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SUMMARY

An open electrolytic cell has been designed and constructed
for use in a dry environment. This was used to investigate the
passivation processes concerned with both the lithium and the
carbon (S0,) electrodes.

A.c. impedance techniques have been used in both two and
three terminal cell systems in order to study the kinetics of the
electrode processes. Effects of temperature, state-of-charge and
reverse cell operation have been studied.

Computer simulations were made of the growth of crystals on a
flat (Li) surface and the resulting growth transients connecting
current and time were derived. This model was extended to simulate
the porous carbon (S0,) electrode and the utilisation of the carbon
as a function of the depth of reaction penetration into the
electrode is devised for both potentiostatic and galvanostatic

discharging.




ACKNOWLEDGEMENTS

I would like to thank Professor Noel Hampson for his supervision
and encouragement over the last three years.

I am also grateful to Dr. P. J. Mitchell and the othexr members
of the Electrochemistry Research Group for their friendship during

my time here.
I would also like to thank the technical staff of the Department

and the staff of the Computer Centre for their assistance during the
project.

My thanks go to Mr. D. Eyre for his continual interest and
encouragement throughout the project. Crompton Parkinson Limited
are gratefully acknowledged for financial support and provision of
materials.

Finally I would like to thank Margaret Critchlow for her

excellent typing of the thesis.




"MnSeic éyew,ué:tprzrog eLsito."” |

[IYIATOPAZ




CHAPTER I

CHAPTER 11

CHAPTER III

CHAPTER IV -

CHAPTER V

CHAPTER VI

CHAPTER VII

CHAPTER VIII

CHAPTER IX

CHAPTER X

CONTENTS

INTRODUCTION

THECRETICAL PRINCIPLES

THE USE OF THE A.C. IMPEDANCE TECHNIQUE
TO OBTAIN THERMODYNAMIC DATA FOR THE
CELL REACTION

THE USE OF THE A.C. IMPEDANCE TECHNIQUE
TO INVESTIGATE CELLS AT DIFFERENT STATES
OF CHARGE

THE USE OF THE A.C. IMPEDANCE TECHNIQUE
TO INVESTIGATE PROCESSES IN CELLS AFTER

CHARGING

THE RAPID ESTIMATION OF IMPEDANCE USING
PSEUDO-RANDOM NOISE

THE ANODIC PASSIVATION -OF THE LITHIUM
ELECTRODE

THE PASSIVATION OF THE CARBON CATHODE
THE COMPUTER SIMULATION OF ELECTRO-
CRYSTALLIZATION REACTIONS ON A PLANE

SURFACE

A MACROHOMOGENEQUS MODEL FOR THE POROUS
CARBON ELECTRODE

REFERENCES

Pagé
Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

1

4

25

31

37

54

60

64

80

89




A
A
A, A,
y)
a
C.*
b3
CO
Ci(z,t)
Crr Cap
Crixed
Caiffuse
D, D;
D¢
Dy
E
EO
E*
E®
e
F
£
H
i
ia
1C
10
J.
1
i
K, ks K
k2, k°
£ Kp
kO
k", ke”, K
M

LIST OF SYMBOLS

Helmheltz free energy

nucleation rate constant

electrode surface area

pre-~exponential factor

ratio of height to radius for a comne

bulk concentration of species i

bulk concentration

concentration of species i distance z from
the electrode surface at time t

overall double-layer differential capacitance
differential capacitance correspending to a
fixed layer

differential capacitance corresponding to a
diffuse layer

diffusion coefficients

dielectric constant of diffuse layer
dielectric constant of compact layer
potential measured from reference potential
reversible electrode potenital
characteristic potential

standard electrode potential

a.c. potential

Faraday constant

frequency

height of cylindrical crystals

V-1

anodic¢ current density

cathodic current density

exchange current density

flux of species i

/-1

rate constants

values of kg, k at the reference potential
rate constant at standard electrode potential

pre-exponential factors for ko, kfo, kbo

relative molecular mass of crystal deposit




=

o
»

~
H

N R ox® o™ W o 3
- -
=
L]
Q.

o 0
ot

Q‘FUW
¢]

cap

ext

&+ =1 1 n W

<O<<:*cj

ex

number of the appropriate species

number of moles of species i

number of nuclei

number of electrons transferred

oxidised species

probability of a given event

radii of growing crystals

gas constant

reduced species

charge transfer resistance

solution resistance

resistance at D.C. point

entropy

surface area of a sphere

surface area of a spherical cap

fractional extended surface area

absolute temperature

passivation time

age of nuclei

total volume of overlapped crystals

total volume of space

extended volume of crystals (neglecting overlap)
velocity of growth

height above electrode surface

depth into electrode

total depth of electrode

impedance as a function of frequency

charge transfer coefficient

charge transfer coefficient for cathodic process.
amplitude of a.c. potential

activation enthalpy at standard electrode potential
activation enthalpy for the forward reaction
activation enthalpy for the backward reaction
amplitude of a.c. current

activation energy at constant volume
thickness of Nernst layer

zeta potential

overpotential



=

3 3
t O

@ <D

)
uncov

>

cov

e @ € < TV g4 ¢

expected fractional coverage
diffusion overvoltage

charge transfer overvoltage (E-Eo)
charge transfer resistance
covered and uncovered surface areas
mean number of nuclei

surface area of electrode

density

kinematic viscosity

angular frequency

phase lag

potential at various points in the double layer




CHAPTER 1

INTRODUCTION

In the late 15950's and early 1960's with the advent of the space
programme the need for high energy density batteries became of prime
importance. As lithium has the most negative standard electrode

potential,
2 . Lit+ e & Li, -3.045 V at 25°C (1.1

and is the lightest metal, a system based on the lithium anode seemed
an obvious choice.

A major problem was the high reactivity of lithium metal,
especially with aqueous systems, making the choice of electrolyte and
other cell components difficult.

The electrolyte had to be chemically stable with respect to both
lithium and the cathode material. A high conduétivity was also
essential, for the cell to be comparable in performance with
contemporary aqueous systems. Although a number of non-aqueous
electrolyte solutions were found to have sufficient conductivity, if
a suitable solute was used, most combinations were unstable with
respect to the lithium anode.

For the few cases which were found to be viable, their stability
was attributed to the formation of a protective film on the lithium
electrode surface.

For any choice of cathodic reactant the same stability criterion
had to be applied. A number of such reactants were identified [1].

Several systems are in current manufacture. The best of the
high rate discharge combinations are Li/SO Cl, and Li/SO0,. The
Li/S0; system, is the subject of the discussion presented here.

Sulphur dioxide is a good choice as a cathode reactant because
of 1ts low equivalent weight, high potential with respect to
lithium metal, and relatively low cost. The cell system also performs
well over a wide temperature range (-40°C » 70°C).

The technology for the Li/SO; system was patented in 1969 and
1971 [2,3] and the first practical cells appeared in the early 1970's.
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The SO, cathode reactant is also a necessary constituent of the
electrolyte and facilitates the conductivity of solutions by the
relatively high dielectric constant. It is also responsible for the
stability of the lithium electrode due to the formation of a film of
lithium dithionite (Li,S,;04) at the lithium/electrolyte surface [4,5].
The film forms instantly when lithium is introduced to an S0;
containing solvent.

The aprotic organic cosolvent for the SO, considered in this
thesis is acetonitrile (CH3CN), although propylene carbonate has also
been used [1].

In the absence of S0p, acetonitrile reacts with lithium metal

according to the following reactions [6] :
2Li + 2CH3CN - (CHp-CN)™ + Li* + CHy + LiCN (1.2)
CH3CN + (CHp-CN)™ - (CH3-CN-CHpCN)™ (1.3)

S0; inhibits these reactions by sharing the non-bonding
electrcns of the acetonitrile molecule and also by the formation of
a passive film on the lithium. The addition of propylene carbonate
is also reported to retard these reactions [7].

Lithium salts are added to the electrolyte solution which by
dissolving and ionizing increases the conductivity. LiBr provides
the best conductivity of the useful salts and is fairly inexpensive.

LiBr is known to react with SO, in these electrolyte sclutions

according to the following reactions [8]

8LiBr + 850, + 4Li,SO3 + 4SOBrs (1.4)
4SOBr, + 250, + SBr, + 3Brp (1.5)
4115503 + 2Bry - 2LipS0, + 4LiBr + 250, (1.6)

which gives the total reaction

4LiBr + 450, + 2LiySOy + SsBrp + Bry (1.7)

Despite these reactions the Li/SO, cell systems have exceptional

stability with reported shelf-lives limited only by the short

history of the cells.



The cell discharge reaction is generally accepted as [9]
2Li > 2L + 2¢” (1.8)
at the anode and
2e” + 250, » 52042" (1.9)

at the cathode.
The dithionite ion S,0,2” is thought to form by dimerization of
the 80, radical thus [10]

SO, + e~ + S0, (1.10)
250," + 5,0,27 (1.11)

The 5,042 then reacts with the Li' ions in solution to form
insoluble solid Li»S,0, in the pores of the carbon matrix which is
used as the inert current collector.

The only cloud on the horizon of lithium sulphur dioxide cells
is the poor safety record and this has prevented the wide
acceptability of these cells to the present time.

The safety hazards stem from the reactivity and toxicity of
the cell contents and the need for cell pressurization. Cells are
fabricated with a built-in safety vent in the cell casing which
should open and release any internal pressure build up; however,
a very sudden pressure increase may still result in explosion.
Cells may vent or explode if short-circuited, discharged at a very
high rate, overdischarged, charged or heated,

In the first part of this thesis an examination is reported of
the whole manufactured cells using a.c. impedance techniques.
Further the work is continued to study the passivation of both the
lithium and carbon in an open cell system.

In the next section the electrocrystallization of the lithium
dithionite on the carbon matrix will be considered. Firstly the
general electrocrystallization will be examined and current-time
transients derived for three dimensional growth on a flat surface
leading to passivation. Finally the porous properties of the
carbon using a macrohomogeneous model will be considered and the

electrometric responses mathematically simulated.
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CHAPTER 11

THEORETICAL PRINCIPLES

2.1 The Electrode-Electrolyte Interphase

At the interphase between any pair of conducting phases there
exists a potential difference the magnitude of which is dependent on
the composition and nature of the two phases.

There are many types of such interphase, but the one we are
coﬁcerned with here is that between an electrode and the surrounding
electrolyte solution. The structure of this interphase is of
fundamental importance in electrochemistry as it determines the way
in which electrode reactions proceed.

If we were only interested in the equilibrium properties of this
interphase we could determine the interfacial potential from
thermodynamic principles and there would be no need to know about the
structure of the charge separation. We are, however, interested in
electrode kinetics and the flow of current between the electrode
and solution and to describe this dynamical situation requires
modelling the microscopic structure of the interphase.

The earliest and most primitive model was given by Helmholtz [11]
in 1879 who suggested a layer of ions at the solid surface and a
rigidly held layer of oppositely charged ions in the solution, this
is known as the 'electrical double layer' or just 'double layer'.
This Helmholtz double layer is equivalent to a simple parallel plate
capacitor, see fig. 2.1. This model is basically inadequate because
although the charge on the electrode is confined to the surface the
same is not true of the solution as the thermal motions of liquid
molecules would not sustain a rigid array of charges at the
interphase. .

Gouy [12] and Chapman [13] proposed the theory of a diffuse
double layer with a statistical distribution of ions in the electric
field, see fig. 2.2.

There is however a serious defect in the Gouy-Chapman theory in
that it treats the ions as point charges and this leads to very high

values for the charge concentration in the immediate neighbourhood
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of the interphase. Stern [14] provided a suitable correction in the
form of an adsorbed layer of ions of finite size and an approach at
the electrode limited to a certain critical distance. Hence the
double layer can be divided into two regions, one of high field and
low dielectric constant next to the electrode due to a row of
firmly held ions and beyond this a diffuse layer in which the
electrostatic and thermal motions are balanced.

The double layer can thus be treated as two capacitors connected

in series:

- 1 + 1
L Ctixed Cdiffuse

nll—-

C, = overall double-layer differential capacitance.

L
Cfixed = differential capacitance corresponding to a fixed layer.
Cai ffuse = differential capacitance corresponding to a diffuse

layer.

The potential gradient in the entire double layer has a large
component due to the compact layer and a smaller contribution from
the diffuse layer, which is called the zeta potential (see fig. 2.3).

Grahame [15] postulated that the compact layer or Helmholtz
fixed plane was further divided into two regions. The inner
Helmholtz plane consisting of specifically adsorbed ions closest to
the electrode surface and the outer Helmholtz plane consisting of
normal hydrated ions at their distance of closest approach, see
fig. 2.4.

Devanathan et al [16] proposed that the adsorbed solvated
cations remained outside a layer of strongly orientated solvent
dipoles. The inner solvent layer is penetrated by specifically
adsorbed anions and the water molecules are thought to be adsorbed
with their negative poles pointing either towards or away from the
metal surface, depending on the potential, see fig. 2.5. The
Helmholtz model over emphasizes the rigidity of the ionic
environment and the Gouy-Chapman model over emphasizes its
mobility, but the Stern model combines the two previocus models.

It is very important to know the potential profile of the
double layer as this will govern the rate at which charges can be

moved across from one side of the interphase to the other and so
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control the rate of electrochemical processes at the electrode.

Such deviations, in potential and concentration at the interphase,
from those of the bulk electrode and electrolyte give rise to a
number of apparent anomalies. The basic concepts have been
described by Frumkin {17] and the observed effect is sometimes known
as the Frumkin effect.

More recent work done on the interphase structure has been
mainly concerned with the orientation of the water dipoles in the
fixed layer. Cooper and Harrison [18-22] give details of progress
in this field up to 1978.

Although all the theory presented here is for aqueous systems
it is assumed to apply for polar non-aqueous systems such as

acetonitrile,

2.2 The Charge Transfer Process

The charge transfer process can be represented by the overall
redox reaction

Ox + ne” £ Red (2.2.1)

where kf and kb are the forward and backward reaction rate constants,
and n is the number of electrons transferred.

This electrode process may be split up into a number of
consecutive steps:

(i) mass transport of reactants to the electrode surface.
(ii) adsorption of reactants on to the surface.

(iii) the surface process.

(iv) desorption of products.

(v) transport of products away from the electrode.

Any one of these steps or any combination may be rate
determining.

In order to study this redox process we consider a noble metal
electrode dipping into a solution containing, usually, both the
oxidised (0x) and reduced forms(Red)of the couple, often in the
presence of an excess of an indifferent or supporting electrolyte;

such a system (Hg/KCLaq(lM)) was used by Grahame [15] in the early

investigation of the structure of the double layer.




If the surface process is sufficiently fast, the system will

display a readily reproducible open-circuit potential, A net anodic
or cathodic process can be made to occur by displacing the electrode
potential from this reversible value. The electrode is then said to

be polarised, and this polarisation can occur in three ways.

(a) Concentration Polarisation

This occurs when one of the mass transport processes is the

rate determining step.

(b) Activation Polarisation

This occurs when one of the surface processes is the rate
determining step. This is usually, but not necessarily, an electron

transfer step.

(c) Ohmic Polarisation

This is due to the incorporation of an iR drop in the measured
potential of the working electrode, and must be made negligibly
small, or corrected for, before a kinetic analysis of the

experimental results is undertaken.
The extent of polarisation is measured by the overpotential, n

where n = ¢,

i - ¢

o
and ¢; is the potential of the working electrode, when the system
is sustaining a current of i amperes and ¢q is the reversible
potential.

The potential being measured on any convenient scale.

2.2.1 The Surface Process

This section deals with kinetics of processes occuring at the
surface and in particular the electron transfer process.

All equations derived in this section are based on the
assumption that the presence of an excess of indifferent supporting
electrolyte in the solution under study allows us to ignore the
effect of the diffuse double layer. Parsons [23] shows that even
with supporting electrolyte concentrations as high as IM the
effect of the diffuse layer is small, but still present, although
the thickness of the diffuse layer 1s reduced by the supporting

-7 -




electrolyte. If ¢» is the potential of the closest plane of

approach to the electrode surface for the reactant species then the
effective potential controlling the rate of the surface process is
¢i - ¢2 and not ¢i. Insufficient data, however, rules out proper
correction for ¢-.

Some important kinetic equations will now be derived:-

the cathodic and anodic current densities ic and ia are

given by

ic = kf C, (0,t) nF (2.2.2)
and

i, = kb Cr (0,t) nF (2.2.3)

where current densities are per unit electrode area at the electrode
surface and Ci(z,t) is the concentration of species i distance z from
the electrode surface after time t, so Co(O,t) is the surface

concentration of the oxidised species Ox.

Initial Conditions

(i) t=0; z320; Co(z,O) Co*

Ca(z,0) = Cp*

C;* are the bulk concentration of species i.

(ii) t >0 ; z > o= Co(z,t) > Co*
CR(z,t) - CR*

z = 0 is the junction of the diffuse part of the double layer
with the bulk of the solution.

The nett current density i is given by

i=i -1 (2.2.4)

so i =nF {k;C (0,t) - kCp(0,t)} (2.2.5)

the potential dependent rate constants kf and kb are given by




ke = k.” exp {-onFE } (2.2.6)
£ 7 K¢ g
ky = kb° exp {(1-a32§% } (2.2.7)

where kf0 and kbO are the values of kf and kb at the reference
potential, E is the potential measured from the reference potential
and o is the charge transfer coefficient [24].

More generally a and (1-a) should be ¢ and 8 with ¢ + B .not
necessarily equal to unity. The physical significance of the transfer
coefficients is that o is a fraction which reflects the extent to
which the potential displacement E favours the anodic process, and 8
the fraction which favours the cathodic process. In the case of a
unit step, we would expect that B = (1-¢), but this is not always the
case.

S0 from equations (2.2.5), (2.2.6} and (2.2.7)

i = nF {k/° -anFE ]C_(0,t) - k,.° 1-a)nFE] C,(0,t
i=n £ exp [ aET ] 5 (0;1) b €XP [( :%n ] 2 (0,1)}
(2.2.8)

at the reversible electrode potential, E, the nett current is zero.
So i =1i_=1 (2.2.9)

io is the exchange current density, there is no concentration

gradient at the electrode surface so

C;(0,t) = C;*; E =E, (2.2.10)

So from equations (2.2.8), (2.2.9) and (2.2.10)

X 0 .
i = anf Co* exp ~unFEo (2.2.11)
RT
and
. o r
i, = nFk Co* exp [(1-a)nFE ] (2.2.12)
RT

So substituting equations (2.2.11) and (2.2.12) back into (2.2.8) we

obtain:-




i=1 {exp [ianF(E—EO) CR(0,t) - C_(0,t) exp [(l-a)nF(E-Eo)1

RT |
(2.2.13)

RT Cp* Co*

when i is small as it would be for small overpotentials then the

bulk concentration is little disturbed at the interphase and
ot *
C;(0,t) = C;

and equation (2.2.13) reduces to equation (2.2.14). (E-Eo) is
defined as the charge transfer overpotential, n, f25] and (2.2.14) is

known as the Erdey-Gruz and Volmer equation [26].

is= io {exp -anfn,| - exp (l—a)nFnt (2.2.14)
RT RT
If the overpotential is small (2.2.14) reduces to equation
(2.2.15) and an approximately linear overpotential-current curve is

obtained.

i = -ionFnt {(2.2.15)
RT

comparison with Ohm's law gives the charge transfer resistance, Rct as

Rct = RT (2.2.16)
10nF

Rct has dimens_jons ohms/area, a more rigorous definition for Rct is

1 = [ai ] (2.2.17)
an _
t Ci’nt - 0

kfo and kbo are potential independent rate constants and an

Arrhenius equation can be written for each.

0 -
ke’ =k exp {-Aﬂz } (2.2.18)
RT
o _ . a
ky = kp exp {-AHb } (2.2.19)

RT




wvhere ké and kg are the pre-exponential factors and AH; and AH? are
the activation enthalpies for the forward and backward reactions at
the reference potential.

The potential at which the energy barriers for the forward and
backward reactions are the same is known as the characteristic
potential E*,

The characteristic potential has been shown to be r

- identical to the standard or normal electrode potential
£? [27].
This implies that

AH? = AH§ = AH? (2.2.20)
and k2 =k =k (2.2.21)

If E° is taken as the reference potential, then equations (2.2.18) and
(2.2.19) become

keo = k% = kK = k"exp {-aH"} (2.2.22)
RT

where AH® is the activation enthalpy for the redox reaction at the
standard electrode potential for that reaction and k® the rate
constant.

So equations (2.2.11) and (2.2.12) become

" (o]
i, = nFk"C * exp {-anFEo} (2.2.23)
Rt
and i = an°cR* exp {(1-0)nFE } (2.2.24)
—®r

so eliminating exp{nFE_} between these equations we get
RT

i = an°cR*“c0*1'“ (2.2.25)

or more fully giving the temperature dependence

i, = nFk-exp {-an® } % *!® (2.2.26)
RT °

o)




The exchange current is therefore proportional to ko, and can often
be substituted for k° in kinetic equations, k° can be simply
interpreted as a measure of the kinetic capacity of a redox couple.
A system with large k° will achieve equilibrium quickly, whereas

one with smaller k° will take longer.

2.2.2 The Mass Transfer Process

The mechanism of mass transfer can proceed via one of three

processes.

(i) Migration
Charged particles in an electric field experience a force,
but this is assumed to be negligible in the presence of an excess of

indifferent electrolyte.

(ii) Convection

This arises from thermal or mechanical disturbances or can be
forced by stirring the solution, rotating the electrode, bubbling
gas etc. or it may occur naturally due to differences in density
caused by local concentration or temperature differences.

In general convection makes the calculation of concentration
very difficult, one exception being the rotating disc electrode
which gives rise to a constant concentration gradient at the electrode.
In other cases, however, convection must be ignored and this is omnly
really valid when Schmidt's number, v/D (v is the kinematic viscosity)
is sufficiently high (>>1000).

The assumption is usually made, originally by Nernst {28] that
the concentration gradient is located in a layer, known as the

|
Nernst layer, of thickness Gn, within which the liquid is nearly
metionless., Convection is then implicitly taken into account, see
fig. 2.6.

This Nernst model that requires transport to be entirely
diffusive within the Nernst diffusion layer and entirely convective i
outside it is physically implausible, of course; it also allows |

neither the prediction of the thickness of the layer nor its

Experimental values for the thickness of the diffusion layer
are typically of the order 5 x 10 * m for a system subject to
natural convection only at rcom temperature decreasing to values

|
|
dependence on forced convection, e.g. the rate of stirring.
of the order 107° m for systems subject to forced convection.

- 12 -
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(iii) Diffusion
Diffusion occurs whenever concentration differences are set up,
and is governed by Fick's two laws.

Fick's first law states that the rate at which species,

i, dNi, diffuse through a given area A is proportional to the

dt
concentration gradient of the diffusing species

dy; D, Xi(z,t) = 7, (2.2.27)

dt 9z
this is for one dimensional diffusion Di is the diffusion coefficient

1
A

of species i and Ji is the flux.

Time dependent concentrations are governed by Fick's second law,

- 2
3C; (z,t) = D;3%C; (z,1) (2.2.28)
ot

3z2

The Diffusion Overvoltage

The diffusion overv&ltage, s is seen when the supply of
reactants at the electrode or the removal of the reaction products is
the rate determining when current flows.

For an ideally reversible system the rate constant ke and k, as
well as the exchange current, io, can be considered as infinitely high.
Therefore if charge transfer is assumed to be sufficiently fast with
respect to diffusion for the condition of quasi-equilibrium to be
maintained at the electrode surface, then the boundary conditions at
the electrode are given by the Nernst equation.

So the diffusion overvoltage is equal to the difference between
the equilibrium potential in the absence of current flow, Bo and the
equilibrium potential which forms during current flow as a result of
the changed concentrations Ci(o,t) at the electrode surface as
opposed to C.*, EJ

s

np = E; - E, (2.2.29)

applying the Nernst equation to the electrode surface at equilibrium

E.=E + RTIn C (2.2.30)

*
— 0
nF

CR*
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and current is flowing

E, £ E° + RT In C,(0,t)
nF  CT,(0,%)
So ny=RTIn [C_(0,t) Cp*

nF
Co* CR(O,t)

(2.2.31)

(2.2.32)

Strictly speaking the Nernst equation can only be applied to a system

2.2,3 A.C, Theory

at equilibrium, but it is assumed to give a good approximation here.

In this section we shall examine the response of the system

described above to a small alternating perturbation in the overvoltage,

n. Fig. 2.7 shows part of the i-E curve and it demonstrates that for

small enough perturbations in E, the curve is approximately linear.

From equation (2.2.14)

we see that by small we mean

In| << _RT
t anF

and |“t| & RT
(1-o)nF

which gives

is= -1onFnt
RT

e = AE exp (juwt)

then if the current is

i=3i_{exp [-anFn_| - exp [(1-a)nFn]
© [ RT £] [ RT|

If the perturbation in the overvoltage AE is written as

(2.2.14)

(2.2.33)

(2.2.34)

(2.2.15)

(2.2.35)




U |

ANVANNC

lo+Alsinf—g ) .E
|_ieo 4
Eq+AEsunwt
Figure 2.7 A portion of the i-E curve showing its response to

small perturbations in E.




i = AT exp (j(wt-¢)) (2.2.36)

where AI, AE are the amplitudes and ¢ is the phase lag, w is the
frequency, j = v-1 then impedance will be given by

Z(w) = |ag| &7? (2.2.37)
AT|

if the current is not of the above form then the impedance can not
be defined in this way.

For the charge transfer resistance we have as before

R, = Z(w) = RT (2.2.38)
ct -
10nF

which is a pure resistance, i.e. ¢ = 0, and it is not dependent on
frequency.

If we now include the double layer capacitance, Cdl’ the system
under this perturbation can be represented by equivalent electric
components and the circuit is known as the Randles equivalent circuit
[29], see fig. 2.8. Re is the solution resistance.

This, however, ignores diffusion which will give rise to an
impedance. The derivation given below for the impedance due to
diffusion belongs originally to Warburg [30] and Kruger [31] and this

impedance is commonly known as the Warburg impedance.

2.2.31 Theory of the Warburg Impedance

After a perturbation in the current density a steady state
concentration is only reached asymptotically with time, Therefore
a time dependent current will lead to a concentration distribution
which is also time dependent and fluctuates at the same frequency.

It is clear that Fick's Second Law equation (2.2.28) will be of

fundamental importance in this derivation

3Cj(z,t) = Djazcj (z,t) (2.2.28)
ot 3z2
and its solution vital.

If we separate the functions Cj(z,t) into the product of
functions of z and t only, and let Cj(z,t) = Cj* + ACj(z,t)

- 15 -




Figure 2.8 Randles type equivalent circuit including Warburg
component.

L

Figure 2,9 The complex plane (Sluyter's Plot) for the circuit

in Figure 2.8,




ACj(z,t) = ACzj(z)ACtj(t) (2,2,39)

we may be able to find a solution of this form. If we get a
physically acceptable solution which fits all the boundary conditions
then we do not have to worry about the mathematical uniqueness of the
solution, there can only be one physical soluticn and if we have
found one then that must be it. Of course, we may not find a solution
of this form, in which case we will have to try a different form.

So substituting for ACj(z,t), equation (2.2.39) in Fick's Second
Law (2.2.28) we get

3 {AC_.(z)AC, . = D, 32 .(z)AC, . (t 2.2.40
3 18C,5()0C (1)} = Dy 22 {AC,5(2)C,5(0)) ( )
which rearranging becomes
1_ 2 (aC, () = Dy 32 [aC 5 (2)] (2.2.41)
2
ACtj(t) at ACzj(z) 9z

As the L.H.S. is a function of t only and the R.H.S, a function of
z only, each side must be equal to the same constant, say M.

So we get two differential equations

1 _34C,() =M (2.2.42)

AC, s (£) 3t

D 2
J _g_pczj(z) = M (2.2.43)

2

ACzj(z) 9z

both of which can be easily solved to give

ACtj(t) = A exp (Mt) (2.2.44)
= C -{ M 2.2.45
and ACzj(z) B exp % z] + C exp [ [ﬁ_ 2-] ( )

] J

where A, B, C are constants.
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To get a boundary condition we consider the current i

i = aredet (2.2.46)
from Faraday's Law

i= -nFJj (2.2.47)
and Fick's First Law

J. = D. 3AC.(z,t 2.2,27
j j 'a?J(z ) ( )

the current at the surface of the electrode is given by combining
equations (2.2.47) and (2.2.27)

i = -mFD; [gépj(z,t)] (2.2.48)
9z z=0)

so combining (2.2.46) and (2.2.48)

Ae?®t = _nFD. [9a C.(z,1) (2.2.49)
J oz J z=0

to find [a AC.(z,t)]

3z =0

AC;(z,t) = A exp (Mr) {B exp [[M_ z] + C exp [ M z] }(2.2.50)
PD

o

j j
34C, (z,1) = A exp(Mt){/ﬁ_B exp M_z]—\/E_C exp (- M_z)}(2.2.51)
3z D, D, JVD; D,
j j j j
_a_p_cj(z,t)] = A exp (Mt) {B-C} fM_ (2.2.52)
9z z=0 :

so substituting this into equation (2.2.49)

ATl exp(jut) = —nFDJ A exp (Mt) {B-C} /M (2.2.53)
D.
]

so M must equal juw,

- 17 -




and A (B-C) = -AI [ 1 (2.2.54)
nF ijj

For a diffusion layer of infinite thickness which is unsatisfactory
at low frequencies as will be discussed later. In this case we get
the further boundary condition.

ACj+ 0as z >

and this implies B = 0.

So equation (2.2.54) beocmes

A.C= AT 1 (2.2.55)
nF Jij

and susbtituting this into equation (2.2.50) we get

AC.(z,t) = AL [-3 {exp (Gut)MHexp (- [juw z } (2.2.56)
J nF v wD, D.
J J
this variation in concentration at the electrode surface gives a
variation in the diffusion overvoltage, p according to equation
(2.2.32)

np = gg_ In [Co(O,t) Cp* ] (2.2.32)

C.* Cp(0,1t)
and C,(0,t) = C_* + aC,(0,1) (2.2.57)
Cp(0,t) = Cp* + ACR(0,¢) (2.2.58)

and putting z = 0 in equation (2.2.56) to get

8C,(0,t) = AT /- (exp (jwt)) (2.2.59)
J nF ij

and from this we can get ACO(O,t) and ACR(O,t) and susbstitute these
values into equations (2.2.57) and (2.2.58)

- 18 -
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So C(0,t) =C*+ Al /-j exp (jut) (2.2.60)
[} (s} r—— ——e
nF v wD
o
C,(0,t) = C,* + AT /-j exp (jut) (2.2.61)
R R — [ —=—
nF wDR

and equation (2.2.32) becomes

"p

= RT {In [1 + ACO(O,t)] - In [1 + ACR(O,t)]} (2.2.62)
nF - —_—
Co CR

as ACi will be small we can make the approximation

C.*
i
- 1,2 o 12,3
In (1+x) = x - /2x% + “/3x° +
In (1+x) = x (2.2.63)
and this gives
np = RT {aC _(0,t) - AC,{0,t)} (2.2.64)
nF —2 R
Co Cr

so substituting for ACO(O,t) and ACR(O,t) from equations (2.2.60)
and (2.2.61) we get

nD = BI_{ 1 - 1 } QI_ /:i_ exp (jwt) {(2.2.65)
nF nk W
Co*/ﬁ; CR*JEE

/T = e IT/4 (2.2.65)
so this be<omes

=RT { 1 - 1 )} AT exp {j(ut-v/4)} (2.2.66)

2Rp2 *
n<F CO*VwDo CR VmDR

p

rewriting equations (2.2.35), (2.2.36) and (2.2.37)} we get

i = Al exp (juwt) (2.2.67)
e = AE exp (j(wt+d)) {2.2.68)
ej¢ (2.2.37)

and Z(w) = |AE
Al




in this case we have

e=n, (2.2.69)
and AE= RT { 1 - 1 1Al {(2.2.70)
2r2

n<F Co*wao CR*VwDR

and $ = -7 (2.2.71)
4
So Z(w) = RT { 1 - 1 }exp (-jm) (2.2.72)
2p2 S5 b 4
n<F Co* wDo CR* wDR

and this is the Warburg Impedance. It has a phase lag of 45° and so
its equivalent circuit element is a resistor and capacitor of equal
magnitude impedance in series. The magnitude of the resistor and
capacitor also vary with frequency as m_%.

The Randles equivalent circuit can now be modified to include
the Warburg Impedance, see fig. 2.8. The Warburg Impedance can be

written as

W=owt- ja o (2.2.73)
where g =‘ﬁz RT { 1 - 1 1} (2.2.74)
2r2
2 n?F co*/ﬁ; CR*/ﬁE

and the total impedance can be written as

[ ]

= R, + {juCy; + [Rpy + awi- jaw‘*]‘l}'l (2.2.75)

=R, + (Rgy * ow b juw-i) (2.2.76)

(ijdl)(RCt + Gm”¥4: jcm-i) + 1

separating real and imaginary parts

= Re + (RCt + cm-i) -3 (cm_i) (2.2.77)

{1+ mioCdl) + j(mcleCt + micdlo)

multiplying top and bottom by the complex conjugate.

- 20 -
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- Re + {[(RCt+cm'*)(1+m50cd1)-(cw'*)(mcd1RCt+m*cdlo)1

- j{(om’i)(1+miccd1)+(RCt+cm“£)(mcleCt+m%Cdlo)]}

/{(1+m£0Cd1)2+(wC +wicdlo)2} (2.2.78)

a1Ree

= Re + {(RCt+cm-£)-j(cw_i+202Cd1+RCt2mCd1+2RthioCdl)}

/{(1+aw*cd1)2+m2(Rthdl+cm“5cdl)2} (2.2.79)

Two limiting cases are now considered.

{a) When charge transfer is important.

This is at high frequencies (W»0) or when diffusion is
unimportant (Di+w; o+0; W+0) and the electroactive species are
always at their Nernstian concentration at the electrode surface,

Equation 2.2.79 reduces to

ctCa1

2Cd12

Z =Ry * Rey - jwR2 (2.2.80)

1+ w?R

Ct
as g =+ 0

which if plotted in the complex plane as a function of frequency
gives a semicircle, see fig. 2.9, the radius of semicircle has
numerical value RCt or 1/m*Cd1 where w* is the frequency in Hz at the
maximum of the semicircle.

This type of complex plane plot is normally known as a
Sluyter's plot [32,33].

(b) When charge transfer is unimportant compared with diffusion,
i.e. when w » 0, equation 2.2.79 reduces to

- AT JO
Z= Re + R e tOu -jlow *+20 cdl) (2.2.81)

C

which again plotting in the complex plane as a function of
frequency gives a straight line at an angle of 45° to the real axis,
see fig, 2.9. ' Fig. 2.9 shows the combined effects of charge
transfer and diffusion. The actual spectrum obtained will depend on

the relative values of RCt and o.
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2.2.3,2 Impedance for a diffusion layer of finite thickness

As was mentioned earlier the above approach may not give the
correct low frequency behaviour as convection was ignored and the
diffusion layer was assumed to have infinite thickness.

A treatment which takes account of convection by making use of
the Nernst approximation, see 2.2.2 (ii), fig. 2.6, was given
originally by Llopis [34] and gives the following new expression

for the Diffusion of Warburg Impedance Z(w)

Z(w) = RT (l-j)m-%{ 1 _tanh[8y [(uw)] -
YZn2F2 C,*/D, Do
1 tenh[sy[Gu) 1} (2.2.82) |
. D
Cp*vDg R 1

tanh x -+ 1 as x + =

so it can be seen that as GN + »,Z(w) reduces to the old Warburg
impedance, which is convenient. It also reduces to the old Warburg
impedance as w - » and therefore has the same high frequency
dependence.

To find the low frequency limit or D.C. point

tanh x »+x as x>0
So Z(w) reduces to,w - 0

1
RT  (1-)w 2{__1 & [Tw-__1 & fiu} (2.2.83)

202 N [
Y2 n2F co*fﬁ; D, CR*/]K Dp
So Z(w) = R';‘ 2 1 - 1 8y (2.2.84)
w0 n<F CO*D0 CR*DR

which is a purely real resistance and as one would expect the impedance
returns to the real axis as the frequency tends to zero, which is in
contrast to the old Warburg impedance which tended to infinity at

45° to real axis as w>0.

The point at which the impedance returns to the real axis is the

ure resistance R
p dc!




Rdc = ZTZ 1 - 1 GN + Re + R
n<F CO*D0 CR*DR

Ct (2.2.85)

2.2.3.3 The Effect of the Electrode Surface Characteristics on the

Impedance Spectrum

The basic assumption in all the previous derivations has been
that the electrode surface is perfectly flat and homogeneous
physically and chemically.

This state of the electrode surface will never be achieved in
practice, except perhaps for the mercury electrode, for the following

reasons.

(a) The surface of the electrode may be composed of different
crystals faces and have dislocations and impurities, which may all

give rise to different electrochemical behaviour.

{b) The surface of the electrode may be partly covered with for

example oxides or adsorbed molecules and ionms.

(c) The surface of the electrode will almost certainly have some
degree of roughness and may be pitted by discharge or may even be
porous.

Also the electrode may participate in the electrode reaction so

its physical and chemical structure may change with time.

De Levie has given a comprehensive review of porous and rough
electrodes [35].

From a general point of view it can be shown that if the
local interfacial impedance of the wall of the pore is Z then the
global impedance of the pore is vZ. This would have the effect that
instead of the impedance spectrum being a semi-circle and a
Warburg line at 45°, it would be a quartercircle and a line at
224°, The spectrum may, however, have an intermediate
form between these two extremes, which would indicate an electrode
surface somewhere between being perfectly flat and being completely
porous.

A film on the electrode surface may also modify the impedance
spectrum, by acting as a capacitor in series with the rest of the

circuit elements, this causes the low frequency

- 23 -
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part of the spectrum to leave the real axis at a greater angle.
The combination of all these effects may make the spectrum difficult

to interpret.
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CHAPTER III

THE USE OF THE A.C. IMPEDANCE TECHNIQUE TO OBTAIN THERMODYNAMIC DATA
FOR THE CELL REACTION

3.1 Experimental Procedure

3.1.1 A.C. Impedance Apparatus

The impedance measurements were made using a Solartron 1250
Frequency Response Analyser (F.R.A.) in conjunction with the 1186
Electrochemical Interface. The F.R.A, was controlled by a Kemitron
3000 computer, which was also used for the acquisition of data,
which was then stored on disk for subsequent plotting and analysis.
The experimental set up is shown schematically in fig. 3.1.

As no reference electrode was available in the cells under test

REI was connected to SE.

3.1.2 Details of Cells Used

The cells used in this investigation were the Vidor Eternacell
(Crompton Parkinson Ltd., South Shields), size G4 equivalent size
1AA, capacity 0.4 Ah, rated load 18 mA, weight 8g, diameter 14.2 mm,
height 27.9 mm, volume 4.4 cm3 and size G52 equivalent size C,
capacity 3.2 Ah, at a current of 135 mA, weight 44 g, diameter 25.6 mm,
height 49.5 mm, volume 25.6 cm3®. The cell consists of a lithium
anode, separator and an inert cathode current collector spirally
wound with the anode connected to the outer can and the cathode
current collector to the metal pin in the glass to metal seal. The
current collector consists of carbon material acetylene-black -
specific surface area 76 m?/g - on an aluminium mesh with a P.T.F.E.

binder, at which the cathodic reaction
250, + 27 == $,04% (3.1)

takes place. The electrolyte consists of LiBr and S0, dissolved in

acetonitrile which results in an internal cell pressure of approximately
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Schematic representation of experimental set up.
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60 PSI at room temperature, The SOz forms a protective film of
lithium dithionite Li,S,0, on the lithium which inhibits any reaction
with the acetonitrile and parasitic corrosion of the anode on open
circuit and accounts for the extremely long shelf-life of these cells,
A further consequence of this dithionite film is a voltage delay on
discharge after a period of storage.

All the cells used in this investigation were in the new,

undischarged state.

2.1.3 Procedure

Each cell was placed in a constant temperature environment
(2 glass container immersed in a water bath) and left for several
hours to equilibrate before any measurement was made.

The impedance spectrymof the cell was then recorded and when this
had been completed the open circuit voltage was measured. The
temperature was then changed by a few degrees and allowed to
equilibrate again before the whole procedure was repeated. None of
the integration facilities of the F.R.A. was used so each measurement
was taken over just one cycle and the frequency sweep was continued
until the first semicircular part had been completed after, typically,
only a few minutes. This procedure gave sufficient accuracy as only
the diameter of the semicircle was required for the eventual
analysis of results. The fgquency was swept from 60 kHz to 60 mHz

with ten steps per decade.
3.2 Results

Fig. 3.2 shows how the impedance spectra of a typical cell
changes with temperature and Fig. 3.3 shows how the open circuit
potential varies over the same temperature range.

The charge transfer resistance, 6, is obtained from the diameter
of the semi-circular shapes in the impedance spectra. These shapes
were slightly flattened semi-circles which is probably due to the
fact that the lithium electrode has some roughness and is not ideally
smooth [35]. Regarding the curves as circular sections, the
diameter and hence © can be readily obtained graphically using simple
geometric techniques. This does not give an absoclute value for 6,

but it is sufficient for our purposes here.
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Figure 3.2
Impedance loci for the same cell at six different temperatures
showing how the diameter of the semr-circle increases with decreasing

temperature. In all loci the frequency sweep goes from 60 hHz to

60 mHz with ten steps per decade. The temperature for the largest
locus is -1.8°C and the temperatures go 4.2, 7.6, 14.0, 20.0 and 24.4
as the loci decrease in size.
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Plots of EvT for several cells. The slopes were calculated

using the linear portions where possible but it can be seen that the
Plots give neither good straight lines nor parallel slopes.



3.3 Discussion

For the reaction

the exchange current density io is given by

. - o l1-a0 o
and -
i = RT
0
nF Rct
where n 1is the valence charge number

F the Faraday constant
k° the specific equilibrium rate constant

C_ concentration of 0 in (2.2.1)

(2.2.1)

(2.2.25)

(2.2.16)

o
CR concentration of R in (2.2.1)
t specific charge transfer resistance (Rct = E x 6)

¢ charge transfer coefficient

£ surface area of electrode
the anodic reaction can be written as

2.
2Li + 8204 ——— LipS504 + 2e

and equations 2.2.25 and 2.2.16 become

0 l-g 20 a

i, = 2Fk° Cpsos,0, ‘i Cs,02°
and
i, = RT
2FoE

o ) Lt
As k7 1s a rate constant, an Arrhenius equation

ko = A exp { -AUaCt
RT

(3.2)

(3.3)

(3.4)

(3.5)




. . act .
can be written where 4 is the pre-exponential factor and AU t is the

activation energy at constant volume, Since the cell is a closed vessel,
the pressure is certainly not constant but varies from 10 to 60 PSI in
the temperature range used. Equations 3.3 and 3.5 are then combined

and the logarithm is taken to give

l-a 20 o act _ _
1In {?FA CLizSzOq CLi CSZOE;} - AgT = 1n {gga} Ing

(3.6)

For the same cell in the same state of charge the only variables are

T and 8. So equation (3.6) indicates that a plot of ln{ RT %vs. 1/T
au?ct 2F6
should give a straight line of slope - T The results of this

plot for each cell are shown in Table 3.1 and the plots themselves in
Fig. 3.4. The slopes for each cell are in fairly close agreement
with a mean value of -8600 * 500 which gives a value of AUPCT as
72 £ 4 kJ mol™ L,

The variation of the open circuit potential with temperature
(from which the thermodynamics of the reaction is obtained) was also

investigated and the results are shown in Fig. 3.3.

Since
BAJ
oa = -8 (3.7
).
and AA = - EF (3.8)

where A is the Helmholtz free energy, S is the entropy and E is the

equilibrium potential.

We have
3E] _ AS
ETJV T 2F (3.9)

So plotting E vs. T should give a straight line of slope AS for the
2F

present 2-electron process. The results of this plot are shown in
Table 3.1. The mean value of these slopes is (-1.6 # 0.2) x 1073 VK1,
So AS = -300 % 40 Jmol ! K'l. As can be seen, these plots have
linear portions. Occasionally the potential was observed to drop
suddenly and then recover. This was interpret ed as corresponding to
the rupturing of the passivating film caused by the performing of the
impedance experiment (experimental programme - see above) followed by

a slow repassivation. This is supported by observations of the low

- 28 -




13

Plots of 1n (RT/ZF8) vs 1/'I‘ for five cells all showing good

fits to a straight line and nearly parallel slopes.
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frequency electrode impedance. The slope of the Warburg line coming
off from the high frequency semi-circle was observed to fall when the
potentials dropped and then increased when the potential recovered to
a value greater than 45° which indicates the presence of a film. It
was not possible to ascertain the cause for the behaviour in this
sequence of experiments. The outcome of this is that the values of
the slopes for each cell are not always in very close agreement and
thereby reduces the confidence which can be placed in the values of
AS calculated.

It is interesting that, infSpite of the uncertainties inherent
in the thermodynamic estimations, the kinetic charge transfer
resistance, 9, is independent of these variations in potential as
all the cells gave very good straight line plots defining the
characteristic activation energy, moreover these energies agree very

well with each other.
3.4 Conclusions

Results indicate that, although the open circuit potential is
occasionally uncertain due to film formation and subsequent
disturbance on the anode, the charge transfer resistance, 6, seems
to be relatively insensitive to these variations and this indicates
that the properties of the cell in use, i.e. when current is being
drawn, will have considerable predictability over an extended

temperature range.
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TABLE 3.1

EvT 1

CELL vkl x 1073 1n (RT/ZF8) v /T
A -0.77 * 0.3 -8900 = 800
B -1.02 * 0.1 -8800 % 700
C -3.29 + 0.7 -3600 % 1800
D -1.68 + 0.2 -7900 £ 500
E -1.47 + 0.1 -8900 + 900
mean -1.6 + 0.2 -8600 e o 500

)

Summary of slopes of the plots of EvT and In(RT/ZF6) v 1/T for
five cells, Cells A, B and C are G52 size and D and E are G4 size.
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CHAPTER IV

THE USE OF THE A.C. IMPEDANCE TECHNIQUE TO INVESTIGATE CELLS AT
DIFFERENT STATES OF CHARGE

4.1 Introduction

Hughes et al [36,37] have reported an impedance study of small
Li/S02(C) cells (LO 32 S units manufactured by Duracell Batteries Ltd.)}
containing an acetonitrile based electrolyte solution over a range of
states of charge.

The cell behaviour was described on the evidence of a relatively
simple impedance locus (out-of-phase component of the electrode
impedance displayed against the in-phase component). The assumption
that the lithium was the more irreversible of the two electrodes was
considered to be correct since the impedance data conformed to a
simple Randles conversion for charge-transfer followed by diffusion in
solution. Moreover the changes in the impedance with reactant
concentration varied in the manner expected for a system in which the
lithium dominated the cell behaviour. Specifically from the change
in the charge transfer resistance, 8, (corrected for the effective
anode area) as the cell discharged, an estimation of the charge
transfer coefficient for the Li+/Li exchange in the acetonitrile-50;
solution (0.37) was made. (The product 6Cy;of the apparent charge
transfer resistance 6 and the double layer capacitance Cyywas found
to be a very good assessment of the residual capacity of the cell.

It has since emerged, from monitoring the performance of other
commercially produced Li-S0;(C) cells, that the previously reported
behaviour [36] is not consistent throughout the range of manufacturers.
For example, differences in the impedance of comparable units produced
by Crompton Parkinson Ltd. included an elongation in the charge
transfer semi-circle. This, together with the appearance of an
additional shape in the complex plane plot suggested that the
controlling mechanism of these cells' behaviour might be consistent
with a porous electrode at which adsorption was a significant process.
It was decided that the most convenient was to obtain a detailed
study of the system was to incorporate a third (reference) electrode
within the cell and so obtain the component (impedance) behaviour of

both electrodes,
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4.2 Experimental Procedure

The experimental set up for measuring the impedance spectra was
the same as that described in the previous chapter except the
reference electrode input to the 1186 Electrochemical Interface REI
was connected to the reference electrode of the cell instead of
being shorted to the counter electrode input SE (see Fig. 3.1).

The cells used were Vidor Eternacell size G20 (capacity 7.5 Ah,
rated load 1000 mA) specially modified to contain a lithium reference
electrode. This was introduced into the cell via glass seals on the
plane end of the cy.lindrical unit so that it lay tightly sandwiched
between the anode and cathode but isolated from both by the micro-
porous polypropylene separator. As such, it formed a rather complex
thin layer cell. ‘

The cells were discharged galvanostatically at 1A for periods of
30 min. and allowed to equilibrate for three days before any impedance
measurements were made.

The impedance spectra of the anode with respect to the reference
electrode, and the cathode with respect to the reference electrode,
were obtained after each discharge step. In this way, 15 states-of-
charge were investigated. In order to confirm that the third
electrode was behaving as a true reference electrode, the two
spectra were added together point by point, vectorially, and compared
with the impedance of the whole cell. Fig. 4.1 for the undischarged

cells shows this to be the case.

4.3 Results and Discussion

Figure 4.1 shows that the anode and cathode impedances which go
to form the total cell impedance are of the same order of magnitude
although, in general, that of the cathode was somewhat greater. Thus
these particular cells were rate-controlled by both anode and cathode
and it is not possible to ignore either electrode in a consideration
of the cell behaviour.

The impedance plots of the cathode with respect to the
reference were fitted to a model using the Taylor theorem approach
[35] and the component processes isolated [38,39]. The model
consisting of a Randles circuit modified for electrode roughness and
porosity used by Hughes [36] did not give a sufficiently good fit in
the present cases. The best fit was found by modifying this model
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to incorporate adsorption on the cathode surface [40]. The presence

of a dielectric film on the surface [39] was represented by a series
capacitance C,- It was not found necessary to associate a resistance
parallel with Cq in order to decompose our results (for an electrode
perturbation greater than the 3 mV used in these experiments or for
frequencies approaching d.c. operation this would have been necessary).
A series inductance was also added to account for effects which arise
from the cell geometry and internal connections. A circuit analogue
for this model is shown in Fig. 4.2.

The isolation of the 9 circuit elements demanded that as many
frequency values as (reasonably) possible to be investigated. In this
case 60 were used, which gave sufficiently precise values of the
components to be estimated with an acceptable least squares variance
of the computed values,

Fig. 4.3 shows a typical example of the experimental data with a
fitted curve. The validity of the model was confirmed by the
excellence of the fits obtained for all states of charge.

Computed equivalent circuit component values are given in Table
4.1,

The variations of the components as charge is withdrawn from the
cell is interesting and yields information regarding the cathodic
processes., The double layer capacitance, CdL’ has an initially low
value corresponding to the presence of an intruding film of lithium
dithionite on the surface. This masking film very rapidly breaks on
discharge to yield a relatively constant active surface. The value
of CdL rises to a maximum of ~4 x 10 2F just before the cell is
completely discharged, then falling to a value of 3 x 10 3F. This
great increase in electrode capacitance towards the cell exhaustion
point possibly indicates the break-up of the cathode; the intrusion
into the inner regions of the carbon crystallites leading to the
final passivation of the electrode. This picture is supported by the
parameters Cs, Rp, Cp which all indicate the break-up of the cathode
structure as available charge in the cell is exhausted.

The charge transfer resistance, 8, is complementary to the
series and double layer capacitances Cg and CdL' Initially high,
indicating the presence of a retarding film, 6 rapidly falls on the
removal of charge from the cell becoming more or less constant at
0.05¢ throughout the whole of the region of useful discharge. This
again suggests that the initially protective film is readily removed

and that the reduction of S0z occurs at a surface of approximately
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constant active area. Thas picture is again confirmed by ¢ the

Warburg coefficient which written for:
0 + neT &= R, (2.2.1)

o = (¥2/2) (RT/n2F2) [CoPy) ! - (cR/D;)‘l] (2.2.74)

for the present system in whichLi,S;0, is fairly insoluble and the

other reactants are in excess this equation becomes:
g = (1/v2) (RT/n2F2) (ACR‘/DE)'I. 4.1)

Where Cp and Dp represent the concentration and diffusion coefficient
of 55042 and A is the effective area of the electrode. In the
present case the diffusing area of the electrode is relatively low
initially and on discharge rises to a fairly constant value.

The inductive component of the electrode impedance is clearly a
complex quantity. This, in our opinion, is most likely linked to
physical geometric modifications within the cell which occur as a
consequence of volume changes within the carbon. This material is
disposed on an aluminium mesh and it is reasonable to ascribe the
major part of the inductive component to this source.

The need for the parallel (Rp-Cp) circuit in the analogue
representation is interesting for it was not needed in the earlier
investigations [36]. It represents the presence of some process in
the cathode reaction which exerts a significant current control in
the experimental frequency range. The presence of an adsorbed
intermediate such as S0,  or 50,27 at the electrode or reactions of

the type
S0, + & —» soz‘ads (4.2)
soz'ads + SOZ_ads — §50,2" (4.3)
or
S0 + &6 — Soz'adS 4.4)
8027495 * & > 50277 (4.5)
S0y + 5022'alds ———>  §50,2° (4.6)
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would imply the observed reaction model, however, it is not possiblé
in this investigation to decide which of these (or others} is the
appropriate mechanism., However, the interesting point is in the
qualitative differences betweén this and the previous investigation
indicates significant behaviour differences among the various
available carbons (and catalysed carbons). A final point which arises
from the work is, that whilst the product OCL was a useful parameter
for residual capacity assessments for certain cell types it was very

insensitive in this case (Table 4.1).
4.4 Conclusions
(i) The impedances of both anode and cathode are of the same order.

(ii) The cathode could be represented by a complex model based on
charge-transfer and diffusion with allowance for adsorption and

electrode films.

(iii) At high frequencies the geometry of the system gives rise to an

inductive branch in the impedance locus.

(iv) Initially the cathode is covered by a thin layer, probably of
Li»S8504. This is partially removed on discharging.

(v) There is evidence of serious cathode disruption when the cell

has been drained of useful charge.

(vi) There is strong evidence for adsorbed intermediates on the

porous carbon cathode matrix.
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CHAPTER V

THE USE OF THE A.C. IMPEDANCE TECHNIQUE TO INVESTIGATE PROCESSES IN
| CELLS AFTER CHARGING

5.1 Experimental Procedure

_In order to investigate the effects of charging on both anode and
cathode cells with reference electrodes, identical to those described
in the previous chapter, were used.

The procedure for the obtaining of the impedance spectra was also
the same as the previous chapter.
The cells were charged galvanostatically at rates ranging from
1 ampere to 6 amperes for periods up to 30 minutes.
The impedance spectra and open circuit potentials were
obtained before charging and at various recovery times afterwards.
Only charging at the highest rate of 6 amp when cells would get

very hot and eventually vent or explode caused any safety hazard.

5.2 Results and Discussion

On charging the open circuit potential increased from 2.99 V for
a new cell to 3.50 V, which was independent of the total charge
passed provided it was at least 1 A minute. The potential then
decayed over a period of several days to its original value of 2.99 V.

Figs. 5.1 - 5.2 show spectra for a new cell and fig. 5.3 - 5.4
show spectra typical of many obtained after different amounts of
charging and recovery times (between which there was very little
variation).

Even though the potential may have returned to its original value
the impedance spectra did not return to those of the new cell, and
in fact, performing the impedance experiment caused the cell potential
to rise to the value after charging.

Comparing the spectra of a cell before and after charging

several quite dramatic changes can be seen to have occurred:

(1) The size of the anode spectrum is now much smaller and is no

longer significant compared to the cathode.
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Impedance spectrum for the anode with respect to the reference
for a new cell. The frequency sweep in this and all other spectra
goes from 60 kHz with ten steps per decade.
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(ii) The cathode spectrum is als¢ reduced in size, but not by as
much as the anode. Another difference is that the spectrum now |
consists of one semi-circle instead of two.

The anode is a simple metal/metal ion exchange across the metal
solution interphase in a thin layer cell. Thus a semi-circle is
followed by a Warburg shape which returns to the real axis at low
frequency. The diameter of the semi-circle is quite large before
any charge is removed from the cell; after this has occurred the
diameter shrinks considerably. This can be interpreted if a film of
lithium dithionite initially masks the electrode and is stripped away
as soon as reductive charge passes across the electrode.

The cathode behaviour clearly shows evidence for two processes
which constitutes the electrode process which is blocked for one of
the electrode species. This latter conclusion follows from the
vertical line which constitutes the impedance plot at low frequency.
This is almost certainly associated with the difficulty of
reconverting the dithionite ion back to S0z. Thus the sulphur
dioxide reaction is a two-step process, the second stage involving
the production of an intermediate.

The reaction at the carbon electrode, which occurs when the

electrode is oxidised anodically must initially be
2Br -+ Brp+ 2e (5.1)

Since no dithionite is available for oxidation, the bromine is

removed by reaction with S0, present in the electrolyte,

S0, + Br, =+ S03Brp (5.2)
to form sulphuryl bromide which itself provides an effective
depolariser for the lithium system. The reduction of sulphuryl
halides is very complex. Numerous products which affect the

stability of the system have been reported. However, it seems

likely that the main depolarising reactions at the electrode are
SO,Br, + 2 e S0, + 2 Br (5.3)

and

Br, + 2e + 2 Br’ (5.4)




It is probably reaction (5.3), with SOBr; adsorbed at the carbon
electrode, that provides the relatively stable open circuit
potential of 3,50 V. The overall reaction at this high potential is

therefore
SOBrp + 2Li <« SO, + 2 LiBr (5.5)

The impedance spectra will clearly be affected by the presence of
these oxybromine species_and the changes observed in these spectra
are due to this cause. It is not possible to check unequivocally
the identity of the bromine species (which may indeed by transitory)
in the present experiments.

The charge transfer resistance, Rct’ is given by equations

2.2.16 and 2.2.25
R., = RI/(n2FA°Co*%C *' "A) (5.6)

So for the reaction at the cathode (5.3) the charge transfer

resistance will be given by
R, = RT/ (22F2k° [S0,Br,] 1" [50,1% [Br~1%%A) (5.7)

The high concentration of LiBr and SO, within the cell will ensure a
relatively small value for Rct' For the new cell (uncharged) the

reaction at the cathode is
250, + 2 = 52042- (1.9)
and RCt will be given by

R, = RT/ (22F2k°[50,12(1"%) [3,0,27]%4) (5.8)
the concentration of [S,0,27] will be very low, causing R,y to be
large.

Comparison of figures 5.2 and 5.4 does indeed show that the
diameter of the first semi-circle and hence the charge transfer
resistance is smaller for the charged cell.

Comparison of the impedance spectra at the anodes, figures 5.1
and 5.3, shows there is about a fifty-fold decrease in the size of

this impedance spectrum after charge and this can only really be
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explained by a fifty-fold increase in effective area of the
lithium electrode due to the removal of film, prokably Li»S,0,., The
other semi-circle in both impedance spectra of the anode, is

probably the Warburg impedance returning to the real axis.
5.3 Conclusions
The fact that it is possible to charge the Li/S0» system from

its 'fully charged' state in comparative safety, provided that care

is taken, suggests that the further activation of the Li/S0; cell is

a commercial possibility.




CHAPTER VI

THE RAPID ESTIMATION OF IMPEDANCE USING PSEUDQ-RANDOM NOISE

6.1 Introduction

Previous publications [41-43] have shown that the impedance data
of electrolytic cells can be used to yield useful electrode kinetic
and stored charge assessment data. The hardware designed for the
measurement of different parameters indicating these characteristic
quantities for a range of cells have been described [44,45]. These
tests were based on impedance measurements at one or two frequencies.
More accurate and reliable estimations could be made, if there is
more data available over a range of frequencies, around a specific
portion of the cell impedance spectrum, as recently observed [46] in
the case of sealed lead-acid cells with specific aircraft applications.
The equipment used for this purpose should be compact and produce the
impedance data over the required frequency range within a short time.
The conventional impedance measurement apparatus operating at single
frequencies as Frequency Response Analysers (FRA) would be bulky,
too slow and expensive for this purpose.

Since the perturbation signal generated by an FRA is
sinusoidal, the impedance data obtained during a single measurement
would be lamited to a specific frequency and the duration of the
measurement should at least be equal to the time period of the A.C.
signal. The execution time of a frequency sweep would therefore be
equal to the sum of sampling times the FRA spends at each individual
frequency., - 1If the perthrbation signal contained a number of
frequencies, as in the case of random noise, the cell voltage and
current response acquired over the time period of the lowest frequency
component of the signal would provide cell characteristics of more
than one frequency in a single data acquisition. The number of
frequencies studied will be equal to the number of harmonics
contained in the perturbation signal and will range from the
frequency of the fundamental up to the highest harmonic, which in
turn depends on the duration of the data acquisition. The subsequent

impedance calculations via the Fourier Transformation of cell
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response are carried out without the need for the cell heing
connected to the apparatus. The processing time depends on the
lengths of the data arrays, efficiency of the computational algorithms
and the hardware but not on the number of frequencies contained in the
signal. Since the total time required is independent of the number of
frequencies unlike the single frequency sinusoidal measurement, the
use of random noise seems to be advantageous in the cases where the
speed of measurement is important.

Mini-computers have been employed previously [47-49] for this
purpose, using different random noise techniques [50-52]. Due to
high costs and large sizes, it is not possible to incorporate these
computers and noise generators into test equipment. In this chapter
the implementation of random noise impedance measurements on a Z80
based 64 k byte micro-computer is described. It was also envisaged
that such a system could eventually be installed in a unit

dedicated for general on-line applications.

6.2 Instrumentation

The hardware for the measurement of impedance using random noise
should consist of a noise generator, a potentiostat for the perturbation
of the cell potential and a recorder for the acquisition of the
voltage and the current response of the cell as a function of time.
The time domain cell responses have to be transformed to the frequency
domain via a Fourier Transform prior to the calculation of the
impedance and this demands sufficient computational capability
associated with the experimental set-up. As prototype test equipment
for the implementation of this technique an electrochemical interface
(Solartron 1186) was used as the potentiostat and the noise generation,
data acquisition and the computations were carried out on a Z80 based
micro-computer (Kemitron 3000) equipped with a 12 bit bipolar
digital to analogue converter (DAC) with full scale cutput of * 1,023V
and settling time Ins and twe 12 bit bipolar analogue to digital
converters (ADC) with adjustable gain amplifiers (x 10, 100, 1000}
with full scale input of + 10.23V and conversion time 25 ps operating
undexr Digital Research CP/M environment. Start conversion input of
both ADC's were connected together such that start conversion command
given to one of the ADC's would also activate the other, enabling
the simultaneous reading of the voltage and current across the test
cell. The voltage output of the DAC was connected to the external
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input (x1) of the potentiostat via a variable low pass filter

(Barr and Stroud Ef2) which was tuned above the highest frequency
component in the noise signal to avoid the steps of the 'stair case’
type of digitally generated wave forms. Fig. 6.1 shows a schematic
diagram of the apparatus used in this work. In the actual application
however, a dedicated unit can be built around a micro-processor
associated with an EPROM and 2 single card potentiostat with

sufficient power.

6.3 Run Procedure

Prior to the experiment the open circuit voltage of the cell was
backed by the polarisation control of the potentiostat and the d.c.
levels of the voltage and current output signals were minimised using
the built in controls of the 1186 interface. A number sequence
Tepresenting a suitable random noise signal was created in the
computer memory as described below or by the reading in of a
previously created set of numbers from the magnetic disc. The data
acquisition cycle consisted of the output of the above numbers through
the DAC to perturb the cell potential and the simultaneous recording .
of the cell voltage and current response via the two ADC's and the
procedure was repeated for all the numbers in the sequence. The
period of the data acquisition, hence the frequency of the fundamental
harmonic of the noise voltage was varied by the insertion of variable
time delay between the output and input of voltages. The cell
response data may be averaged, at the expense of time, to minimise
errors due to parasitic noise by the repeated execution of the data
acquisition cycle, after which the experiment ends and the cell may
be disconnected.

The subsequent computation involved the Fourier transform of the
two real valued data arrays containing the time domain representation
of the cell voltage and current responses via a Fast Fourier Trans-
form (FFT) algorithm to cobtain the amplitude and phase of the
respective signals as complex data at individual harmonics in the
frequency domain. The cell impedance was calculated by the complex
division of the frequency domain voltage data by current at each of
the harmonics. Even though it was possible to calculate the
impedance at all the harmonics resulting after the FFT, impedance
calculations were limited to those harmonics originally incorporated
in to the noise signal as the magnitudes at other harmonics were too

small and contained mainly rounding off errors.
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6.4 Theory

6.4.1 Fast Fourier Transform (FFT)

The Fourier transform of a set of N time domain numbers Xy s

t=0, 1,..N-1, is a set of N frequency domain components Xgs
f =0, 1..N-1, where

N-1
Xg = > X, exp(-i2nft/N) (6.1)
t=0

and the inverse transform is defined as,

N-1
X, = 1/N Ef-0 xf.exp(iZﬂft/N) (6.2)
3
where i = (-1) . The Fourier transform calculated directly from

equation 6.1 would involve N2 number of complex multiplications and
additions requiring about 800 seconds for a 512 point transform on
a 8 bit micro-computer. In addition two data arrays Xy and Xg have
to be created, increasing the storage requirements of the programme.
An algorithm involving fewer computational steps, operating
entirely within the array x, to replace its original contents by
the Fourier transformed values of X¢ has been developed by Cooley
and Tukey [53]. This required the splitting of the N numbers of x,
in to two N/2 long number sequences and the combination of the
Fourier transform of the two half sequences to obtain the required
result involving (N2+N)/2, almost half the original number of
operations, If N is an integer power of 2, i.e. N=2M, then repeated
splitting of the half sequences till they contain only one number
and since the Fourier transform of a single number is the number
itself, the total number of mathematical operations can be

reduced to NM. In this case the repeated splitting of the data
array reduces to the shuffling of data with their 'bit reversed!'
addresses within the data array as shown below for an array of 8

data points.
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Original order Binary Reversed Shuffled order

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

This shows that the data originally stored in location 1, for example
must be exchanged with location 4 and so on. The shuffled numbers
are manipulated according to the basic FFT algorithm involving a
complex multiplication followed by an addition or a subtraction on
pairs of points and the process is repeated M times. As the basic
operation involved only 2 points, this is called the radix 2 FFT.

The processing time can be reduced by the use of radix 4,8 etc.
algorithms at the expense of programme memory. An important special
case arises when the time domain number sequence is entirely real, as
the cell voltage and current responses encountered in this work. The
N element real valued data array can then be treated as a complex
array of N/2 elements and the FFT of this followed by further N/2
operations [54] would enable the Fourier transformation of the real
number sequence invelving (MN+N)/2 operations compared to the original
N2, This procedure makes the computational time for a 512 point data
array 100 times faster and does not require additional memory for the
storage of intermediate and final results as all calculations are
done within the original data array. Hence an FFT algorithm of radix
2 was adopted in this work for the Fourier transformation of the cell

voltage and current data arrays.

6.4.2 Synthesis of Random Noise

The theory of FFT shows that the time taken for the transform
depends on the number of data points in the time domain sequence. In
view of the computational economy, both speed and storage, it is
preferable to deal with smaller data arrays. However, according to
the sampling theorem, all frequency components completely

characterizable by any data acquisition process should contain at least
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two points per cycle, Presence 9f higher harmonics containing less
than 2 points per cycle in the time domain would give rise to
erroneous frequency components called 'aliasing! during the FFT, which
will be interpreted as a series of low frequency components. Thus for
the perturbation signal to contain at least two decades of frequencies
from the fundamental to the 100th harmonic, it should be made up of a
minimum of 200 data points. Since the accuracy of the high frequency
data increases with the number of points defining a cycle (>2), it
was decided to include at least 4 points in the highest harmonic,
making the data array contain 400 points. Since this number also
should be an integer power of 2, the data arrays in this investigation
contained 512 points making the highest harmonic to be the 128th.

The FFT of a 512 point time domain sequence would always give
512 components in the frequency domain with the lowest frequency and
the frequency separation equal to the inverse of the data acquisition
period. Whenever the time domain data contain incomplete number of
cycles of a particular harmonic, its Fourier transform will consist
of a principal component and a set of side bands which can interfere
with actual components present in the data. This error known as
'leakage' can be easily avoided in the case of digitally generated
wave forms by the exclusive use of integral numbers of harmonics in
the signals.

In accordance with the foregoing remarks integers in the range
1-128 were used as harmonic numbers for the calculation of 512
point number sequence representing the noise signal. In oxrder to
give equal significance to all the frequency components their
amplitudes were kept constant and each harmonic was associated with
a random number in the range 1-360 as the phase angle. The
calculation involved the summation of the function Sin (wt + o) where
w is the angular frequency and ¢ the phase angle for each of the
harmonics over a period of 512 time intervals. Even though this
procedure is relatively simple, the time taken for the calculation
depends on the number of harmonics included in the signal and will be
about 45 seconds for 15 harmonics. This may be unsuitable if the
signal should contain more harmonics and repeatedly synthesised
prior to the measurements. A more efficient method would be to
represent the harmonics in the form of frequency domain data and
perform the inverse Fourier transformation to obtain the required
time domain data. This was done by placing zeros in a 512 element

complex array and making the real and imaginary parts of the
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elements corresponding to the required harmenics to he Cos @ and
Sin a respectively, The time taken for the inverse Fourier
transformation of this array was about 11 seconds and independent of
the number of harmonics present. Hence the latter method was used
in this work for the calculation of the random noise signal. Either
the real or imaginary parts of the resulted complex array can be used
as the time domain sequence and the two differed only by a phase
angle of 90°.

In order to avoid errors due to Faradaic non-linearity it is
important to use low perturbation signal amplitudes, typically about
5 mV. Hence the time domain number sequence was scaled such that
amplitude associated with each of the harmonic was 5 mV, Failure to
impose this limit renders the interpretation of the impedance data
impossible using the generally accepted electrochemistry theory and
introduces frequency components of second and higher order harmonics
in the current response. The second difficulty can be solved in
conventional impedance measurements by the use of tuned amplifiers
and signal correlation techniques. But since more than one frequency
is studied in measurements with random noise, the coincidence of
higher order harmonics with frequencies originally present in the noise
signal will reduce the accuracy of the Fourier transformed data. This
may be avoided by the use of prime numbered harmonics for the
generation of the noise signals, limiting the choice of harmonics in
this work to be 29 primes in the range 3-113. Since the signal
amplitude was also kept below 5 mV, the choice of primes was only a
precautionary measure. The superimposition of over 20 frequency
components of amplitude 5 mV can give rise to peak-to-peak voltages
over 100 mV in the composite wave form and depending on the impedance
of the test system and the sense resistor it may produce current
signals beyond the input limit of the ADC. It may even be the case
with the voltage sensing ADC under higher amplification. By the
careful choice of sense resistor and ADC gains it is possible to
overcome these difficulties. In this work, purely for technical
convenience, a sense resistor of 10 Ohm and fixed ADC gains of 10 were
used limiting the number of 5 mV frequency components to be used in
the noise signal to about 20. Hence most measurements reported in
this work were carried out using a noise signal made out of 15 prime
numbered harmonics evenly spread in the range 3-113. All these limits
depend on the number of data points chosen for the arrays and on the
choice of hardware and they may be extended to suit any particular

application.
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6,4.3 Computer Software

The main programme for the control of random noise experiments
was written in MICROSOFT FORTRAN 80(F80) and the modules for the
execution of the FFT and the data acquisition were written in Z80
ASSEMBLER with calls to mathematical routines of the F80 library
FORLIB. The programme offered the options to

(a) generate the number sequence corresponding any random noise signal,
(b) read noise data from disc, and

(¢) measure impedance.

It also had the facility to perform the FFT of data at intermediate
stages and their graphical display. For reasons described earlier in
theory the lengths of data arrays were restricted to 512.

For the generation of the randem noise number sequence any number
of harmonics in the range 1-256 with a choice of prime, even, odd or
mixed numbered harmonics was available. The values of random phase
angles were obtained from an arbitrary position of an array containing
256 random numbers in the range 1-360, which enabled the generation
of different noise signals for successive experiments. It also had
the facility to save the noise data on disc for subsequent use. The
disc access time was reduced by the saving of only half the data array
as integer numbers and during the read operation the remaining half
was filled with the reflection about the abscissa of the first half.
Since this was possible only with odd numbered harmonics, noise
signals containing even numbered harmonics could not be saved and had
to be generated prior to the measurements. Prior to the disc write,
the real data were converted to integers by the multiplication of a
suitable scale factor such that the highest number in the sequence
contained at least 4 significant figures. The relevant details of the
noise signal, viz. scale factor, harmonic numbers, etc. used for the
generation of the data were also written into the disc file to be
recorded by the programme during a subsequent disc read operation.

The impedance run option could be selected only after the
generation or disc reading of the noise data. The programme operated
through a menu for the control of experimental parameters such as the
signal amplitude, ADC gains, sense resistance of the potentiostat and
the number of data acquisition cycles to be executed. The menu also

controlled the period of the data acquisition cycle via a parameter
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defining the time delay of the data acquisition and displayed the
minimum and maxium frequencies that could be covered with the
currently generated noise signal in conjunction with the selected time
delay. This allowed the convenient selection of the delay to suit a
particular experiment and an indication of the setting of the low pass
filter. The impedance measurements could be carried out as an 'auto
run' where the data acquisition was automatically followed by the FFT
of the signals and the impedance calcubtion or as 'stepwise run'
where the data could be graphically examined after each of the above
stages. Prior to the data acquisition the random noise data sequence
was scaled according to the required signal amplitude and converted
to 12 bit integers for the direct loading in to the registers of the
DAC. During the data acquisition these integers were used for the
generation of the voltage signal (DAC) which was applied across the
cell. Next the programme entered the time delay loop of required
length and issued the start conversion command for one of the ADC's
which activated the simultaneous reading of cell voltage and current
response. The resulting 12 bit ADC data were stored in memory as
signed integer numbers and the data acquisition was continued for 512
points. If more than one data acquisition cycle was entered, the
programme repeated the procedure while performing a memory addition
on the cell response data. Since the maximum ADC input was 4097 and
the maximum permissible 16 bit integer was 32767, the maximum number
of data acquisition cycles that could be entered was limited to 8

and the acquisition could be terminated at the end of any completed
cycle by the press of a key on the console. At the end of the data
acquisition the cell response data were transfered to the real
elements of two complex arrays of length 512 and performed the FFT
operation on the current and voltage data in the time domain. The
computational time for each 512 point FFT was.about 8 seconds. The
cell impedance at the harmonics used for the generation of the noise
data was calculated by the complex division of the corresponding
frequency domain cell voltage data by current data and displayed in
the form of a Sluyter's plot. The actual frequencies associated with
the harmonics were calculated from the frequency of the fundamental
(inverse of the data acquisition period). The time taken for the
acquisition of a single cell response in the absence of additional
time delay was 142 ps making the minimum data acquisition period
containing 512 points to be 73 ms and hence the fastest possible
fundamental frequency to be 13.7 Hz. Thus by the use of the 128th
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harmonic, the highest frequency achieyed in thig work was 1754 Hz,

By the use of maximum time delay possible under the present software,
the lowest frequency achieved was 5 mHz. It should be noted
however, that the range of the frequencies covered in a particular

experiment was always limited to about two decades of frequencies.

6.5 Results and Discussion

Fig., 6.2 is a graphical representation of a random noise signal
made out of 15 prime numbered (3,5,7,11,13,19,23,31,41,53,67,79,89,
101 and 113} harmonics, each associated with an amplitude of 1000 mV
and random phase. Fig, 6.3 is its FFT up to the 120th harmonic
showing 15 peaks of equal heights at the respective harmonics. This
signal was scaled down to 10 mV and the time delay was chosen such
that the sampling period was 0.103 s and the frequency range was 29-
1092 Hz corresponding to the 3rd and 113th harmonic respectively.

The low pass filter was set at 1400 Hz and impedance measurements

were carried out on a Li/S0, cell (Vidor G 52/12). The impedance
spectrum of this in the range 2kHz-5mHz measured with a Solartron

1250 FRA is shown in Fig. 6.4. The voltage and current across the
cell as measured with the ADC's in response to the random noise

signal are shown in Fig. 6.5 and 6.6 respectively. Even though the
voltage across the cell should be identical to the computer

generated noise signal the two wave forms.in Fig. 6.2 and 6.5

differ in minute detail from one another. This is due to the signal
modification, especially in phase caused by the electronic circuitry
and it is incorrect to assume that the two are the same. This fact

is clearly seen in the FFT of the cell voltage Fig. 6.7, which still
shows the 15 peaks at the expected harmonics as in Fig. 6.3, but with
unequal moduli. The gradual decline of the heights at higher harmonics
is mainly due to the finite frequency cut-off of the low pass filter
and the random variation of peak heights at the lower end which may be
due to the signal modification in the potentiostat. This was the
actual voltage signal across the cell and the recorded current signal
would be the actual cell response for the applied noise signal.

Since the impedance was calculated from the division of the actual
cell voltage by the current,_fhe above mentioned instrumental artefacts
did not have any effect on the final result. However, if the cell
voltage was assumed to be the same as the original number sequence
used for the generation of the noise voltage, it is necessary to

calibrate the impedance data using reference cells [47].
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The cell current response Fig, 6,6, differed significantly from
the applied noise voltage and the FFT of the current in Fig, 6.8 shows
the 15 frequency compenents at the expected harmonics. As the cell
impedance increases at lower frequencies the cell current should be
lower and this is demonstrated by the decline of peak heights at the
lower harmonics in the FFT. The relatively small peak at the
zeroth harmonic present in both FFTs correspond to the d.c. levels
of the voltage and current outputs of the potentiostat and do not
interfere with the true a.c. characteristics of the cell. Even though
the two FFTs only show peaks at the expected 15 harmonics, it should
be noted that the magnitudes of the moduli at other harmonics were
non zero; however, these were negligible compared with the main
peaks. Impedance data calculated at these harmonics were not totally
errorneous, but scattered around the expected values. It may be
possible to increase the accuracy of these data by averaging over a
large number of data acquisition cycles. However, the impedance
calculations in this work were only confined to the harmonics originally
present in the noise signal.

Fig. 6.9 shows the cell impedance spectrum calculated from the
FFTs of the cell response over a single data acquisition cycle at
the 15 harmonics. The data acquisition time was 0.103s and the
resulting impedance data agree well with the data obtained with the
FRA (Fig. 6.4). Since the cell response contains a larger number of
cycles at high frequency compared to the 3 cycles at the lowest
harmenic, the accuracy of the high frequency data should be better than
that of the lower. Fig. 6.10 is the impedance obtained with the same
noise signal over 8 cycles of data acquisition showing a marginal
increase in the accuracy, especially at high frequencies. When the
signal amplitude was lowered to 5 mV, the accuracy of the impedance
data obtained (Fig. 6.11) with one data acquisition cycle was
comparable with 8 cycles of the 10 mV noise showing the importance of
the region of Faradaic linearity. Fig. 6.12 shows the errors
associated with the cell impedance spectrum in the range 8-300 Hz
obtained without the low pass filter in the output signal of the
computer, Any sinuscidal voltage signal digitally generated by a DAC
contains discrete voltage steps which can by interpreted as the sum
of the actual sine wave and a high frequency saw tooth wave form
corresponding to the Nth harmonic where N is the number of points
defining the signal. This does not manifest itself in the voltage

response of the cell as it is in phase with the sampling and 1s zero
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on every reading. Howeyer, due to the complex impedance of the cell
the current response contains contributions from this saw tpoth waye
form leading to erroneous impedance data. Thus the actual frequencies
associated with the data in Fig, 6.12 do not correspond to the
frequencies calculated according to the sampling rate and the impedance
data contain contributions from the actual theoretical frequency and
an undefined higher frequency. Fig. 6.13 shows the impedance data
obtained over the lowest possible frequency range with the same noise
signal. The data acquisition was carried out with the maximum time
delay over a single cycle of period 201 seconds and in spite of the
scatter, the data agree in general with that of the FRA. The main
cause for this scatter was the electronic noise introduced into the
signals at the amplification stages prior to the ADC and the error
with the increase of amplifier gain. When working with low signal
voltages it was essential to use certain levels of signal amplification
to improve the resolution of the data and due to the poor signal-to-
noise ratios associated with the amplifiers even the gain of 10 used
in this work seems excessive, These errors may be rectified by the
use of better amplifiers or ADCs of higher resolution.

When dealing with low impedance cells as the high ampere hour
storage cells more care has to be taken with the signal strengths.
As high currents are invelved during the perturbation of the cell, the
voltage signals are necessarily limited by the maximum current output
of the potentiostat. In the case of the Solartron 1186 interface this
limit was 0.5 Amps and as a result the composite noise signal was
restricted to a value well below 5 mV during the impedance measurements
of 25 Ampere hours sealed lead acid cells of average impedance about
20 mOhm. This was also a problem during the impedance measurements
with the FRA and special calibration techniques [5] had to be adopted.
When dealing with low level noise signals the problem is further
amplified as it makes the amplitudes of individual frequency components
less than 0.5 mV resulting in poor signal resolution., The impedance
data obtained for the 25 Ampere hour cell reflected the inadequacies
of the hardware and it was not possible to get meaningful data above
7 Hz. Even though the low frequency data generally agreed with data
obtained from the FRA, they contained gross errors due to poor signal-
to-noise levels. Hence for the measurement of low impedances it is

essential to use a potentiostat with a high current capability and

DACs of higher resolution,
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6.6 Conclusions

(1) The pseudo-random noise technique has been applied successfully
for the rapid estimation of impedance. Spectral measurements in the
range 5 mHz-2 kHz have been obtained within the period of the lowest

test frequency in a 2-decade observation slot (window).
(2) The technique is based on a micro-processor and is ideal for
measurements on cells under conditions when space and time are limited;

for example in-situ operational battery residual capacity estimations.

(3) Work is continuing on the generation of a dedicated unit capable

of avoiding the limitations of the present work.
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CHAPTER VII

THE ANODIC PASSIVATION OF THE LITHIUM ELECTRODE

7.1 Introduction

The optimum performance of a cell from a weight and volume basis
would be achieved when the lithium and SO, are completely utilized at
the end of the discharge and at the same time the pores of the carbon
matrix become completely blocked with solid discharge product.

Safety considerations also dictate that excess lithium or S0, remaining
at the end of discharge is undesirable [56-61].

One of the main factors which prevent this ideal state of affairs
is the onset of passivity.

This is due to the anodic dissolution of lithium which establishes
a concentration gradient in the solution with the highest lithium ion
concentration at the electrode surface. With the continued passage of
current the concentration increases until a solubility limit is
reached at the anode surface, causing a layer of a lithium salt to be
laid down, which effectively screens the metal surface from further
attack.

Passivity of this type was first investigated systematically by
Miller [62] who referred to it as '"Bedeckungs Passivit¥t" or '"cover
passivity" to distinguish it from chemical passivity.

Unlike chemical passivity the deposited layer may dissolve in time
as the concentrations of species at the surface return to their bulk
values in the cell by diffusion or convection, perhaps allowing
further discharge of the cell.

Until relatively recently it was generally assumed that lithium
could not be passivated by anodic polarization. However, James [63]
reported this phenomenon for lithium in propylene carbonate and SOCl,
electrolyte solutions at room temperature. He later concluded [64]
that this was due to the accumulation of anodic dissolution products
in the pores of a surface layer formed on the metal during storage at
open circuit,

Zlatilava et al [65] have also reported this phenomenon for Li in
acetonitrile + 30% S0, solutions for LiBr for the temperature range
(-10 to -30°C).
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"Cover Passivity" has heen extensively studied for other metals,
for example zinc in alkaline solutions [66<71], Ni [72], Fe and
Cr [72] in acid solutions and Pb in aqueous sulphuric acid [74-76].

In this chapter it will be shown that lithium can exhibit this
passivation phenomenon in LiBr/Acetonitrile/S0, solutions at room
temperature at high current densities and is therefore an important
factor in the efficiency and safety of high rate Li/S0, cells.

The effect of interruptions an the polarisation, which may be

important for some applications of these cells is also examined.

7.2 Theoretical Principles

The problem of concentration changes at an electrode subject to
semi-linear diffusion was discussed by Sand [77] who showed that if

diffusion is the only mode of mass transport, then the time, tp, for
a limiting concentration to occur at the electrode for current, i, is

given by an equation of the form:

i Yt, = nFC, vwD (7.1)

P P
2

where
n is the number of electrons involved in the process,
F is the Faraday coastaank,
D is the diffusion coefficient,
€. is the concentration of the passivating species at the
electrode surface at passivation minus the initial

concentration.

For the case of interrupted polarisation, an equation of the form

iz/t_g + 1) (VYty+to+ty - ¥Yty+ts) = nF CPI/‘I—I'B/Z (7.2)
can be derived [74-75]. Where an initial current i; amps flows for

t1 seconds, is discontinued for t; seconds and then another i, is

passed until passivation for t; seconds.
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7.3 Experimental Procedure

The derivations of the above equations make the assumption that
diffusion is restricted to one dimension and such effects such as
convection are negligible.

To ensure these assumptions were as reasonable as possible a
simple cell was designed and is shown in Fig. 7.1.

A is the counter electrode, in this case a roll of the
commercially manufactured carbon cathode material.

B is a tube to allow the cell to be topped up with electrolyte.

C is the reference electrode, in this case either lithium or
silver wire in a polypropylene sleeve.

D is the glass cell body.

E is the electrolyte solution, which was various concentrations
of LiBr/AN/SO:.

F is a plastic screw cap which was tightened and together with
the rubber Q-rings, H, effected a liquid tight seal.

G is the anode, cut from lithium foil.

I is a copper disc which provided electrical contact with the
external circuit.

By orientating the passivating electrode in a horizontal plane
with electrolyte confined in such a way that it formed a vertical right
cylinder above the electrode convection can be suppressed as long as
the experiment is not too protracted. In addition because the
electrolyte is only allowed access to the horizontal surface of the
electrode no spurious edge effects can influence the progressive
development of the linear concentration gradient in the vertical direction.
This general principle of operation has been described in the literature
[78,79].

The cells were assembled in an Argon filled 'dry-box', atmosphere
<10 p.p.m. water. The lithium electrodes were cut from LITHCO lithium
foil, thickness .008". The electrolyte was prepared and dried in the
dry-box.

The cells were discharged galvanostatically at various current
densities inside the dry-box. The potential of the lithium anode
w.r.t. the reference electrode was monitored with time on a chart
recorder, Fig. 7.2, shows a typical potential profile.

It can be scen the cell shows the voltage delay, typical of
lithium electrode, when the current is switched on [80]. The onset of
passivity causes the potential to fall rapidly. The passivation time,

tp’ is calculated by drawing tangents to the curve before and after
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Figure 7.1 Diagram of cell used in passivation experiments.




passivation and finding the intersection, see Fig. 7.2.
7.4 Results

Fig. 7.3 shows plots of tp'% versus i, the current density for
various values for the concentration of LiBr., It can be seen that
the plots are good straight lines, the slopes of which were determined.
From equation (7.1) the slope should equal 2/nFCpysD. Table 7.1 gives
the values of these slopes.

If Cc is the critical concentration at which passivation occurs

and C0 the initial concentration, then

C.=c¢. -

p = Cs - C, (7.3)

so 1 = nF/aD (C_ - C) (7.4)
E ————2 [ 0

where m is the slope for the t -1 versus i plots. Thus a plot of 1/p

P
Vs Co should give a straight line of slope -nFYmD and intercept
nF/aD C 2
5 c

this plot is shown in Fig. 7.4 and from this the slope is -715.6
(mAcm'zsémol—llitre) and intercept is 1.649 x 103(mAcm'2s£), with
correlation coefficient, -0.973.

So C 2.30 M

o

"

and D 7.00 x 1075 cm? s7!
as n = 1 for the reaction Li = Li* + e~ and F = 9.64867 x 10* C mol~l.

TABLE 7.1

concentration LiBr,Co,(M) slope, m(s-%mA'lcmz) correlation coefficient

1.67 1.937 x 1073 0.9888
0.843 1.131 x 1073 0.9933
0.444 7.241 x 1074 0.9812
0.219 6.480 x 107" 0.9975
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with C_ = 3.8 Mand D = 5 x 1076 em2s™1 at -30°C calculated by
Zlatilova et al [65].

Figure 7.5 shows a plot of itpi vs i for the same data values as
Figure 7.3. If equation 7.1 holds then the plots should be horizontal
straight lines, it can be seen that this is a good approximation at
high current densities, but breaks down at very low current densities,
as might be expected.

Table 7.2 gives data for interrupted runs for 1.67 M LiBr and a

value of nFCpJnD/Z is calculated for each run according to equation (7.2).

TABLE 7.2
i1 (mA) i, (mA) t1(s) t5(s) t3(s)  nFC,/7D72
(mAcm™ 2 s%)
79.58 79.58 30 31 78.9 813.85
79.58 40.62 30 30 313.5 782.2
23.87 49.02 300 120 126.6 551.6
23.81 8.63 4800 660 1678.8 1213.7

The value for nFCLv/D/2 calculated from the slope of 1:p'i vs
current density (Table 7.1) for this concentration is 1/, = 516.3
mAcm_zsi. Thus it can be seen that equation (7.2) holds approximately

providing t;, t,, t3 are not too large.
7.5 Conclusions

|

These values seem to be of the right order of magnitude and compares

It has been demonstrated that the lithium electrode in open cells
of the type described in this chapter can exhibit anodic passivation
at room temperature and that the passivation time and current density
are related by Sand's equation provided the current densities are high
enough, typically >20 mAcm 2.

The concept of a critical concentration of the metal ion above
which passivation occurs has been validated as the plot of
nFvaD/2. C, vs G, is a good straight line; the value of this
concentration was found to be 2.30 M.

The value of the diffusion coefficient for Li® in AN/SO> solutions

was also determined and was calculated to be 7.00 x 10~ 5 cm2s™1,




i’rpv 2 mAs e ™

At ¢

Fig.7.5 Plot of It,Y* va current densliy,} for the same dafa as fig. 7.3

- O_
15001
/ | 8
o/\ —_——_—_————
7]
~
1000 X X
X
A
M A A
soo—é‘a A
1 1 1 i 1 ]
0 50 100 150 200 250 300

Current density,imAcm™

A 1.67M LiBr, 4.02M SO,
X 0.843M LiBr, 4.05M SO,
[ 0.444M LiBr, 4.05M SO,
O 0.219M LiBr, 4.05M SO,

350




Thus it has been shown that this form of passivation of the

lithium anode can be a valid failure mode for Li/SO, batteries at high

current densities at room temperature, The values of the parameters

determined in this chapter may be used to calculate the capacity of
a cell at a certain discharge rate if the cell is to be discharged to

passivation in one go. Also an estimate of the capacity may be made

for an interrupted discharge,
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CHAPTER VIII

THE PASSIVATION OF THE CARBON CATHODE

8.1 Introduction

In the previous chapter the passivation of the lithium anode was
examined, this may be irrelevant as far as the whole Li/S0, cell is
concerned if it is the carbon cathode that determines the cell behaviour,
by passivating first.

Therefore the passivation of the carbon cathode under similar

conditions to those for the lithium anode was investigated.

8.2 Experimental Procedure

The set-up of the cell was identical to that for the previous
chapter, see Fig. 7.1, except that G was a disc of carbon cathode
material and the counter electrode, A, was a roll of lithium foil. To
ensure that the lithium did not passivate first, the area of the counter
electrode was many times greater than that of the cathode,

The cathode was cut from a sheet of commercially manufactured
cathode _(Crompton Parkinson.Ltd.).identical to that used in commercial
Li/S0z cells. This consisted of acetylene black (specific surface area
76 m%2 g~1) on an aluminium mesh with a PTFE binder.

The cells were constructed and discharged as before and the
passivation times determined.

The concentration of S0; in the electrolyte was varied, but as the
S0, is responsible for the solubility of the LiBr in acetonitrile, the
LiBr concentration had to be reduced if the SO» concentration was
reduced.

To demonstrate that the lower concentration of LiBr would have
no effect on the cathode passivation, runs were performed with the

same SO concentration, but different LiBr concentrations; the

passivation times were found to be the same.




8.3 Results and Discussion

Figure 8.1 shows the plots of tp_% vs. i, the current density for
various values for the concentration of S0»,. These give good linear

plots, the slopes of which were determined and are shown in Table 8.1.

TABLE 8.1
- I -
Concentrations (M) slope, m (s *mA lcm?) correlation coefficient
LiBr S0z
1.828 4.68 6.74 x 107" 0.9898
0.829 2.01 1.31 x 1073 0.9841
0.419 1.02 2.30 x 103 0.9955
0.205 0.499 4.05 x 1073 0.981

The fact that these plots do give such good straights shows that
the carbon cathode does exhibit a passivation phenomenon similar to
that described in the previous chapter.

Figure 8.2 shows plots of itp£ vs. 1 for the same data as Figure
8.1, and demonstrates that the Sand equation is obeyed for current
densities >v20 mAcm 2.

If 1/y is plotted vs. CSOZ’ the concentration of S0, as before,
- a very.good straight line is obtained,- (see figure 8.3), the slope of
which is 292.1 mAcm-zsimol—llitre,intercept 133.2 mAcm-zs% and
correlation coefficient 0.998.

However, the slope is positive and not negative as obtained in
Chapter 7, which means that increasing the SO, concentration gives
longer passivation times for the cathode, whereas increasing the LiBr
gives shorter passivation times for the anode.

This can be explained as follows.

The reaction at the cathode is:

250, + 2e” = 5,042 (1.9)
Initially the concentration of the dithionite ion will be zero, but

as the discharge proceeds, the concentration will build up until it

reaches a critical value, Cc, and passivation will occur.
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C0 from equation (7.4) will be zero for each concentration of
505 in Table 8.1. Cc must therefore be a function of the SO,
concentration. The greater the SO concentration, the greater the
solubility of LipS,0, will be an& hence CC will be greater. This seems
reasonable as the solubility of LiBr is increased in the presence of
S0,, the yellow colour of the electrolyte suggests the charge transfer
absorption of a complex.

The fact that the plot of 1/, vs CSOz is such a good straight
line suggests the relationship between CC and CSO2 will be of the form

C =kC.., +a (8.1)

where k and o are constants.

Thus the slope of 1/p vs. CSO2 will equal nF/wD/2.k and the intercept

nFvnD/2 a, where D is the diffusion coefficient of the dithionite ion.
Unfortunately no value for D is known, but putting in a rough

order of magnitude of 10°° yields the following values for k and a.

5.4 x 1071

=
1]

2.5 x 107! mol 17!

a

showing that dithionite can have significant solubility under these

conditions.

The effect of interruption was also investigated and Table 8.2
shows the data obtained, for 1.828 M LiBr, 4.68 M 50;.

TABLE 8.2

ij (mA) is(mA) t1(s) ty(s) ta(s) nFCP/?ﬁYZ (mAcm—zs%)

47.75 47.75 300 300 195 0.951 x 103
47.75 47.75 124 1200 378 1.001 x 103
47.75 95.49 120 60 100.5 1.152 x 103
47.75 23.87 450 600 330 0.751 x 103

The value for nFCp/FﬁYZ calculated from the slope of tp—% vs. 1

(Table 8.1) for this concentration was

1/m = 1.48 x 103 mAcm™ 25}




thus it can be seen that equation (7.2) holds approximately providing

t1, ts, t3z are not too large and the current densities are not too low.
It was also observed that if the discharge was continued after
passivation lithium was deposit ed on the carbon surface in the form of
dendrites. This indicates a possible safety hazard if cells are
discharged galvanostatically in this manner after the carbon has
passivéfed, as the dendrites might puncture the separator causing a
short circuit. In addition, it has been reported that aluminium can
catalyse the reaction between finely divided carbon and lithium [81]

and aluminium is present in the backing mesh.
8.4 Conclusions

It has been shown that the carbon cathode does exhibit the
passivation phenomenon for high current densities (>20 mAcm 2). As the
carbon electrode is in the form of a porous matrix at low current
densities the Li,S»0y will be able to diffuse into the pores and only
screen of a relatively small area of electrode when it precipitates.

To achieve longer passivation times for lithium, the concentraticn
of LiBr must be reduced, however, this will also cause the conductivity
to drop. For carbon the passivation times are increased by increasing
the S0z concentration.

This suggests for high rate cells as much 80, as possible should
be added to the electrolyte, this may have the additional benefit of
increasing C, for LiBr in the same way as it does for Li,S5,04, thus
increasing the passivation times for the lithium anode.

Comparison of the data for both electrodes shows that given the
LiBr concentration is about 1.8 M for conductivity purposes, the lithium
will always passivate before the carbon, it is therefore the lithium
electrode which determines the cell behaviour.

Consequently it would be possible to design a high rate cell for
single discharge with much less cathode material, so the cathode area

is much less than that of the anode. This may be economically

attractive.
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CHAPTER IX

THE COMPUTER SIMULATION OF ELECTROCRYSTALLIZATION REACTIONS ON A
PLANE SURFACE

9.1 Introduction

A nucleation and growth mechanism has been applied to metal
deposition from the vapour phase by Kossel [82] and Stranski [83], who
postulated two dimensional nucleation and subsequent layer-by-layer
growth,

Their concepts were later applied by Erdey-Gruz and Volmer [84]
to crystal growth from solution and extended by many others [85].

It was desirable that the collision and overlap of these centres
to be considered and much progress was made by the Fleischmann school
[85] using the Avrami theory of overlap [86] (similar overlap theories
giving an identical result have been derived by Kolmogorov [87] and
Evans [88]).

Armstrong et al [89] extended this work to the growth of three
dimensional conical crystals as well as three dimensional growth
leading to passivation.

Apart from this and the work of Evans [90] and Miller [91] very
little attention has been paid to the problem of nucleation and growth
followed by passivation,

The first problem in considering any three dimensional growth is
finding a volume transform, that is a relationship between the volume
of overlapped crystals and the volume they would have had had overlap
not taken place.

The Kolmogorov-Avrami-Evans theorem [86-88] states that:

V/Vo = 1 - exp (-Vex) ' (9.1.1)
where V is the total volume of the overlapped crystals, VO is the
total volume of the space into which there are growing, and Vex 1s
the volume they would have had neglecting overlap,

For this equation to be a true transform it requires the crystals
to be distributed in an infinite space so that boundary effects can

be ignored and that the distribution of the crystal centres be
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completely random in three dimensional space.

The first requirement may be physically unrealistic, but a
reasonable approximation. The second, however, will not be true if
the centres are confined to a two dimensional surface even though they
may be randomly distributed on such a surface,

Armstrong et al [89] considered the crystals to have right
circular conical geometry and applied the Avrami equation (for a
surface as opposed to a three-dimensional space) for the overlap of
circular discs comprising thin slices of the cones at heights
above the surface. This gave current-time transients of the

following form

i = nFky[1-exp(-mN_k;2M2t%/p?)]
for instantaneous nucleation and

i = nFky[l-exp(-mM2ky2At3/3p2)]

for progressive nucleation.
Where k) is a2 rate constant parallel to the plane of the electrode
surface and k» is one for growth perpendicular to it. k, is related
to a growth velocity V, (ecm s~ 1) perpendicular to the plane such that
k2 = pVa/M.

Armstrong et al [89] also consider three dimensional growth
leading to passivation.

They assume that the velocity of advance orthogonal to the
electrode surface, V,, is proportional to the uncovered surface area

which gives the following current-time transients:

= anz[l—exp(—nNokleztz/pz)]exp(-nNokleth/pz) (9.1.4)

for instantaneous nucleation and
i = nFky[1-exp(-mM2k;2At3/3p2) Jexp (-nM2k;2At3/3p2)  (9.1.5)

for progressive nucleation.

Although the geometry of crystal growth was assumed to be conical,
this is not in fact the case since the rate of growth parallel to the
surface is constant, that orthogonal to it is time dependent. Bosco

and Rangarajan have recently reported this [92].
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Since the Armstrong system [89] has formed the basis of many
discussions of electrochemical passivation [93,94] and one often gets
the impression that the crystal shape is fixed, the actual geometry
that results from this model will be examined in detail in the next

section.

9.2 Derivation of the crystal growth geometry in the Armstrong Model

The velocity of growth perpendicular to the planeis proportional

to the uncovered surface area, which is given by

Vz = V20 exp(-wNoklezt?'/pz) (9.2.1)
for instantaneous nucleation, where Vg is the constant of
proportionality.

If a = nNokleZ/p2 and x is the height above the electrode surface,

then x as a furition of time is given by

X = Vzg(w/a)£/2 erf(a%t) (9.2.2)
Because the growth rate parallel to the plane is constant we have

dr/dt = k;

and the radius as a function of height can be found

r{x} = ki (t - tx) t >t (9.2.3)

X

1
[e=]
t

r(x) <t (9.2.4)
where ty is the time at which the crystal reaches height x above the
electrode surface - obtained from equation (9.2.2). Figure 9.2.1
shows the crystal shape at various times and coverages. It can be
seen that the geometry of crystal growth is constantly changing.

The growth commences from a nucleus in the right circular conical
format but the shape becomes progressively flattened in the plane
parallel to the electrode surface as growth proceeds. This ultimately
results in there being a maximum height, above which the crystals do

not grow.
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Fig. 9.2.1 Evelution of Crystal Shape with Time
for Instantaneous Nucleation
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For progressive nucleation, instead of equation (9.2.1), the

perpendicular growth rate is given by
V, = Vpg exp (-mAky2M2t3/3p2) (9.2.5)

now if 8 = (wAk,2M2/3p2) and x is again the height above the electrode

surface, then

T

x = Vyg | exp(-8t3)dt (9.2.6)

T-Uu

Here u is the age of the nucleus, t is the present time and Touel -
T - u, the nucleation time.
Figures 9.2.2 illustrate how the rate of growth perpendicular
to the surface depends on the uncovered area at different nucleation
times. If the nucleus is formed at t = 0 (Figure 9.2.2(2)) the form
of the crystal is similar to that seen for instantaneous nucleation.
A gradual evolution from conical to "bullet" shape is noticed as
perpendicular growth is suppressed. If nucleation occurs at t = O.Stmax
(Figure 9.2.2(b)) the bullet shape is immediately evident and the height
attained by the growing crystal is less than half that of a crystal
nucleated at t = 0. By the time the i - t growth transient has
reached the maximum, newly nucleated crystals (Figure 9.2.2(c¢)) have
their vertical growth curtailed almost immediately and their resultant
height is approximately 2 orders of magnitude less than e © 0.

c
The following conclusions can be made.

(i) The geometry of a crystal growth from a single nucleus is not

only non-conical but its form evolves with time,

(ii) There can be a maximum height above which the crystal deoes not
grow. Figure 9.2.3 shows this maximum height as a function of

nucleation time.

(ii1) For the case of progressively nucleated growth the evolving
crystal shape is dependent upon the time at which the nucleation centre

is born.




Flg. 9.2.2a Evolulion of Crystal Shape with Time
for Progressive Nucleation
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Fig. 9.2.2b Evolution of Crystal Shape with Time
for Progressive Nucleation
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Fig 9.2.2¢ Evolution of Crystal Shape with Time
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Fig. 9.2.3 Maximum Helght of Nuclei as a Function
of Nucleatlon Time
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8.3 The need for a new model

Fletcher and Mathews [95] comment on the physical plausibility
of the Armstrong Model. They suggest that as the rate of lateral
growth is under 'interfacial control' and the vertical spreading is
under diffusion control a dendritic growth form should result. They
continue by saying that were the growth truly diffusion controlled,
the rates of growth in both directions should be limited by mass
transport processes.

The purpose of this chapter will be to derive an electro-
crystallization model where crystal growth occurs in a shape-preserving
way.

The need for a new model is also demonstrated by the failure of
the Armstrong Model to predict the current-time transients for long
times.

Armstrong et al themselves [89] and Barradas et al [96] report
a 'tailing’ phenomenon at long times ~2t/tm for the Hg/HgO system,
i.e. the experimental plots return to zero much more slowly than
equations (9.1.2) and (9.1.3) predict.

The next section illustrates the fact that forcing the crystals

to grow in fixed geometry results in a much slower 'tail-off’'.

9.4 Formulation of the new model and calculation of Current-time

Transients

The mechanism for processes occurring at the electrode-electrolyte

interface are assumed to be represented by:

f
n+ -
M e:j=é Mads + ne {9.4.1)
b
followed by
kL
M7 e X —s MX 9.4.2
ads n n lat (9.4.2)

For example, in the case of a silver electrode in a solution of

HC1, M would be Ag and X would be C1°. Mzss is the participating

species which has been expelled from the electrode substate and
become a surface adsorbed species. Mxnlat is the species which is
subsequently incorporated into the passivating lattice.
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The growth of the crystals is assumed to occur in a fixed habit,
the physical justification for which was given in the previous section.

In equation (9.4.2) it is the incorporation of species into the
lattice which is assumed to be the slow step. The surface diffusion
and reaction with X are assumed to be rapid in comparison.

It is also assumed that the adsorbed species is mobile on both
the electrode surface and the deposited crystal surface. Whether the
adsorbed species is M™ or MX or M*" on the metal surface and MX on

the crystal surface is irrelevant to the kinetics as the reaction with
+

ds for

X~ has been assumed to be fast; it will be written as Mz
convenience.

For the forward reaction in equation (9.4.1) the rate will be
proportional to the uncovered surface area, with rate constant, kf.
The rate of the back reaction will be proportional to the surface
concentration of the adsorbed species multiplied by the uncovered
surface area, with rate constant, kb' For the lattice incorporation
step (9.4.2), the rate will be proportional to the surface concentration
of the adsorbed species multiplied by the number of available
incorporation sites per unit base area of the growing crystals, with
rate constant, kL.

This gives rise to the following kinetics:

. _ - _ n+
{/nF = d M/dt kfeuncov kb Mads euncov/Ao (9.4.3)
n+ _ _ n+ _ n+
d Mads/dt - kfeuncov kb ads euncov/Ao L Mads S/Ao (9.4.4)
d Mxn lat/dt = kL Mads S/Ao {(9.4.5)
Where M’ and MX are the number of each species in the mobile
ads n lat
state and incorporated into the lattice respectively, euncov is the

uncovered area and S is the number of incorporation sites in the
total area of the passivating crystals, Ao is the total electrode
surface area, i 1s the current, n is the number of electrons
transferred and F is the Faraday constant.

As the adsorbed species is mobile over the entire electrode
surface area, covered or uncovered, the surface concentration will

n+
be equal to Mads/Ao'
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auncov’ S and V, the total volume of all the passivating crystals

can be determined by applying the Kolmogoroff-Avrami-Evans theorem

[86-88] to right circular cones or hemispheres [89].

9.4.1 The case of conical growth from instantaneous nucleation

of centres

If the basal radius of the conical crystals at any time instant

is represented by R(t) then for Ny nuclel

O oy = AL - exp(—Nosz/Aoj) (9.4.6)

where Ao is the total electrode area. Hence

= - 2
euncov Abexp( NoﬂR /AO) (9.4.7)

V can be found by considering the overlap of slices, height h

above the electrode, thickness dh and radius x, thus
x=R - h/a (9.4.8)

where a is the ratio of the height to basal radius of the cones.
So, dV the elemental volume for this slice is found by applying
the Avrami equation to the overlap of the circular slices at height

h above the electrode. Therefore
- _ - 2
dv = Ao(l exp( nNox /Ab))dh (9.4.9)

Substituting for x and integrating from h = 0 to h = R gives
R
V= | A (1 - exp(-1N (R - h/a)Z/AO))dh (9.4.10)

h=0

If it is assumed that the area of the overlapped cones available

for reaction, S, is given by
S = 3V/3R (9.4.11)

S can be found by differentiating equation (9.4.10) w.r.t. R using

a change of variable




u=R-h/a, du= -dh/a
So
R
s= =2 {Aa | (1- exp(-mN_u2/A ))du} (9.4.12)
3R °
u=0
- - - 2
S Aoa(l exp( HNOR /Ao)) (9.4.13)
It can be seen that S is just the constant factor a multiplied by
euncov’ 50 that S is not the true surface area of the overlapped cones,

but is proportional to the number of sites available for reaction and
hence is then the effective surface area that is required. This is
clearly seen when each cone is visualised as a number of stacked discs.
The incorporation sites are restricted to the perimeter of each disc.
If p is the density of the deposit and M is its relative molecular

mass then

MX 1., = PV/M (9.4.14)

Thus from equation (9.4.5)

+
(p/M) (3V/3t) = k, Mzds S/A,

so that

Mzzs = (pA,/MKk S) (3V/3t) (9.4.15)

substituting this expression into equation (9.4.4) gives

3 {(pAO/MkLSJ(aV/at)} =k
at

Puncov = KpPuncoy?/Mk S (3V/8t) - (o/M) (aV/0t)

(9.4.16)
Similarly substituting into equation (9.4.3) gives

/0 = ke 8 - (k8 o/Mk S)(3V/3t) (9.4.17)

Using the relationships




av/at = (3V/3R).(9R/3t) (9.4.18)
and
3V/3aR = S (9.4.11)
hence
av/at = S(B8R/3t) (9.4.19)
so that
3 ((1/s)(av/at)) = 32R/at? (9.4.20)
at
Equation (9.4.16) becomes
2 2 - =
3°R/3t< + aR/at(kbeuncov + kLS)/A0 (M/p)kkaBuncov/Ao 0 (9.4.21)

Substituting for S and euncov from equations (9.4.13) and (9.4.7} we

arrive at

(aZR/at2)+(aR/at){kbexp(-NonRZ/Ao)+kLa(1-exp(-NonR2/Ao))}
-(Mkka/p)(exp(-NonRZ/Ao)) =0 (9.4.22)

and from (9.4.17) the current is given by
i/nF = A exp(-NoﬂRZ/Ao){kf . (kbp/(kLM))BR/at} (9.4.23)

Equation (9.4.22) is a second order differential equation in R,
which can be solved numerically. Solutions were obtained by applying
a variable-order, variable-step, Gear method for a Stiff System.

(This system can become stiff for certain values of rate constants kf,
kb and kL). The routine employed was DO2EBF from the NAG FORTRAN
library [97].

The routine requires initial values for R and 3R/3t. Obviously
at t = 0, R (the basal radius of the as yet unnucleated cones) must
also be set to zero. The value of 3R/3t at t = 0 was set by assuming
that the concentration of mobile species within the vicinity of the

electrode, ”255’ is zero therefore from equation (9.4.15)

Mt

Lgs = (pA/MK S} 3V/3t = 0 (9.4.24)

Therefore using (9.4.19)
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0= (pAo/MkL] 3R/ot
giving

3R/3at = 0 at t =0

Current time plots obtained by our numerical method of solving
for R as a funtion of t and substituting into equation (9.4.22)} are
presented in Figures 9.4.1 a-d. Each figure shows the variation of
one of the parameters, kf, kb, kL, or NO/AO. It can be seen that the
resulting current-time transients consist of a falling section
followed by a maximum and a slow 'tail-off' to zero, although for
some values of the parameters a single falling transient results.

An initial falling transient can be observed for many electro-
crystallization experiments, but is usually ignored.

The value of the initial current is equal to the rate constant
kf. It is also this constant which determines the current at long
times, although the nuclei demnsity No/Ao also has an effect, as might
be expected (the greater the nuclei density the faster cverlap and
coverage of the surface occurs, which results in conical crystals of
less height and therefore less volume and consequently the total
charge passed will be less).

The rate constants kb and kL determine the positions of the
maximum and minimm, along with kf and NO/AO.

The non-linearity of R(t) is shown in Figure 9.4.2.

9.4.2 The case of conical growth with progressive nucleation

of centres

In this case the nuclei are assumed to form according to the

rate function
N =N (1 - exp(-At)) (9.4.25)

where N is the number of nuclei at any instant t, No is the total
number of nuclei and A is the nucleation rate constant.

No approximation for short times is made as we wish to find a
current-time transient over the whole time range.

A similar differential equation to that applied in the

instantaneous case, can be written; however, the equation for the

urface area © is given b
s cov & Y
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Fig. 9.4.1a  Instantaneous Nucleatlon of Cones
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Fig. 9.4.1b  Instantanecus Nucleation of Cones
Variation of k,
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Fig. 9.4.1c  Instantaneous Nucleation of Cones
Variation of k,
k,=3.0E-2,%, =3.0E-1,7N, /A, =1.0E-3,M/p=1.0
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Fig. 9.4.1d  Instanfaneous Nuclealion of Cones
Variation of 7, /A,
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Fig. 9.4.2 Radll of Cones vs. Time for the Same Parameter
Values as Fig 9.4.1a
k,=3.0E-2,k,=3.0E=2,1N, /A,=1.0E~3,M/p=1.0




0 = Ao(l - exp(-S (9.4,26)

cov ext))

where Sex is the fractional extended surface area (the area that

t
would exist without overlap). For the instantaneous case Sext 1S

simply wNoszAo, but for progressive nucleation Sex must be given by

t
i=t/ét

S = w/A 3 nyr2; (9.4.27)

ng is the number of nuclei formed during a time interval ((i-1)8t,iét)
and T3 is the radius at time t of nuclei of age u, where u = t - ift.
For crystal growth without passivation R is a linear function of
t. In our model for passivation from instantaneous nucleation R(t) is
initially linear but eventually approaches a limit. For the
progressive case we assume that the radi:i of all nuclei, whatever their
age, increase at the same rate (Figure 9.4.3). It can be seen that for

a nucleus of age u, the radius as a function of time will be given by
r = r(t) - r(u) (9.4.28)

The number of nuclei nucleated at time u in the time interval du will

be given by
n, = (3N/3t)t_udu (9.4.29)
equation (9.4.27) then takes on the form

t

S = /A, {r(t) - r()}? (:nsr/'at)hu du (9.4.30)

ext

o)

To perform this integration at each time step, in the numerical
solution, would consume an excessive amount of computational time.

In order to avoid this a relationship between Sext(t + At) and

Sext(t) was derived. Thus, from equation (9.4.27):
/8t
= 2
Seqe(T) = 7/A 33 n.r, (9.4.27)
i=1
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Flg. 9.4.3 Schematis Representation of Radli of Cones
a3 a Function of Time for Conea Nucleated at Diffsrent Times




in the time interval At, the radii of all nuclei will increase by

the same degree,

Ar = (3r/3t) At (9.4,31)

wvhere r is the radius of nuclei formed at t = 0.

So that
/6t
Sexe (T*A) = (n/A)) )3 my(ry+ar)2+(n/A ) (3N/3t) at(ar)? (9.4.32)

i=1

that is, the number of existing nuclei multiplied by their new radius
squared added to the number of new nuclei formed in the time interval
At multiplied by (Ar)2.

This becomes

/8t /8t /8t
Sext(r+At) = (ﬂ/Ao)[ 2: niri2 + 2ZAr 2: n. T, + (Ar)?2 2: I,
i=1 i=1 i=1
+ (aN/Bt)TAt(Ar)Z] (9.4.33)
T/6t

= Sext (D+(W/A[28T  3) nir #N(7) (87)2+ (N/3t) At(AT)2]  (9.4.34)

i=1
If the following function is defined
/6t

R . (1) = 2y mn.r. (9.4.35)

ext 171
1=1

A relationship between R___(t) and R___(t+At) must be derived as
ext ext

follows
t/6t
- N
R g (T#0L) = ) n, (r;+ar) + (g—t)_ratar (9.4.36)
1=1
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which becomes

R, (T+8t) = R___ () + N(x)ar + (%%)TAtAr (9.4.37)
From equation (9.4,25)

N(t) = N (1 - exp(-At)) (9.4.25)
and

(3N/3t) = N A exp(- Ar) , . (9.4.38)

Ar = (ar/at)TAt (9.4.31)

ar/3t is calculated at each point in time during the integration of
the differential equation. Thus Rext(t) can be calculated at each

point in time as Rext[O] = 0. Returning to equation (9.4.34) for Sext'

(7)+(n/A ) {2ATAR o (1) +N(7) (A7) 2+ (3N/3t)_At(ar)?)

Sext(T+At) = Sext

(9.4.39)

Since Sext(O) = 0, Sex can be calculated for all times during the

integration by additio; of terms known at that time, this avoids
computing a complete integration from t = 0 at every point in time
during the integration of the differential equation.

Thus the differential equation for progressive nucleation can
be solved relatively easily, and current-time transients calculated
as before. Figure 944shows some typical current-time transients
for various values of the nucleation constant A. It can be seen
that as A is increased the transients approach the instantaneous

limit as would be expected.

9.4.3 Instantaneous growth in hemispherical geometry

The Avrami expression can be applied to the volume calculation
of overlapping hemispheres in a similar way to the calculations for
cones [89]. Providing the nucleation is instantaneous the simple

expression for V can be derived.
R

V= AL - exp(-wNo(Rz - hz)/Ao)]dh (9.4.40)
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The effective surface area S is given by 3V/3R as before, therefore

R
S = %ﬁ_{n - exp(-nNORZ/AO) exp(nNth/AO)dh}Ao (9.4.41)
o
R
= - 2 2
S = ZnNOR exp( TN R /Ao) exp(nNoh /Ab)dh (9.4.42)
0
The basal uncovered surface area, euncov’ will be identical to that

in the conical case, Thus substituting for S in equatioh (9.4.21) gives

R
BZR/3t2+3R/Bt(kbexp(-NonRz/Ab) + kLZnNoRexp(—nNoRZ/Ab) exp(wNth/Ao)dh/Ao)

0

-(M/p)kkaexp(-NonRZ/Ao) =0 (9.4.43)

This differential equation can bg solved in a similar manner to
the conical case, with the integral Io exp(nNohzle)dh being evaluated
as the integration of the differential equation proceeds.

The current will be given by.equation (9.4.23) as before.

Figure 9.4.5 compares current-time transients for conical and
hemispherical growth for the same rate constants. It shows that the
shape is very similar, except that the current is greater for hemispheres,
as would be expected because the volume and hence the total charge
passed is greater for a hemisphere compared with a cone of height equal

to its radius.

9.4.4 Instantaneous growth in cylindrical geometry

-For cylinders of a constant height, H, the following expression

for V and S can be easily derived.

- - - 2
V = Ao(l exp( N R /AOJ)H (9.4.44)
s= & - 2N nRH exp(-N_TR2/A) (9.4.45)
aR 0 P 0 o T
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Substituting for S in equation (9.4.21) gives
BZR/Bt2+BR/Bt(kbexp(—NowRZ/Ao) + k 2nN_RH exp (-N TRZ/A }/A)
+ (M/p)kkaexp(-NonRZ/Ao) = 0 (9.4.46)

and this again can be solved in a similar manner, to give current-time
plots for various values of H as shown in Figure 9.4.6.

It can be seen that as H is increased the 'tail-off' becomes much
slower and the current is greater, as would be expected as the volume
of the crystals increases. For small values of H, a sharp 'tail-off’
results and the shape is reminiscent of two-dimensional nucleation

and growth.

9.4.5 Fitting of the Model to Experimental Data

A program has been written, which varies the parameters kf, kb,
kL’ etc. to find the best fit to experimental data. The program used
a routine from the NAG FORTRAN Library EO4FCF [97] which minimises the
sum of the squares of the differences between calculated values and
experimental values using a combined Gauss-Newton and modified Newton
methed. ‘

Figure 9.4.7 shows the closeness of the computed fit to
experimental points. The model was the instantaneous nucleation of
cones and the data for PbO,/PbSO, [98].

The values of the parameters obtained from the fit, were as

follows:
(M/p)k, = 7.523 x 1072
k, = 3.050 x 1072
k, = 3.038 x 1071
N/A, = 7.503 x 1075
nF{p/M)A = 2.012 x 102

It would be possible to fit experimental current-time transients to
each model (conical, hemispherical, cylindrical or progressive) with
the best fit giving some indication of the crystal growth geometry
and type of nucleation.

It would also be possible to perform fits for the same system at
a range of potentials and obtain the potential dependence of the rate
constants and other parameters.

This may give useful information and provide further validation
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9.4.6 Conclusion

A kinetic model for crystal growth leading to passivation has
been formulated which predicts an initial falling transient and a
slow 'tail-off' at long times, which is frequenctly observed in
experiment,

It is forcing the growth to proceed in a fixed geometry that
is responsible for the long 'tail-off'.

It was also demonstrated that it is possible to fit this model
to experimental data, extracting values for the parameters.

Further work is planned to obtain fits at a range of potentials

and determine the potential dependence of the parameters.
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CHAPTER X

A MACROHOMOGENEOUS MODEL FOR THE POROUS CARBON ELECTRODE

10.1 Introduction

The importance of various porous electrodes to the battery
industry has stimulated much research into modelling their structure
and discharge. De Levie [35] reviews progress in this field up
until 1966.

There are three basic conceptual approaches to modelling a
porous electrode. The first involves modelling the pores as cylinders
perpendicular to the surface. Allowance can be made for the
distribution of pore sizes, but not for connectivity between the pores.
A thorough treatment of this model has been given by Winsel [99].

A second approach is to represent the pores as equivalent
electrical circuits in a network corresponding to the whole porous
structure; this model was suggested by Euler et al [100, 101].

The third approach is the macrohomogeneous medel introduced by
Newman and Tobias [102]. This model assumes the structure of the
porous matrix, concentrations of species and deposition of material
therein is uniform in a plane parallel to the electrolyte-electrode
surface interface. This reduces the problem to essentially one
dimension, perpendicular to the electrode surface.

Alkire, Grens and Tobias [103] modified this model to one in
which the structure of the matrix changed during the discharge. Since
this time much further progress has been made [104-110].

In this chapter two variations of this model will be used to

derive data for potentiostatic and galvanostatic discharges.

10.2 Formulation of the model

A number of simplifying assumptions must first be made in order

to facilitate the analysis.

(1) The material of the porous matrix has a much higher conductivity

than the electrolyte.




conductivity of the matrix does not vary with discharge or depth into

the electrode,

(3) The mass transport processes of the electrolyte solution within
the matrix can be adequately described by dilute solution theory and

diffusion is the predominant process.

(4) Double layer effects are ignored, i.e. the time constant for the
charging of the double layer is small compared to the time intervals

involved.

(5) The concentrationsof species in the electreolyte at the surface

of the electrode areequal to those in the bulk solution.

Equations describing the reation within the electrode and

transport through it are now defined.

X is the distance into the electrode,x = 0 is the electrode

surface.

c(x,t) is the concentration of a species at a distance x from

the surface after time t.
a(x,t) is the available area for reaction in an element dx.

When a(x,t) = 0, the matrix is fully utilized in this plane
distance x from the surface.
The reaction at a point x in the electrode follows the rate

- 4
equation:

(i(x,t)/nF) = de(x,t)/at = -k a(x,t) c(x,t)  (10.2.1)

where 1 is the current,
n is the number of electrons in the reaction,
F is the Faraday constant,

k is a potential dependent rate constant,
Diffusion through the matrix is given by Fick's 2nd Law.

(2) The matrix is infinitely connected in three dimensions so the
Je(x,t}/3t = D 32c(x,t)/ax? (10.2.2)
|
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where D is the diffusion coefficient. So the equation describing

the total process is:

(i(x,t)/nF)= dc(x,t)/at = Da2¢c(x,t)/9x% - k a(x,t)c(x,t)
(10.2.3)

and a(x,t) is assumed to be given by the following equation:

a(x,t) = a_ - pka(x,t)c(x,t)dt (10.2.4)

o

where p is density factor such that the maximum value of the integral
is never greater than a,.

It is equations (10.2.3) and (10.2.4) which must be solved to
give the desired results.

The most direct way is to replace the derivatives by finite
difference expressions. This is achieved by dividing the electrode
depth into m equal increments of length Ax, and time into n equal

increments At so
\

X = mAx  and (10.2.5)
t = nAt  also (10.2.6)
c(méx, nat) = C(m,n)} so (10.2.7)
(3c/ot) = (1/At)[C(m,n + 1) - C(m,n)] and (10.2.8)

(3%¢/3x2) = (1/(Ax)2) [C(m + 1,n)-2C(m,n) + C(m - 1,n}] (10.2.9)

Equations (10.2.3) and (10.2.4) are thus converted to finite difference
equations, so if values of C(m,n) are known for all m i.e. all the
points distance mAx down the electrode for time nAt, they can be found
for a time (n + 1)At.

In principle, as the initial conditions are assumed the
concentrations can be found as a function of x and t.

The current as a function of time will be given by:
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[

i(t) = nF J ka(x,t} c(x,t) dx (10.2.10)
X=0

where X is the total depth of the electrode.

The utilization of the matrix as a function of x is given by
a(x,=)

Figure 10.1 shows the current as a function of time for various rate
constants. Figure 10.2 shows the utilization as a function of electrode
depth x for the same rate constants and the total charge passed is given
in Table 10.1.

The solutions of differential equations, by the above method are
often subject to instability, where errors grow exponentially with the
number of time steps.

A stability analysis for the simple linear parabolic partial

differential equation
(3c/at) = a(32c/3x%) (a = constant > 0) (10.2.11)

shows that the stability criterion for a solution using the above

method is -
(aAt/(Az)2) < 0.5 (10.2.12)

[111]. This means that small time steps must be used. This simple
parabolic equation is not the same as the more complicated case here,
but trials using different values of At and D show this stability
criterion to be approximately valid.

This has the effect that for small values of k, the number of
time steps for the current to tend to zero, must be increased, since
At must stay at a low value.

For all values of k the number of time steps used was such that
the ratio of the initial current to the final current was 100, this
resulted in reasonable computational time, and little error in values
of total charge passed and utilization of the electrode.

A computational problem arises at the end of the electrode. If
M 1s the number of divisions for the electrode depth, so X, = Max,
then a value of C{M + 1,n} will be needed for the solution. As nothing
can diffuse through the end the electrode C(M,n) is made a 'mirror-

point', such that
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TABLE 10,1

Total charge passed for various values of the rate constant, k.
Full utilization corresponds to a charge of 200.

k Charge passed
1.0 99.47
0.1 104.22
0.01 137.66
0.001 196.56

¢.0001 197.99




C(M - 1,n) = C(M + 1,n) (10.2.13)

The boundary conditions used were at t = 0

c(x,0) = o (10.2.14)
and at x =0
c(0,t) = <, (10.2.15)

where c_ is the bulk concentration. The values for various parameters
were chosen arbitrarily (but subject to equation (10.2.12) and are as

follows:

Ax =1

At = 1

X, = 100
D= 0,5

a =1,0
o

Cy = 1.0
p = 0.5

So for a point distance x into the electrode the maximum possible
utilization is 2.0, and the maximum possible capacity of the electrode
is 200.0.

This model is now extended to discharge galvanostatically, which
is more applicable to battery situations.

A value of the rate constant k is computed for each time time
interval, which will give the same value for‘the current. This is
repeated until the electrode is unable to sustain this current as it
beconmes fully utilized.

If k has the normal potential dependence a plot of log k vs t
should give the shape of a potential-time plot. This is shown for
various currents in figure 10.3.

Figure 10.4 shows the utilization as a function of depth at these

currents, and Table 10.2 shows the total charge passed.
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TABLE 10.2

Total charge passed for various values of the current, i.

Full utilization corresponds to a charge of 200.

i Charge passed
10.0 101.65
1.0 106.25
0,1 122.84
0.01 197.53

¢.001 199,938




10.3 Extension of the Model

The porous structure of the electrode is now assumed to consist
of randomly packed spheres on the surface of which instantaneous two
dimensional nucleation and growth occurs.

Figure 10.5 shows S.E.M. photographs of carbon cathode material
of various carbon types, taken from a Li/S0» cell production line,

As the growth of the insulating deposit on the surface is two
dimensional the growth will be in the form of a spherical cap on a
spherical surface.

It is therefore necessary to derive functions for the coverage
and perimeter for a number of these caps overlapping on the surface.

Considering a single cap:

The probability that a given point is covered assuming all

locations are equally likely

P(a point is covered) = scap/Sd (10.3.1)
and

P(a point is not covered) =1 - Scap/S (10.3.2)
where SCap = area of the cap,

S
and P( ) is the probability of a given event,

total surface area of the sphere,

Scap = 2mRa {(10.3.3)
and

a = R(1 - cos ¢) (10.3.4)
where R, a and ¢ are defined in figure 10.6.

= 2
So 5., = 27R2(1 - cos ¢) (10.3.5)

and
S = 4nR2 (10.3.6)

So  P(a point not covered by one cap) = 1 - (1- cos ¢)/2 (10.3.7)

The probability that a point is not covered by n caps of the

same size at random locations on the surface
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Figure 10.5a S.E.M, micrograph of carbon cathode material

(Canadian carbon type). Magnification x 3,750.
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Figure 10.5b As figure 10,5a, but with magnification x 7,500.
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Figure 10.5¢ S.E.M. micrograph of carbon cathode material

(American carbon type)., Magnification x 3,500.

Figure 10,5d As figure 10,5c, but with magmfication x 7,500,




cap

Figure 10.6 Diagram showing a spherical cap on the surface of

a sphere,




P(a point not covered by n caps) = {I - (1-- cos ¢)/2}n (10.3.8)
P(a point is covered ) =1 - {1 - (1 - cos ¢)/2}n (10.3.9)

. All points on a sphere are equivalent so the expected fractional

coverage, n, by n caps is given by
n=1-1{1-(1- cos ¢)/2}" (10.3.10)

If it is now assumed that the number of nuclei on the surface of the
sphere is given by a poisson distribution, then the probability of

having n nuclei is
. n -y
P(n nuclei) = y e "/n! (10.3.11)

where 1 is the mean number of nuclei.

So the expected coverage for any number of nuclei is given by

n
n=1- 2, Le™1 - - cos 921" (10.3.12)

1- Z:{(1+cos ¢)u/2}nexp(-(1+cos $)Ju/2)exp-(l-cos ¢In/2) (10.3.13)

n -
n=0 n!
n=1- exp(-(1-cos $)u/2) 2, {(1+ cos $)u/2} exp(-(l+cos ¢)u/2)/n!
n=0
(10.3.14)
n=1-exp (-(l-cos ¢)u/2) (10.3.15)
The perimeter, p, will be given by
p= 20 42 (10.3.16)
R3¢
p = 4mR gE-(l - exp(-(1- cos ¢Ju/2)) (10.3.17)
p = -4nR exp (-(1 - cos ¢)u/2)(-sin ¢.u/2) (10.3.18)
p = 27nR psin ¢ exp (-(1- cos ¢)u/2) (10.3.19)
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The rate of reaction in a given plane distance x into the

electrode is given by

ke x)p (¥

where c(x) is the concentration and p(x)} is the mean perimeter at this
depth into the electrode, k is the potential dependent rate constant.

Thus the current as a function of time for the potentiostatic
case and the potential as a function of time for the galvanostatic
case can be derived as before. For the potentiostatic case the
calculation of the current is allowed to continue until it has fallen
to 1% of its maximum value and for the galvanostatic case the
calculation is continued until constant current can not be maintained.
This enables the total utilization as a function of depth to be
calculated.

Figure 10.7 shows some potentiostatic plots and figure 10.8 shows
the corresponding utilization-depth profiles. Figures 10.9 and 10.10
show the same for galvanostatic discharge.

Tables 10.3 and 10.4 show the total charged passed for each case.

10.4 Conclusions

Looking first at the potentiostatic plots, figures 10.1 and 10.7,
it can be seen that in the simple model a falling transient results
whereas with the model incorporating nucleation and growth the current
starts at zero reaches a maximum and then returns to zero. As p is
increased, however, the behaviour does approach that of the simple
model.

The utilization-depth profiles for the potentiostatic discharges,
figures 10.2 and 10.8, show that as the value of k is increased the
total utilization becomes less with only the front end of the electrode
approaching full utilization.,

The utilization that corresponds to just the amount of active
species already present in the pores of the matrix at the beginning
of the discharge is 100. This shows that for high values of k, very
little has diffused into the electrode, and the diffusion limited
current is negligible compared with the initial current or the maximum
current in the nucleation and growth model, and so the discharge
was stopped before complete utilization. The decision to stop the
discharge when the current or potential falls below a certain value

may seen arbitrary, but similar criteria are used in battery testing.
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TABLE 10.3

Total charge passed for various values of the rate constant, k, and

mean number of nuclei, w. Full utilization corresponds to a charge

of 200.

k u Charge passed

1.0 1 99.9

0.1 1 102.3

0.01 1 114.7

0.001 1 126.3

1.0 10 100.1

0.1 10 102.8

0.01 10 124.5

0.001 10 198.6 |
1.0 100 99.7 |
0,1 100 101.0

0.01 100 107.3

0.001 100 178.2

0.0001 100 199.5

1.0 1000 99.5

0.1 1000 100.1

0.01 1000 102.1

0.001 1000 124.3

0.0001 1000 198.8
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TABLE 10.4

Total charge passed for various values of the current, i, and mean

number of nuclei, p. Full utilization corresponds to a charge of 200.

Charge passed

100.8
102.7
109.7
126.4

101.6
106.1
122.9
199.99

101.6
106,1
118.2
199.99

101.6
106.,1
125.3
199,95




Figures 10.3 and 10.9 show potential time plots for galvanostatic
discharges.

The simple model, fig. 10.3, shows the potential stays fairly
constant and then falls rapidly at the end of the discharge. The
nucleation and growth model, figure 10.9, shows this behaviour and
in addition a 'voltage delay' at the start of the discharge, because
the reaction is limited by the small area of electrode surface
available at the beginning of nucleation.

The utilization-depth profiles, figures 10.4 and 10.10 show
similar trends as before.

Finally, if realistic values for the parameters could be inserted,
the models would be useful in determining the effectiveness of the
porous electrode at various potentials or currents during discharge.
Or given easily measureable data like a current-time or potential-
time plot an unknown parameter such as a5 which is related to the
effective porosity, could be found. This would enable effective
porosities of different carbon types used in the cathode material
to be evaluated from their respective current-time or potential time

plots.
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