
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Silica attached polymers and ligands for the selective removal of metal ionsSilica attached polymers and ligands for the selective removal of metal ions
and radionuclides from aqueous solutionsand radionuclides from aqueous solutions

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© James Donald Holt

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Holt, James D.. 2019. “Silica Attached Polymers and Ligands for the Selective Removal of Metal Ions and
Radionuclides from Aqueous Solutions”. figshare. https://hdl.handle.net/2134/16253.

https://lboro.figshare.com/


  

 

 

 

 

Silica Attached Polymers and Ligands for the Selective Removal  

of Metal Ions and Radionuclides from Aqueous Solutions 

 

 

 

By 

James Donald Holt 

Doctoral Thesis 

 

 

Submitted in partial fulfilment of the requirements for the award of  

Doctor of Philosophy of Loughborough University 

 

 

 

Supervisors: Dr Steve Christie, Dr Nick Evans and Dr Steve Edmondson 

© James Donald Holt 2014 

 



iii 

 

Acknowledgments 

There are so many people I would like to thank for the part they have played over the 

duration of my studies.  Firstly I would like to thank my three supervisors Steve Christie, 

Nick Evans and Steve Edmondson for having faith in me and giving me the opportunity to do 

this PhD.  Their enthusiasm, support and guidance has been extremely appreciated over the 

years and I have learnt so much from the experience.  Thanks also go to Sandie Dann for her 

help and ideas along the way, as well as David Read who has had a keen interest in my work, 

provided me with some great advice and helped source samples I would otherwise have 

struggled to! 

Thank you to the Nuclear Decommissioning Authority, without their support of research and 

funding of projects, this opportunity may never have arisen. 

Thanks also go to Mark Edgar for his help and knowledge on my solid state NMR samples, to 

Pauline King for all those CHN samples you have run for me and to Mónica Felipe-Sotelo for 

all the help and support over the years, especially where ICP is concerned!  Al Daley and 

Stuart Pinkney, your assistance has been massively appreciated when I have come to you for 

help and you have always gone out of your way to help.  In the materials department, thanks 

go to Pat Cropper and Zhaoxia Zhou for their assistance with XPS and STEM respectively. 

Over this period, the organic group and the largest stakeholders of the famous Acrylate 

Stanley have played a massive role in my PhD life: big thanks go to Ben, Marc, Rossi, TC, 

Andrew, Capel, Nat, Tash, Matt, Daz, Carlos, Emma, Bullous, Alex, Sam, Anish, Joel, Phil 

and Noble (ish!).  Thanks to some great management from TC Capel, we have some success 

to be proud of!  The atmosphere in the lab was always a good one and our socials have 

provided a great source of enjoyment so I thank you all for the memories!  A special thank 

you does go to TC for taking me under his wing and getting me set up in a lab that was 

completely new to me. 

To the Radiochemistry group, old and new, you been a fantastic group to work with, the 

friendship, knowledge and support of each other have helped me and many others get this far!  

In particular I‟d like to thank Dr Stephen Pendleton, Dr Amy Young, Dr Ricky Hallam, Dr 

Sneh Jain, Dr Mónica Felipe-Sotelo, Dr Larry Anjolaiya, Mr Oliver Preedy and the soon to 

be Dr John Hinchliff.  Thanks also go to Ms Joan Sutherland and Ms Julie Turner for all their 

help. 



iv 

 

The inorganic group could always be relied upon for organising a good curry but a special 

thanks goes to Dr Rob King who has become a great friend and is solely to blame for 

initiating the number of stupid sporting events we have participated in over the last three 

years! 

After over 8 years in Loughborough including my undergraduate years, many people have 

contributed to my experience and Michael Kyle deserves a special mention for the role you 

played during that time!  Others from that time who I‟m still in touch with, you know who 

you are and thank you – including Dr Andrew Wood who has been a top notch housemate for 

all these years. 

My friends from Suffolk are an incredible bunch and meeting up for long weekends and 

holidays has provided a great opportunity to get out of Loughborough: Paul, Binx, Chris, Ali, 

Henly and Eggy, a big thank you to all of you. 

An endless amount of thanks go to my parents and family for their support.  Mum and Dad, I 

will never be able to thank you enough for the opportunities you have given me and the 

copious amount of love and support (emotionally and financially!) you have provided me 

with along the way.  Michael, you deserve a special mention and I wish you all the best with 

your career.  Thank you all so much for everything. 

Finally to Meg, who has had to put up with the ups and downs that the PhD has thrown at me 

and taking such an interest in the project!  Having spent all the working weeks apart, your 

company has been appreciated a lot at the weekends and holidays.  Thank you for your 

support and for always being there! 

  



v 

 

Abstract 

Surface functionalised silica materials have been prepared, followed by the extensive testing 

of their ability to remove metal ions from aqueous solutions.  Modifications include ligand 

attachment and polymer grafting from the silica surface whilst the metals tested range from 

first row transition metals right through to the lanthanides and actinides.  Characterisation of 

the materials produced has been of paramount importance for the understanding of the 

modification process and this is also extensively discussed. 

Atom transfer radical polymerisation (ATRP) has been used as the primary polymerisation 

method.  Following polymerisation of 2-hydroxyethyl methacrylate (HEMA), post 

functionalisation was attempted.  However, this was found to cause severe cross-linking and 

all attempts to attach ligands to this failed.  Nonetheless, this process was transferred to 

grafting from silica surfaces and a novel approach to the characterisation of this material was 

implemented.  (3-aminopropyl)triethoxysilane (APTES) was reacted with multiple forms of 

silica, primarily ZEOprep silica (average particle size 71.48 μm) and fumed silica (0.007 

μm).  This produced an amine coated surface to which 2-bromoisobutyryl bromide (BIBB) 

was attached, providing the required surface for radical polymerisation to proceed with a 

selected monomer.  Solid State Nuclear Magnetic Resonance (SSNMR) has been utilised as 

the major characterisation technique for each step, leading to significant understanding of 

how this occurs.  Thermogravimetric Analysis (TGA) and elemental analysis has supported 

this method at each stage whilst also enabling one to calculate the moles of APTES present, 

per gram of APTES-functionalised silica.  For the ZEOprep silica this was calculated to be at 

up to 1.51 x 10
-3

 mol g
-1

 and for the fumed silica 1.63 x 10
-3

 mol g
-1

. 

As well as testing the selective nature of these materials, solutions of individual ions and 

radionuclides were used to measure the effectiveness of the materials for a specific ion.  Rd 

values for these metals ions including solutions of Co(II), Ni(II), Cu(II), Cd
2+

, Eu(III) and 

[UO2]
2+

 have reached values ranging from 7.49 x 10
4
 mL g

-1 
to as high as 2.17 x 10

9
 mL g

-1
. 

These values are regarded as outstanding by other groups that have reported similar results 

and these are discussed in the report.  This range includes values that were observed when 

competing Na
+
 and Ca

2+
 ions were present at 0.5 % and 1 % (w/w).  pH testing was also 

investigated with the materials using a solution of europium ions to determine the most 

effective range and this was found to fall between pH 4 and 5.  X-ray Photoelectron 

Spectroscopy (XPS) has been utilised to help gain an understanding of the binding between 
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Cu(II) ions and APTES, suggesting that copper ions bind with oxygen atoms closer to the 

silica surface as well as the nitrogen atoms at the end of the ligand.  Meanwhile STEM 

(Scanning Transmission Electron Microscope) has been used to show how effectively the 

surface area of the material is used by imaging the europium ions over a sample of APTES-

functionalised fumed silica. 

Ligands and polymers have been focussed on to build a catalogue of functional materials and 

this has been achieved in collaboration with PhosphonicS Ltd.  The most significant finding 

from these selective investigations was that uranyl ions were found to be the most readily 

removed.  Cu(II) and Eu(III) ions were also removed relatively effectively whilst Co(II), 

Ni(II), Zn
2+

 and Cd
2+

 proved the most challenging but certainly not impossible.  [UO2]
2+

 

concentrations were reduced from 17.1 ppm to 1.6 ppm after 4 weeks with use of the ligand 

„SEA‟ (2-aminoethyl sulfide ethyl silica) even with six other metal ions present at similar 

initial concentrations and a starting pH of 4.67 by adding just 50 mg of the material to a 45 

mL solution. 
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1 Introduction 

As part of the Nuclear Decommissioning Authority‟s (NDA) bursary call in 2010, the NDA 

sought after a novel method for the extraction of metal ions from aqueous environments.  Due 

to the area of the work the NDA are involved with, the nature of the metal ions would include 

radionuclides, differ in oxidation states under the same environmental conditions and also 

include non-radioactive heavy metals (e.g. lead).  The pH of the solution will often differ 

depending on the species in the solution and where the water is found: whether it be waste 

streams, surface water or groundwater. 

This introduction firstly presents the methodology that was put forward, followed by an 

account of the materials used with its application before familiarising the reader to the format 

of this report and the work undertaken. 

The method uses a modular design of 1) a solid-support, 2) polymers to graft to the surface to 

produce a much larger surface area and 3) ligands to attach to the polymer, thus making the 

polymers as functional as possible.  This would create a „tool-box‟ where a range of materials 

would be developed and tested, each of which could be replaced for a more appropriate 

alternative depending on the conditions and the target ions.   

By producing a material that was chemically bonded to a solid surface, the material would 

not dissolve (providing an appropriate solid was selected) and hence could be removed from 

the aqueous environment with the target species bound to the functionalised material. 

Figure 1 explains this modular process using silica gel as the solid support.  Silica was chosen 

as the solid support due to its properties that allow it to undergo vitrification: allowing 

radionuclides bound to the surface to be suitably stored as a solid waste form.
1
  The hydroxyl 

groups at the surface of silica gel provide a functional group that is known to react well with 

other molecules and hence makes an ideal material for polymer attachment.  The last step of 

Figure 1 shows the final product of the aim of this work.  A ligand (L) would be attached to 

the polymer side chains to make the material more specific to its target and the known 

environment, replacing the natural „R‟ groups that are part of the side chains of the polymer. 
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Figure 1 – Demonstrative view of the object of this work where the final step shows the product to be used for 

selective metal sequestration with specific ligands replacing the natural ‘R’ groups that exist as part of the original 

polymer. 

A short literature review follows this introduction, designed to make clear the origins of this 

idea.  The literature reported provides an insight to what has been done before specifically 

with heavy metals and radionuclides as the target and why this modular „tool-box‟ approach 

can be considered novel.  Four variations of silica gel are reported as part of this work, but 

none have been specifically reported in this manner before.  Instead, the literature focuses on 

other silica types such as MCM-41 and SAMMS (which are explained on pages 4-6) to make 

clear the differences but at the same time, why these approaches and literature are relevant.  

An introduction to chapters 3-7 is designed to provide the reader with a background to 

previous work or understanding more specific characterisation techniques at a more 

appropriate point. 

Following the experimental section that discusses the range of methods used across many 

disciplines of chemistry, chapter 3 reports the initial work that was carried out to start this 

project.  This focuses on free polymer synthesis (polymer that was not attached to a solid 

surface) to understand which polymers would be the best to work with and which 

polymerisation technique would be the most appropriate.  Modification of these polymers is 

then introduced and how it became apparent that this was not as straight forward as one 

expected.   

Chapter 4 introduces the four silica materials that are investigated in this work.  The 

preparation techniques for surface initiated polymerisation are made familiar before 

explaining how the polymers used in chapter 3 are attached to the silica surface.  Fourier 

Transform Infrared (FTIR) spectroscopy results are reported to illustrate how this 

characterisation technique provides qualitative information quickly to ascertain whether 

attachment has taken place or not based on the expected functional group change. 
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Next, three characterisation techniques are introduced that on their own provide a detailed 

understanding of the materials produced.  These techniques include Solid State Nuclear 

Magnetic Resonance (SSNMR), Thermogravimetric Analysis (TGA) and elemental analysis 

and by using the three techniques to support one another, an even stronger case can be 

prepared to explain the structure of the materials produced.  Each stage of the modification is 

analysed by all three methods and it is this detailed step-wise characterisation procedure that 

provides extremely detailed analysis. 

Chapter 6 illustrates and discusses the results achieved with (3-aminopropyl)triethoxysilane 

(APTES) functionalised silica to bind to metal ions in aqueous solutions.  Some metal ions 

such as Cu(II) and Eu(III) are tested in great detail where techniques such as X-ray 

photoelectron spectroscopy (XPS) and Scanning Transmission Electron Microscopy (STEM) 

are used to develop an understanding of how the ions are bound to the surface and to analyse 

how much of the surface appears to be involved with metal binding.  Figure 2 illustrates how 

the APTES ligand (and other ligands trialled in chapter 6) was attached to the silica without 

the inclusion of polymers as shown in Figure 1. 

 

Figure 2 – Demonstrative view of how ligands have also been attached to the silica surfaces in this work. 

Due to the results achieved with APTES-functionalised silica, the „tool-box‟ approach was 

prevented from being carried out to the extent that was originally planned.  Instead, this 

material was thoroughly investigated for its behaviour and metal binding, whilst other ligands 

were tested and polymer synthesis was effectively halted.   

Finally, chapter 7 investigates the selective properties of the materials developed but also 

tests many other ligand functionalised silicas that were donated by PhosphonicS Ltd.  This 

illustrates the dissimilarities of ligand behaviour when used in aqueous solutions of very 
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similar conditions.  Also discussed are the results found when materials were used in a „real-

world‟ mine water sample and the difficulties that this provided. 

1.1 Literature Review 

Selective removal of metal ions from solutions with the use of ligands is not a novel idea – 

even with radionuclides.  One of the most well-known separation methods is the PUREX 

(Plutonium URanium EXtraction) process and this was patented in 1960 following its 

application in 1947.
2
 This process involves the ligand tributyl phosphate to separate Pu(IV) 

from some wastes in the nuclear fuel cycle.
3
 

Surface attached ligands for metal removal have also been reported by various groups.
4,5,6,7

 

Synthetic organic reactions requiring high purity have reported the use of these to remove 

low concentrations of metal catalysts.
8
 Similarly, polymers and surface-attached polymers 

have been reported for metal sequestration by various workers
9,10,11,12

 but post-modification 

of polymers is recognised to be a difficult process – supported by results in this thesis. 

Radioactive isotopes are quite often found in very low concentrations in millions of gallons 

of tank wastes (frequently 10
-8

 to 10
-9 

M).
13

 This means that if only the radioactive 

components of the waste can be immobilized, the volume of wastes to be converted for long-

term storage can be significantly reduced.  The complexing agents used to remove tank 

wastes must be highly selective for the target species whilst also having the ability to ignore 

competing ligands and cations.  By using silica based materials, following sequestration the 

material could be easily vitrified for long term disposal.
13

 

1.1.1 Surface attached ligands for metal removal 

Work reported by Fryxell et al.
14

 provided a significant source of information regarding 

previous work with surface attached ligands.  Methodology was used from this work when 

designing the approach of the project due to the successful results reported. 

The group prepared their own solid support, MCM-41
15,16

 (Mobil Composition of Matter no. 

41) and this material is explained in more detail below.  Synthesis was avoided in this work 

to concentrate on the functional end.  However, due to the lack of literature specifically on 

the silica surfaces reported and used in this thesis, their work was studied for its behaviour 

and the route by which surface modifications took place. 
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Inorganic microporous solids (materials with pore diameters of ≤ 2 nm) and mesoporous 

solids (materials with pore diameters of 2-50 nm) have found great utility as catalysts and 

sorption media because of their large internal surface area.
17

 In 1992, Mobil Oil Research 

successfully synthesised ordered mesoporous materials with a very high surface area (> 1000 

m
2
 g

-1
) and ordered pore structure (mostly hexagonal packed, with cylindrical pore channels).  

The materials also held extremely narrow pore size distribution where the pore diameter 

could be altered from 2 to 15 nm.  The preparation method involved mixing a ceramic 

precursor (an inorganic, non-metallic material prepared by the action of heating followed by 

cooling – such as sodium aluminate, tetramethyl ammonium silicate or silica) in a surfactant 

(a compound that lowers surface tension between two liquids or between a liquid and a solid, 

for example cetyltrimethylammonium bromide, CTAB) and reacting at temperatures of sub 

150 
o
C.  The most common phase consists of rod-like micelles packed in hexagonal 

arrangements.  The ceramic precursors bind to the head groups of the surfactant molecules 

before condensing together to form a continuous ceramic phase.  Subsequently, the surfactant 

molecules can be removed by thermal or chemical treatment.
16

 Members of this hexagonal 

family of materials are labelled MCM-41
17,18

 whilst the cubic phase are known as MCM-48
18

 

(this type is not discussed here). 

Since this research was published, mesoporous materials research has become a very active 

area because of the great potential for applications in the environment and industrial 

processes.  However progress on the practical use of these materials has been slow because 

many of the applications such as adsorption, ion exchange and catalysis require the materials 

to have specific binding sites, stereochemical configuration or charge density and 

acidity.
16,18,19

 Most mesoporous materials do not themselves have the appropriate surface 

properties for this and so require further modification. 

Using materials known as self-assembled monolayers (SAMs),
20

 Fryxell et al.
14

 

functionalised the surface of mesoporous supports to target specific metals.  SAMs were 

developed long before their potential was recognised when Zisman et al.
21

 published the 

preparation of a monomolecular layer by adsorption (self-assembly) of a surfactant onto a 

clean metal surface in 1946.
21

 It is an ordered molecular assembly formed by the adsorption 

of a surfactant on a solid surface.  This simple process makes SAMs fundamentally 

manufacturable and thus, technologically attractive for surface engineering.
20
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A powerful class of environmental sorbent materials called „self-assembled monolayers on 

mesoporous supports‟ (SAMMS) are then created when the marriage of self-assembled 

monolayers (SAMs) and mesoporous ceramic supports takes place.
22

  These materials have 

been described as highly effective sorbents and their chemistry can be tuned to selectively 

sequester a specific target species including but not limited to metals, tetrahedral oxometalate 

anions and radionuclides.
14

 Figure 3 is effectively a cross-section of the SAMMS which 

shows the bulk of the silica or other ceramic material used in its hexagonal channels with its 

pores and how this concept was taken from the SAMs on flat surfaces.  The blue dots 

illustrate the covalently attached molecules, the red are the functional end groups and the 

green are metal ions. 

 

Figure 3 – Preparation and schematic illustration of hybrid mesoporous materials.  The functional molecules are 

attached to the mesoporous support similarly to the preparation of self-assembled monolayers (SAMs) on flat 

substrates.  One end group of the functional monolayer is covalently bonded to the silica surface, and the other end 

group can be used to bind metals or other functional molecules forming the material known as SAMMS.  Image 

adapted from Liu et al.16 

The structures attached to the SAMMS material are illustrated in Figure 4 and Figure 5 

showing the ligands that Fryxell et al.
14,23

 used for this work.  A selection of the metal 

sequestration results follows these figures.  The ligands illustrated on page 7 and their 

behaviours are important for this research to demonstrate the prior knowledge before new 

approaches are explored.  Nitrogen and oxygen containing ligands are extremely common 
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and the results from the materials tested as part of the work in this thesis will show the 

extensive range of ligands that were used that included these atoms in their structures. 

 

Figure 4 – Chemical structures of SAMMS with various organic groups synthesised by Fryxell et al.14 for metal 

sequestration.  (1) Glycinyl-urea SAMMS (Gly-UR-SAMMS), (2) Salicylamide SAMMS, (3) Acetamide-Phosphonate 

(‘Ac-Phos’) Ester SAMMS and (4) AC-Phos Acid SAMMS. 

 

Figure 5 – Chemical structures of SAMMS with various organic groups synthesised by Fryxell et al.23 for metal 

sequestration.  (5) 1,2-HOPO SAMMS, (6) Prop-Phos SAMMS and (7) DiPhos SAMMS. 

The affinity of a sorbent for a target species is often represented with the distribution 

coefficient (Kd, more commonly in the unit of mL g
-1

).  This is simply a mass-weighted 

partition coefficient between the solid phase and the liquid supernatant phase as follows: 

    
     

  
   

 

 
 

Equation 1 – Equation to show the calculation of the distribution coefficient (Kd). 
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Where Co and Cf are the initial and final concentrations in the solution of the target species, V 

is the solution volume in mL and M is the mass in grams of the sorbent.  Previous literature 

has described Kd values of ca. 10
3
 mL g

-1
 as „good‟ and those above 5 x 10

4
 mL g

-1
 as 

„outstanding‟,
14,23

 thus providing a target value for future results. 

A detailed method of distribution coefficient (Kd) measurements is reported and were studied 

over a pH range of 1.0-6.5.
14

  The solution/solids ratio employed in these experiments were 

typically 200 but was also studied in a range from 50-1000 to ensure cation binding was not 

influenced by the stoichiometric ratio of binding sites to solution cation content.  Contact 

times were several hours (typically 1-4) to ensure all distribution coefficients reflected true 

equilibrium conditions.
14

 

Actinide pH 
Kd (mL g

-1
) Gly-

UR SAMMS
(a)

 

Kd (mL g
-1

) Ac-Phos 

ester SAMMS
(b)

 

Kd (mL g
-1

) Prop-Phos 

ester SAMMS
(b)

 

Am(III) 0.78 0 600 0 

 1.9 1 3900 0 

 4.26 92000 210000 33 

 5.24 240000 460000 48 

Pu(IV) 0.66 160 94000 61000 

 1.05 5100 72000 66000 

 2.08 45000 52000 36000 

Np(V) 0.72 0 60 0 

 1.55 0 55 0 

 3.68 86 43 0 

 4.73 200 150 0 

U(VI) 0.7 160 26000 170 

 2.36 12000 31000 1400 

 4.55 160000 24000 12000 

Th(IV) 0.76 900 23000 21000 

 2.43 91000 13000 31000 

Table 1 – Actinide distribution coefficients (Kd) for the carboxylic acid phosphonate ester SAMMS as reported by 

Fryxell et al.14 The structures of these are given in Figure 4 and Figure 5. (a)[Ac] = 2000 dpm/mL. 0.1 M NaNO3. 0.10 

g SAMMS in 10 mL.  (b)[Ac] = 2000 dpm/mL. 0.1 M NaNO3. 0.20 g SAMMS in 10 mL. 
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The data in Table 1 provide an idea of the values already being reported and allow 

comparisons to be made where relevant.  The U(VI) results are the only ones that are directly 

relevant based on the metal ions that were eventually investigated as part of this work, but 

tables such as the above are rarely reported with this area of work.  It was considered 

important to report this table to use as a reference for the results reported in this thesis. 

 

Figure 6 – Kinetics of Pu(IV) sorption using the phosphonate ester SAMMS.14  The structures of these are given in 

Figure 4 and Figure 5. 

Figure 6 shows a kinetics study for the sorption of Pu(IV) for the Ac-Phos and Prop-Phos 

SAMMS materials in both their acid and ester forms.  It indicates that equilibrium is reached 

in 1-2 hours.
14

 Similar investigations will be carried out on the materials produced in this 

thesis.  These behaviours are important to be aware of so that novel materials are given 

optimum time in the solution.  Comparisons with the literature also provide an invaluable 

reference when considering whether novel materials have shown significant gains in 

contribution to advancing this area.  

Figure 7 illustrates further ligands that have been reported based on hydroxypyridinone and 

these have also been bound to the surface of SAMMS, again for actinide sequestration.  

Originally, it was agreed that the impending research would concentrate only on mono- or 

bidentate ligands.  The result of this would be that ligands similar to those illustrated in 

Figure 7 would not be investigated.  However, after collaboration with PhosphonicS Ltd, this 
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changed as samples were donated to the group for testing and a focus could be made on the 

ligand testing as opposed to synthesising functionalised materials.   

 

Figure 7 – Chemical structures of SAMMS with various organic groups synthesised by Fryxell et al.13 for metal 

sequestration.  (8) 3,2-HOPO SAMMS and (9) 3,4-HOPO SAMMS. 

SAMMS are reported to have very good adsorbent properties which include: no suffering 

from solvent swelling, favourable kinetics for rapid sorption with their rigid, open pore 

structure, high functional density easily installed due to their enormously high surface area, 

and finally, being silica based, obviously makes them compatible with vitrification 

techniques for dealing with wastes.  Rapid sequestration of U(VI), Np(V) and Pu(IV) was 

reportedly observed with very little competition from transition metal cations and common 

species.
13

 

The class of tetrahydroxamate ligands that were developed by Gopalan et al.
11

 and displayed 

good ability to bind to actinide ions in solution are illustrated in Figure 8.  Encouraging 

results were reported when the ligands were evaluated for their binding ability to Pu(IV).  

They showed that both the meta and para tetrahydroxamate chelators bound to plutonium 

very strongly as well as showing selectivity for Pu(IV) over Fe(III).   

 

Figure 8 – Tetrahydroxamate ligands reported by Gopalan et al.11 
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As well as ligands, the literature on polymers is just as important, especially when 

considering the potential surface area increase.  Some polymers may be produced from 

monomers that are naturally suited for metal binding and others may need 

modification/functionalisation with ligands such as those discussed to increase their 

efficiency.  Polymers that have been reported for metal binding purposes are introduced 

below and help to explain the reasoning for the structures chosen as part of the forthcoming 

research in the following chapters. 

1.1.2 Polymers and surface attached polymers for metal removal 

Polymers that chelate to metals are the basis of a number of successful industrial separations 

including the removal of calcium to very low levels from brine and the removal of 

radioactive caesium from alkaline waste waters.
11,24,25

 Whilst both cyclic and acyclic 

backbones for anchoring ligand moieties should be considered, in some cases the greater 

stereochemical freedom of linear backbones can lead to more effective chelation.
26

 

Geckeler et al.
25

 described three general requirements which polymers as chelating agents 

should comply with.  These are: 

1) Sufficient solubilising power of the constitutional repeating unit which provides 

water-solubility of the polymer complexes. 

2) A large number of functional groups of the complexing agent for a high capacity. 

3) A high molecular weight which allows an easy separation by common methods from 

the metal not bound to the polymer. 

As well as the ligands reported prior to this section, Gopalan et al.
11

 reported the design, 

synthesis and evaluation of polyhydroxamate chelators for selective complexation of 

actinides.  One of the main goals for their research was to develop „polymer supported ion 

specific extraction systems‟ for the removal of actinides along with other hazardous metal 

ions from waste waters.  They reported that water soluble and water insoluble polymers had 

been synthesised by attaching ligands to polymeric backbones and the abilities to selectively 

remove target metal ions was reported. 

Gopalan et al.
11

 describe how cost effective and efficient methods are required to selectively 

remove contaminating metals from groundwaters and waste streams to reduce the amount of 

non-radioactive and non-toxic material that is collected with those that are, but also to reduce 

the levels in order to meet stringent regulatory limits along with decreasing waste disposal 



Page | 12  

 

costs – supporting the research reported in this thesis.  The authors of the paper also raise the 

important point on how technology needs to be developed to remove insoluble actinides from 

soils and contaminated equipment to reduce the amount of material being stored in the 

nuclear waste repositories. 

The synthesis of the polymers that were created as part of Gopalan‟s work are illustrated and 

discussed below with the first being in Scheme 1. 

 

Scheme 1 – Synthesis of water soluble polymeric chelators (1) and (2) reported by Gopalan et al.11 

Scheme 1 demonstrates the simple preparative route for the formation of the water soluble 

hydroxamates polymer (1) and the carboxylate analogue polymer (2) from 

polyethyleneimine.  The hydrophilic backbone provides this water soluble property and is 

available in a wide range of molecular weights from commercial sources.
11

  

The synthesis of water soluble hydroxamate polymer (3) and the carboxylate analogue (4) 

from commercially available polyallylamine has also been reported by the same group and 

the synthetic route for these new chelating polymers are described in Scheme 2.   
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Scheme 2 – Synthesis of water soluble polymeric chelators (3) and (4) reported by Gopalan et. al.11 

Water insoluble polymers that contain preorganised ligand groups for selective actinide ion 

binding have also been synthesised by Gopalan et al.
11

 The polymers illustrated in Figure 9 

were being evaluated for their ability to remove target metal ions.  Initial analysis of polymer 

(1) in Figure 9 was achieved in 1995
11,27

 and its binding properties with plutonium show very 

promising results. It has been reported that approximately 98 % of Pu(IV) was removed from 

a solution of 0.1 M nitric acid and dilute sample of Pu(IV) solution when a sample (of 

undisclosed quantity) of this polymer was in contact with the solution for just 30 min.  These 

limited experimental conditions were all that were reported, resulting in any comparable 

work impossible. 

Both nitrogen and oxygen atoms are known to be good for metal ion binding due to the lone 

pairs of electrons.  In this respect, these structures resemble the monomers, polymers and 

ligands that will be designed and tested as part of the results and findings within this thesis. 

Figure 9 illustrates three further water insoluble polymeric chelators reported as part of the 

research.  Polymer (3), polyallylamine amidoxime has shown to be quite effective when 

binding with uranyl ions across the acidic pH range and this is illustrated in Figure 10.   
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Figure 9 – Water insoluble polymeric chelators reported by Gopalan et al.11 

 

Figure 10 – Percentage of [UO2]
2+ bound to polymer (3) in Figure 9 as a function of pH.11 Above pH 2, greater than 

85 % of the uranyl ion was removed from solution whilst at pH 4, almost 100 % removal is observed.  No errors for 

data points are presented. 

Figure 10 demonstrates a range of pHs that show the amine group to be effective within.  

Although optimum pH is observed to be approximately pH 4, 85 % removal is observed from 

pH 2-7 – an encouraging result as this shows quite a large range of conditions where results 

can be targeted with other ligands and polymers.  The proposed work would aim to improve 

materials like this by surface attachment to silica, enabling them to be vitrified for long term 

storage of radionuclide waste storage. 

Geckeler et al.
25

 have reported the preparation and application of water soluble polymer-

metal complexes.  A series of water soluble polymers with a range of chelating groups for the 

complex formation with various metals was investigated.  It was reported that the 
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introduction of chelating groups such as pyridine-2-aldimine, thiourea, iminodiacetic acid, 8-

hydroxy quinolone, and hydroxyaniline (illustrated in Figure 11) demonstrated good 

selectivity for metal ions including, cobalt, nickel, copper, cadmium, palladium, mercury, 

silver, gold and platinum.  Cobalt, nickel, copper and cadmium ions are investigated 

thoroughly in chapter 6 whilst selectivity of ligands over these ions and others are considered 

in chapter 7.  These ligands provided good background knowledge for structures to consider, 

increasing the probability of positive results and metal ion sequestration when investigations 

were carried out. 

 

Figure 11 – Structures discussed above for improvement of selectivity for metal ions. 

Water solubility is achieved by a high content of hydrophilic groups existing in the 

compound, e.g. amino, hydroxyl, carboxyl, amide and sulfonic acid groups.  Alternatively, 

hydrophilic groups could be used in the backbone of the polymer such as ether or imino 

groups.
25

  

Poly(ethyleneimine) possesses a range of advantages as a polymer chelating agent including, 

good water solubility, high content of functional groups, good stability (chemically and 

physically) and suitable molecular weights.  Commercially available poly(ethyleneimine) 

(polymin P, BASF) was used where ratios of primary, secondary and tertiary nitrogen atoms 

were equivalent (1:1:1) illustrated in Figure 12. 

 

Figure 12 – Poly(ethyleneimine), (Polymin P, BASF) with equivalent ratios of primary, secondary and tertiary 

nitrogen atoms. 
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The complexes prepared from poly(ethyleneimine) could easily be isolated as dry powders 

which were not considered hygroscopic.  One of the main results reported by Geckeler et al.
25

 

for 1 g of poly(ethyleneimine) was the binding of 0.37 g of copper, which was in agreement 

with Irving et al.
28

 where ions of higher valence were found to be less strongly bound.  The 

NH2 group at the end of the side chain would make this polymer an ideal candidate for 

grafting from a surface as little or no modification would be required based on the literature 

reported with amino groups and metal binding. 

An iminodiacetic acid-containing polymer, grafted onto silica gel was reported by Panahi et 

al.
29

 This material was produced via a free radical co-polymerisation (a process explained in 

chapter 4 where more relevant) of N,N-dimethylacrylamide (DMAA) and a functional 

monomer containing the metal chelating group, 1-(N,N-bis-carboxymethyl)amino-3-

allylglycerol, onto a silica surface that had previously been functionalised with (3-

mercaptopropyl)trimethoxysilane (MPTMS).  The material (known as poly(AGE/IDA-co-

DMAA)-grafted silica gel) was studied for the preconcentration and determination of trace 

amounts of Cu(II) ions in environmental water samples. The sorption capacity was reported 

to be 32.3 mg g
-1

 and its structure is illustrated in Figure 13. 

 

Figure 13 – Chemical structure of poly(AGE/IDA-co-DMAA)-grafted silica gel produced by Panahi et al.29 

Although the approach to this material is very closely related to that carried out in this thesis, 

post-polymerisation modification is not considered and neither were radionuclides nor 

heavier metals as a target species.  The group successfully carried out fifteen sorption-

desorption cycles without any significant change in sorption capacity using 0.5 mol L
-1

 nitric 

acid to wash the material following metal uptake.  This shows how stable the functionalised 

silica materials can be and helps justify this work for heavier metals. 
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Metal sorption by the grafted silica at different pH values were determined using a batch 

equilibrium technique – the optimum pH was reported to be 5.5 (Figure 14) where a 

maximum recovery of 95.4 % Cu(II) was achieved from a 10 ppm solution. 

 

Figure 14 – Effect of pH on the sorption of Cu(II) on poly(AGE/IDA-co-DMAA)-grafted silica gel.29 

The very high Cu(II) uptake on this sorbent reflects good accessibility of the chelating sites in 

the poly(AGE/IDA-co-DMAA)-grafted silica gel.  Once more, a good recovery is observed 

across a wide pH range similar to that reported by Gopalan et al.
11

, restating that recovery 

should be achievable in a wide ranging set of conditions.  This material would have 

benefitted greatly from selectivity testing and an environment where radionuclides are 

present to indicate how capable this and similar materials would be – something this thesis 

studies with its materials. 

In 2006, Liu et al.
30

 reported the successful grafting of polyacrylamide from the surfaces of 

the organo-modified fibrillar clay, attapulgite.  This was carried out via the copper-mediated 

surface-initiated atom transfer radical polymerisation (SI-ATRP) technique in water.  This 

process enables the grafting of polymer from a surface by generating a radical at the surface 

to react with an unsaturated monomer and is discussed in much more detail in chapter 4 

where directly relevant to the work that was carried out in this project.  The product, known 

as „polyacrylamide grafted attapulgite‟ was characterised using elemental analysis, FTIR, 

TGA and TEM before preliminary tests were made to use the material as an adsorbent for 

removal of the metal ion Hg(II).  It was anticipated that the problem of complete removal of 

water soluble polymers would be overcome by the polymer chain being chemically bonded to 

the clay‟s surface.  The authors reported a better dispersibility in water and it was found that 
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the material also had a higher adsorption capacity towards the Hg(II) ion although exactly 

how much better is unclear from the literature. 

 

Figure 15 – Chemical structure of polyacrylamide grafted attapulgite synthesised by Liu et al.30 

Although Hg(II) was not investigated in this thesis, the methodology of using SI-ATRP has 

shown to be an appropriate technique for modifying surfaces for metal ion removal and is a 

technique that was utilised to graft polymers to the surface of silica materials.  Clays were not 

investigated either, but the initial idea to have a versatile modular system in which pieces of 

the „tool box‟ could be swapped and changed, shows that a silica surface could be replaced 

for a material such as attapulgite. 

1.2 Summary 

The literature reported in this review has been narrowed to that closely related to the project 

idea as a whole.  Further literature is used to introduce specific areas of the project in more 

depth in the relevant chapters whilst previous workers results are used throughout the thesis 

to compare findings and results where appropriate. 

The use of ligands and polymers can create very effective materials for removing metal ions 

from aqueous solutions.  If a metal ion is known to have a good affinity for a particular 

ligand, the selectivity will remain when attached to polymer chains but the large number of 

repeat units will allow a higher quantity of ions or radioactive isotopes to be removed.   

The literature available has proven to be extremely valuable, provided a good understanding 

of previous work and how this can be built upon.  It is clear that although research has 

already been reported, room still remains for rewarding and novel results to be collected 

along with significant contributions to be made to this area. 

„SAMMS‟ have good attributes that allow them to be highly effective sorbents along with 

enabling their chemistry to be tuned to selectively sequester a specific target species 

including but not limited to heavy metals, tetrahedral oxometalate anions and 

radionuclides.
7,13,14,23

 As previously stated, these materials are not specifically investigated in 

this thesis, however the surface chemistry that will be carried out is very similar.  It is 
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anticipated that a range of ligands will be tested and found to be as successful as the research 

on „SAMMS‟ has been found to be. 

The many reports published with SAMMS and other silica materials suggest that silica is a 

practical solid support for the modular process intended for this work.  Although perhaps not 

suitable for alkaline conditions above pH 9
31

, its surface allows straight forward chemistry to 

be carried out to synthesise a material much more functional than its natural form. 

The work reported on polymers also provides good literature on methodology and more is 

provided where relevant in chapter 4.  The range in which data is reported will make it 

difficult to make direct comparisons of material behaviours with some opting for percentages, 

others Kd values whilst others still have reported a direct reduction in concentration.  The 

high percentages of metal removal may sound outstanding with figures of over 98 % removal 

but with an unknown amount of sample reported and Kd values not presented it is impossible 

to know how effective these materials really are.  
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2 Experimental 

2.1 Instrumentation 

2.1.1 Infrared Spectroscopy 

Infrared spectra were recorded using the UATR appliance for the majority, but where stated 

pressed KBr disks were used.  They were measured in the range of 4000-380 cm
-1

 on the 

UATR using a Perkin Elmer Spectrum 100 FT-IR Spectrometer. 

2.1.2 CHN Elemental Analysis 

These were carried out at Loughborough University on a CHN CE-440 Elemental Analyser.  

All results are an average of three repeats carried out on the same batch.  More information 

on this technique can be found at the start of chapter 5 where this technique is most relevant. 

2.1.3 Solution State NMR 

1
H and 

13
C-NMR spectra were recorded on a Bruker Avance spectrometer at 400 and 100 

MHz, respectively.  Samples were dissolved in CDCl3 (unless otherwise stated) using TMS 

(tetramethylsilane) as the internal reference at 0.0 ppm.  Chemical shifts are quoted in ppm 

and coupling constants are measured in hertz which are quoted to the nearest 0.1 Hz. 

2.1.4 Solid State NMR 

Solid state 
1
H, 

13
C and 

29
Si NMR spectra were recorded using a Bruker Avance NMR 

spectrometer at 500, 125.7 and 99.3 MHz, respectively, equipped with a 4 mm MAS HX 

probe, a 100 W proton amplifier and a 500 W 
13

C amplifier.  Cross Polarisation used a 
1
H 

pulse of 2 s (at −5.5 dB), a ramped-proton CP pulse of 2 ms (at −4.0 dB) and a carbon CP 

pulse of 2 ms (at −3.1 dB).  TPPM15 („two pulse phase modulation‟ – designed to greatly 

reduce the residual line widths arising from insufficient proton decoupling power in double 

resonance magic angle spinning (MAS) experiments
32

) proton decoupling was applied during 

the 30 ms acquisition time.  Free induction decay (FIDs) contain 3000 data points which were 

Fourier transformed into 16000 data points.  An exponential function of 20 Hz was applied to 

the FID using Bruker TOPSPIN(1.3) software. Spectra were referenced to external TMS (
1
H, 

13
C, 

29
Si) and the magic angle was set up using KBr.  Magic angle spinning of 10 kHz was 

used and for CP-MAS 
29

Si, a relaxation delay of 10 s was used between each scan and DP-

MAS 
29

Si, a relaxation of 300 s was used. 
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2.1.5 Mass Spectrometry 

Where applicable, mass spectrometry was used to confirm product identity and these were 

run at Loughborough University using a Thermo Fischer Exactive with an ion max source 

and ESI probe fitted with Advion triversa nanomate. 

2.1.6 ICP-OES 

Samples were prepared by diluting down to ppm levels of concentration or in most cases, the 

work was carried out at „ppm‟ levels so that dilutions were not required, and run on a Thermo 

Scientific iCAP 6000 series ICP Spectrometer in conjunction with a CETAC ASX-520 

AutoSampler.  0.5 % HNO3 acid was added to all the samples and a calibration graph was 

always made with solutions of known concentration run prior to the samples in question with 

the same plasma.  This ensured the plasma was calibrated as accurately as possible.  iTEVA 

ICP software was used to collect the data before being processed with a spread sheet package.   

Statistical methods for assessing and comparing limits of detection are important and in 

general terms, the limit of detection (LOD) of an analyte may be described as the 

concentration which gives an instrument signal (y) significantly different from the „blank‟ or 

„background‟ signal.  There is no full agreement between researchers, publishers and 

professional and statutory bodies on this point but there is an increasing trend to define the 

limit of detection as the analyte concentration giving a signal equal to the blank signal, yB, 

plus three standard deviations of the blank, sB.
33

 

             

Equation 2 – Limit of detection 

It is important to state that this definition is quite arbitrary and there may be occasions when 

an analyst is anxious to avoid the possibility of reporting the absence of the analyte when it is 

in fact present, but relatively unworried about the opposite error.  Evidently, whenever a 

LOD is cited, the definition used to calculate it must also be provided (in this case, see 

Equation 2).  Some attempts have been made to define a further limit – the limit of 

quantification (LOQ, sometimes referred to as limit of determination), which is regarded as 

the lower limit for precise quantitative measurements, as opposed to qualitative detection.  A 

value of yB plus ten standard deviations of the blank has been suggested for this limit, see 

Equation 3.
33
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Equation 3 – Limit of quantification 

Limits of detection and quantification for ICP-OES are reported in Table 2.  

Element Wavelength Limit of Detection (ppm) Limit of Quantification (ppm) 

Mg 279.5 0.008 0.026 

Al 167.0 0.009 0.031 

Cr 283.5 0.011 0.036 

Mn 257.6 0.013 0.043 

Fe 259.9 0.089 0.298 

Co 228.6 0.004 0.012 

Ni 221.6 0.029 0.095 

Cu 324.7 0.204 0.679 

Zn 213.8 0.002 0.007 

Cd 228.8 0.002 0.008 

Se 196.0 0.019 0.062 

Sb 206.8 0.010 0.035 

Pb 220.3 0.011 0.037 

Eu 381.9 0.063 0.210 

Th 283.7 0.173 0.576 

U 367.0 1.387 4.624 

Table 2 – Limits of detection and Limits of quantification for ICP-OES for elements reported in this work. 

More in-depth information on this technique can be found at the start of chapter 6. 

2.1.7 ICP-MS 

Samples were prepared by diluting down to ppb levels of concentration and run on an Agilent 

Technologies 7700 Series ICP-MS.  Samples were prepared as described in section 2.1.6.  

This ensured the plasma was calibrated as accurately as possible.  Limits of detection and 

quantification for ICP-MS are reported in Table 3. 
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Element Isotope Limit of Detection (ppb) 
Limit of Quantification 

(ppb) 

Co 59 0.062 0.207 

Ni 60 0.049 0.162 

Cu 63 0.425 1.418 

Zn 66 0.321 1.068 

Cd 111 0.031 0.103 

Eu 153 0.437 1.458 

U 238 0.092 0.307 

Table 3 - Limits of detection and Limits of quantification for ICP-MS for elements reported in this work. 

More in-depth information on this technique can also be found at the start of chapter 6. 

2.1.8 Liquid Scintillation Counting 

Samples were prepared as described in the experimental and placed on a Packard 2100 TR 

Liquid Scintillation Analyser.  All samples were given at least one hour in the machine before 

running them so that no natural light could interfere with the results and produce more 

accurate results.  Gold Star, multipurpose liquid scintillation cocktail (meridian) was used for 

the measurement of beta emitters (only 
63

Ni in this work).   

Quenching was checked for by the sample channels ratio method.
34

 The detected counts are 

divided into channels based on their relative energies: the number of high energy counts 

(recorded in the „B‟ channel) is compared to the number of low energy counts (recorded in 

the „A‟ channel).  The ratio (calculated as B/A or B/(B+A)) will change if the sample is 

quenched.  Quenching reduces the intensity of each light pulse, so counts will appear to be of 

lower energy.  This will shift counts from high to low energy channels, and decrease the 

channels ratio.
35

 No quenching was observed in these checks and therefore quench correction 

of the measurements was not required.  More information on this technique can be found at 

the start of chapter 6. 

2.1.9 Gamma Counting 

Samples were prepared as described in the experimental and placed in racks onto a Packard 

COBRA II AUTO-GAMMA.  A counting channel with a range between the associated keV 

for the isotopes used was prepared.  These isotopes and ranges are discussed within the work 
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but include 
57

Co, 
109

Cd and 
152

Eu.  Again, more information on this technique can be found at 

the start of chapter 6. 

2.1.10 Malvern Mastersizer 2000 

The Malvern Mastersizer 2000 was used to measure the particle size of the samples donated 

to the group by PhosphonicS Ltd.  This enabled comparisons to be made between these 

samples and the silica materials synthesised in this work.  The Mastersizer 2000 uses the 

technique of laser diffraction to measure the size of particles. It does this by measuring the 

intensity of light scattered as a laser beam passes through a dispersed particulate sample. This 

data is then analysed to calculate the size of the particles that created the scattering pattern.
36

 

Results can be found in Appendix 3 – Particle size of PhosphonicS Ltd samples. 

2.1.11 Freeze Drier 

Polymers that were dried using the freeze drier were done so on a VirTis Benchtop „K‟ Series 

SLC freeze drier, capable of condenser temperatures from -55
o
C to -105 

o
C. 

This process extracts moisture from the products via sublimation.  The freeze drier creates a 

low-pressure zone to allow moisture to flow easily from the product.  Since vapour naturally 

travels toward cooler surfaces, the condensing chamber is cooled to at least 15 
o
C below that 

of the product to attract product moisture.
37

 This process is preferred to rotary evaporators 

where warming or heating is involved to reduce the risk of cross-linking the polymer.  

2.1.12 Chemicals 

All chemicals were used as received and purchased from Sigma Aldrich unless otherwise 

indicated.  Cu(I)Br and Cu(II)Br were stored in a vacuum desicator. 
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2.2 Synthesis of PHEMA via ATRP 

 

Scheme 3 – Synthesis of free PHEMA via ATRP 

This synthesis was carried out using a similar method to Armes et al.
38

 To a deoxygenated 

solution (achieved by bubbling nitrogen gas through the solution for 10 mins) of 2-

hydroxyethyl methacrylate (HEMA, 97 %, 20 mL, 0.16 mol) in water (10 mL) and methanol 

(10 mL), CuBr (216 mg, 1.51 mmol), CuBr2 (34 mg, 0.15 mmol) and bpy (576 mg, 3.69 

mmol) were dissolved under a flow of nitrogen gas.  Ethyl α-bromoiso butyrate (EBIB, 0.22 

mL, 1.52 mmol) was injected into the solution and polymerisation was left to commence 

overnight in a nitrogen atmosphere.  As polymerisation commenced, an exothermic reaction 

occurred. 

To purify, a large sintered glass column was prepared by packing down a thin layer of celite 

followed by a slurry of silica in methanol.  To this, the viscous polymer solution, dissolved in 

methanol (500 mL) was pulled through under vacuum and repeated three times. 

The eluent was poured into diethyl ether (400 mL) under vigorous stirring, causing the 

polymer to precipitate instantly and agglomerate.  The solvent was decanted off and the 

polymer was dried on a freeze drier.   This was ground down using a mortar and pestle which 

broke up the dry polymer very easily to leave a white solid (8.48 g, 39 % conversion). 

NMR: δH(400MHz, MeOD) 4.04(2H, bs, CH2OCO, c), 3.78(2H, bs, CH2OH, d), 2.02-

1.61(2H, bd, CH2C, a), 1.01-0.94(3H, bd, CH3C, b) 

13
C (100MHz, MeOD) 17.8-19.9(CH3, b) 46.3-46.7(C, 1) 53.6-55.8(CH2, a) 60.9-61.0(CH2, 

d) 68.04(CH2, c) 178.9-180.0(CO, 2) 

FTIR: 1727 cm
-1

  

Elemental Analysis (CHN): (Based on DP = 43, Mw = 5596 as calculated in 3.2.1.2) 

Calculated: %C = 54.8, %H = 7.7, %N = 0, %O = 36.2, %Br = 1.4 

Actual: %C = 54.1, %H = 7.6, %N = 0.1, %R = 38.2 
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2.3 Synthesis of PHEMA via ARGET ATRP 

 

Scheme 4 – Synthesis of free PHEMA via ARGET ATRP 

To a deoxygenated solution of HEMA (97 %, 20 mL, 0.16 mol) in water (10 mL) and 

methanol (10 mL), CuBr (8 mg, 0.036 mmol), ascorbic acid (100 mg, 0.56 mmol) and bpy 

(12.2 mg, 0.078 mmol) were dissolved under a flow of nitrogen gas.  EBIB (0.22 mL, 1.52 

mmol) was injected into the solution and polymerisation was left to commence overnight in a 

nitrogen atmosphere.  As polymerisation commenced, an exothermic reaction occurred. 

To purify, a large sintered glass column was prepared by packing down a thin layer of celite 

followed by a slurry of silica in methanol.  To this, the viscous polymer, dissolved in 

methanol (500 mL) was pulled through under vacuum and repeated three times. 

The crude product was purified as described in section 2.2, leaving a white solid (14.07 g, 65 

% conversion). 

NMR: δH(400MHz, MeOD) 4.04(2H, bs, CH2OCO, c), 3.78(2H, bs, CH2OH, d), 2.02-

1.61(2H, bm, CH2C, a), 1.01-0.94(3H, bd, CH3C, b) 

13
C (100MHz, MeOD) 17.8-19.9(CH3, b) 46.3-46.7(C, 1) 53.6-55.8(CH2, a) 60.9-61.0(CH2, 

d) 68.04(CH2, c) 178.9-180.0(CO, 2) 

FTIR: 1728 cm
-1

  

Elemental Analysis (CHN): (Based on DP = 72, Mw = 9370 as calculated in 3.2.1.2) 

Calculated: %C = 55.0, %H = 7.7, %N = 0, %O = 36.5, %Br = 0.8 

Actual: %C = 53.4, %H = 7.5, %N = 0.2, %R = 38.9 
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2.4 Synthesis of 3-ethoxy-3-oxopropanoic acid 

 

Scheme 5 – Synthesis of 3-ethoxy-3-oxopropanoic acid 

This synthesis was carried out using a similar method to Niwayama et al.
39

 To a solution of 

water (200 mL) and tetrahydrofuran (THF, 50 mL), diethyl malonate (5 g, 0.0312 mol) was 

added and cooled to 0 
o
C.  NaOH solution (0.25 M, 125 mL) was added dropwise and stirred 

for 45 m before the solution was acidified to ca. pH 2 with HCl (1 M) whilst maintaining       

0 
o
C.  The reaction was immediately saturated with NaCl and extracted with ethyl acetate (3 

× 200 mL).  The solution was dried with Na2SO4 and solvent removed in vacuo.  Purification 

by silica gel column chromatography eluting with petrol:ethyl acetate (3:1 vol) gave the 

colourless/yellow liquid product (2.76 g, 67 %). 

MS (m/z): Found: m/z 155 (100%), Calculated for m/z C5H8O4Na
+
  

NMR: δH(400MHz, CDCl3) 10.15(1H, bs, COH, d), 4.27-4.22(2H, J=6.8Hz, t, CH3CH2, b), 

3.45-3.44(2H, J=3.2Hz, s, COCH2CO, c), 1.32-1.25(3H, J=7.2Hz, t, CH2CH3, a) 

 

2.5 Synthesis of ethyl malonyl chloride 

 

Scheme 6 – Synthesis of ethyl malonyl chloride 

To a solution of mono-ethyl malonate (1.25 g, 9.44 mmol) excess thionyl chloride (3 mL) 

was added.  The reaction refluxed overnight with continuous stirring.  The thionyl chloride 

was removed by rotary evaporation.  Following this, the product was immediately used for 

the attachment to the polymer.  This synthesis is described in „2.6 Synthesis of free PHEMA 

with ethyl malonyl chloride‟. 
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2.6 Synthesis of free PGMA via ATRP 

 

Scheme 7 – Synthesis of free PGMA via ATRP 

This synthesis was carried out using a similar method to Edmondson.
40

 To a deoxygenated 

solution of glycidyl methacrylate (GMA, 10.0 g, 70.4 mmol) in water (10 mL) and methanol 

(10 mL), CuBr (61 mg, 0.43 mmol), CuBr2 (8.2 mg, 0.04 mmol) and bpy (196 mg, 1.26 

mmol) were dissolved under a flow of nitrogen gas.  EBIB (6.2 μL, 0.42 mmol) was injected 

into the solution and polymerisation was left to commence overnight in a nitrogen 

atmosphere.  As polymerisation commenced, an exothermic reaction occurred.   

To purify, the product was dissolved in dichloromethane (DCM, 200 mL) and poured into a 

separating funnel containing distilled water (200 mL).  The water changed to a blue/green 

colour whilst the DCM was white. 

The DCM extract was poured into cold methanol (200 mL) where the polymer precipitated as 

a white rubbery solid.  The solvent was decanted off and the polymer was dried on a freeze 

drier to leave a white solid.  This was ground down using a mortar and pestle which broke up 

the dry polymer very easily to leave a white solid (6.98 g, 69 %). 

NMR: δH(400MHz, CDCl3) 4.30(1H, bs, CH2O, c), 3.84-3.80(1H, bs, CH2O, c), 3.23(1H, bs, 

CHCH2CO, d), 2.84(1H, bs, CH2O, e), 2.64(1H, bs, CH2O, e), 2.03-1.90(2H, bm, CH2C, a), 

1.14-0.86(3H, bd, CH3C, b). 

13
C (100MHz, CDCl3) 16.8(CH3, b), 29.7(CH2, e), 44.7(CH2, a), 48.8-48.9(CH, d), 65.7-

65.9(CH2, c), 128.0(C, 1), 177.2-178.2(CO, 2). 

FTIR: 1723 cm
-1

, 1253 cm
-1

, 905 cm
-1

, 843 cm
-1 

Elemental Analysis (CHN): (Based on DP = 81, Mw = 11565 as calculated in 3.2.2.2) 

Calculated: %C = 58.8, %H = 7.1, %N = 0, %O = 33.5, %Br = 0.5  

Actual: %C = 58.4, %H = 6.9, %N = 0.1, %R = 34.6 



Page | 29  

 

2.7 Synthesis of free PGMA via ARGET ATRP 

 

Scheme 8 – Synthesis of free PGMA via ARGET ATRP 

To a deoxygenated solution of GMA (10.0 g, 70.4 mmol) in water (10 mL) and methanol (10 

mL), CuBr2 (4.7 mg, 0.021 mmol), ascorbic acid (67.1 mg, 0.38 mmol) and bpy (8.7 mg, 

0.056 mmol) were dissolved under a flow of nitrogen gas.  EBIB (5.4 μL, 0.37 mmol) was 

injected into the solution and polymerisation was left to commence overnight in a nitrogen 

atmosphere.  As polymerisation commenced, an exothermic reaction occurred. 

To purify, the product was dissolved in DCM (200 mL) and poured into a separating funnel 

containing distilled water (200 mL).  The water changed to a blue/green colour whilst the 

DCM was a white milky colour. 

The crude product was purified as described in section 2.6, leaving a white solid (7.87 g, 78 

%). 

NMR: δH(400MHz, CDCl3) 4.30(1H, bs, CH2O, c), 3.85-3.81(1H, bs, CH2O, c), 3.50-

3.49(1H, bs, CHCH2CO, d), 2.84(1H, bs, CH2O, e), 2.64(1H, bs, CH2O, e), 1.97-1.90(2H, 

bm, CH2C, a), 1.10-0.94(3H, bd, CH3C, b). 

13
C (100MHz, CDCl3) 16.8(CH3, b), 29.7(CH2, e), 44.7(CH2, a), 48.8-48.9(CH, d), 65.7-

65.9(CH2, c), 128.0(C, 1), 177.2-178.2(CO, 2). 

FTIR: 1723 cm
-1

, 1253 cm
-1

, 905 cm
-1

, 843 cm
-1

 

Elemental Analysis (CHN):  (Based on DP = 104, Mw = 14841 as calculated in 3.2.2.2) 

Calculated: %C = 58.9, %H = 7.1, %N = 0, %O = 33.5, %Br = 0.5  

Actual: %C = 58.4, %H = 6.9, %N = 0.1, %O = 34.6  
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2.8 Synthesis of tosylated HEMA 

 

Scheme 9 – Synthesis of tosylated HEMA 

This synthesis was carried out using a similar method to Stolle et al.
41

 To a solution of 

pyridine (100 mL) at 0 
o
C, HEMA (10.01 g, 0.08 mol) and p-toluenesulfonyl chloride (22.12 

g, 0.12 mol) were dissolved and stirred for 4 h. 

The mixture was extracted by addition of DCM, followed by HCl (2M, 2 x 100 mL washes) 

and brine solution (2 x 100 mL).  The DCM layer was dried over MgSO4 and concentrated in 

vacuo to give the desired product as a colourless oil (13.30 g, 61 %). 

MS (m/z): Found: m/z 307 (100 %), Calculated C13H16O5SNa
+
  

FTIR: 1720 cm
-1

, 1401 cm
-1

, 1177 cm
-1

 

NMR: δH(400MHz, CDCl3) 7.808-7.787(2H, d, ArH, e), 7.358-7.270(2H, d, ArH, f), 

6.060(1H, s, CCH2, a1), 5.579(1H, s, CCH2, a2), 4.329-4.306(2H, t, CH2CH2, c), 4.267-

4.251(2H, t, CH2CH2, d), 2.452(3H, s, ArCH3, g), 1.893(3H, s, CCH3, b).  

13
C (100MHz, CDCl3) 18.25(CH3, b), 21.65(CH3, g), 61.83(CH2, d), 67.69(CH2, c), 

126.48(CH2, 1), 127.92(CH, e), 129.96(CH, f), 132.71(CH3CPh, 5), 135.53(CH3CCO, 2), 

145.09(SO3CPh, 4), 166.82(CO, 2). 
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2.9 Synthesis of tosylated PHEMA via free radical polymerisation 

 

Scheme 10 – Synthesis of tosylated PHEMA 

To a solution of toluene (25 mL), tosylated HEMA (HEMA-OTs, 5 g, 0.018 mol) and 1,1'-

Azobis(Cyclohexanecarbonitrile, ABCN, ~50 mg) were added and dissolved before being 

stirred under reflux for 5 h. 

Once the solution was heated (150 
o
C) a polymer gel was observed to precipitate out of 

solution.  When the reaction was stopped, the toluene was decanted off and the polymer was 

left to dry overnight in a vacuum oven.  The polymer was ground down using a mortar and 

pestle which broke up the dry polymer very easily resulting in a white product (3.56 g, 71 %). 

The polymer was insoluble for NMR analysis but FTIR clearly showed no hydroxyl group 

and indicated the tosylate group was still attached. 

FTIR: 1729 cm
-1

, 1356 cm
-1

, 1173 cm
-1

 

 

2.10 Synthesis of 4-cyanobenzoyl chloride 

 

Scheme 11 – Synthesis of 4-cyanobenzoyl chloride 

To a solution of thionyl chloride (30 mL), 4-cyanobenzoic acid (2.11 g, 0.014 mol) was 

added and stirred under reflux for 4 h. 

This product was concentrated in vacuo and used immediately for the attachment to PHEMA.  
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2.11 Synthesis of 4-cyanobenzoyl chloride attachment to PHEMA 

 

Scheme 12 – Synthesis of 4-cyanobenzoyl chloride attachment to PHEMA 

To a solution of dry DMF (20 mL) and Et3N (2 mL, 0.014 mol), 4-Dimethylaminopyridine 

(DMAP, 50 mg, 0.41 mmol) and PHEMA (0.5 g, 3.84 mmol) were dissolved and sealed 

under a nitrogen atmosphere.  4-cyanobenzoyl chloride (2.38 g, 0.014 mol) was then added to 

the solution and stirred for 1 h. 

The product precipitated out in diethyl ether which was decanted off and the product was 

washed exhaustively with water, followed by diethyl ether.  The product was transferred onto 

filter paper and dried in vacuo.  The polymer was ground down using a mortar and pestle 

which broke up the dry polymer very easily to leave a light yellow coloured solid (0.52 g). 

The polymer was insoluble for NMR analysis but FTIR analysis did show cyano- peaks to be 

visible. 

FTIR: 2232 cm
-1

, 1699 cm
-1
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2.12 Synthesis of free PDMAEMA via ARGET ATRP 

 

Scheme 13 – Synthesis of PDAEMA via ARGET ATRP 

To a deoxygenated solution of 2-(dimethylamino)ethyl methacrylate (DMAEMA, 14 mL, 

0.05 mol) in 2-propanol (14 mL) and water (0.7 mL), CuBr2 (7.4 mg, 0.033 mmol), ascorbic 

acid (58.1 mg, 0.330 mmol) and 1,1,4,7,10,10-hexamethyltriethylenetetramine (HMTETA, 

44.7 μL, 0.164 mmol) were dissolved under a flow of nitrogen gas.  EBIB (55.6 μL, 0.379 

mmol) was injected into the solution and polymerisation was left to commence overnight in a 

nitrogen atmosphere.  As polymerisation commenced, an exothermic reaction occurred. 

To purify, a large sintered glass column was prepared by packing down a thin layer of celite 

followed by a slurry of silica in 2-propanol.  To this, the viscous polymer, dissolved in 2-

propanol (100 mL) was pulled through under vacuum and repeated three times.   

After failing to precipitate the product in a range of solvents, the product was obtained by 

removing the solvent in vacuo.  The polymer was ground down using a mortar and pestle 

which broke up the dry polymer very easily to leave a light green coloured product (9.01g, 76 

%). 

NMR: δH(400MHz, MeOD) 4.06(2H, bs, CH2O, c), 3.29-3.26(3H, s, CH3C, b), 2.62-

2.59(2H, bs, CH2N(CH3)2, d), 2.33-2.29(6H, s, N(CH3)2, e), 0.90(1H, bs, CH2C, a). 

FTIR: υ 2945 cm
-1

, 2821 cm
-1

, 2769 cm
-1

, 1722 cm
-1

, 1454 cm
-1

, 1392 cm
-1

 agreeing with 

that reported by Gillies et al.
42

 in their supporting information. 
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2.13 Deposition of APTES onto ZEOprep silica 

 

Scheme 14 – Synthesis of APTES onto silica  

To acetone (150 mL), ZEOprep 60 ECO silica gel; 40-63 micron (12.0 g) was added.  The 

solution was heated to 60 
o
C before (3-aminopropyl)triethoxysilane (APTES, 30 mL, 0.13 

mol) was added and stirred for 2 h.  After this, the solution was poured into a sintered glass 

filter under vacuum and thoroughly washed with excess acetone.  The product was then dried 

in vacuo to leave a cream coloured product (12.83 g). 

FTIR: υ 1099 cm
-1

, 1643 cm
-1

 

Elemental Analysis (CHN):   

Calculated values unable to be determined, results given are actual results to illustrate the 

difference between the materials.  All ZEOprep and fumed silica products are reported as 

seen below. 

ZEOprep silica: %C = 0.04, %H = 0.3, %N = 0.04, %R = 99.6 

APTES-functionalised ZEOprep silica: %C = 5.2, %H = 1.0, %N = 1.6, %R = 92.2 
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2.14 Deposition of BIBB onto APTES-functionalised ZEOprep silica 

 

Scheme 15 – Deposition of BIBB onto APTES-functionalised ZEOprep silica. 

To a suspension of APTES-functionalised ZEOprep silica (4.8 g) and dry THF (40 mL), Et3N 

(13.2 mL, 9.49 mmol) was added under a nitrogen atmosphere and stirred at 0 
o
C.  2-

bromoisobutyryl bromide (BIBB, 10 mL, 0.081 mol) was added dropwise with caution.  A 

white vapour evolved instantly and the solution was left to stir for 30 m. 

After this, the solution was poured into a sintered glass filter under vacuum, leaving the silica 

product.  This was thoroughly washed with excess THF, methanol and water and repeated 

three times to purify the product.  The product was transferred to a watch glass and dried in a 

vacuum oven for 30 min to ensure dryness, leaving the yellow coloured product (4.19 g). 

IR: υ 1057 cm
-1

, 1537 cm
-1

,
 
1648 cm

-1
  

Elemental Analysis (CHN):   

APTES-functionalised ZEOprep silica: %C = 5.2, %H = 1.0, %N = 1.6, %R = 92.2 

BIBB-functionalised ZEOprep silica: %C = 9.4, %H = 1.6, %N = 1.5, %R = 87.6 
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2.15 Polymerisation of HEMA from BIBB-functionalised ZEOprep silica 

 

Scheme 16 – Polymerisation of HEMA from BIBB-functionalised ZEOprep silica. 

To a deoxygenated solution of HEMA (97 %, 5.0 g, 0.038 mol), water (2.5 mL) and methanol 

(2.5 mL), CuBr (54.9 mg, 0.38 mmol), CuBr2 (9.1 mg, 0.041 mmol) and bpy (145.9 mg, 0.93 

mmol) were dissolved under a flow of nitrogen gas. 

BIBB-functionalised ZEOprep silica (0.52 g) was prepared in a second deoxygenated flask 

before the HEMA solution was injected in.  Following this, the solution was agitated on a 

shaker for 3 d. 

The solution was then poured into a sintered glass column under vacuum and thoroughly 

washed with water and methanol (1:1 v/v) to leave a cream coloured powder (0.53 g). 

FTIR: υ 1079 cm
-1

, 1547 cm
-1

, 1647 cm
-1

, 1736 cm
-1

 

Elemental Analysis (CHN):   

BIBB-functionalised ZEOprep silica: %C = 9.4, %H = 1.6, %N = 1.5, %R = 87.6 

PHEMA functionalised ZEOprep silica: %C = 30.2, %H = 4.3, %N = 0.8, %R = 64.8 
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2.16 Polymerisation of DMAEMA from BIBB-functionalised ZEOprep silica 

 

Scheme 17 – Polymerisation of DMAEMA from BIBB-functionalised ZEOprep silica. 

To a deoxygenated solution of DMAEMA (98 %, 5 mL, 0.030 mol), water (0.5 mL) and 

propan-2-ol (9.5 mL), CuBr2 (8.0 mg, 0.035 mmol) and HMTETA (50 μL, 0.184 mmol) were 

dissolved under a flow of nitrogen gas. 

BIBB-functionalised ZEOprep silica (0.51 g) was prepared in a second degassed flask before 

the DMAEMA solution was injected in.  Following this, the solution was agitated on a shaker 

for 3 d. 

The solution was then poured into a sintered glass column under vacuum and thoroughly 

washed with water followed by propan-2-ol to leave a cream coloured powder (0.53 g). 

FTIR: υ 1040 cm
-1

, 1457 cm
-1

, 1534 cm
-1

, 1647 cm
-1

, 1727 cm
-1

 

Elemental Analysis (CHN): 

BIBB-functionalised ZEOprep silica: %C = 9.4, %H = 1.6, %N = 1.5, %R = 87.6 

PDMAEMA functionalised ZEOprep silica: %C = 20.2, %H = 3.3, %N = 3.0, %R = 73.5 
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2.17 Polymerisation of PEGMA from BIBB-functionalised ZEOprep silica 

 

Scheme 18 – Polymerisation of PEGMA from BIBB-functionalised ZEOprep silica. 

To a deoxygenated solution of poly(ethylene glycol) monomethyl ether methacylate 

(PEGMA, MW 300, 5.0 g, 0.017 mol), water (2.5 mL) and methanol (2.5 mL), CuBr (55.3 

mg, 0.39 mmol), CuBr2 (9.5 mg, 0.043 mmol) and bpy (150.6 mg, 0.96 mmol) were 

dissolved under a flow of nitrogen gas. 

BIBB-functionalised ZEOprep silica (0.55 g) was prepared and added to the reaction.  

Following this, the solution was stirred for 2 h. 

The solution was then poured into a sintered glass column under vacuum and thoroughly 

washed with water and methanol (1:1 v/v) to leave a dark yellow coloured powder (0.62 g). 

FTIR: υ 1043 cm
-1

, 1535 cm
-1

, 1649 cm
-1

, 1727 cm
-1

 

Elemental Analysis (CHN):   

BIBB-functionalised ZEOprep silica: %C = 9.4, %H = 1.6, %N = 1.5, %R = 87.6 

PEGMA functionalised ZEOprep silica: %C = 20.2, %H = 3.2, %N = 1.2, %R = 75.4  
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2.18 Deposition of APTES onto fumed silica 

 

Scheme 19 – Deposition of APTES onto fumed silica. 

To acetone (60 mL), fumed silica, 0.007μm (2.4 g) was added.  The solution was heated to 60 

o
C before APTES (7 mL, 0.04 mol) was added and stirred for 2 h.  After this, the solution 

was poured into a sintered glass column under vacuum and thoroughly washed with excess 

acetone.  The product was then dried in vacuo to leave a cream coloured product (2.85 g). 

FTIR: υ 1044 cm
-1

, 1666 cm
-1

 

Elemental Analysis (CHN):   

Fumed silica: %C = 0.3, %H = 0.2, %N = 0.07, %R = 99.4 

APTES-functionalised fumed silica: %C = 6.9, %H = 1.4, %N = 2.3, %R = 89.4 
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2.19 Deposition of BIBB onto APTES-functionalised fumed silica 

 

Scheme 20 – Deposition of BIBB onto APTES-functionalised fumed silica. 

To a suspension of APTES-functionalised fumed silica (1.1 g) and dry THF (10 mL), Et3N 

(3.3 mL, 0.024 mmol) was added under a nitrogen atmosphere and stirred at 0 
o
C.  BIBB (2.5 

mL, 0.02 mol) was added dropwise with caution.  A white vapour evolved instantly and the 

solution was left to stir for 30 m. 

After this, the solution was poured into a sintered glass column under vacuum and thoroughly 

washed with excess THF, methanol and water.  This was repeated three times to purify the 

product.  The product was transferred to a watch glass and dried in a vacuum oven for 30 m 

to ensure dryness, leaving the yellow coloured product (1.08 g). 

FTIR: υ 1041 cm
-1

, 1642 cm
-1

, 1537 cm
-1

  

Elemental Analysis (CHN):   

APTES-functionalised fumed silica: %C = 6.9, %H = 1.4, %N = 2.3, %R = 89.4 

BIBB-functionalised fumed silica: %C = 10.9, %H = 1.6, %N = 1.7, %R = 85.8 
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2.20 Polymerisation of HEMA from BIBB-functionalised fumed silica 

 

Scheme 21  – Polymerisation of HEMA from BIBB-functionalised fumed silica. 

To a deoxygenated solution of HEMA (97 %, 5.0 g, 0.038 mol), water (2.5 mL) and methanol 

(2.5 mL), CuBr (56.8 mg, 0.40 mmol), CuBr2 (8.2 mg, 0.037 mmol) and bpy (148.3 mg, 0.95 

mmol) were dissolved under a flow of nitrogen gas. 

BIBB-functionalised fumed silica (0.54 g) was prepared in a second degassed flask before the 

HEMA solution was injected in.  Following this, the solution was agitated for 3 d. 

The solution was then poured into a sintered glass column under vacuum and thoroughly 

washed with water and methanol (1:1 v/v) to leave a cream coloured powder (1.51 g). 

FTIR: υ 1065 cm
-1

, 1719 cm
-1

 

Elemental Analysis (CHN):   

BIBB-functionalised fumed silica: %C = 10.9, %H = 1.6, %N = 1.7, %R = 85.8 

PHEMA functionalised fumed silica: %C = 43.9, %H = 6.3, %N = 0.5, %R = 49.3 
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2.21 Polymerisation of PEGMA from BIBB-functionalised fumed silica 

 

Scheme 22 – Polymerisation of PEGMA from BIBB-functionalised fumed silica. 

To a deoxygenated solution of PEGMA (MW 300, 5.0 g, 0.017 mol), water (5 mL) and 

methanol (5 mL), CuBr (55.0 mg, 0.38 mmol), CuBr2 (9.8 mg, 0.044 mmol) and bpy (154.4 

mg, 0.99 mmol) were dissolved under a flow of nitrogen gas. 

BIBB-functionalised fumed silica (0.33 g) was prepared and added to the reaction.  

Following this, the solution was stirred for 1 h. 

The solution was then poured into a sintered glass column under vacuum and thoroughly 

washed with water and methanol (1:1 v/v) to leave a dark yellow coloured powder (0.35 g). 

FTIR: υ 1042 cm
-1

, 1537 cm
-1

, 1646 cm
-1

, 1726 cm
-1

 

Elemental Analysis (CHN):   

BIBB-functionalised fumed silica: %C = 10.9, %H = 1.6, %N = 1.7, %R = 85.8 

PEGMA functionalised fumed silica: %C = 30.2, %H = 4.7, %N = 1.1, %R = 64.0 
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2.22 Synthesis of 3-(2-bromoisobutyramido)propyl(triethoxy)silane (BIBAPTES) 

 

Scheme 23 – Synthesis of BIBAPTES. 

This synthesis was carried out using a similar method to Chen et al.
43

 To a solution of dry 

THF (30 mL), APTES (4.7 mL, 20 mmol) and Et3N (3.5 mL, 25 mmol) were dissolved.  

BIBB (3.2 mL, 25 mmol) was added slowly under ice-cooling.  The solution was warmed to 

r.t. whilst stirring for 4 h under nitrogen.   

Triethylammonium bromide (TEABr) was removed by filtration, and the filtrate was reduced 

to ca. ¼ of its volume.  Residual TEABr precipitated by evaporation and was removed by 

centrifugation.  The solvent from the decanted solution was removed in vacuo to dryness.   

The product was immediately used for attachment to silica microparticles. 

 

2.23 Deposition of BIBAPTES onto porous silica microparticles (PSM) 

 

Scheme 24 – Deposition of BIBAPTES onto porous silica microparticles. 

To a solution of dry THF (10 mL) deoxygenated for 10 minutes, silica microparticles (0.1011 

g) and BIBAPTES (2 g, 5.4 mmol) were added.  The reaction was left to stir under nitrogen 

overnight. 

The solution was poured through a sintered glass column under vacuum and washed with 

excess water, methanol and THF to leave a cream/yellow coloured product (0.0872 g). 

FTIR: υ 1053 cm
-1

, 1542 cm
-1

, 1632 cm
-1 
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2.24 Polymerisation of HEMA from BIBAPTES attached PSM 

 

Scheme 25 – Polymerisation of HEMA from BIBAPTES attached PSM. 

To a deoxygenated solution of HEMA (97 %, 5.0 g, 0.038 mol), water (2.5 mL) and methanol 

(2.5 mL), CuBr (54.8 mg, 0.38 mmol), CuBr2 (8.5 mg, 0.038 mmol) and bpy (149.8 mg, 0.96 

mmol) were dissolved under a flow of nitrogen gas. 

BIBAPTES-functionalised silica microparticles (0.039 g) were weighed into a second 

degassed flask before the HEMA solution was injected in.  Following this, the solution was 

agitated on a shaker for 3 d. 

The solution was then poured into a sintered glass column under vacuum and thoroughly 

washed with water and methanol (1:1 v/v) before being given time to dry and leave a cream 

coloured powder (0.0415 g). 

FTIR: υ 1053 cm
-1

, 1732 cm
-1
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2.25 Deposition of TMSPDETA onto ZEOprep silica 

Scheme 26 – Deposition of TMSPDETA onto silica. 

To acetone (15 mL), ZEOprep silica (1.2 g) was added.  The solution was heated to 60 
o
C 

before N
1
-(3-trimethoxysilylpropyl)diethylenetriamine (TMSPDETA, 4 mL, 0.02 mol) was 

added and stirred for 2 h.  After this, the solution was poured into a sintered glass column 

under vacuum and thoroughly washed with excess acetone.  The product was then dried in 

vacuo to leave a cream coloured product (1.19 g). 

FTIR: υ 1043 cm
-1

, 1458 cm
-1

, 1665 cm
-1 

Elemental Analysis (CHN):   

ZEOprep silica: %C = 0.04, %H = 0.3, %N = 0.04, %R = 99.6 

TMSPDETA functionalised ZEOprep silica: %C = 10.8, %H = 2.2, %N = 4.8, %R = 82.3 

2.26 Deposition of APTES onto silica coated magnetite 

 

Scheme 27 – Deposition of APTES onto silica coated magnetite. 

A typical preparative route to the nanoparticles is described by Platt et al.
44

 To acetone (3 

mL), magnetite coated silica (3.7 mg) was added.  The solution was heated to 60 
o
C before 

APTES (200 μL, 0.85 μmol) was added and stirred for 2 h.  Due to the magnetic properties of 

the silica, the reaction was carried out on a rotary evaporator and water bath without the 

vacuum to heat and agitate the solution as much as possible.  Following this, the solution was 

decanted off by holding a magnet to the solution to keep the product in place.  This was 

thoroughly washed with excess acetone before it was then dried in vacuo to leave a cream 

coloured product (2.5 mg). 

FTIR: υ 1645 cm
-1
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2.27 Attempted sequestration of nickel, copper and zinc from aqueous solutions 

using PHEMA and PHEMA-Malonate 

To water (100 mL), either NiCl2 (0.008 g, 40 ppm), CuSO4 (0.01 g, 40 ppm) or ZnCl2 (0.008 

g, 40 ppm) aqueous solutions were prepared.  To 90 mL of the solution, PHEMA or 

PHEMA-Malonate (1.0 g, 7.7 mmol) was added, whilst the remaining 10 mL was kept as an 

accurate starting concentration reference.  The solutions were stirred for 1 week.   

The solution was filtered to remove the PHEMA (or PHEMA-Malonate) and analysed using 

ICP-OES.  The difference in concentration between the two solutions was then analysed. 

2.28 Attempted sequestration of 
63

Ni from aqueous solution using free PHEMA 

To a solution of water (10 mL), a 
63
Ni solution (20 μL, 1.48 MBq) in HCl was added.  To 

eight LSC bottles, deionised water (15 mL) was added followed by the diluted 
63

Ni solution 

(100 μL).  To five of these solutions, PHEMA (1.0 g, 7.7 mmol) was added.  The remaining 

three were left as they were so they could be used as reference solutions.  All solutions were 

shaken for one week. 

Into eight new liquid scintillation cocktail (LSC) bottles, the 
63

Ni test solutions (1 mL) were 

syringe filtered.  This was repeated for all eight samples and liquid scintillation cocktail (10 

ml) was added to these vials.  Following this, two additional LSC bottles were prepared with 

liquid scintillation cocktail (10 mL) and the original 
63
Ni stock (100 μL) to ensure the metal 

had not adsorbed to the surface of the original test bottles. 
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2.29 General method for the sequestration of various transition metals and 

radioactive isotopes using silica attached APTES and TMSPDETA 

A range of concentrations of single metal solutions in deionised water (160 ppm, 80 ppm, 40 

ppm, 20 ppm, 10 ppm, 5 ppm and 2.5 ppm) were prepared including Co(II), Ni(II), Cu(II) 

Zn
2+

, Cd
2+

, Eu(III) and [UO2]
2+

 using CoCl2.6H2O, NiCl2, CuCl2.2H2O, ZnCl2, 

Cd(NO3)2.4H2O, EuCl3.6H2O and UO2(NO3)2.  To these solutions (45 mL), APTES-

functionalised silica (50 mg) was added (much like the work by Johnson et al.
45

) and the 

concentration change was measured using ICP-OES (or ICP-MS if concentration fell below 

the relevant LOD for ICP-OES).  Preliminary investigations were carried out on solutions 

with a concentration in the range of 20-40 ppm.  Tracers of 
57

Co, 
63

Ni, 
109

Cd and 
152

Eu were 

added at ca. 3 KBq per sample and weighed into each batch. 

A colour change of the silica was seen with some metals, especially when sequestrating 

cobalt and copper where the silica material changed to a pink and blue colour respectively. 

Where discussed, solutions of 1 % sodium (w/w using NaCl) and 1 % calcium (w/w using 

CaCl2) were also used to make these metal concentrations to create a solution where a large 

excess of competitive ions existed and to investigate the effect of ionic strength.   

2.30 General method for the selective removal of metals from a seven metal 

solution using functionalised silicas 

A 5 L stock solution of Co(II), Ni(II), Cu(II), Zn
2+

, Cd
2+

, Eu(III) and [UO2]
2+

 at ca. 20 ppm 

per metal was prepared in deionised water.  The salts used to make these solutions were 

CoCl2.6H2O, NiCl2, CuCl2.2H2O, ZnCl2, Cd(NO3)2.4H2O, EuCl3.6H2O and UO2(NO3)2.  

Each 45 mL aliquots were prepared from this solution and 50 mg of functionalised silica was 

added.  The functionalised silica investigations were repeated five times and the standard 

deviation was used to display the error on the appropriate graphs.   The silicas were left in the 

solution for 24 h before being measured via ICP-OES to measure the change in concentration 

when compared to the stock solution.  The investigations were carried out in plastic 

centrifuge tubes (50 mL).  This preparation process was repeated for the same investigations 

but for a 4 w experiment also.  No radioisotopes were added as tracers for these 

investigations. 
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2.31 Method for attempting metal removal from Talvivaara PLS pond sample 

A 1 L sample from the pregnant leach solution (PLS) pond was acquired from the Talvivaara 

Nickel mine in Finland.  This sample was kept in a nitrogen filled glove box to prevent 

precipitation of ions in extremely high concentrations that would otherwise precipitate once 

in contact with air due to oxidation of sample.  Twelve samples of 22.5 mL of this solution 

were made.  Four were used to investigate the original concentration of the major ions in the 

sample using ICP-OES.  Four had 25 mg of ZEOprep silica-APTES added to them and the 

remaining four had 25 mg of fumed silica-APTES added to them, keeping the ratio constant 

between other investigations where a limited sample had not been a factor. 

After 24 h and four weeks, an aliquot of ca. 1 g (calculated by pre-weighing ICP tube and lid, 

acid and water for dilution before deducting this from the total weight once aliquot was 

added) was added to an ICP centrifuge tube that contained ca. 9 g of a 2 % HNO3 solution 

made in deionised water – all carried out in a glove box.   

ICP-OES showed the concentration of the sample to still be too high and that the detector was 

saturated, so 1.25 mL of the solution was added to 8.75 mL of a 2 % acid solution to further 

dilute the sample. 
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3 Polymerisation of monomers and post-polymerisation modification 

3.1 Introduction 

As a reminder to the reader, Figure 16 demonstrates the overall aim of the project. 

 

Figure 16 - Demonstrative view of the object of this work where the final step shows the product to be used for 

selective metal sequestration with specific ligands replacing the natural ‘R’ groups that exist as part of the original 

polymer. 

The desirable outcome is that high ligand supporting density will be attained i.e. a large 

functionalised surface area to remove metal ions from solutions.  This will be achieved by the 

use of polymers, leading to a large number of functional side chains that can be modified for 

ligand attachment.  The class of polymerisation discussed in this work is referred to as a 

„living radical polymerisation‟ (LRP).
46

 The LRP process produces polymers without 

termination reactions, so in theory the polymer length can always be increased – hence 

„living polymerisation‟.
47

 These are highly desirable because they allow the molecular weight 

of the polymer to be controlled easily
48

 and for the case of this work it allows the opportunity 

to explore different chain lengths once an efficient method has been established.   

LRP is a term that includes atom-transfer radical polymerisations (ATRP) which proceeds 

with reversible chain capping.  It was not until the mid-1990s that extensive exploration of 

living polymerisations started because until then, it was thought radical polymerisation was a 

mature process with relatively little left to discover.
47

 

This chapter focuses on the polymer synthesis and functionalisation without being attached to 

the solid support, i.e. the „free polymer‟.  Surface attached methods and results are presented 

and discussed in chapter 4.  By carrying out free polymer synthesis, it was anticipated that 

synthesis and modifications could take place as per everyday organic synthesis and would 

also make initial characterisation easier and faster.  Once the materials were produced and 

characterisation was understood, the methods could be transferred to the solid support. 
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3.1.1 Atom Transfer Radical Polymerisation (ATRP) 

ATRP
49

 is a versatile technique that is compatible with a wide variety of functional 

unsaturated monomers, most notably acrylates and methacrylates
40

 and is one of the most 

widely used controlled radical polymerisation (CRP) methods.
46

  This process also removes 

the rigorous conditions required for anionic or cationic polymerisation.  Instead, the polymer 

growth is catalysed by a transition metal complex in its lower oxidation state where examples 

with copper(I)
38,50

, nickel(II)
51,52

, iron(II)
53,54

, ruthenium(II)
55

, rhodium(I)
56

, palladium(0)
57

 

and many others
58

 have been shown.  The metal centre removes the halogen atom in a 

reversible process from an initiator molecule or growing polymer chain, thus forming an 

organic radical.  Free radical polymerisation follows with the radical, accumulating several 

monomers before transferring back the halogen atom and „capping‟ the growing chain 

(Scheme 28).
40

 

Scheme 28 shows clearly that the equilibrium for this redox process lies strongly to the side 

of the halogen-capped chain end.  Therefore at any time, the overall radical concentration is 

very low and hence greatly reduces termination reactions since the main termination method 

is radical-radical coupling.  This „pseudo-living‟ character allows good control of molecular 

weight, low polydispersity (keeping each chain length to similar sizes) and if required, the 

reliable synthesis of block copolymers.  The main drawback of this methodology is the 

resulting low polymerisation rates compared to relatively uncontrolled radical techniques.
40

 

 

Scheme 28 – General scheme for ATRP where R–Br is the halogen-capped initiator or growing polymer chain, 

LnCu1+ is the ligated catalyst (copper) and ka, kd, kp and kt are the rate constants for activation, deactivation, 

propagation and termination respectively. 

The ligand that complexes with the transition metal is used to help solubilise the metal in the 

organic reactions system whilst activation of the initiator involves the metal centre 

undergoing an electron transfer with simultaneous halogen atom abstraction and expansion of 

its coordination sphere.
47

  The free radical nature of ATRP is well established through a 

number of studies by Matyjaszewski et al.
59
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As with any radical process however, ATRP has to be carried out in rigorously deoxygenated 

systems to prevent trapping of propagating radicals by oxygen.
60

 

3.1.2 Activators ReGenerated by Electron Transfer (ARGET) ATRP 

In recent times, considerable time and attention has been devoted to decreasing the amount of 

catalyst in the ATRP systems.  Green routes to well-defined high-molecular weight polymers 

overcome a significant drawback of traditional ATRP techniques requiring systems of 

plentiful amounts of metal – in most scenarios, copper.  Lowering the amount of catalyst 

would be beneficial both towards the environment and commercially.
61

 

ARGET ATRP provides a greener route that is very often sought for in modern day 

chemistry by greatly reducing the quantity of metal required.  In the example shown in 

Scheme 30, an excess of reducing agent, relative to the catalyst, is used to continuously 

regenerate the activators by reduction of copper(II) products that accumulate because of the 

inevitable and unavoidable radical termination.  ARGET ATRP therefore, allows the 

concentration of copper(I) to be used at „ppm‟ levels using various reducing agents including: 

tin(II) octoate
62

, ascorbic acid (vitamin C)
63

, or copper(0).
61,64

 

One of the drawbacks of ARGET ATRP is the ligand use - this must be added to metal at 3 to 

10 times molar excess in order to achieve a controlled polymerisation.  This excess ligand 

helps maintain the catalyst complex and protect it from destabilising side reactions – 

generally involving monomer complexation to catalyst.
65

  As these ligands are expensive, 

often quite specific and not widely available, scaling these reactions up can be difficult.
66

 

Scheme 29 demonstrates simply but effectively how the reducing agent returns the copper 

metal back to Cu(I) from Cu(II) and hence, enabling polymerisation.  With an excess of 

reducing agent used, another advantage of this process is the ability to carry out this reactive 

radical synthesis without the need to deoxygenate the systems.  This system may be 

particularly well-suited for grafting from large substrates because they simply would not fit 

inside a Schlenk flask.
60

 

 

Scheme 29 – Simple reaction scheme for ARGET ATRP in limited amounts of air.60 
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To achieve polymers with high purity and avoid possible toxicity issues (important when 

considering drinking water), the metal catalyst must be removed.  With a much lower starting 

amount in ARGET ATRP, there is much less to remove, unlike ATRP where much more 

metal is wasted after the synthesis. 

 

Scheme 30 – General scheme for ARGET ATRP where R–X is the halogen-capped initiator or growing polymer 

chain, Cu(I)X/L is the ligated catalyst (copper) and ka, kd, kp and kt are the rate constants for activation, deactivation, 

propagation and termination respectively.67 

3.1.3 Uncontrolled radical polymerisation 

Some examples of uncontrolled radical polymerisations were carried out so comparisons 

could be made to ATRP and ARGET ATRP methods.  Uncontrolled radical polymerisations 

require no metal catalyst, therefore certain not to affect the purity of the polymer. 

Bond homolysis is one of the most important ways of forming radicals.
68

  Temperatures of 

over 200 
o
C will homolyse most bonds but some will undergo homolysis at temperatures little 

over room temperature.  Light is a possible energy source too where red light has 167 kJ mol
-

1
 associated with it, blue light ca. 293 kJ mol

-1
 and ultraviolet (200 nm) 586 kJ mol

-1
 which 

will decompose many organic compounds including DNA.
69

 

Azoisobutyronitrile (AIBN) is a compound often used in synthetic reactions because it can 

act as an initiator of radical reactions simply on heating.
69

 

 

Scheme 31 – Radical formation by heating of AIBN.69 

When reacted with the functional monomers discussed in this work, it provides a simple 

method of forming the polymer.   
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3.1.4 Why ATRP methods were chosen 

ATRP and ARGET ATRP were preferred for this work because of their reasonably quick 

propagation but the molecular weight can still be controlled.
70

 Polymerisation can also take 

place at room temperature and the reagents involved are easy to obtain.
71

  The systems 

versatility including its „functional group tolerance‟, the vast quantity of literature available 

and the experience within our research group of this technique
40

 was also a key factor. As 

will be evident in more than one area of this work, ATRP and ARGET ATRP have been 

utilised for free polymerisations and surface attached polymerisations.  These are discussed in 

their relevant chapters. 

The post-polymerisation modification of polymer brushes is well documented
72,73

 and 

examples of modification of copolymers
74

 have also been reported.  It was anticipated this 

methodology from the literature could be transferred to both the free polymer and moreover, 

to the surface grafted polymers later in the project. 

Boyer et al.
75

 have specifically reported the post-functionalisation of ATRP produced 

polymers by exploiting the halide end group however, this method does not utilise the side 

chains of the polymer and therefore is not a beneficial method for the work proposed in this 

thesis.  A review by Goldmann et al.
76

 on post-functionalisation of polymers via orthogonal 

ligation chemistry does however provide evidence of feasible methods although none of these 

appear to be for metal binding purposes.  Transition metal ions including Cu(II), Ni(II) and 

Cd
2+

 have reportedly been separated via a process similar to that proposed but have not 

targeted heavier metals such as the lanthanide and actinides which this work does. 

 

Figure 17 – Possible monomers discussed to use as a basis for this work. (1) 2-hydroxyethyl methacrylate (HEMA), 

(2) glycidyl methacrylate (GMA), (3) 2-(dimethylamino)ethyl methacrylate (DMAEMA), (4) Methacrylic acid (5) 2-

aminomethyl methacrylate. 
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Figure 17 illustrates the monomers considered as a starting point for this work.  (1), (2) and 

(3) are used and discussed in this thesis but (4) and (5) are not.  Methacrylic acid (4) was 

avoided simply because previous workers within the research group had difficulty with it and 

other options were preferred.  Meanwhile, the nature of 2-aminomethyl methacrylate (5) 

means it is simply unable to undergo polymerisation without crosslinking
77

 or self-reacting
78

, 

hence when purchased the reagent is stabilised with ca. 500 ppm phenothiazine.   

3.2 Results and Discussion 

3.2.1 HEMA/PHEMA 

HEMA is an important functional monomer with many uses, including the manufacturing of 

soft contact lenses
38,79

, dentistry
80

 and drug delivery.
81

 Being a methacrylate makes it very 

appropriate for ATRP due to its unsaturated double bond.  However, the available functional 

hydroxyl group makes it even more ideal as this is a potential candidate for sequestration of 

metal.   

PHEMA is hydrophilic and has a high degree of hydration, however it is not water-soluble.  

This property makes it a good candidate for a starting point when looking at sequestrating 

metals from water supplies.  PHEMA itself was investigated to discover its potential at 

carrying out this task but its functional hydroxyl group allows for further functionalisation by 

the addition of other useful ligands to help improve its ability to sequester metal ions.  These 

syntheses are discussed below. 

The first reaction was to polymerise HEMA via ATRP in a methanol/water (1:1) solvent in 

order to test that this was going to be an appropriate method and product to use.  After initial 

polymerisations were successfully carried out on a 5 g scale, it was soon scaled up to 20 g.  

At this scale it was more appropriate to carry out ARGET ATRP to reduce the amount of 

copper required.  Error! Reference source not found. shows the product of this PHEMA 

ample.  Polymerisation of HEMA via ATRP
38

 (Scheme 32) and ARGET ATRP
67

 (Scheme 

33) is thoroughly reported in literature. 
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Scheme 32 – Reaction scheme for synthesis of PHEMA via ATRP.  The majority of the reaction time is spent in the 

‘dormant’ state to achieve the greatest control.  For a small proportion of time, the reaction sits in the ‘active’ state 

where polymerisation and chain growth commences. 

 

 

Scheme 33 – Reaction scheme for synthesis of PHEMA via ARGET ATRP.  Ascorbic acid is used as the reducing 

agent to regenerate the catalyst to help continuously promote polymerisation and chain growth. 
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It was found that precipitating the polymer in diethyl ether worked faster than in the reported 

THF.
38

  Increasing the scale of the reaction also (from 5 mL to 20 mL) did not appear to have 

a detrimental effect on the conversion of the polymer and also made it easier to retrieve the 

majority of the polymer when precipitating it out.  Conversion describes the percentage of 

monomer converted into polymer whereas yield describes how much was recovered at the 

end.  In practice, yield is always less than conversion (mainly due to loss in workup) and so 

for the purpose of this report, it will be assumed that 100 % recovery of polymer is achieved: 

resulting in yield being equal to conversion. 

Elemental analysis was carried out to show the purity of the polymer.  Theoretically, nitrogen 

content should be observed as 0 %, with carbon at 55.0 %, hydrogen at 7.7 % and oxygen at 

36.5 %.  Oxygen is not directly recorded on an elemental analyser but can be estimated as 

bromine is the only other element known to be present in the polymer (est. to be ca. 1 % 

depending on the size of the polymer) and the value is given as „R‟.  Results show nitrogen 

levels were minimal at 0.16 %, carbon was 53.40 %, hydrogen 7.46 % and R at 38.88 %.  The 

2,2‟-bipyridyl ligand present in low quantities is the most likely explanation for the nitrogen 

content and it is also possible that a small amount of CuBr2 could still be present which is 

interfering with the measurements.  

An important note when synthesising the polymer is that crosslinking does not occur.  This 

will quickly reduce the amount of functional groups available and therefore will prevent 

surface area efficiency from being achieved when attempting sequestration of metals.  A 

simple test to investigate whether the polymer has undergone crosslinking is to examine 

whether the polymer dissolves or swells in a solvent that would be expected to dissolve a 

non-crosslinked example of the polymer.  If the polymer swells, it suggests that crosslinking 

has occurred, this happens as solvent molecules get trapped between the long chains.  A non-

cross-linked polymer would be expected to dissolve in an appropriate solvent. 

To dry PHEMA, freeze drying was utilised.  This considerably speeds up the drying process 

as firstly, the solvent system is MeOH and water (i.e. not particularly volatile) and secondly, 

for all the solvent to remove itself naturally would take a long time through the polymer, 

especially when the outside of the polymer begins to dry up first and increase the difficulty 

for the solvent to diffuse through. 

Vacuum oven drying was avoided because it was thought cross-linking would be encouraged 

by the trans-esterification of ethylene glycol as illustrated in Scheme 34. 
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Scheme 34 - Transesterification of ethylene glycol. 

To freeze dry, the MeOH is removed by swelling the polymer in water and replacing the 

water a couple of times over a period of time.  This replaces any MeOH that might find itself 

trapped in the polymer and reduces damage that the solvent may do to the freeze drier.  The 

polymer is removed from the water and transferred to a flask that attaches to the drier and the 

water is removed via sublimation over a period of 24 hours. 

3.2.1.1 1
H NMR of PHEMA 

1
H NMR spectroscopy of PHEMA were run in MeOD.  Good quality 

1
H and 

13
C NMR 

spectra were produced, matching previously reported spectra by Paterson et al.
82

  

 

Figure 18 – 1H NMR of HEMA, included to illustrate the difference in characteristics between the monomer of 

HEMA and the polymer, PHEMA. 
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Figure 18 and Figure 19 are included to demonstrate the difference in spectra between the 

monomer, HEMA and its polymer, PHEMA.  The 
1
H NMR spectrum of HEMA shows 

protons a, c and d can be differentiated but is irrelevant for this work. 

 

Figure 19 – 1H NMR of PHEMA.  PHEMA was formed from HEMA via ARGET ATRP.  The difference in the 

nature of the spectra is very apparent when compared to its monomer in Figure 18.  Similar spectra were reported by 

Paterson et al.82 

Figure 19 shows the spectrum of PHEMA with peak assignments, produced via the ARGET 

ATRP process.  Paterson et al.
82

 and Weaver et al.
83

 have both reported similar spectra and 

assignment of peaks is based on this.  
1
H NMR peaks from the initiator used (EBIB) are 

likely to be hidden under the broad polymer peaks which would explain why they cannot be 

seen.  The sharp peaks observed at 1.18 ppm (on the shoulder of what has been assigned as 

proton b) and 3.49 ppm is diethyl ether
84

 which was used to precipitate the polymer as 

explained in chapter 2.  The broad peak at 1.6 ppm is likely to exist due to hydrogen bonded 

hydroxyl groups. 

3.2.1.2 Molecular Weight of PHEMA 

The molecular weight (MW) can be determined theoretically using the formula shown in 

Equation 6.  Although not a large focus point for this research, it was calculated to allow 



Page | 59  

 

future work to benefit from and enable research into the effect of different molecular weight 

PHEMA if thought to be necessary.  The degree of polymerisation (DP, simply described as 

the number of monomeric or „repeat units‟ in a polymer) can also be calculated theoretically 

(see Equation 4) whilst the actual value is for the ATRP method is calculated in Equation 5. 

This is required for the theoretical molecular weight calculation shown in Equation 6 with 

actual values used in Equation 7.  Equation 8 and Equation 9 show the theoretical DP and 

MW of PHEMA produced via ARGET ATRP. 

   
   

   
                             

Equation 4 – Theoretical DP where ‘[M]’ is the monomer concentration or number of moles and [I] is the initiator 

concentration or number of moles 

Theoretical DP for PHEMA formed via ATRP: 

        

         
           

Equation 5 – Theoretical DP of PHEMA formed via the ATRP method 

Theoretical PHEMA MW formed via ATRP: 

                

Equation 6 – Theoretical MW of PHEMA formed via the ATRP method 

Which in this case is: 

                 

Equation 7 – Theoretical MW of PHEMA formed via ATRP 

Theoretical DP for PHEMA formed via ARGET ATRP: 

        

         
           

Equation 8 – Theoretical DP of PHEMA formed via ARGET ATRP method 

Theoretical PHEMA MW formed via ARGET ATRP: 

                 

Equation 9 – Theoretical MW of PHEMA formed via ARGET ATRP 
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3.2.1.3 Post-Polymerisation Modification of PHEMA 

As discovered when preparing PHEMA for 
1
H NMR spectroscopy, solvents for further 

reactions with PHEMA were limited due to the poor solubility of PHEMA in many common 

solvents.  Nevertheless, DMF proved to dissolve PHEMA well and was used as the solvent 

for post-polymerisation modification reactions. 

Ethyl malonyl chloride was used as the ligand to functionalise PHEMA.  This was based on 

the success reported with a similar ligand, acetamidephosphonate, by Fryxell et al.
14

 with 

removal of actinides such as Pu(IV).  The work reported by his group focuses on attaching 

ligands directly to high surface area supports (SAMMS) whereas the work discussed here 

attempts to post modify PHEMA and other polymers with the intention of also creating 

highly functionalised material that may prove to be more suitable.  It is known that the 

hydroxyl groups can serve as reactive sites for functional group attachment, Huang et al.
85

 

have reported the attachment of acetyl chloride and cinnamoyl chloride with PHEMA films 

via the acid chloride route.  It was also reported that complete disappearance of the hydroxyl 

peak was observed, suggesting quantitative conversion to the corresponding ester.  Ethyl 

malonyl chloride functionalisation was attempted via the acid chloride route in this thesis 

although the difference here was that free PHEMA was used and not a thin film attached to a 

gold surface. 

The attempted reaction method is described here but a successful product was never obtained.  

To a solution of poly(2-hydroxyethyl methacrylate (PHEMA, 1.00 g, 7.68 mmol) dissolved in 

dimethylformamide (DMF, 21 mL), ethyl malonyl chloride (ca. 1.71 mL, 13.28 mmol) was 

added very slowly dropwise via a pipette.  A white gas evolved as the ethyl malonyl chloride 

was added and the colour of the solution became a darker yellow.  The reaction was stirred 

for 1 h at r.t.   

The solution was poured into diethyl ether (100 mL) under vigorous stirring that had been 

cooled to 0 
o
C, causing the polymer to precipitate instantly and agglomerate.  The solvent 

was decanted off and the polymer was dried on a freeze drier.  The polymer was ground 

down using a mortar and pestle which broke up the dry polymer very easily to leave a 

yellow/orange coloured solid (0.79 g, 42 % yield).  A mechanism for what was anticipated to 

occur is presented in Scheme 35. 
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Scheme 35 – Attempted functionalisation of PHEMA with ethyl malonyl chloride, however no indication was found 

that the reaction had worked. 

Once the product was recovered and dried via the method described in chapter 2, a strong 

indication was given that the product heavily cross-linked and that the reaction had been 

unsuccessful.  Limited characterisation could only be carried out on the product due to its 

insolubility in many solvents and FTIR was only able to indicate esters and ketones present 

which already existed before functionalisation was attempted.  Following more literature 

research, it was evident that groups had reported successful post-polymerisation reactions 

with PHEMA via the hydroxyl group but all were functionalised when attached to surfaces 

such as silicon substrates
86,87

, titanium
88

, carbon nanotubes
89

 or gold.
90

 

Longer reaction times were introduced and slower addition of the ligand to the reaction too.  

However, none of the methods had a significant change on the resulting product as all 

produced an acidic smelling, orange/brown coloured insoluble product.  A proposed 

mechanism for what might be taking place is given in Scheme 36. 
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Scheme 36 – Proposed mechanism for cross-linking taking place during the post-polymerisation functionalisation of 

PHEMA with ethyl malonyl chloride. 

Work by other researchers on brushes is quite different to the work on free polymers in terms 

of mobility of the chains.  Due to the polymers being surface grafted, they are much more 

restricted in terms of their movement which could be an important factor when considering 

the kinetics of the reaction and the probability of initiating cross-linking reactions. 

It has certainly proven very difficult to find literature on the modification and 

functionalisation of free polymers in the way this project has set out to do.  The free polymer 

has demonstrated to be very different in behaviour to that reported on surface attached 

examples and it is for this reason that the post-polymerisation functionalisation approach was 

reconsidered.  Instead, rather than focussing on the polymer to be designed for metal 

removal, attachment of a group that would be easily characterised and lead towards proving 

the successful modification of a free polymer was targeted.  The compound used for this was 

4-cyanobenzoyl chloride due to the diagnostic cyano peak at 2260-2000 cm
-1

 via FTIR.  The 

peak at 2231 cm
-1

 was present as it was on the starting material of 4-cyanobenzoic acid 

(synthesised in a neat solution of thionyl chloride under reflux for 4 h to produce 4-

cyanobenzoyl chloride).  The product was washed thoroughly (with water, followed by 

diethyl ether) to ensure that the peak was not present due to residue.  However, this does not 

guarantee the attachment was successful. 
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Figure 20 – FTIR spectra of 4-cyanobenzoic acid, PHEMA and the product from the synthesis of PHEMA with 4-

cyanobenzoic acid.  The spectra are inconclusive as to whether post-polymerisation modification has been successful 

due to a lack of shifts in the product.  The spectra have been offset for clarity. 

PHEMA and the attempted PHEMA functionalised with ethyl malonyl chloride were kept for 

testing in aqueous solutions to measure their ability at removal of metal ions and these results 

are discussed in chapter 6.  Meanwhile, GMA was also explored as a possible candidate to 

form a basis for this work and the findings from this work are reported below. 

3.2.2 GMA/PGMA 

GMA is very similar to HEMA in terms of its structure and again, having an unsaturated 

double bond makes it very suitable for ATRP.  However, its end group is an epoxide as 

opposed to a hydroxyl group resulting in a different approach to the chemistry that can be 

carried out. 

Its polymerisations have also been extensively studied via ATRP and ARGET ATRP.
91, 92, 73, 

93
 It has most commonly been used to grow PGMA brushes from surfaces that can be post-

functionalised by ring-opening of the epoxide group.
94,95

 Little has been reported on post-

polymerisation of free polymer but Liu et al.
96

 have reported work on micro granules.  The 

epoxide group would not be expected to remove metal but it does provide an alternative route 

for modification where the epoxide ring can be opened and a ligand be attached.  When 
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polymerising the GMA however, it is important that the epoxide ring is not broken else post-

polymerisation modification will not be possible.   

3.2.2.1 1
H NMR spectroscopy of PGMA 

1
H NMR spectroscopy of the PGMA polymer showed the epoxide ring still to be intact with 

broad peaks observed at 2.64 ppm, 2.84 ppm, 3.23 ppm (Figure 22).  Hayek et al.
93

 have also 

reported the polymerisation of GMA and produced similar spectra (Figure 21) to prove the 

epoxide ring to still be intact.   

 

Figure 21 – NMR spectrum of PGMA reported by Hayek et al.93 indicates the epoxy groups in PGMA remain intact 

during the polymerisation of GMA as the observed ratio of the peak areas of (a), (d) and (e) is about 3:1. 
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Figure 22 – NMR spectrum of PGMA produced as part of this work, again indicating the epoxy groups remain intact 

during the polymerisation of GMA as the observed ratio of the peak areas of (a), (d) and (e) is about 3:1. 

This was also confirmed by FTIR where expected bands for epoxides
96,97

 at ca. 1250 cm
-1

, ca. 

900 cm
-1

 and ca. 800 cm
-1

, were observed at 1253 cm
-1

, 905 cm
-1

 and 843 cm
-1

.   

3.2.2.2 Molecular Weight and DP of PGMA 

Polymerisation was carried out under the same conditions as HEMA, by using both ATRP 

and ARGET ATRP but the purification process of the product was quite different as 

discussed in chapter 2.  Nevertheless, the theoretical molecular weight and DP are reported 

below. 

 Molecular Weight Degree of Polymerisation 

PGMA (ATRP) 11565 81 

PGMA (ARGET ATRP) 14841 104 

Table 4 – Theoretical Mw and DP of PGMA products via ATRP and ARGET ATRP, calculated as shown for 

PHEMA. 

3.2.2.3 Post-Polymerisation Modification of PGMA 

The polymer dissolved immediately in DCM and benzylamine was used to attempt post-

polymerisation modification.  Benzylamine was chosen purely to use the benzene group to 

prove quickly whether the reaction was successful via NMR.  However, the resulting product 
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suggested that cross-linking had occurred.  The product was jelly-like in appearance and after 

drying on a freeze drier, was insoluble after a variety of solvents tested.  It is proposed that 

undesirably, further polymerisation occurred via the opening of epoxide rings.  Barbey et al.
98

 

reports that cross-linking reactions with primary amines are possible, since the secondary 

amine group that is formed after the first ring-opening step can open a second epoxide ring.  

The example below in Scheme 37 is based on a proposed mechanism by Edmondson et al.
73

 

for a primary amine.  This work uses benzylamine and hence the mechanism uses this as the 

primary amine. 

 

Scheme 37 – Proposed mechanism by which PGMA crosslinks via the opening of epoxide rings, initiated by 

benzylamine based on Edmondson et al.73 

PGMA, much like PHEMA, demonstrated a much higher preference for cross-linking rather 

than the preferred functionalisation of the side chains from the backbone of the polymer.  In 

hindsight the crosslinking was unavoidable when it came to post-polymerisation 

functionalisation of free polymer, but by carrying out both routes, it has been demonstrated 

that it does not matter which reagent holds the nucleophile, crosslinking will occur either 

way.  The fact that these products were so difficult to dissolve was ideal for their end use, 



Page | 67  

 

making it easier to remove the product once metal sequestration was complete.  However, 

characterisation was virtually impossible and what was truly formed remains unknown. 

3.2.3 Tosylation of HEMA for further modification 

As previous functionalisation attempts had failed and had produced cross-linked products, an 

alternative method was trialled with HEMA by attaching a well-known leaving group to 

promote further reactions.  Alcohol groups are considered very poor leaving groups, unlike 

tosylate groups.
69

  The tosylation of alcohols is a common transformation which is often used 

to facilitate subsequent nucleophilic reactions
99

 and has been reported on HEMA by 

Reymond et al.
100

 to produce tosyl-activated microspheres.  Similar conditions were used to 

those by Stolle et al.
41

 although only 4 hours were required, unlike the 14 reported.  The 

reaction was carried out at 0 
o
C in pyridine and Scheme 38 illustrates this process that was 

shown to be a successful reaction via 
1
H NMR and 

13
C NMR. 

 

Scheme 38 – Tosylation of HEMA in pyridine. 

The tosylated HEMA did not polymerise under ATRP conditions used for HEMA.  To find 

successful conditions (including the solvent system) would have been extremely time 

consuming
101

 so instead an uncontrolled polymerisation was carried out using the radical 

initiator 1,1'-Azobis(Cyclohexanecarbonitrile, ABCN) in toluene.  Once heated to 150 
o
C and 

refluxed for 5 hours as described in chapter 2, the polymer precipitated as a spongy gel. The 

product‟s insolubility once again proved a hindrance for further modifications although 

pyridine was found as a potential solvent.  4-hdroxybenzonitrile was used for post-

polymerisation attachment, again for characterisation purposes rather than metal binding.  It 
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was anticipated the cyano containing compound would act as a clear indicator via FTIR 

analysis and quickly confirm whether a reaction had taken place.   

FTIR did indicate a cyano group but again was inconclusive as no shift was observed from 

the starting material (as might be expected as no chemistry had changed around this area of 

the molecule).  It had been expected that a more intense peak would be observed with many 

repeat units available for attachment, however this was not the case.  

Overall, this proved to be unsuccessful when it came to functionalising the polymer.  

Evidence of successful tosylation of HEMA monomer was determined by NMR but once 

polymerisation was carried out, the polymer was no longer miscible in common deuterated 

solvents for NMR and became very difficult to characterise.  The fact that the PHEMA-Ts 

precipitated out suggests cross-linking
102,103

 has taken place once again and if this was the 

case, further functionalisation would be very difficult. 

3.3 Conclusion 

PHEMA and PGMA have been successfully prepared via the polymerisation process known 

as ATRP and ARGET ATRP.  
1
H and 

13
C NMR have been used to prove the polymerisation 

was successful, allowing the work to be taken to the next stage whereby the processes can be 

adapted to grow the polymer from a solid surface. 

Post-polymerisation modification processes have demonstrated to be extremely challenging 

in terms of the synthetic process, purification and characterisation.  Cross-linking was one of 

the major complications with this process as evidence strongly suggested that PHEMA and 

PGMA both cross-linked when functionalisation was carried out.  It was shown that it made 

no difference whether the nucleophile was on the side chain of the polymer or the ligand 

attaching to the side chain.  Although this process was attempted with many reactants and 

many products recovered, a product that was conclusively functionalised without cross-

linking and fully characterised could not be produced. 

Modification was focussed on polymers and not their monomers because when this work was 

taken forward to surface attached materials, the monomer needed to be grafted from the 

surface using ATRP.  If the monomer was modified from HEMA or similar monomers to a 

much larger monomer, the ATRP conditions would change too much that it would not work 

as ATRP is difficult to optimise.
101

  The uncontrolled polymerisation would not be an option 
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with surface attached materials because ABCN would generate free polymer and not graft it 

from the surface.  

FTIR provided the primary characterisation method for these materials due to their 

insolubility which provided limited knowledge on the product.  Molecules with the easily 

characterisable cyano group were used to help but conclusive results could not be made from 

these spectra. 

Tosylation of HEMA proved to be successful but could not be taken forward to the polymer 

stage in a way that took this work forward.  This result did prove however that HEMA could 

be polymerised following modification.  If time was spent on this area, new ATRP conditions 

could perhaps be developed to polymerise these functionalised HEMA products.  

The reactions on free polymer have shown the ease at which cross-linking can occur.  Due to 

the little success that had been achieved, it was decided that a focus should be prioritised to 

surface attachment and modification for the development of materials, chapter 4 presents 

these findings.  

3.4 Future Work 

If ATRP for functionalised HEMA and other monomers was developed, this process could 

help produce many functionalised structures for metal sequestration in significantly less time.  

The functionalisation of monomers via organic chemistry as opposed to polymers would be 

much simpler and once a functionalised material was synthesised, it could be polymerised 

and used without the concern of cross-linking. 
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4 Surface attachment of ligands and polymers to silica surfaces 

4.1 Introduction 

Following successful synthesis of PHEMA (see sections 2.2 and 2.3), surface attachment of 

PHEMA to silica was carried out.  To graft the polymer from the silica, the surface has to be 

prepared so that a radical can be generated at the surface of the silica and initiate 

polymerisation.  In total, four varieties of silica were investigated for polymer growth and/or 

ligand attachment and the results are deliberated in the discussion following.   

Prior to introducing the silica materials used for this work, a review of the literature 

surrounding this area will be discussed, resulting in the reasoning for the approach taken in 

this project.  Surface-initiated atom transfer radical polymerisation (SI-ATRP) is also a very 

well reported area and an extensive review including the synthesis, characterisation, 

properties and applications has been carried out by Barbey et al.
98

 This acted as an extremely 

useful source to review previous work on the modification of surfaces, including silicon, 

metal oxides, clay minerals, gold and carbon as well as silica. 

Work such as that published by Zhao et al.
104

 on the use of surface attached polymers 

containing acrylic and crotonic acid to remove metal ions and Chen et al.
105

 reporting ATRP 

methods for boron removal from aqueous solutions again demonstrate that by combining 

surface attachment of polymers with ligands targeted for specific metals could produce 

worthwhile results.  This chapter will make clear how the chemistry from the free material is 

transferred to enable surface attachment and hence produce surface grafted polymers with the 

aim of producing highly functional materials. 

4.1.1 Previous literature reporting the modification of silica surfaces 

The first literature method reported is that by Jonsson et al.
106

 and Perruchot et al.
107

 Here, a 

one-step processes is used where the hydroxyl groups on the surface are directly used to form 

α-bromo esters.  Scheme 39 and Scheme 40 illustrates these methods and the conditions 

reported. 
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Scheme 39 – Illustration of the synthetic strategy used in the surface modification of microspheres.  (i) Conversion of 

hydroxyl groups to α-bromo esters, (ii) ARGET ATRP using the α-bromo ester as the initiating site.  Conditions: (i) 

BIBB, Et3N, DMAP, CH2Cl2 or THF, RT, 2 h: (ii) GMA, CuBr2, PMDETA, EBIB, ascorbic acid, toluene (50 % v/v), 

30 oC.106 

A similar concept was reported by Hansson et al.
108

 (illustrated in Scheme 40) whereby 

cellulose substrates were prepared for ARGET ATRP, again by utilising the hydroxyl groups 

to form α-bromo esters. 

 

Scheme 40 – Preparation of cellulose substrates for ARGET ATRP as proposed by Hansson et al.108 before polymers 

were grafted via ARGET ATRP. 

This method was not one the group felt was appropriate for silica surfaces based on the 

different reactivity of C–OH to Si–OH.  It is highly unlikely this method would work directly 

on silica because of this but also the Si–O–C bond is readily hydrolysed
109

 – putting severe 

limitations on its use in aqueous solutions and making it impractical for its purpose.  The 

reactive carbonyl that would be located very close to the silica surface would also limit the 

monomers to be used for polymerisation.  For these reasons, alternative methods were 

researched.  

Zhang et al.
110

 published work in 2006 on SI-ATRP of MMA and HEMA that was carried 

out on spherical silica gel following surface modification.  This modification used a two-step 

synthesis where APTES was attached to provide an aminopropyl-silanation of silica gel as 

reported by Haller
111

 (Scheme 41) before immobilisation of the surface initiator (2-

bromopropionyl bromide) was carried out as illustrated in Scheme 42.  Monomers of methyl 
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methacrylate (MMA) and HEMA were then polymerised by grafting from the surface, using 

the functionalised silica gel as the initiator.  

 

Scheme 41 – The deposition of APTES to a surface.110 

The use of APTES is very common for the functionalisation of silica as well as other 

surfaces
112,113,114

 and similar methods to that illustrated in Scheme 41 are reported by Liu et 

al.
115

 and Wu et al.
116,117

   

The main advantage of using APTES is because a strong surface bond is formed to support 

further modifications.  Si–O bonds are much stronger (452 kJ mol
-1

) than C–O bonds (358 kJ 

mol
-1

)
118

 which are produced via this method and hence is a more practical approach when 

considering the end use.  The amine group of the APTES provides a reactive end group that 

allows further modification to take place. 

To carry out SI-ATRP, a halogen (often bromine or chlorine) end group is required meaning 

that at least one further step will be required before polymer grafting from the surface can be 

considered. 

 

Scheme 42 – The deposition of 2-bromopropionyl bromide to a surface.110 

2-Bromopropionyl bromide is often replaced with 2-bromoisobutyryl bromide (BIBB)
115,117

 

but both are reported to work efficiently and appears to make little to no difference on the 

polymerisation process.   
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The two-step modification process using APTES followed by 2-bromopropionyl bromide or 

BIBB is an extremely common method and one that appears to be very robust based on the 

number of groups that have reported successful results.
115,117

 Not only has this two-step 

process worked well, but grafting polymers from these synthesised surfaces has also been 

part of the same literature and again positive results have been reported.  Monomers 

including HEMA
115

 and GMA
119

 which were the two original target monomers to work with 

as well as DMAEMA
85,120

 have all been thoroughly reported in literature to be successfully 

grafted from surfaces.  

A further method that has been reported by Chen et al.
43

 is the synthesis of 3-(2-

bromoisobutyramido)propyl(triethoxy)silane (BIBAPTES) from APTES and BIBB via a 

typical organic reaction and reported in chapter 2.22.  This method achieved the same as the 

two step reaction discussed above.  Although this method only requires the one surface 

attachment reaction, a laborious synthetic reaction is required beforehand which inevitably 

requires a work up.  This work up is avoided by doing the two step modification and hence 

was not anticipated to be used.   

In this chapter, two materials are studied extensively for their full potential in carrying out the 

aims of this work.  As stated in section 1.1, literature specifically reporting the modification 

of these materials, especially for the purpose of metal sequestration has not been found.  The 

first silica to be used is referred to as „ZEOprep‟ silica as this is the name given by the 

manufacturer whilst the second to be studied was fumed silica.  The properties of these 

follow shortly.  The capability of porous silica microparticles
121

 was also investigated before 

a short period of time was given to explore the modification of the surface of silica that was 

bound around a ferrous oxide centre, thus making it retrievable from solution via 

magnetisation.  

4.2 Results and Discussion 

4.2.1 ZEOprep silica 

The ZEOprep silica was the first to be used with this work and proved to be a practical 

substrate for surface modification.  Used by many organic chemists for preparative and liquid 

chromatography, this silica was readily available and at an affordable price when scaling up 

of the reactions would be required.  Due to chromatography being its main purpose, it is 

designed to have a wide particle size range to allow easy separation scale-up from laboratory 
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to production scales whilst also possessing exceptionally narrow pore size distribution - 

although no figures are provided.
122

 

Figure 23 illustrates the ZEOprep particles observed under an optical microscope and Figure 

24, the distribution graph, reveals the range of the particle size.  The mean particle size is 

calculated to be 71.5 μm despite the manufacturer claiming an average size of 40-63 μm.
122

 

Both these figures were collected on behalf of the group by the Materials Department at 

Loughborough University. 

 

Figure 23 – A microphotograph of the ZEOprep silica particles using a Leitz Ergolux optical microscope. 

 

Figure 24 – A graph to show the size distribution of the ZEOprep silica particles using a particle size distribution 

analyser LA-920. 

4.2.2 Fumed silica 

Fumed silica is used in commercial industries such as enhancing the viscosity of many liquids 

and paints.  The most common application in biochemistry is for clarifying sera by removing 

lipids and one trade name reported is Aerosil 380.
123
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Fumed silica has a significantly smaller particle size of 0.007 μm (7 nm) and a very large 

surface area of 395 ±25 m
2
/g.

124
 To acquire an accurate measurement of the particle sizes of 

this silica, a TEM (Transmission Electron Microscopy) image was produced (Figure 25) as 

the particle size distribution analyser LA-920 would have been unable to accurately measure 

these much smaller particles.  More information on TEM is available in chapter 6 where it 

was used to carry out a range of studies, but here it is used to simply illustrate the particle 

size. 

Fumed silica is produced by burning silicon tetrachloride in a flame of hydrogen and oxygen 

(ca. 1800 
o
C) to produce molten spheres of silicon dioxide.  The sizes of the silica spheres 

(measured by an electron micrograph) can be varied by varying the process parameters and 

within a given batch still show uniformity.  The molten spheres collide and fuse together to 

form branched, three dimensional chain-like aggregates.
125

 

Many of these aggregates contain chains of 10-30 spheres in length which is equal to 0.1-0.2 

μm.  As these aggregates cool down below the melting point of silica (1600 
o
C), reversible 

mechanical entanglement or agglomeration results from further collisions.  The manufacturer 

estimates 3.5-4.5 hydroxyl groups per square nanometre of silica surface.
125

 

 

Figure 25 – TEM image of fumed silica.  Although the manufacturer claims a 7 nm particle size, it was found that 

most range between 10 and 20 nm. 

4.2.3 Porous silica microparticles 

Porous silica microparticles (PSM) by membrane emulsification have been produced and 

reported by Dragosavac et al.
121

 The process reported allows for the production of near-

monodispersed spherical silica particles with controllable porosity.   
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A sample with an average pore size of 2.6 nm was obtained from the group at Loughborough 

University
121

 and by utilising the surface of the pores along with the outer surface also, it was 

expected that a larger number of ligands and polymers could be attached and grafted from 

this surface. 

4.2.4 Silica coated ferrous oxide microparticles 

Magnetite coated with silica provided a material that is magnetic, resulting in an alternative 

method of removal once functionalised.  When using the silica powders in a real environment 

such as a waste pond, it was thought this material may be able to offer a more practical 

method of retrieving it from the waters.  

Commonly known as superparamagnetic microparticles (SMPs), they are defined as 

microparticles over 100 nm in diameter, typically spherical and composed of an assembly of 

iron oxide (Fe3O4 or Fe2O3) superparamagnetic nanoparticles with diameters of 3 to 50 nm.
44

  

They are used in biological affinity separations which requires a high surface area and high 

magnetic mobility, making them appropriate to trial for this project.  The following SEM 

images (Figure 26 and Figure 27) were supplied with the material donated from Platt and 

coworkers
44

 at Loughborough University prior to functionalisation carried out in section 2.26.  

The images give a good insight into their surface shape and particle size. 

 

Figure 26 – SEM image of the superparamagnetic microparticles which were later functionalised by attaching the 

APTES ligand for metal removal trials. 
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Figure 27 – SEM image clearly showing the silica coated nanoparticles fused together to produce SMPs. 

Similar materials (SMPs also based on Fe3O4) have been functionalised with 

dimercaptosuccinic acid for heavy metal removal from aqueous systems by Fryxell et al.
126

 

giving good reason to investigate this support.   

4.2.5 Deposition of APTES to ZEOprep and fumed silica 

To graft the PHEMA from the silica, a multistep process was undertaken (as identified in the 

introduction and previous literature) in which the first step was to functionalise the silica with 

an amine-containing silane ((3-aminopropyl)triethoxysilane) known as APTES.  The 

following mechanism in Scheme 43 shows how this is accomplished. 

 

Scheme 43 – Mechanism and conditions required for deposition of APTES on silica. 

Although toluene was identified as a common solvent for the deposition of APTES on silica 

and other surfaces, acetone had been identified by previous group members as a solvent 

system that is just as effective: hence this was the solvent system used.  Figure 28 shows the 

accepted structure of APTES-functionalised silica
127

 as a result of this synthesis.  Steric 



Page | 78  

 

hindrance is understood to prevent the silicon atom in APTES being attached by three silica 

oxygen atoms.  Instead, once attached to the silica, the APTES molecules bond with one 

another and essentially form a polymer around the surface. 

 

Figure 28 – Generally accepted structure of APTES-functionalised silica.127 In reality, it is unlikely that the silane 

groups will remain as functionalised and amine groups so obtrusive.  

FTIR results were consistent with the expected stretches.  A primary amine stretch is 

expected at between 1650-1560 cm
-1

 and one is observed at ca. 1635 cm
-1

.
128,129

 Another 

observed band includes the broad peak at ca. 1052 cm
-1

 representing –Si–O–Si– expected at 

1110-1000 cm
-1

 which is also observed in the starting material.
97

  Due to such a large peak, 

other expected peaks appear comparatively small due to a relatively small modification that is 

only taking place on the surface.  Additional Si–O bonds are attached as a result of this first 

step in the silane group, which only helps to increase the bands prominence in the spectra. 

Interestingly, work reported by Borak et al.
130

 demonstrated that when APTES is already 

attached to silica particles and simply impregnated with acetone the amino groups converted 

into Schiff bases (also known as imino groups).  Scheme 44 illustrates the reaction proposed 

by the group.   

 

Scheme 44 – The procedure of the coupling reaction of silica particles with amine groups and acetone as reported by 

Borak et al.130 – specific reaction conditions including temperature were not reported. 

The group reported a new sharp band in FTIR at 1733 cm
-1

 corresponding to the C=N groups 

of the Schiff bases.  However, the peak at 1610 cm
-1

 that was reported from the amine group 

still existed after this reaction with acetone suggesting not all the amine groups are converted. 
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The C=N peak was never observed in the work carried out for this project but why this is the 

case is not clear.  If there was a preference for the amine group to go on to react with the 

acetone once it was attached to the silica, there was nothing to prevent this taking place in the 

system set out in this thesis.  The only difference in the work by Borak et al.
130

 was that the 

silica was already functionalised with APTES and added to pure acetone although conditions, 

including temperature were not reported. 

4.2.6 Deposition of BIBB to ZEOprep and fumed silica 

Following the deposition of APTES, the next synthetic step involved the addition of the 

bromine initiating group known as alpha–bromoisobutyryl bromide (BIBB).  After reflecting 

on literature discussed at the start of chapter 4, BIBB was chosen over 2-bromopropionyl 

bromide simply because the group had more experience with this compound based on work 

reported by Edmondson.
40

 Scheme 45 illustrates the mechanism for the attachment of the 

BIBB group to the APTES group now grafted to the silica. 

 

Scheme 45 – Mechanism and conditions required, illustrating the deposition of BIBB to the silica surface. 

A shift in the IR would be expected for this change and is observed with the two amide peaks 

visible at ca. 1648 cm
-1

 and ca. 1537 cm
-1

.  For solid state IR, these peaks are expected at 

1680-1630 cm
-1

 and 1570-1515 cm
-1

 which fits the spectra (see Figure 29) and the peak at 

1680-1630 cm
-1

 is also expected to be more intense
97

 which is also observed. 

4.2.7 Grafting of PHEMA from surface of ZEOprep and fumed silica 

With the bromine atom attached to the surface of the silica via the organic chain now formed, 

the same principle for the grafting of the polymer can be utilised, but instead of using EBIB 

(used in the polymerisation of the free polymer), the functionalised silica is added to the 

solution. 
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Scheme 46 – The grafting of PHEMA from the silica surface based on the mechanism shown in Scheme 32. 

A more detailed characterisation has been carried out on this material and its precursors with 

more details of this described in the following chapter. However IR again enabled fast 

characterisation and a peak for the new ester group was observed at ca. 1735 cm
-1

 which is 

shown in Figure 29. The two amide peaks were still present as would be expected and shown 

structurally in Scheme 32. 

 

Figure 29 – An example of the shifts observed via FTIR for each step of the silica modification.  ZEOprep silica is the 

material used in the case of these spectra.  The area highlighted shows where the differences in peaks are observed as 

the material undergoes functionalisation. 

4.2.8 Grafting of PDMAEMA from surface of ZEOprep silica 

Surface attached PDMAEMA was synthesised as an alternative to PHEMA following the 

post-polymerisation modification work because work by Zhao et al.
131

 has reported efficient 

Hg(II) removal (74.5 % recovery) as well as notable selectivity when present with other 
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divalent metals.  The method used was very similar to that used by Zhou et al.
120

 shown in 

Scheme 47.  The metal sequestration results of the material can be found in chapter 6. 

 

Scheme 47 – Mechanism to show the grafting of PDAEMA from the silica surface. 

Incorporation of amines into synthetic polymers has been reported to be difficult
77

 due to 

addition of the amine to activated vinylic double bonds
132

 and oxygen-nitrogen acyl 

migration resulting in hydroxylated acrylamides when starting with amino acrylates.
133

 2-

aminoethyl methacrylate (AEMA) would have been tested had it not been for its known 

tendency to react with itself and cross-link.
77,78

 The primary amine group at the end of 

AEMA could have provided an ideal material for metal sequestration but because of its 

reported reactivity, this was avoided to concentrate on what the group thought would be a 

more productive use of time. 

 

Scheme 48 – Mechanism to demonstrate intramolecular amidation of PAEMA. 

Scheme 48 illustrates the mechanism by which intramolecular amidation could occur.  Other 

forms of this could also take place such as two side chains reacting to form a 9 membered 

ring or intermolecular amidation could take place with two polymer chains and hence 

resulting in cross-linking. 

PDMAEMA was also considered to attempt quarternisation
134

 and thus producing a 

positively charged nitrogen end group.  The result of this would enable anions to be targeted 

and reverse the initial idea of the project.  This never materialised due to a change in focus 

once metal sequestration had been trialled, however this could be a viable option if future 

work was ever considered.   
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The PDAEMA functionalised silica product was characterised by FTIR, showing strong 

peaks at ca. 1040 cm
-1

, 1460 cm
-1

, 1535 cm
-1

, 1643 cm
-1

, 1727 cm
-1

.  The ester in the polymer 

is responsible for the peak at 1727 cm
-1

 which is reported by Zhao et al.
131

 whilst the peaks at 

1643 cm
-1

 and 1535 cm
-1

 are due to the amide as discussed in the BIBB attachment process.  

Aliphatic CH3 bending is known to produce peaks at ca. 1460-1380 cm
-1

 which could explain 

the peak at 1460 cm
-1

 due to the CH3 groups at the end of each repeat unit attached to the 

nitrogen atom.
135

 This peak is also reported by Zhao et al.
131

 

4.2.9 Grafting of PEGMA from surface of ZEOprep and fumed silica 

PEGMA (molecular weight 300) was grafted from the surface of ZEOprep and the fumed 

material by replacing it for HEMA and carrying out the attachment in an almost identical 

process.  PEGMA is already a short polymer itself and by attaching a small number of units 

to the silica, a large number of oxygen atoms could be attached for metal removal.  In chapter 

7 a range of materials are introduced and more specifically, so is a material named Polyol 2 

alkyl silica (PhosphonicS Ltd).  It is the results from this material and the similarity of this 

with PEGMA that prompted this polymer to be grafted from the two surfaces of ZEOprep 

and fumed silica. 

 

Scheme 49 – Mechanism to show the grafting of PEGMA from the silica surface 

The conditions for this reaction were used from similar conditions given by Perruchot et 

al.
107,136

 and Hu et al.
137

 – full details of which can be found in chapter 2.17 and 2.21 for 

ZEOprep and fumed silica respectively.  FTIR showed a new peak at ca. 1727 cm
-1

 on both 

the ZEOprep and fumed silica materials from the ester group.  Ether peaks (observed at 1150-

1070 cm
-1

)
97

 fall too close to the –Si–O–Si– (expected at 1110-1000 cm
-1

)
97

 to take anything 

conclusively from this area of the spectrum.  The initial SI-ATRP reaction was carried out on 

the ZEOprep silica but when the fumed silica was functionalised it was found that a larger 

amount of solvent was required as well as having to reduce the reaction time due to a large 

production of free polymer.  The free polymer formed a gel which contained all the silica, 

making the retrieval of the surface attached material essentially impossible. 
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4.2.10 Modification of porous silica microparticles (PSM) 

APTES was attached to this material in exactly the same way as reported for the ZEOprep 

and fumed silica.  However, when analysed by FTIR, the amine peak was very weak.  This 

contradicted the expectation that a larger quantity of APTES would be functionalised from 

the surface than had been observed with the previous surfaces of ZEOprep and fumed silica.  

O–H bending vibrations are observed at ca. 1400 cm
-1

 and therefore suggested that available 

O–H sites still existed after the first APTES attachment. The material underwent APTES 

attachment for a second time which appeared to slightly increase the strength of the amine 

peak but certainly not to the extent observed on the previous silica materials.  BIBB 

attachment was carried out but FTIR quickly ruled out any amide peaks following this and it 

was soon realised this process was not applicable for this material.  It was thought that if the 

APTES molecules were binding to the hydroxyl groups of the silica in the pores, then this 

could be blocking the pores for further modification and hence, the amine end groups would 

not be available for the BIBB reaction.  However, as explained in the TGA studies in chapter 

5, it appears the pores were never available due to surfactant or carbon framework being 

present, resulting in a limited quantity of surface being accessible for functionalisation. 

To overcome the lack of APTES deposition, a method was used by Chen et al.
43

 whereby 

APTES and BIBB were reacted to form „BIBAPTES‟ before being attached to the silica 

surface.  This meant that if it was the case that APTES molecules were blocking the pores 

and the amine groups inaccessible, this larger molecule would graft from more suitable areas 

of the surface and prepare the surface for SI-ATRP. 

 

Scheme 50 – Synthesis of BIBATPES before using for deposition from PSM surface.  Full conditions of the reaction 

can be found in chapter 2.22. 

Once polymerisation of HEMA was carried out following the attachment of BIBAPTES, the 

ester peak was clearly observed at ca. 1732 cm
-1

 although again, the peak was not as intense 

as expected.  Further reasoning for this is explained in the following chapter.  The FTIR 

spectra are shown in Figure 30 for the PSM and its modification. 
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Figure 30 – FTIR spectra of the porous silica microparticles and its functionalised derivatives.  Amide groups are 

only observed once BIBAPTES has been attached and not via the two step process of APTES followed by BIBB 

attachment.  The ester peak is observed from the PHEMA following polymerisation of HEMA from the BIBAPTES.  

The red box highlights the main area where the bands that represent these functional groups are found.  

4.2.11 APTES attachment to SMP’s 

Very little (ca. 3.7 mg) of this material was available as opposed to the vast quantities of the 

ZEOprep and fumed silica.  As such, APTES deposition was carried out on a much smaller 

scale (see chapter 2.26 for full conditions) and metal removal studies had to be adjusted 

accordingly.  This reaction was carried out on a rotary evaporator where the water bath was 

heated to 60 
o
C.  FTIR was the only method used to prove the APTES had attached and an 

amine peak was observed at ca. 1632 cm
-1

. 

4.3 Conclusion 

This chapter has demonstrated the techniques used for modifying four different variants of 

silica surfaces.  APTES was successfully attached to ZEOprep and fumed silica as well as the 

superparamagnetic microparticles (SMP) and porous silica microparticles (PSM).  To 

ZEOprep and fumed silica, BIBB was successfully attached to the APTES-functionalised 

silica, preparing the material for ATRP of a monomer by the use of the bromine end group on 

the surface. 
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The problems that arose from work with the PSM were overcome by the synthesis of 

BIBAPTES.  Although this was more time consuming, it provided a material that could 

undergo ATRP that otherwise could not have using the step-wise method of APTES 

attachment followed by BIBB.  BIBB attachment and polymerisation of monomers were not 

attempted on the SMP material due to only a very small amount being provided to the group 

to study.  Instead, this material was functionalised with APTES and kept for testing once this 

part of the project had commenced. 

FTIR proved to be a very useful characterisation technique to provide a quick indication on 

whether the surface modification had been successful, although it was acknowledged this 

provided no guarantee that the molecule was bound to the surface.  The easily identifiable 

peaks of amines and amides provided a very good indication as to whether the APTES and 

BIBB attachments had been successful before the attachment and growth of the polymers 

provided another easily characterisable group in the form of the ester group.  Full 

characterisation of these materials using a wide range of techniques is rarely reported in 

publications and hence the following chapter looks at the characterisation of these materials 

in much more detail to ascertain a further understanding of their make-up. 

Due to the difficulties encountered with ligand attachment to the free polymers in chapter 3, 

none of the surface attached polymers were post-functionalised for metal sequestration.  

Instead it was decided that PHEMA, PDMAEMA and PEGMA would be surface grafted and 

investigated in their natural form. 

Prior to the metal sequestration testing, time was spent on thoroughly characterising the 

preparation steps and the PHEMA chain growth.  A range of techniques were utilised which 

are discussed in the following chapter, enabling determination of distinct differences between 

the functionalisation of ZEOprep and fumed silica materials.  This resulted in quantifiable 

differences between the two materials. 

4.4 Future Work 

Ligand modification to the grafted polymers was not investigated partly due to the difficulties 

encountered on the free polymer in the previous chapter but also due to time.  It was felt the 

materials already produced should be tested before further materials were designed.  As will 

be discovered in chapter 7, the strong focus on ligands resulted in a change of direction from 

the polymer work.  However, with the results of those ligands now known, a focus on 

attaching them to polymers could enable more efficient removal of metal ions.   
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5 Detailed and mechanistic characterisation of silica materials 

5.1 Introduction 

To demonstrate the silica materials had been successfully functionalised and to further the 

knowledge regarding these materials, thermogravimetric analysis (TGA) and solid state NMR 

(SSNMR) was utilised, along with elemental analysis.   

The lack of literature suggests full characterisation of materials produced and reported via 

those methods discussed in the previous chapters is very uncommon, especially the use of 

SSNMR.
138,139

 However, this particular characterisation method has proven to be one of the 

most valuable in improving the understanding of the material‟s structure and the results are 

discussed in detail in this chapter. 

It must be pointed out that SSNMR has been used and reported by some research groups in 

the past.
139,140,141 

Nonetheless, to the author‟s knowledge it has not been used to the extent of 

characterising each step of this modification process or with the silica materials discussed 

(i.e. deposition of APTES, followed by BIBB then PHEMA). 

5.1.1 Solid State Nuclear Magnetic Resonance 

SSNMR spectroscopy is a technique that can provide detailed structural information at a 

molecular level,
142

 helping to fully characterise materials that would otherwise be extremely 

difficult to do so.  

SSNMR allows the silica materials described in this work to be characterised in detail that 

other techniques cannot provide.  It has helped demonstrate that surface attachment was 

successful along with the use of other experiments and techniques that would not have 

otherwise been as conclusive.  The improvements made to this technique over the years along 

with a combination of high magnetic field, fast spinning speeds and efficient proton 

decoupling have allowed high quality 
13

C SSNMR to be obtained.
142

 The surface 

modifications discussed see the attachment of many carbon atoms over a number of steps, 

making SSNMR one of the most valuable techniques available.  
29

Si SSNMR has also been 

recorded, providing qualitative and quantitative information. 

Most SSNMR methods use Cross Polarisation Magic Angle Spinning (CPMAS) to obtain a 

high resolution spectrum.  Whilst this method leads to an improved signal-to-noise ratio, it is 



Page | 87  

 

not quantitative, and the peak intensities cannot be directly related to the quantities.
143

 A short 

introduction to these terms is given below. 

5.1.1.1 Magic Angle Spinning (MAS) 

Typical solution-state NMR spectra appear as very sharp lines due to the fast motion and 

random tumbling of the molecules averaging the anisotropic interactions to zero and 

narrowing the resonance lines.
144

  This means that for complex compounds, signals rarely 

overlap and hence, detailed information can be extracted.
142, 145

 

This random tumbling is not possible in solid-state samples, resulting in dipole-dipole 

couplings dominating the NMR spectrum and by contrast, the peaks are very broad.  High 

resolution spectra are produced by reproducing the tumbling of solution-state molecules.  

This is achieved by spinning the sample around an axis inclined at an angle of 54
o
 74” – also 

referred to as a magic angle.
144

 

 

Figure 31 – Magic Angle Spinning where a sample is rotated at 54o 74” to the magnetic field (B0). 

5.1.1.2 Cross Polarisation (CP) 

Cross polarisation is used to obtain adequate signal-to-noise in an SSNMR experiment which 

is important in obtaining coherent spectra: this technique is utilised for the experiments 

discussed.  It is usually used to assist in observing dilute spins, such as 
13

C.
145

 Acceptable 

signal-to-noise ratios are obtained after many scans and hence after a considerable amount of 

time.  Time delays between each scan are also important, too short and the magnetisation 

becomes saturated and no signal can be recorded, too long and the experiment becomes an 

inefficient use of instrument time.  To help overcome this problem the NMR pulse program 

has a relaxation delay that allows a state of equilibrium to be established.  Typically this can 

be 10-300 s for 
1
H and 60-3000 s for 

13
C for solid organic crystalline material but reduced to 
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1-30 s for 
1
H and 2-60 s for 

13
C for poorly crystalline material very quickly amounting to 

exceptionally long experiment times – often weeks.
142

 

The low abundance of 
13

C (relative abundance 1.1%) also makes signal to noise ratios 

inevitably poor.  Cross polarisation overcomes this problem by observing 
13

C via the 
1
H 

(relative abundance ca. 100%) resulting in improved spectral resolution and allowing much 

shorter relaxation delays.   

5.1.2 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) is an analytical technique that accurately monitors the 

change in weight of a sample as a function of temperature.  Providing the final products are 

known, the difference between the final and the starting compositions can be determined, 

where the additional atoms have been evolved as a gas.
146

 

TGA is used across many areas of chemistry including polymers where it can be used to 

determine characteristics of products as described in the review by Coats et al.
147

 and 

references therein.  It can also be used to ascertain degradation temperatures, absorbed 

moisture content and the level of inorganic and organic components in a material. 

By carefully increasing the temperature, often to temperatures greater than 1000 
o
C, the 

weight percentage can be plotted against temperature. Once the data has been obtained, the 

characteristics of the material can begin to be processed. 

TGA analysis of poly(AGE/IDA-co-DMAA)-grafted silica gel (which was introduced in the 

literature review in chapter 1) was reported by Panahi et al.
29

 This technique will be valuable 

to quantifying the amount of organics attached to the surface of the silica when a known mass 

of sample is analysed as shown in Figure 32.   
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Figure 32 – TGA of silica gel and poly(AGE/IDA-co-DMAA)-grafted silica gel.29 The silica gel shows the majority of 

its weight lost at ca. 100 oC due to water before essentially levelling off.  The grafted silica gel shows a much more 

significant weight loss due to the additional organic material now attached. 

In the case of this work, TGA was used to determine just how much material was 

successfully attached to the silica surfaces being investigated.  Assumptions do have to be 

made in what is accepted to be the final RMM of the silica but this is explained where 

necessary.  All samples were heated to 800-1000 
o
C.  The samples included all forms of silica 

that were introduced in chapter 4, with the exception of SMPs.  These were followed by their 

corresponding functionalisation steps which included the APTES and BIBB attachment 

products, followed by the PHEMA growth.  Each of these samples follow one another in the 

synthetic process and therefore each sample is expected to lose a larger percentage weight 

than the previous when run in that order.  This is because more organic molecules are 

progressively being detached and cannot survive these high temperatures, hence are burnt off 

and the material loses mass.     

5.1.3 CHN Elemental Analysis 

Carbon, hydrogen and nitrogen content in organic and inorganic compounds are determined 

in this process.  Combustion of weighed samples (typically 1-3 mg) occurs in a pure oxygen 

environment under static conditions.   

Figure 33 illustrates the combustion train and analytical system, this being specific to the CE-

440 elemental analyser that was used for the work in this project.  Solenoid valves A–G 
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control the gas flow through the system whereas H and I are used for automatic leak testing 

and other maintenance purposes. 

In the reduction tube, following combustion, oxides of nitrogen are converted to molecular 

nitrogen and residual oxygen is removed.  The gases are homogenised in the mixing volume, 

before being released through the sample volume and into thermal conductivity detector.
148

 

 

Figure 33 – Flow schematic of CHN elemental analyser CE-440.148 

Water is removed from the sample gas between the first of the three pairs of thermal 

conductivity cells using an absorption trap.  The difference in signal reading before and after 

the trap reflects the concentration of water and hence, hydrogen content is measured.  

Between the second pair of thermal conductivity cells, a similar measurement is made where 

carbon dioxide is removed by the trap and hence, carbon content is measured.  The remaining 

gas (now containing only nitrogen and helium) passes through the final detector and the 

signal output is compared to a reference cell of which only helium flows, leaving nitrogen 

content to be calculated.
148
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5.2 Results and Discussion 

5.2.1 SSNMR of functionalised silicas 

The spectra obtained are able to show the progression of the newly attached components of 

each stage, including the polymer unit.  
1
H, 

13
C and 

29
Si have all been run on the samples, 

signifying attachments of groups and successful polymerisation to the surface.  The direct 

interpretation of peaks however is very much different to solution state NMR and can be very 

tentative.   

5.2.1.1 1
H SSNMR of ZEOprep silica materials 

 

Figure 34 – 1H SSNMR of the functionalised ZEOprep silica materials.  ‘01’ shows the spectra obtained for the silica 

starting material, ‘02’ shows the spectra obtained for attached APTES, ‘03’ shows the spectra obtained for attached 

BIBB, ‘04’ shows the spectra after the grafting of polymer and ‘05’ shows the spectra obtained after grafting of 

polymer but also after many washings to ensure the material is attached. 

The starting material, ZEOprep silica shows one broad peak at 3.8 ppm but also a shoulder at 

4.6 ppm.  These correspond to the hydroxyl groups that exist on the silica surface and also 

likely to be related to residual water within the material.  When the TGA results are taken 

into consideration (TGA analysis of ZEOprep silica, page 99), it shows that water is likely to 

make up ca. 4% of the mass.  After this, the sample loses further mass up to temperatures of 
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1000 
o
C.  As this slope does not level out, it suggests further mass still was due to be lost at 

these high temperatures.  This loss in mass must be due to hydroxyl groups at the surface of 

the silica material as nothing other than Si-O bonds exists.  Therefore it is reasonable to 

suggest that the peak at 3.8 ppm is highly likely to be related to the Si-OH that is attached to 

the surface of the silica whilst the smaller shoulder is consistent with a slightly smaller 

quantity of residual water. 

The next step is the addition of APTES.  The SSNMR illustrates a peak 5.6 ppm which is 

likely to be the generation of a new peak for the three sets of CH2 that exists in the APTES 

and/or the inclusion of the NH peak.  Three small peaks are shown at 3.6 ppm, 2.2 ppm and 

1.1 ppm and Kim et al.
149

 report three peaks at similar shifts relating to free APTES.  This 

leaves the four environments of protons attached to the surface to be responsible for the broad 

peak observed at 5.6 ppm.  

The third material was that following the deposition of BIBB.  Two small shoulders at 5.6 

ppm and 7.8 ppm show the NH2 and CH2 groups still exist but now less mobile hence shallow 

and broad in appearance.  A new sharper peak exists at 1.8 ppm which can only correspond to 

the two new CH3 groups as this is the only proton environment that has been added.  The two 

groups are in the same environment and therefore would only show one peak.  They are also 

more mobile being CH3 at the end of a chain, and therefore produce sharper peaks.
150

 

The final proton spectra (04 and 05) are that with grafted PHEMA.  Spectrum 05 shows a 

sample washed multiple times illustrating little difference, suggesting that many washes are 

not required.  Two very broad peaks now exist at 4.7 ppm and 2 ppm.  With a large amount 

of similar environments and overlapping of peaks, exact details are impossible to interpret.  

The side chains of the polymer are expected to hold the most „mobile‟ environments such as 

the hydroxyl group on the end of the side chain and CH3, so it is most likely these protons 

that promote the spectra observed. 
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5.2.1.2 13
C SSNMR of ZEOprep silica materials 

 

Figure 35 – 13C SSNMR of the functionalised ZEOprep silica materials ‘02’ shows the spectra obtained for attached 

APTES, ‘03’ shows the spectra obtained for attached BIBB, ‘04’ shows the spectra after the grafting of PHEMA and 

‘05’ shows the spectra obtained after grafting of PHEMA but after many washings to ensure the material is attached. 

The deposition of APTES sees the addition of carbon atoms.  This enables 
13

C spectra to be 

used for more detail regarding these samples.  Three peaks are expected for the three 

individual environments of the carbon atoms.  However, on the spectra five are observed.  

During the synthesis, acetone was used which explains the peak observed at 163 ppm.  The 

peak at 28 ppm is the most likely to correspond to the two CH3 groups that relate to the 

acetone, whilst the three peaks at 10 ppm (1), 23 ppm (2) and 42 ppm (3) would be the three 

carbon atoms in the APTES group (numbers correlate to Figure 35) as have been reported by 

other groups.
151,152

 

Following deposition of BIBB a shifted carbon peak would be expected for the carbonyl, this 

is observed at 173 ppm (4), with the acetone peak at 163 ppm now absent.  A shifted peak for 

C-Br is observed at 60 ppm (5) whilst a new sharp peak, most likely for the two CH3 groups 

(based on the sharpness of its appearance and its location within the structure) is observed at 

32 ppm (6).  The three CH2 groups that are part of the APTES group see a decrease in relative 
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peak height due to this CH3 peak.  Castelvetro et al.
139

 have reported the use SSNMR to help 

characterise their cotton fibers encapsulated with copolymers which also uses BIBB as an 

initiator.  A similar but unassigned spectrum is reported for the structure containing BIBB 

and the carbonyl peak is certainly at a similar shift to where it is observed in Figure 35.  As 

mentioned in the proton discussion, this process was carried out in THF, therefore no acetone 

peaks are observed. 

The addition of PHEMA produces spectra much more complicated than previously observed.  

The addition of more carbon atoms in similar positions results in the overlap of peaks and 

shoulders of peaks need to be considered.  The simplest carbon to determine is the carbonyl 

within the polymeric repeat unit (10).  This is observed at 179 ppm whilst the shoulder of the 

carbonyl within the amide still remains at 173 ppm (4) but at a height of ca. ¼ to the new 179 

ppm peak.  The relative peak height could suggest that there were ca. four repeat units 

attached, but this technique cannot be relied upon for quantitative analysis and would only be 

an average across all the repeat units attached – hence TGA and elemental analysis have been 

used alongside SSNMR to help quantify the results.  A closer inspection at the lower shift 

end of the spectra suggests that the two CH2 (C11 and C12) groups fall into the broad peak 

observed at 68 ppm.  Mirau
153

 has reported poly(butyl methacrylate) which has almost 

identical carbon environments (see Figure 36) and this was used to help determine the peak 

assignment of 04 and 05 in Figure 35. 

 

Figure 36 – Poly(butyl methacrylate) (left) and PHEMA (right). 

Mirau
153

 reports the quaternary carbon (9) exactly where a new peak is observed with this 

spectra, at 45 ppm.  Also, a CH2 (7) is interpreted near to where a third new peak is observed 

at 60 ppm.  Finally, the remaining new peak is seen at 17 ppm, likely to be the CH3 (8).  Due 

to the CH2 (2) already positioned at 23 ppm, only a shoulder is now observed, forming a 

broad peak as it overlaps with the CH3 (8).  Again, the sample washed several times (bottom 

spectrum of Figure 35, spectrum 05) shows little difference to the sample washed only once 

(second from bottom of Figure 35, spectrum 04). 
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5.2.1.3 NQS Experiment of ZEOprep silica material 

Non-quaternary suppression (NQS) is used to help confirm which peaks are related to the 

quaternary carbons.  A similar spectrum is obtained to that of a DEPT in solution state, but in 

this case, the reverse is observed where the quaternary carbons are displayed.  Due to the 

nature of the CH3 groups and their mobility, these are also displayed on the spectra.  Taking 

this into account, the NQS spectrum has peaks at 179 ppm (10), 173 ppm (4), 60 ppm (5), 45 

ppm (9), 32 ppm (6) and 17 ppm (8). 

 

Figure 37 – NQS experiment to show which peaks are related to quaternary carbons but also to CH3 groups due to 

their mobility. 

5.2.1.4 29
Si SSNMR of ZEOprep silica material 

Finally, 
29

Si experiments were run to help further understand the makeup of the silica used in 

this work.  This enables one to distinguish silicon atoms involved in siloxane bridges (Q
4
), 

single silanol (Q
3
) and geminal silanol groups (Q

2
) on the surface of silica.

154
 

The Direct Polarisation (DP) Technique (which is quantitative) shows that unsurprisingly, 

siloxane bridges (Q
4
) make up the majority of the material (this spectrum is observed at the 

bottom of Figure 40, DP 05).  As illustrated in Figure 38, these silica atoms are bonded to 

four oxygen atoms, which are then attached to another silicon atom, making them unavailable 

for this modification work. 

 

Figure 38 – Illustration to show siloxane bridges Q4, single silanol Q3 and geminal silanol groups Q2. 
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Figure 40 shows the 
29

Si spectra recorded for the functionalised materials.  In each of the CP 

experiments, the spectra shows the new silicon atoms (from the APTES silane) to be 

attached.  This is the case for each step following this surface modification and helps support 

the idea that the surface attached material is in fact attached. 

It is important to remember that CP is a very filtered and biased experiment to show what is 

attached.  
29

Si spin polarisation is derived from the proton-spin reservoir which discriminates 

against silicon nuclei in the interior of a silica particle and in favour of surface silicon atoms 

which are nearer the available (hydroxyl) protons.
155

 These experiments suggest the 

modifications have been successful by the appearance of T
2
 and T

3
 peaks

156
 (see Figure 39), 

but in reality, the final spectrum (DP (05)) in Figure 40 show that the majority of the silica 

remains as the bulk Q
3
 and Q

4
.  This is not dissimilar to what would be expected, considering 

the chemistry being carried out is only on the surface. 

 

Figure 39 – Structures of the T2 and T3 species that are present on APTES-functionalised silica surfaces. 
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Figure 40 – 29Si SSNMR spectra of ZEOprep silica and all its functionalised materials.  (05) is the same material as 

(04) but has undergone many washings as seen in the previous spectra.  The final spectra (DP (05)), illustrates 

quantifiably the silica environments in the material. 

5.2.1.5 13
C SSNMR of fumed silica materials 

Similar experiments have been carried out for the fumed silica samples on which the same 

modifications have been attempted.  Figure 41 shows the spectra recorded for these 

experiments for the three stages of the modification process. 
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A lower signal to noise ratio is observed for the first two spectra, perhaps due to less sample 

being used but this has not prevented assignments from being carried out.   

The peaks observed have very similar shifts to those seen on the ZEOprep silica surface, 

strongly supporting the original peak assignment.  Five peaks are observed in the first 

spectrum, once more two have been assigned to residual acetone present from the APTES 

reaction.  Peaks at 10 ppm (1), 23 ppm (2) and 42 ppm (3) have been assigned to the three 

carbons in the APTES molecule based on work reported by other groups as before.
151,152

 

 

Figure 41 – 13C SSNMR of functionalised fumed silica.  From top to bottom show APTES attached fumed silica, 

BIBB attachment to the silica via the nitrogen of the APTES group and finally, the attempted attachment of PHEMA 

via SI- ATRP. 
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Following deposition of BIBB, a spectrum is observed that is consistent with the ZEOprep 

material. 

The third and final spectrum shows a very different spectrum to the two previously discussed.  

Added to this, only the outermost carbons are observed and only appear to be those 

associated with the polymer.  Unlike previously in Figure 35 where all carbons could be 

assigned to a peak at this stage of the modification, here there are a limited number of peaks 

to be assigned.  There are two reasons that could explain this. 

The first could be that so much PHEMA has attached to the surface of the silica that these 

have swamped the spectrum, making the carbons closer to the bulk silica invisible 

The second reason, and perhaps more plausible is that very little of the polymer had attached 

to the silica.  Instead, the spectrum has been swamped by free PHEMA.  Many free radicals 

are created during this reaction and although some will have attached to the silica, free 

polymer could have been initiated during this process and may have simply wrapped itself 

around the silica material.   

When looking forward to the TGA plots (Figure 42 for ZEOprep and Figure 43 for fumed 

silica), there does appear to be a marginal difference in the way mass is lost for the PHEMA 

functionalised silica.  PHEMA functionalised ZEOprep silica shows a staggered decrease in 

mass whilst in the case of the fumed silica, the decrease in mass matches closer to the free 

PHEMA before levelling off around 20 % – leaving the original fumed silica.  This could 

suggest why only the PHEMA is observed in the SSNMR spectrum –but not a great deal 

more than speculation can be made about this. 

5.2.2 TGA analysis of ZEOprep silica 

ZEOprep silica, with an average particle size of ca. 70 μm was investigated to determine how 

much of the weight is due to water molecules and any impurities.  A triplicate analysis was 

carried out for accuracy.  Equation 10 explains how this is calculated. 

             

                     
  

          

           
 

Equation 10 – Equation to calculate the RMM of a starting material using TGA.146 

One must assume the final RMM of the product is that of SiO2 and that all hydroxyl groups 

(residual water or bound to the silica surface) have been removed so that there is confidence 
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in the starting material RMM.  The original ZEOprep silica sample size used was 15.0650 mg 

and following heating, had reduced by 8.53 % to 13.7851 mg. 

            

               
  

            

      
 

            

               
              

            

           
          

RMM of SiO2 = 60.0840, leaving 5.6020 unaccounted for.  Equation 11 demonstrates the 

number of water molecules that are therefore calculated. 

      

  
      

Equation 11 – Calculation to indicate the number of water molecules present in the silica sample. 

Hence the formula of the ZEOprep silica is calculated to be SiO2.0.31H2O. 

5.2.2.1 ZEOprep Si-APTES 

A total loss of 13.37 % of weight was observed from a sample weighing 35.0065 mg.  By 

assuming that 8.53 % of that mass is related to the water molecules previously accounted for, 

it can be expected that the 4.84 % of the lost mass is that of the APTES group that has been 

synthesised to the silica surface (residual acetone reported in SSNMR was removed by 

leaving the sample in an oven at 80 
o
C overnight).  Further calculations establish that a total 

of 4.5564 mg, 5.286 x 10
-5 

moles (1.51 x 10
-3

 mol g
-1

) of APTES was attached to the silica. 

5.2.2.2 ZEOprep Si-BIBB 

To calculate the amount of bromine groups attached to the silica surface, the amount of 

APTES had to be subtracted as well as the water molecules.  The total loss of weight was 

24.63 % of a sample originally weighing 12.6103 mg.  Calculations show that 2.6907 mg 

belonged to the BIBB group, equating to 1.782 x 10
-5

 moles (1.41 x 10
-3

 mol g
-1

), essentially 

giving a ratio of 1:1.  A yield of 93 % is also calculated. 

5.2.2.3 ZEOprep Si-PHEMA 

A total mass loss of 42.49 % was observed for this sample, immediately suggesting that a 

significant amount of polymer had attached itself to the surface.  The sample being analysed 
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initially weighed 14.5991 mg.  A total mass of 6.3277 mg of PHEMA was found to be 

attached to the silica surface, equating to 4.862 x 10
-5 

moles (3.33 x 10
-3

 mol g
-1

).  The ratio 

therefore of the BIBB-functionalised silica to PHEMA in moles is 1.41 x 10
-3

 mol g
-1

 : 3.33 x 

10
-3

 mol g
-1

.  In simpler terms, a ratio of 1 : 2.36. 

The mass loss data for the ZEOprep materials is shown graphically in Figure 42. 

 

Figure 42 – Comparison of the mass lost on each ZEOprep silica sample via TGA analysis.  Free PHEMA is included 

to compare the surface attached results to but this graphical interpretation clearly demonstrates more organic 

material is removed after each modification step, as would be expected. 

Table 5 displays the original masses used in grams for the ZEOprep silica TGA studies and 

shows the findings of calculated values of attached APTES, BIBB and PHEMA.  The 

molecular weight of APTES was revised from 221.37 to 82.16 due to SSNMR indicating no 

ethyl groups to be present, whilst the molecular weight of BIBB was also revised from 

229.90 to 151.00 as the acid bromide is removed in the reaction to form the new amide bond.   

 

 

 

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

W
e

ig
h

t 
(%

) 

Temperature (oC) 

Silica Gel

Si-APTES

Si-BIBB

Si-PHEMA

Free PHEMA



Page | 102  

 

 
Sample 

Mass (g) 

Mass of end 

group (g) 

Moles of end 

group  

Moles of end group 

per gram of material 

ZEOprep 

Si-APTES 
0.0350065 0.0045564 5.286 x 10

-5 
1.51 x 10

-3 

ZEOprep 

Si-BIBB 
0.012613 0.0026907 1.782 x 10

-5
 1.41 x 10

-3
 

ZEOprep 

Si-PHEMA 
0.0145991 0.0063277 4.862 x 10

-5
 3.33 x 10

-3
 

Table 5 – Masses of each functionalised ZEOprep silica sample used on TGA with calculated mass of end group 

attached.  The moles of the end group are then calculated, followed by a final calculated value of moles of end group 

per gram of material. 

Table 5 clearly shows the relationship between Si-BIBB and Si-PHEMA (using HEMA 

monomer RMM as no atoms are lost in ATRP) and suggests that the degree of 

polymerisation (DP) is ca. 2.  Although this is very low, it supports the SSNMR data where it 

was predicted to be ca. 4 by estimating the peak area. 

5.2.3 TGA analysis of fumed silica 

Following the ZEOprep silica results, the fumed silica was investigated via the same method.  

By using this silica, it was expected that more organic material would attach to the silica than 

had been observed with the ZEOprep silica due to its much larger surface area.  Taking the 

same assumption into account that the final RMM of the product is that of SiO2, quantifiable 

attachment can be analysed.  The sample size used for this investigation was a lot less than 

the same investigation with the ZEOprep silica at 3.3379 mg due to the characteristics of the 

fumed silica being so fine and electrostatic that it was virtually impossible to get any more 

into the TGA pan. 

Following heating, a total of only 2.065 % had been lost in mass to leave 3.269 mg.  Using 

the equation shown in Equation 10, the RMM of the starting material is found to be 61.3506, 

leaving the number of water molecules to be lower at 0.0704. 

5.2.3.1 Fumed Si-APTES 

The silica attached APTES, (with a starting mass of 12.1116 mg) had a total mass loss higher 

than the ZEOprep silica at 14.38 %.  Taking into consideration the loss of water molecules 

from the fumed silica, further calculations found that a total of 1.7051 mg, 1.978 x 10
-5 

moles 

of the APTES was attached to the silica (1.63 x 10
-3

 mol g
-1

). 
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5.2.3.2 Fumed Si-BIBB 

The initial weight loss of the silica attached bromine (with a starting mass of 14.0076 mg) 

was again higher than the same sample of ZEOprep material at 26.40 %.  Calculations show 

that 3.1667 mg was owed to the BIBB group, equating to 2.097 x 10
-5

 moles (1.50 x 10
-3

 mol 

g
-1

) - a yield of 92 %. 

5.2.3.3 Fumed Si-PHEMA 

Finally, the silica attached PHEMA (with a starting mass of 16.7156 mg) produced a total 

weight loss of 80.12 % – almost double the figure seen with the ZEOprep material.   

A total mass of 9.8570 mg of PHEMA was found to be attached to the silica surface, equating 

to 7.5741 x 10
-5 

moles (4.53 x 10
-3

 mol g
-1

).  The ratio therefore of the BIBB-functionalised 

silica to PHEMA in moles is 1.50 x 10
-3

 : 4.53 x 10
-3

.  In simpler terms, a ratio of 1 : 3.02. 

The mass loss data for the fumed silica materials is shown graphically in Figure 43. 

 

Figure 43 – Comparison of the mass lost on each fumed silica material sample via TGA analysis. Free PHEMA is 

included to compare the surface attached results to but this graphical interpretation clearly demonstrates more 

organic material is removed after each modification step, as would be expected. 
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Table 6 displays the original masses used in grams for the fumed silica TGA studies and 

show the findings of calculated values of attached APTES, BIBB and PHEMA.  Again, the 

molecular weights have been revised. 

 
Sample 

Mass (g) 

Mass of end 

group (g) 

Moles of end 

group  

Moles of end group 

per gram of material 

Fumed Si-

APTES 
0.0121116 0.0017051 1.978 x 10

-5 
1.63 x 10

-3 

Fumed Si-

BIBB 
0.0140076 0.0031667 2.10 x 10

-5
 1.50 x 10

-3
 

Fumed Si-

PHEMA 
0.0167156 0.009857 7.57 x 10

-5
 4.53 x 10

-3
 

Table 6– Masses of each functionalised fumed silica sample used on TGA with calculated mass of end group attached.  

The moles of the end group are then calculated, followed by a final calculated value of moles of end group per gram 

of material. 

Table 6 clearly shows the relationship between Si-BIBB and Si-PHEMA and suggests that 

the degree of polymerisation (DP) is ca. 3.  Again, this is very low but it is expected to be a 

higher value than the ZEOprep based on the TGA analysis showing more materials lost in 

mass.  It does however remain unclear whether or not this PHEMA is bonded to the silica 

particles or whether it is silica particles physisorbed with free PHEMA. 

5.2.4  TGA analysis of porous silica microparticles 

Following the results with the silica materials investigated thus far, silica microparticles 

designed and made by Holdich et al.
121

 were explored via TGA also.  As explained earlier in 

chapter 4, a sample with an average pore size of 2.6 nm was obtained and by utilising the 

surface of the pores along with the outer surface, it was thought that this material may 

produce better results than the two already examined. 

However, after attaching only a small amount of APTES, the BIBB synthesis proved 

impossible via the same route used with the ZEOprep silica and fumed silica.  No amide 

shifts on the IR spectrum could be seen: only the amine shift from the small amount of 

APTES.  Only after the addition of premade BIBAPTES did one see the amide shifts on the 

FTIR spectrum.  TGA was used to help understand why this was the case. 
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Figure 44 – Comparison of the mass lost on each silica microparticle material via TGA analysis. 

Figure 44 shows the mass loss when heating the materials to 1000 
o
C at the same rate.  The 

first major observation is that all the mass losses are very close to each other, unlike the 

results observed with the other silica materials previously discussed.  Secondly, the mass loss 

of the silica microparticles without any modification is considerably higher at 23.8 % 

compared to the 8.5 % observed for the ZEOprep silica and 2.1 % observed for the fumed 

silica.  There could be more than one reason for this. 

Firstly, the product that remains when heated to 1000 
o
C is black coloured: suggesting carbon 

is present.  Sodium silicate solution is used in the process of producing these microparticles 

in kerosene which could mean that the pores are being held at their specific size by carbon 

frameworks.  If this is the case, the pores would not be available to utilise for ligand 

attachment or polymer growth and thus, radically reducing the surface area originally thought 

to be available for synthetic modification. 

Secondly, the process used to create these pore sizes and pore spacing requires a solvent 

system containing kerosene which could mean the microparticles have absorbed this and not 

undergone a stringent wash to remove it. 
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However, with over 15 % of the mass appearing to be removed at around 100 
o
C, it seems 

more likely that the silica microparticles are hygroscopic and require drying before use.  A 

sample was placed in the vacuum oven at 150 
o
C and left overnight before being analysed via 

TGA. 

 

Figure 45 – Comparison of weight loss for the silica microparticles via TGA when heated to 150 oC beforehand and 

when not pre-treated at all. 

Although some of the mass loss can now be accounted for, the remaining mass loss of 10.6 % 

was still unexplained and the material after analysis again remained black coloured. 

Elemental analysis showed that 2.28 % of the mass was carbon and 1.04 % was hydrogen.  

These values are remarkably high when compared to 0.04 % and 0.32 % to the ZEOprep and 

fumed silica respectively for carbon and 0.34 % and 0.20 % for hydrogen, signifying that 

some form of carbon framework exists within the material.  

Further elemental analysis investigations from other work by Dann et al.
157

 showed that when 

an organic template did exist, the carbon content was just over 2 %, and when it was 

removed, the content level was as low as 0.01 %.  This is consistent with a carbon framework 

being present in the pores of this material which would explain why it has not been possible 

to attach as much organic material as expected. 
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5.2.5 TGA analysis of silica coated iron oxide microparticles 

TGA was not carried out on silica coated iron oxide microparticles due to too small a sample 

and investigations with the material were focussed on sequestration of metal as a proof of 

concept. 

5.2.6 CHN Elemental analysis on functionalised silicas 

CHN Elemental analysis results are tabulated below and clearly show the addition of organic 

carbon after each step, the most obvious step being the polymerisation – as expected.  

Nitrogen content rises after the addition of APTES but then starts to lower as more carbon, 

hydrogen and oxygen atoms are attached without any further nitrogen.  Silicon and oxygen 

cannot be analysed via this method but the CHN content gives good assurances that the 

modifications have been successful.  Silicon and oxygen fall into the „R‟ percentage. 

Sample Sample mass (μg) % Carbon % Hydrogen % Nitrogen % R 

ZEOprep silica 1722.3 0.04 0.34 0.04 99.59 

ZEOprep Si-APTES 1102.4 5.16 1.02 1.64 92.18 

ZEOprep Si-BIBB 2393.6 9.39 1.58 1.48 87.55 

ZEOprep Si-PHEMA 1894.6 30.17 4.26 0.81 64.76 

Table 7 – CHN Elemental analysis of ZEOprep silica and its functionalised derivatives. 

Sample Sample mass (μg) % Carbon % Hydrogen % Nitrogen % R 

Fumed silica 706.3 0.32 0.20 0.07 99.40 

Fumed Si-APTES 1753.2 6.88 1.44 2.31 89.37 

Fumed Si-BIBB 1017.2 10.88 1.60 1.69 85.84 

Fumed Si-PHEMA 2271.7 43.91 6.29 0.51 49.29 

Table 8 – CHN Elemental analysis of fumed silica and its functionalised derivatives. 

The nitrogen percentage in the case of the silica attached APTES can be used to calculate the 

number of moles of APTES attached.  Only one nitrogen atom exists in each molecule of 

APTES, leaving a direct relationship to be made between the two. 
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Mass of N in ZEOprep Si-APTES sample 1.76 x 10
-5

 g 

Moles of N in ZEOprep Si-APTES sample 1.26 x 10
-6

 mol 

Moles of N per 1 g ZEOprep Si-APTES 1.14 x 10
-3 

mol g
-1 

Moles of APTES per 1 g ZEOprep Si-APTES 1.14 x 10
-3

 mol g
-1 

Table 9 – Values for the content of nitrogen found in a mass of 1102.4 μg of ZEOprep Si-APTES and hence calculated 

to show the number of moles of APTES per gram of material. 

Mass of N in fumed Si-APTES sample 3.93 x 10
-5

 g 

Moles of N in fumed Si-APTES sample 2.80 x 10
-6

 mol 

Moles of N per 1g fumed Si-APTES 1.59 x 10
-3 

mol g
-1 

Moles of APTES per 1g fumed Si-APTES 1.59 x 10
-3

 mol g
-1 

Table 10 – Values for the content of nitrogen found in a mass of 1753.2 μg of fumed Si-APTES and hence calculated 

to show the number of moles of APTES per gram of material. 

Although it is already known more APTES was successfully attached to the fumed silica than 

ZEOprep from the CHN percentages and TGA, moles per gram values allow more to be 

learnt about the uptake of metal in later stages of the work.  As (unexpectedly) the results are 

very similar, a considerable difference between the two materials would not be expected.  A 

hypothesis is given in the conclusion as to why a similar mol g
-1

 is observed. 

Using the CHN percentages and revised RMM of APTES, BIBB and PHEMA, a percentage 

yield and DP calculation has been made to compare this method with TGA.  TGA is a much 

more accurate way of measuring these values but the CHN results can be used to support and 

strengthen the credibility of these findings.  The results are shown in Table 11 and Table 12. 

Sample mol g
-1

 of material  TGA comparison  

ZEOprep Si-APTES 9.07 x 10
-4 

 1.51 x 10
-3

 mol g
-1

  

ZEOprep Si-BIBB 8.25 x 10
-4

 91 % yield 1.41 x 10
-3

 mol g
-1

 93 % yield 

ZEOprep Si-PHEMA 2.71 x 10
-3

 DP = 3.28 3.33 x 10
-3

 mol g
-1

 DP = 2.36 

Table 11 – Values calculated via CHN for moles of functional group per gram of material and compared to TGA 

values. 
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Sample mol g
-1

 of material  TGA comparison  

Fumed Si-APTES 1.23 x 10
-3

  1.63 x 10
-3

 mol g
-1

  

Fumed Si-BIBB 9.38 x 10
-4

 76 % yield 1.50 x 10
-3

 mol g
-1

 92 % yield 

Fumed Si-PHEMA 3.90 x 10
-3

 DP = 4.16 4.53 x 10
-3

 mol g
-1

 DP = 3.02 

Table 12 – Values calculated via CHN for moles of functional group per gram of material and compared to TGA 

values. 

A difference in values between the TGA and CHN techniques would be expected but for the 

majority, the results are very similar.  These findings are supported by work reported by 

Bartholome et al.
141

 who used TGA and CHN to calculate and compare grafting density and 

yields of their materials and also reported similar results from the two methods.  The 

difference between the values calculated for percentage yield of BIBB-functionalised fumed 

silica is the most significant difference but a yield of 70 % or greater would still be regarded 

as a good yield in synthetic  organic chemistry.
158

  

5.3 Conclusion 

The three techniques described in this chapter have proved to be invaluable for the 

characterisation of the materials synthesised in this work. To the author‟s knowledge, the 

silica materials studied in detail (ZEOprep and fumed) have not been used for this type of 

work in the past.  The detailed analysis of the materials appears to be a relatively novel 

approach although Bartholome et al.
141

 have used a similar procedure to obtain qualitative 

and quantitative data for nitroxide-mediated polymerisations from silica nanoparticles.  

However, a different approach was used to graft the polymer which did not involve APTES 

or BIBB and focussed on styrene rather than HEMA.  SSNMR and TGA analysis was also 

used by Castelvetro et al.
139

 to strengthen the structural understanding for ATRP grafted 

polymers from cotton fibres but did not use elemental analysis.  

SSNMR has helped to improve the understanding of the material make-up whilst TGA and 

elemental analysis has enabled supporting calculations to be made to accurately compare the 

differences between the functionalised materials.  The information from SSNMR allowed 

RMM calculations to be made on the organic molecules attached based on the structure of the 

materials formed. 

SSNMR spectra obtained for the PHEMA attached to fumed silica has shown that the 

polymer may not be attached.  The clarity of the peaks suggest high mobility of the end 

groups
159

 but the fact that carbons known to be attached to the silica support cannot be seen 
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prevents a full analysis of the structure from being carried out.  The alternative hypothesis of 

so much PHEMA being grafted from the surface that the side chains have swamped the 

spectrum seems highly unlikely based on the DP of 3 that was calculated via TGA.  

Table 13 shows how the two techniques have been used to give reliable results to quantify the 

APTES bound to its surface and offers a clear comparison of the two. 

Material TGA CHN 

ZEOprep Si-APTES 1.51 x 10
-3

 mol g
-1

 1.14 x 10
-3

 mol g
-1

 

Fumed Si-APTES 1.63 x 10
-3

 mol g
-1

 1.59 x 10
-3

 mol g
-1

 

Table 13 – Comparison of values for silica attached APTES via TGA and CHN calculations. 

Both TGA and CHN analysis show fumed Si-APTES to contain more APTES per gram of 

material that the ZEOprep equivalent.  This would be expected given the properties of the 

two silicas where a much larger surface area and smaller particle size exists for the fumed 

silica.  However the difference between the two is not that great and therefore similar results 

between the two might be expected when sequestrating metal with these materials. 

Exactly why this is the case is not completely clear, but a hypothesis is given here.  It is 

reported that fumed silica has an individual particle size of 0.007 μm and ZEOprep silica 

particles are 40-63 μm but it is clear that the methodology used is unable to exploit this 

surface area.  Scanning Transmission Electron Microscope (STEM) imaging carried out in 

the following chapter (for europium(III) mapping) has given an insight into the morphology 

of the fumed silica (Figure 71).  As a monolayer is added (such as APTES), it is proposed 

that these individual particles are partially agglomerated and rather than functionalising each 

particle, instead multiple particles are lost inside a „ball‟ of fumed silica.  The result of this 

leaves a limited amount of surface area to be functionalised.   

TGA and CHN analysis have also shown to provide strong supporting information based on 

the percentage yield of deposition of BIBB on the ZEOprep and fumed silica whilst DP 

calculations were within ca. 1 repeat unit of each other. 

The functionalised ZEOprep and fumed silica materials were next prepared on a scale large 

enough to produce enough material to carry out batch investigations on metal sequestration.  

These results are presented and discussed in the following chapter. 
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5.4 Future Work 

Although a great deal of information has been found from the three characterisation 

techniques reported for the ZEOprep and fumed silica materials, a lack of material for the 

PSM and SMP prevented these from being characterised in as much detail.   

If the PSMs potential was met, one believes that it could match the ZEOprep and fumed 

silica‟s ability for APTES attachment which could be used immediately for metal 

sequestration.  Currently this is not the case and work moved away from this area when other 

materials were seen to be more worthwhile. 

A similar problem existed with the SMPs whereby a limited stock prevented further and 

larger scale tests.  A proof of concept has been attempted in chapter 6 but with a larger 

sample.  A reliable estimation of APTES attached to the surface of the silica could be 

calculated and compared with other materials such as the ZEOprep and fumed silica.  
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6 Sequestration of metals, kinetics and Rd 

6.1 Introduction 

The materials designed and discussed in this work have all been made to assess their potential 

to sequestrate metals from aqueous solutions.  In several cases, radioisotopes of metals 

investigated were used to spike solutions, enabling analytical methods such as Liquid 

Scintillation Counting (LSC) and gamma counting to be used as well as Inductively Coupled 

Plasma (ICP) techniques.  This also demonstrated that the materials could deal with these low 

radioactive levels without the material degrading. 

The metal ions investigated in synthetic solutions included Co(II), Ni(II), Cu(II), Zn
2+

, Cd
2+

, 

Eu(III) and [UO2]
2+

.  Radioisotopes included 
57

Co, 
63

Ni, 
109

Cd, 
152

Eu and 
238

U.  The reasons 

for choosing these metals are discussed further in this chapter when the silica materials are 

tested for their ability to remove them from solution and ease of removal from a single metal 

solution with functionalised silica materials. 

6.1.1 Radioisotopes used in this work 

57
Co disintegrates by 100 % electron capture to the excited levels of 706.42 keV (0.18 %) and 

136.47 keV (99.92 %) of 
57

Fe.  Table 14 shows the main emissions of 
57

Co (in keV) which 

has a specific activity of 3.12 x 10
14 

Bq/g and a half-life of 371.8 days.
160

 

 Gamma or X Beta (Emax) Electrons Alpha 

 E               Yield E               Yield E               Yield E               Yield 

E1 14                    9  6                   106  

E2 122                 86  7                     70  

E3 137                 11    

Table 14 – 57Co radioisotope data.160 

63
Ni decays by β

-
 emission to the ground state of 

63
Cu.  Table 15 shows the main emissions of 

63
Ni (in keV) which has a specific activity of 2.10 x 10

12 
Bq/g and a half-life of 100 years.

160
 

 Gamma or X Beta (Emax) Electrons Alpha 

 E               Yield E               Yield E               Yield E               Yield 

E1  66                 100   

Table 15 – 63Ni radioisotope data.160 
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109
Cd decays by electron capture to the isomeric state (88 keV) of 

109
Ag.  Table 16 shows the 

main emissions of 
109

Cd (in keV) which has a specific activity of 9.58 x 10
13 

Bq/g and a half-

life of 462.6 days.
160

 

 Gamma or X Beta (Emax) Electrons Alpha 

 E               Yield E               Yield E               Yield E               Yield 

E1 22                   83  63                   41  

E2 25                   15  84                   45  

E3 88                     4  87                   10  

Table 16 – 109Cd radioisotope data.160 

152
Eu decays 72.1 % by electron capture and about 0.027 % by positron emission to 

152
Sm, 

and by β
-
 emission (27.9 %) to 

152
Gd.  Table 17 shows the main emissions of 

152
Eu (in keV) 

which has a specific activity of 6.45 x 10
12 

Bq/g and a half-life of 13.5 years.
160

 

 Gamma or X Beta (Emax) Electrons Alpha 

 E               Yield E               Yield E               Yield E               Yield 

E1 344                 27 388                   2 75                   19  

E2 1112               14 699                 14 114                 11  

E3 1408               21 1478                 8   

Table 17 – 152Eu radioisotope data.160 

238
U disintegrates by alpha emission to two excited levels and 

234
Th.  Branching decay by 

spontaneous fission is at a level of 5.45 x 10
-5

 %.
161

  Table 18 shows the main emissions of 

238
U (in keV) which has a specific activity of 1.24 x 10

4 
Bq/g and a half-life of 4.47 x 10

9
 

years.
160

 

 Gamma or X Beta (Emax) Electrons Alpha 

 E               Yield E               Yield E               Yield E               Yield 

E1 15                     9   4039              <1 

E2 50                  <1   4147               23 

E3    4196               77 

Table 18 – 238U radioisotope data.160 
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6.1.1.1 Decay equations for the isotopes used in this work 
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6.1.2 Analytical techniques 

6.1.2.1 Inductively Coupled Plasma (ICP) 

ICP techniques can be very powerful tools for detecting and analysing trace elements.  

Plasma is an ionised gas that is macroscopically neutral.  Argon is commonly used to produce 

the plasma because like any noble gas, it is monoatomic with a high ionisation energy (15.76 

eV) and is chemically inert.  It also has the capability to excite and ionise most of the 

elements of the periodic table and no stable compounds are formed between argon and the 

analytes.  Furthermore, argon is the cheapest noble gas owing to its 1 % concentration in 

air.
164

 

The ICP source is used for both optical emission spectroscopy (ICP-OES) and mass 

spectrometry (ICP-MS).  The basic components that are used to generate the source are a 

plasma torch, a radio frequency (RF) coil and an RF power supply.  The plasma torch 

consists of three concentric tubes (made usually from quartz).  The gas used to form the 

plasma is passed between the outer and middle tubes at a flow rate of ca. 12-17 L min
-1

.  A 

second gas flow, the auxiliary gas, passes between the middle tube and the sample injector at 

ca. 1 L min
-1

 and is used to change the position of the base of the plasma relative to the tube 

and the injector.  Finally a third gas flow, the nebuliser gas, also flowing at ca. 1 L min
-1

 

carries the sample in the form of a fine-droplet aerosol from the sample introduction system.  

This is sufficient, in the small diameter injector tube, to produce a high velocity jet of gas 

which punches a cooler hole through the centre of the plasma, termed the central or axial 

channel.  The plasma torch is positioned centrally in the RF coil, approximately 10-20 mm 

from the interface.
165,166,167
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The formation of an ICP discharge is carried out via the following method.  A tangential flow 

of argon gas is focussed between the outer and middle tube of the torch.  A load coil, 

commonly made of copper, surrounds the top end of the torch and is connected to an RF 

generator.  When the RF power (typically 750-1500 W) is applied to the load coil, an 

alternating current oscillates with the coil at a rate corresponding to the frequency of the 

generator, commonly either 27 or 40 MHz.  RF oscillation of the current in the coil causes an 

intense electromagnetic field to be created in the area at the top of the torch.  When argon gas 

is flowing through the torch, a high-voltage spark is applied to the gas which causes some 

electrons to be stripped from their argon atoms.  Within the magnetic field these electrons are 

accelerated and collide with other argon atoms, removing additional electrons.  This collision 

induced ionisation of the argon continues in a chain reaction, breaking down the gas into 

argon atoms, ions and electrons to form what is known as inductively coupled plasma 

discharge.  This discharge is sustained with the torch and load coil as RF energy is 

continually transferred to it through the inductive coupling process.  Following this, the 

sample aerosol is then introduced into the plasma through a third tube called the sample 

injector.
165

 

 

Figure 46 – Detailed view of a plasma torch and RF coil.165 

6.1.2.1.1 ICP-Optical Emission Spectroscopy 

When the analyte enters the central channel of the ICP a number of processes occur.  The 

sample desolvates, the matrix decomposes and the resulting analyte undergoes excitation to 

produce molecular, atomic and ionic species in various energy states.  Some of this energy is 

released in the form of electromagnetic radiation of a wavelength that is characteristic of the 

emitting species.  It is this property of the plasma that is utilised for analytical purposes in the 

ICP-OES.
164
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A monochrometer is used to resolve specific wavelengths of interest and a detector can be 

used to measure the intensity of the emitted light.  The concentration of the element or 

elements in question can then be calculated from their intensity.
168

 

6.1.2.1.2 ICP-Mass Spectrometry 

Using an ion lens system, analyte isotopes are separated according to their mass/charge ratio 

by use of a quadrupole.  Ions with specific m/z ratios are transmitted sequentially to the ion 

detection system.  Ions that have a lower or higher mass m/z ratio have different trajectories 

and are therefore filtered out of the system.  The most common form of detector used in ICP-

MS is an electron multiplier where the signal intensity is measured simultaneously at two 

different points.  In the upper stage of the detector (responsible for measuring high intensity 

signals), the signal is measured as a current which is later converted to a counts per second 

(cps) equivalent.  The lower pulse stage measures low intensity signals in cps.  The detectors 

life span is prolonged and damage minimalised by preventing signals of exceedingly high 

intensities from entering it.
165,169

 

 

Figure 47 – Schematic of an ICP-MS system showing the location of the plasma torch and radio frequency (RF) 

power supply.165 

6.1.2.1.3 Benefits of using both ICP-OES and MS 

ICP-OES is very useful for measuring concentrations above 3-5 ppm (depending on metal, 

see section 2.1.6 for metals observed in this work).  When lower levels of metal were present, 

either due to starting with a lower concentration because little material was available or as a 
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result of material reducing an initial concentration beyond the sensitivity of the ICP-OES, 

ICP-MS provides lower detection limits (ppb-ppt) for these scenarios.   

For the majority of this work, ICP-OES was used and ICP-MS was only used when 

concentration levels were below the limit of detection and quantification as reported in Table 

2 in section 2.1.6 (e.g. reversibility studies illustrated in Appendix 2 – Reversibility and 

dissolution of metal ions following sequestration). 

6.1.2.2 Liquid Scintillation Counting 

Liquid Scintillation Counting (LSC) is a technique for measuring ionising radiation mainly 

from beta-emitting nuclides.  The process works by incorporating the radioactive isotope with 

a liquid chemical medium that is capable of transferring the kinetic energy of the nuclear 

emissions into light energy, the amount of light can then be detected by the counter.  The 

liquid scintillation cocktail carries this out by absorbing the energy, before re-emitting it as 

flashes of light.  The cocktail contains two basic components, solvent and phosphors.  The 

majority of energy absorption is carried out by the solvent, before the phosphors (dissolved in 

the solvent) convert this into light (photons).  With the use of a photomultiplier tube (PMT), 

the photons can be counted.
170,171

 

A „coincidence unit‟ is used in conjunction with two PMTs so to reduce background noise 

and therefore improve the signal/noise ratio.  When a flash of light is emitted from the 

solution isotropically, both PMTs will count this and the coincidence unit will record this by 

sending a single signal to the multichannel analyser.  This improves the accuracy of the 

instrument and reduces background levels because the probability of both PMTs recording a 

stray photon is significantly low.
172,173

 Figure 48 is used to illustrate how the liquid 

scintillation counter works. 
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Figure 48 – Basic construction of a liquid scintillation counting instrument.173 

6.1.2.3 Gamma spectrometry 

In principle, a gamma counter is much like a liquid scintillation counter where light is 

produced and detected.  Unlike liquid scintillation counting, a detector (often a NaI crystal 

which is thallium activated) surrounds the sample which absorbs the gamma rays to produce 

this light.  The number of flashes per unit time is proportional to the number of photons per 

unit time as in LSC.  Figure 49 illustrates a block diagram of the processes that take place for 

gamma spectrometry. 

The gamma photons produce charged electrons by three different processes, these are the 

photoelectric effect, the Compton Effect (also known as Compton scattering) and pair 

production.  It is these fast electrons that produce the scintillations and the observed spectral 

distribution will depend on the detailed interaction process of the gamma rays in the 

crystal.
174
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Figure 49 – Gamma counter block diagram.175 

6.2 Results and Discussion 

6.2.1 Metal ion sequestration with free PHEMA and PHEMA-Malonate 

The first material to be produced and tested for sequestration of metal ions was PHEMA.  

Cu(II) is known to contaminate the PHEMA
38

 product when synthesised via ATRP and hence 

a rigorous wash of the product is required.  This is one of the reasons it was originally used to 

test PHEMA as a potential material for its sequestration from solutions.  This was shown 

when initial investigations of adding the PHEMA to a Cu(II) solution raised the initial 

concentration of Cu(II).  Rigorous washings of PHEMA were carried out from this point to 

ensure this did not re-occur as described in the experimental chapter 2.2.  To avoid any 

anomalous findings, Ni(II) and Zn
2+

 solutions were also tested.  Being found either side of 

copper on the period table, the two metal ions have their similarities i.e. coordination number 

although obviously have their differences in size. 

The hydroxyl end groups in PHEMA were thought to be a good reference point where one 

would expect to see sequestration of metal ions but that could be improved on with 

modifications and more effective or specific ligands.  Figure 50 shows the results observed 

with these transition metals over a 24 hour period whilst the method can be found in section 

2.27.     
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Figure 50 – Aqueous concentrations of Ni(II), Cu(II) and Zn2+ before and after addition of free PHEMA for 24 hours.  

No change in concentration was observed for any of the metals with this polymer.  Initial pH readings were ca. 6.04, 

5.37 and 6.22 for nickel, copper and zinc respectively. 

A colour change was observed for the swelled PHEMA when it had been present in the 

solutions, especially in the case of the Cu(II) solution.  However, it appeared this was due to 

the copper being present in the water which was swelling the polymer, rather than the copper 

being bound to the polymer.  Once dry, there was no colouring to suggest that the polymer 

was any different to before it had been in the solution.  Solutions of much stronger 

concentration (ca. 700 ppm) were also tested but again, no change in concentration was 

observed. 
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Figure 51 – Aqueous concentrations of Ni(II), Cu(II) and Zn2+ solutions before and after addition of free PHEMA-

malonate for 24 hours.  No change in concentration was observed for any of the metals with this polymer.  Initial pH 

readings were ca. 6.12, 5.30 and 6.20 for Ni(II), Cu(II) and Zn2+ respectively. 

The product recovered after the attempted reaction of PHEMA with malonate was also tested 

for its metal sequestration ability but again, as Figure 51 shows, no change in concentration 

was observed for any of the metals trialled, also over 24 hours.  A substantial drop in pH was 

noted however, suggesting that the acid chloride used in the malonate attachment may be 

causing this effect and hence supporting the theory that the synthetic modification had not 

been successful.  No colour change was seen in any case for these investigations, especially 

as the product was already brown coloured, unlike the white PHEMA. 

As an alternative method of measuring the concentration change, liquid scintillation counting 

was used for testing PHEMA on 
63

Ni.  The results of this still showed PHEMA to be 

ineffective.  The method for this is given in section 2.28. 

6.2.2 Initial metal ion sequestration with functionalised silica materials 

Figure 52 shows the results of the initial tests carried out via ICP-OES on the silica attached 

materials.  Each stage of the modification process described in chapter 4 was tested on a 

Cu(II) solution of ca. 35ppm.  The general method can be found in section 2.29.  This method 
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was used for all tests carried out in the remaining results of this section unless otherwise 

stated. 

 

Figure 52 – Aqueous concentrations of Cu(II) after being treated for 24 h with functionalised silica materials.  A clear 

indication was given as to where work should progress from after the results of silica attached APTES were observed. 

The significant result observed in Figure 52 shows the APTES ligand to have made a 

significant difference to the concentration of Cu(II) remaining in solution.  APTES-

functionalised ZEOprep and fumed silica produced similar results whereas the porous silica 

microparticles (PSM) did not appear to be as effective.  This result was to be expected based 

on the findings from the characterisation discussed in chapter 5, where it is apparent the pores 

are not available for APTES attachment and therefore less APTES per gram of material 

exists. 

6.2.3 Sequestration of metal ions with silica attached APTES 

The same tests were carried out on Ni(II) and Zn
2+

 solutions and similar results were 

observed.  A cobalt solution was also prepared where only the APTES materials were tested. 

Figure 53 displays the results of the four metals in four separate aqueous solutions and the 

effect of the APTES attached material on each of these solutions. 
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Figure 53 – Aqueous concentrations of cobalt, nickel, copper and zinc solutions before and after addition of various 

silica attached APTES for 24 h.  Overall, the porous silica microparticles with APTES performed the worst at 

removing metal but the ZEOprep and fumed silica generally performed to a similar level. 

Each of the materials shows a clear reduction in metal concentration across the four solutions 

investigated but also clearly depicts the ability of the porous silica microparticles is not as 

efficient as the ZEOprep and fumed materials.  Although the ZEOprep and fumed silica have 

very different particle sizes and hence surface area, the APTES-functionalised materials show 

very little difference in their abilities to sequester more or less than the other. 

Figure 54 illustrates the APTES-functionalised ZEOprep silica to be marginally superior to 

the equivalent fumed silica sample in a 24 hour investigation.  The method for this was 

similar to that given in section 2.29, but the four metals were in the same solution.  Due to 

this being an initial investigation, no repeats were carried out hence, no error bars are given.  

However, the graph clearly shows the selectivity for Cu(II) over the other metal cations, with 

only the Zn
2+

 solution also being slightly reduced.  Both Co(II) and Ni(II) concentrations 

remained essentially unchanged. 
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Figure 54 – Initial selectivity study carried out with functionalised silica materials on transition metals for 24 h.  No 

repeats were carried out: hence no error bars can be applied.  APTES shows a large preference for copper, with a 

small amount of zinc removed whilst cobalt and nickel are left unchanged.  Although TMSPDETA has three nitrogen 

groups to APTES’ one, APTES clearly has a larger impact. 

Other than APTES, the additional ligand showing a sizable reduction in concentration was 

TMSPDETA.  Surprisingly, this ligand appeared less effective than APTES despite the fact it 

holds three times more nitrogen atoms. 

 

Figure 55 – Structures of the APTES and TMSPDETA ligands attached to the silica surface. 

This suggests the primary nitrogen at the end of the ligand is the most effective as this is 

where it is located on APTES.  TMSPDETA is a much bigger/longer molecule than APTES 

and therefore the density at which the TMSPDETA is grafted from the surface will be less 

(i.e. less molecules per square nm) simply because it is bigger and fewer primary amines will 

exist.  Figure 55 shows the structure but it is unlikely all the molecules would be stretched out 

as shown.  Instead, some may lie along the surface, taking up space and causing this effect. 
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This sequestration result does agree with McEleney et al.
8
 who reported better results with 

the APTES ligand than TMSPDETA when removing Grubbs catalyst (ruthenium) from 

aqueous solutions at various concentrations.  However it does seem not quite to the extent 

observed with these results, although comparison is difficult due to the way the results have 

been reported. 

6.2.3.1 Cu(II) studies with silica attached APTES 

Copper is a very common substance that is used widely by humans.  With copper production 

still rising, rivers are depositing sludge on their banks that is contaminated with copper due to 

the disposal of copper-containing wastewater.  In the environment, copper does not break 

down and because of this, it can accumulate in plants and animals when found in soils.  These 

copper-rich soils allow only a limited number of plants a chance of survival and hence, little 

plant diversity is observed at copper-disposing factories.
176

 

To fully assess the sequestration ability of the APTES-functionalised silica with copper, 50 

mg of material were added to a range of concentrations were made in deionised water 

including 80 ppm, 40 ppm, 20 ppm, 10 ppm, 5 ppm and 2.5 ppm over a 24 hour period.  

From the results observed using ICP-OES, an isotherm was plotted and is shown in Figure 

56.  CuCl2.2H2O was the salt used to produce the solutions where Cu(II) is the major species 

in water up to pH 6
177

 – which is the pH range investigated in this work. 
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Figure 56 – Isotherm for Cu(II) removal from deionised water with APTES-functionalised ZEOprep and fumed silica 

materials. 

This graph shows the two silica materials to be quite similar in sequestration capability.  

However, the APTES-functionalised fumed silica does show a slightly larger capacity at 

similar concentrations of copper as the ZEOprep material.  With remarkably small errors 

incorporated and two sets of results that follow a very clear trend, these results prompted one 

to pilot this material with the active nickel source of 
63

Ni that is relatively easy to handle and 

simple to analyse – providing an ideal isotope to begin radioactive tests. 

To help interpret the results, sorption models are applied which can be used compare the 

existence of metal between two phases as a ratio.  This was first introduced in the chapter 1 

but has been discussed here also where it becomes relevant to the results obtained in this 

thesis.  The parameter known as the partition (or distribution) coefficient, Kd, is one of the 

most important parameters used in estimating the migration potential of contaminants present 

in aqueous solutions in contact with surface, subsurface and suspended solids.
178

 It is a 

thermodynamic measure of sorption of contaminants or ions to geomedia and is defined as 

„the ratio of the quantity of the adsorbate adsorbed per unit mass of solid to the amount of the 

adsorbate remaining in solution at equilibrium‟.
178,179
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Equation 12 – Equation to show how Kd is calculated.  

Where C0 and Cf are the initial and final concentrations in the solution of the target species, 

often determined by ICP-OES or ICP-MS.  V is the solution volume in mL and M is the mass 

in grams of the adsorbent.   

Kd is typically given in unit of mL g
-1

.
23,178

 For the majority of cases, the concentration of the 

compound retained on the solid is calculated by the difference between the initial solute 

concentration and the final solute concentration.
180

 

Values for Kd can vary greatly between contaminants, but also as a function of aqueous and 

solid phase chemistry.  The result of a collection of experiments evaluating the effect of 

contaminant concentration on adsorption whilst other parameters are held constant is called 

an „adsorption isotherm‟.
179

 The word „isotherm‟ was specifically chosen because of the 

influence of the temperature on sorption reactions: temperature must be kept constant and 

specified.
180

 

The transfer of substances from a mobile phase (liquid or gaseous) to a solid phase is a 

universal phenomenon.  This is the reason why the isotherm (a curve describing the retention 

of a substance on a solid at various concentrations) is a major tool to help describe and 

predict the mobility of a substance in the environment.  These retention/release phenomena 

are sometimes strongly kinetically controlled, so that time-dependence or the sorption 

isotherm must be specified.
180

  

The higher the Kd the better the sorbent material will be for collection and Kd > 10
4
 represent 

relatively high affinity sorbents.
45,181

 

An alternative approach (and perhaps a more applicable to practical measurements) to the 

concept of Kd (a thermodynamically determined value) is Rd (distribution ratio).  This is the 

ratio of the solute between the solid and the liquid phases at the stated experimental 

conditions and is not thermodynamically determined.
179

 It is the Rd value that is reported in 

this thesis to compare the metal binding capacities attached to the APTES-functionalised 

ZEOprep and fumed silica and uses the same formula as Kd. 
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ZEOprep Si-APTES Fumed Si-APTES 

Initial Concentration of Cu Rd Initial Concentration of Cu Rd 

ppm mol dm
-3 

mL g
-1 

ppm mol dm
-3 

mL g
-1 

80.27 1.26 x 10
-3 

2.24 x 10
5
 81.74 1.29 x 10

-3
 3.42 x 10

5
 

35.92 5.65 x 10
-4

 6.96 x 10
5 

37.36 5.88 x 10
-4

 1.08 x 10
6
 

19.05 3.00 x 10
-4

 1.80 x 10
6
 19.40 3.05 x 10

-4
 1.83 x 10

7
 

8.24 1.30 x 10
-4

 2.42 x 10
7
 9.76 1.54 x 10

-4
 2.81 x 10

7
 

4.51 7.10 x 10
-5

 1.45 x 10
7
 4.93 7.75 x 10

-5
 1.35 x 10

7
 

4.66 7.34 x 10
-5

 1.14 x 10
7
 5.14 8.09 x 10

-5
 1.18 x 10

7
 

Table 19 - Variation of Rd at different initial concentrations of Cu(II) from deionised water.  An increase of ca. two 

orders of magnitude was observed as the initial concentration decreased.  Initial pH’s were recorded to range from 

5.81 and 5.21 and decreased as the concentration increased.  

Table 19 shows the Rd for the Cu(II) sorption to the APTES-functionalised ZEOprep and 

fumed silica materials at room temperature at a pH of 6.5-7.  Saturation of sorption sites is 

evident from the decrease in Rd which is nearly two orders of magnitude less at around 80 

ppm when compared to around 10ppm.  The difference in Rd across the range of 

radionuclides tested is reported and a table is used to summarise the findings following the 

results. 

6.2.3.1.1 Kinetic studies of Cu(II) sequestration with Si-APTES 

When testing the APTES-functionalised ZEOprep and fumed silica materials, it was assumed 

24 h would be an appropriate time to leave the sequestration experiments due to work 

previously reported
182

 and this was the case for all the individual metal cases discussed in this 

chapter.  However, following the results found in Figure 57 (where it was found equilibrium 

was reached after 3-4 weeks), the selectivity studies carried out in chapter 7 were modified so 

that a 24 hour and a 4 week sample were taken.  The kinetics testing was carried out by 

preparing a stock solution of Cu(II) using CuCl2 at ca. 40 ppm.  50 mg of the ATPES 

functionalised ZEOprep and fumed silica material was added to 45 mL of the stock solution 

in each separate test and a sample was taken at the stated time by syringe filter and prepared 

for ICP-OES.  The samples were then all run together after the testing period was complete. 
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Figure 57 – Sequestration of Cu(II) over a four week period.  Initial pH was 5.47 and was found to have changed to 

5.92 for the ZEOprep Si-APTES sample and 5.96 for the fumed Si-APTES sample. 

ZEOprep silica-APTES Fumed silica-APTES 

Time sample taken Concentration (ppm) Time sample taken Concentration (ppm) 

Initial Conc. 39.54 Initial Conc. 39.43 

15 seconds 34.89 15 seconds 38.40 

30 seconds 34.99 30 seconds 38.26 

1 minute 34.76 1 minute 38.08 

3 minutes 33.45 3 minutes 37.97 

1 hour 32.52 1 hour 37.37 

1 day 27.10 1 day 34.14 

2 days 26.92 2 days 32.67 

1 week 21.42 1 week 26.18 

2 weeks 18.38 2 weeks 22.24 

3 weeks 14.63 3 weeks 20.36 

4 weeks 13.79 4 weeks 19.88 

Table 20 – Values measured for the concentration change over time when silica-APTES samples were added to a 

Cu(II) solution.  These values are used to plot Figure 57. 
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Similar work has been carried out by Aguado et al.
182

 using the ligand ethylendiaminopropyl 

(-CH2CH2CH2NHCH2CH2NH2) to functionalise the silica surface of SBA-15 using a 

synthesis reported by Zhao et al.
183

 

There is a notable difference observed between the material reported by Aguado et al.
182

 and 

that reported within this thesis.  They report an immediate change in concentration at 5 min 

but no change is observed after this.  Three initial concentrations were used including 263, 

113 and 5 ppm before also using 50 mg of functionalised silica in 45 mL solutions.  The 

concentrations appear to be reduced to ca. 240, 90 and 0 ppm respectively, reducing the two 

higher concentrations by 23 ppm.  When compared to the results shown in Figure 57 and 

Table 20 for this work, the initial copper concentration of 39.5 ppm was reduced to just 32.5 

and 37.4 ppm for the ZEOprep and the fumed material respectively in 1 hour.  The major 

difference between this work and that reported appears to be the kinetics and the fact that the 

ZEOprep and fumed silica keep decreasing the concentration for 3-4 weeks.  After this time, 

the ZEOprep material sequestered 25.75 ppm whilst the fumed material sequestered 19.55 

ppm.  

It is difficult to make direct comparisons between these two results when the ligand they 

discuss is not exactly the same as it contains two nitrogen atoms, the initial concentrations are 

different no pHs are reported and the solid support is different.  However, it does appear that 

the material reported by Aguado et al.
182

 would work better over a shorter timescale whilst 

the APTES-functionalised ZEOprep silica has a greater capacity.  Nevertheless it must be 

said that the synthetic procedure for the SBA-15 material is much longer at ca. 3 days, whilst 

the APTES attachment takes only 2 hours. 

Panahi et al.
29

 reported equilibrium of sorption being achieved in 10 minutes (see Figure 59) 

which was much faster than the results found with the APTES-functionalised silica materials.  

A reminder of the structure (originally introduced in chapter 1) is shown below in Figure 58.   



Page | 131  

 

 

Figure 58 – Chemical structure of poly(AGE/IDA-co-DMAA)-grafted silica gel produced by Panahi et al.29 

The obvious reasoning for this much faster equilibrium time is the many more binding sites 

available whilst the polymer also provides a much larger surface area.  This really illustrates 

the benefit of using a polymer over a simple ligand in these environments with limited 

contact time required to saturate the sorbent. 

 

Figure 59 – Kinetics of Cu(II) on poly(AGE/IDA-co-DMAA)-grafted silica gel.29 

Figure 60 shows the same data as that used to plot Figure 57 but the time is plotted on a log 

scale.  This enables straight line plots to be made, enabling simpler comparisons and rate 

constants to be calculated easily.  The two sets of data have been broken into two series as it 

was noticed that a much slower rate occurs once the materials have been in solution for over 

one day. 
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Figure 60 – Sequestration of Cu(II) over a four week period.  By breaking both studies into two series, two separate 

trend lines are fitted to clearly show how the rate changes from the data collected for solutions investigated under one 

day, and those taken after one day.  The x-axis is on a logarithmic scale to produce the straight lines and hence a rate 

constant can be easily measured. 

The first observation to note in Figure 60 is the negative gradient value produced.  This is 

because this graph is based on the decrease in concentration of metal ions in solution rather 

than the increase in concentration on the surface of the silica material.  For the purposes of 

this, the gradient can be assumed to be positive when discussing the rate constant. 

So, for the first stage of the two silica materials (over a time period of 1 hour), the gradient is 

found to be -2.0911 and -0.8408 for APTES-functionalised ZEOprep and fumed silica 

respectively corresponding to rate constants of 2.1 and 0.8 ppm hr
-1

.  The second stage of the 

two silica materials (over a time period from 1 up to 28 days) shows a significant decrease in 

rate constants, both of which are found to be 0.02 ppm hr
-1

.  In terms of concentration 

removed per day, this can be calculated to be 50 and 20 ppm day
-1

 for the APTES-

functionalised ZEOprep and fumed silica respectively before dropping to 0.5 ppm day
-1

 in 

both circumstances. 

The most obvious explanation for the first stage and hence faster rate constant is that the 

nitrogen atoms at the end of the APTES ligand is working effectively by providing a strong 
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ligand for the copper ions to bind to and forming a monolayer of metal ions at the surface.  

However, the ZEOprep material is found to work at over double the rate of the fumed silica 

material which suggests that there is an optimum particle size and moles of ligand attached 

per particle but further work would need to be done to prove this to be the case. 

The second stage shows a much slower rate constant whereby the concentration is calculated 

at a rate of 0.02 ppm hr
-1

 for both materials, signifying the same process takes place in both 

these scenarios.  Exactly what is happening here is unclear and evidence of unexpected 

results were also found when XPS was carried out on the material.  A local pH change
184

 

could be the reason for this slow decrease in concentration and is explained in more detail 

when discussing the XPS results (section 6.2.3.1.2).  Alternatively a secondary ligand binding 

process to the oxygen atoms present in the APTES molecule could provide the reason to why 

this second stage is observed, again this is discussed following the XPS results. 

Literature comparison studies have proven to be challenging due to the different approaches 

by research groups and the vast amount of testing available with choice of metal ions and 

sorbent materials.  Prasad et al.
185

 have reported Pb(II), Cu(II) and Zn
2+

 in multi-component 

sorption studies with low-cost, low-grade (<12 % P2O5) phosphate rock but simply state that 

„rate constants…are found nearly constant for all the divalent metal ions under 

consideration.‟ Although rate constants have not been regularly reported, similar graphs to 

that observed in Figure 57 are common and often illustrate a fast decrease in concentration 

before reaching equilibrium.
14,126,182

  

6.2.3.1.2 XPS studies on ZEOprep Si-APTES after Cu(II) sequestration 

X-ray photoelectron spectroscopy, XPS or ESCA (Electron Spectroscopy for Chemical 

Analysis) is probably one of the most widely used surface analytical tools for the study of 

material surfaces due to its qualitative and quantitative determination capabilities of surface 

composition.  Typically, it probes a depth of around 5-10 nm depending on the nature of the 

material and can be used to identify all elements excluding hydrogen.  X-rays are used to 

probe the sample and electrons from the core levels that leave the surface are analysed using 

an electron analyser.  It can be carried out on virtually all flat samples with a maximum 

resolution of a few micrometres and is particularly well suited for metallic and inorganic 

materials but can also be used for the analysis of polymers.
186

 

Photoelectron spectroscopy is based upon a single photon-in/electron-out process.  The 

energy of the photon is given by the Einstein relation in Equation 13: 
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Equation 13 – Einstein relation. 

Where h is the Planck constant (6.62 x 10
-34

 J s) and v is the frequency of the radiation in Hz.  

The photon is absorbed by an atom in a molecule or solid, leading to ionisation of the atoms 

and the emission of a core (inner shell) electron.  Given that energy can neither be created nor 

destroyed, the energy going in must equal the energy going out.
186

  Thus:  

           

Equation 14 – Determination of the energy of a photon. 

or the kinetic energy 

           

Equation 15 – Determination of the kinetic energy of the ejected electrons. 

Each element has a characteristic binding energy (EB) associated with each core atomic 

orbital, such that each element will give rise to a characteristic set of peaks in the 

photoelectron spectrum at kinetic energies (EK) determined by the photon energy and the 

respective binding energies.
186

 

XPS uses either monochromatic aluminium Kα (AlKα (1486.6 eV), used in this work) or 

non-monochromatic magnesium Kα (MgKα (1253.6 eV)) X-rays to eject a photoelectron 

from an atom at the sample‟s surface.  An electron from a higher energy level then falls to fill 

the hole left behind and its emitted radiation energy is used to eject an Auger electron.  Thus, 

XPS emits both photoelectrons and Auger electrons which can be seen in the spectrum (often 

wide peaks).  The electron kinetic energies from those ejected are analysed by the XPS 

detector which provides the information required to determine the elements present in the 

sample.
187,188
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Figure 61 – Schematic representation of the X-ray photoelectron process.188 

It was anticipated that XPS would deliver as an ideal instrument for aiding to show that the 

metal in solution (in this case copper) was present with the recovered functionalised silica.  

ICP-OES had already shown the copper had been removed from solution but this technique 

would be able to show where the metal had ended up.  The fact that an obvious change in 

colour to the silica material was seen (see Figure 62) and there was no observed precipitation 

certainly provided good reason to believe this was the case, but reliable spectra to 

demonstrate this would be extremely valuable.  Although this would not directly explain how 

the metal was bonded, it would help to explain the location of the metal using ratios of atoms 

measured. 

 

Figure 62 – APTES-functionalised silica (left) and APTES-functionalised silica after being in a Cu(II) solution (right). 
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Figure 63 – XPS spectrum of ZEOprep silica. 

Name Peak BE Atomic % 

O1s 533.90 62.86 

Si2p 104.40 37.14 

Table 21 – Peak EB values and atomic percentages for selected peaks in ZEOprep silica (Figure 63). 

Figure 63 and Table 21 show the data obtained for the ZEOprep silica before any 

modification has taken place.  The peaks in Figure 63 show the expected atoms to be present 

and suggest this technique to be appropriate for this work.  Table 21 shows the atomic 

percentage of silicon and oxygen in the silica, the ratio is approximately 2:1.  When the water 

content was measured via TGA, it was found that the formula of the silica was actually 

SiO2.0.31H2O.  Once water is accounted for (remembering that XPS does not measure 

hydrogen), a 2:1 ratio between oxygen and silicon is calculated with water present at 10.25 

%.  This equates to a formula of SiO2.0.38H2O, strongly agreeing with the data found via 

TGA.  Silicon Auger peaks appear at 1394 eV with the AlKα X-rays and hence are not seen 

on these spectra. 
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Figure 64 – XPS spectrum of ZEOprep silica following APTES deposition.  Carbon and nitrogen peaks are now 

visible due to the APTES group. 

Name Peak BE Atomic % 

Si2p 103.98 33.23 

O1s 533.15 52.94 

C1s 286.02 11.23 

N1s 400.28 2.60 

Table 22 – Peak EB values and atomic percentages for selected peaks in ZEOprep silica following APTES deposition 

(Figure 64). 

The APTES-functionalised silica sees the appearance of the carbon and nitrogen peaks on the 

spectrum in Figure 64, much like the SSNMR discussed earlier.  The atomic percentages 

shown in Table 22 appear to be sensible values considering the structure and the ratio 

between oxygen and silicon atoms is effectively the same as the non-functionalised silica 

results.  However, the carbon percentage is significantly higher at 11.23 % compared to only 

5.16 % when calculated via elemental analysis.  Nitrogen was recorded to make up 1.64 % 

via elemental analysis but XPS shows an atomic percentage of 2.60.  This is likely to be due 

to XPS being a „surface sensitive‟ technique leading to more biased results.  XPS is known to 

probe a depth of ca. 5-10 nm and as the surface becomes more functionalised with organics 

and metals, less of the silica may be „seen‟ but there is no evidence to suggest this has 

occurred in this instance.  The ratio of carbon to nitrogen would be expected to be ca. 3:1 and 

although the results show this to be a little higher, the results are very close to this.   
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Figure 65 – XPS spectrum after APTES-functionalised silica had been in a 160 ppm Cu(II) solution for 1 week.  The 

spectrum shows all expected peaks, suggesting the copper is bound to the functionalised silica surface. 

Name Peak BE Atomic % 

Si2p 104.35 29.82 

O1s 533.74 57.38 

C1s 286.32 5.50 

N1s 401.91 1.01 

Cu2p
3
 936.45 6.29 

Table 23 – Peak EB values and atomic percentages for selected peaks after APTES-functionalised ZEOprep silica had 

been in a 160 ppm Cu(II) solution for 1 week (Figure 65). 

Finally, the third spectrum (Figure 65) shows the peaks previously observed and the strong 

indication of copper being present in the sample.  Nitrogen Auger peaks are seen at 1100 eV 

with the AlKα and hence are likely to be hidden by the Cu2s peak.  Table 23 shows the 

atomic percentage of those atoms present in Table 22 to decrease apart from oxygen which 

increases from 52.94 % to 57.38 %.  Although carbon decreases, it falls from 11.23 % to 5.50 

% which would appear quite anomalous when compared with the values of the other atoms 

and similarly the nitrogen value halves.  The fact that the copper value is so high at 6.29 % 

and thus 6:1 ratio with nitrogen is a very surprising result which raises questions as to how 

exactly this is bonded to the surface. 

There is an argument that if the copper is at the surface, XPS could be more sensitive and 

produce a ratio that is not strictly true.  However, the results certainly show a higher amount 

of copper than nitrogen and it is certainly true that copper is not bound 1:1 with the nitrogen 

atoms of the APTES molecule. 
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The addition of the APTES-functionalised silica to a solution of Cu(II) <20 ppm is found to 

increase the pH of the solution by ca. 3 to just above pH 9, however this is not the case for 

higher concentrations (>20 ppm).  It is suggested that within the vicinity of the silica-APTES 

where a large presence of amine groups exists, precipitation of Cu2O or Cu(OH)2 occurs
189

 

due to the local pH change
184

 and therefore only occurs at the surface of the APTES.  It 

would probably still be expected that the available nitrogen atoms would still be bound to 

Cu(II) ions with both processes taking place.  To support this, the oxygen percentage would 

be expected to fall due to a new layer of copper atoms, however an increase in oxygen is 

observed and this supports the theory of Cu2O/Cu(OH)2 precipitate being produced. 

The one problem with this theory is the absence of increase in copper when the APTES-

functionalised silica was added to a solution of deionised water to test for reversibility.  The 

value was so low it fell below the LOD calculated for the ICP-MS in chapter 2.  An 

explanation involving the binding with oxygen atoms within the silane molecule cannot be 

ruled out until further and more detailed investigations take place. 

6.2.3.2 Ni(II) studies with silica attached APTES 

The major use for nickel is in the preparation of alloys but is also used for batteries, catalysis, 

plating, coinage and other chemicals.  Nickel is released into the air via power plants and 

incinerators and into surface waters as part of wastewater streams.  Obviously it also occurs 

naturally in substances such as slate, sandstone, clay minerals and basalt.
176

  The most 

important nickel sulphide mineral is pentlandite (Fe,Ni)9S8 in economic deposits where it 

occurs with pyrrhotite, chalcopyrite and pyrite in mafic and ultramafic (iron- and magnesium- 

rich) igneous rocks.
190

 Nickel is also recognised to be a dietary requirement for a number of 

organisms and the human body is known to contain ca. 10 mg. 

Although nickel was not removed when in a solution with three other metals (cobalt, copper 

and zinc), initial tests when nickel was the only major ion in the system showed these 

materials are capable of removing it.  The studies carried out in this section use 
63

Ni as a 

tracer, enabling the change in concentration to be monitored by LSC as well as ICP-OES and 

to discover whether these materials can still function with this albeit small amount of 

radiation.  The salt used to make these solutions was NiCl2 and nickel is normally only stable 

in aqueous solution in the +2 oxidation state.
191,192
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Figure 66 – Isotherm for Ni(II) removal from deionised water with APTES-functionalised ZEOprep and fumed silica 

materials over 24 h.  Initial concentrations ranged from 4.69 x 10-5 – 2.67 x 10-3 mol dm-3 (2.75 – 157 ppm) whilst 

initial pHs ranged from 6.18 – 6.70. 

Figure 66 shows fumed silica to be a slightly more effective material.  A dip in the trend 

appears at around 1x10
-3

 mol dm
-3

 but if the error bars are taken into account, a line could be 

drawn to suggest the sequestered concentration is levelling out.  The saturation point is 

clearly being reached as the final supernatant concentration increases and the sequestered 

concentration remains at a similar level.  A range of concentrations were again used and these 

are made clear in Table 25 and Table 26. 

Statistical measurements were carried out to investigate if outliers were to blame for the 

results observed.  If proven to be outliers, the data points would not necessarily be removed, 

but used to suggest that the data maybe is not as accurate as one would hope.  It could be 

explained by a bad batch of material being used that had not been functionalised as well as 

other batches.  To do this Dixon‟s Q test was implemented which is generally accepted as the 

primary method for testing for the rejection of outlying values.
193,194

 

The test is applied as follows.  A range of data is ordered in ascending order: 

X1 < X2 < X3 < … < Xn 
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The statistical value is calculated as a ratio and defined as the difference between the suspect 

value and its nearest one divided by the range of the values.  Thus for testing X1 or Xn in the 

above example of data, we use the following equations: 

   
      

      
             

        

      
 

Equation 16 – Equations to show how Q is calculated from a range of data. 

The obtained value is compared to a critical Q-value found in Table 24.  This value is then 

compared with the values that represent the number of repeats used to gain the data.  If Q > 

Qcrit then the suspect value can be characterised as an outlier and hence rejected.  If Q < Qcrit 

then the value must be retained.  No data in this thesis was found to be an outlier.   

No. of repeats 3 4 5 6 7 8 9 10 

Q90% 0.941 0.765 0.642 0.560 0.507 0.468 0.437 0.412 

Q95% 0.970 0.829 0.710 0.625 0.568 0.526 0.493 0.466 

Q99% 0.994 0.926 0.821 0.740 0.680 0.634 0.598 0.568 

Table 24 – Critical values of Dixon’s Q parameters a various levels confidence levels.193 These are the standard 

parameters derived by R. B. Dean and W. J. Dixon.194 

Initial Conc. 
ZEOprep silica-APTES 

Final supernatant conc. Sequestrated conc. 

ppm mol dm
-3 

mol dm
-3

  mol g
-1

  

  mean Std Dev mean Std Dev 

157 2.67 x 10
-3 

2.42 x 10
-3

 7.06 x 10
-5

 2.32 x 10
-4

 6.61 x 10
-5

 

79 1.34 x 10
-3

 1.28 x 10
-3

 5.6 x 10
-5

 5.62 x 10
-5

 5.07 x 10
-5

 

39 6.71 x 10
-4

 5 x 10
-4

 7.15 x 10
-5

 1.52 x 10
-4

 6.24 x 10
-5

 

20 3.34 x 10
-4

 2.24 x 10
-4

 2.93 x 10
-5

 9.48 x 10
-5

 2.43 x 10
-5

 

10 1.75 x 10
-4

 6.13 x 10
-5

 2.59 x 10
-6

 9.99 x 10
-5

 3.58 x 10
-6

 

5 8.47 x 10
-5

 1.86 x 10
-5

 6.36 x 10
-6

 5.92 x 10
-5

 5.77 x 10
-6

 

2.75 4.69 x 10
-5

 1.27 x 10
-5

 1.38 x 10
-6

 3.02 x 10
-5

 1.31 x 10
-6

 

Table 25 – Data values for Ni(II) removal from deionised water calculated for APTES-functionalised ZEOprep silica 

and used to plot isotherm in Figure 66.  Initial concentrations ranged from 4.69 x 10-5 – 2.67 x 10-3 mol dm-3 (2.75 – 

157 ppm) whilst initial pHs ranged from 6.18 (20 ppm) – 7.55 (157 ppm) carried out at room temperature and silica 

material was present for 24 h. 
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Initial Conc. 
Fumed silica-APTES 

Final supernatant conc. Sequestrated conc. 

ppm mol dm
-3 

mol dm
-3

  mol g
-1

  

  mean Std Dev mean Std Dev 

157 2.67 x 10
-3 

2.27 x 10
-3

 4.77 x 10
-5

 3.53 x 10
-4

 4.7 x 10
-5

 

79 1.34 x 10
-3

 1.09 x 10
-3

 3.73 x 10
-5

 2.22 x 10
-4

 3.13 x 10
-5

 

39 6.71 x 10
-4

 3.79 x 10
-4

 3.06 x 10
-5

 2.60 x 10
-4

 3.44 x 10
-5

 

20 3.34 x 10
-4

 7.02 x 10
-5

 2.73 x 10
-5

 2.36 x 10
-4

 2.27 x 10
-5

 

10 1.75 x 10
-4

 1.4 x 10
-5

 1.84 x 10
-6

 1.43 x 10
-4

 3.32 x 10
-6

 

5 8.47 x 10
-5

 9.62 x 10
-6

 8.32 x 10
-6

 6.75 x 10
-5

 7.25 x 10
-6

 

2.75 4.69 x 10
-5

 3.09 x 10
-6

 8.79 x 10
-7

 3.85 x 10
-5

 1.46 x 10
-7

 

Table 26 – Data values for Ni(II) removal from deionised water calculated for APTES-functionalised fumed silica and 

used to plot isotherm in Figure 66.  Initial concentrations ranged from 4.69 x 10-5 – 2.67 x 10-3 mol dm-3 (2.75 – 157 

ppm) and initial pHs ranged from 6.18 (20 ppm) – 7.55 (157 ppm) carried out at room temperature and silica 

material was present for 24 h. 

In a „real world‟ example where metal sequestration may be required, it would be highly 

unlikely to find a sample as clean and pure as that tested in Figure 66.  A common natural 

source of water is seawater.  The vast majority of seawater has a salinity of 3.1–3.8 %.  

Seawater is thought to contain 1.08 % sodium (10800 ppm) at 3.5 % salinity
195

 and hence a 

synthetic solution was made of 0.5 and 1 % sodium to find the effect this had on the silica 

materials. 

Figure 67 illustrates the findings when nickel solutions were made in the saline solutions as 

opposed to the deionised water solutions, thus testing the effect this ionic strength had on the 

materials. 
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Figure 67 – Ionic strength effect on the sequestration of Ni(II) with APTES-functionalised silicas with 0.5 % and 1 % 

sodium (w/w).  Initial and final pH readings were slightly higher at ca. pH 6.5-7 where pH 7 was found for the lowest 

nickel concentration.  

This ionic strength effect does not appear to have significantly hindered the two materials 

ability at removing the nickel when compared to the results observed in deionised water in 

Figure 66.  The 160 ppm solution was not carried out in this investigation, hence the graph is 

one point shorter but the trend is very clear.  Only at higher starting concentrations can a 

difference between the 0.5 and 1 % solutions be seen between the silicas and the fumed silica 

was again found to perform marginally better.  In both cases the silicas appear to achieve 

higher sequestered quantities in the 1 % sodium solution over the 0.5 % at the higher initial 

concentrations, although not by a great amount.  The pH was found to be ca. 0.3 units higher 

on average. 

Rd values for these experiments and including a calcium solution that was also tested are 

given in Figure 68.  All the investigations follow a similar pattern where the lower 

concentrations provide the Rd values followed by an eventual dip by 80 ppm before 

effectively levelling out.  The calcium rich solutions appear to have the largest effect on 

nickel sequestration because the Rd values at the lower concentrations are the lowest 

observed between the four solutions.  The fact that calcium exists as a dication unlike sodium 
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which is monocationic would seem to give the best explanation for this.  With nickel also 

being divalent it is expected that calcium would offer a much more testing environment if the 

APTES ligand already has a preference for divalent ions.  The size of the ionic radii would 

also be a factor with Ni(II) at 83 pm whilst Na
+
 and Ca

2+
 are reported to be 116 and 99 pm 

respectively.
196

 

 

Figure 68 – Effect of initial concentration of Ni(II), ionic strength and competing ions on Rd with APTES-

functionalised ZEOprep and fumed silica.  Overall, the Ca2+ solution appears to have the largest impact on Rd at the 

lower concentrations whilst all values dip and level out at the higher concentrations leaving values in the range of 

1x105 and 1x106 at 80–160 ppm. 

The trend across all solutions is evident that the Rd increases with decreasing concentration.  

The effect of sodium and calcium ions in general produces no significant effect on Rd 

compared to deionised water.  At most there is a difference of approximately one order of 

magnitude which is clearer at 80 and 160 ppm. 

6.2.3.3 Eu(III) studies with silica attached APTES 

Europium is a member of the lanthanide series and usually assumes the oxidation state +3: 

providing one of the main reasons for investigating this metal.
192

  It is renowned for being a 

particularly difficult isotope to clean up, especially from glassware if in solution.  It is one of 

the less abundant rare-earth metals and is never found in nature as a free element.
176
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However it is a neutron absorber and so it is used in nuclear reactor control rods.
197

 It has no 

known biological role but its salts are thought to be toxic although this has not been fully 

investigated. 

The investigations were carried out using the isotope 
152

Eu as a tracer, enabling gamma 

counting to be used to monitor the investigations whilst the europium salt used was 

EuCl3.6H2O. 

 

Figure 69 - Isotherm for Eu(III) removal from deionised water with APTES-functionalised ZEOprep and fumed 

silica over 24 h.  Initial concentrations ranged from 2.32 x 10-5 – 1.47 x 10-3 mol dm-3 (3.52 – 224.06 ppm) whilst initial 

pHs ranged from 5.33 – 6.43. 

Figure 69 shows a very comparable set of data and sequestrating the Eu(III) to a similar level 

observed with Ni(II) and Cu(II), certainly in the same order of magnitude for a set 

concentration of metal. 

This shows the APTES ligand to be quite adaptable to these metals and is unaffected by the 

low level radioactivity from the tracer isotope used.  pH tests again showed that all the 

concentrations started at ca. pH 6.5 before the addition of the functionalised silica and 

showed no change for the higher initial concentration of 58, 119 and 224 ppm.  The initial 

concentration of 33 ppm solution showed an increase to pH 8-9 once the silica had been 
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present for 24 h.  Once the initial concentration was dropped below this, the pH was found to 

rise to ca. 9.3.  With a lower concentration of metal ions being available in the solution for 

the nitrogen atoms to coordinate to and gamma counts reduced to background levels suggests 

the silica-APTES material had removed a very high percentage, if not all the Eu(III).  This 

being the case, lone pairs on the nitrogen atoms would still be available for coordination.  The 

protons dissociated in the solution become bound to the nitrogen instead, increasing the 

concentration of 
-
OH and therefore increasing the pH at these lower concentrations. 

Initial concentration of europium ZEOprep Si-APTES Fumed Si-APTES 

ppm mol dm
-3 

Rd (mL g
-1

) Rd (mL g
-1

) 

224.06 1.47 x 10
-3 

1.72 x 10
5
 1.74 x 10

5
 

118.84 7.82 x 10
-4

 7.08 x 10
5
 5.13 x 10

5
 

58.45 3.85 x 10
-4

 2.44 x 10
6
 2.01 x 10

6
 

32.56 2.14 x 10
-4

  1.91 x 10
8
 

14.69 9.66 x 10
-5

  3.40 x 10
7
 

7.43 4.89 x 10
-5

  8.62 x 10
7
 

3.52 2.32 x 10
-5

 9.63 x 10
7
 2.21 x 10

7
 

Table 27 – Variation of Rd at different initial concentrations of Eu(III) from deionised water.  A rise of ca. two orders 

of magnitude was observed as initial concentration decreased.  Initial pHs were recorded to range from 5.33 (58.45 

ppm) – 6.43 (224.06 ppm).  Blank entries in the table show where no repeatable or reliable values could be recorded. 

Initial concentration of europium ZEOprep Si-APTES Fumed Si-APTES 

ppm mol dm
-3 

Rd (mL g
-1

) Rd (mL g
-1

) 

218.73 1.44 x 10
-3 

3.46 x 10
5
 1.73 x 10

5
 

122.28 8.05 x 10
-4

 8.96 x 10
5
 5.13 x 10

5
 

56.75 3.73 x 10
-4

 2.73 x 10
6
 1.53 x 10

6
 

25.06 1.65 x 10
-4

   

12.20 8.03 x 10
-5

  4.98 x 10
7
 

7.75 5.10 x 10
-5

   

3.79 2.49 x 10
-5

  6.39 x 10
7
 

Table 28 – Variation of Rd at different initial concentrations of Eu(III) from a 1 % Na+ solution.  A rise of ca. two 

orders of magnitude was observed for APTES-functionalised fumed silica as initial concentration decreased but 

reliable values could not be recorded for the APTES-functionalised ZEOprep silica from 25 ppm and below.  Initial 

pHs were recorded to range from 5.86 (7.75 ppm) – 7.44 (218.73 ppm).  Blank entries in the table show where no 

repeatable or reliable values could be recorded. 
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Initial concentration of europium ZEOprep Si-APTES Fumed Si-APTES 

ppm mol dm
-3 

Rd (mL g
-1

) Rd (mL g
-1

) 

214.77 1.41 x 10
-3

 4.78 x 10
5
 2.41 x 10

5
 

93.57 6.16 x 10
-4

 8.33 x 10
5
 3.17 x 10

5
 

51.23 3.37 x 10
-4

 3.09 x 10
6
 1.34 x 10

6
 

23.16 1.52 x 10
-4

  2.06 x 10
7
 

11.45 7.53 x 10
-5

 2.17 x 10
9
 1.32 x 10

7
 

5.32 3.50 x 10
-5

  9.93 x 10
7
 

2.91 1.91 x 10
-5

 1.08 x 10
7
  

Table 29 – Variation of Rd at different initial concentrations of Eu(III) from a 1 % Ca2+ solution.  A rise of ca. two 

orders of magnitude was observed for APTES-functionalised fumed silica as initial concentration decreased.  Reliable 

results again proved difficult for the APTES-functionalised ZEOprep silica but the value for 2.91 ppm and 214.77 

ppm suggests a similar trend to that seen by APTES-functionalised fumed silica.  Initial pHs were recorded to range 

from 6.08 (2.91 ppm) – 7.06 (214.77 ppm).  Blank entries in the table show where no repeatable or reliable values 

could be recorded. 

Similar Rd values have been recorded for the removal of Eu(III) across the three solutions 

suggesting sodium and calcium ions have little effect in reducing the ability of the APTES 

ligand to selectively bind to the europium.  The difference between effective ionic radii of 

Eu(III) (131 pm)
196

 and Na
+
 or Ca

2+
 ions would again be expected to be a key factor for this, 

but also the valency of these ions may also contribute towards these findings.   

6.2.3.3.1 pH studies of Eu(III) ion attachment to both silica-APTES materials 

The solutions naturally started at a pH of 6.5-7.  After the silica material had been in the 

solution, the pH was found to be around pH 8-9 for the lower concentrated solutions (2.5 ppm 

– 20 ppm) whilst it remained around pH 6.5-7 for the higher concentrations (40 ppm – 160 

ppm).  Very similar results were observed when the sodium and calcium solutions were 

investigated.  This is best explained using the schemes below. 

 

Scheme 51 – Mechanism to show how the pH increases at low concentration of metal ions. 
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Scheme 51 illustrates that when the concentration of metal is low, the amine group is more 

likely to protonate and hence a higher ratio of free hydroxide is formed – leading to an 

increase in pH.   

 

Scheme 52 – Mechanism to show how the pH remains similar at high concentration of metal ions. 

Scheme 52 illustrates that a higher concentration of metal reduces the probability of amine 

protonation and thus, a less significant change in pH is observed. 

Figure 70 shows the behaviour change and the ability of the APTES-functionalised silica to 

sequester the Eu(III) ions from the solution as the pH is acidified.  pH 4-4.5 was found to be 

the optimum for largest removal of Eu(III) in terms of concentration change although alkaline 

pHs were not tested.  Below pH 4, the metal concentration appears to rise again, suggesting 

the concentration of H
+
 has a significant effect on the ability of APTES to bind to the metal.  

Repeats of this experiment were carried out on different initial concentrations and all showed 

similar results.  
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Figure 70 – Effect of pH on aqueous concentration of Eu(III) with both ZEOprep and fumed Si-APTES. 

The pKa of APTES has been reported to be as high as 6.6
198

 but also as low as 3.9
199

.  If the 

pKa value is taken to be 3.9, this fits the data observed in Figure 70 because in stronger acid, 

the amine would be protonated as NH3
+
 and is unlikely to act as a ligand as no free electrons 

would be available to donate.  At higher pHs though, the amine takes the form of NH2 so it 

can act as a ligand and this would explain the sudden „jump‟ observed in Figure 70.  The 

results shown here also agree with the nitrogen containing polymers that were introduced on 

page 14 and the results illustrated in Figure 10 where the optimum conditions were found to 

be pH 4.  Whilst it is possible (with sufficient affinity) for metal ions to bind to protonated 

amines at low pH, the scenario reported in Figure 70 illustrates no sequestration was 

observed below pH 2.5.  Thus, this effect does not appear to happen to a measurable effect. 

6.2.3.3.2 TEM studies of Eu(III) ion attachment to fumed silica-APTES 

Transmission Electron Microscopy (TEM) is a unique material characterisation technique 

that enables essentially simultaneous examination of microstructural features through high-

resolution imaging and the acquisition of chemical and crystallographic information from 

submicrometer regions of the sample.  It has become a well-established research instrument 

for the microstructural analysis of metallic, ceramic, and organic materials.  Electrons (the 

source of illumination) are transmitted through the sample (thin enough to be considered 
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„electron transparent‟) to generate some form of contrast that enables observation of the 

internal structure of the sample.  Very high resolution images display the samples structural 

detail in the order of fractions of nanometer, allowing examination of the structure on a 

microscopic scale.
187

 

To attain an understanding of how and where the europium is located across the material‟s 

surface, Energy Dispersive X-ray Spectroscopy (EDS) was used - an analytical technique 

used for the elemental analysis of a sample.
200

 This would help to identify if the surface area 

was being used effectively and could assist in explaining whether precipitation was occurring 

or Eu(III) was bonded to the surface.  Using a Scanning Transmission Electron Microscope 

(STEM), a hybrid of SEM and TEM (developed by Albert Crewe
201

 at the University of 

Chicago in 1968), this has been achieved. 

By scanning a focussed electron beam that passes through a thin sample with little spreading, 

the STEM has excellent local chemical analysis capabilities and good spatial resolution to 

produce images of atoms.
202

 Coupled with STEM, a High Angle Annular Dark Field 

(HAADF) detector (also known as Z-contrast imaging
203

) was used, providing image contrast 

that is sensitive to the local chemical composition and hence europium was chosen as the 

metal to analyse.  The atomic mass of europium is so much more than any of the elements 

present that one can be confident this element has not been mistaken with another during this 

mapping process. 

TEM images were collected using a JEOL 2000FX whilst the mapping shown in Figure 74 

was carried out on a Phillips/FEI Tecnai F20. 

Figure 71 is an image of the fumed silica material.  The material was found to be largely 

agglomerated and this is thought to reduce the surface area that would be available for 

APTES attachment and hence, reducing the potential capacity for metal-ligand binding.  This 

would also explain why techniques used in chapter 5 found a similar quantity of APTES 

bound to the ZEOprep and fumed silica. 
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Figure 71 – TEM image of fumed silica.  The images collected for fumed silica showed a clear indication that the 

material was largely agglomerated.  This could significantly reduce the surface area expected to be available for 

APTES attachment. 

Figure 72 is an image of what was observed of the fumed silica following APTES deposition.  

The darker areas show a greater agglomeration of the APTES-functionalised silica compared 

to Figure 71.  

 

Figure 72 – TEM image of APTES-functionalised fumed silica.  Agglomeration of the particles is once again present 

and darker images were more common, suggesting dense layers of material. 

Each APTES has 3 binding sites which could act as „glue‟, bringing together 3 individual 

particles.  APTES deposition also considerably changes the surface charge.  Silica in water is 

quite stable because all particles are negatively charged so all particles are forced apart but 

when functionalised with APTES, some of the particles will become neutralised which in turn 

would increase agglomeration. 

Figure 73 demonstrates a very different morphology of the material to what was observed in 

the previous images.  This image displays the APTES-functionalised fumed silica following a 
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week in a solution of Eu(III) chloride hexahydrate at 160 ppm.  Being in the solution appears 

to have considerably changed the appearance of the material to produce a more „stringy‟ 

structure. 

 

Figure 73 – TEM image of APTES-functionalised fumed silica after being in a solution of Eu(III) for one week.  The 

morphology of the material has completely changed to that seen in Figure 71 and Figure 72. 

A full explanation of this change has not yet been agreed but if the metal is precipitating, this 

is much heavier than Si and because of the way TEM works, primarily it would detect Eu(III) 

(due to the heavier mass).  In Figure 73 it seems that silica particles are no longer observed if 

based on appearance alone which could suggest precipitation has occurred.  Alternatively 

Eu(III) ions could be bound to the nitrogen atoms and the physical appearance changes due to 

the fact Eu(III) ions are much denser relative to the other elements present in the material.  

Thus producing an image that has hidden the main structure and only Eu(III) is observed. 
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Figure 74 – TEM imaging and EDS mapping of fumed Si-APTES after being in a solution of Eu(III) for one week.  1) 

TEM image of silica, 2) EDS mapping illustrating where silicon atoms are present, 3) EDS mapping illustrating 

where oxygen atoms are present, 4) EDS mapping illustrating where carbon atoms are present, 5) EDS mapping 

illustrating where nitrogen atoms are present, 6) EDS mapping illustrating where europium atoms are present, 7) 

EDS mapping illustrating where chlorine atoms are present and 8) EDS mapping overlay of all the atoms present. 

Figure 74 shows a compilation of images taken of APTES-functionalised fumed silica after 

being added to a 160 ppm solution of europium (prepared from europium(III) chloride 

hexahydrate) using EDS.  The salt used for this solution is of importance as this explains the 

findings of the chlorine atoms in this mapping experiment.  Europium was used because this 

is one of the heaviest metals in the periodic table that is straightforward to handle in its non-

active form.  Being so much heavier than the other atoms being studied enables a very clear 

image to be created of where the metal is present.  The atomic weight from carbon to chlorine 
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ranges from just 12.01-35.45 u whereas europium is over four times heavier than chlorine at 

151.97 u.   

TEM imaging has been used by number of groups including Yantasse et al.
126

 and White et 

al.
204

 but these have been to study the particle size and evidence of large aggregate formation 

following modification of their solid supports with the ligands and polymers used.  Elemental 

mapping like that shown in Figure 74 has not been reported previously to show successful 

sequestration of metal although amine bonding to europium is known.
205,206,207

 

This imaging has shown that the surface area of the material is well utilised in terms of both 

modification and metal sequestration.  The fact that the whole surface appears to be covered 

in europium is extremely positive and shows the material is being used to good effect. 

It is predicted that Eu(OH)3 will precipitate at ca. pH 10
189

 whilst Pitois et al.
208

 demonstrated 

precipitation to occur at ca. pH 10.5.  This is slightly higher than pHs observed at lower 

concentrations of Eu(III) solutions (the highest observed was pH 9.46) in this thesis, leading 

to the hypothesis that perhaps most metal was bound to the materials rather than precipitation 

at the surface due to the local pH effect. 

6.2.3.4 Co(II) studies with silica attached APTES 

Cobalt is an essential element for humans since it is part of vitamin B12.  It has been used for 

centuries to produce brilliant blue colours in porcelain, glass, potter and enamels and the 

radioisotope 
60

Co is also used in the treatment of cancer.
197

 However, again, exposure to 

larger quantities of cobalt can cause health problems including dermatitis, weight loss and 

respiratory hypersensitivity.  The International Agency for Research on Cancer (IARC) lists 

cobalt and cobalt compounds among those that are possibly carcinogenic to humans.
176

  

Humans add cobalt to the environment via coal combustion, mining and the production and 

use of cobalt chemicals.  Radioisotopes do not naturally occur but are released through 

nuclear power plant operations.
176

 

After the initial tests carried out with silica attached APTES, it is known that this ligand is 

capable of sequestrating cobalt from solution (Figure 53).  The following investigations were 

carried out using the isotope 
57

Co as a tracer, enabling gamma counting to be used to monitor 

the investigations and again, the effect of sequestration when high levels of sodium and 

calcium are present were carried out.  Co(II) and Co(III) are both very common oxidation 

states of cobalt
192

, however the pink coloured solution that was observed when solutions were 
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prepared with CoCl2.6H2O suggests the most common oxidation state of cobalt present was 

that of Co(II). 

 

Figure 75 – Isotherm for Co(II) removal from deionised water with APTES-functionalised ZEOprep and fumed silica 

materials over 24 h.  Initial concentrations ranged from 3.95 x 10-5 – 2.73 x 10-3 mol dm-3 (2.33 – 160.60 ppm) whilst 

initial pHs ranged from 5.50 – 5.21. 

Initial concentration of cobalt ZEOprep Si-APTES Fumed Si-APTES 

ppm mol dm
-3 

Rd (mL g
-1

) Rd (mL g
-1

) 

160.60 2.73 x 10
-3 

7.49 x 10
4
 8.99 x 10

4
 

79.07 1.34 x 10
-3

 1.27 x 10
5
 1.58 x 10

5
 

38.97 6.61 x 10
-4

 4.62 x 10
5
 4.46 x 10

5
 

19.66 3.34 x 10
-4

 3.22 x 10
6
 1.95 x 10

6
 

10.08 1.71 x 10
-4

 1.22 x 10
7
 1.02 x 10

7
 

4.93 8.36 x 10
-5

 1.49 x 10
7
 1.21 x 10

7
 

2.33 3.95 x 10
-5

 1.07 x 10
7
 8.10 x 10

7
 

Table 30 – Variation of Rd at different initial concentrations of Co(II) from deionised water.  A rise of ca. three 

orders of magnitude was observed as initial concentrations decreased.  Initial pHs were recorded to range from 5.50 

(2.33 ppm) and 5.21 (160.60 ppm). 
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Initial concentration of cobalt ZEOprep Si-APTES Fumed Si-APTES 

ppm mol dm
-3 

Rd (mL g
-1

) Rd (mL g
-1

) 

164.24 2.79 x 10
-3 

1.64 x 10
5
 1.19 x 10

5
 

80.49 1.37 x 10
-3

 2.89 x 10
5
 2.42 x 10

5
 

37.97 6.44 x 10
-4

 4.74 x 10
5
 3.77 x 10

5
 

20.03 3.40 x 10
-4

 1.31 x 10
6
 9.97 x 10

5
 

10.41 1.77 x 10
-4

 2.26 x 10
6
 1.50 x 10

6
 

5.17 8.77 x 10
-5

 2.27 x 10
6
 1.29 x 10

6
 

2.48 4.20 x 10
-5

 1.37 x 10
6
 5.09 x 10

5
 

Table 31 – Variation of Rd at different initial concentrations of Co(II) from a 1 % Na+ solution.  A rise of ca. one 

order of magnitude was observed as initial concentrations decreased.  Initial pHs were recorded to range from 5.51 

(2.48 ppm) and 6.35 (164.23 ppm). 

Initial concentration of cobalt ZEOprep Si-APTES Fumed Si-APTES 

ppm mol dm
-3 

Rd (mL g
-1

) Rd (mL g
-1

) 

162.41 2.76 x 10
-3 

1.21 x 10
5
 2.33 x 10

5
 

78.11 1.33 x 10
-3

 2.28 x 10
5
 4.15 x 10

5
 

40.09 6.80 x 10
-4

 3.83 x 10
5
 1.09 x 10

6
 

20.39 3.46 x 10
-4

 4.51 x 10
5
 2.03 x 10

6
 

10.78 1.83 x 10
-4

 5.30 x 10
5
 3.44 x 10

6
 

4.88 8.27 x 10
-5

 4.13 x 10
5
 1.12 x 10

6
 

2.54 4.32 x 10
-5

 4.76 x 10
5
 1.11 x 10

6
 

Table 32 – Variation of Rd at different initial concentrations of Co(II) from a 1 % Ca2+ solution.  A rise of ca. one 

order of magnitude was observed as initial concentrations decreased for APTES-functionalised fumed silica but little 

change was observed for APTES-functionalised ZEOprep silica.  Initial pHs were recorded to range from 5.53 (2.54 

ppm) and 6.27 (162.41 ppm). 

The consequence of the sodium and calcium ions has had a measurable effect on the removal 

of Co(II), reducing the rise of Rd from three to only one order of magnitude as the 

concentration of metal decreases.  At the higher concentrations, the values are similar, 

suggesting that there is a preference for the cobalt in these conditions.  However, when the 

concentration of cobalt is much lower, it appears the competition of these ions is too much 

for the APTES to remove cobalt at the levels observed in deionised water where Rd values are 

ca. two orders of magnitude lower for 2.48 ppm.   
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6.2.3.5 Cd
2+

 studies with silica attached APTES 

The removal of heavy metals such as cadmium from natural waters has attracted considerable 

attention because of its adverse effects on the environment and human health.
126

 Cadmium is 

not generally believed to have a biological function although research by Lane et al.
209

 

suggest it may have a purpose in marine diatoms where low levels of zinc exist.  However, 

excessive accumulation of cadmium can be toxic to most plants
210

 and humans.
126

 

The following investigations were carried out using the isotope 
109

Cd as a tracer, enabling 

gamma counting to be used to monitor the investigations and again, the effect of 

sequestration when high levels of sodium and calcium are present were carried out.  Almost 

all cadmium compounds have the oxidation state +2
211

 but as well as being divalent, its 

properties are slightly different to the other transition metals discussed so far because its 

electron configuration is [Kr] 4d
10

 leaving no incomplete d shell.  This property results in 

zinc, cadmium and mercury often excluded from transition metal comparisons – all of which 

are located within group 12 of the periodic table.  Cd(NO3)2.4H2O was used to make up the 

cadmium solutions to the desired concentrations. 

 

Figure 76 – Isotherm for Cd2+ removal from deionised water with APTES-functionalised ZEOprep and fumed silica 

materials over 24 h.  Initial concentrations ranged from 2.45 x 10-5 – 1.52 x 10-3 mol dm-3 (2.75 – 171.35 ppm) whilst 

initial pHs ranged from 5.60 (2.75 ppm) – 6.02 (171.35 ppm). 
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Unlike the other ions and isotopes tested so far, cadmium has not reached saturation as the 

trend of the graph is still straight.  However, 2.5 x 10
-4

 mol g
-1

 appears to be around the 

capacity for these materials and could be that capacity has just been reached.  Distribution 

ratios are tabulated below whilst a discussion of the observations follow. 

Initial concentration of cadmium ZEOprep Si-APTES Fumed Si-APTES 

ppm mol dm
-3 

Rd (mL g
-1

) Rd (mL g
-1

) 

171.35 1.52 x 10
-3 

2.57 x 10
5
 2.73 x 10

5
 

82.27 7.32 x 10
-4

 3.14 x 10
5
 2.99 x 10

5
 

42.25 3.76 x 10
-4

 4.26 x 10
5
 3.36 x 10

5
 

21.48 1.91 x 10
-4

 7.39 x 10
5
 2.25 x 10

5
 

10.48 9.33 x 10
-5

 2.58 x 10
6
 6.43 x 10

5
 

5.31 4.72 x 10
-5

 2.67 x 10
6
 1.19 x 10

6
 

2.75 2.45 x 10
-5

 2.58 x 10
6
 2.82 x 10

6
 

Table 33 – Variation of Rd at different initial concentrations of Cd2+ from deionised water.  A rise of ca. one order of 

magnitude was observed as initial concentrations decreased.  Initial pHs were recorded to range from 5.60 (2.75 ppm) 

and 6.02 (171.35 ppm). 

Initial concentration of cadmium ZEOprep Si-APTES Fumed Si-APTES 

ppm mol dm
-3 

Rd (mL g
-1

) Rd (mL g
-1

) 

165.40 1.47 x 10
-3 

1.15 x 10
5
 1.00 x 10

5
 

82.83 7.37 x 10
-4

 1.86 x 10
5
 1.15 x 10

5
 

39.86 3.55 x 10
-4

 1.99 x 10
5
 9.50 x 10

4
 

20.08 1.79 x 10
-4

 1.77 x 10
5
 1.63 x 10

5
 

9.80 8.72 x 10
-5

 2.12 x 10
5
 1.48 x 10

5
 

4.98 4.43 x 10
-5

 2.58 x 10
5
 1.85 x 10

5
 

2.54 2.26 x 10
-5

 3.37 x 10
5
 2.26 x 10

5
 

Table 34 – Variation of Rd at different initial concentrations of Cd2+ from a 1 % Na+ solution.  Values were found to 

stay relatively constant as initial concentration decreased.  Initial pHs were recorded to range from 5.23 (4.98 ppm) 

and 7.21 (165.40 ppm). 
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Initial concentration of cadmium ZEOprep Si-APTES Fumed Si-APTES 

ppm mol dm
-3 

Rd (mL g
-1

) Rd (mL g
-1

) 

152.23 1.35 x 10
-3 

3.97 x 10
4
 1.89 x 10

4
 

78.39 6.97 x 10
-4

 7.82 x 10
4
 7.77 x 10

4
 

38.81 3.45 x 10
-4

 9.43 x 10
4
 7.18 x 10

4
 

19.27 1.72 x 10
-4

 1.08 x 10
5
 5.31 x 10

4
 

9.48 8.44 x 10
-5

 1.35 x 10
5
 6.40 x 10

4
 

4.86 4.33 x 10
-5

 1.30 x 10
5
 9.55 x 10

4
 

2.50 2.23 x 10
-5

 1.89 x 10
5
 1.19 x 10

5
 

Table 35 – Variation of Rd at different initial concentrations of Cd2+ from a 1 % Ca2+ solution.  A rise of ca. one order 

of magnitude was observed as initial concentrations decreased.  Initial pHs were recorded to range from 5.59 (2.50 

ppm) and 6.68 (152.23 ppm). 

Although a 1 % Na
+
 solution appeared to have little effect on the Rd values obtained apart 

from the lower initial concentrations, an immediate drop by an order of magnitude is 

observed when Ca
2+

 is present.  After researching into why this might be the case, literature 

showed that a team of researchers from the DOE Office of Science‟s Argonne National 

Laboratory has demonstrated that cadmium releases calcium from bone within hours of 

exposure, even at low concentrations.  It is thought that the size and characteristics of the two 

species are so similar that the body accepts cadmium, believing it to be calcium and hence 

bone diseases such as osteoporosis can be a result of cadmium poisoning.
212

  This could 

explain the effect observed in this case where it is clear the presence of calcium has impacted 

the amount of cadmium ions that the APTES ligands has successfully bound with.  

6.2.3.6 [UO2]
2+

 studies with silica attached APTES 

Uranium is very common in the environment, with low levels present in rocks, soil, air and 

water.  Depleted uranium is used in bullets and missiles but also as shielding for tanks whilst 

the common isotope 
238

U (99 %) is enriched with 
235

U to ca. 3 % and used to fuel commercial 

nuclear power plants.
176,197

 

Uranium has no known biological role and is toxic due to heavy metal poisoning and its 

radioactive state.  Uranium in air exists as a dust that will fall into surface water and soils 

which does not pose much of a problem.  However, in large amounts, it can cause health 

issues such as kidney disease and cancer.  Enriched uranium can end up in the environment 

from accidents at nuclear power plants.
176

 



Page | 160  

 

Uranyl nitrate, UO2(NO3)2 was used for the following investigations and selectivity tests in 

chapter 7.  The uranyl ion is an oxycation of uranium and exists in the oxidation state +6 with 

the chemical formula [UO2]
2+

.  Uranyl nitrate (obtained as yellow crystalline hydrates) is 

regarded as the most important uranyl compound due to its high solubility in a very wide 

range of organic solvents (alcohols, ketone and ethers) as well as in water
213

 – making this an 

ideal source of uranium to use for this work.  No tracer was required as 
238

U is already active, 

but as an alpha emitter hence ICP-OES was used to interpret the results. 

 

Figure 77 – Isotherm for [UO2]
2+ removal from deionised water with APTES-functionalised ZEOprep silica materials 

over 24 h.  Initial concentrations ranged from 1.81 x 10-5 – 1.13 x 10-3 mol dm-3 (2.75 – 171.35 ppm) whilst initial pHs 

ranged from 5.60 (2.75 ppm) – 6.02 (171.35 ppm). 
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Figure 78 – Isotherm for [UO2]
2+ removal from deionised water with APTES-functionalised fumed silica over 24 h.  

Initial concentrations ranged from 1.81 x 10-5 – 1.13 x 10-3 mol dm-3 (2.75 – 171.35 ppm) whilst initial pHs ranged 

from 5.60 (2.75 ppm) – 6.02 (171.35 ppm). 

Initial concentration of uranium ZEOprep Si-APTES Fumed Si-APTES 

ppm mol dm
-3 

Rd (mL g
-1

) Rd (mL g
-1

) 

127.26 5.35 x 10
-4 

1.36 x 10
5
 5.80 x 10

5
 

64.88 2.73 x 10
-4

 2.92 x 10
5
 1.59 x 10

7
 

30.49 1.28 x 10
-4

 8.14 x 10
5
 6.75 x 10

7
 

13.85 5.82 x 10
-5

 4.06 x 10
7
 3.99 x 10

7
 

5.69 2.39 x 10
-5

 5.48 x 10
7
 2.52 x 10

7
 

2.12 8.91 x 10
-6

 2.09 x 10
7
 1.78 x 10

7
 

0.59 2.47 x 10
-6

 4.19 x 10
5
 1.14 x 10

7
 

Table 36 – Variation of Rd at different initial concentrations of [UO2]
2+ from deionised water.  Values increase overall 

by ca. two orders of magnitude but there appears to be no smooth trend that has been observed for other metal 

investigations.  Initial pHs were recorded to range from 5.68 (0.59 ppm) and 9.95 (127.26 ppm). 

Some of the most consistently high Rd values were achieved with the uranyl nitrate solutions 

when investigating the removal of [UO2]
2+

.  These values suggest the material has a strong 

affinity for the uranyl ion and hence it was anticipated that when a multi-metal solution was 

produced (reported in chapter 7), selective removal of the uranyl ion could be achieved.  The 
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values reported in the introduction on page 8 suggest that both the APTES-functionalised 

ZEOprep and fumed silica behaved at extremely competitive levels as the highest Kd value 

reported was 1.6 x 10
5
 for U(VI) removal compared to 10

7
 in Table 36. 

6.3 Cu(II) removal with SMP attached APTES 

As briefly discussed in chapter 4, SMPs were used towards the end of the project to ascertain 

whether they could provide an alternative option as a solid support for ligands and polymers 

for metal sequestration.  The limited sample size available to the group prevented an in depth 

review of the material but nonetheless, a trial was carried out to investigate this method.   

Characterisation of the material had been limited so that a maximum quantity of the material 

could be used for testing so it was assumed that a thorough coating of APTES across the 

sample had been achieved.  With only 2.5 mg of sample available, the concentration of the 

initial solution (which was again produced with CuCl2.2H2O) was prepared at a ppb level 

rather than a ppm with trace metal analysis being run via ICP-MS.  The lack of sample 

prevented repeats of the investigation being carried out and the author accepts that this makes 

the data reported most unreliable.  However, as this initial investigation was purely to show 

the concept could be achievable, Figure 79 illustrates the decrease of initial Cu(II) 

concentration from 24.6 ppb to 16.4 ppb proposing that this material may benefit from being 

investigated on a larger scale. 



Page | 163  

 

 

Figure 79 – Sequestration of Cu(II) ions with silica coated ferrous oxide.  No error bars are included as no repeats 

were carried out due to limited sample, hence a much lower initial concentration was used.  However, a decrease in 

concentration was observed from 24.6 ppb to 16.4 ppb with just 2.5 mg of material.  

6.4 Langmuir isotherm model 

The fitting of adsorption isotherm equations to experimental data is often an important aspect 

of data analysis.
214

 The Langmuir isotherm model assumes the solid has a limited sorption 

capacity as well as the following assumptions: 

 Adsorption occurs up to the extent of one monolayer 

 All adsorption sites are identical 

 Occupation of a site is independent of the occupation of neighbouring sites 

 The temperature is constant 

 The surface is uniform and homogenous 

 The process is reversible 

 Each site retains one molecule of the given compound 
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 All sites are energetically and sterically independent of the adsorbed quantity
179,215

 

This model has been used in describing results that have shown deviations away from a linear 

distribution.  Empirical models such as this (and also include the Kd model) are mathematical 

descriptions of the experimental data without any particular theoretical basis.
216

 In this case, 

the model is used to determine the amount of contaminant that can be removed from water 

using the APTES-functionalised silica materials. 

The Langmuir model equation takes the form as shown in Equation 17. 

 

 
  

   

    
 

Equation 17 – The Langmuir isotherm equation.217 

The linearised form of the equation is represented in Equation 18. 

 

   
  

 

  
   

 

 
 

 

 
 

Equation 18 – The manipulated linear Langmuir isotherm equation.217 

 

Where: 

Y = concentration of metal ions adsorbed, mg L
-1

 

M = silica concentration, mg L
-1

 

C = equilibrium concentration of metal ions, mg L
-1

 

b = constant (determined graphically) 

k = constant (determined graphically) 

The constant b is the maximum adsorption capacity of the substrate (mol g
-1

) whilst the 

constant k represents the strength with which the solute is bound to the substrate.  Values of k 

and b can be determined by plotting the linearised equation.  “1/(Y/M)” (or simply “M/Y”) is 

the y-axis and “1/C” is the x-axis when graphed.  The value for “1/kb” is the slope and the 

value for “1/b” is the y-intercept and hence by rearrangement and by calculating „b‟ first, 

both k and b values can be established.
217
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The results for these constants are shown in Table 37 and Table 38 following the linear 

Langmuir plots shown in Appendix 1.  Although some plots do not fit that well, others such 

as Co(II) and Cd
2+

 do. 

Silica material Metal ion solution Constant k Constant b (mol g
-1

) 

APTES-

functionalised 

ZEOprep silica 

Co(II) 0.98 0.016 

Ni(II) 0.53 0.0072 

Cu(II) 1.79 0.014 

Cd
2+

 0.15 0.022 

Eu(III) 7.57 0.025 

[UO2]
2+

 1.88 0.021 

Table 37 – Data collected from the linear Langmuir isotherm model to show the relative binding strength (k) and 

maximum adsorption capacity (b, mol g-1) of the APTES-functionalised ZEOprep silica when in a solution of the 

corresponding metal ion. 

Silica material Metal ion solution Constant k Constant b (mol g
-1

) 

APTES-

functionalised fumed 

silica 

Co(II) 1.42 0.014 

Ni(II) 0.93 0.016 

Cu(II) 1.02 0.023 

Cd
2+

 0.10 0.013 

Eu(III) 3.32 0.037 

[UO2]
2+

 0.98 0.068 

Table 38 – Data collected from the linear Langmuir isotherm model to show the relative binding strength (k) and 

maximum adsorption capacity (b, mol g-1) of the APTES-functionalised fumed silica when in a solution of the 

corresponding metal ion. 

Table 38 shows that the silica materials have a very reproducible capacity across the metals 

tested that ranges from 0.0072-0.068 mol g
-1

.  The highest capacities are observed for the 

fumed silica for uranium and europium containing solutions.  This is not surprising given the 

much larger surface area and the strong affinity that has been observed between these ions 

and the APTES ligand.  The capacity for these two metal ions on the ZEOprep material are 

also of the highest witnessed, along with cadmium.  Generally however, the values are very 

similar ranging from 0.01-0.03 mol g
-1

 if the highest values are discounted. 

The relative binding strength does identify Eu(III) to be bound significantly stronger than the 

other ions tested.  Europium ions are known to commonly exist in the oxidation state +3
192,218

 

and previous experimentation with europium salts and isotopes by Loughborough 
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Radiochemistry‟s researchers has shown it to have a high affinity for glass, resulting in 

cleaning being a much more arduous task than following the use of other metal salts.  Bearing 

this in mind, a +3 ion would be expected to have extra affinity for an electron rich surface 

over a +2 or lower anyway (although ionic radii does need to be considered). In this case 

however, a higher value is observed for the +3 over the +2.  This data is not necessarily 

suggesting that it would bind seven (Table 37) or three (Table 38) times stronger than other 

ions investigated, but that it is highly likely that it is simply bound more strongly than the 

other metals tested. 

6.5 Conclusion 

This chapter has demonstrated the effectiveness of the two silica attached APTES materials 

along with very high Rd values.  The data found and used to plot the concentrations of metal 

ions bound to the surface of the materials has been collected and tabulated below (Table 39) 

to show the capacity of each metal on both surfaces. 

Metal ion ZEOprep Si-APTES capacity (mol g
-1

) Fumed Si-APTES capacity (mol g
-1

) 

Co(II) 2.34 x 10
-4

 ± 2.13 x 10
-5

 2.45 x 10
-4

 ± 6.38 x 10
-5

 

Ni(II) 2.32 x 10
-4

 ± 6.61 x 10
-5

 3.53 x 10
-4

 ± 4.70 x 10
-5

 

Cu(II) 2.73 x 10
-4

 ± 1.15 x 10
-5 

3.43 x 10
-4

 ± 1.33 x 10
-5

 

Cd
2+ 

Not less than 2.44 x 10
-4

 ± 4.28 x 10
-5

 Not less than 2.56 x 10
-4

 ± 3.13 x 10
-6

 

Eu(III) 3.28 x 10
-4

 ± 8.57 x 10
-5

 2.72 x 10
-4

 ± 2.66 x 10
-5

 

[UO2]
2+

 6.89 x 10
-5

 ± 6.37 x 10
-6

 2.00 x 10
-4

 ± 1.08 x 10
-5

 

Table 39 – Summary of maximum capacity of each metal on the two materials from the data used to produce the 

graphs.  All data is taken from the deionised water solutions, thus making results comparable.  

Table 39 shows very little difference between the two silica materials in terms of metal 

binding capacity.  Eu(III) and [UO2]
2+

 ions have been removed to very similar amounts as the 

smaller ions suggesting that the ionic radii have little effect on the capacity of the surface.  

The difference between the two silicas is perhaps the more surprising result, signifying that 

the optimum size for maximum surface coverage is no lower than that of ZEOprep silica.  It 

appears that the APTES molecules effectively „glue‟ the fumed silica particles to form a size 

similar to that of the ZEOprep silica and thus remove the benefit of using the smaller particle 

size material. 

Across the metals targeted in this chapter, when the solution was made up with a 1 % Na
+
 or 

Ca
2+

 a significant drop in target metal removed was not seen.  In general, if Rd values were 
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observed to drop for a given concentration when conditions were altered, this was only by 

one order of magnitude.   

Additional studies with XPS and STEM has enabled one to provide further evidence that the 

metal ions are chemically bound to the surface of these functionalised silica materials.  The 

spectra provided from XPS investigations clearly illustrates the generation of new peaks due 

to the additional atoms and bonding observed after each modification step.  The final spectra 

then show copper being present after removing this from an aqueous solution.  The difference 

in colour of the APTES-functionalised silica material before and after being subjected to this 

solution of Cu(II) ions strongly suggests it had successfully removed copper before any tests 

were carried out.  The data collected from XPS has raised questions regarding the exact 

binding of copper ions to the material as the percentage of each atom are probably not what 

would be expected. 

Name Peak BE Atomic % 

Si2p 104.35 29.82 

O1s 533.74 57.38 

C1s 286.32 5.50 

N1s 401.91 1.01 

Cu2p
3
 936.45 6.29 

Table 40 – Peak EB values and atomic percentages for selected peaks after ZEOprep Si-APTES had been in a 160 

ppm copper solution for 1 week (Figure 65). 

The data collected suggests a 6:1 copper-nitrogen binding which is impossible.  It has been 

suggested that within the vicinity of the APTES-functionalised silica where a large presence 

of amine groups exist, precipitation of Cu2O or Cu(OH)2 occurs
189

 due to the local pH 

change
184

 and therefore only occurs at the surface of the APTES.  Reversibility and 

dissolution studies in chapter 7 have shown that the metal ions seem to be well attached to the 

material as a rise in concentration of only 0.1 ppm (although lower than the LOD of the ICP-

MS) is observed when the solids are filtered off and recovered before added to a fresh 

deionised water solution.  The second explanation for this is that copper could be binding 

with the lone pairs of the oxygen atoms where attachment from the silica surface to the silane 

of the APTES takes place, however this does not explain the rise in percentage of oxygen 

once the copper is attached.   
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STEM has illustrated that the surface of the silica attached APTES is very effectively coated, 

showing that most, if not all the surface area is being utilised.   

Using the linear Langmuir isotherm equation, it has been shown that europium ions bind 

significantly stronger than the APTES ligand than the other ions investigated.  The prominent 

reasoning for this would appear to be the oxidation state.   

Following the results in this chapter, the next stage was to test the materials for selectivity 

when all in the same solution.  The results of these and many other ligand functionalised 

silicas can be found in the following chapter. 

6.6 Future Work 

Studies on the exact nature of the process occurring after the APTES-functionalised ZEOprep 

and fumed silica material has sequestrated metal ions (especially from a solution specifically 

containing copper ions) needs to be investigated.  The fact that the rate constant drops from 

2.1 and 0.8 ppm hr
-1

 for the two materials respectively to 0.02 ppm hr
-1

 (Figure 60) shows 

that sequestration does not stop but that a second process appears to take place – especially as 

the material was left for 4 weeks to show that the concentration did not stop decreasing until 

between 3 and 4 weeks (Figure 57). 

The second key finding from this chapter has been the information gathered from XPS 

studies showing that the copper to nitrogen ratio is essentially 6:1 for that found on the 

surface of the ZEOprep silica surface.  With this ratio being impossible (especially when the 

nitrogen already makes up the APTES molecule) a closer look into how such an excess of 

copper is being removed also needs to be investigated.  This could be carried out by taking 

the free APTES ligand up into an aqueous solution with a similar concentration of copper 

ions to that tested in this work before preparing a crystal to analyse via X-ray crystallography 

(although initial tests were attempted and proved difficult due to APTES reacting with itself). 

XPS and TEM have proven to be valuable techniques when assessing how the metal ions are 

attached and how well the surface area of the material in question is being utilised.  Further 

details of this process could be collected by using these techniques after a given time in the 

solutions such as at each time interval when the copper kinetic studies were carried out.  This 

could help to establish the process by which such a large copper to nitrogen ratio exists 

following its sequestration with ZEOprep Si-APTES.  



Page | 169  

 

Finally, the brief investigation that was carried out with SMP attached APTES showed that 

this material may benefit from further investigations.  If it was found to deliver results as 

good as those observed from the ZEOprep and fumed Si-APTES then this would offer the 

further practicality of being able to be removed via magnetism once sequestration had taken 

place.  
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7 Selective removal of metal ions and use of materials produced by 

PhosphonicS Ltd 

7.1 Introduction 

Following the results reported in chapter 6 with APTES-functionalised silica, the aim became 

to test this and as many other ligands as possible for their selective removal of metal ions.  

For the synthetic solutions, a seven metal solution was prepared that was described in chapter 

2 and silica attached ligands that were donated to the group by PhosphonicS Ltd. were tested 

along with the APTES-functionalised ZEOprep and fumed silica.  This chapter will bring 

together and round up the „story‟ that has been created by designing and synthesising these 

materials as a technique to selectively remove metal ions from solution. 

A „real-life‟ water sample was also acquired from a nickel mine in Finland owned by 

Talvivaara Mining Company plc.  This sample would only be used for testing the ZEOprep 

and fumed silica attached APTES as samples from PhosphonicS Ltd were limited.  

7.1.1 PhosphonicS Ltd 

PhosphonicS are a specialty chemicals company „supplying advanced functionalised 

materials to provide cost and performance benefits to a wide range of industrial, chemical and 

refining processes.‟
219

 Their technology was developed by Professor Alice Sullivan at Queen 

Mary, University of London where a general and economically viable method for silica 

functionalisation was discovered using vinyltrimethoxysilane (VTMS) as a coupling agent.  

PhosphonicS acquired the technology in 2001 to select and commercialise areas of 

application and in 2006 relocated from London to the Milton Science Park, Oxfordshire, UK.  

A full list of their patents and publications are available on their website.
219

 

Three key areas are targeted by PhosphonicS and these include precious metal recovery 

(allowing recovery and recycling of precious metals from processes
220

 and waste streams), 

small molecule purification (offering simple by-product and impurity removal from product 

streams
221

) and immobilised catalysts (enabling a range of reactions from acid-catalysed 

processes to C–C coupling to be run in clean and economical fashion
222

).  However, with 

such a large combination of mixed metal possibilities, they have not tested their materials for 

selective removal of metals in all scenarios nor had the ability to test on radioisotopes. 
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In total, fourteen samples were donated for the research and the structures of these ligands, 

names and codes are given in Table 41.  When discussing these samples and results, the code 

name will be used for simplicity. 

Surface attached ligands Name Code 

 

2-Aminoethyl sulfide ethyl silica SEA 

 

Triamine ethyl sulfide amide silica STA3 

 

Pentaamine ethyl sulfide amide silica SPA5 

 

Polyamine ethyl sulfide amide silica SPAf 

 

3-Mercaptopropyl ethyl sulfide silica SPM32 

 

Methyl thiourea ethyl sulfide ethyl silica MTCf 

 

Disodium ethyl/butyl phosphonate silica PO1 

 

Disodium succinate ethyl sulfide silica STMS 

 

Ethyl/butyl phosphonic acid silica POH1 

 

Succinic acid ethyl sulfide silica STMA 

 

2-Hydroxyethyldiamine ethyl sulfide amide silica SDEA 

 

N-Methyl-D-glucamine ethyl sulfide amide silica SMG 

 

Polyol 2 alkyl silica P2AS  

 

Bromide, tributylammonium propyl silica BAP7 

Table 41 – A list of all materials donated to us by PhosphonicS Ltd. which were tested in a seven metal system and 

results shown in this chapter.  For simplicity, the code name is used when referring to the materials. 
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7.1.2 Talvivaara mine water sample 

Talvivaara Mining Company Plc is an internationally significant base metals producer with 

its primary focus on nickel and zinc.
223

 It is the latest commercial application of bioleaching, 

and the first in Europe, located in North-Eastern Finland.
224

 Bioleaching is the process by 

which bacterial microorganisms are used to extract metals from its ore
225,226

 and it provides 

an efficient and environmentally considerate method (often when there are lower 

concentrations of metal in the ore) by which bacteria feeds on nutrients in minerals, thereby 

separating the metal from the ore.
227,228

 

A sample was obtained from a Pregnant Leaching Solution (PLS) pond by Hanna Tuovinen 

who is primarily based in Finland and studies the Talvivaara site but has also worked in the 

Loughborough radiochemistry department as part of her studies.  The PLS pond holds the 

acidic, metal-rich water, readying for the metals recovery process which is carried out via 

precipitation using gaseous hydrogen sulphide and pH adjustment.
224

 The harsh environment 

of this solution provided an unusual and challenging test for the silica attached APTES 

materials due to the strongly acid conditions (ca. pH 2.5) and the many different components 

present.   

Analysis of the sample before and after the functionalised silica material was added was 

carried out using ICP-OES and these results are discussed following the synthetic seven 

metal solutions tested with the APTES-functionalised silicas and the PhosphonicS materials.  

7.2 Results and Discussion 

7.2.1 Selective metal sequestration 

A 5 L solution of seven metals including Co(II), Ni(II), Cu(II), Zn
2+

, Cd
2+

, Eu(III) and 

[UO2]
2+

 was prepared as described in the chapter 2.30.  These metal salt solutions were 

prepared to a concentration of ca. 20 ppm each and batches of 45 mL were prepared.  50 mg 

of functionalised silica was added to the solutions and allowed to equilibrate for 24 hours and 

4 weeks.  Each investigation was repeated five times and the standard deviation of the 

findings was used as the error bars for the graphs, see from Figure 80 to Figure 95. 
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Figure 80 – Selective removal of metal by SEA from a mixed solution over 24 h and 4 w.  After 24 h, [UO2]
2+ levels 

had reduced by much more than the other metals but after 4 w, Cu(II) had also reduced by a significant amount. 

 

Figure 81 – Selective removal of metal by STA3 from a mixed solution over 24 h and 4 w.  After 24 h, [UO2]
2+ levels 

had reduced by much more than the other metals but after 4 w, Cu(II) had also reduced by a significant amount. 
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Figure 82 – Selective removal of metal by SPA5 from a mixed solution over 24 h and 4 w.  After 24 h, [UO2]
2+ levels 

had reduced by much more than the other metals but after 4 w, drops in all but Eu(III) levels were observed. 

 

Figure 83 – Selective removal of metal by SPAf from a mixed solution over 24 h and 4 w.  After 24 h, [UO2]
2+ levels 

had reduced by much more than the other metals but after 4 w, centration levels of all metals had reduced. 

0

5

10

15

20

25

30

Co(II) Ni(II) Cu(II) Zn Cd Eu(III)

C
o

n
c.

 o
f 

su
p

er
n

a
ta

n
t 

(p
p

m
) 

Metal ions in solution 

Original

SPA5 24 h

SPA5 4 wk

0

5

10

15

20

25

30

Co(II) Ni(II) Cu(II) Zn Cd Eu(III)

C
o

n
c.

 o
f 

su
p

er
n

a
ta

n
t 

(p
p

m
) 

Metal ions in solution 

Original

SPAf 24 h

SPAf 4 wk

[UO2]
2+

 

[UO2]
2+

 

2+ 2+ 

2+ 2+ 



Page | 175  

 

 

Figure 84 – Selective removal of metal by SPM32 from a mixed solution over 24 h and 4 w.  Cu(II) and [UO2]
2+ were 

reduced to similar levels after 24 h, but copper was found to drop significantly further after 4 w. 

 

Figure 85 – Selective removal of metal by MTCf from a mixed solution over 24 h and 4 w.  Cu(II) and [UO2]
2+ were 

reduced to similar levels after 24 h but Cu(II) was reduced significantly further after 4 w. 
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Figure 86 – Selective removal of metal by PO1 from a mixed solution over 24 h and 4 w.  [UO2]
2+ levels saw the 

largest drop in concentration over 24 h but Eu(III) was observed to reduce considerably more over 4 w. 

 

Figure 87 – Selective removal of metal by STMS from a mixed solution over 24 h and 4 w.  After 24 h, no selectivity 

was observed but after 4 w. Cu(II), Eu(III) and [UO2]
2+ levels were found to have significantly dropped. 
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Figure 88 – Selective removal of metal by POH1 from a mixed solution over 24 h and 4 w.  All concentrations of 

metal see a drop after 24 h but more importantly, Eu(III) and [UO2]
2+ are selectively reduced after 4 w. 

 

Figure 89 – Selective removal of metal by STMA from a mixed solution over 24 h and 4 w.  Strong selectivity for 

Cu(II), Eu(III) and [UO2]
2+ are shown as they are the only metals to be removed over 24 h and 4w in this study. 
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Figure 90 – Selective removal of metal by SDEA from a mixed solution over 24 h and 4 w.  [UO2]
2+ was the highest 

removed metal after 24 h but Cu(II) was also significantly removed with [UO2]
2+ after 4 w. 

 

Figure 91 – Selective removal of metal by SMG from a mixed solution over 24 h and 4 w.  Cu)II), Eu(III) and [UO2]
2+ 

were all reduced in concentration after 24 h and significant amounts were removed after 4 w. 
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Figure 92  – Selective removal of metal by P2AS from a mixed solution over 24 h and 4 w.  No significant change to 

concentrations other than [UO2]
2+ is observed, especially after 4 w where selective removal of [UO2]

2+ is apparent. 

 

Figure 93 – Selective removal of metal by BAP7 from a mixed solution over 24 h and 4 w.  No significant change in 

concentration was observed after 24 h but after 4 w, a reduction in [UO2]
2+ concentration was observed. 
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Figure 94 – Selective removal of metal by ZEOprep Si-APTES from a mixed solution over 24 h and 4 w.  After 24 h, 

it was clear that Cu(II), Zn2+, Eu(III) and [UO2]
2+  were favoured by APTES and this remained the case after 4 w. 

 

Figure 95 – Selective removal of metal by fumed Si-APTES from a mixed solution over 24 h and 4 w.  Selective 

removal of Cu(II), Zn2+, Eu(III) and [UO2]
2+ was observed but lower concentrations were reached than Figure 94. 

0

5

10

15

20

25

30

Co(II) Ni(II) Cu(II) Zn Cd Eu(III)

C
o

n
c.

 o
f 

su
p

er
n

a
ta

n
t 

(p
p

m
) 

Metal ions in solution 

Original

ZEOprep-APTES 24 h

ZEOprep-APTES 4 wk

0

5

10

15

20

25

30

Co(II) Ni(II) Cu(II) Zn Cd Eu(III)

C
o

n
c.

 o
f 

su
p

er
n

a
ta

n
t 

(p
p

m
) 

Metal ions in solution 

Original

Fumed-APTES 24 h

Fumed-APTES 4 wk

[UO2]
2+

 

[UO2]
2+

 

2+ 2+ 

2+ 2+ 



Page | 181  

 

Across the range of ligands used, Co(II), Ni(II) and Cd
2+

 proved to be the least favourable to 

remove.  In examples where these three metals have been removed, all the divalent metal ions 

have shown a reduction in concentration leaving little to no selectivity.  

The remaining four cations that were tested have been tabulated to assess the selectivity as a 

percentage of the total amount of metal removed.  The total concentration removed (in ppm) 

is also included to help make comparisons.  P2AS and BAP7 have not been included because 

the data is very misleading.  Although selectivity for the uranyl ion was observed in the 

conditions tested, total concentration removed was less than 10 ppm (as opposed to the 23 – 

56 ppm observed by the other materials). 

PO1 and APTES-functionalised fumed silica removed the largest amount of metal ions at 

over 56 and 53 ppm respectively (from a total of 142 ppm) with 50 mg of material added to a 

45 mL solution (as was the case in all scenarios).  The most selective for the uranyl ion was 

SPAf (the fourth material discussed in Table 42) with a selectivity ratio of 3.3 : 1 [UO2]
2+

 : 

Zn
2+

.  Nitrogen containing ligands demonstrated a strong affinity for the uranyl ion.  

Interestingly however, increasing the number of nitrogen atoms did not increase the quantity 

of [UO2]
2+

 removed or its selectivity over other metal ions.   

Conversely, nitrogen containing ligands were found to be poor for the sequestration of Eu(III) 

and sulfur also appeared to have little effect.  When oxygen atoms were present however, 

Eu(III) removal made up over 40 % of the ions removed (see POH1).  Limited selectivity of 

Eu(III) could be achieved however as [UO2]
2+

 was also removed well by oxygen containing 

ligands, illustrating that selectively removing one over the other would be extremely 

challenging.   

The highest amount of Cu(II) removal was achieved with the use of SPM32 when over 53 % 

of the ions removed were Cu(II) however only 22.88 ppm was removed in total.  In terms of 

metal binding ability, only sulfur atoms are present in this material suggesting that this would 

be the most ideal ligand to use when attempting to separate Cu(II) ions from the species 

discussed.  A discussion on the details of these findings follows Table 42. 
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Surface attached ligands 
% Cu(II) 

removed 

% Zn
2+

 

removed 

% Eu(III) 

removed 

% [UO2]
2+

 

removed 

Total conc. 

removed 

 

27 ± 1 12 ± 3 8 ± 1 49 ± 1 40.83 ppm 

 

22 ± 1 11.3 ± 0.7 3 ± 1 49 ± 3 37.85 ppm 

 

16 ± 1 14.2 ± 0.7 1.3 ± 0.3 38 ± 1 39.60 ppm 

 

10 ± 1 12.9 ± 0.9 4 ± 0.5 42 ± 6 32.00 ppm 

 

53 ± 2 6 ± 1 7.6 ± 0.5 20.4 ± 0.9 22.88 ppm 

 

49 ± 2 7 ± 1 6 ± 0.4 17.4 ± 0.7 32.62 ppm 

 

15 ± 4 11 ± 4 32 ± 2 30.9 ± 0.7 56.02 ppm 

 

28 ± 0.7 1 ± 1 34.5 ± 0.8 35.5 ± 0.5 45.40 ppm 

 

9.5 ± 0.5 6 ± 0.4 41 ± 2 38.7 ± 0.4 44.06 ppm 

 

23 ± 2 1 ± 1 33.4 ± 0.5 45 ± 3 25.00 ppm 

 

29 ± 3 10 ± 4 10 ± 3 50 ± 3 30.95 ppm 

 

27 ± 2 2 ± 3 31 ± 2 37 ± 3 37.24 ppm 

 

30 ± 2 14 ± 2 20.9 ± 0.9 36 ± 0.9 43.30 ppm 

 

29 ± 2 14.8 ± 0.7 21 ± 2 30.8 ± 0.4 53.74 ppm 

Table 42 – The difference in metal ion uptake observed from each ligand based on the total concentration of metal 

ions removed.  Total concentration removed is also stated for comparisons.  Results were obtained after 4 weeks. 
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To help explain the selectivity findings, hard soft acid base (HSAB) theory was used in order 

to improve the understanding and explanation of these results. 

The HSAB theory is a concept widely used in chemistry for explaining the stability of 

compounds, reaction mechanisms and pathways.  Ralph Pearson introduced the concept in 

the early 1960‟s in an attempt to explain and unite inorganic and organic reaction chemistry.  

The terms „hard‟ and „soft‟, „acid‟ and „base‟, refer to chemical species.  Species that are 

small, with high charge states and are weakly polarisable refers to „hard‟ species, whilst „soft‟ 

is assigned to a species that is big, holds a low charge state and is strongly polarisable. 

HSAB theory is used where qualitative descriptions in the understanding of the factors which 

drive chemical reactions and provide chemical properties are required over a quantitative 

explanation.
229

 

Table 43 and Table 44 illustrate the hard, soft and intermediate (borderline) acids and bases 

according to Pearson
230

 and Hancock et al.
26

 The tables provide a reliable reference when 

considering the selectivity observed in this work. 

Hard Soft Borderline 

H
+
, Li

+
, Na

+
, K

+
 

Cu
+
, Ag

+
, Au

+
, Tl

+
, Hg

+
, 

Cs
+
, I

+
, Br

+
 

Fe
2+

, Co
2+

, Ni
2+

 

Be
2+

, Mg
2+

, Ca
2+

, Sr
2+

, Sn
2+

 Pd
2+

, Cd
2+

, Pt
2+

, Hg
2+

 Cu
2+

, Zn
2+

, Pb
2+

 

Al
3+

, Sc
3+

, Ga
3+

, In
3+

, La
3+

, Cr
3+

, Co
3+

, 

Fe
3+

, As
3+

, Ir
3+

 
Tl

3+
 

B(CH3)3, SO2, 

NO
+ 

Si
4+

, Ti
4+

, Zr
4+

, Th
4+

, Pu
4+

, Tl(CH3)3, BH3  

VO
2+

 
HO

+
, RO

+
, CH3Hg

+
,
 
RS

+
, 

RSe
+
, RTe

+
 

 

[UO2]
2+

, (CH3)2Sn
2+

 O, Cl, Br, I, R3C?  

Be(CH3)2, BF3, BCl3, B(OR)3, 

Al(CH3)3, Ga(CH3)3, In(CH3)3 

I2, Br2, ICN, etc. 

Trinitrobenzene, etc. 
 

RPO2
+
, ROPO2

+
, RSO2

+
, ROSO2

+
, SO3

+
 

R3C
+
, RCO

+
, CO2, NC

+
 

I
5+

 

I
7+

, Cl
7+

 

HX (H bonding molecules) 

Chloranil, Quinones, etc. 

Tetracyanoethylene, etc. 

M
0
 (Metal atoms) 

Bulk Metals 

 

 

Table 43 – Classification of Lewis acids according to Pearson230 



Page | 184  

 

Hard Soft Borderline 

H2O, ROH, R2O, NH3, 

RNH2, NH2NH2 

R2S, RSH, SCN, R3P, R3As, 

(RO)3P, RNC, CO, C2H4 
C6H5NH2, C5H5N, N2 

F
-
, Cl

-
 I

-
, H

-
, R

-
 Br

-
 

OH
-
, ClO4

-
, NO3

-
, RO

-
   RS

-
, CN

-
 N3

-
, NO2

-
 

CH3CO2
-
 S2O3

2-
 SO3

2-
 

CO3
2-

, SO4
2-

   

PO4
3-

   

Table 44 – Classification of Lewis bases according to Hancock et al.26 

From the selectivity results tabulated in Table 42, it is clear that the uranyl ion is removed 

most effectively when nitrogen and/or oxygen ligands are present with nitrogen being slightly 

more effective.  Using the two tables reported by Pearson
230

 and Hancock et al.
26

 [UO2]
2+

 is 

expressed as a „hard‟ along with ROH and RNH2.  These two ligands are common in the 

structures used to modify the silica and help to explain what is observed.  Similarly, Eu(III) 

(which is also considered as a hard Lewis acid
231

) is removed to greater effect when oxygen 

atoms are present.  Both the nitrogen and oxygen appear to have a preference for [UO2]
2+

 and 

hence Eu(III) is not seen to be selectively removed rather, both are removed at a higher 

percentage than other metals in the system. 

The results also show sulfur containing structures to have a preference for Cu(II) where over 

53 % (SPM32) and 49 % (MTCf) of the total metal removed were copper ions.  Sulfur is 

considered a „soft‟ base and Cu(II) is reported as borderline where it has shown indications of 

behaving as a „hard‟ and „soft‟ acid although in these cases appears to follow the „soft‟ 

characteristics and hence explains the high selectivity observed. 

HSAB theory has helped to explain the findings of this investigation but is certainly not 

comprehensive.  Due to the finite categories of „hard‟ and „soft‟ HSAB theory cannot predict 

which hard acid may be selected over another, especially those considered „borderline‟. 

It is important to note that sulfur atoms are present in most of the materials provided by 

PhosphonicS Ltd due to the synthesis process that is used.  It is highly likely that the 

selectivity of materials where oxygen and nitrogen atoms exist within the structure could be 

improved by removing the „soft‟ sulfur from structures that predominantly contain hard 

bases. 
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Silica Type Starting pH (mean) 
pH after 24 h aliquot 

(mean) 

pH after 4 wk aliquot 

(mean) 

SEA 4.67 5.40 5.82 

STA3 4.67 4.81 5.31 

SPA5 4.67 4.97 5.28 

SPAf 4.67 4.90 5.54 

SPM32 4.67 3.92 3.74 

MTCf 4.67 4.25 3.77 

PO1 4.67 4.65 4.74 

STMS 4.67 4.93 4.55 

POH1 4.67 3.14 3.07 

STMA 4.67 3.65 3.40 

SDEA 4.67 5.19 5.58 

SMG 4.67 4.65 4.49 

P2AS 4.67 4.56 4.51 

BAP7 4.67 4.66 4.69 

ZEOprep Si-APTES 4.67 6.08 6.08 

Fumed Si-APTES 4.67 6.16 6.27 

Table 45 – pH changes to solutions upon addition of the APTES-functionalised silica after a 24 hour period and a 4 

week period.  Values are the mean of three different solutions tested. 

Table 45 displays the pH changes in the solutions after each silica sample had been in the 

solution for 24 hours and 4 weeks.  The starting pH was the same for each solution as a 5 L 

solution was made before being separated into batches – this way the initial concentrations of 

each ion across the batch of experiments could be kept the same and make comparisons much 

simpler.  Nothing unusual was found: those with more acidic groups such as POH1 and 

STMA had reduced the initial concentrations by over one pH unit whilst those with basic 

groups such as SEA and APTES had increased the pH by over one pH unit. 

Figure 96 is a collection of the images of silica after a period of four weeks in the mixed 

metal solutions.  Strong colour changes could be seen after 3-4 minutes in some of the 

samples and this gave a good indication to expect a change in concentration.  Sample 14 

(P2AS) did not significantly change colour and when the results of this material are reviewed 

in Figure 93, it was one of the poorer performers where only a small reduction of uranium 

was observed.  A limited change in concentration was also observed for copper and europium 
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but these changes were very low in comparison to other ligands tested.  The remaining metal 

ions in the solution effectively remained at starting concentrations. 

 

Figure 96 – Silica samples after being in the mixed metal solutions for 4 weeks.  Colour changes could be seen in most 

cases after ca. 3-4 minutes. (1) SEA, (2) STA3, (3) SPA5, (4) SPAf, (5) SPM32, (6) MTCf, (7) PO1, (8) STMS, (9) 

POH1, (10) STMA, (11) SDEA, (12) SMG, (13) P2AS, (14) BAP7, (15) ZEOprep Si-APTES, (16) Fumed Si-APTES. 

Structures for the codes can be found in Table 41. 

The reversibility of the metal ion attachment to these materials was tested by taking the silica 

after the four week period (as seen in Figure 96) in the mixed metal solutions and put back 

into a 45 mL solution of deionised water for one week.  This water was the same as that used 

to make the original mixed metal solutions and its pH was measured to be 5.77.  The levels 

that were washed back into the water from the material were so low that ICP-OES could not 

detect any change to the solutions as they were below its limit of detection.  Instead they were 
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run on the ICP-MS to quantify this amount and the data for these can be found in Appendix 2 

– Reversibility and dissolution of metal ions following sequestration.  The largest amount to 

be washed off any material was 0.21 ppm Cu(II) from SEA.  A range of ions were leached 

into the water at levels between 0.05 and 0.18 ppm but many of the waters did not reach 

levels greater than 0.04 ppm suggesting strong ligand attachment to the sorbent.  This also 

essentially eradicates the suggestion that the metal ions may simply be sticking to the surface 

of the materials due to precipitation from the local pH change. 

Silica Type [Co] ppb [Ni] ppb [Cu] ppb [Zn] ppb [Cd] ppb [Eu] ppb [U] ppb 

Blank 5.5 ± 0.1 7.3 ± 0.7 2 ± 2 <LOD 5.7 ± 0.6 4 ± 6 3.6 ± 0.4 

SEA 19 ± 2 19 ± 2 210 ± 23 169 ± 24 25 ± 2 <LOD 3.9 ± 0.5 

STA3 19 ± 0.5 28 ± 2 135 ± 4 175 ± 13 22 ± 1 15 ± 3 5.2 ± 0.4 

SPA5 24 ± 1 53 ± 2 14 ± 0.8 145 ± 11 77 ± 5 15 ± 2 14 ± 3 

SPAf 18.3 ± 0.4 22.2 ± 0.3 3.4 ± 0.7 95 ± 3 121 ± 3 19 ± 2 22.5 ± 0.8 

SPM32 12.4 ± 0.7 13.4 ± 0.9 17 ± 2 5 ± 2 15 ± 1 2.2 ± 0.5 13.8 ± 0.6 

MTCf 13 ± 0.3 12.7 ± 0.5 18 ± 4 6 ± 1 36 ± 12 4 ± 1 20 ± 2 

PO1 59 ± 3 41 ± 3 43 ± 4 49 ± 3 57 ± 3 <LOD 6.7 ± 0.4 

STMS 27 ± 2 23 ± 2 27 ± 4 21 ± 3 30 ± 3 <LOD 8.5 ± 0.8 

POH1 14 ± 1 14 ± 0.6 3.9 ± 0.7 5 ± 1 14 ± 2 <LOD 4.4 ± 0.5 

STMA 11.3 ± 0.9 10.3 ± 0.8 1.1 ± 0.2 2 ± 1 12 ± 1 <LOD 7 ± 7 

SDEA 16.9 ± 0.4 14.5 ± 0.5 96 ± 12 73 ± 34 21 ± 1 <LOD 4.6 ± 0.9 

SMG 22.1 ± 0.4 18.8 ± 0.7 20 ± 2 17 ± 5 24 ± 2 1 ± 2 9.3 ± 0.3 

P2AS 18 ± 1 15 ± 1 8 ± 1 12 ± 3 19.4 ± 0.8 <LOD 17 ± 4 

BAP7 12.9 ± 0.6 13 ± 1 10 ± 1 8 ± 2 15 ± 1 5 ± 2 54 ± 4 

ZEOprep-

APTES 
14.6 ± 0.5 13.8 ± 0.8 68 ± 10 91 ± 11 23 ± 2 27 ± 0.9 7 ± 4 

Fumed Si-

APTES 
18.5 ± 0.8 15 ± 2 87 ± 7 110 ± 6 31 ± 1 89 ± 13 5 ± 1 

Table 46 – Concentration of metal ions measured in the water samples following reversibility investigations.  Blank 

indicates the natural deionised water levels as a reference.  The error is calculated as the standard deviation of five 

samples recorded by ICP-MS. 

For many examples in Table 46, the concentration of Eu(III) ions are below the limit of 

detection which shows that however much of this species is attached, unquestionably is not 

coming off in a solution of water. 
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It was also noticed (as mentioned in chapter 4) that the chemical structure of P2AS is 

essentially the same as PEGMA.  Due to this observation and the fact that no polymer or 

surface attached polymer used had yet produced successful results for metal sequestration, 

PEGMA functionalised silica was produced on both the ZEOprep and the fumed silica 

materials (Figure 97).  Similar results were found to the P2AS although a reduction in the 

copper concentration was noticeable which was not observed with the P2AS material.  A 

likely reason for this is the larger number of repeat units and hence oxygen atoms in the 

PEGMA functionalised silica resulting in the removal of more ions over a given period of 

time. 

 

Figure 97 - Selective removal of metal by PEGMA functionalised silica (the only surface grafted polymer tested that 

showed significant changes to a solution) from a mixed solution over 24 h and 4 w.  Overall, [UO2]
2+ was again found 

to be reduced in concentration the most with copper being the next selected metal ion.  All concentration levels of the 

remaining metal ions were reduced by similar amounts, ca. 2-3 ppm. 

7.2.2 Talvivaara mine water sample 

Initially the mine water sample was diluted and analysed by ICP-OES for all possible 

elements.  This was compared to a 50 ppm solution of a 28 element standard to give an 

indication of what was present and their concentrations.  These early tests found the elements 

iron, magnesium and manganese to fall outside the limits of detection but were found to be 
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present in very high concentrations once further dilutions had been carried out.  Uranium is 

also known to be present in the water at Talvivaara
232

 but due to the dilutions required to 

analyse the exceptionally high concentration of transition metals, the uranium was too dilute 

to analyse via this method, hence was not investigated and left for future work. 

Although Talvivaara is known primarily for its nickel production it is important to understand 

why such high concentrations of other metals were discovered when analysed.  The mine is 

expected to produce about 60000 t year
-1

 of zinc, 10000 t year
-1

 of copper and 1200 t year
-1

 of 

cobalt.  The process plant processes 600 m
3
 h

-1
 of the PLS solution and consists of copper 

recovery, zinc recovery, neutralisation and aluminium removal, nickel and cobalt recovery, 

iron removal and then final precipitation. Manganese is also known to be present in high 

concentration whilst a number of mineral ores are also listed.
224,227,233,234

 

 

Figure 98 – Talvivaara metal concentrations before and after attempted removal with APTES-functionalised 

ZEOprep and fumed silica materials.  The silica materials were added to the original solution but all analysis carried 

out via ICP-OES was done once the samples had been diluted to within range of the ICP sensitivity before being 

calculated back up. 

Figure 98 for all intents and purposes shows that the APTES-functionalised silica has had no 

effect as all concentrations of metal have remained essentially unchanged.  Following the pH 

study conducted on europium(III) in the previous chapter, solutions below pH 3 would be 
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expected to show little to no change when the silica attached APTES materials are used for 

sequestration.  This PLS solution was recorded to be pH 2.50 and hence the conditions appear 

too harsh for any effect to be seen.  This also supports the literature of Vezenov et al.
199

 that 

the pKa of APTES is ca. 3.9. 

7.3 Conclusion 

The results reported in this chapter have successfully demonstrated some selective properties 

of the ligands in these environments, but also the limits in which they function.  The solutions 

of multiple metals at similar concentrations in which the materials were tested for their 

selectivity has produced a series of substantial findings.  In each case, results and 

observations clearly display preferences for particular metal ions over others, with the most 

common being the uranyl ion.  Other metal ions that proved to be more readily removed via 

this method and the ligands tested were copper and europium ions.  Zinc, cadmium, nickel 

and cobalt ions were not observed to significantly reduce in concentration following these 

sequestration tests. 

Concerns were raised that the uranyl ion may be precipitating from the solution due to the 

change in local pH as it was this ion that was commonly being significantly reduced in 

concentration.  No sign of this was observed by simply looking at the solution where it might 

be expected that precipitation would be evident.  However, this was tested by filtering off all 

solid and added back to a new solution of deionised water before being run on the ICP-MS.  

This found that all metal ions appeared to be strongly bound to the materials as none of the 

metal concentrations increased beyond 0.21 ppm which was the copper ion from the „SEA‟ 

material. 

HSAB theory has been used to help understand some of the selectivity observations that have 

been made throughout the studies.  Although it does not explain all the observations, it 

provides a strong argument for why the large increase in selective removal of Cu(II) ions 

where sulfur ligands were used was observed and why [UO2]
2+

 was removed well with 

nitrogen and oxygen based ligands.  To build a more complete table of selectivity, instances 

where two metal ions were removed well could be made up into a solution of their own to 

determine the true preference and selectivity factor of one over the other. 

As reported in the body of the results and discussion, the initial pH of the solutions produced 

were relatively mild at pH 4.67.  Although slightly acidic, this fell within the range that 

illustrated very good results for the europium cation in chapter 6.  The nature of the ligand 
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attached to the silica determined how the pH of the solution changed and this varied from 

3.07 (POH1) to 6.27 (APTES-functionalised fumed silica). 

Talvivaara mine water was used as an extreme example of where these materials could be 

used to help selectively extract metals to assist with the mining of them.  However, all 

attempts to use the APTES ligand failed and this was largely down to the harsh acidic pH 

conditions.  Other factors may include the large number of competing ions in the solution but 

as chapter 6 showed, once the pH falls below 3, no significant reduction in concentration is 

observed.  This shows that these conditions are out of the range of the metal sequestration 

capability of the APTES ligand and cannot be used for this. 

7.4 Future Work 

The seven metal systems that were synthesised for selectivity investigations were designed to 

produce a solution that offered differing metals in terms of their oxidation state and natural 

existence but also included metal ions that offered very similar properties.  This has led to 

stimulating findings and new knowledge on the preferences of metal ions by the ligands 

trialled but on most occasions more than one metal ion was significantly reduced in 

concentration.  In order to improve the understanding of the ligands preference it is suggested 

that a solution be made where the most selected metal ions are the only ones used in a second 

solution and the materials in question are then tested for their selectivity when other 

competition is removed. 

pH is obviously a key factor in these investigations and by altering the starting pH to a more 

acidic or alkali environment would be sure to reveal differing preferences for the ligands 

although precipitation would need to be avoided in these environments. 

It is unlikely that many, if any of the PhosphonicS ligands tested in this work would be able 

to deal with the harsh conditions that Talvivaara‟s mine water offers but as these were not 

tested due to a finite amount of sample, these tests would complete the investigation. 

As the uranium concentration fell below the limit of detection once the solution was diluted 

down to keep the majority of ions within the limit of detection and quantification, studying 

the concentration change of this ion via ICP-MS could provide significant results due to how 

successful results were when removing it from the synthetic solutions.  Again, the pH of the 

solution may just be too harsh for any effect to be had. 
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Following the results of these investigations and the highly likely scenario that none of the 

ligands are adequate, it is proposed that more appropriate and efficient materials and methods 

are studied for these extreme conditions.  
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8 Summary and concluding remarks 

This project has produced some exciting and novel results in which thorough analysis and 

characterisation of the synthesised materials have provided a detailed understanding of the 

materials structures.  The modular approach enabled the break down of the overall aim into 

shorter projects which as a result, benefitted the development with a detailed method to each 

of the chapters discussed. 

Although some topics of the project were not as successful as others such as the free polymer 

modification synthesis, a lot was learnt from it.  An alternative approach to the post-

polymerisation functionalisation has been discussed and there is good reason to believe this 

would be successful.  From the success of the work in chapter 7 where selectivity studies 

were carried out, a large number of ligands have demonstrated to be worth using and if these 

could be attached to an unsaturated monomer, ATRP or ARGET ATRP could still 

demonstrate to have a use in this work.  Failing this, one of many other polymerisation 

techniques, albeit not as controlled, could still provide a process by which a highly 

functionalised and large surface area, solid supported material could be produced.  

The characterisation techniques have been used in a supportive way to help reinforce the 

information provided by the other.  Most effectively, SSNMR has shown the successful 

attachment of APTES, BIBB and PHEMA whilst TGA has shown a larger amount of organic 

material burning off following each step.  Meanwhile elemental analysis showed an increase 

in carbon content following the attachment of APTES and BIBB before an even larger 

increase of carbon (9.39 % and 30.17 %) was observed before the HEMA had been 

polymerised from the surface.  Using the nitrogen content increase also permitted the moles 

of APTES attached to the silica surface to be calculated and allowed a comparison of the two 

different silica materials discussed in detail in this thesis to be made.  Table 47 is a replicate 

of that found in chapter 5 but demonstrates the difference in moles of APTES attached to one 

gram of silica.  Surprisingly the difference is not that great considering the particles are so 

different in size, but the two techniques used to calculate these values did find quite similar 

and hence reliable values for this investigation. 
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Material TGA CHN 

ZEOprep Si-APTES 1.51 x 10
-3

 mol g
-1

 1.14 x 10
-3

 mol g
-1

 

Fumed Si-APTES 1.63 x 10
-3

 mol g
-1

 1.59 x 10
-3

 mol g
-1

 

Table 47 – Comparison of values for silica attached APTES via TGA and CHN calculations as reported in Table 13 in 

chapter 5. 

When the APTES-functionalised ZEOprep and fumed silice were tested for the ability to 

remove metals in a non-competitive solution, very high Rd values were recorded.  When 

compared to work reported from groups who have measured this value, these materials prove 

to be extremely competitive.
14,23,45,181

  A limited effect was had on these values when Na
+
 and 

Ca
2+

 were added to the solutions at ca. 1 % (w/w) concentration suggesting that these 

materials would be able to function in environments such as sea water. 

 

Figure 99 – Selective removal of metal APTES-functionalised fumed silica from a mixed solution over 24 h and 4 w.  

Originally reported in chapter 7, see Figure 95. 

The selectivity work reported in chapter 7 brings together the work of the previous chapters 

and demonstrates an end product being applied for what it was designed to do.  The results 

that followed then validated the reasons for this research, showing significant selectivity 

differences between the materials.  APTES-functionalised silica demonstrated strong 

selectivity whilst the materials supplied by PhosphonicS significantly reduced the time spent 
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on synthesis allowing for more investigations to be carried out on the ligands‟ behaviour.  It 

is clear that the project has benefitted considerably from this with fifteen different ligands 

tested in total.  PEGMA functionalised silica (see Figure 100) was produced based on the 

results of the P2AS material, once again demonstrating the significance of collaboration with 

PhosphonicS. 

 

Figure 100 – Selective removal of metal by PEGMA functionalised silica from a mixed solution over 24 h and 4 w.  

Originally reported in chapter 7, see Figure 97. 

Aside from the future work discussed at the end of each chapter, the project as a whole would 

benefit from considering which methodology would work best in a „real-world‟ case.  It is 

highly unlikely that one method would ever fit all circumstances, hence materials such as the 

silica coated SMP were briefly investigated in this work.  Discussions on specific 

methodology have taken place such as the use of dialysis tubing whereby the material would 

be packed inside the tubing and once extraction of metal ions had taken place, removal of the 

tubing and with it the target contaminant, can be implemented.  These discussions have led to 

grant applications being submitted and the group is optimistic that this research will be 

continued. 
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10 Appendix 1 – Linear Langmuir plots 

 

Figure 101 – Linear Langmuir plot for ZEOprep Si-APTES in Cu(II) solutions. 

 

Figure 102 – Linear Langmuir plot for fumed Si-APTES in Cu(II) solutions. 
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Figure 103 – Linear Langmuir plot for ZEOprep Si-APTES in Ni(II) solutions. 

 

Figure 104 – Linear Langmuir plot for fumed Si-APTES in Ni(II) solutions. 
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Figure 105 – Linear Langmuir plot for ZEOprep Si-APTES in Eu(III) solutions. 

 

Figure 106 – Linear Langmuir plot for fumed Si-APTES in Eu(III) solutions. 
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Figure 107 – Linear Langmuir plot for ZEOprep Si-APTES in Co(II) solutions. 

 

Figure 108 – Linear Langmuir plot for fumed Si-APTES in Co(II) solutions. 
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Figure 109 – Linear Langmuir plot for ZEOprep Si-APTES in Cd2+ solutions. 

 

Figure 110 – Linear Langmuir plot for fumed Si-APTES in Cd2+ solutions. 
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Figure 111 – Linear Langmuir plot for ZEOprep Si-APTES in [UO2]
2+ solutions. 

 

Figure 112 – Linear Langmuir plot for fumed Si-APTES in [UO2]
2+ solutions. 
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11 Appendix 2 – Reversibility and dissolution of metal ions following sequestration 

 

Figure 113 – Concentration of metal ions in a water solution following the addition of used silica materials, after having sequestered the corresponding metals in the graphs at the 

start of chapter 7 (Figure 80 to Figure 95).

-50

0

50

100

150

200

250

[Co] [Ni] [Cu] [Zn] [Cd] [Eu] [U]

C
o

n
ce

n
tr

at
io

n
 o

f 
so

lu
ti

o
n

 (
p

p
b

) 

Metals 

SEA STA3

SPA5 SPAf

SPM32 MTCf

PO1 STMS

POH1 STMA

SDEA SMG

BAP7 P2AS

ZEOprep Si-APTES Fumed Si-APTES

DI Water



Page | 220  

 

12 Appendix 3 – Particle size of PhosphonicS Ltd samples 

Silica Sample 
Volume Weighted 

Mean (μm) 

Specific Surface Area 

(m
2
 g

-1
) 

SEA 144.877 0.0188 

STA3 174.619 0.0153 

SPA5 174.054 0.0153 

SPAf 196.54 0.0137 

SPM32 179.637 0.0148 

MTCf 167.112 0.0161 

PO1 171.06 0.0156 

STMS 167.014 0.0159 

POH1 155.595 0.0168 

STMA 189.181 0.0139 

SDEA 157.822 0.0172 

SMG 164.214 0.0162 

P2AS 448.88 0.00558 

BAP7 321.867 0.00923 

Table 48 – Measured particle sizes of materials donated for this work by PhosphonicS Ltd.  Samples were measured 

on a Malvern Mastersizer 2000 as described in the instrumentation section of the experimental. 


