PEt}_{3} \mathrm{PPr}_{3}{ }^{\mathrm{n}}$, $\mathrm{AsMe}{ }_{2} \mathrm{Ph}$ etc.] and showed that the $\mathrm{Rh}-\mathrm{Cl}$ stretching frequency occurred in the ranges $345-293 \mathrm{~cm}^{-1}$ for mutually trans chlorine and $278-264 \mathrm{~cm}^{-1}$ for chlorine. trans to phosphine in these complexes. On the basis of these studies, the band herean at $-300 \mathrm{~cm}^{-1}$ suggests either chlorine trans to donor RNCS or chlorine trans to the ' $\pi$-bonded' organic isothiocyanate. In the case of the complexes $\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}$ (RNCS) ${ }_{2} \mathrm{Cl}$, their infrared spectra do not exhibit any band in the region $300-250 \mathrm{~cm}^{-1}$, thus indicating a different configuration to the rhodium complexes. Deeming and Shaw(146) have assigned either configuration (i) or (II) to the complex $\operatorname{Ir}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(\mathrm{CO})\left(\mathrm{CS}_{2}\right) \mathrm{Cl}$ on the basis of n.m.r. spectral data and of the Ir-Cl stretching frequency which occurs at $252 \mathrm{~cm}^{-1}$.

(I)

$P=P M e_{2} P h$

It is possible, therefore, that in the case of the iridium complexes that chlorine is trans to the " $\pi$-bonded" organic isothiocyanate, while in the rhodium complexes chlorine is trans to donor RNCS.
(ii) The Reaction of Organic Thiocyanates with Rhodium(I) and Iridium(I) Complexes
(a) The Reaction of Organic Thiocyanates with Rhodium(I) Complexes

The interaction of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ with methyl or benzyl thiocyanate in cyclohexane and acetone respectively, give pink complexes which analyse as $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{RSCN})(\mathrm{R})(\mathrm{SCN}) \mathrm{Cl}$ [where $\left.\mathrm{R}=\mathrm{Me}, \mathrm{PhCH}_{2}\right]$. Their infrared spectra exhabit CN stretching frequencies at $2130 \mathrm{~cm}^{-1}$ for the MeSCN adduct and at $2125 \mathrm{~cm}^{-1}$ for the $\mathrm{PhCH}_{2} \mathrm{SCN}$ adducts with integrated absorption intensities of 0.9 and $0.8 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}$ respectuvely, and is consistent in both cases with a terminal thiocyanate group co-ordinated to rhodium through the sulphur atom(Table 8.3.). The CN stretching frequencles at 2205 and $2250 \mathrm{~cm}^{-1}$ are attributed to co-ordinated MeSCN and $\mathrm{PhCH}_{2} \mathrm{SCN}$ respectively.

The nuclear magnetic resonance spectrum of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (MeSCN)(Me)(SCN)C1 measured. In $\mathrm{CDCl}_{3}$ shows phenyl group resonances (relative area 10) at $\tau 2.6$ with other peaks (each of relative area 1) at $\tau 7.4$ and 9.37. The

Infrared Spectral Data ( $\mathrm{cm}^{-1}$ ) for the Products Obtained
from the reaction of RSCN with $\mathrm{Rh}_{\left.\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl} \text { or trans-Ir( } \mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}}$

$\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeSCN})(\mathrm{Me})(\mathrm{SCN})_{2}^{(\mathrm{a})} \quad 2205 \mathrm{~s} \quad 2135 \mathrm{~s}, \mathrm{sp}, 2125 \mathrm{~s}, \mathrm{sp}$. $\begin{array}{rrr}\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeSEN})(\mathrm{Me})(\mathrm{SCN})(\mathrm{NCS})^{(\mathrm{b})} 2205 \mathrm{~s} \quad 2130 \mathrm{~s}, \mathrm{sp}, 2100 \mathrm{~s}, \mathrm{~b}, \\ (\mathrm{~A}=1.7) & (\mathrm{A}=7.1) \\ & \mathrm{V}(\mathrm{CS}) 825\end{array}$
(a) Nujol mull .
(b) $K B r$ disc $A=X 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}$
(c) Also in $\mathrm{CHCl}_{3}$ solution $\times 10^{-3}$ molar solution

Table 8.3.
peak at $\tau 9.37$ is a broad singlet and is a typical tau value for a methyl group directly bound to rhodium(147, 148. Splitting of this peak might have been expected due to phosphorus and rhodium interaction [values of $J_{P H}$ and $J_{R h H}$ of the order 5 and 2 tzespectavely, have been determined (147.)] but the band in question is not resolved in this instance. The lower field peak at $\tau 7.4$ is attributed to the methyl protons of the coordinated methyl thlocyanate, shifted slightly upfield from free methyl thiocyanate. On addition of $E u(f o d)_{3}$, the methyl protons at $\tau 9.37$ are shifted downfield by $\tau 0.5$, and provide further confirmation that coordination of the terminal thiocyanate group is through sulphur (see Chapter 7). The methyl resonances at $\tau 7.4$ are shifted,but only by a small extent ( $0.05 \tau$ ), as might be expected since chemical shifts induced by $E u(f o d)_{3}$ are distance dependent, and here the ligand methyl group is further away from the influence of the shift reagent than that directly attached to rhodium. This shift also provides further confirmation that the methyl thiocyanate group is co-ordanated since it has been found that considerable induced shifts are observed in free MeSCN (see Chapter 7).

Similarly, MeSCN will react with $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right){ }_{3} \mathrm{NCS}$ in cyclohexane to give a complex which analyses as $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeSCN})(\mathrm{Me})(\mathrm{SCN})} 2_{2}$. The infrared spectrum (Table 8.3.) presented as a nujol mull suggests a structure simalar to that for $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeSCN})(\mathrm{SCN}) \mathrm{Cl}$ but in this instance two terminal thiocyanate groups are co-ordinated through sulphur, as indicated by very sharp $C N$ stretching frequencies at $2135 \mathrm{~cm}^{-1}$ and $2125 \mathrm{~cm}^{-1}$. There are no bands in the region $900-700 \mathrm{~cm}^{-1}$ which could
have been attributed to the CS stretching frequency for the $N$-bonded case. The n.m.r. spectrum of this complex, measured in $\mathrm{CDCl}_{3}$ under nitrogen, exhibits only two peaks at $\tau 2.6$ (relative area 10) and at T7.43 (relatıve area 2). Addition of Eu(fod) ${ }_{3}$, however, splits the peak at $\mathbf{~ 7 ~} 7.43$ into two resonances at $\tau 7.3$ and $\tau 7.4$ (relative area $1: 1$ respectively) which can be attributed to the protons of the methyl group directly co-ordinated to rhodium and of the donor methyl thiocyanate ligand respectively. It is interesting to note that the resonance for the methyl. group co-ordinated to rhodxum, i.e. Rh-Me, is substantially downfield compared with the methyl resonance found in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (MeSCN)(Me)(SCN)Cl. A similar tau value was. found for the methyl resonance in $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeI})(\mathrm{Me} \times \mathrm{XCl}) \mathrm{I}$. $(\tau \mathrm{Rh}-\mathrm{Me}=7.16)(149)$.

The infrared spectra of the complexes $R h\left(\mathrm{PPh}_{3}\right)_{2}$ (RSCN)(R)(SCN)Cl (where $\mathrm{R}=\mathrm{Me}$ or $\mathrm{PhCH}_{2}$ ) presented as KBr discs show no differences to their spectra as nujol mulls. On the other hand, the infrared spectrum of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeSCN})(\mathrm{Me})(\mathrm{SCN})_{2}$ presented as a KBr disc shows marked differences in position and intensity of the CN vibrations, compared with the spectrum as a nujol mull; bands are exhibited at $2130\left(A=1.7 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}\right)$ and $2100 \mathrm{~cm}^{-1}\left(7.1 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}\right)$ indicating that co-ordination of one of the thlocyanate groups is now through nitrogen. This is further substantiated by the appearance of a new band at $825 \mathrm{~cm}^{-1}$, absent in the spectrum as a nujol mull, and is attributed to the CS stretching frequency for N-co-ordination. The isomerisation is a pressure effect rather than some effect due to KBr , since after applying a pressure of 70 tons/sq.in. to the pure complex,its mull spectrum showed identical changes in the $C N$ stretching frequencies to those-found in the KBr disc. No changes are


#### Abstract

observed in other ligand vibrations. The isomerisation appears to be irreversible since the infrared spectrum of this complex remains unchanged over several weeks.


With regard to the general geometric configuration of the complexes $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeSCN})(\mathrm{Me})(\mathrm{SCN}) \mathrm{Cl}$ and $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeSCN})(\mathrm{Me})(\mathrm{SCN})_{2}$, the former exhibits a Rh-Cl stretching frequency at $330 \mathrm{~cm}^{-1}$. On the basjs of Shaw's studies $(143,144,145)$, the absorption at $330 \mathrm{~cm}^{-1}$ suggests that the chlorine is trans to the throcyanate group, thus mplying the thiocyanate is cis to the methyl group. Thas is further supported by the n.m.r. spectrum on addition of $\mathrm{Eu}(\mathrm{fod})_{3} \cdot 1$ Interaction between the europium complex and the nitrogen end of the thiocyanate group causes changes in the chemical shift as a result of primarily a pseudocontact magnetic anisotropy effect i.e. a through space effect. Therefore, a methyl group cis to the thiocyanate group would be much more susceptible to induced chemical shifts than one in the trans position. Small shifts for co-ordinated MeSCN may be attributed to increased distance from the europium complex whether in a cis or trans position. . On the other hand, the n.m.r. spectrum of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}$ (MeSCN) (Me)(SCN) only shows a small shift of the methyl protons, on addition of $E u(f o d)_{3}$. In addition, it was found that the phenyl protons were splat into two clear sets of peaks at $\tau 2.7 \& 1.9($ relative areas 3.2 respectively) and parallels the magnetic anisotropy effect observed in the n.m.r. spectrum of trans$\operatorname{Rh}\left(\mathrm{PPh}_{3}\right){ }_{2}(\mathrm{CO}) N C S$ and suggest that the phosphine groups must be symmetrical with respect to each other. No such splitting of the phenyl
protons was observed in the n.m.r. spectrum of the former. The infrared spectrum of $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{PhCH}_{2} \mathrm{SCN}\right)\left(\mathrm{PhCH}_{2}\right)(\mathrm{SCN}) \mathrm{Cl}$ exhabits two $\mathrm{Rh}-\mathrm{Cl}$ stretching frequencies at 290 and $287 \mathrm{~cm}^{-1}$, these frequencies are significantly lower than those observed in the corresponding methyl thiocyanate and indicate that the chloro group is not trans to thiocyanate. The presence of two Rh-Cl vibrations may result because of different structural configurations, although solid state splitting cannot be ignored. Therefore, because of the differences observed between the infrared and n.m.r. spectra of the complexes, it is not possible to make definite structural assignments, and it can only be inferred that there are different geometric configurations anvolved.
(b) The Reaction of Organic Thiocyanates with trans-Ir ( $\left.\mathrm{PPh}_{3}\right)_{2}$ (CO)Cl

Heating maxtures of methyl or benzyl thiocyanate with trans-Ir $\left(\mathrm{PPh}_{3}\right)_{2}{ }^{-}$ (CO)Cl results in complexes which analyse for $\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Me})(\mathrm{NCS})_{2} \cdot \frac{1}{2} \mathrm{MeCl}$ and $\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{PhCH}_{2}\right)(\mathrm{NCS})_{2} \cdot \frac{1}{2} \mathrm{PhCH}_{2} \mathrm{Cl}$ respectively. Themr infrared spectra both exhibit strong $C N$ stretching frequencies at $2100 \mathrm{~cm}^{-1}$ attributed to terminal thiocyanate groups co-ordinated through nitrogen: CS stretching frequencies are also exhibited at 835 and $840 \mathrm{~cm}^{-1}$ for the methyl and benzyl adduct respectively. There are no bands in the region $2200-2100 \mathrm{~cm}^{-1}$ which may be associated with the CN stretching frequency for bridging thiocyanate. Heatıng the complexes at $100^{\circ} \mathrm{C}$. causes a weight loss equivalent to $\frac{1}{2} \mathrm{RCl}$. It, therefore, appears that not only has oxidative addition occurred but that it has been followed by the reductive elimination of RCl, and a subsequent oxidative addition of RSCN. The products have
infrared spectra which show no evxdence of carbon monoxide or a donor co-ordinated RSCN ligand beang present and are, thus tentatively formulated as described. These reactions resemble that of excess MeI with $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ to give $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Me}) \mathrm{I}_{2}$ which has been clearly identified as a five co-ordinate complex from a crystal structure determination (150). Such a species may be present for $\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Me})(\mathrm{NCS})_{2}$ but it seems unlikely that a four co-ordinate iridium(III) compounds exists as indicated by $\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{PhCH}_{2}\right)(\mathrm{NCS})_{2}$.

## Discussion


#### Abstract

It is clear from the results' that oxidative addition of organic asothiocyanate to rhodium(I) or iridium(I) does not take place in the same way as the oxidative addition of organic thıocyanates. In the former, RNCS co-ordinates to $M$ as a three membered ring with metal-carbon and metal-sulphur bonds(I), whereas an the latter oxadative addition occurs by cleavage of the carbon-sulphur bond(II).



(I)
$R$
$I$
$M$
1
$S$
$C$
$N$
(II)

In both cases there 15 a preference for co-ordination of the thiocyanate group to co-ordinate through the sulphur atom, except in the cases of the reaction of RSCN with trans-Ir $\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ where the thlocyanate group appears to be through nitrogen, but as shown these reactions are
not just one simple oxidative addıtion.


#### Abstract

The preference for $S$-bonding could be attributed to either the displacement of triphenylphosphine (in the case of organic isothiocyanateuridium(III) complexes, carbon monoxide) or the change of oxidation state from (I) to (III). Burmeister has isolated the complexes $\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})(\mathrm{SCN})_{3}[$ where $\mathrm{M}=\mathrm{Rh}, \mathrm{Ir}]$ from the reaction of thiocyanogen with $M\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) N C S[M=R h, I r]$. They argue on the basis of the $\pi-$ bonding hypothesis of Turco and Pecile(9) such that as the oxidation state of the metal is increased, the energy level of its dm orbitals would decrease, making it possible for the S-bonded throcyanate to function as both a $\sigma$ - and a $\pi$-donor ligand. This was first proposed by Gutterman and Gray(27) (see Chapter 1) for the S-bonded thiocyanate group in the complex $\left[\mathrm{CO}(\mathrm{CN})_{5} \mathrm{SCN}\right]^{3-}$. Correspondingly, the interaction of the metal $d \pi$ orbitals with the $\pi *$ orbitals of the $C O$ group would also be expected to diminish as the oxidation state of the metal is decreased. Conversely, if the metal is in a lower oxidation state, the energy level of its $d \pi$ orbitals would be higher and, according to Turco and Pecile, they would normally preferentially interact with the vacant $d \pi$ (or $\pi^{*}$ ) orbitals of the $S$-bonded thiocyanate as in $\left[\operatorname{Pd}(\mathrm{SCN})_{4}\right]^{2-}$ and $\left[\operatorname{Pt}(\mathrm{SCN})_{4}\right]^{2-}$. However, this interaction is destroyed by the presence of a stronger $\pi-$ acceptor such as $C O$, and a $\sigma-N$-bonded mode results.


However, it could be equally argued that rhodium in a +III oxidation state $1 s$ a class ' $a$ ' metal rather than a class ' $b$ ' metal. The N-bonded
complex $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NCS}^{2+}\right]^{2+}$ is the thermodynamically stable isomer (151, 152), and can be compared with $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NCS}\right]^{2+}$ where the co-ordination of the thiocyanate group was attributed to the 'hardening' effect of the amine ligands on a class 'a' metal (see Chapter 1). Therefore, in the case of the complexes discussed by Burmeister, it would be predicted that rhodium, beang a class 'a' metal and surrounded by soft ligands (e.g. CO $\mathrm{PPh}_{3}$ ), the thlocyanate group would prefer to co-ordinate through the sulphur atom(24).

Both arguments could similarly be applied to the organce throcyanate and isothlocyante complexes described in this study. However, it is difficult to rationalise the isomerisation of $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2}}{ }_{2}(\mathrm{MeSCN}) \mathrm{Me}(\mathrm{SCN})_{2}$ on the basis of such arguments. Isomerisation of the thiocyanate group as a result of a pressure effect has been reported only once previously. Drickamer et al.(153) have made the interesting observation from Móssbauer measurements that $\operatorname{lr}$ (III) compounds are reversibly reduced to iron(II) at high pressures. They record that the asymmetric spectrum of a compound they formulate as $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{SCN})_{6}$ shows an increasing proportion of $\mathrm{Fe}(I I)$ and, on pressure release, a symmetric spectrum which is regenerated on repeating the experiment. The authors ascribe these changes to reversible reduction associated wath linkage isomerism. However, it has been pointed out that the original formulation of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{NCS})_{6}$ as the S -thiocyanato complex was incorrect (3), so that this interpretation must be treated wath caution.

On the other hand, there is clear evidence to show that a pressure


#### Abstract

effect causes the isomerisation of $\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeSCN})(\mathrm{Me})(\mathrm{SCN})} 2$ to give $\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeSCN})(\mathrm{Me})(\mathrm{SCN})(\mathrm{NCS})$. It is likely that the energy differences between $\mathrm{N}^{-}$and S - co-ordination are small. Indeed the pressures involved are not particularly large and would be equivalent to a small energy change, assuming that any volume change is small. Both steric (e.g. possible changes in geometric configuration) and electronis factors may play an important part in the isomerisation. In the latter case, it could be argued that isomerisation occurs because rhodium in a +III oxydation state in this partıcular complex is borderline between class 'a' and class ' $\mathrm{b}^{\prime}$. However, it is impossible to distinguish between steric and electronic effects, particularly when only small energy changes are involved, and the isomerisation may therefore result as a consequence of both these factors.'


Finally, it is noted there is a marked ability in both rhodium and irıdium complexes to undergo reductive elımination. This behaviour is discussed in greater detail in the following chapter.

## Experimental

All solvents used were dried according to the methods described. Chlorotris(triphenylphosphine)rhodium(I) was prepared as previously described. Chlorobis(triphenylphosphine)carbonylirıdium(I) was prepared according to the method described in Inorganic Syntheses(154). The organic thiocyanates and asothiocyanates were purchased from Fluka Chemacals. All reactions were performed under a nitrogen atmosphere.

The Preparation of Organic Isothlocyanate Complexes.

Chlorobıs(triphenylphosphine)bis(phenylisothiocyanate)rhodium(III)

```
This complex was prepared according to the method described by Baird and Wilkinson. Yield 0.2 g (60\%).
```

```
Found: 10.8%Rh, 3.9%C1, 6.3%P, 6.5%S.
```

Found: 10.8%Rh, 3.9%C1, 6.3%P, 6.5%S.
Ph(PPh}\mp@subsup{)}{2}{\prime}(\textrm{PhNCS})2\textrm{Cl}\mathrm{ requires: 11.05%Rh, 4.05%Cl, 6.55%P, 6.85%S.
Chlorbis(triphenylphosphıne)bis(methylisothıocyanate)rhodium(III)

```

Chlorotris(triphenylphosphine)rhodium(I) (0.5 g) was added to methyl 1sothiocyanate (0.5 g) in acetone: (50 ml .) and the reaction mixture stirred for two hours. The resultant bright yellow solid was filtered, washed thoroughly with hexane and dried under vacuum. Yield 0.3 g (\(69 \%\)). Found: \(12.5 \% \mathrm{Rh}, \quad 7.5 \% \mathrm{P}\).
\(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\) (MeNCS \(_{2} \mathrm{Cl}\) requires: \(12.7 \% \mathrm{Rh}, \quad 7.6 \% \mathrm{P}\). Chlorobis(trıphenylphosphine)bis(benzylısothiocyanate)rhodium(III)

This complex was prepared in the same way as chlorobis(trxphenylphosphine)bis(methylisothıocyanate)rhodium(III) using benzyl isothiocyanate. Yield 0.2 g (40\%).

Found: \(10.9 \% \mathrm{Rh}, \quad 6.7 \% \mathrm{P}\).
\(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{PhCH}_{2} \mathrm{NCS}\right)_{2} \mathrm{Cl}\) requires \(10.8 \% \mathrm{Rh}, \quad 6.5 \% \mathrm{P}\).

Chbrobıs(trıphenylphosphine)bıs(phenylisothiocyanate)irıdium(II)

A suspension of chlorobis(triphenylphosphine)carbonylıridium(I)
(0.5 g) in phenyl isothiocyanate (4 ml) was heated very gently until all the iridium complex had dissolved. Dlethyl ether was then added and ylelded a very pale yellow solid, which was filtered and further washed with diethyl ether. Yield 0.4 g . (62\%).

Found: \(18.9 \% \mathrm{Ir}, \quad 3.7 \% \mathrm{Cl}, \quad 6.2 \% \mathrm{P}, \quad 6.4 \% \mathrm{~S}\).
\(\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{PhNCS})_{2} \mathrm{Cl}\) requires \(18.9 \% \mathrm{Ir}, 3.5 \% \mathrm{Cl}, 6.1 \% \mathrm{P}, 6.3 \% \mathrm{~S}\).

\section*{Chlorobis(triphenylphosphine)bıs(benzylisothiocyanate)iridium(III)}

This complex was prepared in the same way as chlorobis(triphenylphosphine)bisphenylisothıocyanate)iridium(III) using benzyl isothıocyanate. Yıeld 0.4 g (61\%).

Found: \(18.8 \% \mathrm{Ir}, \quad 3.0 \% \mathrm{Cl}, \quad 5.6 \% \mathrm{P}, \quad 6.4 \% \mathrm{~S}\).
\(\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{PhCH}_{2} \mathrm{NCS}\right)_{2} \mathrm{Cl}\) requires \(18.5 \% \mathrm{Ir}, 3.4 \% \mathrm{Cl}, 5.9 \% \mathrm{P}, 6.2 \% \mathrm{~S}\).

N-thiocyanatobis(triphenylphosphine)bıs(methylisothzocyanate)iridium(III)

This complex was also prepared in the same way as chlorbis(triphenylphosphıne)bis(phenyl isothiocyanate)ıridium(III) using methyl isothıocyanate. Yield 0.35 g . (\(60 \%\)).

Found: \(20.8 \% \mathrm{Ir}, \quad 6.5 \% \mathrm{P}, \quad 10.3 \% \mathrm{P}\).
\(\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeNCS})_{2} \mathrm{NCS} \cdot \frac{1}{2} \mathrm{MeCl}\) requires \(21.0 \% \mathrm{Ir}, 6.7 \% \mathrm{P}, 10.5 \% \mathrm{~S}\).

The Preparation of Organic Thzocyanate Complexes.

S-thıocyanatochlorobis(trıphenylphosphine)(methylthiocyanate)methylrhodium(III)

Chlorotris (trıphenylphosphine) rhodium(I) (0.5 g) was added to cyclohexane (\(100 \mathrm{ml} \cdot\)) containing methylthiocyanate (1 g), and the reaction
mixture stirred for two hours. The resultant pink solid was filtered, washed with hexane and dried under vacuum. Yıeld 0.3g (69\%).

Found: \(12.7 \% \mathrm{Rh}, \quad 4.5 \% \mathrm{Cl}, \quad 7.5 \% \mathrm{P}, 7.7 \% \mathrm{~S}\).
\(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeSCN})(\mathrm{Me}(\mathrm{SCN}) \mathrm{Cl}\) requires \(12.7 \% \mathrm{Rh}, 4.4 \% \mathrm{Cl}, 7.6 \% \mathrm{P}, 7.9 \% \mathrm{~S}\).

B1s-S-thiocyanato-bis(triphenylphosphine)(methylthiocyanate)methylrhodium(III)
```

    N-thiocyanatotris(traphenylphosphine)rhodium(I) (0.5g) was added to
    cyclohexane (100 ml ;) containing methyl thiocyanate (1.0g) and the reac-
tion mixture stirred for two hours. The resultant pink solid was filtered,
washed with cyclohexane and dried under vacuum. Yield 0.25g (55%).
Found: 12.3%Rh, 7.3%P, 11.2%S!
Rh(PPh}\mp@subsup{3}{2}{\prime}\mp@subsup{)}{(MeSCN)(Me(SCN)}{2}\mathrm{ requires 12.4%Rh, 7.5%P, 11.5%S.

```

S-thiocyanatochlorobis(triphenylphosphine)(benzylthiocyanate)benzyl-
 rhodium(III)

Chlorotris(triphenylphosphine)rhodium(I) (0.5g)was added to acetone (\(50 \mathrm{ml} . \mathrm{s}\)) containing benzyl thlocyanate (1.0 g), and the reaction mixture stirred for two hours. The resultant pink solid was filtered, washed with cyclohexane and drıed under vacuum. Yield 0.3 g (60\%).

Found: \(11.1 \% \mathrm{Rh}, \quad 6.6 \% \mathrm{P}, 6.9 \% \mathrm{~S}\).
\(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{PhCH}_{2} \mathrm{SCN}\right)\left(\mathrm{PhCH}_{2}\right)(\mathrm{SCN}) \mathrm{Cl}\) requires \(10.8 \% \mathrm{Rh}, 6.5 \% \mathrm{P}, \quad 6.7 \% \mathrm{~S}\).

Bls-N-thiocyanato-bis(traphenylphosphine)methyliridium(III)

A suspension of chlorbis(triphenylphosphine)carbonyliridium (0.5 g)
```

in methyl thlocyanate ( 4 ml .) was gently heated until all the iridium complex had dissolved. Diethyl ether was then added which yielded a white precipatate which was filtered, washed with diethylether and drıed under vacuum. Yield 0.2 g (43\%). Found: $25.4 \% \mathrm{Ir}, 2.25 \% \mathrm{Cl}, 6.8 \% \mathrm{P}, 6.8 \% \mathrm{~S}$. $\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Me}_{2}(\mathrm{NCS})_{2} \cdot \frac{1}{2} \mathrm{MeCl}$ requires $22.0 \% \mathrm{Ir}, 2.05 \% \mathrm{Cl}, 7.2 \% \mathrm{P}, 7.4 \% \mathrm{~S}$.

``` BısN-thıocyanatobenzyltriphenylphosphineirıdıum(III)

The complex was prepared in the same way as bis-N-thiocyanato-bis(triphenylphosphane)methylırıdium(I) using benzyl thiocyanate. Yield 0.3 g (70\%). Found: \(28.5 \% \mathrm{Ir}, 2.3 \% \mathrm{Cl}, 4.1 \% \mathrm{P}, 9.4 \% \mathrm{~S}\). \(\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{PhCH}_{2}\right)(\mathrm{NCS})_{2} \cdot \frac{1}{2} \mathrm{PhCH}_{2} \mathrm{Cl}\) requires \(28.0 \% \mathrm{Ir}, 2.6 \% \mathrm{Cl}, \quad 4.5 \% \mathrm{P}, \quad 9.4 \% \mathrm{~S}\).

\section*{Analyses}

Analyses were performed as previously described.

Physical measurements

Infrared and n.m.r. spectra were recorded as described in previous chapters.

CHAPTER 9

THE REÄCTION OF ALLYL THIOCYANATE AND ISOTHIOCYANATE WITH TRANS-M(PPh \()_{2}(\mathrm{CO}) \mathrm{Cl}[\) where \(\mathrm{M}=\mathrm{Rh}, \mathrm{Ir}]\) and \(\mathrm{Rh}(\mathrm{PPh})_{3} \mathrm{Cl}\)

THE REACTION OF ALLYL THIOCYANATE AND ISOTHIOCYANATE WITH TRANS-M(PPh \()_{2}(\mathrm{CO}) \mathrm{Cl}\) [where \(\left.\mathrm{M}=\mathrm{Rh}, \mathrm{Ir}\right]\) and \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\)

Oxidative addition reactions of complexes of the type trans \(M(L)_{2}(C O) X \quad[\) where \(M=R h, I r, L=\) tertiary phosphine and \(X=h a l i d e]\) involving allyl halides have been extensively studied \((149,155,156)\). Many complexes have been characterised and it has been possible from infrared and n.m.r. spectral studies to determine whether they contain \(\sigma\) - or \(\pi\)-allyl species. The purpose of this investigation anto the reactions of allyl thiocyanates and isothiccyanates is not only to study the mode of co-ordination of the thlocyanate group but also to determine the nature of the allylic species which occur in the isolated products. The results will be discussed in the following manner:
a) The reaction of allyl thiocyanate and isothiocyanate with:
\[
\begin{aligned}
& \text { (i) trans-Ir(} \left.\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl} \\
& \text { (ij) trans- } \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}
\end{aligned}
\]
b) The reaction of allyl isothiocyanate with \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\).

\section*{Results}
(a)(1) The Reaction of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{SCN}\) and \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) with trans- \(\mathrm{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\)

On heating a maxture of trans \(-\mathrm{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\) and \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{SCN}\) for a few minutes and adding a little ethyl alcohol a white precipitate develops. Recrystallised from dichloromethane-ethyl alcohol, the compound

\footnotetext{
In this chapter the compounds have been numbered, and the letter A has been used to indicate the formation of an adduct, usually between the complex (designated B) and half a mole of allyl chloride or thiocyanate.
}
analyses as \(\left.\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{NCS})_{2} \cdot \frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}(1 \mathrm{~A})\). Thermogravimetric analysis shows that the half mole of allyl chloride is removed quantitatively on heating at \(100^{\circ} \mathrm{C}\) to give the complex (IB). This and the presence of two thiocyanate groups in (1B) indicate that the reaction is not one simple oxidative addition, resulting in the cleavage of the \(\mathrm{C}_{3} \mathrm{H}_{5}\)-SCN bond, but one which also involves the reductive elimanation of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\) and further oxidative addition of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{SCN}\). In addition to bands due to triphenylphosphine, the infrared spectrum of (1B) exhıbits a CN stretching frequency at \(2100 \mathrm{~cm}^{-1}\left(\mathrm{~A}=16.4 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2} ; 8.2 / \mathrm{NCS}\right.\) in \(\left.\mathrm{CHCl}_{3}\right)\) and a CS frequency at \(860 \mathrm{~cm}^{-1}\); the integrated intensity is too high for one thiocyanate group and is consistent with two termanal thiocyanate groups co-ordanated to aradium through the nitrogen atom. The weak band at \(1620 \mathrm{~cm}^{-1}\) is assigned to the \(C=C\) stretching frequency of the \(a\) allyl group co-ordinated to 1 ridium, while the band at \(2070 \mathrm{~cm}^{-1}\) is due to the CO stretching frequency of the carbonyl group shifted to hagher wavenumbers on change in oxidation state from \(+I\) to + III. Furthermore, the n.m.r. spectrum of the complex (1B) is consistent with a \(\sigma\)-allyl group co-ordinated to iridium(155) (Table 9.1.). The spectrum resembles that for \(\sigma-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Mn}(\mathrm{CO})_{5}(157)\), the only difference being that the nonequivalent vinyl \(\mathrm{CH}_{2}\) protons (C and D) in the iridium complex are clearly split into doublets (\(\tau 6.12\) and 5.7), whereas in \(\sigma-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Mn}(\mathrm{CO})_{5}\), the vinyl \(\mathrm{CH}_{2}\) protons are non-equivalent and each is split by the vinyl CH into doublets; these doublets overlap to give an observed three line pattern. In addation, the phenyl proton resonances in the n.m.r. spectrum are split into two sets of peaks at \(\tau 2.28\) and 2.5 (relative area \(2: 3\) respectively) and are very similar to the splatting pattern observed in

\section*{N.m.r. Spectral Data for \(\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})\left(\sigma-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{NCS})_{2}(1 B)\)}

(a) from the results McClellan et al.(157)

Table 9.1.
the n.m.r. spectrum of trans-Rh(PPh \()_{2}(\mathrm{CO}) \mathrm{X}\) [where \(\mathrm{X}=\mathrm{Cl}\) or NCS] (see Chapter 3), suggesting a structure in which the phosphines are trans to one another. The n.m.r. spectrum of the complex, on addition of Eu(fod) \({ }_{3}\), shows no induced shafts in either the phenyl or allyl resonances, providing further evidence that the thiocyanate co-ordination is through natrogen in the complex (see Chapter 7).

The reaction of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) with trans \(-\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\) also gives a product which analyses as \(\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{NCS} . \frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\) (2A) (the \(\frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\) is removed on heating to give the complex (2B). The infrared, spectrum of the complex (2B) exhibits bands at 1643 and \(1587 \mathrm{~cm}^{-1}\) which can be attributed to \(v(C=C)\) and \(\nu(C N)\) of allyl isothiocyanate co-ordinated to \(1 r ı d i u m\) through irıdium-sulphur and ıridium-carbon bonds, similar to those found for \(\operatorname{PhNCS}\) in \(\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{PhNCS})} \mathrm{Cl}_{2}(142)\). In addition, the band at \(2110 \mathrm{~cm}^{-1}\left(\mathrm{~A}=12.8 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}\right.\) in \(\left.\mathrm{CHCl}_{3}\right)\) is assigned to the CN stretching frequency for a terminal \(N\)-bonded thiocyanate group, while the band at \(2050 \mathrm{~cm}^{-1}\) is due to the CO stretching frequency of the carbonyl group.

In support of allyl isothlocyanate being co-ordinated to iridium via bonds with both carbon and sulphur, the allyl resonances in the n.m.r. spectrum of the complex (2B), measured in \(\mathrm{CDCl}_{3}\), (Table 9.2.) are shifted only slightly relative to the allyl resonances for free \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\). Only one complex peak is observed for the phenyl resonances suggesting that the phosphine ligands are not disposed in the same way to the carbonyl group, as found in the \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{SCN}\) complex. However, the
N.m.r. Spectral Data for \(\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{NCS}(2 \mathrm{~B})\)

\(a=\) Broad unresolved singlet.
\(\mathrm{m}=\) multiplet
\(J=\mathrm{Hz}\)

Table 9.2.
lack of evidence precludes further structural assignements for the positions of the phosphines, thiocyanate and carbonyl groups and.hence, the geometric configuration can only be arbitrarily assigned.
(a)(11) The reaction of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{SCN}^{\prime}\) and \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) with trans- \(\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}}\)

Analytical and infrared spectral data show that the product obtained from gently heating a maxture of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{SCN}\) and trans-Rh(\(\left.\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\) is the rhodium(I)-complex trans- \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}\). Samilarly, the reaction of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) with trans- \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\) in acetonitrile gives the same product. On the other hand, gently heating a mixture of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) with trans- \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\) gives a product for which the analyses are not completely satisfactory, but do indicate that the adduct may possibly be formulated as \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right)\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{NCS})_{2} \cdot \frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\) (3A). The infrared spectrum of the adduct (3A) exhibats a very strong \(C N\) stretching frequency at \(2110 \mathrm{~cm}^{-1}\) and CS frequency at \(830 \mathrm{~cm}^{-1}\) andicative of N -thlocyanate co-ordination, whilst the band at \(1620 \mathrm{~cm}^{-1}\) can be attributed to \(v(C=C)\) of a \(\sigma\)-allyl group co-ordinated to rhodium. In addition, the absence of any band in the region \(2080-1950 \mathrm{~cm}^{-1}\) shows that carbon monoxide has been displaced. There is no frequency which can be assigned to \(v(N)\) for an additional allyl isothlocyanate probably acting as a unidentate ligand, and it is suggested that the observed band at \(2110 \mathrm{~cm}^{-1}\) which is due to \(V C N\) for the co-ordinated thiocyanate group includes such a frequency. The band at \(1643 \mathrm{~cm}^{-1}\) can be assigned to \(v(C=C\)) of either allyl 2sothiocyanate or allyl chloride.
(b) The Reaction of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) with \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\)

The reductive elimination of allyl chloride also occurs when
\(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) is reacted with \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\). Stirring a mixture of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) and \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\) (mole ratıo \(4: 1\) respectively) in acetonitrile results in a pank adduct which analyses as \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{CNS} . \frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\) (4A). The half molecule of allyl chloride is removed quantitatively on heating the adduct at \(120^{\circ} \mathrm{C}\). to give (4B). The complex (4B) is stable, both in alr or when exposed to \(C O\), elther as a solid or in solution. The bands at 1600 and \(1643 \mathrm{~cm}^{-1}\) in its infrared spectrum are similar to those for the allyl isothlocyanate-1ridium(III) complex (2B) and can be attributed to the \(C N\) stretching frequency and \(v(C=C)\) of the allyl group for allyl isothiocyanate co-ordinated to rhodium in a " \(\pi\)-bonded" fashion through the C-S bond. Two CN stretching frequencies are observed at 2130 and \(2110 \mathrm{~cm}^{-1}\) with an overall integrated intensity of \(3.4 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\) measured in KBr ; in chloroform solution only one band appears at \(2120 \mathrm{~cm}^{-1}\) (\(\mathrm{A}=2.3 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}\)). This eva dence suggests that while the thiocyanate group is co-ordinated through the sulphur atom in solution, in the solid state a maxture of isomers is found: a band at \(830 \mathrm{~cm}^{-1}\), observed in the infrared mull spectrum can be attributed to the CS stretching frequency for an \(N\)-bonded thlocyanate. There is no band in the region 2200-2150cm \({ }^{-1}\) which can be associated with bridging thiocyanate.

The n.m.r. spectrum of the pink complex (4B) measured in \(\mathrm{CDCl}_{3}\) (See Fig..9.4.) closely resembles that of the \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}-\mathrm{rridium}(\mathrm{III})\) adduct except that two resonances at \(\tau 5.85\) and \(\tau 6.3\) an the former are

\section*{\(\frac{\text { Infrared Spectral Data(} \mathrm{cm}^{-1} \text {) for the Products from the }}{\text { Reaction of } \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS} \text { with } \mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right){ }_{3} \mathrm{Cl}} \text { then }}\)}
Complex \(\nu\) (CN)
\(v(\mathrm{CS}) \quad v(\mathrm{C}=\mathrm{C}) \quad \mathrm{A}\left(\times 10^{-4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}\right)\)
pink (4B) \({ }^{(a)} 2130 \mathrm{~m}, 2110 \mathrm{~m}, 1600 \mathrm{mb}\)
830w 1643
3.4
(b) \(2120,1600 \mathrm{mb}\)
1643
2.3
yellow (5B) \({ }^{(a)} 2130 \mathrm{~s}, \mathrm{sp} 2110 \mathrm{~s}, \mathrm{~b}\)
\(830 \mathrm{~m} \quad 1643\)
1.5 and 6.7
.-(b) 2120
1643
8.4
(a) KBr disc
(b) Chloroform solution

Table 9.3.

The N.M.R. Spectra of the Products from the Reaction of \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\) with \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\)

Fig 9.4
observed for the aliphatic protons A. The peak at \(\tau 5.85\) is similar to that observed in free \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) (Fig. 9.4), and since the other peaks for free \(\mathrm{C}_{3} \mathrm{H}_{5}\) NCS overlap with those for the complex and cannot be distinguished, it could be argued that dissociation occurs in solution. However, this seems unlikely since any dissociated species would be expected to react with carbon monoxide. It appears, therefore, that the protons A are non-equivalent, possibly due to their geometric position in relation to the other ligands.

The analytical and spectral data thus, suggest that the complex (4B) may be 'formulated as a five co-ordinate species \(\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)} \mathbf{2}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{SCN}\) with a " \(\pi\)-bonded" organic thiocyanate group. It is difficult to understand why the complex does not react with carbon monoxide to give the normal six co-ordinate rhodium(III) complex unless the allylic residue partlally lies over the sixth co-ordanation position without actually taking part in any chemical bonding.

When excess \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) is reacted with \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\) in acetonitrile, a yellow complex 15 obtained which also analyses as \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}^{\prime}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right)\) (CNS). \(\frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\) (5A). Samilarly, treatment of \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}\) with \(\mathrm{C}_{3} \mathrm{H}_{5}\) NCS
 The half molecules of either allyl chloride or allyl isothocyanate can be removed quantitatively on heating the adducts at \(120^{\circ} \mathrm{C}\) for 12 hours to give products which are identical in theirreactivity and spectra. They are very air stable and do not react with CO. Their infrared and n.m.r. spectra indscate that the yellow product (5B) is not a rhodium (III)
complex but a rhodium(I) complex which may be formulated \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{NCS}\), where \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) is acting as a unidentate ligand similar to the thzocyanate complexes described in Chapters 2 and 3. In the infrared spectrum, there Is no band at \(\sim 1600 \mathrm{~cm}^{-1}\) which could be associated with \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) co-ordinated to rhodium in the " \(\pi\)-bonded" manner. The band at \(1643 \mathrm{~cm}^{-1}\), however, which can be clearly assigned to the \(v(C=C)\) of the allyl group, is not consistent with a \(\sigma\)-allyl group co-ordinated to rhodium (a band in the region \(1620-1610 \mathrm{~cm}^{-1}\) (149) might have been expected) but rather the \(C=C\) stretching frequency associated with allyl isothiocyanate (cf \(1643 \mathrm{~cm}^{-1}\) band observed in the pink \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}-\mathrm{Rh}(\mathrm{III})\) complex (4B). Similarly, the allyl, resonances in the n.m.r. spectrum of the yellow complex (5B) measured in \(\mathrm{CDCl}_{3}\) (Table 9.4.) are altered very little compared with those in the spectrum of free allyl isothiocyanate and remain unchanged when measured at \(-50^{\circ} \mathrm{C}\). The n.m.r. spectrum recorded in the range 0-30 \(\tau\) shows no resonances other than those attributable to phenyl and allyl groups.

From this evidence it 1 s clear that although two CN stretching frequencies are observed at 2130 and \(2110 \mathrm{~cm}^{-1}\) (Table 9.3.) in the infrared KBr spectrum, these cannot both be associated with terminal thiocyanate groups and one must be due to \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\). By comparason wath other organic isothiocyanate-rhodium complexes described previously, it might have been expected that the CN stretching frequency of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) acting as a conventıonal lıgand would have been shıfted considerably to higher wavenumbers. The only available comparison in the literature is with the organic thlocyanate system in which Goodall(119) has observed that the corresponding

\begin{abstract}
frequency of \(\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{SCN})_{2}\) is altered very little when co-ordinated to \(\mathrm{RhCl}_{3}\) and suggested, on this basis, that co-ordination occurred through the sulphur atom. It \(2 s\) possible, therefore, that the CN stretching frequency in allyl isothlocyanate behaves similarly (\(v(\mathrm{CN})\) occurs at \(2100 \mathrm{~cm}^{-1}\) in free \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\)). This 'would then explain the absence of a \(v(C N)\) band at higher wavenumbers in the spectrum of the complex which appears to be \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right)\left(\mathrm{O}-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{NCS})_{2} \cdot \frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\) (3A) and where the band at \(2110 \mathrm{~cm}^{-1^{\prime}}\) has been assigned to both donor \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) and the co-ordinated thlocyanate group. The presence of a band at \(830 \mathrm{~cm}^{-1}\) which can be attributed to the \(C S\) stretching frequency for N co-ordination implies that the thiocyanate, group is \(N\)-bonded, in keeping with the position of \(v(C N)\). There،is nolband in the region \(750-650 \mathrm{~cm}^{-1}\) which can be assigned to the CS stretching frequency for allyl isothiocyanate acting as a conventional ligand \((\mathcal{U C S})\) for \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) occurs at 696 and \(71 \mathrm{~cm}^{-1}\) in the free ligand) and is probably masked by the large number of phosphane bands which vibrate in this frequency range.
\end{abstract}

In support of the formulation that the yellow complex (5B) is a four co-ordinate rhodium(I) complex, the U.V. spectrum measured in chloroform is very similar to that found for \(\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\), whereas the pink rhodium(III) complex (4B) shows an additional band at 5l0nm.

Thus, the yellow complex (5B) is formulated as \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{NCS}\) but, unlıke the other rhodium(I)-thlocyanate complexes previously described, this complex is not air-sensitive and does not react with carbon monoxide. Such behaviour may be attributed to the nature of the
\(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) ligand which, on reaction with trans -Rh(\(\left.\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\), can give a rhodium(III)-adduct (3A) containing no carbon monoxide unlike the comparable reaction with trans \(-\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\). Furthermore, the fact that \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) N C S\) is N -bonded implies an interaction which 1 s out of the ordinary between \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) as a ligand and rhodium(I).

Discussion
```

The reactions of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}$ or $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{SCN}$ with rhodlum(I) or iridium (I) complexes are summarised in Table 9.5.

```

The results are interesting in two aspects. Firstly, in all cases the reactions involve the replacement of the chloride ion by the thocyanate group. It has been suggested that such a replacement probably involves, first the oxidative addition of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) or \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{SCN}\), followed by the reductive elimination of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\) : evidence for the formation of the latter is provided by thermogravimetric analysis which shows that weight losses on heating these adducts is initially equivalent to \(\frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\). Such behaviour can be attributed to the ability of the allyl group to undergo rearrangement. Possible mechanisms are:

\begin{tabular}{|c|c|c|}
\hline & \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) & \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{SCN}\) \\
\hline \[
\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}
\] & \begin{tabular}{l}
 \\
2B
\end{tabular} & \begin{tabular}{l}
 \\
1B
\end{tabular} \\
\hline \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\) & & \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}\) \\
\hline \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\) & \begin{tabular}{l}
 \\
3A
\end{tabular} & -- \\
\hline \[
\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}
\] & & -- \\
\hline
\end{tabular}
*The geometric configuration has been arbitrarilly assigned. \(P\) deonotes \(\mathrm{PPh}_{3}\)
\(B\), the \(\frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\) has been removed by heating.
Table 9.5.

These mechanisms do suggest that the terminal tho ocyanate species are initially S-bonded in which case isomerisation must follow since the majority of the products are \(N\)-thiocyanato complexes.,

Depending on conditions, reaction of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) with \(\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}}\) in acetonitrile can give either a yellow-rhodium(I) or pink-rhodium(III) complex. In either case, the replacement of the chloride ion occurs. Whether the initial reductive elmanation of allyl chloride involves the formation of \(\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NGS}\) or a dissociated species of the type \(\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2}}\) (CNS) is not certain but displacement of trıphenylphosphine must occur at some stage. In order to account for these products one possible mechanasm for thas reaction 15 :

\(\mathrm{Rh}\left(\mathrm{PPh}_{32}\right)\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{NCS}\) yellow

possible intermediates

Thus, while further oxidation occurs when the ratio of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) to \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\) is \(4: 1\), in the presence of excess \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) (mole ratio 90:1) ; at is possable for \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) to enter a co-ofdination site previously occupied by \(\mathrm{PPh}_{3}\) and in so doing would appear to inhibit further oxidative addition: further heating caused no change to the pank product. This could possibly be due to the steric effect of the strongly co-ordinated \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) and the bulky ligands surrounding the metal or to some not understood electronic effects, either of which could affect the rate or draving force of the reaction. Similarly, the reaction of \(\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\) wath \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) an acetonitrile gives \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}\) which, after the original reaction, does not procede beyond the rhodium(I) stage. Further oxidatlve addition does occur, however, when a mixture of trans- \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\) and \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) are gently heated when \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right)\left(\sigma-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{NCS})_{2} \cdot \frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\) is obtained. In this instance, whether oxidatave addition results because heating provides the necessary thermal energy to overcome the supposed sterxc or electronic inhibitions can only be a matter of speculation.

Secondly, the mode of co-ordination of the thiocyanate group in these complexes is of interest. As discussed in Chapter 8, Burmeister and Weleski explained \(S\)-co-ordination in complexes like \(\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})(\mathrm{SCN})_{3}\) on the basis of the \(\pi\)-bonding hypothesis(9) and the arguments of Gray and Gutterman(27). It was pointed out, however, that although such argument could be applied to the co-ordination behaviour of the thiocyanate group in rhodium(III) complexes isolated from the oxidative addition reactions of organic thiocyanates and isothiocyanates, the coordination behaviour could equally be explanned if rhodium in a +III

\begin{abstract}
oxidation state is regarded as a class 'a' metal rather than class 'b'. In the case of the irıdium(III) complexes descrabed here the results are not in accord with either of these explanations (thiocyanate coordination is through nitrogen in these complexes) and the compounds point again to the dangers of applying such arguments to explain effects which may arise from very small thermodynamic differences (see Chapters 3 and 8).
\end{abstract}

\section*{Experimental}

Allyl isothiocyanate was purchased commercially from Fluka Chemicals. Allyl thiocyanate was prepared according to the method described by Emerson(158). \(\mathrm{Rh}_{\mathrm{Pr}}^{3} \mathrm{PP}_{3} \mathrm{Cl}\) was prepared as previously described and trans \(-\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\), where \(\mathrm{M}=\mathrm{Rh}\) or Ir , were prepared according to the methods described in Inorganic Synthesis(154). All reactions were performed under nitrogen.

\section*{Bis-N-thiocyanatobis(triphenylphosphıne)(\(\sigma\)-allyl)(carbonyl)ıridium(III)}

A suspension of trans \(-\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}(0.5 \mathrm{~g})\) in allyl thiocyanate (4 ml) was heated untıl all the complex dissolved. Ethyl alcohol was then added, and a white solld precipitated, which was recrystallised from \(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}\) Yield 0.35 g (60\%)

Found: \(20.3 \% \mathrm{Ir}, 1.6 \% \mathrm{Cl}, 7.2 \mathrm{P} \%\), \(7.0 \% \mathrm{~S}\).
\(\left.\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}\left(\sigma-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{CO}) \mathrm{NCS}\right)_{2} \cdot \frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\) requires \(20.4 \% \mathrm{Ir}, 1.9 \% \mathrm{Cl}, 6.7 \% \mathrm{P}, 6.8 \% \mathrm{~S}\). \(\%\) wt. loss from T.G.A. \(=4.2 \%\). Calculated weight loss for \(\frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}=4.0 \%\).

\section*{N-thıocyanateobis(trıphenylphosphine)(allylısothıocyanate)(carbonyl) irıdıum(III)}
```

A suspension of trans $-\operatorname{Ir}\left(\mathrm{PPH}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}(0.5 \mathrm{~g})$ in allyl isothiocyanate ( 4 ml ) was heated until all the complex dissolved. Addition of diethyl ether to the reaction mixture gave a white precipitate which was filtered, washed with ether and dried under vacuum. Yield 0.4 g ( $67 \%$ ).
Found: 20.0\%Ir, $2.2 \% \mathrm{Cl}, 6.6 \% \mathrm{P}, 6.7 \% \mathrm{~S}$.
$\operatorname{Ir}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right)(\mathrm{CO}) \mathrm{NCS} . \frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}$ requires $20.4 \% \mathrm{Ir}, 1.9 \% \mathrm{Cl}, 6.7 \% \mathrm{P}, 6.8 \% \mathrm{~S}$. \% weight 'Joss from T.G.A. $=4.3 \%$. Calculated weaght loss for $\frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}=4.0 \%$.

```

The Reaction of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{SCN}\) with trans \(-\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\)

A suspension of trans \(-\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}(0.5 \mathrm{~g})\) in allyl thiocyanate (4 ml) was gently heated for 15 minutes. Addition of ethyl alcohol gave a yellow complex. Yield 0.3 g (\(60 \%\)). Found: \(14.6 \% \mathrm{Rh}, \quad 8.8 \% \mathrm{p}, 4.4 \% \mathrm{~S}, 0.0 \% \mathrm{CI}\). \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}\) requires: \(14.5 \% \mathrm{Rh}, 8.7 \% \mathrm{P}, 4.5 \% \mathrm{~S}\).

The Reaction of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) wath trans-Rh(\(\left.\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\)
(a) To a solution of allyl isothiocyanate (4 ml) in acetonitrile (50 ml) was added trans \(-\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\). The resultant yellow solution was taken to near dryness and ethyl alcohol (100ml) added to give a pale yellow precipıtate. Yield 0.25 g (50\%). Found: \(14.4 \% \mathrm{Rh}, \quad 8.4 \% \mathrm{p}, 4.2 \% \mathrm{~S}, 0.0 \% \mathrm{Cl}\). \(\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}\) requires: \(14.5 \% \mathrm{Rh}, 8.7 \% \mathrm{P}, 4.5 \% \mathrm{~S}\).

\author{
(b) A suspension of trans \(\mathrm{Rh}_{\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}(0.5 \mathrm{~g}) \text { in allyl iso- }-10}\) thiocyanate was gently heated for 30 minutes. Addition of diethyl ether gave a yellow product. Yield 0.2 g (35\%). \\ Found: \(10.5 \% \mathrm{Rh}, \quad 1.7 \% \mathrm{Cl}, 6.6 \% \mathrm{P}, 9.9 \% \mathrm{~S}\). \\ \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right)\left(\sigma-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{NCS})_{2}: \frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\) requires: \(11.2 \% \mathrm{Rh}, 1.9 \% \mathrm{Cl}, 6.8 \% \mathrm{P}\), \(10.4 \% \mathrm{~S}\).
}

S-thiocyanato-bis(triphenylphosphine)(allylısothiocyanate)rhodium(II)

To a solution of allyl isothrocyanate (\(0.21 \mathrm{~g}, 21.6 \mathrm{mmol}\)) in acetonitrile (40 ml) was added \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\) (0.5 g 5.4 mole) and the reaction mixture stirred for two hours. The resultant pink precipitate was filtered, washed with hexane and drıed under vacuum. Yield 0.3 g (70\%). Found: \(12.8 \% \mathrm{Rh}, 2.6 \% \mathrm{Cl}, 7.6 \% \mathrm{P}, \quad 8.0 \% \mathrm{~S}, 62.0 \% \mathrm{C}, 4.6 \% \mathrm{H}, 3.4 \% \mathrm{~N}\) \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{SCN} . \frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\) requires: \(12.6 \% \mathrm{Rh}, 2.29 \% \mathrm{Cl}, 7.6 \% \mathrm{P}\), \(7.8 \% \mathrm{~S}, 61.9 \% \mathrm{C}, 4.5 \% \mathrm{H}, 3.4 \% \mathrm{~N}\).
\% weight loss from T.G.A. \(=4.4 \%\). Calculated weight loss for \(\frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}=4.6 \%\).
Found: \(62.6 \% \mathrm{C}, 4.9 \% \mathrm{H}, 3.7 \% \mathrm{~N}, 0.0 \% \mathrm{Cl}\).
\(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{SCN}\) requires: \(62.7 \% \mathrm{C}, 4.5 \% \mathrm{H}, \quad 3.6 \% \mathrm{~N}\).

\section*{Thiocyanatobis(triphenylphosphine)(allylisothrocyanate)rhodium(I)}

To a solution of allyl isothiocyanate (\(5 \mathrm{~g}, 500 \mathrm{mmole}\)) an acetonatrile (40ml) was added \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\) (0.5 g 5.4 mole) and the reaction mixture stirred for two hours. The resultant yellow precipitate was filtered, washed with hexane, and dried under vacaum. Yleld \(0.25 \mathrm{~g}(58 \%)\). Found: \(62.0 \% \mathrm{C}, 4.6 \% \mathrm{H}, 3.4 \% \mathrm{~N}\),
\(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{NCS} . \frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}\) requires: \(61.9 \% \mathrm{C}, 4.5 \% \mathrm{H}, 3.4 \% \mathrm{~N}\).
\(\%\) weight loss from T.G.A. \(=4.2 \%\). Calculated weight loss for \(\frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}=4.6 \%\).
Found: \(62.2 \% \mathrm{C}, 4.9 \% \mathrm{H}, 4.3 \% \mathrm{~N}, 0.0 \% \mathrm{Cl}\)
\(\mathrm{kh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{NCS}\) requires \(62.7 \% \mathrm{C}, 4.5 \% \mathrm{H}, 3.6 \% \mathrm{~N}\).

The complex was similarly prepared using \(\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCS}\)
Found: \(62.0 \% \mathrm{C}, 4.3 \% \mathrm{H}, 4.2 \% \mathrm{~N}\)
\(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{NCS} . \frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) requires \(61.2 \% \mathrm{C}, 4.4 \% \mathrm{H}, 4.3 \% \mathrm{~N}\).
\(\%\) weight loss from T.G.A. \(=5.6 \%\). Calculated weight loss for \(\frac{1}{2} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}=5.9 \%\).
Found: 62.4\% \(, 4.8 \% \mathrm{H}, 4.1 \% \mathrm{n}\).
\(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{NCS}\) requires \(62.7 \%, 4.5 \% \mathrm{H}, 3.6 \% \mathrm{~N}\).

\section*{Attempted Preparations:}

Reaction of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{SCN}\) wath \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\)
Heating mixtures of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{SCN}\) wh th \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\) gave a complex whose anfrared spectrum showed bands due to phosphineoxide and indıcated a mixture of products which have not been identified. Similarly, stirring a mixture of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{SCN}\) and \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\) in acetonitrile gave a mixture of products.

Reaction of \(\mathrm{Rh}\left(\mathrm{PPH}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{NCS}\) (yellow)
Heating a mixture of \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\right) \mathrm{NCS}\) and \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) in acetonitrile gave a product whose infrared spectrum showed that it was a mixture of products which could not be identified.

\section*{Analyses}

The complexes were analysed by the methods previously described.

Physical measurements

Infrared, n.m.r., and U:V. measurements were made as described in previous chapters.

\section*{CHAPTER 10}

THE PREPARATION OF THE LINKAGE ISOMERS \(N\) - AND O-CYANATO-TRIS(TRIPHENYLPHOSPHINE)RHODIUM(I) FROM THE REACTION OF ETHYL CYANATE WITH TRIS(TRIPHENYLPHOSPHINE)CHLORORHODIUM(I)

\section*{CYANATO-TRIS(TRIPHENYLPHOSPHINE)RHODIUM(I) FROM THE REACTION}

OF ETHYL CYANATE WITH TRIS(TRIPHENYLPHOSPHINE)CHLORORHODIUM(I)

In this chapter is described the reaction of ethyl. cyanate with \(\operatorname{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\). The oxidative addition of organic cyanates have not been studied previously. Therefore 1 t was of considerable interest to investigate the reaction of organic cyanates with \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\) in the hope of preparing a series of 0-cyanate-complexes.

\begin{abstract}
Resulsts and Discussion

Treatment of \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\) with ethyl cyanate in MeCN yrelds a yellow product whereas in \(\mathrm{MeCN} / \mathrm{EtOH}\) an orange solid is isolated. Both products gave adentical analyses which together with their infrared spectra identified them as the Iankage isomers \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{NCO}\) and \(\left.\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)}\right)_{3} \mathrm{OCN}\) respectively, (see Chapter 5). This parallels the behaviour, for example of the interaction of \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NCS}\) or \(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{SCN}\) with trans\(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\) to give trans- \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCS}\) where it was suggested that oxidative addition occurs, followed by the reductive elimination of allyl chloride. It is interesting to note that the isomers were isolated from these reactions using the same solvent conditions which prevalled during the reaction of \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\) with \(\mathrm{Ph}_{4} \mathrm{As} O C N\).
\end{abstract}

\section*{Experimental}

Ethyl cyanate was prepared according to the method of Jensen, Due
and Holm(136). Trıs(triphenylphosphine)chlororhodium(1) was prepared as previously described. The reactions were performed under nitrogen.

\section*{N-Cyanatotris(trıphenylphosphine)rhodıum(I)}

Tris(triphenylphosphine)chlororhodıum(I) (0.5 g) was added to acetonitrile (50 ml .) contaning ethyl cyanate (1 ml) and the reaction mixture stirred for one hour. The complex precipitated as a bright yellow solid which was filtered and dried thoroughly under nitrogen. Yıeld 0.35 g (70\%).
\(\left.\mathrm{Ph}^{\left(\mathrm{PPh}_{3}\right)}\right)_{3} \mathrm{NCO}\) requires \(11.0 \% \mathrm{Rh}, \quad 10.0 \% \mathrm{P}\).
Found: \(10.9 \% \mathrm{Rh}, \quad 10.1 \% \mathrm{P}\).

Infrared spectrum: \(2230(\nu(\mathrm{CN}): 1330(\nu(\mathrm{CO}) ; \quad 592 \mathrm{mw}(\delta(\mathrm{NCO}))\).

0-Cyanatotris(trıphenylphosphine)rhodıum(I)

Tris(trıphenylphosphine)chlororhodium(I) (0.5 g) was added to acetonitrile (10 ml.\()\) - ethanol (50 ml.\()\) containing ethyl cyanate (1 ml) and the reaction mixture stirred for two hours. The complex precipitated as a bright orange solid, which was filtered and dried thoroughly under vacuum. Yield 0.3 g (60\%).
\(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OCN}\) requires: \(11.0 \% \mathrm{Rh}, 10.0 \% \mathrm{P}\).
Found: \(11.0 \% R h, 9.9 \% \mathrm{P}\).
Infrared spectrum: \(2215 s(\nu(C N)\); \(1318 w(\nu(C O)) ; 607 w, 590 m w(\delta(N C O))\).

Physical measurements

Infrared spectra were recorded as previously described. The products
- 176 -
were analysed for rhodium and phosphorus by X-ray fluorescence spectroscopy.

\section*{CHAPTER 11}

THE CRYSTAL AND MOLECULAR STRUCTURES OF DI-ISOCYANATO-BIS (\(\pi\)-CYCLOPENTADIENYL)TITAN IUM

THE CRYSTAL AND MOLECULAR STRUCTURES OF DI-ISOCYANATO-BIS (\(\pi\)-CYCLOPENTADIENYL)TITAN IUM

The metallocenes \((\pi-c p)_{2} M(O C N)_{2}\) where \([M=T i, Z r\), and \(H f]\) are some of the few compounds where the cyanate group is considered to be 0-bonded (44). Burmeister et al. assigned 0-cyanate co-ordination in the zirconium and hafnium analogue on the basis of their cO stretching frequencies. In 0-cyanato complexes there is ample opportunity for the phenomenon of Fermi resonance to occur between \(v(\mathrm{CO})\) and 2 d NCO , and in \((\pi-\mathrm{cp})_{2} \mathrm{M}(\mathrm{OCN})_{2},[\mathrm{M}=\mathrm{Zr}, \mathrm{Hf}]\) : the bands at 1254 and \(1070 \mathrm{~cm}^{-1}\) were assigned on this basis following the arguments initially applied by Bailey and Kozack in assigning 0-bonding in hexa-0-cyanates of Mo(III), Re(IV) and \(\operatorname{Re}(V)(37)\). In the case of \(\left(\pi_{1}-c p\right)_{2} T i(C N O)_{2} *\), it was argued that the band at \(1132 \mathrm{~cm}^{-1}\) is one component of such a pair of bands, and this was supported by mass spectral data which indicated that all three compounds had very similar fragmentation patterns. Recently, however, Burmeister et al. have re-examıned the titanium and zirconium compounds and concluded from dipole-moment measurements that they should be formulated as \((\pi-\mathrm{cp})_{2} \mathrm{Ti}(\mathrm{NCO})_{2}\) and \((\pi-\mathrm{Cp})_{2} \mathrm{Zr}(\mathrm{OCN})_{2}(67)\) : This conflicts with \({ }^{14} \mathrm{~N}\) n.m.r. measurements on the former which show a downfield shift relative to the free cyanate ion; such a shift has been taken as being indzcative of 0 -bonding(66).

Therefore, an X-ray crystallographic investigation of (\(\pi-c p)_{2} T i(C N O){ }_{2}\)

\footnotetext{
* 'CNO' is used to indicate that the mode of co-ordination of the cyanate is unspecified.
}
has been carried out in order to resolve the mode of co-ordination in this complex.

\section*{Experimental}

Crystallographic Measurements

Preparation of Crystals
\((\pi-c p)_{2} \mathrm{Ti}(\mathrm{CNO})_{2}\) was prepared as described by Burmeister et al.(44). Suitable single crystals were obtained by slow cooling of a chloroform solution.

Density Determination

The density of the complex was determined by the method of flotation in an aqueous solution of potassium iodide. The concentration of potassium lodide was adjusted until crystals nelther floated nor sank in the laquid; the density of the laquid was then measured using a Westphal balance and found to be \(1.57 \mathrm{~g} / \mathrm{cm}^{3}\).

X-ray Photography

Oscillation and Weissenberg photographs were obtained using Ilford Industrial ' \(G\) ' film and \(C u-K a\) radiation. From the symmetry on X-ray photographs, it was seen that the crystals belong to the orthorhombic system. The unit cell dimensions were determined initially from equi-inclination Weissenberg photographs (okl, IkI, hko) and were
subsequently determined accurately on a Hılger-Watts four circle automatic diffractometer, equipped with a scintillation counter using Mo-Ka radiation with a graphite monochromater, by takang the best least squares fit from twelve chosen reflections. The followang values were obtained:-
\[
\begin{aligned}
& \mathbf{a}=9.689 \pm 0.003 \AA \\
& \mathbf{b}=13.265 \pm 0.004 \AA \\
& \mathbf{c}=17.500 \pm 0.006 \AA
\end{aligned}
\]

The number of molecules of complex in the unit cell was calculated using the formula
\[
Z=\frac{N O D V}{M}
\]
where \(Z\) is the number of molecules, No Avogadro's number, \(D\) the density, \(V\) the unit cell volume and \(M\) the molecular weight. Substituting the approprıate values gave \(Z=8\).

Space Group

The Wenssenberg photographs showed the following systematic
absences:
\[
\begin{aligned}
& \text { okl when } k=2 n+1 \\
& \text { hol } \text { when } 1=2 n+1 \\
& \text { hko when } h=2 n+1 \\
& \text { hoo when }(h=2 n+1) \\
& \text { oko when }(k=2 n+1) \\
& \text { ool when }(1=2 n+1)
\end{aligned}
\]

This is unambiguously consistent with a space group of Pbca, \(\left(\mathrm{D}_{2 \mathrm{~h}}^{15}\right)\), No. 61. From international tables it was seen that the eight molecules of the complex must lie in the general positions \(x, y, z ; \bar{x}, \bar{y}, \bar{z} ; \frac{1}{2}+x\), \(\frac{1}{2}-y, \bar{z} ; \frac{1}{2}-x, \frac{1}{2}+y, z ; \bar{x}, \frac{1}{2}+y, \frac{1}{2}-z ; x, \frac{1}{2}-y, \frac{1}{2}+z ; \frac{1}{2}-x\), \(\overline{\mathrm{y}}, \frac{1}{2}+\mathrm{z} ; \frac{1}{2}+\mathrm{x}, \mathrm{y}, \frac{1}{2}-\mathrm{z}\).

The crystal data are summarised below:
\[
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~T} 1, \quad \mathrm{M}=262.3, \text { Orthorhombic, } \\
& \mathrm{a}=9.6890 \pm 0.0014, \quad \mathrm{~b}=13.2645 \pm 0.0020, \quad \mathrm{c}=17.5001 \pm 0.0031 \\
& \AA, \mathrm{U}=2249.18 \AA^{3}, \mathrm{DM}=1.57 \mathrm{~g} \mathrm{~cm}^{-3} \mathrm{Z}=8 \mathrm{Dc}=1.55 \\
& \mathrm{~F}(000)=1024, \text { Space group Pbca Mo-Ka radıation } \\
& \lambda=0.7107 \AA, \mu(M O-K \alpha)=7.6 \mathrm{~cm}^{-1} .
\end{aligned}
\]

Data Collection

The intensity data for 2338 observed reflections up to \(\theta(\mathrm{Mo}-\mathrm{K} \alpha) \leqslant 30^{\circ}\) were collected on the Hilger-Watts four circle diffractometer. Using a \(2 \Theta\) scan technique, each reflection was measured in 20 steps of \(0.03^{\circ}\) counting for 1 second. Stationary background counts were taken for 5 seconds at each end of the scale range. The intensities of three standard reflections were periodically monitored and the results used to ensure that all the reflections were on a common scale. The changes in the standard intensities durang the data collection were small (1-3\%). The intensities of the 2338 reflections were corrected for Lorentz-
polarization effects, but not for absorption nor extinction. A set of [Fo] values on a relative scale was thus obtained.

\section*{Solution and Refinement of the Structure}

The position of a titanium atom was found from a three-dimensional Patterson map. A three-dimensional electron density synthesis, phased by the titanium \((R=0.395),\left[R=\sum(|F O|-|F C|) / \sum[F O \mid]\right.\) revealed the positions of the carbon atoms of the cyclopentadienyl rings and the two atoms of the cyanate groups which are co-ordinated to the titanium. These atoms were inftially considered to be oxygens i.e. it was assumed that the cyanate groups were 0 -bonded to titanium.

The structure was refined by conventional full matrix least-square and block-diagonal methods. The function manmmized was \(\sum \mathrm{w}(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2}\) where \(|F O|\) is the observed and \(|\mathrm{Fc}|\) is the calculated struture amplitude. Scattering factors for titanium were those from international tables(159) and those for carbon, nitrogen and oxygen from Cramer and Mann(160).

Three cycles of isotropic least-squares refinement using unit weights of the positional and isotropic thermal parameters of the tatanıum, carbon and oxygen atoms reduced \(R\), to 0.265 . A second electron density map revealed the positions of the remaining four atoms of the cyanate groups 1.e. one nitrogen and carbon per cyanate. Three further rounds of least-square calculations lowered \(R\) to 0.116 . At this stage a Hughes' welghting scheme was employed of the form (A/|Fo|) \({ }^{2}\), where

\begin{abstract}
\(A=25.0\), and the titanium atom was assigned an anisotropic temperature factor. Three cycles of least-square refinement caused \(R\) to converge to 0.108
\end{abstract}

An examination of isotropic thermal parameters for the oxygen and nitrogen showed that these atoms might have been positioned incorrectly (Table ll.1.). Their thermal parameters were found to be very similar, which seemed surprising since it would have been predicted that the atom co-ordinated to tunium would have less thermal motion than the terminal atom of the cyanate group. Reversing the positions of the nitrogen and oxygen atoms, i.e. Ti-NCO, reduced \(R\) to 0.101 and isotropic thermal parameter for the atoms of each cyanate were now found to be of the right order to account for thermal vabration (see Table 11.1.).

\begin{abstract}
All the nitrogen, oxygen and carbon atoms were allowed to adopt anisotropic temperature factors, and after three rounds of block diagonal least-square refinement \(R\) was reduced to 0.054 . A final two rounds of full matrix least-square calculations gave a value for \(R\) of 0.053 . A difference map showed no irregularities, except in revealing the position of the hydrogen atoms which have not been placed.
\end{abstract}

An identical refinement of the structure considering the cyanate group to be O-bonded to titanium only gave a final value for \(R\) of 0.065 further confirming that the cyanate groups are N-bonded. The achlevement of a reasonably good refinement for the 0 -bonded case has probably resulted because of the small differences in electron density between

\section*{Isotropic Thermal Parameters \({ }^{(a)}\) for the \\ Cyanate Groups when considered to be either 0 - or \(N\)-bonded to}

Trtanium
\begin{tabular}{c|cc}
O-bonded \((R=0.108)\) & \(N\)-Bonded \((R=0.101)\) \\
\hline & & \\
Atom & \(B\left(\AA^{2}\right)\) & Atom \\
\(N_{1}\) & 4.94 & \(\left.\AA^{2}\right)\) \\
\(\mathrm{N}_{2}\) & 4.81 & \(\mathrm{~N}_{1}\) \\
\(\mathrm{C}_{11}\) & 3.53 & 3.86 \\
\(\mathrm{C}_{12}\) & 3.56 & \(\mathrm{~N}_{2}\) \\
\(\mathrm{O}_{1}\) & 5.03 & \(\mathrm{C}_{11}\) \\
\(\mathrm{O}_{2}\) & 5.24 & \(\mathrm{C}_{12}\) \\
\hline
\end{tabular}

Bond lengths 8 Calculated for the cyanate Groups
when considered to be O - or N -bonded to Titanium
\begin{tabular}{c|cc}
O-bonded \((R=0.065)\) & \(N\)-bonded \((R=0.053)\) \\
Atoms & & \\
\(T i-O_{1}\) & \(2.015(4)\) & Atoms \\
\(T 1-O_{2}\) & \(2.004(4)\) & \(T i-N_{1}\) \\
\(\mathrm{O}_{1}-\mathrm{C}_{11}\) & \(1.164(6)\) & \(\mathrm{Ti}^{2}-\mathrm{N}_{2}\) \\
\(\mathrm{O}_{2}-\mathrm{C}_{12}\) & \(1.172(6)\) & \(\mathrm{N}_{1}-\mathrm{C}_{11}\) \\
\(\mathrm{C}_{11}-\mathrm{N}_{1}\) & \(1.183(6)\) & \(\mathrm{N}_{2}-\mathrm{C}_{11}\) \\
\(\mathrm{C}_{12}-\mathrm{N}_{2}\) & \(1.171(6)\) & \(\mathrm{C}_{11}-\mathrm{O}_{1}\) \\
\hline
\end{tabular}
(a) Numbers in parentheses are the estimated standard deviations occurring in the last digits.

Table 11.1.
the oxygen and nitrogen atoms. Table 11.1. lists bond lengths for the cyanate group for the refined 0 -bonded situation and these compare favourably with bond lengths determined for the N -bonded case. Therefore the cyanate groups could mistakenly be taken to be 0-coordinated to titanium \(2 f\) a structure analysis had not been performed considering both \(\mathrm{N}^{-}\)and O -bonded cases.

The intensity data were collected by Professor T.J. King at the University of Nottingham. The X-ray 72 system set of programmes, compiled by J.M. Stewart, G.J. Kruger, H.L. Ammon, C. Dickinson and S.R. Hall, Computer Science Centre, University of Maryland, and adapted for the ICL 1906A and CDC 7600 computers at Manchester University were usedin the structure analysis and interpretation.

\section*{Results and Dascussion}

The final atomic co-ordinates are listed in Table 11.2. and the anisotropic thermal parameter are in Table 11.3. Table 11.4. contans the observed and final structure amplitudes (see Appendix). The molecular structure and atom numbering is shown in Figure 11.5. and Figure ll.6. shows the molecular configuration of the cyanate groups viewed in projection on one of the planes of the cyclopentadienyl rings. Interatomic distances and valency angles are given in Table 11.7. and 11.8. whale Table 11.9. gives the equation for the planes through the cyclopentadxenyl rings.
\begin{tabular}{lllc}
Atom & x & y & z \\
\hline \(\mathrm{Ti}_{1}\) & \(0.15417(5)\) & \(0.37338(3)\) & \(0.61097(2)\) \\
\(\mathrm{C}_{1}\) & \(-0.02455(38)\) & \(0.33807(31)\) & \(0.52163(21)\) \\
\(\mathrm{C}_{2}\) & \(0.08683(42)\) & \(0.27388(31)\) & \(0.50412(21)\) \\
\(\mathrm{C}_{3}\) & \(0.10937(48)\) & \(0.20863(28)\) & \(0.56517(25)\) \\
\(\mathrm{C}_{4}\) & \(0.00689(45)\) & \(0.23092(29)\) & \(0.62241(23)\) \\
\(\mathrm{C}_{5}\) & \(-0.07433(36)\) & \(0.30960(32)\) & \(0.59516(23)\) \\
\(\mathrm{C}_{6}\) & \(0.24501(46)\) & \(0.42743(37)\) & \(0.73233(20)\) \\
\(\mathrm{C}_{7}\) & \(0.35000(41)\) & \(0.43678(32)\) & \(0.67934(21)\) \\
\(\mathrm{C}_{8}\) & \(0.38185(41)\) & \(0.34017(42)\) & \(0.65201(25)\) \\
\(\mathrm{C}_{9}\) & \(0.29415(57)\) & \(0.27191(32)\) & \(0.68978(32)\) \\
\(\mathrm{C}_{10}\) & \(0.20739(47)\) & \(0.32677(39)\) & \(0.73744(23)\) \\
\(\mathrm{N}_{1}\) & \(0.03869(33)\) & \(0.49486(21)\) & \(0.63796(17)\) \\
\(\mathrm{N}_{2}\) & \(0.25276(32)\) & \(0.44140(25)\) & \(0.52428(16)\) \\
\(\mathrm{C}_{11}\) & \(-0.03007(41)\) & \(0.55843(25)\) & \(0.66158(20)\) \\
\(\mathrm{C}_{12}\) & \(0.30807(38)\) & \(0.47519(28)\) & \(0.47160(20)\) \\
\(\mathrm{O}_{1}\) & \(-0.10016(43)\) & \(0.62577(22)\) & \(0.68462(23)\) \\
\(\mathrm{O}_{2}\) & \(0.36345(38)\) & \(0.51131(30)\) & \(0.41788(20)\) \\
\hline & & & 0. \\
\hline
\end{tabular}
(a) Numbers in parentheses are the estimated standard deviations occurring in the last digits listed.

Table 11.2.

Anısotropic Thermal Parameters \({ }^{(a)}\) (Uij \(\times 10^{2}\))*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Atom & \(\mathrm{U}_{11}\) & \(\mathrm{U}_{22}\) & \(\mathbf{U}_{33}\) & \(\mathrm{U}_{12}\) & \(\mathrm{U}_{13}\) & \(\mathrm{U}_{23}\) \\
\hline Ti & 3.32(3) & 3.19(3) & 2.84(2) & -0.01(2) & 0.22(2) & -0.09(2) \\
\hline \(C_{1}\) & 4.78(19) & 6.59(21) & 4.72 (18) & -1.03(17) & -1.03(17) & -0.75(17) \\
\hline \(\mathrm{C}_{2}\) & .5.85(21) & 6.14(23) & 4.60(18) & -0.97(18) & \(0.10(16)\) & -1.94(17) \\
\hline \(\mathrm{C}_{3}\) & 7.03(25) & 4.05(18) & 7.10 (25) & -0.54(17) & -0.62(21) & -1.42(18) \\
\hline \(\mathrm{C}_{4}\) & 6.99(24) & \(4.97(20)\) & 5.87(22) & -2.34(18) & -0.12(19) & -0.02(16) \\
\hline \(\mathrm{C}_{5}\) & 3.75 (16) & 6.78(23) & 5.96(21) & -1.22(16) & 0.42(15) & -1.01(18) \\
\hline \(\mathrm{C}_{6}\) & 6.44(25) & 8.77(30) & 3.89(18) & 0.94(22) & -1.5(17) & -0.70(19) \\
\hline \(\mathrm{C}_{7}\) & 5.51(21) & 6.80(24) & 4.93(19) & -1.86(19) & -1.69(17) & 0.84(17) \\
\hline \(\mathrm{C}_{8}\) & 4.06(18) & 10.79(36) & 5.60(23) & 1.88(22) & -1.05(16) & -0.91(23) \\
\hline \(\mathrm{C}_{9}\) & 8.38(32) & 5.20 (22) & 10.23(37) & 0.28(23) & -5.34(30) & 1.35(24) \\
\hline \(\mathrm{C}_{10}\) & 5.93(24) & 9.49(32) & 5.10(22) & -1.24(25) & -1.45(19) & 3.16(22) \\
\hline \(\mathrm{N}_{1}\) & 6.03(18) & 4.37 (14) & 4.99(15) & 1.25(14) & 0.10(14) & -0.61(13) \\
\hline \(\mathrm{N}_{2}\) & 5.39(17) & 6.11(18) & 4.01 (13) & -0.65(14) & \(0.66(13)\) & 0.98(14) \\
\hline \(\mathrm{C}_{11}\) & 6.17(21) & 3.94(15) & 4.85 (17) & -0.11(15). & 0.96(16) & -0.34(14) \\
\hline \(\mathrm{C}_{12}\) & 4.85(18) & 5.47(19) & 4.42(17) & -0.31(15) & 0.65(14) & \(0.19(14)\) \\
\hline \(\mathrm{O}_{1}\) & 10.34(26) & 4.99(16) & 11.08(29) & 1.49(16) & 4.19(23) & -1.57(17) \\
\hline \(\mathrm{O}_{2}\) & 9.19(25) & 10.41(27) & 6.48(18) & -1.71(20) & 2.82(17) & 2.71(18) \\
\hline
\end{tabular}
(a) Numbers in parentheses are estimated standard deviations occurring in the last digits listed.
*The temperature factors are expressed as:
\(\exp \left[-2 \pi^{2}\left(\mathrm{U}_{11} \mathrm{~h}^{2} \mathrm{a}^{* 2}+\mathrm{U}_{22} \mathrm{k}^{2} \mathrm{~b}^{* 2}+\mathrm{U}_{33} \mathrm{I}^{2} \mathrm{c}^{* 2}+2 \mathrm{U}_{12} \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*}+2 \mathrm{U}_{13} \mathrm{hla}^{*} \mathrm{c}^{*}+2 \mathrm{U}_{23} \mathrm{klb} \mathrm{b}^{*} \mathrm{c}^{*}\right)\right]\) where \(a^{*}, b^{*}\) and \(c^{*}\) are the recipricol lattice parameters.

Table 11.3.

The Arrangement of Atoms in the \((\pi-\mathrm{Cp})_{2} \mathrm{Ti}(\mathrm{NCO})_{2}\) Molecule

Fig 11.5

The Molecular Configuration of the Cyanate Groups viewed in Projection on one of the Cyclopentadienyl Rings

Fig 11.6

Interatomic Distances \({ }^{(a)}\) (A)

Atoms
Atoms

Bond Distances
\begin{tabular}{|c|c|c|c|}
\hline Ti-C \({ }_{1}\) & 2.380(4) & \(\mathrm{Ti} \mathrm{N}_{1}\) & 2.018(3) \\
\hline \(\mathrm{Ti}-\mathrm{C}_{2}\) & 2.380(4) & \(\mathrm{T} 1-\mathrm{N}_{2}\) & \(2.007(3)\) \\
\hline \(\mathrm{Ti}-\mathrm{C}_{3}\) & 2.368(4) & \(\mathrm{N}_{1}-\mathrm{C}_{11}\) & \(1.151(5)\) \\
\hline \(\mathrm{T}_{1},-\mathrm{C}_{4}\) & 2.377(4) & \(\mathrm{N}_{2} \mathrm{C}_{12}\) & 1.157(5) \\
\hline \(\mathrm{Ti}_{6} \mathrm{C}_{5}\) & 2.386(4) & \(\mathrm{C}_{11}{ }^{-0} 1\) & \(1.192(5)\) \\
\hline Ti-c.o.g. \({ }^{(b)}\) (ring A) & 2.053 & \(\mathrm{C}_{12}{ }^{-0} 2\) & \(1.184(5)\) \\
\hline \(\mathrm{Ti}^{-\mathrm{C}_{6}}\) & 2.408(4) & - & \\
\hline \(\mathrm{Tl}_{1}-\mathrm{C}_{7}\) & 2.396(4) & \[
\frac{\text { Some Int }}{\text { bonde }}
\] & \[
\frac{\text { amolecular }}{\text { distances }}
\] \\
\hline \(\mathrm{Tr}-\mathrm{C}_{8}\) & 2.361(4) & & \\
\hline \(\mathrm{T}_{1}-\mathrm{C}_{9}\) & 2.357(5) & \(\mathrm{N}_{1}-\mathrm{N}_{2}\) & 2.960(4) \\
\hline \[
\mathrm{Ti}-\mathrm{C}_{10}
\] & 2.355(4) & \(\mathrm{N}_{2}-\mathrm{C}_{2}\) & \(2.765(5)\) \\
\hline Ti-c.o.g. \({ }^{\prime \prime}\) (rang B) & 2.058 & \(\mathrm{N}_{2}-\mathrm{C}_{7}\) & 2.873(5) \\
\hline \(\mathrm{C}_{1}{ }^{-\mathrm{C}_{2}}\) & 1.409(6) & \(\mathrm{N}_{2}-\mathrm{C}_{8}\) & 2.892(6) \\
\hline \(\mathrm{C}_{2}-\mathrm{C}_{3}\) & 1.392(6) & \(\mathrm{N}_{1}-\mathrm{C}_{6}\) & 2.743(5) \\
\hline \(\mathrm{C}_{3}-\mathrm{C}_{4}\) & 1.441(6) & \(\mathrm{N}_{1}-\mathrm{C}_{1}\) & 2.974(5) \\
\hline \(\mathrm{C}_{4}-\mathrm{C}_{5}\) & 1.391(6) & \(\mathrm{N}_{1}-\mathrm{C}_{5}\) & 2.793(5) \\
\hline \(\mathrm{C}_{1}-\mathrm{C}_{5}\) & 1.425(5) & \(\mathrm{C}_{3}-\mathrm{C}_{9}\) & 2.944(7) \\
\hline \(\mathrm{C}_{6}-\mathrm{C}_{7}\) & \(1.382(6)\) & & \\
\hline \(\mathrm{C}_{7}-\mathrm{C}_{8}\) & \(1.402(7)\). & & \\
\hline \(\mathrm{C}_{8}-\mathrm{C}_{9}\) & 1.407(7) & & \\
\hline \(\mathrm{C}_{9}-\mathrm{C}_{10}\) & 1.389(7) & & \\
\hline \(\mathrm{c}_{6}{ }^{-} \mathrm{C}_{10}\) & 1.387(7) & & \\
\hline
\end{tabular}
(a) Numbers in parentheses are estimated standard deviations occurring in the last digit listed.
(b) c.o.g. denotes the centre of gravity of the \(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\) group.

Valency Angles \({ }^{(a)}\) (degrees)

Atoms Atoms
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{C}_{3}-\mathrm{Ti}-\mathrm{C}_{9}\) & 77.1(2) & \(\mathrm{N}_{1}-\mathrm{Ti} \mathrm{N}_{2}\) & 94.7(2) \\
\hline \(\operatorname{cog}^{\prime}-\mathrm{Ti}-\operatorname{cog}^{\prime \prime}\) & 132.8 & \(\mathrm{Ti}^{-} \mathrm{N}_{1}-\mathrm{C}_{11}\) & 171.8(3) \\
\hline \(\mathrm{N}_{1}-\mathrm{T}_{2}-\mathrm{C}_{5}\) & 78.2(1) & TIT \(-\mathrm{N}_{2}-\mathrm{C}_{12}\) & 175.7(3) \\
\hline \(\mathrm{N}_{1}-\mathrm{T} 2-\mathrm{C}_{6}\) & 76.0(1) & \(\mathrm{N}_{1}-\mathrm{C}_{11}{ }^{-0}{ }_{1}\) & 178.3(4) \\
\hline \(\mathrm{N}_{2}-\mathrm{Tl}-\mathrm{C}_{1}\) & 84.7(1) & \(\mathrm{N}_{2}-\mathrm{C}_{12}-\mathrm{O}_{2}\) & 178.8(4) \\
\hline \(\mathrm{N}_{2}-\mathrm{Ti}-\mathrm{C}_{2}\) & 77.6(1) & & \\
\hline \(\mathrm{N}_{2}-\mathrm{Ti}-\mathrm{C}_{7}\) & 80.9(1) & & \\
\hline \(\mathrm{N}_{2}-\mathrm{Ti}-\mathrm{C}_{8}\) & 82.5(1) & & \\
\hline \(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\) & 109.2(3) \({ }^{\prime}\) & & \\
\hline \(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\) & 107.3(4) & & \\
\hline \(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\) & 107.8(3) & & \\
\hline \(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{1}\) & 108.5(3) & & \\
\hline \(\mathrm{C}_{5}-\mathrm{C}_{1}-\mathrm{C}_{2}\) & 107.2(3) & & \\
\hline \(\mathrm{C}_{6}-\mathrm{C}_{7}-\mathrm{C}_{8}\) & 107.9(4) & & \\
\hline \(\mathrm{C}_{7}-\mathrm{C}_{8}-\mathrm{C}_{9}\) & 107.2(4) & & . \\
\hline \(\mathrm{C}_{8}-\mathrm{C}_{9}-\mathrm{C}_{10}\) & 108.0(4) & & \\
\hline \(\mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}^{-\mathrm{C}_{6}}\) & 107.9(4) & & \\
\hline \(\mathrm{C}_{10}{ }^{-\mathrm{C}_{6}-\mathrm{C}_{7}}\) & 108.9(4) & & \\
\hline
\end{tabular}
(a) Numbers in parentheses are estimated standard deviations occurring in the last digit listed.

Table 11.8.

Best Weighted Least-Squares planes \({ }^{\text {(a) }}\)
\begin{tabular}{lcccccc}
Atoms & Plane & \(P\) & \(Q\) & \(R\) & \(S\) & \(\sigma^{(b)}\) \\
\hline\(C_{1}-C_{5}\) & A & 6.0522 & 8.7428 & 7.3295 & 6.6233 & 0.006 \\
\(\mathrm{C}_{6}-\mathrm{C}_{10}\) & B & 6.4732 & -1.4784 & 12.8744 & 10.3694 & 0.013 \\
\hline
\end{tabular}
(a) The equation of the planes can be expressed as \(P X+Q Y+R Z=S\) in direct space where \(X, Y, Z\) are fractional co-ordinates of the atoms in the plane.
(b) \(\sigma\) denotes the standard deviation of the atoms from the plane.

\section*{Distances of Atoms from Planes}
\begin{tabular}{cccc}
Atoms & Plane A & Atoms & Plane B \\
\hline \(\mathrm{C}_{1}\) & 0.007 & \(\mathrm{C}_{6}\) & 0.013 \\
\(\mathrm{C}_{2}\) & -0.008 & \(\mathrm{C}_{7}\) & -0.004 \\
\(\mathrm{C}_{3}\) & 0.005 & \(\mathrm{C}_{8}\) & -0.006 \\
\(\mathrm{C}_{4}\) & 0.009 & \(\mathrm{C}_{9}\) & 0.013 \\
\(\mathrm{C}_{5}\) & 0.004 & \(\mathrm{C}_{10}\) & -0.016 \\
\hline
\end{tabular}

The angle between planes \(A\) and \(B=49.3^{\circ}\)

Table Il. 9.

The most important result of this investigation is the unequivical demonstration that in the crystallane state the cyanate groups are N-bonded to titanium. The titanlum-isocyanate linkages are approximately linear, with Ti-N-C . angles of \(171.8^{\circ}\) and \(175.7^{\circ}\) and NCO angles of \(178.3^{\circ}\) and \(178.8^{\circ}\). Small deviations in linearity of the M-N-C bond have also been observed in \(\mathrm{Me}_{4} \mathrm{NAg}(\mathrm{NCO})_{2}\) where angles of \(\sim 170^{\circ}\) were found(161). The Imearaty of the Ti-N-C linkages are consistent with nitrogen atoms being formally regarded as sp hybridised. On the other hand, in \(\mathrm{HNCO}(162)\) and \(\mathrm{MeNCO}(163)\), where the nitrogen atoms are considered to be \(\mathrm{sp}^{2}\) hybridised, the molecules are appreciably bent with angles of ca. \(128^{\circ}\) and \(140^{\circ}\). If the cyanate group were 0-bonded in the titanium complex it maght have been expected that the Ti-O-C lunkages would be considerably bent because of \(\mathrm{sp}^{2}\) hybridized oxygens, but in the absence of an X-ray determination of any terminal 0-bonded cyanate complex this remans a speculation. Furthermore, it is notıceable that the \(\mathrm{C}-\mathrm{N}\) distances are shorter than the \(\mathrm{C}-\mathrm{O}\) distances (Table ll.6.), ias maght be expected for the lankage \(T 1-N=C=0\), and is consistent wath other iso-cyanato species such as \(\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}(\mathrm{NO})_{2} \mathrm{NCO}\) \(\mathrm{C}-\mathrm{N}=1.126 \AA^{\circ} \mathrm{C}-0=1.179^{\circ} \mathrm{A}(164)\).

The co-ordination about the titanium is that of a distorted tetrahedron: the \(\mathrm{N}_{1}-\mathrm{T} 1-\mathrm{N}_{2}\) angle of \(94.7^{\circ}\) and the \(\left(\bar{\pi}-\mathrm{C}_{5} \mathrm{H}_{5}\right.\) centroid)-Ti-(\(\pi-\) \(\mathrm{C}_{5} \mathrm{H}_{5}\) centroid) angle of \(132.8^{\circ}\) indicate the extent of this deformation. These angles are not unlike the comparable ones found in similar molecules. For example, it is reported that in \(\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiS}_{5}\) (165) the S-TI-S angle is \(94.6^{\circ}\) and the centroid Tl- angle is \(133.6^{\circ}\), while in
\(\left(\mathrm{h}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mathrm{h}^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(166)\) the corresponding angles are \(129.9^{\circ}\) and \(86.3^{\circ}\).

The varıations in \(\mathrm{C}-\mathrm{C}\) distances (1.441-1.382A) and \(\mathrm{C}-\mathrm{C}-\mathrm{C}\) angles (109.2-107.2) in cyclopentadienyl rings are samalar to those reported In similar systems such as \(\left(h^{5}-C_{5} H_{5}\right)_{2} T i\left(h^{l}-C_{5} H_{5}\right)(166)\). The cyclopentadienyl rings are planer, (esd from planes are 0.006 and \(0.013 \AA\) for ring \(A\) and ring \(B\) respectively). The symmetrical metal to ring bonding is most clearly evadent in the titanıum to carbon bond lengths which fall in the narrow range from 2.386-2.368 in ring \(A\) and 2.408\(2.355 \AA\) in ring B. The titanium atom lies 2.053 and \(2.058 \AA\) from the mean planes of the cyclopentadienyl rings \(A\) and \(B\) respectively. These and the Ti-C distances are very similar to those found in other titanium compounds containing \(\pi-c y c l o p e n t a d i e n y l\) groups such as \(\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiS}_{5}(165),\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiAl}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2}\right]_{2}(167),\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiCl}_{2}(168\), 169) and \(\left.\left(h^{5} \mathrm{C}_{5} \mathrm{H}_{5}\right)\right)_{2} \mathrm{Ti}\left(\mathrm{h}^{1} \mathrm{C}_{5} \mathrm{H}_{5}\right) 2_{2}^{(166)}\).

The arrangement of molecules in the crystal is shown in Fig. 11.10. (The rings refer to the positions of the central titanium atoms along a in cell fractions). Some intermolecular contacts are listed in Table 11.11. None of these distances are abnormal.

\section*{Conclusions}

This structure determanation has clearly shown that the cyanate group are \(N\)-bonded in the complex \((\pi-c p)_{2} T i(N C O)_{2}\) in the solid state.

The Crystal Structure viewed in projection along

Fig 11.10

Some Intermolecular Distances (\(\leqslant 3.6 \AA\))

Atom 1 Atom 2
\begin{tabular}{llcc}
\(\mathrm{o}_{1}\) & \(\mathrm{C}_{10}\) & V & 3.17 \\
\(\mathrm{o}_{2}\) & \(\mathrm{C}_{7}\) & I & 3.33 \\
\(\mathrm{C}_{6}\) & \(\mathrm{C}_{11}\) & VI & 3.35 \\
\(\mathrm{C}_{6}\) & \(\mathrm{o}_{1}\) & VI & 3.36 \\
\(\mathrm{C}_{2}\) & \(\mathrm{C}_{8}\) & I & 3.39 \\
\(\mathrm{C}_{7}\) & \(\mathrm{C}_{11}\) & VI & 3.42 \\
\(\mathrm{o}_{1}\) & \(\mathrm{C}_{9}\) & V & 3.48 \\
\(\mathrm{C}_{11}\) & \(\mathrm{C}_{1}\) & II & 3.53 \\
\(\mathrm{o}_{1}\) & \(\mathrm{C}_{9}\) & IV & 3.54 \\
\(\mathrm{C}_{2}\) & \(\mathrm{o}_{1}\) & II & 3.56 \\
\(\mathrm{~N}_{1}\) & \(\mathrm{C}_{1}\) & II & 3.57 \\
\(\mathrm{o}_{2}\) & \(\mathrm{C}_{4}\) & III & 3.57 \\
\(\mathrm{o}_{1}\) & \(\mathrm{C}_{8}\) & IV & 3.59 \\
\(\mathrm{C}_{12}\) & \(\mathrm{C}_{11}\) & II & 3.59 \\
\(\mathrm{C}_{12}\) & \(\mathrm{C}_{3}\) & IV & 3.59 \\
\(\mathrm{o}_{1}\) & \(\mathrm{O}_{2}\) & II & 3.61 \\
\hline
\end{tabular}

The Roman numerals refer to the following transformations of the atomic co-ordinates in Atom 2.

I \(1-x, 1-y, 1-z ;\) II \(-x, ~ \exists-y, 1-z\); III \(\frac{1}{2}+x, \frac{1}{2}-y, 1-z\);
IV \(\frac{1}{2}-x, \frac{1}{2}+y, z ; V-x, \frac{1}{2}+y, 1 \frac{1}{2}-z ;\) VI \(\frac{1}{2}+x, y, 1 \frac{1}{2}-z\).

Table 11.11.

The infrared mull spectrum of the complex does not exhibit a co stretching frequency in the region \(1350-1320 \mathrm{~cm}^{-1}\). A band in this region has been used as being diagnostic for \(N\)-co-ordanation and further demonstrates that assignments of cyanate co-ordination based on this frequency should be treated'with caution. Preliminary studies of integrated absorption intensities of the CN stretching frequencies in the solid state \(\left(A=13\right.\) and \(16 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-2}\)) and in solution compare with those reported by Burmeister (44) and are. larger than the value for the free ion, andicating that \((\pi-c p)_{2} T i(N C O)_{2}\) is also \(N\)-bonded in solution. The europıum shift studies described previously also indicate N -bondang in solution while' the zircocene adduct may very well be O-bonded. However, integrated intensities of the CN stretching frequencles reported for the zirocene adduct are also larger than the free ion.(44) Therefore, an X-ray crystal determination of (\(\pi-\mathrm{cp})_{2} \mathrm{Zr}(\mathrm{CNO})_{2}\) and the hafnium analogue is further needed in order to provide confirmation of the mode of co-ordination of the cyanate group in these complexes, and to clarify the suitability of infrared, \({ }^{14}\) N n.m.r., and europium shift studies in assignang cyanate co-ordination.

\section*{CHAPTER 12}

A CONVENIENT METHOD FOR THE ANALYSIS OF ORGANOMETALLIC AND RELATED COMPOUNDS

\section*{A CONVENIENT METHOD FOR THE ANALYSIS OF ORGANOMETALLIC}

AND RELATED COMPOUNDS

As a result of investigations into complexes of the type \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{XCN}\) (\(X=S\), Se), it was found that satasfactory analysis of carbon, hydrogen and nitrogen by conventional combustion technıques could not be obtained. Therefore a convenient method of analysis by X-ray fluorescence spectrometry has been developed for such compounds, and has been used extensively in the analyses of compounds in these studies.
X-ray fluorescence spectrometry is a well-established technique for
elemental analysis. Samples are usually presented as massive solids,
powders or pressed discs, or in diluted forms as solutions, or as
annealledmelts in some suxtable substrate. When only a small amount of
materlal is avaılable some form of dilution is desirable to produce a
sample of the right dimensions for the spectrometer. Liquid solutions,
although ideally homogeneous, are not suitable for light element analysis
since the longer wavelengths emitted from such elements are absorbed by
the liquid cell window. The use of annealled melts is precluded af loss
of material occurs on heating. It has been found that small amounts of
sample dispersed in kcl or borax and pressed into discs under constant
pressure are in a convenient form for quantitative analysis. The use
of KCl discs is restricted to 'heavy' element analysis (z>25), whalst
borax discs may be used for all elements above Z = l3.

\section*{Results and Discussion}

The product and residues from the reaction of analytically pure tetramethylammonaum thiocyanate with tris(triphenylphosphine)chlororhodium(I) in acetonitrile as shown in Table 12.1 have been analysed by this method. It has been possible to account for the rhoduum, phosphorus and, chlorine, and sulphur used to wathin \(5 \%\). 'Thus the product of the reaction has been Identified as \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\) (MeCN)SCN, whereas attempts to characterise the same compound from \(C, H\) and \(N\) analyses, obtained by combustion, have generally been unsatisfactory for this and other S- or Se- bonded rhodium complexes (Table 12.2). On the other hand the closely related N-bonded compounds, e.g. the known complexes \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{NCX}(\mathrm{X}=\mathrm{S}\) or Se\()\), may be characterised adequately by either method (Chapter 2).

All the compounds described in these studies have been analysed for one or more of the elements listed in Table 12.3.ias a percentage by weight and are accurate to within \(0.1-0.3 \%\).

The method has also been used successfully in other studies for the determanation of titanıum, copper, cobalt, the analyses of clay samples, and the sensitivity of the method to chlorine has been considerably improved by using lithium borate rather than sodium borate as the matrix.

\section*{Experimental}

The analyses were made using a Philxps PW1540 vacuum spectrograph

\section*{Analytıcal Results for the Reaction of \(\mathrm{Me}_{4} \mathrm{NSCN}\) wath Rh(\(\left.\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\)}

Weights of starting materials
\begin{tabular}{ll}
\(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}=0.2311 \mathrm{~g}\) & Weight of product \(=0.1590 \mathrm{~g}\) \\
\(\mathrm{Me}_{4} \mathrm{NSCN}\) & \(=0.0396 \mathrm{~g}\)
\end{tabular}\(\quad\) Welght of residue \(=0.1336 \mathrm{~g}\)
\begin{tabular}{|l|l|l|}
\hline Element & Total Weight of each element \\
\hline Rhodium the starting material & found in product and residue \\
\hline Phosphorus & 0.0258 g & 0.0 .0270 g \\
Sulphur & 0.0233 g & 0.028 g \\
\hline
\end{tabular}

Table 12.1.

\section*{Analytical Results for \(\mathrm{Rh}^{\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN}) \mathrm{XCN}(X=S \text { or } \mathrm{Se})}\)}

\section*{Condition for the Analysis of Some Elements by X-Ray}

Fluorescence Spectrometry
\begin{tabular}{|c|c|c|c|c|c|}
\hline Element & Type of Disc & \% Element in Disc & Emission Line & \[
\begin{gathered}
\text { Angle } \\
20
\end{gathered}
\] & Accuracy \\
\hline Rhodium & \begin{tabular}{l}
KCl \\
Borax
\end{tabular} & 0.1-1.0 & \(K \propto 1\) & 17.51 & \(\pm{ }^{ \pm} 0.1 \%\) \\
\hline Phosphorus & Borax & 0.5-1.5 & K \({ }_{1}\) & 89.50 & \(\pm 0.3 \%\) \\
\hline Sulphur & Borax & 0.25-1.0 & K \(\alpha 1\) & 75.85 & \(\pm 0.3 \%\) \\
\hline Chlorine & Borax & 0.3-1.0 & K \(\alpha 1\) & 65.50 & \(\pm{ }_{-0.3 \%}\) \\
\hline Selenıum & \begin{tabular}{l}
KCl \\
Borax
\end{tabular} & 0.1-1.0 & K \(\alpha 1\) & 31.84 & \(\pm 0.1 \%\) \\
\hline Tellurium & \begin{tabular}{l}
KCl \\
Borax
\end{tabular} & 1.0-4.0 & \(K \alpha^{2}{ }_{1}\) & 25.88 & \(\pm 0.1 \%\) \\
\hline Iridium & \begin{tabular}{l}
' KCl \\
Borax
\end{tabular} & 0.1-1.0 & \(\mathbf{L} \boldsymbol{\alpha} \mathbf{I}\) & 39.22 & \(\pm 0.1 \%\) \\
\hline
\end{tabular}

Table 12.3.
attachment with a wide range goniometer PWIO50. For light element conditions a penta-erythritol analysing crystal was used together with a gas-flow (\(90 \% \mathrm{Ar}, 10 \% \mathrm{CH}_{4}\)) proportional counter. The argon/methane gas was passed through pyrogallol and concentrated sulphuric acid to remove traces of oxygen and water. For heavy element analysis a LiF(100) crystal was used with a MaI(Tl) scintillation counter. The pulses from either detector were fed vaa a pulse height analyser to a ratemeter/ scaler unit. Heavy elements may be analysed under light element conditions, if an emassion of sultable energy exists e.g. the L oline of rhodium.

A typleal disc [e.g. for \(\left.\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN}) \mathrm{SCN}\right]\) requires 50-100mg of sample pressed wath 1.0 g of borax at 30 tons for 10 minutes. The percentage weight of each element examined in the sample (e.g. Rh, \(\mathbf{p}\), or S) is determined against calibration standards of known composition. (Fig. 12.3 and 12.4). For example standard discs containing between 10 to 100 mg of the known complexes trans- \(\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{COCl}\) and \(\mathrm{Me}_{4} \mathrm{MXCN}\) \([X=S\) or \(S e]\) have proved very satisfactory in the analysis of rhodium phosphorus, sulphur and chlorine.
- 205-

A Typical Calibration Graph for the Determination of \(\%\) Rhodium

Fig 12.4

A Typical Calibration Graph for the Determination of \(\%\) Phosphorus

Fig 12.5

\section*{APPENDIX}

\section*{Observed and Measured Structure Amplatudes}

1

Table 11.4.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & Fo & Fc & & 208 & & & & \\
\hline & \multicolumn{2}{|l|}{0.0 .1} & \[
\begin{aligned}
& 14 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 067 \\
& 114
\end{aligned}
\] & \[
\begin{aligned}
& 664 \\
& 104
\end{aligned}
\] & 17 & \[
\begin{array}{r}
54 \\
209
\end{array}
\] & \[
\begin{array}{r}
55 \\
211
\end{array}
\] \\
\hline 2 & 327 & 547 & 17 & 139 & 141 & 20 & 93 & 90 \\
\hline 4 & 1273 & 1256 & 18 & 41 \% & 4)2 & 22 & 148 & 146 \\
\hline 6 & 250 & 203 & 19 & 102 & 98 & & & \\
\hline 8 & \(10<1\) & 1002 & 20 & 88 & 97 & \multicolumn{3}{|c|}{0,10,1} \\
\hline 10 & 656 & 684 & 21 & 100 & 89 & & & \\
\hline 14 & 658 & 644 & 22. & 202 & 260 & 0 & 117 & 140 \\
\hline 18 & 241 & 245 & 84 & 151 & 125 & 1 & 122 & 131 \\
\hline 20 & 68 & 80 & & & & 3 & 470 & 495 \\
\hline 22 & 252 & 242 & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{0.6 .1}} & 4 & 101 & 127 \\
\hline \multirow[t]{4}{*}{24} & \multirow[t]{2}{*}{165} & \multirow[t]{2}{*}{171} & & & & 5 & 372 & 360 \\
\hline & & & 0 & 412 & & 6 & 282 & 502 \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(0 \cdot 2.1\)}} & 1 & 193 & 195 & 7 & 578 & 380 \\
\hline & & & 2 & 302 & 328 & 8 & 54 & 50 \\
\hline 1 & 1468 & 1682 & 3 & 1229 & 1230 & 9 & 148 & 145 \\
\hline 2 & 39 & 11 & 4 & 431 & 352 & 11 & 300 & 297 \\
\hline 3 & 1100 & 1105 & 5 & 337 & 325 & 14 & 165 & 169 \\
\hline 4 & \multirow[t]{2}{*}{\[
\begin{array}{r}
81 \\
179
\end{array}
\]} & 115 & 6 & 400 & 373 & 15 & 216 & 218 \\
\hline 5 & & 205 & 7 & 964 & 998 & 17 & 192 & 179 \\
\hline 6 & 200 & 195 & 8 & 157 & 156 & 19 & 100 & 102 \\
\hline 7 & 1403 & 1370 & 9 & 305 & 304 & & & \\
\hline 8 & 142 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 173 \\
& 463
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 10 \\
& 11
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 134 \\
& 469
\end{aligned}
\]} & 116 & \multicolumn{3}{|c|}{0.12.L} \\
\hline 9 & 506 & & & & 470 & & & \\
\hline 10 & 367 & 338 & 12 & 37 & 30 & 0 & 493 & 487 \\
\hline 11 & 881 & 848 & 13 & 61 & 48 & 2 & 112 & 114 \\
\hline 12 & 34 & 15 & 14 & 51 & 57 & 3 & 76 & 71 \\
\hline 13 & 463 & 478 & 15 & 390 & 374 & 4 & 379 & 377 \\
\hline 14 & 68 & 57 & 10 & 129 & 137 & 5 & 120 & 138 \\
\hline 15 & 320 & 305 & 17 & 268 & 271 & 6 & 181 & 181 \\
\hline 16 & 216 & 228 & 18 & 152 & 157 & 7 & 143 & 142 \\
\hline 17 & 227 & 224 & 19 & 204 & 205 & 8 & 83 & 87 \\
\hline 18 & 182 & 183 & 21 & 255 & 268 & 10 & 344 & 329 \\
\hline 19 & 209 & 213 & 23 & 112 & 127 & 11 & 174 & 172 \\
\hline 20 & 131 & 132 & & & & 12 & 152 & 154 \\
\hline \multirow[t]{4}{*}{21} & \multirow[t]{2}{*}{225} & \multirow[t]{2}{*}{226} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{0.8.1}} & 13 & 95 & 109 \\
\hline & & & & & & 14 & 261 & 262 \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(0.4 . L\)}} & 0 & 721 & 763 & 16 & 51 & 62 \\
\hline & & & 1 & 184 & 172 & 17 & 52 & 49 \\
\hline 0 & 183 & 232 & 2 & 122 & 109 & 18 & 247 & 241 \\
\hline 1 & 182 & 216 & 3 & 387 & 370 & & & \\
\hline 2 & 585 & 694 & 4 & 1024 & 1045 & & 0.14 & \\
\hline 3 & 46 & 50 & 3 & 37 & 51 & & & \\
\hline 4 & 654 & 666 & 6 & 278 & 262 & 0 & 213 & 224 \\
\hline 5 & 372 & 346 & 7 & 170 & 175 & 1 & 104 & 99 \\
\hline 6 & 373 & 367 & 8 & 535 & 508 & 3 & 335 & 340 \\
\hline 7 & 143 & 77 & 9 & 100 & 94 & 4 & 102 & 98 \\
\hline 8 & 531 & 520 & 10 & 532 & 528 & 5 & 54 & 47 \\
\hline 9 & 149 & 111 & 11 & 08 & 75 & 6 & 42 & 35 \\
\hline 10 & 516 & 503 & 12 & 389 & 382 & 7 & 380 & 384 \\
\hline 11 & 43 & 19 & 13 & 62 & 76 & 9 & 42 & 41 \\
\hline 12 & 225 & 228 & 14 & 291 & 278 & 11 & 361 & 354 \\
\hline 13 & 153 & 163 & 16 & 185 & 187 & & & \\
\hline
\end{tabular}
\begin{tabular}{ccr}
\multicolumn{3}{c}{\(0.14, L\)} \\
13 & 77 & 61 \\
15 & 194 & 190 \\
16 & 52 & 40 \\
& & \\
& \(0.16, L\) & \\
0 & 339 & 320 \\
2 & 44 & 41 \\
4 & 298 & 312 \\
5 & 89 & 94 \\
6 & 85 & 75 \\
7 & 114 & 107 \\
8 & 152 & 146 \\
10 & 141 & 143 \\
12 & 58 & 61 \\
& & \\
& \(0.18, L\) & \\
& & \\
0 & 84 & 57 \\
1 & 135 & 124 \\
3 & 173 & 174 \\
6 & 86 & 78
\end{tabular}

1,0,L
\begin{tabular}{rrr}
2 & 1588 & 1658 \\
4 & 560 & 517 \\
6 & 377 & 403 \\
8 & 351 & 390 \\
10 & 782 & 825 \\
12 & 301 & 298 \\
14 & 91 & 88 \\
16 & 478 & 497 \\
18 & 179 & 177 \\
20 & 231 & 225 \\
22 & 173 & 163 \\
24 & 167 & 154
\end{tabular}
\begin{tabular}{rrr}
\multicolumn{3}{c}{\(1.1 . L\)} \\
1 & 744 & 712 \\
2 & 935 & 915 \\
3 & 771 & 871 \\
4 & 1411 & 1472 \\
5 & 136 & 156 \\
6 & 556 & 537 \\
7 & 659 & 616 \\
8 & 537 & 532 \\
9 & 475 & 443 \\
10 & 599 & 625 \\
11 & 68 & 63
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1.6 .1}} & 10 & 238 & 233 & 4 & 48 & 38 \\
\hline & & & 11 & 110 & 122 & 6 & 228 & 220 \\
\hline 1 & 396 & 437 & 12 & 502 & 303 & 8 & 53 & 39 \\
\hline 2 & 230 & 244 & 13 & 81 & 72 & 9 & 113 & 126 \\
\hline 3 & 648 & 641 & 14 & 238 & 239 & 11 & 169 & 179 \\
\hline 4 & 177 & 179 & 15 & 90 & 96 & 15 & 59 & 54 \\
\hline 5 & 1214 & 1263 & 16 & 221 & 229 & 15 & 91 & 91 \\
\hline 6 & 395 & 349 & 18 & 97 & 91 & 16 & 134 & 126 \\
\hline 7 & 95 & 82 & \(<0\) & 224 & 230 & 17 & 84 & 92 \\
\hline 9 & 450 & 430 & 22 & 59 & 00 & 19 & 122 & 119 \\
\hline 11 & 146 & 15) & & & & & & \\
\hline 12 & 213 & 214 & & 1.9. & & : & 1.12. & \\
\hline 13 & 318 & 336 & & & & & & \\
\hline 14 & 116 & 119 & 1 & 81 & 85 & 1 & 144 & 148 \\
\hline 15 & 72 & 54 & 2 & 194 & 198 & 2 & 342 & 340 \\
\hline 16 & 41 & 46 & 3 & 203 & 224 & 3 & 96 & 95 \\
\hline 17 & 255 & 243 & 4 & 70 & 68 & 4 & 241 & 254 \\
\hline 18 & 49 & 68 & 3 & 67 & 68 & 5 & 39 & 27 \\
\hline 19 & 225 & 252 & 6 & 292 & 296 & 6 & 289 & 281 \\
\hline 21 & 65 & 83 & 7 & 150 & 156 & 8 & 247 & 236 \\
\hline \multirow[t]{4}{*}{23} & 128 & 133 & 9 & 244 & 239 & 10 & 157 & 150 \\
\hline & & & 10 & 310 & 309 & 11 & 107 & 110 \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1.7.L}} & 12 & 195 & 195 & 12 & 220 & 223 \\
\hline & & & 13 & 130 & 129 & 14 & 102 & 110 \\
\hline 1 & 430 & 457 & 14 & 50 & 43 & 16 & 152 & 153 \\
\hline 2 & 275 & 306 & 16 & 113 & 111 & & & \\
\hline 3 & 471 & 466 & 17 & 84 & 89 & \multicolumn{3}{|c|}{1.13.1} \\
\hline 5 & 286 & 287 & 19 & 81 & 79 & & & \\
\hline 6 & 463 & 450 & 20 & 109 & 112 & 1 & 86 & 91 \\
\hline 7 & 47 & 67 & & & & 2 & 76 & 72 \\
\hline 8 & 123 & 103 & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{\(1.10 . \mathrm{L}\)}} & 3 & 187 & 187 \\
\hline 9 & 232 & 221 & & & & 4 & 209 & 200 \\
\hline 10 & 114 & 105 & 1 & 440 & 435 & 5 & 170 & 170 \\
\hline 11 & 89 & 96 & 2 & 104 & 117 & 6 & 150 & 148 \\
\hline 12 & 58 & 58 & 3 & 249 & 248 & 7 & 68 & 65 \\
\hline 13 & 364 & 370 & 4 & 38 & 17 & 8 & 209 & 208 \\
\hline 14 & 97 & 96 & 5 & 329 & 331 & 9 & 108 & 101 \\
\hline 16 & 165 & 160 & 7 & 142 & 143 & 10 & 59 & 68 \\
\hline 17 & 132 & 149 & 9 & 364 & 372 & 11 & 52 & 53 \\
\hline 20 & 140 & 146 & 10 & 42 & 42 & 12 & 46 & 54 \\
\hline \multirow[t]{4}{*}{21} & 50 & 65 & 11 & 161 & 165 & 13 & 140 & 139 \\
\hline & & & 12 & 155 & 158 & 14 & 85 & 90 \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1,8.L}} & 13 & 387 & 393 & 15 & 88 & 76 \\
\hline & & & 14 & 50 & 58 & 16 & 90 & 87 \\
\hline 1 & 108 & 133 & 15 & 75 & 79 & 17 & 61 & 63 \\
\hline 2 & 415 & 428 & 17 & 92 & 98 & & & \\
\hline 3 & 78 & 61 & 19 & 170 & 167 & & 1.14. & \\
\hline 4 & 252 & 238 & & & & & & \\
\hline 5 & 129 & 130 & \multicolumn{3}{|c|}{1.11.L} & 1 & 203 & 201 \\
\hline 6 & 793 & 813 & & & & 2 & 104 & 103 \\
\hline 7 & 104 & 85 & 1 & 122 & 123 & 3 & 158 & 156 \\
\hline 8 & 358 & 332 & 2 & 313 & 318 & 4 & 42 & 32 \\
\hline 9 & 60 & 62 & 3 & 63 & 43 & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{2.4.1} & & \multicolumn{2}{|l|}{2.1.L} & \[
\begin{aligned}
& 11 \\
& 12
\end{aligned}
\] & \[
\begin{array}{r}
251 \\
51
\end{array}
\] & \[
\begin{array}{r}
245 \\
64
\end{array}
\] \\
\hline 12 & 115 & 113 & 0 & 831 & 846 & 13 & 143 & 142 \\
\hline 13 & 242 & 249 & 1 & 635 & 672 & 14 & 270 & 269 \\
\hline 14 & 39 & 47 & 2 & 164 & 158 & 15 & 59 & 56 \\
\hline 15 & 165 & 166 & 3 & 854 & 883 & 16 & 44 & 43 \\
\hline 16 & 173 & 162 & 4 & 458 & 440 & 17 & 118 & 116 \\
\hline \multirow[t]{4}{*}{18} & \multirow[t]{2}{*}{179} & \multirow[t]{2}{*}{178} & 5 & 42 & 64 & 18 & 186 & 185 \\
\hline & & & 7 & 523 & 552 & 19 & 93 & 73 \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2,5.4}} & 8 & 323 & 330 & \multirow[t]{2}{*}{21} & \multirow[t]{2}{*}{81} & \multirow[t]{2}{*}{75} \\
\hline & & & 9 & 131 & 128 & & & \\
\hline 0 & 689 & 762 & 10 & 390 & 396 & \multicolumn{3}{|c|}{2.10.1} \\
\hline 1 & 129 & 149 & 11 & 295 & 295 & & & \\
\hline 2 & 368 & 369 & 12 & 180 & 177 & 0 & 108 & 113 \\
\hline 3 & 726 & 674 & 13 & 136 & 141 & 1 & 128 & 127 \\
\hline 4 & 523 & 544 & 14 & 325 & 317 & 2 & 71 & 49 \\
\hline 5 & 101 & 98 & 15 & 242 & 249 & 5 & 267 & 271 \\
\hline 6 & 213 & 215 & 17 & 116 & 119 & 4 & 41 & 19 \\
\hline 7 & 649 & 665 & 18 & 154 & 160 & 5 & 160 & 158 \\
\hline 8 & 170 & 203 & 19 & 104 & 111 & 6 & 61 & 67 \\
\hline 10 & 471 & 461 & 21 & 101 & 103 & 7 & 195 & 199 \\
\hline 11 & 367 & 359 & 22 & 93 & 102 & 9 & 176 & 175 \\
\hline 12 & 261 & 265 & & & & 11 & 234 & 224 \\
\hline 13 & 46 & 49 & & \multicolumn{2}{|l|}{2.8 .1} & \[
15
\] & 145 & 151 \\
\hline 14 & 540 & 563 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
43 \quad 22
\]}} & \multirow[t]{2}{*}{\[
18
\]} & \multirow[t]{2}{*}{55} & \multirow[t]{2}{*}{57} \\
\hline 15 & 267 & 282 & 0 & & & & & \\
\hline 16 & 91 & 99 & 1 & 173 & 145 & \multicolumn{3}{|c|}{2.11.1} \\
\hline 17 & 194 & 199 & 2 & 121 & 125 & & \multicolumn{2}{|l|}{} \\
\hline 18 & 188 & 191 & 3 & 112 & 89 & 0 & 492 & 503 \\
\hline 19 & 131 & 128 & 4 & 389 & 384 & 1 & 55 & 58 \\
\hline 21 & 195 & 187 & 6 & 124 & 118 & 3 & 329 & 332 \\
\hline \multirow[t]{4}{*}{22} & \multirow[t]{2}{*}{119} & \multirow[t]{2}{*}{117} & 7 & 105 & 104 & 4 & 331 & \multirow[t]{2}{*}{331
97} \\
\hline & & & 9 & 106 & 119 & 6 & 108 & \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(2.6 . \mathrm{L}\)}} & 10 & 183 & 186 & 7 & 584 & \multirow[t]{2}{*}{389
38} \\
\hline & & & 11 & 141 & 134 & 8 & 41 & \\
\hline 0 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 341 \\
& 111
\end{aligned}
\]} & 329 & 12 & 49 & 45 & 10 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 170 \\
& 287
\end{aligned}
\]} & 164 \\
\hline 1 & & 98 & 14 & 172 & 173 & 11 & & 295 \\
\hline 2 & 56 & 59 & 15 & 47 & 41 & 12 & 65 & 61 \\
\hline 3 & 300 & 312 & 18 & 144 & 139 & 13 & 109 & 101 \\
\hline 4 & \multirow[t]{2}{*}{\[
\begin{array}{r}
115 \\
78
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
130 \\
82
\end{array}
\]} & 20 & 78 & 72 & 14 & 118 & 103 \\
\hline 5 & & & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 15 \\
& 16
\end{aligned}
\]} & 118 & 126 \\
\hline 6 & \[
\begin{array}{r}
78 \\
177
\end{array}
\] & 168 & & \multicolumn{2}{|l|}{2.9.1} & & 76 & 82 \\
\hline 7 & 401 & 389 & & & & 17 & 125 & 126 \\
\hline 9 & \multirow[t]{2}{*}{42
223} & 76 & 0 & 575 & 582 & 18 & 147 & 132 \\
\hline 11 & & 209 & 1 & & 305 & \multirow[t]{2}{*}{19} & \multirow[t]{2}{*}{82} & \multirow[t]{2}{*}{88} \\
\hline 12 & 47 & 40 & 3 & 489 & 500 & & & \\
\hline 14 & 47 & 47 & 4 & 513 & 532 & \multicolumn{3}{|c|}{2,12.L} \\
\hline 15 & 164 & 153 & 5 & 259 & 269 & & & \\
\hline 17 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 79 \\
& 90
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
76 \\
94
\end{array}
\]} & 6 & 189 & 197 & 0 & 197 & 191 \\
\hline 18 & & & 7 & 351 & 340 & 1 & 222 & 227 \\
\hline 21 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 90 \\
& 84
\end{aligned}
\]} & \multirow[t]{3}{*}{86} & 8 & 222 & 224 & 2 & \(1<6\) & 129 \\
\hline & & & 9 & 11 & 75 & 3 & 101 & 97 \\
\hline & & & 10 & 361 & 360 & 4 & 171 & 181 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{2.12.L} & \[
\begin{aligned}
& 11 \\
& 12
\end{aligned}
\] & \[
\begin{array}{r}
179 \\
77
\end{array}
\] & \[
\begin{array}{r}
168 \\
75
\end{array}
\] & 13
14 & \[
\begin{array}{r}
446 \\
95
\end{array}
\] & \[
\begin{array}{r}
424 \\
90
\end{array}
\] \\
\hline 5 & 73 & 71 & 14 & 112 & 119 & 15 & 107 & 106 \\
\hline 7 & 70 & 73 & & & & 16 & 347 & 345 \\
\hline 8 & 145 & 141 & & 2.16 & & 17 & 336 & 329 \\
\hline 9 & 52 & 67 & & & & 19 & 229 & 237 \\
\hline 10 & 73 & 69 & 0 & 66 & 51 & 20 & 179 & 184 \\
\hline 11 & 48 & 53 & 1 & 63 & 50 & 21 & 60 & 44 \\
\hline 12 & 142 & 138 & 2 & 04 & 68 & 22 & 84 & 80 \\
\hline 13 & 55 & 49 & 6 & 60 & 53 & 23 & 147 & 144 \\
\hline 14 & 63 & 67 & 8 & 88 & 80 & & & \\
\hline 16 & 45 & 10 & 10 & 72 & 77 & & 3.2 & \\
\hline \multicolumn{3}{|c|}{\multirow[t]{2}{*}{\(2,13.6\)}} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{2,17.L}} & 1 & 97 & 72 \\
\hline & & & & & & 2 & 42 & 13 \\
\hline 0 & 401 & 403 & 0 & 152 & 154 & 3 & 933 & 881 \\
\hline 1 & 112 & 98 & 1 & 58 & 54 & 4 & 463 & 391 \\
\hline 2 & 131 & 119 & 3 & 129 & 133 & 5 & 84 & 54 \\
\hline 3 & 157 & 144 & 4 & 154 & 159 & 6 & 239 & 248 \\
\hline 4 & 271 & 260 & 7 & 148 & 138 & 7 & 369 & 366 \\
\hline 5 & 82 & 81 & 8 & 86 & 79 & 8 & 77 & 84 \\
\hline 6 & 77 & 95 & & & & 9 & 179 & 151 \\
\hline 7 & 123 & 120 & & 2,18 & & 10 & 71 & 65 \\
\hline 8 & 161 & 156 & & & & 11 & 230 & 225 \\
\hline 10 & 160 & 145 & 0 & 50 & 52 & 12 & 100 & 107 \\
\hline 11 & 157 & 152 & 1 & 95 & 66 & 13 & 152 & 146 \\
\hline 12 & 84 & 80 & 4 & 57 & 35 & 14 & 117 & 118 \\
\hline 14 & 132 & 147 & & & & 15 & 71 & 71 \\
\hline 15 & 117 & 123 & & 3.0 & & 17 & 67 & 68 \\
\hline \multirow[t]{4}{*}{17} & 99 & 91 & & & & 18 & 75 & 69 \\
\hline & \multicolumn{2}{|l|}{\multirow{3}{*}{2,14.L}} & 2 & 114 & 120 & 19 & 183 & 187 \\
\hline & & & 4 & 299 & 295 & 20 & 79 & 78 \\
\hline & & & 6 & 1007 & 925 & & & \\
\hline 0 & 54 & 47 & 8 & 313 & 285 & & \multicolumn{2}{|l|}{3.3 .1} \\
\hline 1 & 109 & 95 & 10 & 37 & 32 & & & \\
\hline 3 & 124 & 116 & 12 & 77 & 106 & 1 & 1006 & 998 \\
\hline 4 & 49 & 43 & 14 & 279 & 296 & 2 & 973 & 923 \\
\hline 6 & 39 & 49 & 18 & 68 & 70 & 3 & 856 & 764 \\
\hline 9 & 73 & 77 & 20 & 129 & 133 & 4 & 204 & 206 \\
\hline 10 & 53 & 56 & & & & 5 & 892 & 890 \\
\hline 11 & 97 & 95 & & 3.1 & & 6 & 765 & 786 \\
\hline \multirow[t]{4}{*}{13} & 60 & 67 & & & & 7 & 106 & 82 \\
\hline & & & 1 & 522 & 485 & 8 & 296 & 302 \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2.15.L}} & 2 & 193 & 228 & 9 & 597 & 589 \\
\hline & & & 3 & 126 & 121 & 10 & 516 & 495 \\
\hline 0 & 141 & 144 & 4 & 624 & 555 & 11 & 45 & 48 \\
\hline 1 & 89 & 94 & 5 & 810 & 796 & 12 & 390 & 388 \\
\hline 3 & 166 & 165 & 6 & 551 & 498 & 13 & 357 & 337 \\
\hline 4 & \(1<4\) & 125 & 7 & 50 & 71 & 14 & 117 & 114 \\
\hline 5 & 106 & 97 & 8 & 655 & 620 & 15 & 224 & 215 \\
\hline 7 & 238 & 232 & 9 & 775 & 779 & 16 & 300 & 295 \\
\hline 8 & 104 & 98 & 10 & 312 & 315 & 17 & 207 & 208 \\
\hline 10 & 85 & 96 & 12 & 179 & 175 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{3.3.1} & & \multicolumn{2}{|l|}{3.6.L} & \[
\begin{aligned}
& 14 \\
& 16
\end{aligned}
\] & \[
\begin{array}{r}
163 \\
60
\end{array}
\] & \[
\begin{array}{r}
153 \\
66
\end{array}
\] \\
\hline 19 & 76 & 82 & 1 & 580 & 598 & & & \\
\hline 20 & 208 & 209 & 2 & 152 & 137 & & \multicolumn{2}{|l|}{3.9 .1} \\
\hline 21 & 52 & 64 & 3 & 261 & 249 & & & \\
\hline \multirow[t]{4}{*}{23} & 103 & 103 & 4 & 301 & 274 & 1 & 389 & 382 \\
\hline & & & 5 & 138 & 120 & 2 & 564 & 326 \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{3.4.L}} & 0 & 59 & 44 & 3 & 261 & \(27 \%\) \\
\hline & & & 7 & 328 & 318 & 4 & 170 & 181 \\
\hline 1 & 63 & 25 & 8 & 192 & 196 & 5 & 214 & 206 \\
\hline 3 & 456 & 440 & 9 & 100 & 116 & 6 & 265 & 274 \\
\hline 4 & 230 & 205 & 10 & 170 & 174 & 7 & 185 & 206 \\
\hline 5 & 425 & 397 & 12 & 100 & 97 & 8 & 190 & 197 \\
\hline 6 & 288 & 312 & 13 & 199 & 201 & 9 & 222 & 228 \\
\hline 7 & 314 & 291 & 15 & 107 & 111 & 10 & 251 & 260 \\
\hline 8 & 292 & 295 & 21 & 64 & 47 & 11 & 99 & 95 \\
\hline 9 & 131 & 128 & & & & 12 & 366 & 363 \\
\hline 10 & 77 & 69 & & 3,7, & & 13 & 256 & 247 \\
\hline 11 & 105 & 118. & & & & 14 & 65 & 72 \\
\hline 12 & 102 & 81 & 1 & 277 & 299 & 15 & 142 & 145 \\
\hline 14 & 42 & 18 & 2 & 407 & 429 & 16 & 228 & 221 \\
\hline 16 & 80 & 100 & 3 & 453 & 457 & 17 & 151 & 151 \\
\hline 18 & 96 & 87 & 4 & 247 & 267 & 19 & 124 & 122 \\
\hline 20 & 73 & 71 & 5 & 278 & 273 & 20 & 145 & 143 \\
\hline \multirow[t]{4}{*}{23} & \multirow[t]{2}{*}{45} & 21 & 6 & 380 & 409 & & & \\
\hline & & & 7 & 55 & 63 & & \multicolumn{2}{|l|}{3.10 .1} \\
\hline & \multicolumn{2}{|l|}{3.5 .1} & \(\checkmark\) & 297 & 281 & & & \\
\hline & . & & 9 & 220 & 177 & 1 & 172 & 172 \\
\hline 1 & 936 & 1017 & 10 & 164 & 167 & 2 & 78 & 83 \\
\hline 2 & 845 & 810 & 11 & 208 & 217 & 6 & 56 & 60 \\
\hline 3 & 303 & 308 & 12 & 242 & 237 & 1 & 43 & 44 \\
\hline 4 & 126 & 121 & 13 & 295 & 314 & 8 & 169 & 165 \\
\hline 5 & 616 & 618 & 14 & 74 & 79 & 9 & 253 & 264 \\
\hline 6 & 647 & 639 & 15 & 190 & 193 & 11 & 79 & 77 \\
\hline 7 & 61 & 69 & 16 & 128 & 127 & 15 & 77 & 69 \\
\hline 8 & 720 & 685 & 17 & 248 & 256 & 17 & 60 & 67 \\
\hline 9 & 393 & 372 & 19 & 187 & 190 & & & \\
\hline 10 & 222 & 208 & 20 & 154 & 147 & & \multicolumn{2}{|l|}{3.11 .1} \\
\hline 11 & 112 & 116 & 21 & 73 & 76 & & & \\
\hline 12 & 328 & 336 & 22 & 61 & 52 & 1 & 342 & 353 \\
\hline 13 & 271 & 287 & & & & 2 & 269 & 291 \\
\hline 14 & 278 & 285 & & \multicolumn{2}{|l|}{3.8 .1} & 3 & 178 & 181 \\
\hline 15 & 120 & 114 & & & & 4 & 170 & 171 \\
\hline 16 & 314 & 317 & 2 & 246 & 234 & 5 & 472 & 476 \\
\hline 17 & 76 & 59 & 3 & 316 & 332 & 6 & 125 & 130 \\
\hline 18 & 71 & 76 & 4 & 192 & 198 & 7 & 134 & 144 \\
\hline 19 & 95 & 95 & 5 & 154 & 151 & 8 & 92 & 80 \\
\hline 20 & 110 & 113 & 6 & 169 & 176 & 9 & 365 & 364 \\
\hline 21 & 79 & 71 & 7 & 111 & 105 & 10 & 227 & 215 \\
\hline 22 & 65 & 46 & 9 & 70 & 85 & 12 & 441 & 238 \\
\hline 23 & 130 & 122 & 10 & 376 & 383 & 13 & 212 & 216 \\
\hline & & & 11 & 52 & 55 & 14 & 70 & 63 \\
\hline & & & 12 & 52 & 60 & 13 & 55 & 59 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrr}
& \(3,11, L\) & & 10 & 96 & 84 & 13 & 306 & 297 \\
16 & 130 & 133 & 11 & 55 & 45 & 14 & 297 & 284 \\
17 & 99 & 93 & 12 & 71 & 71 & 15 & 107 & 108 \\
19 & 107 & 101 & 13 & 138 & 144 & 16 & 69 & 85 \\
& \(3,12, L\) & & & \(3.16,1\) & & 17 & 156 & 151 \\
& & & & & & 18 & 103 & 105 \\
1 & 68 & 66 & 181 & 8 & 49 & 70 & 19 & 75
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{- 216 -} \\
\hline & 4.3 .1 & & \multicolumn{3}{|c|}{4, b, L} & \[
\begin{aligned}
& 12 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 66
\end{aligned}
\] & 46
60 \\
\hline 14 & 92 & 106 & 0 & 320 & 312 & 14 & 269 & 270 \\
\hline 15 & 204 & 202 & 1 & 230 & 248 & 16 & 63 & 71 \\
\hline 16 & 146 & 151 & 2 & 60 & 46 & 18 & 162 & 176 \\
\hline 17 & 45 & 41 & 3 & 331 & 516 & & & \\
\hline 18 & 155 & 162 & 4 & 242 & 226 & \multicolumn{3}{|c|}{4.9.L} \\
\hline 19 & 61 & 69 & 5 & 139 & 143 & & & \\
\hline 21 & 89 & 92 & 6 & 202 & 204 & 0 & 140 & 131 \\
\hline 22 & 79 & 84 & 7 & 523 & 538 & 1 & 45 & 30 \\
\hline & & & 9 & 126 & 124 & 2 & 46 & 57 \\
\hline \multicolumn{3}{|c|}{\multirow[t]{2}{*}{4.4.L}} & 11 & 421 & 427 & 3 & 208 & 213 \\
\hline & & & 13 & 132 & 144 & 4 & 301 & 306 \\
\hline 0 & 876 & 922 & 16 & 78 & 79 & 6 & 155 & 156 \\
\hline 1 & 38 & 17 & 17 & 139 & 148 & 7 & 217 & 216 \\
\hline 2 & 345 & 328 & 19 & 97 & 91 & 8 & 183 & 194 \\
\hline 4 & 1051 & 1035 & 21 & 144 & 145 & 9 & 129 & 128 \\
\hline 6 & 84 & 61 & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{4.7 .1}} & 10 & 115 & 124 \\
\hline 7 & 221 & 225 & & & & 11 & 222 & 227 \\
\hline 8 & 444 & 434 & & & & 12 & 75 & 74 \\
\hline 9 & 235 & 246 & 0 & 157 & 159 & 14 & 84 & 88 \\
\hline 10 & 308 & 276 & 1 & 264 & 272 & 15 & 160 & 158 \\
\hline 11 & 170 & 176 & 2 & 127 & 114 & 16 & 59 & 59 \\
\hline 12 & 384 & 381 & 3 & 102 & 131 & 17 & 89 & 90 \\
\hline 14 & 365 & 380 & 4 & 323 & 324 & 18 & 128 & 129 \\
\hline 15 & 64 & 59 & 6 & 39 & 8 & 19 & 75 & 73 \\
\hline 16 & 60 & 42 & 7 & 82 & 83 & 20 & 47 & 21 \\
\hline 18 & 215 & 213 & 8 & 178 & 173 & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{4.10.L}} \\
\hline 22 & 140 & 139 & 9 & 66 & 77 & & & \\
\hline \multicolumn{3}{|c|}{\multirow[b]{2}{*}{4.5.L}} & 10 & 60 & 44 & & & \\
\hline & & & 11 & 350 & 358 & 0 & 137 & 149 \\
\hline & & & 12 & 173 & 171 & 1 & 155 & 161 \\
\hline 0 & 1083 & 1081 & 13 & 200 & 203 & 2 & 121 & 127 \\
\hline 1 & 279 & 306 & 14 & 159 & 158 & 3 & 327 & 345 \\
\hline 2 & 204 & 179 & 15 & 175 & 188 & 4 & 86 & 93 \\
\hline 3 & 93 & 101 & 17 & 46 & 46 & 5 & 53 & 64 \\
\hline 4 & 240 & 235 & 18 & 133 & 120 & 7 & 461 & 457 \\
\hline 5 & 479 & 467 & 19 & 62 & 68 & 8 & 64 & 66 \\
\hline 6 & 56 & 52 & 21 & 74 & 78 & 9 & 138 & 131 \\
\hline 7 & 193 & 194 & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{4,8.1}} & 11 & 327 & 341 \\
\hline 8 & 332 & 340 & & & & 12 & 47 & 39 \\
\hline 10 & 171 & 160 & & & - & 15 & 93 & 99 \\
\hline 11 & 182 & 178 & 0 & 693 & 695 & 15 & 127 & 126 \\
\hline 12 & 61 & 54 & 1 & 109 & 105 & 17 & 76 & 72 \\
\hline 13 & 106 & 91 & 2 & 115 & 113 & 19 & 117 & 122 \\
\hline 14 & 268 & 267 & 3 & 36 & 23 & & & \\
\hline 15 & 188 & 184 & 4 & 186 & 171 & \multicolumn{3}{|c|}{4.11.L} \\
\hline 18 & 113 & 119 & 5 & 64 & 70 & & & \\
\hline 19 & 74 & 75 & 6 & 146 & 162 & 0 & 99 & 107 \\
\hline 21 & 110 & 105 & 8 & 285 & 296 & 1 & 161 & 166 \\
\hline \multirow[t]{3}{*}{22} & 114 & 108 & 9 & 151 & 154 & 3 & 248 & 245 \\
\hline & & & 10 & 267 & 273 & 4 & 215 & 289 \\
\hline & \multicolumn{2}{|l|}{.} & 11 & 110 & 118 &) & 161 & 166 \\
\hline
\end{tabular}

\begin{tabular}{rrrrrrrrr}
& \(7.2, L\) & & 16 & 160 & 159 & 13 & 164 & 167 \\
& & & 19 & 68 & 47 & 14 & 47 & 32 \\
2 & 52 & 62 & 20 & 88 & 109 & 15 & 107 & 99 \\
3 & 176 & 167 & & & & 10 & 157 & 158 \\
4 & 43 & 29 & & 1.5 .1 & & 17 & 163 & 165 \\
5 & 432 & 427 & & & 373 & 400 & 19 & 101
\end{tabular} 105

\section*{REFERENCES}
1. I. Lindquist \& B. Strandberg, Acta Cryst., 10, 173 (1957).
2. S. Ahrland, J. Chatt \& N.R. Davies, Quart.Rev., 12, 265 (1958).
3. A.H. Norbury, Adv! in Inorg. Chem and Radiochem., Vol. 7 (1974).
4. A.H. Norbury \& A.I.P. Sinha, Quart. Rev., 24, 69 (1970).
5. J.L. Burmeister \& F. Basolo, Inorg. Chem., 3, 1587 (1964).
6. F. Basolo, W.H. Baddley \& J.L. Burmeister, Inorg Chem., 3, 1587 (1964).
7. G.J. Palenik, W.L. Steffen, M. Mathew, M. Li \& D.W. Meek, Inorg. Nucl. Chem. Lett., 10, 25 (1974).
8. K.K. Chow \& C:A. McAuliffe, Inorg. Nucl. Chem. Lett., 8, 1031 (1972).
9. A. Turco \& C. Pecile, Nature, 191, 66 (1961).
10. I. Bertini \& A. Sabatini, Inorg. Chem., 5, 1025 (1966).
11. D.A. Buckingham, I. I. Creaser \& A.M. Sargeson, Inorg. Chem., 9, 655 (1970).
12. J.L. Burmeister, Inorg. Chem., 3, 919 (1964).
13. M. F. Farona \& A. Wojcicki, Inorg. Chem., 4, 857 (1965).
14. M.F. Farona \& A. Wojcicki, Inorg. Chem., 4, i402 (1965).
15. T.E. Sloan \& A. Wojcicki, Inorg. Chem., 7, 1268 (1968).
16. H. Behrens \& D. Herrman, Z. Naturforsch., 21B, 1236 (1966).
17. E. Lindner \& H. Behrens, Spectrochım. Acta, 23A, 3025 (1967).
18. C.K. Jörgensen, Inorg. Chem., 3, 1201 (1964).
19. R.G. Pearson, J. Amer. Chem. Soc., 85, 3533 (1963).
20. R.G. Pearson, "Hard and Soft Acids and Bases", Dowden, Hutchinson \& Ross Inc., Stroudsberg, Pennsylvanıa, 1973.
21. R.G. Pearson, Inorg. Chem. , 12, 712 (1973).
22. J. Chatt \& B.T. Heaton, J. Chem. Soc. (A), 2745 (1968).
23. J.L. Burmexster \& J.B. Melpolder, Chem. Comm., 613 (1973).
24. A.H. Norbury, J. Chem. Soc. (A), 1089 (1971).
25. G. Klopman, J. Amer. Chem. Soc., 90, 223 (1968).
26. L. DiSipio, L. Olerı,\& G. deMichelis, Co-ord. Chem. Revs., 1,7 (1966).
27. D.F. Gutterman \& H.B. Gray, J. Amer. Chem. Soc., 93, 3364 (1971).
28. L.G. Mazıllı, R.C. Stewert, L.A. Epps \& J.B. Allen, J. Amer. Chem. Soc., 95, 5796 (1973).
29. A.H. Norbury, P.E. Shaw, \& A.I.P. Sinha, J. Chem. Soc. Dalton. Trans., in the press.
30. J.L. Burmeister, R.L. Hassel \& R.J. Phelan, Chem. Comm., 679 (1970).
31. J.L. Burmenster, R.L. Hassel \& R.J. Phelan, Inorg. Chem., 10, 2032 (1971).
32. A.H. Norbury, P.E. Shaw \& A. I.P. Sinha, J. Chem. Soc. (D), 1080 (1970).
33. F. Basolo, W.H. Baddley \& K.J. Weidenbaum, J. Amer. Chem. Soc., 88, 1576 (1966).
34. J.L. Burmeister \& J.C. Lim, Chem. Comm., 1346 (1968).
35. I. Stotz, W.K. Wılmarth \& A. Haim, Inorg. Chem. , 7, 1250 (1968).
36. D.F. Gutterman \& H.B. Gray, J. Amer. Chem. Soc., 91, 3105 (1969).
37. R.A. Bailey \& S.L. Kozak, I. Inorg. Nuclear Chem., 31, 689 (1969).
38. T.R. Thomas \& G.A. Crosby, J. Mol. Spectroscopy, 38, 118 (1971).
39. K.F. Chew, W. Derbyshire, N. Logan, A.H. Norbury \& Sinha A.I.P., J. Chem. Soc.(D), 1708 (1970).
40. A.H. Norbury \& A.I.P. Sinha, Inorg. J. Chem. Soc. (A), 1598 (1968).
41. A.H. Norbury \& A.I.P. Sinha, Inorg. Nucl. Chem. Lett., 3, 355 (1967).
42. R.D. Gillard \& S.H. Laurle, J. Inorg. Nucl. Chem., 33, 947 (1971).
43. J.L. Burmeister, E.A. Deardorff \& C.E. Van Dyke, Inorg. Chem. 8, 170 (1969).
44. J.L. Burmesster, E.A. Deardorff, A. Jensen and V.H. Chrıstiansen, Inorg. Chem., 9, 58 (1970).
45. D.M. Duggan \& D.N. Hendrickson, Chem. Comm., 411 (1973).
46. J. Nelson \& S.M. Nelson, J. Chem. Soc. (A), 1597 (1969).
47. A.W. Downs, Chem. Comm., 1290 (1968).
48. T. Austad, J. Songstad \& K. Ase, Acta. Chem. Scand., 25, 3535 (1971).
49. O.H. Ellestad, P. Klaeboe \& J. Songstad, Acta. Chem. Scand., 26, 1724 (1972).
50. R.A. Balley, S.L. Kozak, T.W. Michelsen \& W.N. Mills, Co-ord. Chem. Revs., 6, 407 (1971).
51. P.C.H. Mitchell \& R.J.P. Williams, J. Chem. Soc., 1912 (1960).
52. A. Tramer, Compt. rend., 250, 3150 (1960).
53. A: Tramer, J. Chim. Phys., 59, 232 (1962).
54. J. Chatt \& L.A. Duncanson, Nature 178, 997 (1956).
55. J. Chatt, L.A. Duncanson, F.A. Hart \& P.G. Owston, Nature, 181, 43 (1958).
56. J. Lewis, R.S. Nyholm \& P.W. Smith, J. Chem. Soc. (A), 859 (1966).
57. A. Sabatinı \& I. Bertini, Inorg. Chem., 4, 1665 (1965).
58. A. Sabatini \& I. Bertini, Inorg. Chem., 4, 959 (1965).
59. R.J.H. Clark \& C.S. Willıams, Spectrochim. Acta, 20, 1081 (1966).
60. Yu. Ya. Kharitonov, G.V. Tsintsadze \& M.A. Porai-Koshits, Doklady Akad. Nauk. S.S.S.R., 160, 1351 (1964).
61. S. Frcnaeous \& R. Larsson, Acta Chem. Scand., 16, 1447 (1962).
62. C. Pecile, Inorg. Chem., 5, 210 (1966).
63. D.A. Ramsey, J. Amer. Chem. Soc., 74, 72 (1952).
64. R. Larsson \& A. Mezis, Acta Chem. Scand., 23; 37 (1969).
65. R.A. Bailey, T.W. Michelsen \& W.N. Mills, J. Inorg. Nucl. Chem., 33, 3206 (1971).
66. W. Beck \& W.P. Fehlammer, W.P., M.T.P. International Reviews of Science, Inorganıc Chemistry, Series One, Vol.2, p.253.
67. A: Jensen, V.H. Christıansen, J.F. Hansen, T. Likowski \& J.L. ' Burmeister, Acta Chem. Scand., 26, 2898 (1972).
68. N. Groving \& A. Holm, Acta Chem. Scand., 19, 443 (1965).
69. D. Martin, Angew. Che., 3, 443 (1964).
70. T.C. Waddington, J. Chem. Soc. 2499 (1959).
71. A. Makı \& J.C. Decius, J. Chem. Phys., 31, 772 (1959).
72. M.A. Jennings \& A. Wojcicki, Inorg. Chem., 6, 1854 (1967).
73. J.L. Burmexster \& N.J. DeStefano Inorg. Chem., 10, 998 (1971).
74. M. Kubota \& D.L. Johnston, J. Inorg. Nucl. Chem., 29, 769 (1967).
75. R. Ugo, F. Bonati \& S. Ceninı, Inorg. Chim. Acta, 3, 220 (1969).
76. L. Vaska, Science, 140 , 809 (1963).
77. J.A. Ibers \& S.J. LaPlaca, Science, 145, 920 (1964).
78. J.A. Ibers \& S.J. LaPl aca, J. Amer. Chem. Soc., 87, 2581 (1965).
79. J.A. McGinnety, R.J. Doedens \& J.A. Ibers, Science, 155, 709 (1967).
80. M.C. Baırd, D.N. Lawson, J.T. Mague, J.A. Osborn \& G. Wilkınson, Chen. Comm., 129 (1966).
81. M.J. Bennett \& P.B. Donaldson, J. Amer. Chem. Soc., 93, 3307 (1971).
82. R.L. Augustine \& J.F. Van Peppen, Chem. Comm., 497 (1971).
83. J.A. Osborn, F.H. Jardine, J.F. Young \& G. Wilkinson, J. Chem. Soc. (A), 1711 (1966).
84. R.L. Augustine \& J.F. Van Peppen, Chem. Comm., 495 (1971).
85. J. Blum, E. Oppenheimer \& E.D. Bergmann, J. Amer . Chem. Soc., 89, 2338 (1967).
86. M.C. Baırd, J.T. Mague, J.A. Osborn \& G. Wilkinson, J. Chem. Soc. (A), 1347 (1967).
87. Discuss. Faraday Soc. No. 46. (1968).
88. M.C. Baird, C.J. Nyman \& G. Wılkinson. J. Chem. Soc. (A), 348 (1968).
89. D.R. Eaton \& S.R. Stuart, J. Amer. Chem. Soc., 90, 4170 (1968).
90. D.F. Shriver, D.D. Lehman \& I. Wharf, Chem. Comm., 1948 (1970).
91. H. Arai \& J. Halpern, Chem. Comm., 1571 (1971).
92. M.F. Banley \& L.F. Dah1, Inorg. Chem., 4, 1314 (1965).
93. H.G. Smith \& R.E. Rundle, J. Amer. Chem. Soc., 80, 5075 (1958).
94. R.W. Turner \& E.L. Amma, J. Amer. Chem. Soc., 88, 3244 (1966).
95. R.W. Turner \& E.L. Amma, J. Amer. Chem. Soc., 88, 1877 (1966).
96. 'Organic Solvents' - Technique of Organxc Chemıstry, Vol. VII, 2 edn., Interscience Publishers Inc.
97. J. Songstad \& L.J. Strangeland, Acta Chem. Scand., 24, 804 (1970).
98. F.A. Cotton, R. Francis \& D.W. Horrocks, J. Phys. Chem., 64, 1534 (1960).
99. Yu. N. Kukuskin, N.D. Rubtrova \& M.M. Singh, Zh. neorg. Khim., 15, 1879 (1970).
100. K.C. Chen \& R.T. Iamoto, Inorg. Chım. Acta, 5, 97 (1971).
101. L. Vallarino, J. Chem. Soc., 2287 (1957).
102. S.F.W. Watkins, J. Obı \& L.F. Dahl, unpublished results.
103. B.E. Mann, C. Masters \& B.L. Shaw, J. Chem. Soc. (A), 1104 (1971).
104. J.L. DeBoer, D. Rogers, A.C. Skapski \& P.G.H. Troughton, Chem. Comm., 756 (1966).
105. S.F. Dyke, A.J. Floyd, M. Sainsbury \& R.S. Theobold, 'Organic Spectroscopy - An Introduction', Penguin Books Ltd., (1971).
106. P. Diehl, Helv. Chım. Acta, 44, 829 (1961).
107. A.H. Norbury \& A.I.P. Sinha, J. Inorg. Nucl. Chem., 35, 1211 (1973).
108. A.H. Norbury, unpublished results.
109. J.L. Burmeister, H.J. Gysling \& J.C. Lim, J. Amer. Chem. Soc., 91, 44 (1969).
110. J.L. Burmeaster \& M.Y. Al-Janabı, Inorg. Chem., 4, 962 (1965).
111. A.V. Ablov \& I.D. Samus, Doklady Akad. Nauk. S.S.S.R., 146, 1071 (1962).
112. M.A. Jennings \& A. Wojcickı, Inorg. 'Chım. Acta, 3, 335 (1969).
113. A. Yu. Tsivadze, Yu. Ya. Kharıtonov \& G.V. Tsintsadze, Russ. J. Inorg. Chem., 17, 1417 (1972).
114. O.W. Howarth, R.E. Richards \& L.M. Venanzi, J. Chem. Soc., 3335 (1964).
115. K.F. Chew, W. Derbyshire, N. Logan, A.H. Norbury \& A.I.P. Sinha, J. Chem. Soc. (D), 1708 (1970).
116. L.G. Marzillı, Inorg. Chem., 11, 2504 (1972) and references therein.
117. T. Austad, T. Rod, K. Ase, J. Songstad \& A.H. Norbury, Acta Chem. Scand., 27, 1939 (1973).
118. S.C. Jain \& R. Rivest, Can. J. Chem., 43, 787 (1965).
119. D.C. Goodall, J. Chem. Soc. (A), 203 (1967).
120. S. Muzushina, I. Ichıshıma, I. Nakgawa \& J.V. Quaglianı, J. Phys. Chem., 59, 293 (1955).
121. R. Frank \& H.A. Droll, J. Inorg. Nucl. Chem., 32, 3954 (1970).
122. J.D. Wilkins, J. Organometal. Chem., 65, 383 (1974).

123, C.C. Hinckley, J. Amer. Chem. Soc., 91, 5160 (1969).
124. B.C. Mayo, Chem. Soc. Rev., 2, 49 (1973).
125. A.F. Cockerill, G.L.O. Davies, R.C. Harden \& D.M. Rackham, Chem. Rev., 73, 553 (1973).
126. P.J. McCarthy in 'Spectroscopy and Structure of Metal Chelate Compounds,' ed. K. Nakamoto \& P.J. McCarthy, Wiley, New York, p. 346 (1968).
127. L. Ernst \& A. Mannschreck, Tet. Letts., 3023 (1971).
128. J.K.M. Sanders \& D.H. Williams, J. Amer. Chem. Soc., 93, 641 (1971).
129. F.A. Hart, J.E. Newberry \& D. Shaw, Nature, 216, 261, (1967).
130. D.R. Eaton, Can. J. Chem., 47, 2645 (1969).
131. I. Armitage, G. Dunsmore, L.D. Hall \& A.G. Marshall, Chem. Comm., 1281 (1971).
132. I. Armitage, G. Dunsmore, L.D. Hall \& A.G. Marshall, Chem. and Ind., 79 (1972).
133. D.R. Kelsey, J. Amer. Chem. Soc., 94, 1764 I1972).
134. J.L. Burmeister, S.D. Patterson \& E.A. Deardorff, Inorg. Chim. Acta, 3, 105 (1969).
135. D. Schwendiman \& J.I. Zınk, Inorg. Chem., 11, 3051 (1972).
136. K.A. Jensen, M. Due \& A. Holm, Acta Chem. Scand., 19, 438 (1965).
137. A.H. Norbury \& A.I.P. Sinha, Inorg. Nucl. Chem. Lett., 4, 617 (1968).
138. J.P. Collman \& D.R. Roper, 'Advances in Organometallic Chemistry', Vol. 7, lst. edn., Academic Press, London, p. 53 (1968).
139. L. Vaska, Accounts Chem. Res., ㄹ, 335 (1968).
140. J. Halpern, Accounts Chem., Res., 3, 386 (1970).
141. J.L. Burmeister \& E.T. Weleski, Synth. Inorg. \& Metal-Org. Chem, 295 (1972).
142. M.C. Baird \& G. Wilkınson, J. Chem. Soc. (A), 865 (1967).
143. J.M. Jenkins \& B.L. Shaw, J. Chem. Soc. (A), 6789 (1965).
144. J.M. Jenkins \& B.L. Shaw, J. Chem. Soc. (A), 604 (1967).
145. P.R. Brookes \& B.L. Shaw, J. Chem. Soc. (A), 1079 (1967).
146. A.J. Deemang \& B.L. Shaw, J. Chem. Soc. (A), 1128 (1969).
147. M.C. Baird, J.T. Mague, J.A. Osborn,\& G. Wilkinson, J. Chem. Soc. (A), 1347 (1967).
148. I.C. Douek \& G. Wılkinson, J. Chem. Soc. (A), 2604 (1969).
149. D.N. Lawson, J.A. Osborn \& G. Wilkinson, J. Chem. Soc. (A), 1733 (1966).
150. P.G.H. Troughton \& A.C. Skapski, Chem. Comm., 575 (1968).
151. H.H. Schmidtke, J. Amer. Chem. Soc., 87, 2522 (1965).
152. H. H. Schmidtke Z. physik Chem. Neue Folge., 45, 305 (1965).
153. H.G. Drickamer, G.K. Lewıs \& S.C. Fung, Science, 163, 885 (1969).
154. W.L. Jolly., 'Inorganic Syntheses', Vol. XI, McGraw Hill Inc., New York, p. 99 (1968).
155. A.J. Deeming \& B.L. Shaw, J. Chem. Soc. (A), 1562 (1969).
156. K. Vrieze, H.C. Volger \& P.W.N.M. Leenwen, Inorg. Chem. Acta Rev., 3, 109 (1969).
157. W.R. McClellan, H.H. Hoehn, H.N. Crıpps, R.I. Muetherties \& B.W. Howk, J. Amer. Chem. Soc., 83, 1601 (1961).
158. R. Emerson, J. Chem. Ed., 48, 81 (1971).
159. 'International Tables of X-ray Crystallography', Vol. III, p. 204 (1968).
160. D. Cramer \& J. Mann, Acta Cryst., A24, 321 (1968).
161. K. Aarflot \& K. Ase, Acta. Chem. Scand. (A), 28, 137 (1974).
162. L.H. Jones, J.N. Shollery, R.G. Shurman \& D.M. Yost, J. Chem. Phys., 18, 990 (1950).
163. R.F. Curl, V.M. Rao, K.V.L.N. Sastry, J.A. Hodgeson, J. Chem. Phys., 39, 3335 (1963).
164. M.A. Bush \& G.A. Sim, J. Chem. Soc. (A), 605 (1970).
165. E.F. Epstein \& I. Bernal, Chem. Comm., 410 (1970).
166. J.L. Calderon, F.A. Cotton, B.G. DeBoer.\& J. Takato, J. Amer. Chem. Soc., 93, 3592 (1971).
167. P. Corradinı \& A. Sirıgi, Inorg. Chem., 6, 601 (1967).
168. N.V. Alekseev \& I.A. Ronova, Zh Strukt. Khim., 7, 103 (1966).
169. N.V. Alekseev \& I.A. Ronova, J. Struct Chem. (U.S.S.R.), 7, 91 (1966).
:```

[^0]: *from Norbury 3, 4 and references therein.
 IStable linkage isomer.

[^1]: *Analysed by the Micro-analytical Laboratory, Manchester Unıversity.

[^2]: * 'CNO' is used to indicate that the mode of co-ordination of the cyanate group is unspecified.

[^3]: The compounds were analysed for rhodium, tellurium and phosphorus, by X-ray fluorescence spectroscopy, and for carbon hydrogen, and nitrogen, by conventional combustion analysis as described in previous chapters.

