Pilkington Library

Author/Filing Title .. W.A! N.N...?!..G........

Vol No. \qquad Class Mark \qquad 1.

Please note that fines are charged on ALL overdue items.

P-N Bond Forming Reactions For The Synthesis of Phosphines

by

Matthew Wainwright

A Doctoral Thesis submitted
in partial fulfilment for the award of

Doctor of Philosophy of Loughborough University

Department of Chemistry,
Loughborough University,
Loughborough,
Leicestershire, LE11 3TU.
© M. Wainwright 2000 .

Dedicated to my Mum and Dad.

Abstract

The reactions of dialkylureas and thioureas with chlorodiphenylphosphine yielded ligands of the type $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{R})\right\}_{2} \mathrm{C}=\mathrm{E}$, where $\mathrm{R}=\mathrm{Me}$ or Et and $\mathrm{E}=\mathrm{O}$ or S . Reaction of the ligands $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{C}=\mathrm{O}$ and $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{C}=\mathrm{O}$ with $\mathrm{Pt}(\mathrm{II}), \mathrm{Pd}(\mathrm{II})$ and $\mathrm{Mo}(0)$ resulted in the formation of square planar and octahedral chelate complexes, whule $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{C}=\mathrm{O}$ also acted as a bridging ligand when reacted with $\mathrm{Au}(\mathrm{I})$. The coordınation chemistry of $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{C}=\mathrm{S}$ was less predictable and reaction of the ligand with $\mathrm{Pd}(\mathrm{II})$ resulted in $\mathrm{P}-\mathrm{N}$ bond cleavage and the formation of a five-membered heterocycle.

The ligand $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PCl}_{2}$ was readily synthesised from the reaction of 1,2-diethylhydrazine dihydrochlonde and phosphorus trichloride. Subsequent reactions of the ligand with alcohols and Grignard reagents resulted in the formation of a range of aryloxy- and aryl-substituted phosphorus (III) hydrazides. Spectroscopic and single crystal X-ray crystallographic studies showed that the ligands reacted with $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ to form square planar, five-membered P, P^{\prime} chelate rings.

Ligands of the type $\mathrm{R}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPR}_{2}$ and $\mathrm{R}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPR}_{2}$ were synthesised by the reactions of piperazine and homopiperazine with $\mathrm{R}_{2} \mathrm{PCl}$, where R_{2} $=\mathrm{Ph}_{2},-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{O}$ - and $-\mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{O}$-. Reaction of the ligands with $\mathrm{Pt}(\mathrm{II}), \mathrm{Pd}(\mathrm{II})$ and $\mathrm{Mo}(0)$ resulted in the formation of seven- and eight-membered P, P^{\prime} chelate rings, while further reactions with $\mathrm{Au}(\mathrm{I})$ and $\mathrm{Ru}(\mathrm{II})$ resulted in the ligands acting as bidentate bridging ligands. Single crystal X-ray crystallographic studies on cis$\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}\right\}\right]$ showed that the ligand forms an umbrella-like structure around the metal centre.

Results of tests performed to determine the ability of a number of the above ligands to promote the palladium catalysed formation of polyketone from CO and ethene were poor and in each case little or no polymeric material was produced

Acknowledgements

For reasons far too numerous to mention in one paragraph, Claire, Mum, Dad, Joners and Chris all deserve enormous thanks. Thank you.

From an academic point of view many thanks must go to Derek Woollins. His supervision over the past three years has been enlightening and very much appreciated. I am also indebted to Steve Dossett and Duncan Wass at B.P. Chemicals for their support durng my studies.

Thank you to everyone that I had the good fortune to work with during my time in Loughborough, Kirsty, Sean, Martin, Sandie, Rehan, Jenny, Jon, Paul, Rob, Pauline, Mark and Lard and especially Steve. Special thanks must go to Pravat, whose help throughout was offered without hesitation or expectation. I am extremely grateful. Many thanks also to Nick for his help with the piperazine chemistry.

Very many thanks to Jonny, Dave and the cast of Sunset Beach for making Westfield into home and the three years so enjoyable

On the technical side, thanks to Alex Slawin for all the crystal structure determinations, Tim for NMR, the EPSRC in Swansea and John Kershaw for mass spec, the CATS team in St. Andrews for catalytic tests and, of course, Pauline for all those microanalyses.

Contents

Title 1
Declaration 2
Dedication 3
Abstract 4
Acknowledgements 5
Contents 6
List of Figures 7
List of Tables 8
Abbreviations 10
General Experimental Conditions 12

1. Introduction 13
2. The Preparation and Coordınation Chemistry of Phosphorus (III)
Derivatives of Dialkyl Ureas and Thioureas 39
3. The Preparation and Coordination Chemistry of Phosphorus (III) Derivatives of Dalkyl Hydrazines 72
4. The Preparation and Coordination Chemistry of Phosphorus (III)
Derivatives of Piperazine and Homopiperazine 97
5. Catalytic Studies of Diphosphinoamine Ligands 122
Appendix - Single Crystal X-ray Crystallography Data 126
References 131

List of Figures

1.1 Reaction pathway for the synthesis of $\mathrm{Ph}(\mathrm{Cl}) \mathrm{PN}(\mathrm{Me}) \mathrm{C}(\mathrm{O})(\mathrm{Me}) \mathrm{NP}(\mathrm{Cl})$. 16
1.2 The solid state structure of $c l s-\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PHNC}(\mathrm{O}) \mathrm{NHPPh}_{2}\right\}\right]$. 19
1.3 The solid state structure of $\mathrm{Ph}_{2} \mathrm{PHNC}(\mathrm{S}) \mathrm{NHPPh}_{2} \cdot \mathrm{Me}_{2} \mathrm{SO}$. 21
1.4 The solid state structure of $\left[\mathrm{Zn}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right\}_{2}\right]$. 24
1.5 The solid state structure of $c l s-\left[\mathrm{Pt}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right\}_{2}\right]$. 25
1.6 The solid state structure of
trans-[Pt $\left.\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NHP}(\mathrm{S}) \mathrm{Ph}_{2}\right\}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right\}\right] \mathrm{Cl}$. 25
1.7 Diphosphine derivatives of N, N^{\prime}-dimethylhydrazine. 27
1.8 Synthesis of novel tetraphosphines. 28
1.9 The solid state structure of $c l s-\left[\mathrm{PtCl}_{2}\left\{(\mathrm{RO})_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}(\mathrm{OR})_{2}\right\}\right]$, $\mathrm{R}=o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$. 30
1.10 Reaction of $\left[(\mathrm{RO})_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}(\mathrm{OR})_{2}\right]\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CF}_{3}\right.$ or Ph$)$. 31
1.11 Proposed mechanism of $\mathrm{CO} /$ ethene copolymerisation. 37
2.1 Solid state structure of $c l s-\left[\mathrm{PtCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right] 3$. 43
2.2 Solid state structure of cis-[$\mathrm{PtCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}\}_{2} \mathrm{CO}\right\}\right] 4$. 44
$2.3 \quad{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $c i s-\left[\mathrm{PtCl}(\mathrm{Me})\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right] 7$. 47
2.4 The solid state structure of cis- $\left[\mathrm{PdCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right] 9$. 50
2.5 The solid state structure of $c t s-\left[\mathrm{PdCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right] 10$. 50
2.6 Solid state structure of $\left[\operatorname{Pd}\left\{\mathrm{OPPh}_{2}\right\}\left\{\mathrm{N}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Me}) \mathrm{PPh}_{2}\right\}\right]_{2} 11$. 53
2.7 Solid state structure of $\left[\mathrm{Pd}\left\{\mathrm{OPPh}_{2}\right\}\left\{\mathrm{N}(\mathrm{Et}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Et})_{\mathrm{PPh}}^{2} \boldsymbol{\}}\right]_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ 55
2.8 Solid state structure of $c i s-\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Me}) \mathrm{PPh}_{2}\right\}\right] 13$. 57
2.9 Solid state structure of $\left[\mathrm{Ph}_{2} \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}(\mathrm{Et}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\{\mathrm{AuCl}\} \mathrm{Ph}_{2}\right] . \mathrm{CHCl}_{3}$. 60
2.10 Sohd state structure of $\left[\mathrm{PtCl}_{2}\left\{\left(\mathrm{Ph}_{2}\right) \mathrm{PN}(\mathrm{Me}) \mathrm{CSN}(\mathrm{Me}) \mathrm{H}-P, S\right\}\right]$.dmso $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. 63
3.1 The solid state structure of cis- $\left[\mathrm{PdCl}_{2}\left\{(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}(\mathrm{OPh})_{2}\right\}\right]$ 26. 79
3.2 ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $c l s-\left[\mathrm{PtCl}(\mathrm{Me})\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et})_{\mathrm{P}}^{\mathrm{P}} \mathrm{Ph}_{2}\right\}\right] 29$. 81
3.3 Solid state structure of cis- $\left[\mathrm{PtCl}_{2}\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}\right\}\right] . \mathrm{CH}_{2} \mathrm{Cl}_{2}$. 85
4.1 Solid state structure of cis-[$\left.\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}\right\}\right] 42$. 102
4.2 Different ring sizes in complexes containing the ligands 48 and 49. 111

List of Tables

2.1 Selected IR data $\left(\mathrm{cm}^{-1}\right)$ for compounds 1-8. 43
2.2 Selected bond lengths (\AA) for compounds 3 and 4. 44
2.3 Selected bond angles $\left({ }^{\circ}\right)$ for compounds 3 and 4. 45
2.4 Elemental analysis data for complexes 1-8 (calculated values in parentheses). 46
2.5 Selected IR data $\left(\mathrm{cm}^{-1}\right)$ for compounds $9,10,13,14$ and 15 49
2.6 Selected bond lengths (\AA) for compounds 9 and 10. 51
2.7 Selected bond angles (${ }^{\circ}$) for compounds 9 and 10. 51
2.8 Selected bond lengths (\AA) for compound 11. 54
2.9 Selected bond angles $\left({ }^{\circ}\right)$ for compound 11. 54
2.10 Selected bond lengths (\AA) for compounds $12 . \mathrm{CH}_{2} \mathrm{Cl}_{2}$. 55
2.11 Selected bond angles $\left({ }^{\circ}\right)$ for compound 12. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. 55
2.12 Elemental analysis data for complexes 9, 10, 13, 14 and 15 (calculated values in parentheses). 57
2.13 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 13. 58
2.14 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $15 . \mathrm{CHCl}_{3}$. 60
2.15 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{1 7}$.dmso. CHCl_{3}. 63
3.1 Elemental analysis data for complexes 18-24 (calculated values in parentheses). 77
3.2 Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ for 26. 79
3.3 Selected IR data $\left(\mathrm{cm}^{-1}\right)$ for compounds 31, 32 and 33. 83
3.4 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $31 . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 85
3.5 Elemental analysis data for complexes 25-35 (calculated values in parentheses). 88
4.1 Elemental analysis data for compounds 36-38 (calculated values in parentheses). 99
4.2 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for compound 42. 102
4.3 Elemental analysis data for complexes 39-43 (calculated values in parentheses). 103
4.4 Elemental analysis data for complexes 44 to $\mathbf{4 7}$ (calculated values in parentheses). 106
4.5 Elemental analysis data for complexes 48, 49 and 50 (calculated values in parentheses). 107
4.6 Elemental analysis data for complexes $\mathbf{5 1}$ to $\mathbf{5 8}$
(calculated values in parentheses) 112
5.1 Test results from the Catalyst Evaluation Service at St. Andrews University. 123

Abbreviations.

The following abbreviations are used throughout this thesis.

A	Angstrom Unit, $10^{-10} \mathrm{~m}$
${ }^{t} \mathrm{Bu}$	t-butyl, - $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
cat.	Catalyst
cm^{-1}	wavenumber
cod	cycloocta-1,5-diene, $\mathrm{C}_{8} \mathrm{H}_{12}$
-	degrees
${ }^{\circ} \mathrm{C}$	degrees centigrade
dmso	dimethyl sulfoxide, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$
dppe	diphenylphosphinoethane, $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}$
dppm	diphenylphosphinomethane, $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$
E	chalcogen
Et	ethyl, $-\mathrm{C}_{2} \mathrm{H}_{5}$
FAB	fast atom bombardment
FT	Fourier transform
GC	Gas Chromatography
HFIPA	1,1,1,3,3,3-hexafluoroisopropyl alcohol
HOTf	Trifluoromethane sulfonic acid
HOTs	p-toluene sulfonic acid
Hz	Hertz
IR	infra-red
J	coupling constant, Hz
Mass Spec.	Mass Spectrometry
Me	methyl, - CH_{3}
MeO	Methoxy
m / z	mass-to-charge ratio
NMR	nuclear magnetic resonance
Ph	phenyl, $-\mathrm{C}_{6} \mathrm{H}_{5}$
PhO	phenoxy, $-\mathrm{OC}_{6} \mathrm{H}_{5}$
pip	piperidine

ppm	parts per mıllion
'Pr	i-propyl, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
thf	tetrahydrofuran, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
tht	tetrahydrothiophene
X	Halide

General Experimental Conditions.

Unless stated otherwise, all reactions were performed under an atmosphere of oxygen-free nitrogen using standard Schlenk procedures. All glassware was oven dried at $100^{\circ} \mathrm{C}$ or flame dried under vacuum before use.

All solvents and reagents were purchased from Aldrich, Strem or Fisher and used as received In addition toluene, thf, $\mathrm{Et}_{2} \mathrm{O}$ and petroleum ether (60-80) were distilled from sodium-benzophenone under nitrogen, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $\mathrm{CaH}_{2} . \mathrm{CDCl}_{3}$ ($99+$ atom $\% \mathrm{D}$) was used as supplied.
${ }^{31} \mathrm{P}$ NMR (36.2, 101.25 MHz$)$ were recorded on JEOL FX90Q and BRUKER AC250 spectrometers. Chemical shifts are reported relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in $\mathrm{H}_{2} \mathrm{O}$ on both spectrometers. Infra-red spectra were recorded as KBr discs on a Perkın Elmer System 2000 FTIR spectrometer. Microanalyses were carried out by the service at Loughborough University. FAB^{+}mass spectra were recorded by the EPSRC mass spectrometry service at Swansea

We are grateful to Johnson Matthey PLC for the loan of precious metal salts.

Chapter 1

Introduction

1.1 An introduction to the chemistry of phosphine ligands

In the last three decades considerable progress has been made in the use of transition metal complexes in homogeneous catalysis ${ }^{1,2}$ The preparation of stable complexes of transition metals in low oxidation states depends to a large extent on the use of strong π-acceptor ligands and throughout inorganic and organometallic chemistry few ligands have been as widely employed as tertiary mono- and diphosphines ${ }^{3-11}$ Ligand systems containing phosphines linked by alkyl chains, such as $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ [bis(diphenylphosphino)ethane (dppe)] and $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$ [bis(diphenylphosphino)methane (dppm)], have been extensively studied due to their ability to coordinate to metal centres through the lone pair of electrons at one or both of the phosphorus centres. ${ }^{12-14}$ However compared with the vast body of data accumulated on diphosphines in which the phosphorus nuclei are linked by a carbon atom or chain, considerably less has appeared on ligands where the backbone of the molecule comprises a heteroatom or group. Recently interest in diphosphazane ligands, $\mathrm{X}_{2} \mathrm{PN}(\mathrm{R}) \mathrm{PX}_{2}$, has grown rapidly as substituents on both phosphorus and nitrogen can be easily varied, resulting in changes in the P-N-P bond angle, the coordination behaviour of the ligands and the structural features of the resulting complexes. ${ }^{15-18}$ Of these ligands $\mathrm{Ph}_{2} \mathrm{PNHPPh}_{2}$ [bis(dıphenylphosphino)amine (dppa)], which is isoelectronic to dppm, has received the most attention ${ }^{19}$ as it demonstrates a similar coordinative versatility to the methylene compound. Despite the recent interest in ligands of the type $\mathrm{X}_{2} \mathrm{PN}(\mathrm{R}) \mathrm{PX}_{2}$, the chemistry of the hydrazine analogues, $\mathrm{X}_{2} \mathrm{PN}(\mathrm{R}) \mathrm{N}(\mathrm{R}) \mathrm{PX}_{2}$, has remained largely unexplored and is limited to a few reports. ${ }^{20-}$ 23

1.2 Phosphine derivatives of urea and thiourea

The principal route to diphosphinoamines is the condensation of chlorophosphines with prımary amines, or their trımethylsilyl derıvatives, for example
the synthesis of dppa from the condensation of hexamethyldisilazane with chlorodiphenylphosphine (Equation 1.1). ${ }^{19}$

$$
\begin{array}{r}
2 \mathrm{Ph}_{2} \mathrm{PCl}+\mathrm{NH}\left(\mathrm{SiMe}_{3}\right)_{2} \longrightarrow \mathrm{Ph}_{2} \mathrm{PNHPPh}_{2}+2 \mathrm{Me}_{3} \mathrm{SiCl} \\
\text { Equation 1.1 }
\end{array}
$$

By a similar methodology, phosphorus-substituted derivatives of urea and thourea can be prepared. The following brief overview of phosphorus-containing derivatives of urea and thiourea will concentrate on the chemistry of acyclic mono- and diphosphine derivatives.

1.2.1 Urea derivatives

The syntheses of diphosphines based on a urea skeleton were first reported in the mid 1960's, and were derived by condensation of isocyanates with diphenylphosphinic amide ${ }^{24}$ or via phosphorus-substituted carbodiimides ${ }^{25}$ (Equations 1.2 and 13).

Equation 1.2

$\mathrm{X}=$ lone pair, O or S

$$
\left\lvert\, \begin{gathered}
\mathrm{H}_{2} \mathrm{O}(\mathrm{X}=\mathrm{O}) \text { or } \\
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{X}=\text { lone pair })
\end{gathered}\right.
$$

Equation 1.3

After these initial reports the field became dormant until interest in the compounds was rekindled in the 1980's when silylated starting materials became the precursor of choice. Schmutzler reported the synthesis of numerous diphosphine derivatives of urea from the reactions of chlorophosphines with $N_{,} N^{\prime}$-bis(trimethylsilyl)- N, N^{\prime} bis(dimethyl)urea (Equation 1.4). ${ }^{26-31}$

$\mathrm{R}=\mathrm{Ph}, \mathrm{Et}, \mathrm{Me},{ }^{\mathrm{t}} \mathrm{Bu}$ or ${ }^{\prime} \mathrm{Pr} ; \mathrm{R}^{\prime}=\mathrm{Cl}$
Equation 1.4
$R=\mathrm{Ph} ; \mathrm{R}^{\prime}={ }^{\mathrm{t}} \mathrm{Bu}$

Experiments conducted between $\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{N}(\mathrm{Me}) \mathrm{C}(\mathrm{O})(\mathrm{Me}) \mathrm{N}\left(\mathrm{SiMe}_{3}\right)$ and PhPCl_{2} in an NMR tube at $-45{ }^{\circ} \mathrm{C}$ show evidence of a two-step reaction ${ }^{28}$ Upon warming the sample ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies show two strong signals, one representing the starting material PhPCl_{2} and the other an intermediate product, and one weak signal representıng the expected diphosphine product. However, in a spectrum recorded five minutes later at room temperature only the product $\mathrm{Ph}(\mathrm{Cl}) \mathrm{PN}(\mathrm{Me}) \mathrm{C}(\mathrm{O})(\mathrm{Me}) \mathrm{NP}(\mathrm{Cl}) \mathrm{Ph}$ was observed. On the basis of the above evidence Schmutzler et al suggested the following pathway for the reaction (Figure 1.1).

Schmutzler also reported that dehalogenation of the P-chloro substituted compounds with the bis(trimethylsilyl) ester of oxalic acid leads to mixed-valence heterocycles containing a P-P bond (Equation 1.5). ${ }^{28,29}$

$-\mathrm{CO}_{2}$
$\mathrm{R}=\mathrm{Me}, \mathrm{Et},{ }^{\mathrm{C}} \mathrm{Pr}$ or Ph

Equation 1.5

In a second step, insertion of PhPCl_{2} into the $\mathrm{P}-\mathrm{N}$ bond is suggested to occur

Figure 1.1 Reaction pathway for the synthesis of $\mathrm{Ph}(\mathrm{Cl}) \mathrm{PN}(\mathrm{Me}) \mathrm{C}(\mathrm{O})(\mathrm{Me}) \mathrm{NP}(\mathrm{Cl}) \mathrm{Ph}$.

Reports of diphosphine derivatives of ureas are not only limited to examples involving N, N '-dimethyl substituted ureas. The reactions of $\mathrm{F}_{2} \mathrm{PCl}$ with various N, N^{\prime} ' bis(trimethylsilyl)ureas at -30 to $-25^{\circ} \mathrm{C}$ have led to the synthesis of several $N, N^{\prime}-$ dialkyl diphosphines (Equation 1.6). ${ }^{30}$

$R=R^{\prime}=H ; R=R^{\prime}=M e ; R=M e, R^{\prime}=E t$,

$$
\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=c-\mathrm{C}_{6} \mathrm{H}_{11}
$$

More recently Woollins has described the synthesis of $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{H})\right\}_{2} \mathrm{CO}$ via the reaction of chlorodiphenylphosphine with N, N^{\prime}-bis(trimethylsilyl)urea. ${ }^{32}$ Air- and moisture-tolerant $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{H})\right\}_{2} \mathrm{CO}$ was found to be readily soluble only in $\mathrm{Me}_{2} \mathrm{SO}$, an observation which was attributed to the possibility of strong intermolecular hydrogen bonding between the carbonyl group and amine protons of adjacent molecules in the solid state. Oxidation of the ligand by hydrogen peroxide, sulfur or selenium leads to the phosphorus (V) derivatives $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NHC}(\mathrm{O}) \mathrm{NHP}(\mathrm{E}) \mathrm{Ph}_{2}(\mathrm{E}=\mathrm{O}, \mathrm{S}$ or Se$)$.

1.2.2 Coordination chemistry of diphosphine derivatives of ureas

Examples of metal complexes containing linear diphosphine derivatives of ureas are rare. The diflurophosphıne-substituted urea $\left\{\mathrm{F}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}$ has been shown to form simple P, P^{\prime} chelates when reacted with $\mathrm{N}_{1}{ }^{0}, \mathrm{Rh}^{\mathrm{I}}$ and $\mathrm{Ir}^{\mathrm{I}}{ }^{30,33}$ and the analogous ligand $\left\{\mathrm{F}_{2} \mathrm{PN}(\mathrm{H})\right\}_{2} \mathrm{CO}$ forms six-membered chelate rings when reacted with Ni^{0} and Mo^{0} (Equations 1.7 and 18) ${ }^{30}$ The reaction of $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{H})\right\}_{2} \mathrm{CO}$ with $\left[\mathrm{ML}_{2}(\operatorname{cod})\right](\mathrm{L}=\mathrm{Cl}$ or $\mathrm{Me}, \mathrm{M}=\mathrm{Pt}$ or Pd$)$ also proceeds smoothly with the displacement of cod and formation of the expected P,P' chelates (Equation 1.9) ${ }^{32}$ The crystal structure of $c l s-\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PNHCONHPPh}_{2}\right\}\right]$ reveals the expected square planar geometry around the palladium centre and shows a puckered pseudo-boat-like six-membered $\mathrm{PdP}_{2} \mathrm{~N}_{2} \mathrm{C}$ ring. The backbone of the ligand is involved in a pair of hydrogen bonds to adjacent molecules to form dimer pairs of molecules (Figure 1.2). ${ }^{32}$

$\mathrm{R}=\mathrm{H}$ or Me
Equation 1.7

Equation 1.8

$\mathrm{M}=\mathrm{Pt}$ or $\mathrm{Pd} ; \mathrm{L}=\mathrm{Cl}$ or Me
Equation 1.9

In contrast to the above ligands, $\left\{\left(\mathrm{Bu}^{\mathrm{t}}\right)(\mathrm{Ph}) \mathrm{PNMe}\right\}_{2} \mathrm{CO}$ displays a wider range of coordination modes (Equations 1.10, 111 and 1.12). ${ }^{31}$

(a)

(b)

Figure 1.2 Crystal structure of $c l s-\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PNHCONHPPh}_{2}\right\}\right]$ (a) showing the dimer pair formation and (b) the core illustrating the pseudo-boat conformation of the ring ${ }^{31}$

Equation 1.11

Equation 1.12

1.2.3 Thiourea derivatives

The chemistry of diphosphine-substituted thioureas remains relatively unexplored to date. Schmutzler reported that the monosulfide $\mathrm{Ph}_{2} \mathrm{P}-\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}$ was the only phosphorus-containing product from the reactions between $\mathrm{Ph}_{2} \mathrm{PCl}$ and thiourea and $\mathrm{Ph}_{2} \mathrm{PCl}$ and N, N^{\prime}-bis(trımethylsilyl)thiourea (Equation 1.13) and proposed the formation of the product was due to carbodiimıde elımınation from the $\mathrm{C}=\mathrm{N}$ isomer (Equation 1.14). ${ }^{34}$

$$
\mathrm{R}=\mathrm{H} \text { or } \mathrm{SiMe}_{3}
$$

Equation 1.13

Equation 1.14

This theory was however disproved by Bhattacharyya et al who showed that at room temperature reaction of $\mathrm{Ph}_{2} \mathrm{PCl}$ with thiourea in thf proceeds according to Equation 1.15 to give $\mathrm{Ph}_{2} \mathrm{PNHC}(\mathrm{S}) \mathrm{NHPPh}_{2} .{ }^{32}$ Precipitation of $\left[\mathrm{NEt}_{3} \mathrm{H}\right] \mathrm{Cl}$ accompanies the consumption of the insoluble thiourea and the supernatant solution turns green as the reaction proceeds. Removal of the salt by filtration, evaporation of the thf in vacuo and trituration of the resultant oil with ethanol gives the diphosphine in typically 46%

Equation 1.15
yield. Concentration of the ethanol filtrates leads to the isolation of more soluble byproducts, of which $\mathrm{Ph}_{2} \mathrm{P}-\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}$ is the most abundant Bhattacharyya et al reported two minor differences between their synthetic procedure and the one employed by Schmutzler. Firstly, a shorter reaction time was employed (45 minutes vs 5 hours) and secondly addition of the chlorophosphine was performed at room temperature, as opposed to at $-20 \quad{ }^{\circ} \mathrm{C}$. Allowing a hot saturated $\mathrm{Me}_{2} \mathrm{SO}$ solution of $\mathrm{Ph}_{2} \mathrm{PNHC}(\mathrm{S}) \mathrm{NHPPh}_{2}$ to cool slowly to room temperature gave crystals of $\mathrm{Ph}_{2} \mathrm{PNHC}(\mathrm{S}) \mathrm{NHPPh}_{2} . \mathrm{Me}_{2} \mathrm{SO}$ suitable for X-ray analysis (Figure 1.3).

Figure 1.3 Crystal structure of $\mathrm{Ph}_{2} \mathrm{PNHC}(\mathrm{S}) \mathrm{NHPPh}_{2} \mathrm{Me}_{2} \mathrm{SO}^{32}$

The molecule possesses crystallographic C_{2} symmetry about the $\mathrm{C}-\mathrm{S}$ bond and the $\mathrm{PN}(\mathrm{CS}) \mathrm{NP}$ backbone of the structure is planar (maximum deviation from the plane $0003 \AA$). As with the analogous urea compound, $\mathrm{Ph}_{2} \mathrm{PNHC}(\mathrm{O}) \mathrm{NHPPh}_{2}$, oxidation of $\mathrm{Ph}_{2} \mathrm{PNHC}(\mathrm{S}) \mathrm{NHPPh}_{2}$ by sulfur proceeds in refluxing toluene to give the disulfide $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NHC}(\mathrm{S}) \mathrm{NHP}(\mathrm{S}) \mathrm{Ph}_{2}$, however, unlike the urea compound, reaction of the thiourea derivative with $\mathrm{H}_{2} \mathrm{O}_{2}$ or selenıum failed to give the respective doxidised compounds Woollins also reported the synthesis of a mono-substituted derivative via the reaction of thiourea with one equivalent of $\mathrm{Ph}_{2} \mathrm{PCl}^{35}$ Oxidation of $\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NHPPh}_{2}$ is readıly achieved with sulfur and selenium to give the compounds $\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NHP}(\mathrm{S}) \mathrm{Ph}_{2}$ and $\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NHP}(\mathrm{Se}) \mathrm{Ph}_{2}{ }^{36}$

Schmutzler was more successful with substituted thioureas and was able to synthesise a number of mono- and bis-substituted derivatıves of N, N^{\prime} ' dimethylthiourea via reaction with one or two equivalents of different chlorophosphines (Equation 1.16 and 1.17). ${ }^{37,38}$

$\mathrm{R}_{2}=\mathrm{Ph}_{2},(\mathrm{OMe})_{2}$ or $-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-$
Equation 1.16

$\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me} ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{OMe} ; \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Ph} ;$
Equation 1.17
$\mathrm{R}=\mathrm{R}^{\prime}={ }^{\prime} \mathrm{Pr} ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{O}^{\prime} \mathrm{Pr} ; \mathrm{R}={ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{R}^{\prime}=\mathrm{Ph}$;
$\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Ph} ; \mathrm{R}-\mathrm{R}^{\prime}=-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-$

Schmutzler and co-workers also reported the synthesis of unsymmetrical diphosphine derivatives of N, N^{\prime}-dımethylthiourea via reaction of $\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Me}) \mathrm{H}$ with $\mathrm{F}_{2} \mathrm{PCl}$ and $\mathrm{Me}_{2} \mathrm{PCl}$ (Equation 1.18). ${ }^{39}$

$\mathrm{R}=\mathrm{F}$ or Me
Equation 1.18

1.2.4 Coordination chemistry of phosphine dervvatives of thiourea

Of the above examples of mono- and bis-substituted phosphine derivatives of thiourea the only reports of metal complexes containing such ligands are those involving $\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NHPPh}_{2}$ and $\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NHP}(\mathrm{S}) \mathrm{Ph}_{2} .{ }^{35,36}$ The reaction of two equivalents of the ligand $\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NHPPh}{ }_{2}$ with $\left[\mathrm{PtCl}_{2}\right.$ (cod) $]$ results in the formation of the bis-chelate metal complex $\left[\mathrm{Pt}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NHPPh}_{2}\right\}_{2}\right]^{2+} 2 \mathrm{Cl}^{-}$(Equation 1.19). ${ }^{35}$

Equation 1.19

The X-ray crystal structure of the complex confirms that the two ligands are bonded to the platinum atom by the sulfur and phosphorus groups to give five-membered Pt -S-C-N-P rings. Reaction of the oxidised ligand $\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NHP}(\mathrm{S}) \mathrm{Ph}_{2}$ with $\mathrm{KO} t \mathrm{Bu}$ in thf at room temperature gives $\mathrm{K}\left[\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right]$ which in turn reacts with $\mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Pt}^{\text {II }}$ salts to yield bis-chelate metal complexes (Equations 120 and 1.21 and Figures 1.4 and 1.5). Surprisingly, reaction of $\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NHP}(\mathrm{S}) \mathrm{Ph}_{2}$ with $\left[\mathrm{PtCl}_{2}\right.$ (cod)] failed to give the expected six-membered chelate complex $\left[\mathrm{PtCl}_{2}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NHP}(\mathrm{S}) \mathrm{Ph}_{2}\right\}\right]$ and instead resulted in the bis-chelate
$\left[\mathrm{Pt}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NHP}(\mathrm{S}) \mathrm{Ph}_{2}\right\}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right\}\right] \mathrm{Cl}$ containing one neutral and one deprotonated ligand. The crystal structure of the complex shows that the two chelates are bound to the platinum atom by the four sulfur donor atoms, forming two sixmembered rings in the trans configuration (Figure 1.6).

$$
\mathrm{ZnCl}_{2}+2 \mathrm{~K}\left[\mathrm{H}_{2} \mathrm{NC}(\mathrm{~S}) \mathrm{NP}(\mathrm{~S}) \mathrm{Ph}_{2}\right] \longrightarrow\left[\mathrm{Zn}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{~S}) \mathrm{NP}(\mathrm{~S}) \mathrm{Ph}_{2}\right\}_{2}\right]+2 \mathrm{KCl}
$$

Equation 1.20
$\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]+2 \mathrm{~K}\left[\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right] \longrightarrow\left[\mathrm{Pt}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right\}_{2}\right]+2 \mathrm{KCl}$

Equation 1.21

Figure 1.4 Crystal structure of $\left[\mathrm{Zn}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right\}_{2}\right]$. ${ }^{36}$

Figure 1.5 Crystal structure of $c t s-\left[\mathrm{Pt}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right\}_{2}\right]^{36}$

Figure 1.6 Crystal structure of trans-
$\left[\mathrm{Pt}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NHP}(\mathrm{S}) \mathrm{Ph}_{2}\right\}\left\{\mathrm{H}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right\}\right] \mathrm{Cl}^{36}$

1.3 Phosphine derivatives of hydrazine

As mentioned earlier the chemistry of phosphorus-nitrogen compounds containing phosphorus-hydrazine backbones has received little attention when compared to ligands of the type $\mathrm{X}_{2} \mathrm{PN}(\mathrm{R}) \mathrm{PX}_{2}{ }^{20-23}$ The following brief overview summarises the developments in the chemistry of P (III) hydrazides.

1.3.1 Synthests of phosphorus(III) hydrazıdes

The synthesis of acyclic phosphorus (III) hydrazides was pioneered in the 1970's by Gilje et al ${ }^{21}$ and Nöth et al ${ }^{40}$ who reported the synthesis of 1,2bis(dichlorophosphino)dimethylhydrazune through (i) the condensation of PCl_{3} with 1,2-dimethylhydrazine at $-196{ }^{\circ} \mathrm{C}$ and (ii) the reaction of the cage compound $\mathrm{P}[\mathrm{N}(\mathrm{Me}) \mathrm{N}(\mathrm{Me})]_{3} \mathrm{P}$ with PCl_{3}, both methods giving the product in $15-20 \%$ yield. Despite these reports there was little interest in the field untıl Katti et al., contınuing their studies of man group metal hydrazides, ${ }^{41-46}$ reported the development of a onestep, straightforward and high-yield synthetic route to $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}$. The new route involved the treatment of PCl_{3} with 1,2-dimethylhydrazine dihydrochloride (Equation 1.22). ${ }^{47}$

$$
\mathrm{H}(\mathrm{Me}) \mathrm{NN}(\mathrm{Me}) \mathrm{H} .2 \mathrm{HCl}+\text { excess } \mathrm{PCl}_{3} \longrightarrow \mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}+4 \mathrm{HCl}
$$

Equation 1.22

Phosphorus trichloride was used as both solvent and reactant, and the mixture was refluxed for 36 hours to obtain the desired product as a colourless viscous oil in 92% yield. $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}$ can then be used as a chloro precursor and undergoes facile nucleophilic substitution reactions with alkoxides and Grignard reagents to produce a broad range of alkoxy-, aryloxy- and aryl-substituted phosphine hydrazides (Figure 1.7). ${ }^{48,49}$

$\mathrm{R}=\mathrm{Me} ; \mathrm{Et} ; \mathrm{CH}_{2} \mathrm{CF}_{3} ;\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3} ;$
$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} ;{ }^{\prime} \mathrm{Pr} ; \mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}-p$ or o-C $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$

Figure 1.7 Diphosphıne derivatives of N, N '-dimethylhydrazine

Reddy et. al. reported that the cyclic phosphorus hydrazides $\mathrm{RP}[\mathrm{N}(\mathrm{Me}) \mathrm{N}(\mathrm{H})]_{2} \mathrm{PR}\left(\mathrm{R}=\mathrm{Et}, \mathrm{Ph}\right.$ and $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right)$ can be prepared by the reaction of RPCl_{2} with four equivalents of methylhydrazine (Equation 1.23). ${ }^{50}$

$R=E t, P h$ or ${ }^{t} B u$
Equation 1.23
${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy indicates that the Ph and ${ }^{\mathrm{t}} \mathrm{Bu}$ derivatives exist in the chair conformations in solution, yet the ethyl analogue exists in both the chair and boat conformations. Reddy et al also reported that $\mathrm{PhP}[\mathrm{N}(\mathrm{Me}) \mathrm{N}(\mathrm{H})]_{2} \mathrm{PPh}$ can be used as a synthon for the synthesis of novel tetraphosphines via reactions with phosphorus (III) halides (Figure 1.8) ${ }^{51}$ The new tetraphosphine represents the first
example of a compound that combines the phosphinoamine, [P-N-P], and phosphorus (III) hydrazide, [P-N-N-P], functionalities in a single molecular framework.

$2 \mathrm{PCl}_{3}$
$2 \mathrm{NEt}_{3}$
$-2\left[\mathrm{NEt}_{3} \mathrm{HCl}\right]$

Figure 1.8 Synthesis of novel tetraphosphines.

The reaction of $\mathrm{Ph}_{2} \mathrm{PCl}$ with $[\mathrm{PhPN}(\mathrm{Me}) \mathrm{N}(\mathrm{H})]_{2}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ at $25{ }^{\circ} \mathrm{C}$ results in the new heterocyclic phosphormane $\left[\mathrm{PhPN}(\mathrm{Me}) \mathrm{N}\left(\mathrm{PPh}_{2}\right)\right]_{2}$ in 84% yield The alkoxy derivatıve, $\left[\mathrm{PhPN}(\mathrm{Me}) \mathrm{N}\left(\mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}\right)\right]_{2}$ was synthesised by the treatment of $[\mathrm{PhPN}(\mathrm{Me}) \mathrm{N}(\mathrm{H})]_{2}$ with PCl_{3} in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ to produce the intermediate $\left[\mathrm{PhPN}(\mathrm{Me}) \mathrm{N}\left(\mathrm{PCl}_{2}\right)\right]_{2}$ followed by reaction with $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$. Both compounds were isolated as air-stable, white crystalline solids. ${ }^{50}$

1.3.2 Coordination chemistry of phosphorus (III) hydrazides

Katti and co-workers reported that the phosphorus (III) hydrazides described in Figure 1.7 react cleanly with Group 6 metal carbonyls to produce mono-nuclear Mo^{0} and W^{0} complexes (Equation 1.24). ${ }^{23,47}$

$\mathrm{M}=\mathrm{Mo}$ or $\mathrm{W} ; \mathrm{X}=\mathrm{OCH}_{2} \mathrm{CF}_{3}$ or OPh
Equation 1.24

IR spectroscopic data for the complexes and X-ray crystallographic data (for $M=W$, $\mathrm{X}=\mathrm{OPh}$) confirmed the cis nature of the carbonyl ligands around the Mo° and W^{0}.

Reactions of $\left[\mathrm{X}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PX}_{2}\right]$ with $\mathrm{Pt}^{\mathrm{II}}$ and $\mathrm{Pd}^{\mathrm{II}}$ also proceed smoothly to yield a range of P, P^{\prime} chelate complexes (Equation 1.25). ${ }^{23,47,48}$ Reaction of equimolar quantıties of ligand with $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right]$ or $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right]$ results in the formation of the complexes in good yield. The X-ray crystal structures of $\left[\mathrm{PtCl}_{2}\left\{(\mathrm{RO})_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}(\mathrm{OR})_{2}\right\}\right], \mathrm{R}=\mathrm{Ph}$ or $o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, confirm that in each case the platinum is in the expected square planar environment and the ligand chelates in a cis nature to form a five-membered metallacycle (Figure 19) ${ }^{48}$

$\mathrm{X}=\mathrm{Cl}, \mathrm{OCH}_{2} \mathrm{CF}_{3}, \mathrm{O}^{\prime} \mathrm{Pr}, \mathrm{OPh}, \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{Br}-p$
$\mathrm{M}=\mathrm{Pt}$ or Pd
or $o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$
Equation 1.25

Figure 1.9 Crystal structure of $c l s-\left[\mathrm{PtCl}_{2}\left\{(\mathrm{RO})_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}(\mathrm{OR})_{2}\right\}\right], \mathrm{R}=o-$ $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, (Phenyl ring atoms are omitted for clarty). ${ }^{48}$

The ligands $\left[(\mathrm{RO})_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}(\mathrm{OR})_{2}\right.$] (where $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CF}_{3}$ or Ph) react with $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ to produce chloro-bridged dimers in near quantitative yields (Figure $1.10) .{ }^{14}$ The chloride bridge in the dimers can be readily cleaved upon reactions with triaryl phosphines or arsines and the five-membered P-N-N-P-Rh rungs retained (Figure 1.10). The resulting compounds can be thought of as 'hybrids' to the Wilkinson catalyst $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ and variations of the substituents on the phosphorus-hydrazine backbone may afford complexes for potential catalytic applications. ${ }^{23}$

Figure 1.10 Reaction of $\left[(\mathrm{RO})_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}(\mathrm{OR})_{2}\right]\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CF}_{3}\right.$ or Ph$)$

Cyclic phosphorus hydrazides can be used as functionalised phosphines for reactions with transition metal precursors. The presence of two trivalent phosphorus centres in the compounds $\mathrm{RP}[\mathrm{N}(\mathrm{Me}) \mathrm{N}(\mathrm{H})]_{2} \mathrm{PR}(\mathrm{R}=\mathrm{Et}$ and Ph$)$ presents the possibility of using them as bidentate ligands Both compounds react smoothly with two equivalents of $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{pip})_{2}\right]$ to give the binuclear complexes $\left[\left\{\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{pip})\right\}_{2}\{\mu-\right.$ $\left.\left.[\mathrm{RPN}(\mathrm{Me}) \mathrm{N}(\mathrm{H})]_{2}\right\}\right]$ (Equation 126$) .{ }^{50}$

$\mathrm{R}=\mathrm{Et}$ or Ph
Equation 1.26

Reddy et al reported that the tetraphosphine ligands $\left[\mathrm{PhPN}(\mathrm{Me}) \mathrm{N}\left(\mathrm{PPh}_{2}\right)\right]_{2}$ and $\left[\mathrm{PhPN}(\mathrm{Me}) \mathrm{N}\left(\mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}\right)\right]_{2}$ react successfully with a number of transition metals compounds to yield four-membered metallacyclic complexes (Equations 1.27 and 1.28). ${ }^{51}$

$\mathrm{M}=\mathrm{Mo}$ or $\mathrm{W} ; \mathrm{R}=\mathrm{Ph}$ or $\mathrm{OCH}_{2} \mathrm{CF}_{3}$

$\mathrm{R}=\mathrm{OCH}_{2} \mathrm{CF}_{3}$

Equation 1.28

The X-ray crystal structure of $\left[\left\{\mathrm{W}(\mathrm{CO})_{4}\right\}_{2}\left\{\mu-\left[\mathrm{PhPN}(\mathrm{Me}) \mathrm{N}\left(\mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}\right)\right]_{2}\right\}\right]$ confirms that the preferred mode of coordination of the ligand is via the P-N-P functionality

1.4 Phosphine derıvatuves of piperazine

Reports of reactions involving piperazine $\left[\mathrm{HN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NH}\right]$ and $\mathrm{Ph}_{2} \mathrm{PCl}$ are limited to a few examples ${ }^{52,53}$. It was reported in a Japanese patent that the reaction of piperazine with $\mathrm{Ph}_{2} \mathrm{PCl}$, in benzene, results in the mono-substituted product $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NH} .{ }^{53}$ However, when repeating the reaction Thomas et al reported that the compound formed is the bis-substituted product $\mathrm{Ph}_{2} \mathrm{PN}_{\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2} \text { and not }}$ $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NH} .{ }^{52}$ No coordination chemistry was described for the bis-substituted product $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}$.
1.5 Development of the use of tertary phosphine ligands in the transition metalcatalysed copolymerisation of CO and ethene

As mentioned at the start of the chapter, considerable process has been made recently in the use of transition metal complexes in homogeneous catalysis, for example, olefins (e g ethylene and propylene) are readily polymerised by a vaniety of homogeneous catalysts to give polyolefins ($e g$ polyethylene and polypropylene), while spectacular improvements in catalyst activity have been reported for the rhodium catalysed carbonylation of methanol ${ }^{54}$. Another area of homogeneous catalysis which has received considerable interest from both academia and industry over the last decade is the alternating copolymerisation of carbon monoxide and ethene (Equation 1.29). ${ }^{55,56,57}$

Equation 1.29

These copolymers are of interest for four reasons. ${ }^{55}$ Firstly, as a monomer carbon monoxide is particularly plentiful and inexpensive, and secondly, the presence of the carbonyl group in the backbone makes these copolymers photodegradable. ${ }^{58}$ A third reason is that, because of the ease with which the carbonyl group can be chemically modified, the polyketones serve as excellent starting materials for other classes of functionalized polymers. In fact, approximately two dozen polymers incorporating a variety of functional groups have been previously synthesised from the CO/ethene coploymer. ${ }^{59}$ Finally, specific interest in the alternatıng CO/ethene copolymer stems from its high mechanical strength, which results from its high crystallinity. ${ }^{60}$

Nickel was the first transition metal used to catalyse the copolymerisation of CO and ethene. In the late 1940 s, Reppe and Magin ${ }^{61,62}$ showed that $\mathrm{K}_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ in water produced low-melting point oligomers of ethene and CO in addition to diethyl ketone and propionic acid. In the early 1970s Shell Development succeeded ${ }^{63,64}$ in improving the catalyst by the addition of strong acids such as HOTf and HOTs in solvents such as HFIPA. They were able to obtan a polymer with a relatively high molecular weight, but the yield of polymer per gram of catalyst remained low.

Palladium catalysts for alternating polyketone formation were first reported by Gough at ICI in $1967^{65,66}$ and consisted of bis(tertiaryphosphine)palladium dichloride complexes which yielded polyketone at a rate of around $300 \mathrm{~g}(\mathrm{~g} \text { of } \mathrm{Pd})^{-1} \mathrm{~h}^{-1}$. However these catalysts required severe operating conditions ($250{ }^{\circ} \mathrm{C}, 2000 \mathrm{bar}$) and the yield of polymer per gram of palladium was low. It was not until the 1980s that advances occurred which opened the way for efficient synthesis of polyketone. Firstly, Sen and co-workers ${ }^{67,68}$ published work which showed that certain tertary phosphine palladium complexes contaning the weakly coordınating tetrafluoroborate anion in dichloromethane produced polyketone under very mild conditıons. Secondly, at Shell Research cationic palladium complexes containing tertiary phosphine ligands and weakly coordinatıng anions were studied in methanol as catalysts for the methoxycarbonylation of ethene to give methyl propionate. A surprising and remarkable change in selectivity was observed, by Drent and co-workers, when the triphenylphosphine ligands were replaced by cis-chelating bidentate phosphıne ligands. Under the same conditions, no methyl propionate product was formed, instead high molecular-welght, perfectly alternating (CO/ethene) polyketone was formed at very high rates (ca $6000 \mathrm{~g}(\mathrm{~g} \text { of } \mathrm{Pd})^{-1} \mathrm{~h}^{-1}$. These catalysts proved very active and yields (in g of polymer/g of palladum) above 10^{6} were achieved under economically attractive, mild reaction conditions ($85{ }^{\circ} \mathrm{C}, 45 \mathrm{bar}$). ${ }^{56,69-72}$ It was subsequently discovered that variation of the bidentate ligand results in significant changes in both the reaction rate and the molecular weight of the product, for example, the reaction rate achieved when using dppp as the diphosphine is approximately six times that achieved when dppe is the chelate. ${ }^{73}$ As a consequence of this discovery, a great number of studies on the synthesis and coordination chemistry of many different ligand systems have taken place over the past two decades. Initial investigations centred on ligands containing a P-C-P framework and more recently there has also been considerable interest in ligands containing P-N-P linkages The ease of the formation of the P-N bond, through reaction of chlorophosphines with amines, offers scope for the synthesis of many different chelating ligands and subtle variations of the substituents on both the P and N atoms can have a marked effect on the electronic and steric properties of any resulting metal complexes.
1.6 The mechanism for the palladium-catalysed copolymerisation of CO and ethene

1.6.1 Propagation

It is thought that the catalytically active species in polyketone formation is a d^{8} square-planar cationic complex $\mathrm{L}_{2} \mathrm{Pd} \mathbf{P}^{+}$, where L_{2} represents the bidentate ligand and P^{+}is the growing polymer chain. The fourth coordination site at palladium may be filled by an anion, a solvent molecule, a carbonyl group of the chain (vide infra), or a monomer molecule.

The two alternating propagation steps are migratory insertion of CO into the palladium-alkyl bond (Equation 1.30) ${ }^{74}$ and migratory insertion of ethene into the resulting palladium-acyl bond (Equation 1.31). ${ }^{73}$ Propagation errors (double CO or ethene insertion) are not observed.

Equation 1.30

$$
\mathrm{L}_{2} \mathrm{PdCOP}^{+} \xrightarrow{\mathrm{C}_{2} \mathrm{H}_{4}} \mathrm{~L}_{2} \mathrm{PdCH}_{2} \mathrm{CH}_{2} \mathrm{COP}^{+}
$$

Equation 1.31

1.6.2 Inittation and termination

End group analysis of the CO/ethene copolymer by ${ }^{13} \mathrm{C}$ NMR has demonstrated the presence of 50% ester $\left(-\mathrm{COOCH}_{3}\right)$ and 50% ketone $\left(-\mathrm{COCH}_{2} \mathrm{CH}_{3}\right)$ groups while GC and MS analyses of the oligomer fractions show, in addition to the expected keto-ester product (2), the presence of diester (3) and diketones (4) compounds.

$$
\begin{array}{cc}
\mathrm{CH}_{3} \mathrm{CH}_{2}-\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2}-\right)_{n}-\mathrm{COOCH}_{3} & \mathrm{n} \geq 0 \\
\mathbf{2} \quad \text { keto-ester } & \\
\mathrm{CH}_{3} \mathrm{O}-(-\mathrm{COCH} 2 \mathrm{CH} 2-)_{\mathrm{n}} \text { - } \mathrm{COOCH}_{3} & \mathrm{n} \geq 1 \\
\mathbf{3} \text { diester } & \\
\mathrm{CH}_{3} \mathrm{CH}_{2}-\left(-\mathrm{COCH}_{2} \mathrm{CH}_{2}-\right)_{\mathrm{n}}-\mathrm{COCH}_{2} \mathrm{CH}_{3} & \mathrm{n} \geq 0
\end{array}
$$

4 diketone

At low temperatures ($\leq 85^{\circ} \mathrm{C}$), the majority of the products are keto-esters with small quantities of diesters and diketones, however, sıgnificantly larger quantities of the latter two products are observed when the temperature of the reaction is increased. This observation has been explained ${ }^{13 c 2}$ by assuming two initiation and two termination mechanisms for polyketone formation. The first initiation mechanism produces ester end groups and starts with a palladium carbomethoxy species, ${ }^{13,18 c 2}$ which can be formed either by CO insertion in a palladium methoxide or by drect attack of methanol on coordinated CO (Equation 1.32).

Equation 1.32

Alternatively, a chain can start by insertion of ethene in a palladium hydride, ${ }^{56,57,59}$ producing a ketone end group. Ethene insertion in a palladium hydride and CO insertion in the resulting ethyl complex are both rapid and reversible; it is thought that the second ethene insertion (in the Pd acyl) is reversible ${ }^{76}$ and 'traps' the acyl to start the chain (Equation 1 33).

Equation 1.33

Two relevant termination mechanisms have been proposed for the CO/ethene polymerisation reaction. One mechanism, protolysis of the palladium-alkyl bond, produces a saturated ketone end group (Equation 1.34)

Equation 1.34

A second mechanism, the alcholysis of the palladium-acyl bond, gives an ester end group (Equation 1.35)

$$
\mathrm{L}_{2} \mathrm{PdCOP}^{+} \xrightarrow{\mathrm{CH}_{3} \mathrm{OH}} \mathrm{~L}_{2} \mathrm{PdH}^{+}+\mathrm{PCOOCH}_{3}
$$

Equation 1.35

Figure 1.1 summarises the formation of the three possible polymeric products of types 2,3 and $\mathbf{4}$ by the two initration-propagation-termination cycles A and B. Both cycles produce keto-ester molecules but the cycles are connected by two 'cross' termination steps which give diester and diketone products

Figure 1.1 Proposed mechanism of $\mathrm{CO} /$ ethene copolymerisation.

1.6 Aims of this work.

The chemistry of the types of phosphorus-nitrogen compounds described in this chapter remains relatively unexplored and therefore, in collaboration with BP Chemicals Ltd, we decided to investigate more fully the synthesis and coordination chemistry of these types of ligands and therr possible applications in catalytic systems. Our initial studies concentrated on the formation of ligands containing a P-$\mathrm{N}-\mathrm{C}(\mathrm{E})-\mathrm{N}-\mathrm{P}(\mathrm{E}=\mathrm{O}$ or S$)$ backbone via reaction of urea- and thiourea-based compounds with chlorophosphines. In particular, the coordination chemistry of these systems had received very little attention and offered great scope for further detailed investigation. We also studied the synthesis of ligands based around a P-N-N-P backbone and their subsequent reactions with different metal centres to give fivemembered chelate rings. Although there were a number of reports involving the reactions of diphosphine derivatıves of N, N^{\prime}-dimethylhydrazine, the synthesis and coordination chemistry of phosphine derivatives of other dalkylhydrazines remained unexplored. Finally, we studied the reactions of piperazine and homopiperazine with various chlorophosphines. Very little had been reported concerning such reactions and therefore the opportunity presented itself for an in-depth investigation into the ability of these compounds to act as bidentate ligands.

We describe here our studies on the synthesis and coordination chemistry of a number of ligands of the above types and the catalytic properties of selection of the compounds.

Chapter 2

The Preparation and Coordination Chemistry of Phosphorus (III) Derivatives of Dialkyl Ureas and Thioureas.

2.1 Introduction

As discussed in Chapter 1, after initial investigations in the $1960^{\prime} \mathrm{s}^{24,25}$, research into the study of diphosphines based on a urea and thourea backbone became dormant until interest was rekindled in the 1980's. ${ }^{26-31}$ The mild reaction conditions required in the synthesis of these ligands, resulting from the use of silylated compounds, coupled with the inexpensive nature of the starting materials ensures that the products remain economically viable, while the substituent groups on both the phosphorus and the nitrogen atoms can be easily varied, offering excellent control of the steric and electronic properties of the ligands. The presence of the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{S}$ functionalities also offers sites which can be chemically modified to alter the properties of the compounds. Here we report on the extension of the work of Woollins and Schmutzler to include the coordinative properties of known ligands, as well as the synthesis and coordination chemistry of new diphosphine derivatives of dialkylureas and thioureas.

Results and Discussion

2.2 Ligand synthesis of diphosphine derivatives of dialkyl ureas

Both Woollins ${ }^{32}$ and Schmutzler ${ }^{26-31}$ have reported the synthesis of diphosphine derivatives of ureas from sılylated starting materials (Equations 1.4 and 1.6). We have discovered that the synthesis of $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO} 1$ is also possible from the reaction of N, N^{\prime}-dimethylurea with two equivalents of $\mathrm{Ph}_{2} \mathrm{PCl}$, in the presence of NEt_{3}, in dichloromethane (Equation 2.1).

1
Equation 2.1

Slow addition of a dichloromethane solution of $\{\mathrm{HN}(\mathrm{Me})\}_{2} \mathrm{CO}$ and NEt_{3} to a dichloromethane solution of $\mathrm{Ph}_{2} \mathrm{PCl}$ at room temperature results in a viscous, pale yellow solution. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies conducted immediately after completion of the addition of the urea show that the reaction mixture contains three phosphorus contarning species, the starting material $\mathrm{Ph}_{2} \mathrm{PCl}$, at $\delta(\mathrm{P}) 82.9$, the desired product 1 , at $\delta(\mathrm{P}) 54.7$, and presumably the mono-substituted product $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Me}) \mathrm{H}\right\}$ at $\delta(\mathrm{P})$ 46.4. We can be confident in this assignment as the value of its' chemical shift, $\delta(\mathrm{P}) 46.4$, and 1 t's position relative to the bis-substituted product are analogous to the values for mono-substituted products of similar, related thiourea systems. ${ }^{37}$ Stirring of the reaction mixture overnight results in the loss of the species at $\delta(\mathrm{P}) 82.9$ and $\delta(\mathrm{P}) 46.4$ and leaves 1 as the only phosphorus-containing species. Removal of the solvent in vacuo, leaves an off white sold residue which is washed with water to remove $\mathrm{NEt}_{3} . \mathrm{HCl}$. Collection of the solid by suction filtration and drying over $\mathrm{P}_{4} \mathrm{O}_{10}$ in vacuo results in the product, 1 , as a white solid in 56% yield Arr- and moisturetolerant, $\mathbf{1}$ is readily soluble in both dichloromethane and thf. Elemental analysis is in good agreement with the calculated values (Table 2.4) and FAB^{+}mass spectrometry shows the expected parent-ion peak ($\mathrm{m} / \mathrm{z} 456[M]^{+}$). The IR spectrum of 1 contains strong bands which can be assigned to $v(\mathrm{CO}), v(\mathrm{CN})$ and $v(\mathrm{PN})$ (Table 2.1).

The analogous diethyl urea ligand, $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO} 2$, can be synthesised in a similar manner to 1 . Reaction of N, N '-diethylurea with two equivalents of $\mathrm{Ph}_{2} \mathrm{PCl}$, in the presence of NEt_{3}, in dichloromethane gives the desired product 2 (Equatıon 2.2). As for 1 , slow addition of a dichloromethane solution of the urea to a dichloromethane solution of $\mathrm{Ph}_{2} \mathrm{PCl}$ results in a viscous, yellow solution containing three phosphorus species.

${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies on the reaction mixture again show peaks corresponding to the chlorophosphine, bis-substituted product and mono-substituted product. The time taken for the reaction to proceed to completion and leave only the bis-substituted product $\mathbf{2}$ is significantly longer than the reaction time required in the formation of $\mathbf{1}$. Stirring was continued for 1 week during which time the peaks at $\delta(\mathrm{P}) 82.9$ and $\delta(\mathrm{P})$ 45.4, corresponding to $\mathrm{Ph}_{2} \mathrm{PCl}$ and the mono-substituted product respectively, slowly reduced in intensity to leave only a peak corresponding to $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}$, at $\delta(\mathrm{P})$ 56.4 ppm . The product can be isolated in the same manner as 1 , via removal of solvent and washing with water to leave $\mathbf{2}$ as a white solid in 40% yield. Like 1, the product is both air- and moisture-tolerant and readily soluble in both thf and dichloromethane. The product gave satısfactory elemental analysis results (Table 24) and FAB^{+}mass spectrometry showed the expected parent-ion peak ($\mathrm{m} / \mathrm{z} 484[M]^{+}$). The IR spectrum of 2 contains strong bands which can be assigned to $v(\mathrm{CO}), v(\mathrm{CN})$ and $v(\mathrm{PN})$ (Table 2.1)

2.3 Bidentate chelating coordination chemistry of $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{R})\right\}_{2} \mathrm{CO}, R=\mathrm{Me}, \mathrm{Et}$

As discussed in Chapter 1, Schmutzler and co-workers have reported the synthesis of phosphine derivatives of N, N^{\prime}-dimethylurea. ${ }^{26-31}$ However, reports of metal complexes containing these ligands are rare, especially where the ligands act as P, P^{\prime} chelates. Therefore, using the ligands 1 and 2 , we have investigated their complexation chemistry more fully via reactions with various metal compounds

The reactions of 1 and 2 with equimolar quantities of $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right]$ in dichloromethane proceed according to Equation 2.3 to yield the P, P^{\prime}-chelates cis$\left[\mathrm{PtCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right], 3$, and $\mathrm{cls}-\left[\mathrm{PtCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right], 4$ as 6 -membered metallacycles.

Equation 2.3

Addition of the solid diphosphines 1 and 2 to dichloromethane solutions of [$\left.\mathrm{PtCl}_{2}(\operatorname{cod})\right]$, followed by addition of diethyl ether, results in the formation of the products 3 and 4, as white solids in yields of 79 and 58% respectively. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 3 and 4 show singlets, at $\delta(\mathrm{P}) 534$ and $\delta(\mathrm{P}) 56.7$ respectively, each with satellites from the ${ }^{1} J$ coupling to ${ }^{195} \mathrm{Pt}$. The magnitude of the couplings $\left[{ }^{1} J\left({ }^{195} \mathrm{Pt}\right.\right.$ $\left.{ }^{31} \mathrm{P}\right) 3792 \mathrm{~Hz}$ for 3 and 3910 Hz for 4] are in agreement with reported values for simılar diphosphine urea chelates containing a phosphorus trans to chloride in $\mathrm{Pt}(\mathrm{II})$ systems ${ }^{77} \mathrm{FAB}^{+}$mass spectrometry studies on 3 display the parent-ion peak and a peak corresponding to the loss of a chloride ion $\left(\mathrm{m} / \mathrm{z} 722[\mathrm{M}]^{+}\right.$and $\left.687[\mathrm{M}-\mathrm{Cl}]^{+}\right)$. The same studies on 4 fail to show the parent-ion peak but do show a peak corresponding to the loss of a chloride ion ($\mathrm{m} / \mathrm{z} 715[M-\mathrm{Cl}]^{+}$). The IR spectra of $\mathbf{3}$ and $\mathbf{4}$ show bands which can be assigned to $v(\mathrm{CO}), v(\mathrm{CN})$ and $v(\mathrm{PN})$ (Table 2.1), which are at a higher frequency than the values observed for the free ligands 1 and 2 and indicate an increase in bond order upon complexation. Elemental analyses are in good agreement with calculated values (Table 24). Colourless crystals of 3 and 4, suitable for X-ray crystallography, were grown by layering dichloromethane solutions of $\mathbf{3}$ and 4 with diethyl ether. Single crystal X-ray studies confirm the cis chelate geometry of the ligands and that the molecules are square planar at the platinum (Figures 2.1 and 2.2). Selected bond lengths and angles are shown in Tables 2.2 and 2.3. The molecules have approximate C_{2} symmetry and the bite angles are close 90° [90.7 (2) for 3 and 88.8 (3) for 4$]$ indicating that this size ring is very well suited to square planar coordination. In 3 the six-membered $\mathrm{PtP}_{2} \mathrm{~N}_{2} \mathrm{C}$ ring is hinged about $\mathrm{P}(2)-\mathrm{N}(1)$ by 45° while in 4 the same ring is hinged about $\mathrm{P}(1)-\mathrm{N}(2)$ by 51°. In both molecules the
exocyclic urea oxygen atom is effectively in the plane of its' substituents. The internal angles of both 3 and 4 are all close to trigonal and it is noticeable in both molecules that the $\mathrm{C}-\mathrm{N}$ bond lengths within the $\mathrm{PtP}_{2} \mathrm{~N}_{2} \mathrm{C}$ ring are significantly shorter than N $\mathrm{Me} / \mathrm{N}-\mathrm{Et}$ bond lengths, indicating some degree of delocalisation across the $\mathrm{N}_{2} \mathrm{C}=\mathrm{O}$ groups. In both complexes the P-N bond lengths (1.716 (6) and 1.749 (8) \AA for 3 and 1.725 (3) and 1.714 (3) \AA for 4) are similar to those observed in related compounds. ${ }^{32,77}$

Table 2.1 Selected IR data $\left(\mathrm{cm}^{-1}\right)$ for compounds 1-8

Compound	Formula	$\boldsymbol{v}(\mathbf{C O})$	$\boldsymbol{v}(\mathbf{C N})$	$\boldsymbol{v}(\mathbf{P N})$
$\mathbf{1}$	$\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}$	1646	1432	961
$\mathbf{2}$	$\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}$	1649	1432	992
$\mathbf{3}$	$c i s-\left[\mathrm{PtCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right]$	1672	1435	973
$\mathbf{4}$	$c l s-\left[\mathrm{PtCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right]$	1669	1436	997
$\mathbf{5}$	$c l s-\left[\mathrm{PtMe}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right]$	1626	1434	983
$\mathbf{6}$	$c l s-\left[\mathrm{PtMe}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right]$	1652	1436	994
$\mathbf{7}$	$c i s-\left[\mathrm{PtCl}(\mathrm{Me})\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right]$	1637	1433	984
$\mathbf{8}$	$c l s-\left[\mathrm{PtCl}(\mathrm{Me})\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right]$	1658	1436	996

Figure 2.1 Solid state structure of $c l s-\left[\mathrm{PtCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right] 3$.

Figure 2.2 The solid state structure of $c l s-\left[\mathrm{PtCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right] 4$.

Table 2.2 Selected bond lengths (\AA) for compounds 3 and 4.

Bond	3	4
$\mathrm{P}(1)-\mathrm{Pt}(1)$	$2.207(4)$	$22141(8)$
$\mathrm{P}(2)-\mathrm{Pt}(1)$	$2.2054(13)$	$22157(8)$
$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2.3567(13)$	$2.3414(9)$
$\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$2.362(4)$	$2.3595(9)$
$\mathrm{N}(1)-\mathrm{P}(1)$	$1.716(6)$	$1.725(3)$
$\mathrm{N}(2)-\mathrm{P}(2)$	$1.749(8)$	$1.714(3)$
$\mathrm{N}(1)-\mathrm{C}(13)$	$1.413(10)$	$1.385(5)$
$\mathrm{N}(2)-\mathrm{C}(13)$	$1.360(12)$	$1.411(5)$
$\mathrm{N}(1)-\mathrm{C}(26)$	$1.499(8)$	$1.488(5)$
$\mathrm{N}(2)-\mathrm{C}(27)$	$1.485(8)$	$1.500(5)$
$\mathrm{C}(13)-\mathrm{O}(13)$	$1.222(11)$	$1217(5)$

Table 2.3 Selected bond angles (${ }^{\circ}$) for compounds 3 and 4.

Bonds	$\mathbf{3}$	$\mathbf{4}$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$907(2)$	$88.8(3)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{Pt}(1)$	$114.9(2)$	$111.0(11)$
$\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{Pt}(1)$	$112.0(3)$	$114.8(11)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$89.4(14)$	$87.9(4)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{P}(1)$	$86.9(14)$	$95.5(3)$
$\mathrm{Cl}(2)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$92.7(2)$	$87.7(3)$
$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{C}(13)$	$125.1(6)$	$122.5(2)$
$\mathrm{P}(2)-\mathrm{N}(2)-\mathrm{C}(13)$	$123.5(6)$	$120.6(2)$
$\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{N}(2)$	$119.8(8)$	$117.8(3)$
$\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{O}(13)$	$118.8(9)$	$121.0(4)$
$\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{O}(13)$	$121.1(9)$	$121.1(4)$
$\mathrm{C}(13)-\mathrm{N}(2)-\mathrm{C}(27)$	$116.1(7)$	$112.5(3)$
$\mathrm{C}(13)-\mathrm{N}(1)-\mathrm{C}(26)$	$111.7(6)$	$115.1(3)$

Both $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}$ and $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}$ also react successfully with $\left[\mathrm{PtMe}_{2}(\mathrm{cod})\right]$ to produce P, P^{\prime} chelates. Addition of the solid diphosphines $\mathbf{1}$ and $\mathbf{2}$ to dichloromethane solutions of $\left[\mathrm{PtMe}_{2}(\mathrm{cod})\right]$ results in cis-[$\left.\mathrm{PtMe}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right]$, 5, and cis-[$\left.\mathrm{PtMe}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right], 6$ respectively (Equation 2.4).

$\mathrm{R}=\mathrm{Me}(\mathbf{5}), \mathrm{Et}(\mathbf{6})$
Equation 2.4
$C_{l s}-\left[\mathrm{PtMe}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right]$ and $c i s-\left[\mathrm{PtMe}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right]$ were both isolated as white solids in 65% yields after stirring the reaction mixtures for 1-2 hours and then adding light petroleum. FAB^{+}mass spectrometry studies on 5 and 6 show the respective parent-ion peaks as well as peaks corresponding to $\left[M-\mathrm{CH}_{3}\right]^{+}$ fragments ($\mathrm{m} / \mathrm{z} 681[M]^{+}$and $666\left[M-\mathrm{CH}_{3}\right]^{+}$for $5, \mathrm{~m} / \mathrm{z} 710[M]^{+}$and $695\left[M-\mathrm{CH}_{3}\right]^{+}$ for 6) The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of both compounds show singlets, at $\delta(\mathrm{P}) 74.9$ and $\delta(\mathrm{P}) 77.7$ respectively, which are considerably further downfield than the values observed for 3 and 4, with satellites from coupling to ${ }^{195} \mathrm{Pt}$. The magnitude of the ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{-31} \mathrm{P}\right.$) couplings (1944 for 5 and 1997 for 6 Hz) are much smaller than those associated with the analogous dichloro species 3 and 4, and are consistent with values previously reported for similar complexes where phosphorus is trans to a methyl group. ${ }^{32}$ Elemental analysis of 5 and 6 gave satisfactory results (Table 24) and the IR spectra of each showed the expected bands for $v(\mathrm{CO}), v(\mathrm{CN})$ and $v(\mathrm{PN})$ (Table 2.1).

Table 2.4 Elemental analysis data for complexes 1-8 (calculated values in parentheses).

Compound	Formula	\mathbf{C}	\mathbf{H}	\mathbf{N}
$\mathbf{1}$	$\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}$	$696(71.0)$	$5.3(5.7)$	$55(6.1)$
$\mathbf{2}$	$\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}$	$70.8(71.2)$	$6.2(62)$	$5.3(5.8)$
$\mathbf{3}$	$\left[\mathrm{PtCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right]\right.$	$428(44.9)$	$3.4(3.6)$	$3.6(38)$
$\mathbf{4}$	$\left[\mathrm{PtCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right]\right.$	$45.2(46.4)$	$4.2(40)$	$3.9(3.7)$
$\mathbf{5}$	$\left[\mathrm{PtMe}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right]\right.$	$47.3(50.1)$	$4.9(5.1)$	$4.0(4.2)$
$\mathbf{6}$	$\left[\mathrm{PtMe}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right]\right.$	$52.7(52.4)$	$5.8(51)$	$4.0(3.9)$
$\mathbf{7}$	$\left[\mathrm{PtCl}(\mathrm{Me})\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right]\right.$	$47.5(47.9)$	$4.0(42)$	$3.7(3.9)$
$\mathbf{8}$	$\left[\mathrm{PtCl}(\mathrm{Me})\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right]$	$48.2(49.3)$	$4.0(4.5)$	$3.1(3.8)$

Reactions of $\mathbf{1}$ and $\mathbf{2}$ with $[\mathrm{PtCl}(\mathrm{Me})(\operatorname{cod})]$ proceed, according to Equation 2.5, with the displacement of cod and formation of cis-[$\left.\mathrm{PtCl}(\mathrm{Me})\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right], 7$ and cls-[$\left.\mathrm{PtCl}(\mathrm{Me})\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right], 8$ respectively. Addıtion of the soldd diphosphines 1 and 2 to dichloromethane solutions of $[\mathrm{PtCl}(\mathrm{Me})(\operatorname{cod})]$ followed by addition of diethyl ether results in the products, 7 and 8 , as white solids in 67 and 63 \% yields respectively. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 7 shows an $A X$ type spectrum

Equation 2.5
(Figure 2.3) due to the chemical inequivalence of the phosphorus centres. Both peaks in the spectrum are of equal magnitude and both show satellites due to couphng to ${ }^{195} \mathrm{Pt}$. The phosphorus trans to the chloride in the complex can be assigned to the peak at $\delta(\mathrm{P}) 61.4$ due to the larger ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right.$) coupling associated with it (4509 Hz). Consequently the phosphorus trans to the methyl group is assigned to the peak at $\delta(\mathrm{P})$ 74.1 and has a smaller ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right)$ coupling of 1819 Hz . The value of the ${ }^{2} J(\mathrm{PP})$ coupling is 30 Hz which is in agreement with previously reported values for sımilar systems. ${ }^{32}$

Figure $2.3{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $c t s-\left[\mathrm{PtCl}(\mathrm{Me})\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right] 7$

The FAB^{+}mass spectrum of 7 show the expected parent-ion peak ($\mathrm{m} / \mathrm{z} 701[M]^{+}$) and a fragmentation pattern corresponding to the loss of a methyl group and a Cl atom $\left(\mathrm{m} / \mathrm{z} 686\left[M-\mathrm{CH}_{3}\right]^{+}\right.$and $\left.666[M-\mathrm{Cl}]^{+}\right)$. Elemental analysis is in agreement with calculated values (Table 2.4) and the IR spectrum shows bands corresponding to $v(\mathrm{CO}), v(\mathrm{CN})$ and $v(\mathrm{PN})$ (Table 2.1) ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies on 8 show a spectrum with a simular AX type pattern to that observed for 7, the phosphorus centre trans to the chloride having a chemical shift of $\delta(\mathrm{P}) 64.2$ and a ${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)$ coupling of 4596 Hz . The chemical shift of the phosphorus centre trans to the methyl group, as in 7, is slightly further downfield at a value of $\delta(\mathrm{P}) 77.1$, agann with a significantly smaller ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{-31} \mathrm{P}\right)$ coupling of 1891 Hz . FAB^{+}mass spectrometry shows the peaks reported for $7\left(\mathrm{~m} / \mathrm{z} 730[\mathrm{M}]^{+}, 715\left[\mathrm{M}^{-\mathrm{CH}_{3}}\right]^{+}\right.$and $\left.694[\mathrm{M}-\mathrm{Cl}]^{+}\right)$and elemental analysis is in good agreement with calculated values (Table 2.1) The IR spectrum of 8 shows bands which can be assigned to $v(\mathrm{CO}), v(\mathrm{CN})$ and $v(\mathrm{PN})$ (Table 2.4)

Palladium complexes involving $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}$ and $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}$ acting as bidentate P, P^{\prime} chelates are also successfully formed when the diphosphines 1 and 2 are reacted with $\left[\mathrm{PdCl}_{2}(\mathrm{cod})\right]$. As with the platinum analogues 3 and 4, addition of the solid ligands $\mathbf{1}$ and 2 to dichloromethane solutions of $\left[\mathrm{PdCl}_{2}(\operatorname{cod})\right]$, followed by the addition of diethyl ether, results in the 6 -membered chelate species cis- $\left.\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right] 9$ and cis- $\left.\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right] 10$ respectıvely (Equation 26).

Equation 2.6

Isolation of 9 and $\mathbf{1 0}$ results in the products as a yellow solid in 73% yields and ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies show a singlets at $\delta(\mathrm{P}) 762$ and 80.1 respectively. FAB^{+}mass spectrometry does not show the expected parent-ion peaks but instead fragmentation
patterns consistent with the loss of chloride atoms (m/z $598[M-\mathrm{Cl}]^{+}$and $563[M-$ $2 \mathrm{Cl}]^{+}$for 9 and $\mathrm{m} / \mathrm{z} 626[M-\mathrm{Cl}]^{+}$and $591[M-2 \mathrm{Cl}]^{+}$for 10$)$. Peaks due to $v(\mathrm{CO})$, $v(\mathrm{CN})$ and $v(\mathrm{PN})$ are evident in the IR spectra (Table 2.5) and elemental analysis is in agreement with calculated values for both compounds (Table 2.12). Yellow crystals of $\left.c t s-\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right]$ and $\left.c t s-\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right]$ suitable for X-ray crystallography were grown by layering dichloromethane solutions of the compounds with diethyl ether. The solid state structures of cis- $\left[\mathrm{PdCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right]$ and $c t s-\left[\mathrm{PdCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right]$ are shown in Figures 24 and 2.5 and selected bond lengths and angles are shown in Tables 26 and 2.7. The molecules have approximate non-crystallographic C_{2} symmetry and similar geometry about the metal to 3 and 4 Perhaps the most surprising difference is an enlargement of the $\mathrm{P}-\mathrm{N}-\mathrm{C}$ angles in 9 and 10 relative to those in 3 and 4 , for which there is no ready explanation. In 9 the $\mathrm{PdP}_{2} \mathrm{~N}_{2} \mathrm{C}$ ring is effectively planar and co-planar with the coordination sphere. The same ring in 10 is puckered, though not hinged like the examples in 3 and 4, with $\mathrm{C}(13)$ and $\mathrm{O}(13)$ in the same plane as the coordination sphere and $\mathrm{N}(1)$ and $\mathrm{N}(2)$ lying $0.5 \AA$ above and below the plane respectively. As with compounds 3 and 4 the P-N bond lengths in 9 and 10 (1.697 (2) and 1.704 (2) \AA for 9 and 1.707 (4) and 1.712 (4) \AA for 10) are typical for these type of compounds ${ }^{77}$ and, once again, the $\mathrm{C}-\mathrm{N}$ bond lengths within the $\mathrm{PtP}_{2} \mathrm{~N}_{2} \mathrm{C}$ rings of both molecules are significantly shorter than N Me / N-Et bond lengths, indicating some degree of delocalisation across the $\mathrm{N}_{2} \mathrm{C}=\mathrm{O}$ groups. The $\mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{Pd}-\mathrm{P}$ bond lengths in 9 and 10 are in agreement with values previously reported for cis- $\left[\mathrm{PdCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{H})\right\}_{2} \mathrm{CO}\right\}\right]$ and are all single in character. ${ }^{32}$

Table 2.5 Selected IR data $\left(\mathrm{cm}^{-1}\right)$ for compounds $9,10,13,14$ and 15.

Compound	Formula	$v(\mathbf{C O})$	$\boldsymbol{v}(\mathbf{C N})$	$v(\mathbf{P N})$
$\mathbf{9}$	$\left.c l s-\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right]$	1648	1435	991
$\mathbf{1 0}$	$\left.c i s-\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right]$	1670	1436	996
$\mathbf{1 3}$	cis- $\left.\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right]$	1643	1433	962
$\mathbf{1 4}$	cis-[Rh(cod) $\left.\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right]\left[\mathrm{ClO}_{4}\right]$	1664	1437	996
$\mathbf{1 5}$	$\left.\left[(\mathrm{AuCl})_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right]$	1655	1436	997

Figure 2.4 The solid state structure of $c l s-\left[\mathrm{PdCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right\}\right] 9$.

Figure 2.5 The solid state structure of $c t s-\left[\mathrm{PdCl}_{2}\left\{\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}\right] 10$.

Table 2.6 Selected bond lengths (\AA) for compounds 9 and 10.

Bond	$\mathbf{9}$	$\mathbf{1 0}$
$\mathrm{P}(1)-\mathrm{Pd}(1)$	$22003(8)$	$2.2165(13)$
$\mathrm{P}(2)-\mathrm{Pd}(1)$	$2.2072(8)$	$2.2135(13)$
$\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$2.3476(8)$	$2.3545(13)$
$\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$2.3418(9)$	$2.3577(13)$
$\mathrm{N}(1)-\mathrm{P}(1)$	$1.697(2)$	$1.707(4)$
$\mathrm{N}(2)-\mathrm{P}(2)$	$1.704(2)$	$1.712(4)$
$\mathrm{N}(1)-\mathrm{C}(13)$	$1380(4)$	$1.382(6)$
$\mathrm{N}(2)-\mathrm{C}(13)$	$1.377(4)$	$1.397(6)$
$\mathrm{N}(1)-\mathrm{C}(26)$	$1.494(4)$	$1506(6)$
$\mathrm{N}(2)-\mathrm{C}(27)$	$1.486(4)$	$1.504(6)$
$\mathrm{C}(13)-\mathrm{O}(13)$	$1.224(3)$	$1.215(6)$

Table 2.7 Selected bond angles $\left({ }^{\circ}\right)$ for compounds 9 and 10.

Bonds	$\mathbf{9}$	$\mathbf{1 0}$
$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$	$94.76(3)$	$91.47(5)$
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{Pd}(1)$	$118.19(9)$	$115.93(14)$
$\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{Pd}(1)$	$118.41(9)$	$116.05(14)$
$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$91.47(3)$	$9028(5)$
$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{P}(1)$	$86.84(3)$	$8926(5)$
$\mathrm{Cl}(2)-\mathrm{Pd}(1)-\mathrm{P}(2)$	$86.98(3)$	$89.22(5)$
$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{C}(13)$	$132.6(2)$	$126.2(3)$
$\mathrm{P}(2)-\mathrm{N}(2)-\mathrm{C}(13)$	$131.5(2)$	$117.2(3)$
$\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{N}(2)$	$122.9(3)$	$120.2(4)$
$\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{O}(13)$	$118.6(3)$	$120.7(4)$
$\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{O}(13)$	$118.5(3)$	$119.1(4)$
$\mathrm{C}(13)-\mathrm{N}(2)-\mathrm{C}(27)$	$112.8(2)$	$113.2(4)$
$\mathrm{C}(13)-\mathrm{N}(1)-\mathrm{C}(26)$	$112.4(4)$	$112.9(4)$

Compounds 9 and 10 demonstrate that the ligands $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}(1)$ and $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}$ (2) can act as simple metal chelates and form six-membered ring systems when reacted with $\left[\mathrm{PdCl}_{2}(\operatorname{cod})\right]$. However, reaction of the two ligands with palladium acetate fails to result in the expected chelate systems. Instead P-N bond cleavage takes place and the reaction involves the formation of a $\left[\mathrm{Ph}_{2} \mathrm{PO}\right]^{-}$ligand which is incorporated into a $\mathrm{Pd}_{2} \mathrm{P}_{2} \mathrm{O}_{2}$ heterocycle (Equation 2.7).

Equation 2.7

Addition of the solid diphosphine 1 a to dichloromethane solution of $\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]$ followed by addition of diethyl ether results in $\left[\mathrm{Pd}_{\{ } \mathrm{OPPh}_{2}\right\}\{\mathrm{N}(\mathrm{Me})$ $\left.\left.\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Me}) \mathrm{PPh}_{2}\right\}\right]_{2}(\mathbf{1 1})$ as a yellow solid in a low yield of 31% The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 11 shows two broad singlet peaks at $\delta(\mathrm{P}) 844$ and $\delta(\mathrm{P}) 712 \mathrm{We}$ assign the phosphorus in the $\left[\mathrm{Ph}_{2} \mathrm{PO}\right]$ ligand to the species further downfield at $\delta(\mathrm{P}) 84.4$ due to its' proximity to the electronegatıve oxygen atom and consequently the phosphorus in the PNCNPd ring is assigned to the peak at $\delta(\mathrm{P}) 712$. FAB^{+}mass spectrometry shows the parent-ion peak ($\mathrm{m} / \mathrm{z} 1158\left[\mathrm{M}^{+}\right.$) and a peak corresponding to $\left[\mathrm{Pd}\left\{\mathrm{OPPh}_{2}\right\}\left\{\mathrm{N}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Me}) \mathrm{PPh}_{2}\right\}\right]^{+}(\mathrm{m} / \mathrm{z} 579)$ and the IR spectrum shows peaks which can be assigned to $v(\mathrm{CO})\left(1630 \mathrm{~cm}^{-1}\right), v(\mathrm{CN})\left(1434 \mathrm{~cm}^{-1}\right)$ and $v(\mathrm{PN})\left(995 \mathrm{~cm}^{-}\right.$ ${ }^{1}$). Elemental analysis is in good agreement with calculated values Yellow crystals suitable for X-ray crystallography were grown by layering a dichloromethane solution of 11 with diethyl ether. Figure 2.6 shows the solid state structure of $\left[\mathrm{PdOPh}_{2}\left\{\mathrm{~N}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Me}) \mathrm{PPh}_{2}\right\}\right]_{2}$ and Tables 28 and 2.9 show selected bond lengths and angles. The structure of 11 reveals the square planar palladium centres as spiro in the tricyclic system. The $\mathrm{PdPN}_{2} \mathrm{C}$ rings are close to planar [maximum deviations for the two rings are $0.01 \AA$ for $\mathrm{N}(2)$ and $-0.05 \AA$ for $\mathrm{N}(31)$] with the $\mathrm{C}=\mathrm{O}$ and the NMe groups being effectively coplanar with the $\mathrm{PdPN}_{2} \mathrm{C}$ rings. The internal
nitrogen angles in the $\mathrm{PdPN}_{2} \mathrm{C}$ ring are close to trigonal, whilst the angle at the phosphorus is slightly reduced from a perfect tetrahedral angle. The central $\mathrm{Pd}_{2} \mathrm{P}_{2} \mathrm{O}_{2}$ ring adopts a chair geometry with the central $\mathrm{Pd}_{2} \mathrm{P}_{2} \mathrm{O}_{2}$ core having two PdOP planes inclined by ca. 138°. Within this ring the P-O bond lengths $[\mathrm{P}(2)-\mathrm{O}(2) 1.536$ (4) and $\mathrm{P}(32)-\mathrm{O}(32) 1.539$ (3) \AA] are appropriate for a coordınated $\left[\mathrm{Ph}_{2} \mathrm{PO}\right]^{-}$anion and similar to those reported for a $\mathrm{Pd}_{2} \mathrm{P}_{2} \mathrm{O}_{2}$ ring ${ }^{78}$ but slightly shorter than those reported for $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Pt}\left(\mathrm{Ph}_{2} \mathrm{PO}\right)_{2} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)\right] .{ }^{79}$

Figure 2.6 Solid state structure of $\left[\mathrm{Pd}_{\{ }\left\{\mathrm{OPPh}_{2}\right\}\left\{\mathrm{N}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Me}) \mathrm{PPh}_{2}\right\}\right] 11$.

Using the same method employed in the preparation of 11, $\left[\mathrm{Pd}\left\{\mathrm{OPPh}_{2}\right\}\left\{\mathrm{N}(\mathrm{Et}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}\right\}\right]_{2}, 12$ was isolated as a yellow solid in 51% yield. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum again shows two broad peaks. As expected the peak assigned to the $\left[\mathrm{Ph}_{2} \mathrm{PO}\right]^{-}$ligand, at $\delta(\mathrm{P}) 84.5$, has the same chemical shift as in the dimethyl analogue 11, with the phosphorus in the PNCNPd ring having a chemical shift of $\delta(\mathrm{P}) 695 . \mathrm{FAB}^{+}$mass spectrometry shows the peaks corresponding to the species observed for 11, namely the parent-ion peak (m / z 1214) and a peak corresponding to $\left[\mathrm{Pd}\left\{\mathrm{OPPh}_{2}\right\}\left\{\mathrm{N}(\mathrm{Et}) \mathrm{C}(\mathrm{O}) \mathrm{N}\left({\left.\left.\mathrm{Et}) \mathrm{PPh}_{2}\right\}\right]^{+}(\mathrm{m} / \mathrm{z} 607) \text { and the IR }}^{2}\right.\right.\right.$

Table 2.8 Selected bond lengths (\AA) for compound 11.

Bond	Length	Bond	Length
$\mathrm{Pd}(1)-\mathrm{N}(2)$	$2.083(4)$	$\mathrm{Pd}(2)-\mathrm{N}(32)$	$2.059(4)$
$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.2043(14)$	$\mathrm{Pd}(2)-\mathrm{P}(31)$	$2.1985(14)$
$\mathrm{Pd}(1)-\mathrm{O}(32)$	$2.092(3)$	$\mathrm{Pd}(2)-\mathrm{O}(2)$	$2.075(3)$
$\mathrm{Pd}(1)-\mathrm{P}(2)$	$2.2764(14)$	$\mathrm{Pd}(2)-\mathrm{P}(31)$	$2.2600(14)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.674(5)$	$\mathrm{P}(31)-\mathrm{N}(31)$	$1676(5)$
$\mathrm{N}(1)-\mathrm{C}(13)$	$1.424(7)$	$\mathrm{N}(31)-\mathrm{C}(43)$	$1.414(7)$
$\mathrm{C}(13)-\mathrm{N}(2)$	$1.323(7)$	$\mathrm{C}(43)-\mathrm{N}(32)$	$1328(7)$
$\mathrm{C}(13)-\mathrm{O}(13)$	$1.235(6)$	$\mathrm{C}(43)-\mathrm{O}(43)$	$1240(6)$
$\mathrm{P}(2)-\mathrm{O}(2)$	$1.536(4)$	$\mathrm{P}(32)-\mathrm{O}(32)$	$1.539(3)$

Table 2.9 Selected bond angles (${ }^{\circ}$) for compound 11.

Bond	Angle	Bond	Angle
$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{N}(2)$	$81.81(13)$	$\mathrm{P}(31)-\mathrm{Pd}(2)-\mathrm{N}(32)$	$8190(13)$
$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$102.6(2)$	$\mathrm{Pd}(2)-\mathrm{P}(31)-\mathrm{N}(31)$	$102.3(2)$
$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{C}(13)$	$119.4(3)$	$\mathrm{C}(43)-\mathrm{N}(31)-\mathrm{P}(31)$	$119.2(3)$
$\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{N}(2)$	$114.6(5)$	$\mathrm{N}(31)-\mathrm{C}(43)-\mathrm{N}(32)$	$1142(5)$
$\mathrm{C}(13)-\mathrm{N}(2)-\mathrm{Pd}(1)$	$121.6(4)$	$\mathrm{C}(43)-\mathrm{N}(32)-\mathrm{Pd}(2)$	$1219(4)$
$\mathrm{Pd}(1)-\mathrm{P}(2)-\mathrm{O}(2)$	$113.9(2)$	$\mathrm{Pd}(2)-\mathrm{P}(32)-\mathrm{O}(32)$	$112.8(2)$
$\mathrm{Pd}(1)-\mathrm{O}(32)-\mathrm{P}(32)$	$1284(7)$	$\mathrm{Pd}(2)-\mathrm{O}(2)-\mathrm{P}(2)$	$134.8(2)$

spectrum contains peaks at $1620,1435,1103$ and $996 \mathrm{~cm}^{-1}$ assignable to $v(\mathrm{CO})$, $v(\mathrm{CN}), v(\mathrm{PO})$ and $v(\mathrm{PN})$ respectively. Elemental analysis is in good agreement with calculated values. Layering of a dichloromethane solution of 12 with diethyl ether produces yellow crystals which are suitable for X-ray crystallography. The solid state structure of $12 . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ is shown in Figure 2.7 and selected bond lengths and angles are shown in Tables 2.10 and 2.11.

Figure 2.7 Solid state structure of $\left[\operatorname{Pd}\left\{\mathrm{OPPh}_{2}\right\}\left\{\mathrm{N}(\mathrm{Et}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}\right\}\right]_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Table 2.10 Selected bond lengths (\AA) for compounds $12 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Bond	Length	Bond	Length
$\operatorname{Pd}(1)-\mathrm{N}(21)$	$1.990(11)$	$\mathrm{P}(2)-\mathrm{N}(22)$	$1.639(12)$
$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.221(4)$	$\mathrm{N}(22)-\mathrm{C}(21)$	$1.43(2)$
$\mathrm{Pd}(1)-\mathrm{O}(1 \mathrm{~A})$	$2.051(9)$	$\mathrm{C}(21)-\mathrm{N}(21)$	$121(2)$
$\mathrm{Pd}(1)-\mathrm{P}(2)$	$2.160(5)$	$\mathrm{C}(21)-\mathrm{O}(21)$	$1.28(2)$

Table 2.11 Selected bond angles (${ }^{\circ}$) for compound $12 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Bond	Angle	Bond	Angle
$\mathrm{P}(2)-\mathrm{Pd}(1)-\mathrm{N}(21)$	$80.6(4)$	$\mathrm{C}(21)-\mathrm{N}(21)-\mathrm{Pd}(1)$	$1243(12)$
$\mathrm{Pd}(1)-\mathrm{P}(2)-\mathrm{N}(22)$	$1032(5)$	$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{O}(1)$	$112.7(4)$
$\mathrm{P}(2)-\mathrm{N}(22)-\mathrm{C}(21)$	$1140(12)$	$\mathrm{N}(21)-\mathrm{Pd}(1)-\mathrm{O}(1 \mathrm{~A})$	$92.9(5)$
$\mathrm{N}(22)-\mathrm{C}(21)-\mathrm{N}(21)$	$115.7(130)$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{O}(1 \mathrm{~A})$	$84.6(4)$

The reaction of $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}$ (1) with $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\text { pip })_{2}\right]$ in dichloromethane results in the displacement of the piperidne molecules and the formation of the P, P^{\prime} chelate complex cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Me}) \mathrm{PPh}_{2}\right\}\right]$, 13 (Equation 2.8).

13
Equation 2.8
$\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{pip})_{2}\right]$ was suspended in dry dichloromethane and $\mathbf{1}$ added as a solid. The reaction mixture was heated to reflux for 15 minutes, cooled, and the solvent volume reduced in vacuo to $c a .5 .0 \mathrm{~cm}^{3}$ The addition of methanol to the solution gave 13 as a yellow solid in 71% yield. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 13 show a singlet at $\delta(\mathrm{P})$ 101.9, a downfield shift of approximately 50 ppm from the free ligand 1 and at a considerably higher frequency than the $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ complexes of 1 and 2. The IR spectrum shows the expected peaks associated with $v(\mathrm{CO}), v(\mathrm{CN})$ and $v(\mathrm{PN})$ of the ligand (Table 2.5) as well as four distinct bands in the region $2100-1800 \mathrm{~cm}-{ }^{1}$ due to the carbonyl ligands These peaks are consistent with the cis binding of the ligand and the terminal nature of the carbonyl groups. Elemental analysis is in good agreement with calculated values (Table 2.12) and the FAB^{+}mass spectrum shows the parent-ion peak and the sequential loss of four carbonyl groups (m/z $664[M]^{+}, 636[M-\mathrm{CO}]^{+}$, $608[M-2 \mathrm{CO}]^{+}, 680[M-3 \mathrm{CO}]^{+}$and $\left.652[M-4 \mathrm{CO}]^{+}\right)$Yellow crystals of 13 , sutable for X-ray crystallography, were obtained by layering a dichloromethane solution of 13 with diethyl ether. The solid state structure of 13 is shown in Figure 28 and selected bond lengths and angles are shown in Table 2 13. The molecule displays octahedral geometry at the molybdenum with some contraction of the $\mathrm{P}(1)-\mathrm{Mo}(1)-\mathrm{P}(2)$ angle [80.7 (2) ${ }^{\circ}$]. The Mo-C distances differ as a consequence of the trans ligand, with Mo$\mathrm{C}(31)$ and $\mathrm{Mo}-\mathrm{C}(34)$ (trans to P) being shorter [ca. $2.00 \AA$] than Mo-C(32) and Mo$\mathrm{C}(33)$ (trans to carbonyl) [ca.2.03 \AA]. Unlike 9 the $\mathrm{MoP}_{2} \mathrm{~N}_{2} \mathrm{C}$ ring is non-planar,
being hinged by 55° along the $\mathrm{N}(2)-\mathrm{P}(1)$ vector. Within the $\mathrm{MoP}_{2} \mathrm{~N}_{2} \mathrm{C}$ ring the $\mathrm{P}-\mathrm{N}$ and C-N bond lengths are close to those reported for similar systems. ${ }^{80}$

Table 2.12 Elemental analysis data for complexes 9, 10, 13, 14 and 15 (calculated values in parentheses).

Compound	Formula	\mathbf{C}	\mathbf{H}	\mathbf{N}
$\mathbf{9}$	$\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right]$	$50.9(51.2)$	$38(4.1)$	$3.9(4.4)$
$\mathbf{1 0}$	$\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right]$	$50.8(52.6)$	$4.4(4.5)$	$3.8(42)$
$\mathbf{1 3}$	$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right]$	$55.4(560)$	$3.8(3.9)$	$4.1(4.2)$
$\mathbf{1 4}$	$\left[\mathrm{Rh}(\operatorname{cod})\left\{\mathrm{Ph}_{2} \mathrm{PN}^{2}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right] \mathrm{ClO}_{4}$	$57.7(58.9)$	$5.1(53)$	$34(35)$
$\mathbf{1 5}$	$\left[(\mathrm{AuCl})_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}\right\}$	$36.9(366)$	$3.6(3.2)$	$32(2.9)$

Figure 2.8 Solid state structure of cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Me}) \mathrm{PPh}_{2}\right\}\right] 13$

Table 2.13 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 13.

Bond	Length	Bond	Angle
$\mathrm{Mo}(1)-\mathrm{P}(1)$	$2.4849(7)$	$\mathrm{P}(1)-\mathrm{Mo}(1)-\mathrm{P}(2)$	$80.72(2)$
$\mathrm{Mo}(1)-\mathrm{P}(2)$	$2.4808(6)$	$\mathrm{Mo}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$107.69(7)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.743(2)$	$\mathrm{Mo}(1)-\mathrm{P}(2)-\mathrm{N}(2)$	$11623(7)$
$\mathrm{P}(2)-\mathrm{N}(2)$	$1.731(2)$	$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{C}(13)$	$123.0(2)$
$\mathrm{N}(1)-\mathrm{C}(13)$	$1.379(3)$	$\mathrm{P}(2)-\mathrm{N}(2)-\mathrm{C}(13)$	$124.4(2)$
$\mathrm{N}(2)-\mathrm{C}(13)$	$1.411(3)$	$\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{N}(1)$	$118.6(2)$
$\mathrm{Mo}(1)-\mathrm{C}(31)$	$2003(3)$	$\mathrm{C}(31)-\mathrm{Mo}(1)-\mathrm{P}(1)$	$170.25(8)$
$\mathrm{Mo}(1)-\mathrm{C}(32)$	$2.024(3)$	$\mathrm{C}(31)-\mathrm{Mo}(1)-\mathrm{P}(2)$	$90.70(8)$
$\mathrm{Mo}(1)-\mathrm{C}(33)$	$2.037(3)$	$\mathrm{C}(34)-\mathrm{Mo}(1)-\mathrm{P}(1)$	$97.54(9)$
$\mathrm{Mo}(1)-\mathrm{C}(34)$	$2001(3)$	$\mathrm{C}(34)-\mathrm{Mo}(1)-\mathrm{P}(2)$	$176.29(8)$

The reaction of two equivalents $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}$ (2) with $[\mathrm{RhCl}(\mathrm{cod})]_{2}$ in acetone proceeds according to Equation 2.9 to yield the P, P^{\prime} chelate product cts$\left[\mathrm{Rh}(\mathrm{cod})\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{CON}(\mathrm{Et})_{\mathrm{PPh}}^{2} \boldsymbol{\}}\right]\left[\mathrm{ClO}_{4}\right], 14\right.$.

14
Equation 2.9

Addition of solid $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}$ to a stirred solution of $[\mathrm{RhCl}(\mathrm{cod})]_{2}$ and $\mathrm{Ag}\left[\mathrm{ClO}_{4}\right]$ followed by the addition of diethyl ether results in 14 as a brown solid in 58% yield. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 4}$ show a single phosphorus-containing species at $\delta(\mathrm{P}) 90.3$ with a ${ }^{1} J\left({ }^{103} \mathrm{Rh}_{-}{ }^{31} \mathrm{P}\right)$ coupling of 167 Hz and the FAB^{+}mass spectrum shows a peak corresponding to $\left.\left[\mathrm{Rh}(\operatorname{cod})\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{CON}(\mathrm{Et})\right) \mathrm{PPh}_{2}-P, P^{\prime}\right\}\right]^{+}(\mathrm{m} / \mathrm{z} \quad 695)$. Elemental analysis is in agreement with calculated values (Table 2.12) and the IR spectrum shows peaks associated with $v(\mathrm{CO}), v(\mathrm{CN})$ and $v(\mathrm{PN})$ (Table 2.5).

2.4 Bıdentate brıdging coordination chemistry of $\left\{P h_{2} P N(E t)\right\}_{2} \mathrm{CO}$.

Compounds 3-10, 13 and 14 demonstrate the ability of the ligands $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}$ and $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}$ to act as bidentate $\mathrm{P}, \mathrm{P}{ }^{\prime}$ chelates and form six-membered metallacycles. As described in Chapter 1 Schmutzler and co-workers have also previously reported that $\left\{(\mathrm{Ph})\left({ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}$ can act as a bidentate bridging ligand between two metal centres when reacted with $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right] .{ }^{31}$ We have also demonstrated that $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}$ can act as bidentate bridging ligand when reacted with $[\mathrm{AuCl}(\mathrm{tht})]$ to form the complex $\left[\mathrm{Ph}_{2} \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}(\mathrm{Et}) \mathrm{C}(\mathrm{O})\right.$ $\mathrm{N}(\mathrm{Et}) \mathrm{P}\left\{\mathrm{AuCl}^{2} \mathrm{Ph}_{2}\right], 15$ (Equation 2.10).

15
Equation 2.10

Addition of solid $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CO}$ to a dichloromethane solution of two equivalents of [$\mathrm{AuCl}($ tht $)$] followed by addition of diethyl ether results in 15 as white solid in 72 \% yield. The complex displays a singlet at $\delta(\mathrm{P}) 75.7 \mathrm{in}$ its ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum and elemental analysis is in good agreement with calculated values (Table 2 12) The FAB^{+}mass spectrum shows a parent-ion peak and a peak corresponding to the loss of a chloride ion ($\mathrm{m} / \mathrm{z} 948[M]^{+}$and $913[M-\mathrm{Cl}]^{+}$) and the IR spectrum shows peaks which can be assigned to $v(\mathrm{CO}), v(\mathrm{CN})$ and $v(\mathrm{PN})$ (Table 2.5) Layering of a chloroform solution of 15 with diethyl ether results in colourless crystals of $\left[\mathrm{Ph}_{2} \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}(\mathrm{Et}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\{\mathrm{AuCl}\} \mathrm{Ph}_{2}\right] . \mathrm{CHCl}_{3}$ suitable for X-ray crystallography. The solid state structure of $\mathbf{1 5}$ is shown in Figure 2.9 and selected bond lengths and angles are shown in Table 2.14. The structure of $\mathbf{1 5}$ confirms that the molecule contains two Au centres. The overall W -shaped molecule has approximately noncrystallographic two fold axis about the $\mathrm{C}(13)-\mathrm{O}(13)$ bond, though the backbone is
non-planar; $\mathrm{N}(1)$ and $\mathrm{N}(2)$ lie -045 and $+0.21 \AA$ from the $\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{O}(13)-\mathrm{N}(2)$ mean plane. The $\mathrm{P}-\mathrm{Au}-\mathrm{Cl}$ angles are close to linear, as expected, and there is no evidence of any delocalisation in $\mathrm{P}_{2} \mathrm{~N}_{2} \mathrm{C}$ chain. $\mathrm{P}-\mathrm{N}, \mathrm{P}-\mathrm{Au}$ and $\mathrm{Au}-\mathrm{Cl}$ bond lengths are all comparable to those observed in similar compounds. ${ }^{81}$

Figure 2.8 Solid state structure of $\left[\mathrm{Ph}_{2} \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}(\mathrm{Et}) \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left\{\mathrm{AuCl}^{2} \mathrm{Ph}_{2}\right] . \mathrm{CHCl}_{3}\right.$.

Table 2.14 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $15 . \mathrm{CHCl}_{3}$

Bond	Length	Bond	Angle
$\mathrm{Au}(1)-\mathrm{Cl}(1)$	$2316(2)$	$\mathrm{P}(1)-\mathrm{Au}(1)-\mathrm{Cl}(1)$	$171.29(6)$
$\mathrm{P}(1)-\mathrm{Au}(1)$	$2.239(2)$	$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{Au}(1)$	$114.1(2)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.709(5)$	$\mathrm{C}(26)-\mathrm{N}(1)-\mathrm{P}(1)$	$1206(4)$
$\mathrm{N}(1)-\mathrm{C}(26)$	$1.475(7)$	$\mathrm{C}(13)-\mathrm{N}(1)-\mathrm{P}(1)$	$117.3(4)$
$\mathrm{N}(1)-\mathrm{C}(13)$	$1.415(7)$	$\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{O}(13)$	$121.5(5)$
$\mathrm{C}(13)-\mathrm{O}(13)$	$1.213(6)$	$\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{N}(2)$	$116.3(5)$
$\mathrm{C}(13)-\mathrm{N}(2)$	$1.389(7)$	$\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{O}(13)$	$122.2(5)$
$\mathrm{N}(2)-\mathrm{C}(27)$	$1.492(7)$	$\mathrm{C}(13)-\mathrm{N}(2)-\mathrm{P}(2)$	$118.3(4)$
$\mathrm{N}(2)-\mathrm{P}(2)$	$1.706(5)$	$\mathrm{C}(27)-\mathrm{N}(2)-\mathrm{P}(2)$	$118.9(4)$
$\mathrm{P}(2)-\mathrm{Au}(2)$	$2.243(2)$	$\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{Au}(2)$	$110.1(2)$
$\mathrm{Au}(2)-\mathrm{Cl}(2)$	$2.298(2)$	$\mathrm{P}(2)-\mathrm{Au}(2)-\mathrm{Cl}(2)$	$174.48(7)$

2.5 Ligand synthesis of diphosphine derivatives of dialkyl thioureas

Woollins ${ }^{32}$ and Schmutzler ${ }^{37,38}$ have reported the synthesis of diphosphine derivatives of thioureas, the latter showing that $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CS}$ can be formed from the reaction of N, N '-dimethylthiourea and two equivalents of chlorodiphenylphosphine. We have discovered that the analogous reaction involving N, N '-diethylthiourea results in the ligand $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CS}$. Schmutzler did not report any coordination chemistry for the $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CS}$ ligand. We have therefore synthesised $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CS}$ according to the published literature method and reacted the ligand with $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$.

The reaction of N, N 'diethyl thiourea with 2 equivalents of $\mathrm{Ph}_{2} \mathrm{PCl}$ in thf and diethyl ether proceeds according to Equation 2.11 to yıeld $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CS}, 16$.

16
Equation 2.11

Slow addition of a diethyl ether solution of $\mathrm{Ph}_{2} \mathrm{PCl}$ to a stirred thf/diethyl ether solution of $\{\mathrm{HN}(\mathrm{Et})\}_{2} \mathrm{CS}$ and NEt_{3} at $-5^{\circ} \mathrm{C}$ results in the immediate precipitation of $\mathrm{NEt}_{3} . \mathrm{HCl}$. In-situ ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies conducted immediately after the addition of the chlorophosphine show the presence of two phosphorus containing species. A pair of doublets at $\delta(\mathrm{P}) 45.8$ and $\delta(\mathrm{P})-12.2$ are attributed to the monosulfide $\mathrm{Ph}_{2} \mathrm{P}-\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}$ [$\left.{ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}\right) 253 \mathrm{~Hz}\right]$ reported previously by Schmutzler ${ }^{34}$ and discussed in Chapter 1. The major phosphorus containing species occurs at $\delta(\mathrm{P}) 44.3$ and we can be confident in assuming that this is the mono-substituted product $\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Et}) \mathrm{H}$ as its chemical shift is very similar to that reported by Schmutzler ${ }^{37}$ for the analogous mono-substituted product $\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{C}(\mathrm{S}) \mathrm{N}(\mathrm{Me}) \mathrm{H}$. Further addition of $\mathrm{Ph}_{2} \mathrm{PCl}$ eventually results in the loss of this peak and the formation of the desired bissubstituted product at $\delta(\mathrm{P}) 669$. Removal of the $\mathrm{NEt}_{3} . \mathrm{HCl}$ by suction filtration and reduction of the solvent volume in vacuo results in the precipitation of the product Isolation of the product by suction filtration results in $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CS}, 16$, as a white
solid in low yield (26%). Air- and moisture-tolerant 16 is readily soluble in dichloromethane and thf and elemental analysis is in good agreement with calculated values. FAB^{+}mass spectrometry failed to show the expected parent-ion peak but did show a peak that can be attributed to the loss of a sulfur atom ($\mathrm{m} / \mathrm{z} 468[\mathrm{M}-\mathrm{S}]^{+}$). The IR spectrum shows peaks which can be assigned to $v(\mathrm{CS})\left(1234 \mathrm{~cm}^{-1}\right), v(\mathrm{CN})(1435$ cm^{-1}) and $v(\mathrm{PN})\left(997 \mathrm{~cm}^{-1}\right)$.

2.6 Reaction of $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CS}$ with $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$.

Reports of metal complexes containing ligands of the type $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{R})\right\}_{2} \mathrm{CE}(\mathrm{E}$ $=0, S)$ are rare. Schmutzler reported the synthesis of $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CS}$ but did not describe any complexation chemistry for the ligand ${ }^{38}$ Here we describe the reaction of $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CS}$ with $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$.

The ligand $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CS}$ was prepared according to literature methods ${ }^{38}$ and reacted with equimolar quantities of $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right]$ in thf. The reaction fails to give the expected P, P^{\prime} chelate system and instead proceeds according to Equation 2.12 with P-N bond cleavage, to give the novel five-membered heterocycle 17.

17
Equation 2.12

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 17 shows a singlet with satellites from coupling to ${ }^{195} \mathrm{Pt}$. The product has a chemical shift of $\delta(\mathrm{P}) 783$ and the magnitude of the coupling [${ }^{1}\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right) 3967 \mathrm{~Hz}$] is once again in agreement with previously reported values for platinum (II) complexes where phosphorus is trans to chloride. ${ }^{32} \mathrm{FAB}^{+}$mass spectrometry failed to show the expected parent-ion peak but did show a peak correspondıng to the loss of a chloride ion ($\mathrm{m} / \mathrm{z} 519[M-\mathrm{Cl}]^{+}$). Colourless crystals of 17 suitable for X-ray crystallography were grown by layering a chloroform/dmso

Figure 2.10 Solid state structure of $\left[\mathrm{PtCl}_{2}\left\{\left(\mathrm{Ph}_{2}\right) \mathrm{PN}(\mathrm{Me}) \mathrm{CSN}(\mathrm{Me}) \mathrm{H}\right.\right.$ $P, S\}]$.dmso. CHCl_{3}.

Table 2.15 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $17 \mathrm{dmso} . \mathrm{CHCl}_{3}$.

Bond	Length	Bond	Angle
$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2.324(4)$	$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$9110(14)$
$\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$2.387(3)$	$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{S}(13)$	$88.02(13)$
$\mathrm{Pt}(1)-\mathrm{P}(1)$	$2.188(3)$	$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$106.8(4)$
$\mathrm{Pt}(1)-\mathrm{S}(13)$	$2.256(4)$	$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{C}(13)$	$118.7(8)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.739(10)$	$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{C}(14)$	$120.7(9)$
$\mathrm{N}(1)-\mathrm{C}(14)$	$149(2)$	$\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{S}(13)$	$121.7(10)$
$\mathrm{N}(1)-\mathrm{C}(13)$	$1.34(2)$	$\mathrm{C}(13)-\mathrm{S}(13)-\mathrm{Pt}(1)$	$104.0(5)$
$\mathrm{C}(13)-\mathrm{S}(13)$	$1.737(13)$	$\mathrm{C}(13)-\mathrm{N}(1)-\mathrm{C}(14)$	$120.2(11)$
$\mathrm{C}(13)-\mathrm{N}(2)$	$134(2)$	$\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{S}(13)$	$119.3(10)$
$\mathrm{N}(2)-\mathrm{C}(15)$	$1.49(2)$	$\mathrm{C}(15)-\mathrm{N}(2)-\mathrm{C}(13)$	$123.4(14)$

solution of the product with diethyl ether. The solid state structure of $17 . \mathrm{dmso} . \mathrm{CHCl}_{3}$ is shown in Figure 2.10 and selected bond lengths and angles are shown in Table 2.15 According to a recent review there are very few fully characterised examples of 5membered 'true' heterocycles (i e. heterocycles in which every ring atom is different), though there is a report of a related PtSNCP heterocycle. ${ }^{82,83}$ The X-ray structure of 17 reveals square planar coordination of the platinum with the five-membered PtPNCS ring being almost perfectly planar (maxımum deviation from the $\mathrm{PtPNCSCl}_{2}$ plane is $0.11 \AA$ for $\mathrm{S}(13)$, with $\mathrm{N}(2), \mathrm{C}(14)$ and $\mathrm{C}(15)$ lying $005,0.18$ and $-0.06 \AA$ from this plane). The bond lengths and angles within 17 are in the expected range. The $\mathrm{Pt}-\mathrm{Cl}$ distances vary as a function of the trans element, within the five-membered PtPNCS heterocycle the P-N and C-N bonds are effectively single bonds whilst $\mathrm{C}(13)-\mathrm{S}(13)$ is slightly longer than a formal $\mathrm{C}=\mathrm{S}$ double bond.

2.7 Conclustons

Ligands of the type $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{R})\right\}_{2} \mathrm{C}=\mathrm{E}$ (where $\mathrm{R}=\mathrm{Me}$ or Et and $\mathrm{E}=\mathrm{O}$ or S) can be readily synthesised via reactions of dialkylureas or thioureas with chlorodiphenylphosphine. Reactions of the compounds $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{C}=\mathrm{O}$ and $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{C}=\mathrm{O}$ with $\mathrm{Pt}(\mathrm{II}), \mathrm{Pd}(\mathrm{II}), \mathrm{Mo}(0)$ and $\mathrm{Rh}(\mathrm{I})$, results in the ligands acting as P, P^{\prime} chelates and formation of six-membered ring systems, while $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{C}=\mathrm{O}$ acts as a bridging ligand when reacted with $\mathrm{Au}(\mathrm{I})$. Different substituents on the nitrogen atoms appear to have little influence on bond lengths and angles within the metal complexes. The coordination chemistry of $\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{C}=\mathrm{S}$ is less predictable and results in P-N bond cleavage and the formation of a five-membered heterocycle when reacted with $\mathrm{Pd}(\mathrm{II})$. Studies of the chemistry of these types of ligands are still far from extensive. A great deal of scope exists for further investigation into the reactions of various urea and thiourea derivatives with different chlorophosphines and, subsequently, the coordination chemistry of any ligands produced. In particular, the coordinative properties of diphosphine derivatives of thioureas remain relatively unexplored.

Experimental

General experimental conditions and instrumentation were as set out on page 12. The complexes $[\mathrm{AuCl}(\mathrm{tht})]$ (tht $=$ tetrahydrothiophene), ${ }^{84}\left[\mathrm{MCl}_{2}(\mathrm{cod})\right](\mathrm{M}=\mathrm{Pt}$ or Pd; cod $=$ cycloocta-1,5-diene), ${ }^{85,86}$ [PtMeX(cod)] $(\mathrm{X}=\mathrm{Cl}$ or Me$),{ }^{87}$ $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\text { pip })_{2}\right],{ }^{88}$ and $\left[\{\operatorname{Rh}(\mu-\mathrm{Cl})(\operatorname{cod})\}_{2}\right]{ }^{89}$ were prepared using literature procedures. Chlorodiphenylphosphine and triethylamine were distilled prior to use. N, N^{\prime}-dimethylurea, N, N^{\prime}-diethylurea, N, N^{\prime}-diethylthourea, $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{AgClO}_{4}$ and reagent grade KBr were used without further purification. $\mathrm{Pd}(\mathrm{OAc})_{2}$ was kindly donated by BP Chemicals Ltd.
$\left[\mathrm{Ph}_{2} \mathbf{P N}(\mathrm{Me})\right]_{2} \mathbf{C O}$ 1. A solution of N, N^{\prime}-dimethylurea ($2.00 \mathrm{~g}, 22.6 \mathrm{mmol}$) and triethylamine ($4.59 \mathrm{~g}, 6.5 \mathrm{~cm}^{3}, 454 \mathrm{mmol}$) in dichloromethane ($20.0 \mathrm{~cm}^{3}$) was added dropwise over a period of 3 h to a stirred solution of chlorodiphenylphosphine $(9.94 \mathrm{~g}$, $\left.8.2 \mathrm{~cm}^{3}, 35 \mathrm{mmol}\right)$ in dichloromethane $\left(10.0 \mathrm{~cm}^{3}\right)$. Stirring was continued for 24 h . The solvent was removed in vacuo and diethyl ether ($20.0 \mathrm{~cm}^{3}$) added. The white solid was collected by suction filtration, washed with water to remove triethylamine hydrochloride and dried over $\mathrm{P}_{4} \mathrm{O}_{10}$ in vacuo. Yield: $5.76 \mathrm{~g}, 56 \%$ Microanalysis: Found (Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OP}_{2}$) C 70.5 (71.0), H 5.0 (57), N 5.5 (6.1) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta(\mathrm{P}) 546 \mathrm{IR}\left(\mathrm{KBr}\right.$ disc, $\left.\mathrm{cm}^{-1}\right): 3050 \mathrm{~s}, 2969 \mathrm{~s}, 2932 \mathrm{~s}, 1646 \mathrm{vs}, 1479 \mathrm{~s}$, $1432 \mathrm{vs}, 1422 \mathrm{vs}, 1408 \mathrm{~s}, 1311 \mathrm{~s}, 1183 \mathrm{~m}, 1150 \mathrm{~m}, 1116 \mathrm{~m}, 1088 \mathrm{~s}, 1067 \mathrm{~s}, 1013 \mathrm{~s}, 997 \mathrm{~s}$, $961 \mathrm{vs}, 819 \mathrm{vs}, 770 \mathrm{~m}, 746 \mathrm{vs}, 694 \mathrm{vs}, 586 \mathrm{~s}, 548 \mathrm{~m}, 523 \mathrm{~s}, 505 \mathrm{~s}$, and 493 s FAB mass spectrum: $m / z 456,\left[M^{+}\right]$.
$\left[\mathbf{P h}_{\mathbf{2}} \mathbf{P N}(\mathbf{E t})\right]_{\mathbf{2}} \mathbf{C O}$ 2. A solution of N, N^{\prime}-diethylurea ($200 \mathrm{~g}, 17.2 \mathrm{mmol}$) and triethylamine ($363 \mathrm{~g}, 5.0 \mathrm{~cm}^{3}, 350 \mathrm{mmol}$) in dichloromethane ($200 \mathrm{~cm}^{3}$) was added dropwise over a period of 4 h to a stirred solution of chlorodiphenylphosphine (7.57 g , $\left.6.2 \mathrm{~cm}^{3}, 35.0 \mathrm{mmol}\right)$ in dichloromethane $\left(10.0 \mathrm{~cm}^{3}\right)$. Strring was continued for 48 h . The solvent was removed in vacuo and diethyl ether ($20.0 \mathrm{~cm}^{3}$) added. The white solid was collected by suction filtration, washed with water to remove triethylamine hydrochloride and dried over $\mathrm{P}_{4} \mathrm{O}_{10}$ in vacuo. Yield: $3.35 \mathrm{~g}, 9 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OP}_{2}$) C 70.8 (71.2), H 6.2 (6.2), N 5.3 (5 8) $\%{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 56.1$. IR (KBr disc, cm^{-1}): 3054s, $2969 \mathrm{~s}, 2931 \mathrm{~s}, 1649 \mathrm{vs}, 1478 \mathrm{~s}$,
$1432 \mathrm{vs}, 1378 \mathrm{~s}, 1363 \mathrm{~s}, 1318 \mathrm{~s}, 1263 \mathrm{vs}, 1181 \mathrm{~m}, 1134 \mathrm{~m}, 1087 \mathrm{~s}, 1041 \mathrm{~s}, 992 \mathrm{~s}, 936 \mathrm{~m}$, $783 \mathrm{~m}, 749 \mathrm{vs}, 694 \mathrm{vs}$ and 493 s . FAB mass spectrum. $m / z 484,\left[M^{+}\right]$.
cis- $\left[\mathbf{P t C l}_{\mathbf{2}}\left\{\mathbf{P h}_{2} \mathbf{P N}(\mathbf{M e}) \mathbf{C O N}(\mathbf{M e}) \mathbf{P P h}_{2}\right\}\right]$ 3. To a solution of $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right](0.033 \mathrm{~g}$, $0.08 \mathrm{mmol})$ in dichloromethane $\left(5.0 \mathrm{~cm}^{3}\right)$ was added solid $\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right]_{2} \mathrm{CO}(0.040 \mathrm{~g}$, 0.08 mmol) and the colourless solution stirred for $c a 1 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a .1 .0 \mathrm{~cm}^{3}$ and diethyl ether ($10.0 \mathrm{~cm}^{3}$) added. The white product was collected by suction filtration. Yield: $0.050 \mathrm{~g}, 79 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{Pt}$) C 428 (44.9), H 3.4 (3.6), N 3.6 (3.8) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 534,{ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right) 3792 \mathrm{~Hz}$. IR (KBr disc, cm^{-1}): $3061 \mathrm{~s}, 2960 \mathrm{~s}, 2692 \mathrm{~s}, 1672 \mathrm{vs}, 1484 \mathrm{~m}, 1435 \mathrm{~s}, 1315 \mathrm{~m}, 1261 \mathrm{w}, 1182 \mathrm{~m}, 1141 \mathrm{~m}$, $1092 \mathrm{~s}, 1036 \mathrm{~m}, ~ 973 \mathrm{~m}, ~ 810 \mathrm{w}, 777 \mathrm{w}, 750 \mathrm{~s}, 690 \mathrm{~m}, 635 \mathrm{w}, 578 \mathrm{w}, 539 \mathrm{~s}, 515 \mathrm{~s}, 498 \mathrm{~m}$, 315 w and 296 m . FAB mass spectrum: $m / z 722,[M]^{+}$.
cis-[$\left.\mathbf{P t C l}_{\mathbf{2}}\left\{\mathbf{P h}_{2} \mathbf{P N}(\mathbf{E t}) \mathbf{C O N}(\mathbf{E t}) \mathbf{P P h}_{2}\right\}\right] \mathbf{4}$. To a solution of $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right](0038 \mathrm{~g}, 0.10$ $\mathrm{mmol})$ in dichloromethane $\left(5.0 \mathrm{~cm}^{3}\right)$ was added solid $\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right]_{2} \mathrm{CO}(0.050 \mathrm{~g}, 0.10$ mmol) and the colourless solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 10 \mathrm{~cm}^{3}$ and diethyl ether $\left(100 \mathrm{~cm}^{3}\right)$ added The white product was collected by suction filtration. Yield: $0.045 \mathrm{~g}, 58 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{Pt}$) C 45.2 (46 4), H 42 (4.0) N 3.9 (3.7) $\%{ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 56.7,{ }^{1} J\left({ }^{195} \mathrm{Pt}^{-31} \mathrm{P}\right) 3910 \mathrm{~Hz} . \mathrm{IR}\left(\mathrm{KBr} \mathrm{disc}, \mathrm{cm}^{-1}\right): 3052 \mathrm{~s}$, 2977s, 2677s, 1669vs, 1478w, 1436vs, 1310s, 1249vs, 1186s, 1098vs, 1025w, 997s, $790 \mathrm{w}, 775 \mathrm{w}, 746 \mathrm{~s}, 729 \mathrm{w}, 692 \mathrm{vs}, 628 \mathrm{~s}, 611 \mathrm{w}, 542 \mathrm{~s}, 521 \mathrm{vs}, 502 \mathrm{w}, 483 \mathrm{~s}, 320 \mathrm{~s}$ and 295 s. FAB mass spectrum: $m / z 715,[M-\mathrm{Cl}]^{+}$.
cis-[PtMe $\left.\left.\mathbf{Z P h}_{2} \mathbf{P N}(\mathbf{M e}) \mathbf{C O N}(\mathbf{M e}) \mathbf{P P h}_{2}\right\}\right]$ 5. To a solution of $\left[\mathrm{PtMe}_{2}(\operatorname{cod})\right](0.044 \mathrm{~g}$, $0.13 \mathrm{mmol})$ in dichloromethane $\left(10.0 \mathrm{~cm}^{3}\right)$ was added solid $\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right]_{2} \mathrm{CO}(0060$ $\mathrm{g}, 0.13 \mathrm{mmol}$) and the colourless solution stirred for $c a 3 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and light petroleum (bp $60-80$ $\left.{ }^{\circ} \mathrm{C}\right)\left(10.0 \mathrm{~cm}^{3}\right)$ added. The white product was collected by suction filtration Yield: $0058 \mathrm{~g}, 65 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{Pt}$) C 473 (50.1) H 49 (5.1), N $4.0(4.2) \%{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 749,{ }^{1} J{ }^{195} \mathrm{Pt}^{31} \mathrm{P}$) 1944 Hz . IR $\left(\mathrm{KBr}\right.$ disc, $\left.\mathrm{cm}^{-1}\right): 3050 \mathrm{~s}, 2942 \mathrm{~s}, 2875 \mathrm{~s}, 1626 \mathrm{vs}, 1482 \mathrm{~s}, 1434 \mathrm{vs}, 1414 \mathrm{~s}, 1295 \mathrm{vs}$,
$1100 \mathrm{vs}, 983 \mathrm{~s}, 840 \mathrm{~s}, 747 \mathrm{vs}, 710 \mathrm{~s}, 696 \mathrm{vs}, 622 \mathrm{~s}, 607 \mathrm{~s}, 564 \mathrm{vs}, 539 \mathrm{~s}, 517 \mathrm{~s}, 494 \mathrm{~s}, 474 \mathrm{~s}$ and 302 w . FAB mass spectrum: $m / z 681,[M]^{+}$.
cis-[$\left.\mathbf{P t M e}_{2}\left\{\mathbf{P h}_{2} \mathbf{P N}(\mathbf{E t}) \mathbf{C O N}(\mathbf{E t}) \mathbf{P P h}_{2}\right\}\right]$ 6. To a solution of $\left[\mathrm{PtMe}_{2}(\operatorname{cod})\right](0.034 \mathrm{~g}$, $0.10 \mathrm{mmol})$ in dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ was added solid $\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right]_{2} \mathrm{CO}(0.050 \mathrm{~g}$, 0.10 mmol) and the colourless solution stirred for $c a 2 \mathrm{~h}$ The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and light petroleum (b p. 60-80 $\left.{ }^{\circ} \mathrm{C}\right)\left(10.0 \mathrm{~cm}^{3}\right)$ added. The white product was collected by suction filtration Yield: $0.046 \mathrm{~g}, 63 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{Pt}$) C 52.7 (52.4), H 58 (5.1), N 40 (39) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \cdot \delta(\mathrm{P}) 77.7,{ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right) 1997 \mathrm{~Hz}$ IR (KBr disc, cm^{-1}): $3057 \mathrm{~s}, 2970 \mathrm{~s}, 2933 \mathrm{~s}, 2878 \mathrm{~s}$, 2801s, $1652 \mathrm{vs}, 1481 \mathrm{~s}, 1458 \mathrm{~s}, 1436 \mathrm{vs}$, 1382 s , 1324s, 1249vs, 1178s, 1097vs, 994s, 776s, 746vs, 696vs, 624 s , 603 s , 541 s , $525 \mathrm{vs}, 475 \mathrm{~s}, 449 \mathrm{~s}, 348 \mathrm{w}, 303 \mathrm{w}$ and 224s. FAB mass spectrum $\mathrm{m} / \mathrm{z} 710,[M]^{+}$.
cis-[$\left.\mathbf{P t M e}(\mathbf{C l})\left\{\mathbf{P h}_{2} \mathbf{P N}(\mathbf{M e}) \mathbf{C O N}(\mathbf{M e}) \mathbf{P P h}_{2}\right\}\right]$ 7. To a solution of $[\mathrm{PtMe}(\mathrm{Cl})(\mathrm{cod})]$ $(0.054 \mathrm{~g}, \quad 0.15 \mathrm{mmol})$ in dichloromethane $\left(10.0 \mathrm{~cm}^{3}\right)$ was added solid $\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right]_{2} \mathrm{CO}(0.070 \mathrm{~g}, 015 \mathrm{mmol})$ and the colourless solution stirred for $c a .1 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 10 \mathrm{~cm}^{3}$ and diethyl ether $\left(10.0 \mathrm{~cm}^{3}\right)$ added The white product was collected by suction filtration Yield 0075 g, 67% Microanalysis: Found (Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{OP}_{2} \mathrm{Pt}$) C 475 (47.9), H 4.0 (4.2), N 3.7 (3.9) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \cdot \delta(\mathrm{P})\left(\mathrm{P}_{\mathrm{A}}\right.$ trans to $\left.\mathrm{CH}_{3}\right) 741,{ }^{1} J\left({ }^{195} \mathrm{Pt}\right.$ $\left.{ }^{31} \mathrm{P}_{\mathrm{A}}\right) 1819 \mathrm{~Hz}, \delta(\mathrm{P})\left(\mathrm{P}_{\mathrm{B}}\right.$ trans to Cl$) 61.4,{ }^{1} J\left({ }^{195} \mathrm{Pt}_{-}{ }^{31} \mathrm{P}_{\mathrm{B}}\right) 4509 \mathrm{~Hz},{ }^{2} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}{ }^{31} \mathrm{P}_{\mathrm{B}}\right) 30 \mathrm{~Hz}$. IR (KBr disc, cm^{-1}): 2949s, 2885s, $1637 \mathrm{vs}, 1481 \mathrm{~s}, 1433 \mathrm{vs}, 1290 \mathrm{vs}, 1184 \mathrm{~s}, 1101 \mathrm{vs}$, $1027 \mathrm{w}, 984 \mathrm{~s}, 844 \mathrm{w}, 747 \mathrm{~s}, 713 \mathrm{~s}, 694 \mathrm{~s}$, 624 s , $610 \mathrm{~s}, 566 \mathrm{~s}$, $546 \mathrm{~s}, 512 \mathrm{~s}, 493 \mathrm{~s}, 476 \mathrm{~s}$ and 303s. FAB mass spectrum: $m / z 701,[M]^{+}$.
cis-[PtMe(Cl) $\left\{\mathbf{P h}_{2} \mathbf{P N}(\mathbf{E t}) \mathbf{C O N}\left(\mathbf{E t t}^{\mathbf{~}} \mathrm{PPh}_{2}\right\}\right]$ 8. To a solution of $[\mathrm{PtMe}(\mathrm{Cl})(\mathrm{cod})]$ $(0036 \mathrm{~g}, 010 \mathrm{mmol})$ in dıchloromethane $\left(50 \mathrm{~cm}^{3}\right)$ was added solid $\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right]_{2} \mathrm{CO}$ ($0050 \mathrm{~g}, 0.10 \mathrm{mmol}$) and the colourless solution stirred for $c a 2 \mathrm{~h}$ The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and diethyl ether ($10.0 \mathrm{~cm}^{3}$) added. The white product was collected by suction filtration. Yield: $0.049 \mathrm{~g}, 63 \%$. Microanalysis Found (Calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{OP}_{2} \mathrm{Pt}$) C 48.2 (49.3), H 4.0 (45), N 3.1 (3.8) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P})\left(\mathrm{P}_{\mathrm{A}}\right.$ trans to $\left.\mathrm{CH}_{3}\right) 771,{ }^{1} J\left({ }^{195} \mathrm{Pt}^{-31} \mathrm{P}_{\mathrm{A}}\right) 1891 \mathrm{~Hz}$,
$\delta(\mathrm{P})\left(\mathrm{P}_{\mathrm{B}}\right.$ trans to Cl$) 64.2,{ }^{1} J\left({ }^{195} \mathrm{Pt}^{-}{ }^{31} \mathrm{P}_{\mathrm{B}}\right) 4596 \mathrm{~Hz},{ }^{2} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}-{ }^{31} \mathrm{P}_{\mathrm{B}}\right) 31 \mathrm{~Hz}$. IR (KBr disc, $\left.\mathrm{cm}^{-1}\right): 3056 \mathrm{~s}, 2970 \mathrm{~s}, 2883 \mathrm{~s}, 1658 \mathrm{vs}, 1481 \mathrm{~s}, 1458 \mathrm{~s}, 1436 \mathrm{vs}, 1382 \mathrm{~s}, 1324 \mathrm{~s}, 1246 \mathrm{vs}$, $1179 \mathrm{~s}, 1098 \mathrm{~s}$, $996 \mathrm{~s}, 776 \mathrm{~s}, 747 \mathrm{vs}, 695 \mathrm{vs}, 624 \mathrm{~s}, 606 \mathrm{~s}$, 545 s , $522 \mathrm{vs}, 478 \mathrm{~s}, 301 \mathrm{w}, 237 \mathrm{~s}$ and 230 s. FAB mass spectrum. $m / z 730,[M]^{+}$.
cis-[$\mathbf{P d C l}_{2}\left\{\mathbf{P h}_{\mathbf{2}} \mathbf{P N}(\mathbf{M e}) \mathbf{C O N}(\mathbf{M e}) \mathbf{P P h}_{2}\right\}$ \} 9. To a yellow solution of $\mathbf{P d C l}_{2}$ (cod) $(0.033 \mathrm{~g}, \quad 0.08 \mathrm{mmol})$ in dichloromethane $\left(10.0 \mathrm{~cm}^{3}\right)$ was added solid $\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right]_{2} \mathrm{CO}(0.040 \mathrm{~g}, 0.08 \mathrm{mmol})$ and the yellow solution stirred for $c a 3 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and diethyl ether $\left(10.0 \mathrm{~cm}^{3}\right)$ added. The yellow product was collected by suction filtration Yield: 0040 g, 73 \%. Microanalysis: Found (Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{Pd}$) C 509 (51.2), H 3.8 (4.1), N 3.9 (4.4) \% ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 76.2$. IR $\left(\mathrm{KBr} \mathrm{disc}, \mathrm{cm}^{-1}\right): 3059 \mathrm{~s}$, $1648 \mathrm{vs}, 1481 \mathrm{~s}, 1435 \mathrm{vs}, 1296 \mathrm{vs}, 1185 \mathrm{~s}, 1102 \mathrm{vs}, 991 \mathrm{~s}, 850 \mathrm{~s}, 749 \mathrm{~s}, 716 \mathrm{~s}, 689 \mathrm{~s}, 624 \mathrm{~s}$, $608 \mathrm{~s}, 570 \mathrm{~s}, 511 \mathrm{~s}, 490 \mathrm{~s}, 326 \mathrm{~s}$ and 304 s FAB mass spectrum: $m / z 598,[M-\mathrm{Cl}]^{+}$.
cis-[$\mathbf{P d C l}_{2}\left\{\mathbf{P h}_{2} \mathbf{P N}(\mathbf{E t}) \mathbf{C O N}(\mathbf{E t t})_{\mathbf{P P h}}^{\mathbf{2}} \mathbf{\}}\right]$ 10. To a yellow solution of $\left[\mathrm{PdCl}_{2}(\mathbf{c o d})\right]$ ($0.029 \mathrm{~g}, 0.10 \mathrm{mmol}$) in dıchloromethane $\left(5.0 \mathrm{~cm}^{3}\right.$) was added solid $\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right]_{2} \mathrm{CO}$ $(0050 \mathrm{~g}, 0.10 \mathrm{mmol})$ and the yellow solution stirred for $c a 1 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and diethyl ether ($100 \mathrm{~cm}^{3}$) added. The yellow product was collected by suction filtration. Yield. $0050 \mathrm{~g}, 73 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{Pd}$) C 50.8 (52.6), H 4.4 (4.5), N 38 (4.2) \%. ${ }^{31}{ }^{\mathrm{P}}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{P}) 80.1$. IR (KBr disc, cm^{-1}): 3052w, 2976w, $2677 \mathrm{w}, 1670 \mathrm{vs}, 1479 \mathrm{w}, 1454 \mathrm{w}, 1436 \mathrm{~s}, 1311 \mathrm{~s}, 1248 \mathrm{vs}, 1186 \mathrm{~s}, 1103 \mathrm{vs}, 1023 \mathrm{w}, 996 \mathrm{~s}$, $938 \mathrm{w}, 790 \mathrm{w}, 775 \mathrm{w}, 746 \mathrm{~s}, 728 \mathrm{w}, 692 \mathrm{vs}, 623 \mathrm{~s}$, $608 \mathrm{~s}, 537 \mathrm{~s}, 517 \mathrm{vs}, 476 \mathrm{w}, 322 \mathrm{~s}$ and 296s. FAB mass spectrum: $m / z 626,[M-\mathrm{Cl}]^{+}$.
$\left[\mathbf{P d}\left\{\mathbf{O P P h}_{2}\right\}\left\{\mathbf{N}(\mathbf{M e}) \mathbf{C}(\mathbf{O}) \mathbf{N}(\mathbf{M e}) \mathrm{PPh}_{2}\right\}\right]_{2}$ 11. To a yellow solution of $\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]$ $(0.150 \mathrm{~g}, \quad 0.70 \mathrm{mmol})$ in dichloromethane $\left(10.0 \mathrm{~cm}^{3}\right)$ was added solıd $\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right]_{2} \mathrm{CO}(0320 \mathrm{~g}, 070 \mathrm{mmol})$ and the dark yellow solution stirred for ca 2 h. The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and diethyl ether ($10.0 \mathrm{~cm}^{3}$) added. The dark yellow product was collected by suction filtration. Yield: $0.251 \mathrm{~g}, 31 \%$ Microanalysis: Found (Calcd for $\mathrm{C}_{54} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Pd}_{2}$) C 55.5 (56.1), H 4.3 (4.5), N 4.3 (4.8) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{P}) 71.2$ and 84.4 IR
$\left(\mathrm{KBr}\right.$ disc, $\left.\mathrm{cm}^{-1}\right): 3052 \mathrm{w}, 2915 \mathrm{w}, 1630 \mathrm{vs}, 1610 \mathrm{vs}, 1480 \mathrm{w}, 1434 \mathrm{~s}, 1325 \mathrm{~s}, 1208 \mathrm{w}$, $1105 \mathrm{vs}, 1010 \mathrm{vs}, 995 \mathrm{vs}, 948 \mathrm{w}, 815 \mathrm{w}, 744 \mathrm{~s}, 692 \mathrm{vs}, 595 \mathrm{w}, 552 \mathrm{vs}, 535 \mathrm{~s}, 508 \mathrm{vs}, 492 \mathrm{~s}$ and 345 w . FAB mass spectrum $m / z 1158,\left[M^{+}\right.$.
$\left.\left[\mathbf{P d}\left\{\mathbf{O P P h}_{2}\right\} \mathbf{\{ N (E t) C (O) N (E t)} \mathbf{P P h}_{2}\right\}\right]_{2} \mathbf{1 2}$. To a yellow solution of $\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]$ (0.045 $\mathrm{g}, 0.2 \mathrm{mmol})$ in dichloromethane $\left(5.0 \mathrm{~cm}^{3}\right)$ was added solid $\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right]_{2} \mathrm{CO}(0100$ $\mathrm{g}, 002 \mathrm{mmol}$) and the dark yellow solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1 \mathrm{~cm}^{3}$ and diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ added. The dark yellow product was collected by suction filtration. Yıeld: $0.127 \mathrm{~g}, 51 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{58} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Pd}_{2}$) C 56.8 (57.4), H 46 (5.0), N 40 (4.6) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \cdot \delta(\mathrm{P}) 69.5$ and 84.4. IR (KBr disc, cm^{-1}): 3053 w , 2927w, 1672w, 1620vs, 1481w, 1435s, 1369w, 1319s, 1281s, 1219w, 1181s, 1103s, $1034 \mathrm{~s}, 1022 \mathrm{~s}, 996 \mathrm{~s}, 746 \mathrm{~s}, 695 \mathrm{vs}, 593 \mathrm{w}, 553 \mathrm{vs}, 529 \mathrm{~s}, 505 \mathrm{~s}, 472 \mathrm{w}$ and 328 w . FAB mass spectrum: $m / z 1214,[M]^{+}$.
cis- $\left[\mathrm{Mo}(\mathrm{CO})_{\mathbf{4}}\left\{\mathrm{Ph}_{2} \mathbf{P N}(\mathrm{Me}) \mathbf{C O N}(\mathbf{M e}) \mathbf{P P h}_{2}\right\}\right]$ 13. To a partially dissolved solution of $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{pip})_{2}\right](0.580 \mathrm{~g}, 1.50 \mathrm{mmol})$ in dichloromethane $\left(200 \mathrm{~cm}^{3}\right)$ was added solid $\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right]_{2} \mathrm{CO}(0700 \mathrm{~g}, 1.50 \mathrm{mmol})$. The solution was heated to reflux for ca 15 min and allowed to cool to room temperature. The solution was concentrated under reduced pressure to $c a 20 \mathrm{~cm}^{3}$ and methanol $\left(150 \mathrm{~cm}^{3}\right)$ added. The yellow product was collected by suction filtration. Yield. $0.725 \mathrm{~g}, 71 \%$. Microanalysis• Found (Calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Mo}$) C 554 (56.0), H 3.8 (3.9), N 41 (4.2) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 101.9$ IR (KBr disc, cm^{-1}): $3056 \mathrm{~s}, 2940 \mathrm{~s}, 2024 \mathrm{~s}, 1916 \mathrm{vs}, 1905 \mathrm{vs}$, $1890 \mathrm{vs}, 1634 \mathrm{vs}, 1433 \mathrm{~s}, 1412 \mathrm{w}, 1297 \mathrm{vs}, 1213 \mathrm{w}, 1088 \mathrm{~s}, 962 \mathrm{~s}, 818 \mathrm{~s}, 752 \mathrm{~s}, 742 \mathrm{~s}, 692 \mathrm{~s}$, $584 \mathrm{~s}, 568 \mathrm{~s}, 515 \mathrm{~s}, 411 \mathrm{~s}, 382 \mathrm{~s}$ and 334 w . FAB mass spectrum: $m / z 664,[M]^{+}$.
cis- $\left[\mathbf{R h}(\mathbf{c o d})\left\{\mathrm{Ph}_{2} \mathbf{P N}(\mathbf{E t}) \mathbf{C O N}(\mathrm{Et})^{\mathrm{PP}} \mathrm{Ph}_{2}\right\}\right]^{+}\left[\mathrm{ClO}_{4}\right]^{-}$14. To a stirred solution of $[\mathrm{RhCl}(\operatorname{cod})]_{2}(0050 \mathrm{~g}, 0.10 \mathrm{mmol})$ in acetone $\left(20.0 \mathrm{~cm}^{3}\right)$ was added AgClO_{4} and the solution strrred for 15 min . The colourless precipitate was removed by filtration and washed with acetone $\left(10.0 \mathrm{~cm}^{3}\right)$. To the combined filtrates and washings was added solid $\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right]_{2} \mathrm{CO}(0.098 \mathrm{~g}, 0.20 \mathrm{mmol})$ and the solution stirred for $c a 1 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 10 \mathrm{~cm}^{3}$ and diethyl ether (5.0 cm^{3}) added. The brown product was collected by suction filtration. Yield: $0092 \mathrm{~g}, 58$
\%. Microanalysis: Found (Calcd for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Rh}$) C 57.7 (58.9), H 5.1 (5.3), N 3.4 (3.5) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 926,88.0 \mathrm{IR}\left(\mathrm{KBr} \mathrm{disc}, \mathrm{cm}^{-1}\right) 3054 \mathrm{~s}$, $2967 \mathrm{~s}, 1664 \mathrm{vs}, 1482 \mathrm{~s}$, 1459s, 1437vs, 1382s, 1249vs, 1095vs, 996 s , 751s, 694vs, $622 \mathrm{vs}, 606 \mathrm{~s}, 529 \mathrm{~s}, 511 \mathrm{~s}, 460 \mathrm{~s}$ and 234 vs . FAB mass spectrum: $m / z 695$ corresponds to $\left[\mathrm{Rh}(\mathrm{cod})\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{CON}(\mathrm{Et}) \mathrm{PPh}_{2}-P, P^{\prime}\right\}\right]^{+}$.
$\left[\left\{\mathbf{P h}_{2} \mathbf{P}(\mathbf{A u C l}) \mathbf{N}(\mathbf{E t}) \mathbf{C O N}(\mathbf{E t}) \mathbf{P}(\mathbf{A u C l}) \mathbf{P h}_{2}\right\}\right]$ 15. To a solution of $[\mathrm{AuCl}(\mathrm{tht})](0.032 \mathrm{~g}$, $0.10 \mathrm{mmol})$ in dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ was added solid $\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right]_{2} \mathrm{CO}(0050 \mathrm{~g}$, 010 mmol) and the colourless solution stirred for $c a 15 \mathrm{~min}$. The solution was concentrated under reduced pressure to $c a 10 \mathrm{~cm}^{3}$ and diethyl ether ($5.0 \mathrm{~cm}^{3}$) added. The colourless product was collected by suction filtration. Yield: $0.069 \mathrm{~g}, 72 \%$ Microanalysis: Found (Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{Au}_{2}$) C 36.9 (36.6), H 36 (3 2), N 3.2 (2.9) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 75.7$. IR $\left(\mathrm{KBr} \mathrm{disc}, \mathrm{cm}^{-1}\right): 3054 \mathrm{~s}, 2963 \mathrm{~s}$, $2922 \mathrm{~s}, 2677 \mathrm{~s}, 2493 \mathrm{~s}, 1655 \mathrm{vs}, 1479 \mathrm{~s}$, 1436vs, 1366vs, 1340vs, 1256vs, 1182s, 1128s, $1102 \mathrm{vs}, 1059 \mathrm{~s}, 997 \mathrm{w}, 757 \mathrm{~s}, 745 \mathrm{~s}, 727 \mathrm{vs}, 708 \mathrm{~s}, 691 \mathrm{vs}, 548 \mathrm{~s}, 533 \mathrm{~s}, 519 \mathrm{~s}, 497 \mathrm{~s}, 318 \mathrm{~s}$ and 225 vs . FAB mass spectrum: $m / z 949,[M]^{+}$.
$\left[\mathbf{P h} \mathbf{h}_{\mathbf{2}} \mathbf{P N}(\mathbf{E t})\right]_{\mathbf{2}} \mathbf{C S}$ 16. A solution of chlorodiphenylphosphine ($50 \mathrm{~g}, 4.1 \mathrm{~cm}^{3}, 22.7$ $\mathrm{mmol})$ in diethyl ether ($20.0 \mathrm{~cm}^{3}$) was added dropwise over a period of 45 min to a stirred solution of N, N '-diethylthiourea ($3.00 \mathrm{~g}, 22.7 \mathrm{mmol}$) and triethylamine (460 g , $\left.6.3 \mathrm{~cm}^{3}, 350 \mathrm{mmol}\right)$ in diethyl ether $\left(1000 \mathrm{~cm}^{3}\right)$ and thf $\left(20.0 \mathrm{~cm}^{3}\right)$ at $-5^{\circ} \mathrm{C}$. The reaction mixture was then allowed to warm to room temperature and stirring continued for 72 h during which time triethylammonium hydrochloride separated from the colourless solution. A second solution of chlorodiphenylphosphine $(5.0 \mathrm{~g}$, $4.1 \mathrm{~cm}^{3}, 22.7 \mathrm{mmol}$) in diethyl ether ($20.0 \mathrm{~cm}^{3}$) was added to the reaction mixture and stirring continued for a further 48 h Triethylammonium hydrochloride was removed by suction filtration and the reduction of the solvent volume in vacuo results in the precipitation of the product as a white solid. Yield $2.94 \mathrm{~g}, 26 \%$ Microanalysis: Found (Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}$) C 69.0 (69.6), H 6.0 (6.0), N 5.3 (5.6) \% ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta(\mathrm{P}) 678 \mathrm{IR}\left(\mathrm{KBr}\right.$ disc, $\left.\mathrm{cm}^{-1}\right): 2976 \mathrm{w}, 2677 \mathrm{w}, 1663 \mathrm{~s}, 1554 \mathrm{vs}, 1478 \mathrm{~s}$, $1435 \mathrm{vs}, 1383 \mathrm{~s}, 1244 \mathrm{~s}, 1174 \mathrm{~s}, 1130 \mathrm{~m}, 1092 \mathrm{~s}, 1036 \mathrm{~s}, 997 \mathrm{~s}, 919 \mathrm{~m}, 850 \mathrm{~m}, 739 \mathrm{vs}, 694 \mathrm{vs}$, $557 \mathrm{vs}, 514 \mathrm{vs}, 496 \mathrm{vs}$ and 376 w FAB mass spectrum: $m / z 468,[M-\mathrm{S}]^{+}$.
$\left\{\mathbf{P t C l}_{\mathbf{2}}\left\{\left(\mathbf{P h}_{\mathbf{2}}\right) \mathbf{P N} \mathbf{(M e) \mathbf { C S N } (\mathbf { M e }) \mathbf { H } \}] \text { 17. To a solution of } [\mathrm { PtCl } _ { 2 } (\operatorname { c o d })] (0 0 4 0 \mathrm { g } , 0 . 1 0}\right.\right.$ $\mathrm{mmol})$ in dichloromethane $\left(5.0 \mathrm{~cm}^{3}\right)$ was added solid $\left[\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right]_{2} \mathrm{CS}(0050 \mathrm{~g}, 0.10$ mmol) and the pale yellow solution stirred for $c a 1 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ added. The pale yellow product was collected by suction filtration. Yield: $0.050 \mathrm{~g}, 85 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{SPt}$) C 32.1 (32.4), H2.9 (3.1), N 48 (5.1) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 78.3,{ }^{1} J\left({ }^{195} \mathrm{Pt-}^{31}{ }^{31} \mathrm{P}\right) 3967 \mathrm{~Hz}$. . IR (KBr disc, cm^{-1}): $3222 \mathrm{w}, 3052 \mathrm{w}, 1577 \mathrm{vs}, 1482 \mathrm{~m}, ~ 1436 \mathrm{vs}, 1376 \mathrm{~s}, 1325 \mathrm{vs}, 1218 \mathrm{w}, 1185 \mathrm{w}$, $1142 \mathrm{w}, 1106 \mathrm{vs}, 1059 \mathrm{~m}, ~ 997 \mathrm{~m}, 829 \mathrm{~s}, 747 \mathrm{~s}, 718 \mathrm{~m}, 691 \mathrm{~s}, 578 \mathrm{~s}, 541 \mathrm{~m}, 521 \mathrm{~m}, 490 \mathrm{~s}$, $318 \mathrm{w}, 290 \mathrm{~m}, 3235 \mathrm{~m}, 221 \mathrm{vs}$ and 210 vs . FAB mass spectrum: $\mathrm{m} / \mathrm{z} 519,[\mathrm{M}-\mathrm{Cl}]^{+}$.

Chapter 3

The Preparation and Coordination Chemistry of Phosphorus (III) Derivatives of Dialkyl Hydrazines.

3.1 Introduction.

Since the discovery of bis(dihalophosphino)amines, $\mathrm{X}_{2} \mathrm{P}-\mathrm{N}(\mathrm{R})-\mathrm{PX}_{2}{ }^{90-92}$, extensive research has been carried out on the main group and transition metal/organometallic chemistry of this type of ligand systems. ${ }^{90-105}$ This is in sharp contrast to the corresponding studies of the dinitrogen-bridged diphosphines, bis(drhalophosphino)hydrazines, $\mathrm{X}_{2} \mathrm{PN}(\mathrm{R}) \mathrm{N}(\mathrm{R}) \mathrm{PX}_{2}$, which, until recent work by Katti and co-workers ${ }^{47,48,49}$, has been limited to a few reports ${ }^{21,40}$ The development of the chemistry of bis(dihalophosphino)hydrazine ligands is of particular significance because they have a similar chain length to that of dppe, a ligand which has proved adapt at forming five-membered chelate rings and has demonstrated significant applications in catalytic systems. The reactivity of the halide substituents on these ligands may also be utilised in the development of a wide range of $\mathrm{R}_{2}^{\prime} \mathrm{PN}(\mathrm{R}) \mathrm{N}(\mathrm{R}) \mathrm{PR}_{2}^{\prime}$-type of derivatives, allowing excellent control of the steric and electronic properties of any subsequent ligands. The studies reported by Katti and coworkers have centred on the synthesis and coordination chemistry of derivatives of bis(dichlorophosphino) dimethylhydrazine, $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}$. We have studied the synthesis of derivatives of bis(dichlorophosphino) diethylhydrazine, $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PCl}_{2}$ and report on the effects changes in substituent groups have on the coordination chemistry of such ligands. We have also synthesised a number of derivatives of $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}$ containing phenyl groups with substituents in the ortho position to investigate the possibility of these substituents occupying sites above and below metal centres in complexes thus limiting the available approach routes of reactants in catalytic systems

Results and discussion

3.2 Synthests of $\mathrm{Cl}_{2} \mathrm{PN}(E t) N(E t) \mathrm{PCl}_{2}$

As discussed in Chapter 1 Katti has reported the synthesis of $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}$ from the reaction of 1,2-dımethylhydrazine dihydrochloride and phosphorus trichloride. ${ }^{47}$ Employing a similar technique we were able to synthesise the analogous diphosphine, $\left.\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et})\right) \mathrm{PCl}_{2} 18$, from the reaction of 1,2-diethylhydrazine dihydrochloride and phosphorus trichloride (Equation 3.1).

18 Equation 3.1

Dropwise addition of PCl_{3} to a finely ground sample of 1,2-diethylhydrazine dihydrochloride results in the formation of a viscous orange suspension. The reaction mixture is then heated under reflux for 96 hours and the excess PCl_{3} removed in vacuo to leave a viscous orange oil. Kugelrohr distillation of the crude product leaves 18 as a colourless onl in good yield (72%). The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 18 shows a singlet at $\delta(\mathrm{P}) 156$, an upfield shift of approximately 4 ppm from the value reported for $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}{ }^{47}$, and FAB^{+}mass spectrometry shows the expected parention peak ($\mathrm{m} / \mathrm{z} 290\left[\mathrm{M}^{+}\right.$). Elemental analysis is in good agreement with the calculated values (Table 3 2) and the IR spectrum shows a band at $952 \mathrm{~cm}^{-1}$ that can be assigned to $v(\mathrm{PN})$. Having successfully synthesised $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PCl}_{2}$ we were then able to use this compound as a chloro precursor in nucleophilic substitution reactions and reactions with Grignard reagents to produce a range of aryloxy- and aryl-substituted phosphorus (III) hydrazides.

3.3 Reaction of $\mathrm{Cl}_{2} \mathrm{PN}(E t) N(E t) \mathrm{PCl}_{2}$ with Phenol.

Reaction of $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PCl}_{2}$ with 4 equivalents of PhOH in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in hexane proceeds according to Equation 3.2 to yield the aryloxyfunctionalised ligand $(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}(\mathrm{OPh})_{2} 19$.

19
Equation 3.2

Dropwise addition of a hexane solution of phenol and triethylamine to a stirred hexane solution of $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}\left(\mathrm{Et}_{\mathrm{t}}\right) \mathrm{PCl}_{2}$ results in the immediate precipitation of $\left[\mathrm{NEt}_{3} \mathrm{H}\right] \mathrm{Cl}$ as the reaction proceeds. Stirring is contınued for a further 12 hours. Removal of the ammonum salt by suction filtration and removal of the solvent in vacuo leaves 19 as a colourless viscous oil in good yield (81\%) The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 19 consists of a single resonance at $\delta(\mathrm{P}) 139$, the difference in chemical shift between it and 18 (27 ppm) being comparable to that observed between $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}$ and $(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}(\mathrm{OPh})_{2} .{ }^{47,48}$ Elemental analysis is in agreement with calculated values (Table 3.2) and FAB^{+}mass spectrometry shows the expected parent-ion peak ($\mathrm{m} / \mathrm{z} 520[M]^{+}$) The IR spectrum of 19 shows bands which can be assigned to $v(\mathrm{PN})$ and $v(\mathrm{PO})\left(930 \mathrm{~cm}^{-1}\right.$ and $1030 \mathrm{~cm}^{-1}$ respectively)

3.4 Reactıons of $\mathrm{Cl}_{2} P N(E t) N(E t) P C l_{2}$ with Grignard Reagents

Reaction of $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PCl}_{2} 18$ with 4 equivalents of $\mathrm{RMgBr}(\mathrm{R}=\mathrm{Ph}$ or $\mathrm{CH}_{2} \mathrm{Ph}$), in diethyl ether, proceeds according to Equation 33 to yield the diphosphines $\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2} 20$ and $\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2} 21$.

Equation 3.3

Diethyl ether solutions of $\mathbf{1 8}$ were added dropwise to stirred solutions of PhMgBr and $\mathrm{CH}_{2} \mathrm{PhMgBr}$ in diethyl ether at $0^{\circ} \mathrm{C}$ and the reaction mixtures stirred for a further 18 and 12 hours respectively. After this time deionized water was added slowly and the
layers separated. The diethyl ether layers were dried over MgSO_{4} before being removed in vacuo to leave 20 and 21 as colourless and pale yellow solids in good yields (70 and 74% respectively) FAB^{+}mass spectrometry shows peaks corresponding to the parent-ion peaks $[M]^{+}(\mathrm{m} / \mathrm{z} 456$ for 20 and $\mathrm{m} / \mathrm{z} 512$ for 21) and the IR spectra contain bands which can be assigned to $v(\mathrm{PN})\left(970 \mathrm{~cm}^{-1}\right.$ for 20 and 962 cm^{-1} for 21) The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the two compounds show singlets at $\delta(\mathrm{P})$ 64.2 and 64.8 respectively, significantly further upfield than the value for 19 due to the lack of highly electronegative oxygen atoms close to the phosphorus centres Elemental analyses are in good agreement with calculated values (Table 3.2).

A series of ligands containing phenyl groups with substituents in the ortho position have also been successfully synthesised Reaction of the chloro precursor 18 with the gngnard reagent o-anisylmagnesium bromide, $2-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$, generates $\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}$ 22, while reaction of $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}$ with o-anisylmagnesium bromide or o-tolylmagnesium chloride, $2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{MgCl}$, yields $\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} 23$ and $\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} 24$ respectively (Equation 3.4 and 3.5).

$$
\mathrm{R}=\mathrm{Et} \text { (22), } \mathrm{Me} \text { (23) }
$$

Equation 3.4

In the syntheses of $\mathbf{2 2}$ and $\mathbf{2 3}$ diethyl ether solutions of the chlorophosphines are added dropwise to stirred diethyl ether solutions of $2-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$ (prepared previously from the reaction of 2 -bromoanisole and magnesium turnings) and the
reaction mixtures stirred for 48 hours. Slow addıtion of deionized water results in the formation of two layers that are separated. The diethyl ether layers are then dried over MgSO_{4} before being evaporated in vacuo to leave 22 and 23 as colourless oils. Trituration of the oils with light petroleum leaves the products 22 and 23 as colourless solids in yields of 67 and 81% respectively. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the two ligands show singlets at $\delta(\mathrm{P}) 40.5$ and 42.6 respectively and the FAB^{+}mass spectra contain peaks corresponding to $[M]^{+}(\mathrm{m} / \mathrm{z} 576$ for 22 and $\mathrm{m} / \mathrm{z} 549$ for 23). The IR spectra of both compounds show a band which can be assigned to $v(\mathrm{PN})\left(933 \mathrm{~cm}^{-1}\right.$ for 22 and $969 \mathrm{~cm}^{-1}$ for 23) and elemental analyses are in agreement with calculated values (Table 3.1). The synthesis of $\mathbf{2 4}$ is achreved by using a similar technique to that employed in the synthesis of $\mathbf{2 2}$ and 23, the only difference being that after addition of $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}$ to the Grignard $2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3} \mathrm{MgCl}$, the reaction mixture is heated to reflux for 4 h . The same work-up procedure was then employed to leave (o $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} 24$ as a pale yellow solid in 65% yreld. Elemental analysis of the product was in good agreement with calculated values (Table 3.1) and the IR spectrum showed a band at $956 \mathrm{~cm}^{-1}$ that is characteristic of a $v(\mathrm{PN})$ stretch. As with 22 and 23 the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 24 indicates the presence of a single phosphorus species, represented by a singlet at $\delta(\mathrm{P}) 47.2$ and the FAB^{+}mass spectrum shows a peak which corresponds to the parent-ion (m/z 485 $\left.[M]^{+}\right)$.

3.5 Coordination chemistry of $R_{2} P N(E t) N(E t) P R_{2}$

Katti has reported the synthesis of various metal complexes in which diphosphine derivatives of $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}$ act as P, P^{\prime} chelates. ${ }^{23,47-49}$ Here we describe the synthesis of metal complexes containing derivatives of $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PCl}_{2}$ actıng as P, P^{\prime} chelates, as well as further examples involving derivatives of $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}$

The reaction of $(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}(\mathrm{OPh})_{2} 19$ with equimolar quantities of $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right]$ or $\left[\mathrm{PdCl}_{2}(\operatorname{cod})\right]$ in dichloromethane proceeds according to Equation 3.6 to yield the five-membered, P, P^{\prime} chelates cis- $\left[\mathrm{PtCl}_{2}\left\{(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}(\mathrm{OPh})_{2}\right\}\right] 25$ and $c t s-\left[\mathrm{PdCl}_{2}\left\{(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}(\mathrm{OPh})_{2}\right\}\right] 26$ respectively.

Table 3.1 Elemental analysis data for complexes 18-24 (calculated values in parentheses).

Cpd	Formula	C	H	N
18	$\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PCl}_{2}$	$\begin{gathered} \hline 170 \\ (16.6) \end{gathered}$	$\begin{gathered} \hline 3.9 \\ (3.5) \end{gathered}$	$\begin{gathered} \hline 9.8 \\ (9.7) \end{gathered}$
19	$(\mathrm{PhO}){ }_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}(\mathrm{OPh})_{2}$	$\begin{gathered} \hline 70.0 \\ (69.6) \end{gathered}$	$\begin{gathered} \hline 5.5 \\ (5.8) \end{gathered}$	$\begin{gathered} \hline 5.2 \\ (5.4) \end{gathered}$
20	$\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}$	$\begin{gathered} 72.9 \\ (73.7) \end{gathered}$	$\begin{gathered} 6.5 \\ (66) \end{gathered}$	$\begin{gathered} \hline 5.9 \\ (6.1) \end{gathered}$
21	$\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}$	$\begin{gathered} 74.3 \\ (749) \end{gathered}$	$\begin{gathered} \hline 7.4 \\ (7.5) \end{gathered}$	$\begin{gathered} \hline 5.2 \\ (5.5) \end{gathered}$
22	$\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}$	$\begin{gathered} 661 \\ (66.6) \end{gathered}$	$\begin{gathered} \hline 6.3 \\ (6.6) \end{gathered}$	$\begin{gathered} \hline 4.4 \\ (4.8) \end{gathered}$
23	$\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}$	$\begin{gathered} 65.1 \\ (65.7) \end{gathered}$	$\begin{gathered} \hline 5.9 \\ (6.3) \end{gathered}$	$\begin{gathered} \hline 4.8 \\ (51) \end{gathered}$
24	$\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}$	$\begin{gathered} \hline 737 \\ (74.4) \end{gathered}$	$\begin{gathered} 68 \\ (71) \end{gathered}$	$\begin{gathered} \hline 5.2 \\ (58) \end{gathered}$

$$
\mathrm{M}=\mathrm{Pt}(\mathbf{2 5}), \mathrm{Pd}(\mathbf{2 6})
$$

Equation 3.6

Addition of the diphosphine 19 to a dichloromethane solution of $\left[\mathrm{PtCl}_{2}(\right.$ cod $\left.)\right]$ results in the formation of a colourless solution. Stirring is continued for a further 2 hours, after which tume diethyl ether is added and $\mathbf{2 5}$ is precipitated as a white solid in moderate yield (65%). The same technique is employed in the synthesss of 26 and results in the product as a yellow solid in 50% yield The ${ }^{3!} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of
the compounds show singlets, at $\delta(\mathrm{P}) 92.3$ and 1166 respectively which both correspond to an upfield shift of approxımately 3 ppm when compared to the analogous dimethyl complexes cls-[$\left.\mathrm{MCl}_{2}\left\{(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}(\mathrm{OPh})_{2}\right\}\right]{ }^{49}$ The spectrum of 25 also shows satellites from coupling to ${ }^{195} \mathrm{Pt}$. The magnitude of the coupling (5503 Hz) is in agreement with the value $(5497 \mathrm{~Hz})$ previously reported for the N, N^{\prime}-dimethyl compound cis- $\left[\mathrm{PtCl}_{2}\left\{(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}(\mathrm{OPh})_{2}\right\}\right]^{49}$ and is indicative of a strong platinum-phosphorus interaction The IR spectra of 25 and 26 both show bands corresponding to $\nu(\mathrm{PN})$ and $v(\mathrm{PO})$ (928 and $1069 \mathrm{~cm}^{-1}$ respectively for 25 and 955 and $1070 \mathrm{~cm}^{-1}$ respectively for 26) as well as two distinct $v(\mathrm{MCl})$ stretches (325 and $299 \mathrm{~cm}^{-1}$ for 25 and 325 and $296 \mathrm{~cm}^{-1}$ for 26) which are indicative of a $\mathrm{cls}-\mathrm{MCl}_{2}$ geometry. FAB^{+}mass spectrometry shows the expected parent-1on peaks and peaks corresponding to the loss of a chloride ion ($\mathrm{m} / \mathrm{z} 786[M]^{+}$and $750[M$ $-\mathrm{Cl}]^{+}$for 25 and $\mathrm{m} / \mathrm{z} 698[M]^{+}$and $662[M-\mathrm{Cl}]^{+}$for 26) and elemental analysis is in good agreement with calculated values (Table 3.5). Layering of a dichloromethane solution of 26 with dethyl ether gave yellow crystals of 26 suitable for X-ray crystallography. The solid state structure of cis-[$\left.\mathrm{PdCl}_{2}\left\{(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}(\mathrm{OPh})_{2}\right\}\right]$ is shown in Figure 3.1 and selected bond lengths and angles are shown in Table 3.2. The X-ray structure of $\mathbf{2 6}$ contains two crystallographically independent molecules although the two molecules are structurally similar The five membered chelate rings result in P-Pd-P angles of less than 90° Both molecules are almost perfectly planar about the palladium [mean deviation from the $\mathrm{PdP}_{2} \mathrm{Cl}_{2}$ planes of 0.04 and $0.02 \AA$]. The $P_{d P} \mathrm{~N}_{2}$ rings have a classic open envelope conformation. In the $\operatorname{Pd}(1)-\mathrm{P}(1)-\mathrm{N}(1)-$ $\mathrm{N}(2)-\mathrm{P}(2)$ ring $\mathrm{N}(2)$ is out of the plane by $059 \AA$ and in the $\mathrm{Pd}(2)-\mathrm{P}(3)-\mathrm{N}(3)-\mathrm{N}(4)-$ $\mathrm{P}(4)$ ring $\mathrm{N}(3)$ and $\mathrm{N}(4)$ lie above the coordination plane by 0.41 and $0.72 \AA$ respectively. The $\mathrm{P}-\mathrm{N}, \mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{Pd}-\mathrm{P}$ bond lengths in 26 are in agreement with values previously reported for single bonds in the similar chelate complex cis-$\left[\mathrm{PdCl}_{2}\left\{\left(p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{O}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{Br}-p\right)_{2}\right\}\right]^{49}$, although the $\mathrm{P}-\mathrm{N}$ bond lengths are considerably shorter than those observed in 31 and the chelate complexes described in Chapter 2.

Figure 3.1 The solid state structure of $c l s-\left[\mathrm{PdCl}_{2}\left\{(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}(\mathrm{OPh})_{2}\right\}\right] 26$.

Table 3.2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 26.

Bond	Length	Bond	Angle
$\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$2.343(2)[2.342(2)]$	$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$93.20(6)[94.17(5)]$
$\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$2.341(2)[2.352(14)]$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$	$82.24(6)[8146(5)]$
$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.199(2)[2.207(2)]$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$90.30(6)[91.46(5)]$
$\mathrm{Pd}(1)-\mathrm{P}(2)$	$2.193(2)[2.194(2)]$	$\mathrm{P}(2)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$94.35(6)[92.92(6)]$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.654(4)[1662(4)]$	$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$107.9(2)[1083(2)]$
$\mathrm{P}(1)-\mathrm{O}(1)$	$1.606(4)[1.594(3)]$	$\mathrm{Pd}(1)-\mathrm{P}(2)-\mathrm{N}(2)$	$110.8(2)[110.0(2)]$
$\mathrm{P}(1)-\mathrm{O}(7)$	$1.579(4)[1.587(4)]$	$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	$119.5(3)[119.4(3)]$
$\mathrm{P}(2)-\mathrm{N}(2)$	$1.684(4)[1.663(4)]$	$\mathrm{P}(2)-\mathrm{N}(2)-\mathrm{N}(1)$	$105.7(3)[109.0(3)]$
$\mathrm{P}(2)-\mathrm{O}(15)$	$1.582(4)[1.582(4)]$	$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{O}(1)$	$109.9(2)[107.4(2)]$
$\mathrm{P}(2)-\mathrm{O}(21)$	$1.569(4)[1.568(4)]$	$\mathrm{N}(2)-\mathrm{P}(2)-\mathrm{O}(21)$	$102.4(2)[103.7(2)]$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.434(5)[1.432(5)]$	$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{O}(7)$	$100.2(2)[102.7(2)]$

N B The values in parentheses are for the second crystallographically independent molecule

The ligand $\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}$ also reacts with equimolar quantities of $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$ and $\left[\mathrm{PdCl}_{2}(\operatorname{cod})\right]$ to yield five-membered P, P^{\prime} chelates. The reactions proceed according to Equation 3.7 and result in the metal complexes cis$\left[\mathrm{PtCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}\right\}\right] 27$ and $c l s-\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}\right\}\right] 28$.

$$
\mathrm{M}=\mathrm{Pt}(\mathbf{2 7}), \mathrm{Pd}(\mathbf{2 8})
$$

Equation 3.7

Addition of the solid diphosphine $\mathbf{2 0}$ to dichloromethane solutions of $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$ or [PdCl_{2} (cod)] results in the formation of colourless or yellow solutions respectively. In both cases stırring is continued for a further 2 hours before the addition of diethyl ether. This results in the precipitation of $c l s-\left[\mathrm{PtCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}\left(\mathrm{Et}^{2} \mathrm{PPh}_{2}\right\}\right] 27\right.$ as a colourless solid and the precipitation of $c t s-\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}\right\}\right] 28$ as a pale yellow solid, both in 78 \% yields. Elemental analysis for both compounds is in good agreement with calculated values (Table 3.5) and the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show singlets at $\delta(\mathrm{P}) 100.4$ and 132.2 respectively. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 27 also shows satellites from coupling to ${ }^{195} \mathrm{Pt}$, the magnitude of which $(4055 \mathrm{~Hz})$ is in agreement with values previously reported for $\mathrm{Pt}(\mathrm{II})$ complexes containing the phosphorus, of a P -N ligand, trans to a chloride ${ }^{32}$ and indicates the expected ${ }^{1} J$ interaction. However, due to the lack of a highly electronegative oxygen next to the phosphorus atom, this value is significantly smaller than the ${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)$ value associated with 25 . The FAB^{+}mass spectrum of each compound displays the parention peak and a peak corresponding to the loss of a chloride ion $\left(\mathrm{m} / \mathrm{z} 722[M]^{+}\right.$and 687 [$M-\mathrm{Cl}]^{+}$for 27 and $\mathrm{m} / \mathrm{z} 634[M]^{+}$and $599[M-\mathrm{Cl}]^{+}$for 28) and the IR spectra show bands characteristic of $v(\mathrm{PN})$ stretches ($997 \mathrm{~cm}^{-1}$ for 27 and 28) indicating an increase in the bond order. The IR spectra of 27 and 28 also show two distinct $v(\mathrm{MCl})$ stretches (314 and $290 \mathrm{~cm}^{-1}$ for 27 and 323 and $292 \mathrm{~cm}^{-1}$ for 28), further evidence of the cis geometry of the complex.

The reaction of $\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}$ with equimolar quantities of $[\mathrm{PtCl}(\mathrm{Me})(\mathrm{cod})]$ in dichloromethane proceeds according to Equation 3.8 to give cls$\left[\mathrm{PtCl}(\mathrm{Me})\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}\right\}\right] 29$.

29
Equation 3.8

Addition of the solid diphosphine 20 to a dichloromethane solution of $[\mathrm{PtCl}(\mathrm{Me})(\mathrm{cod})]$ followed by addition of diethyl ether results in the formation of 29 as a white solid in 79% yield. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 29 (Figure 3 2) shows an AX type spectrum due to the chemical mequivalence of the phosphorus centres Both peaks in the spectrum are of equal magnitude and both show satellites due to coupling with ${ }^{195} \mathrm{Pt}$ The phosphorus atom trans to the chloride ligand in 29 is assigned to the peak at $\delta(\mathrm{P}) 96.8$ due to the larger ${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)$ coupling associated with it (4577 Hz).

Figure $3.2{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of cis- $\left[\mathrm{PtCl}(\mathrm{Me})\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}\left(\mathrm{Et}^{\mathrm{P}}\right) \mathrm{PPh}_{2}\right\}\right] 29$.

Consequently the phosphorus trans to the methyl group is assigned to the peak at $\delta(\mathrm{P})$ 114.2 and has a smaller ${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)$ coupling of 2016 Hz . The value of ${ }^{2} J\left({ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}\right)$ is 17 Hz which is in agreement with values reported previously for similar systems ${ }^{32}$. The FAB^{+}mass spectrum of 29 shows the expected parent-ion peak ($\mathrm{m} / \mathrm{z} 702[M]^{+}$) and a peak corresponding to the loss of a chloride ion ($\mathrm{m} / \mathrm{z} 667[M-\mathrm{Cl}]^{+}$). Elemental analysis is in agreement with calculated values (Table 3.5) and the IR spectrum shows a band at $997 \mathrm{~cm}^{-1}$ that is assigned to $v(\mathrm{PN})$

The ligand $\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2} 21$ reacts with $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$ in the same manner as 19 and 20 to give the five-membered metallacycle cis$\left[\mathrm{PtCl}_{2}\left\{\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right\}\right] \mathbf{3 0}$ as a colourless solid in 84% yield. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows a single resonance at $\delta(\mathrm{P}) 108.3$ with satellites from coupling to ${ }^{195} \mathrm{Pt}\left[{ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right) 4033 \mathrm{~Hz}\right]$. This represents a downfield shift of 44 ppm from the value recorded for the free ligand 21, which is comparable to the difference in shift observed between 20 and 27. The FAB^{+}mass contains the parent-1on peak ($\mathrm{m} / \mathrm{z} 778\left[M^{+}\right.$) and elemental analysis is satisfactory. The IR spectrum shows a band at $988 \mathrm{~cm}^{-1}$ that is assigned to $v(\mathrm{PN})$, and indicates an increases in bond order when compared to the free ligand, as well as two $v(\mathrm{PtCl})$ stretches (317 and $285 \mathrm{~cm}^{-1}$) that are indicative of a cis- PtCl_{2} geometry.

The ligands containing ortho substituted phenyl groups, $\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{P}$ $\mathrm{N}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}$ 22, $\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}$ 23, and $\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} 24$, also react successfully with equimolar quantities of $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$ to yield P, P^{\prime} chelates (Equation 3.9 and 310).

$$
\mathrm{R}=\mathrm{Et} \text { (31), } \mathrm{Me} \text { (32) }
$$

Equation 3.9

33
Equation 3.10

In each case, addition of the solid diphosphine to a dichloromethane solution of $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$ followed by addition of diethyl ether, results in the precipitation of the products cls-[$\left.\mathrm{PtCl}_{2}\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}\right\}\right] \quad 31$, cts- $\left[\mathrm{PtCl}_{2}\right.$ $\left.\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}\right\}\right] \quad 32$ and $c i s-\left[\mathrm{PtCl}_{2}\{(o-\right.$ $\left.\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\right\}\right] 33$ as colourless solids in moderate yields (70,57 and 69% respectively). The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of all three products show singlets, at $\delta(\mathrm{P}) 90.2,88.5$ and 110.3 respectively, representing downfield shifts of 45 65 ppm upon complexation, values comparable to those observed for 27 and 30 . All show satellites from coupling to ${ }^{195} \mathrm{Pt}$ and the magnitudes of the ${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{34} \mathrm{P}\right)$ couplings (4535 Hz for $31,4438 \mathrm{~Hz}$ for 32 and 4289 Hz for 33) are consistent with the values observed for $\mathbf{2 5}, 27$ and $\mathbf{3 0}$, their relative sizes reflecting the nature of the substituents present, both in the ortho position in the ring and on the phosphorus atoms The FAB^{+}mass spectra of the three complexes confirm the proposed structures. The spectra of $\mathbf{3 1}$ and $\mathbf{3 2}$ both show the expected parent-ions and peaks corresponding to the loss of a chlonde ion ($\mathrm{m} / \mathrm{z} 842[M]^{+}$and $807[M-\mathrm{Cl}]^{+}$for 31 and $\mathrm{m} / \mathrm{z} 814[M]^{+}$and $779[M-\mathrm{Cl}]^{+}$for $\mathbf{3 2}$) and although the spectrum of $\mathbf{3 3}$ farls to

Table 3.3 Selected IR data (cm^{-1}) for compounds 31, 32 and 33.

Compound	Formula	$\mathbf{v}(\mathbf{P N})$	$\mathbf{v}(\mathbf{P t C l})$
$\mathbf{3 1}$	$c s s-\left[\mathrm{PCCl}_{2}\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}\right)_{3} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}\right\}\right]$	943	303,280
$\mathbf{3 2}$	$c l s-\left[\mathrm{PtCl}_{2}\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}\right\}\right]$	965	301,276
$\mathbf{3 3}$	$c i s-\left[\mathrm{PtCl}_{2}\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\right\}\right]$	946	303,286

show the expected parent-ion it does contain $[M-\mathrm{Cl}]^{+}$and $[M-2 \mathrm{Cl}]^{+}$ions ($\mathrm{m} / \mathrm{z} 714$ and 679 respectively) Further evidence in support of the cls chelate structure comes from the IR spectra which each show two $v(\mathrm{PtCl})$ stretches, as well as bands corresponding to $v(\mathrm{PN})$ (Table 3 3) Elemental analyses of all three products are in good agreement with calculated values (Table 3.5). Colourless crystals of cls-$\left[\mathrm{PtCl}_{2}\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}\right\}\right] \quad 31$ suitable for X-ray crystallography were grown by layering a dichloromethane solution of 31 with diethyl ether. The molecular structure of $\mathbf{3 1 .} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ is shown in Figure 3.3 and selected bond lengths and angles are shown in Table 3.4. The X-ray structure of 31 reveals that the molecule has crystallographic symmetry with a two-fold axis bisecting the $\mathrm{N}-\mathrm{N}$ bond and passing through the $\operatorname{Pt}(1)$ atom $\mathrm{Pt}(1)$ is square planar with the $\mathrm{PtP}_{2} \mathrm{~N}_{2}$ ring having the symmetry required geometry with $\mathrm{N}(1)$ above and $\mathrm{N}(2)$ below the coordination plane [both by $0.25 \AA$]. The Pt-P, P-N and Pt-Cl bond lengths are consistent the values previously reported for the N, N^{\prime}-dimethyl compound cis$\left[\mathrm{PtCl}_{2}\left\{(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}(\mathrm{OPh})_{2}\right\}\right]^{49}$ and the chelate complexes reported in Chapter 2 and are single in nature, although the P-N bonds are significantly longer than those in 26 . The structure of $\mathbf{3 1}$ also shows that the methoxy substituents on the phenyl ring do not occupy positions above and below the palladium atom as had been hoped.

The ligands 23 and 24 also react with the dimeric palladium species $\left[\left\{\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OCH}_{3}\right)(\mu-\mathrm{Cl})\right\}_{2}\right]$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ to yield the cls-P,P' chelates $\left[\mathrm{Pd}\left(\mathrm{C}_{8}\right.\right.$ $\left.\left.\mathrm{H}_{12} \mathrm{OCH}_{3}\right)\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}\right\}\right] \mathrm{PF}_{6}$ 34, and $\quad\left[\mathrm{Pd}\left(\mathrm{C}_{8}\right.\right.$ $\left.\mathrm{H}_{12} \mathrm{OCH}_{3}\right)\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\right\} \mathrm{PF}_{6} 35$ (Equation 3.10). In both cases solid $\mathrm{NH}_{4} \mathrm{PF}_{6}$ is added to a stirred, dichloromethane solution of the dimer $\left[\left\{\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OCH}_{3}\right)(\mu-\mathrm{Cl})\right\}_{2}\right]$ and the reaction mixture stirred for 30 min A dichloromethane solution of the respective ligand is then added dropwise over a period of 10 minutes and results in the formation of a dark brown solution which is then stirred for a further 2 hours. Removal of the solvent in vacuo followed by addition of diethyl ether gives the products as light brown solids in good yrelds (65 and 70% respectively).

Figure 3.3 Solid state structure of $c i s-\left[\mathrm{PtCl}_{2}\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}(o-\right.\right.$ $\left.\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}\right\}\right] . \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Table 3.4 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $31 . \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Bond	Length	Bond	Angle
$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2.396(3)$	$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(1 \mathrm{~A})$	$91.1(2)$
$\mathrm{Pt}(1)-\mathrm{Cl}(1 \mathrm{~A})$	$2.396(3)$	$\mathrm{P}(1 \mathrm{~A})-\mathrm{Pt}(1)-\mathrm{P}(1)$	$84.9(2)$
$\mathrm{Pt}(1)-\mathrm{P}(1)$	$2.221(4)$	$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$1080(4)$
$\mathrm{Pt}(1)-\mathrm{P}(1 \mathrm{~A})$	$2221(4)$	$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(1 \mathrm{~A})$	$92.0(12)$
$\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	$1.758(13)$	$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{N}(1 \mathrm{~A})$	$1142(4)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.758(13)$	$\mathrm{P}(1 \mathrm{~A})-\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$92.0(2)$
$\mathrm{N}(1 \mathrm{~A})-\mathrm{N}(1)$	$1.37(2)$	$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{P}(1)$	$176.7(14)$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{OMe}(\mathbf{3 4}) \\
& \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Me}(35)
\end{aligned}
$$

Equation 3.11

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of each product shows an AX type pattern due to the phosphorus centres being chemically inequivalent $\mathrm{The}^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 34 shows doublets at $\delta(\mathrm{P}) 104.8$ and $92.1\left[{ }^{2} J\left({ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}\right) 66 \mathrm{~Hz}\right]$ with the spectrum of $\mathbf{3 5}$ displaying doublets at $\delta(\mathrm{P}) 113.4$ and $105.2\left[{ }^{2} J\left({ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}\right) 66 \mathrm{~Hz}\right]$ The FAB mass spectra of the complexes fail to show the expected parent-ion peak but both show peaks which can be assigned to the loss of a $\mathrm{PF}_{6}{ }^{-}$ion ($\mathrm{m} / \mathrm{z} 794\left[M-\mathrm{PF}_{6}\right]^{+}$for 34 and $\mathrm{m} / \mathrm{z} 730\left[M-\mathrm{PF}_{6}\right]^{+}$for 35). The IR spectra of both complexes show bands assigned to $v(\mathrm{PN})\left(950 \mathrm{~cm}^{-1}\right.$ for 34 and $948 \mathrm{~cm}^{-1}$ for 35) and elemental analyses are in good agreement with calculated values (Table 3.5).

3.6 Conclusions

Our results show that the ligand $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PCl}_{2}$ can be synthesised from the reaction of 1,2-diethylhydrazine dihydrochloride and phosphorus trichloride and is readily funtionalised to produce a range of aryloxy- and aryl-substituted phosphorus (III) hydrazides. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for each ligand reflects the nature of the substituents present on the phosphorus atoms and correlates with the data reported for similar derivatives of the N, N^{\prime}-dımethyl ligand $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}$. Coordination
studies have shown that the ligands react successfully with $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ species to form five-membered P, P^{\prime}-chelate rings, the data for such complexes once again being in agreement with the values reported for similar chelates of the ligands $\mathrm{R}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PR}_{2}$. Only very slight differences are observed in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts of analogous dimethyl and diethyl compounds, suggesting that a change in substituent on the nitrogen atom has little effect on the electronic properties of the ligands and complexes. Despite our studies there is still a great deal of scope for further investigation into the chemistry of bis(dihalophosphino)hydrazines The number of possible phosphorus substituents is only limited by the number of suitable alcohol and Grignard reagents available, whule the coordination chemistry of these ligands with metals other than $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ also requires study. We were only able to acquire the X-ray structure of one complex containing ortho-substituted phenyl groups (31, Figure 3.4) and although that particular example shows that the methoxy substituents do not occupy positions above and below the palladium atom, the possibility of substituents doing so should not be discarded without further investigation.

Table 3.5 Elemental analysis data for complexes 25-35 (calculated values in parentheses).

Cpd	Formula	C	H	N
25	$c i s-\left[\mathrm{PtCl}_{2}\left\{(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}(\mathrm{OPh})_{2}\right\}\right]$	$\begin{gathered} 424 \\ (427) \end{gathered}$	$\begin{gathered} \hline 39 \\ (38) \end{gathered}$	$\begin{gathered} \hline 34 \\ (36) \end{gathered}$
26	$c t s-\left[\mathrm{PdCl}_{2}\left\{(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}(\mathrm{OPh})_{2}\right\}\right]$	$\begin{gathered} 480 \\ (482) \end{gathered}$	$\begin{gathered} \hline 4.4 \\ (4.3) \end{gathered}$	$\begin{gathered} \hline 40 \\ (40) \end{gathered}$
27	$c i s-\left[\mathrm{PtCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}\right\}\right]$	$\begin{gathered} \hline 477 \\ (474) \end{gathered}$	$\begin{gathered} \hline 4.4 \\ (4.1) \end{gathered}$	$\begin{gathered} \hline 34 \\ (38) \end{gathered}$
28	cts-[$\left.\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}\right\}\right]$	$\begin{gathered} \hline 528 \\ \left(\begin{array}{c} 531 \end{array}\right) \end{gathered}$	$\begin{gathered} 46 \\ (48) \end{gathered}$	$\begin{gathered} 42 \\ (44) \end{gathered}$
29	$c t s-\left[\mathrm{PtCl}(\mathrm{Me})\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}\right\}\right]$	$\begin{gathered} 485 \\ (496) \end{gathered}$	$\begin{gathered} 46 \\ (4.7) \end{gathered}$	$\begin{gathered} 38 \\ (39) \end{gathered}$
30	$c t s-\left[\mathrm{PtCl}_{2}\left\{\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{PN}(\mathrm{Et})-\mathrm{N}(\mathrm{Et}) \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right\}\right]$	$\begin{gathered} \hline 488 \\ (494) \end{gathered}$	$\begin{gathered} 4.7 \\ (49) \end{gathered}$	$\begin{gathered} 3.1 \\ (36) \end{gathered}$
31	$c t s-\left[\mathrm{PtCl}_{2}\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Et})-\mathrm{N}(\mathrm{Et}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}\right\}\right]$	$\begin{gathered} \hline 451 \\ (456) \end{gathered}$	$\begin{gathered} 44 \\ (46) \end{gathered}$	$\begin{gathered} 28 \\ (33) \end{gathered}$
32	$c l s-\left[\mathrm{PtCl}_{2}\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}\right\}\right]$	$\begin{gathered} \hline 481 \\ (488) \end{gathered}$	$\begin{gathered} 34 \\ (39) \end{gathered}$	$\begin{gathered} 28 \\ \binom{3}{2} \end{gathered}$
33	$c l s-\left[\mathrm{PtCl}_{2}\left\{o-\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(0-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\right\}\right]$	$\begin{gathered} 475 \\ (480) \end{gathered}$	$\begin{gathered} 43 \\ (46) \end{gathered}$	$\begin{gathered} 35 \\ (37) \end{gathered}$
34	$\left[\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OCH}_{3}\right)\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}\right\}\right]^{+} \mathrm{PF}_{6}{ }^{-}$	$\begin{gathered} 492 \\ (498) \end{gathered}$	$\begin{gathered} 50 \\ (52) \end{gathered}$	$\begin{gathered} 34 \\ (29) \end{gathered}$
35	$\left[\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OCH}_{3}\right)\left\{\left(0-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\right\}\right]^{+} \mathrm{PF}_{6}{ }^{-}$	$\begin{gathered} 528 \\ (535) \end{gathered}$	$\begin{gathered} 56 \\ (56) \end{gathered}$	$\begin{gathered} 31 \\ (32) \end{gathered}$

Experimental

General experimental conditions and instrumentation were as set out on page 12 and described in Chapter 2. 1,2-dıethylhydrazine dihydrochloride was crushed using a pestle mortar prior to use. $\left[\left\{\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OCH}_{3}\right)(\mu-\mathrm{Cl})\right\}_{2}\right]$ was prepared using the literature procedure. ${ }^{106}$ Phenol, phosphorus trichloride, $\mathrm{PhMgBr}, \mathrm{PhCH}_{2} \mathrm{MgCl}$ and 2$\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{MgCl}$ were used without further purification.
$\mathbf{C l}_{2} \mathbf{P N}(\mathbf{E t}) \mathbf{N}(\mathbf{E t}) \mathbf{P C l}_{2}$ 18. Phosphorus trichloride $(10.00 \mathrm{~g}, 72.7 \mathrm{mmol})$ was added to a finely crushed sample of 1,2-diethylhydrazine dihydrochloride ($1.00 \mathrm{~g}, 6.2 \mathrm{mmol}$) at
room temperature under an atmosphere of nitrogen. The reaction mixture was heated under reflux for 96 h . The excess phosphorus trichloride was removed in vacuo to leave a viscous orange oil Distillation of the resulting oil in vacuo leaves compound 18 as a viscous, colourless oll. Yield: $1.3 \mathrm{~g}, 72$ \% Microanalysis: Found (Calcd for $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{P}_{2}$) C, 170 (16.6); $\mathrm{H}, 3.5$ (39); $\mathrm{N}, 9.7$ (9 8) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta(\mathrm{P}) 156.3$. IR (neat, cm^{-1}): $2978 \mathrm{~s}, 2935 \mathrm{~s}, 2555 \mathrm{~s}, 2260 \mathrm{~s}, 1451 \mathrm{vs}, 1379 \mathrm{vs}, 1355 \mathrm{~s}$, $1187 \mathrm{vs}, 1148 \mathrm{vs}, 1074 \mathrm{vs}, 1016 \mathrm{vs}, 952 \mathrm{vs}, 858 \mathrm{w}, 818 \mathrm{w}, 782 \mathrm{w}, 761 \mathrm{w}, 729 \mathrm{vs}, 612 \mathrm{w}$, $507 \mathrm{vs}, 436 \mathrm{vs}, 404 \mathrm{vs}$ and 225 w . FAB mass spectrum $m / z 289$, $\left[\mathrm{M}^{+}\right]$.
$(\mathbf{P h O})_{\mathbf{2}} \mathbf{P N}(\mathbf{E t}) \mathbf{N}(\mathbf{E t}) \mathbf{P}(\mathbf{O P h})_{\mathbf{2}}$ 19. A solution of phenol ($130 \mathrm{~g}, 13.8 \mathrm{mmol}$) and triethylamine ($1.39 \mathrm{~g}, 1.9 \mathrm{~cm}^{3}, 138 \mathrm{mmol}$) in hexane ($20 \mathrm{~cm}^{3}$) was added dropwise over a period of 30 min to a solution of $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et})^{\mathrm{PCCl}} 2_{2}(100 \mathrm{~g}, 34 \mathrm{mmol})$ in hexane ($200 \mathrm{~cm}^{3}$) at room temperature. The reaction mixture was stirred for 12 h during which time triethylamine hydrochloride separated from the colourless solution. This precipitate was removed by suction filtration and the filtrate evaporated to dryness in vacuo to give a viscous, colourless oil. Yield: $145 \mathrm{~g}, 81 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2}$) C, 70.0 (69.6), $\mathrm{H}, 5.5$ (5.8); $\mathrm{N}, 54(5.2) \% .{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta(\mathrm{P}) 139.0$. IR (neat, cm^{-1}) 2978vs, $2940 \mathrm{~s}, 2350 \mathrm{~s}, 1589 \mathrm{~s}, 1444 \mathrm{~s}$, $1372 \mathrm{vs}, 1349 \mathrm{~s}, 1170 \mathrm{vs}, 1111 \mathrm{~s}, 1030 \mathrm{~s}, 1009 \mathrm{~s}$, $930 \mathrm{vs}, 818 \mathrm{w}, 773 \mathrm{w}, 758 \mathrm{~m}, 608 \mathrm{w}, 515 \mathrm{~s}$, $446 \mathrm{~m}, 395 \mathrm{~s}$ and 217 w . FAB mass spectrum: $m / z 520,[M]^{+}$.
$\mathbf{P h}_{\mathbf{2}} \mathbf{P N}(\mathbf{E t}) \mathbf{N}(\mathbf{E t}) \mathbf{P P h}_{\mathbf{2}} \mathbf{2 0}$. A solution of $\mathbf{1 8}(1.00 \mathrm{~g}, 3.4 \mathrm{mmol})$ in diethyl ether (20.0 cm^{3}) was added dropwise over a period of 30 min to a sturred solution of 1 M PhMgBr in diethyl ether ($250 \mathrm{~g}, 14.0 \mathrm{~cm}^{3}, 13.6 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the reaction mixture stirred for 18 h . Deionized water ($20.0 \mathrm{~cm}^{3}$) was added slowly over 10 min and stirring continued for a further 1 h , after which the reaction mixture was transferred to a separatory funnel and the layers separated. The ether layer was dried over MgSO_{4} and the drying agent then removed by suction filtration. The filtrate was evaporated to dryness in vacuo to give a white solid product. Yield: $1.1 \mathrm{~g}, 70 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{P}_{2}$) C, 72.9 (73.7); $\mathrm{H}, 6.5$ (6.6); $\mathrm{N}, 5.9$ (6.1) \% ${ }^{3 \mathrm{I}} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta(\mathrm{P}) 64.2$. IR (KBr dısc, cm^{-1}): 2973w, 1651s, 1484w, 1434vs, 1362s, $1320 \mathrm{w}, 1172 \mathrm{vs}, 1124 \mathrm{~s}, 1057 \mathrm{~s}, 1024 \mathrm{~s}, 970 \mathrm{~s}, 826 \mathrm{~s}, 759 \mathrm{~s}, 698 \mathrm{~s}, 608 \mathrm{w}, 575 \mathrm{~s}, 528 \mathrm{w}$, $483 \mathrm{w}, 333 \mathrm{~s}, 240 \mathrm{vs}$ and 230 vs . FAB mass spectrum: $m / z 456,[M]^{+}$.
$\left(\mathbf{P h C H}_{2}\right)_{2} \mathrm{PN}(\mathbf{E t}) \mathbf{N}(\mathbf{E t}) \mathbf{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}$ 21. A solution of $\mathbf{1 8}(1.00 \mathrm{~g}, 3.4 \mathrm{mmol})$ in diethyl ether $\left(20.0 \mathrm{~cm}^{3}\right)$ was added dropwise over a period of 30 min to a strred solution of 2 M PhCH 2 MgCl in diethyl ether $\left(2.10 \mathrm{~g}, 6.8 \mathrm{~cm}^{3}, 13.7 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$ and the reaction mixture stirred for 12 h . Deoinized water $\left(20.0 \mathrm{~cm}^{3}\right)$ was added slowly over 10 min and stirring continued for a further 1 h , after which the reaction mixture was transferred to a separatory funnel and the layers separated The ether layer was dried over MgSO_{4} and the drying agent then removed by suction filtration. The filtrate was evaporated to dryness in vacuo to give a pale yellow, solid product. Yield $1.3 \mathrm{~g}, 74$ \%. Microanalysis: Found (Calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{P}_{2}$) C, 74.3 (74 9); H, 7.4 (7.5); N, 5.2 (5.5) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 64.8$. IR $\left(\mathrm{KBr} \mathrm{disc}, \mathrm{cm}^{-1}\right): 3025 \mathrm{w}, 1600 \mathrm{~s}$, $1493 \mathrm{vs}, 1451 \mathrm{vs}, 1376 \mathrm{~s}, 1210 \mathrm{~s}, 1092 \mathrm{~s}, 1062 \mathrm{~s}, 1028 \mathrm{~s}, 962 \mathrm{~s}, 933 \mathrm{~s}, 906 \mathrm{~s}, 850 \mathrm{vs}, 823 \mathrm{~s}$, $764 \mathrm{~s}, 697 \mathrm{~s}, 585 \mathrm{~s}, 569 \mathrm{w}, 497 \mathrm{~s}, 478 \mathrm{~s}$, and 230 vs FAB mass spectrum. $m / z 512,[M]^{+}$.
$\left(o-\mathrm{C}_{6} \mathrm{H}_{\mathbf{4}} \mathrm{OCH}_{3}\right)_{\mathbf{2}} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{\mathbf{4}} \mathrm{OCH}_{3}\right)_{\mathbf{2}}$ 22. A solution of 2-bromoanisole $\left(4.90 \mathrm{~g}, 3.3 \mathrm{~cm}^{3}, 26.5 \mathrm{mmol}\right)$ in diethyl ether $\left(80.0 \mathrm{~cm}^{3}\right)$ was added dropwise to a slurry of magnesium turnings ($1.43 \mathrm{~g}, 59.0 \mathrm{mmol}$) and iodine (1 crystal) in diethyl ether $\left(20.0 \mathrm{~cm}^{3}\right)$ and the reaction mixture stirred for $2.5 \mathrm{~h} .60 .0 \mathrm{~cm}^{3}$ of the reaction solution was transferred to a round bottomed flask and a solution of $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PCl}_{2}(100 \mathrm{~g}, 34 \mathrm{mmol})$ in diethyl ether $\left(25.0 \mathrm{~cm}^{3}\right)$ added dropwise over a period of 30 min . After sturring for 24 h , deionized water ($25.0 \mathrm{~cm}^{3}$) was added slowly over 10 min and stirring continued for a further 1 h , after which the reaction mixture was transferred to a separatory funnel and the layers separated. The ether layer was dried over MgSO_{4} and the drying agent then removed by suction filtration. The filtrate was evaporated to dryness in vacuo to give a colourless oil. The product was washed with light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) to give a solid product. Yield: 1.31 g, 67%. Microanalysis: Found (Calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$) C, 66.1 (66 6); $\mathrm{H}, 6.3$ (6.6); $\mathrm{N}, 4.4(4.8) \% .{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{P}) 40.5$. IR (KBr disc, cm^{-1}): 3053m, $2941 \mathrm{~m}, ~ 2834 \mathrm{~m}, 1655 \mathrm{w}, 1571 \mathrm{~s}, 1472 \mathrm{~s}, 1427 \mathrm{vs}, 1374 \mathrm{w}, 1270 \mathrm{~s}, 1242 \mathrm{vs}, 1182 \mathrm{~m}$, $1160 \mathrm{~m}, 1128 \mathrm{~m}, 1099 \mathrm{w}, 1067 \mathrm{w}, 1027 \mathrm{~s}, 933 \mathrm{~s}, 793 \mathrm{~m}, 757 \mathrm{vs}, 729 \mathrm{w}, 708 \mathrm{w}, 503 \mathrm{w}, 480 \mathrm{w}$, 431w, 237vs and 218s. FAB mass spectrum: $m / z 576,[M]^{+}$.
$\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}$ 23. A solution of 2-bromoanisole $\left(4.90 \mathrm{~g}, 3.3 \mathrm{~cm}^{3}, 265 \mathrm{mmol}\right)$ in diethyl ether $\left(80.0 \mathrm{~cm}^{3}\right)$ was added dropwise to a slurry of magnesium turnings ($1.43 \mathrm{~g}, 59.0 \mathrm{mmol}$) and iodine (1 crystal) in diethyl ether ($20.0 \mathrm{~cm}^{3}$) and the reaction mixture stirred for $2.5 \mathrm{~h} .60 .0 \mathrm{~cm}^{3}$ of the reaction solution was transferred to a round bottomed flask and a solution of $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}(1.00 \mathrm{~g}, 3.8 \mathrm{mmol})$ in diethyl ether $\left(25.0 \mathrm{~cm}^{3}\right)$ added dropwise over a period of 30 min . reaction After stirring for 24 h , deionized water ($25.0 \mathrm{~cm}^{3}$) was added slowly over 10 min and stirring continued for a further 1 h , after which the reaction mixture was transferred to a separatory funnel and the layers separated. The ether layer was dried over MgSO_{4} and the drying agent then removed by suction filtration. The filtrate was evaporated to dryness in vacuo to give a colourless orl The product was washed with light petroleum (b p. $60-80^{\circ} \mathrm{C}$) to give a solhd product. Yield: $1.7 \mathrm{~g}, 81 \%$ Microanalysis ${ }^{-}$Found (Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$) C, 65.1 (65.7); H, 5.9 (6.3); N, 4.8 (5.1) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P})$ 42.6. IR ($\mathrm{KBr} \mathrm{disc}, \mathrm{cm}^{-1}$): $3385 \mathrm{~s}, 3059 \mathrm{~s}, 3000 \mathrm{~s}, 2935 \mathrm{~s}, 2834 \mathrm{~s}, 1583 \mathrm{vs}, 1571 \mathrm{vs}, 1460 \mathrm{vs}, 1429 \mathrm{vs}, 1268 \mathrm{~s}, 1238 \mathrm{~s}$, $1159 \mathrm{w}, 1129 \mathrm{~s}, 1092 \mathrm{w}, 1066 \mathrm{~s}, 1042 \mathrm{~s}, 969 \mathrm{vs}, 883 \mathrm{w}, 858 \mathrm{w}, 792 \mathrm{~s}, 753 \mathrm{vs}, 692 \mathrm{~s}, 611 \mathrm{~s}$, $574 \mathrm{w}, 498 \mathrm{~s}, 472 \mathrm{~s}, 428 \mathrm{vs}$ and 230 vs . FAB mass spectrum: $\mathrm{m} / \mathrm{z} 549$, $[M]^{+}$.
$\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathbf{P}\left(\boldsymbol{o}-\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{CH}_{3}\right)_{\mathbf{2}}$ 24. A solution of $\mathrm{Cl}_{2} \mathrm{PN}(\mathrm{Me})$ $\mathrm{N}(\mathrm{Me}) \mathrm{PCl}_{2}(1.00 \mathrm{~g}, 3.8 \mathrm{mmol})$ in diethyl ether $\left(250 \mathrm{~cm}^{3}\right)$ was added dropwise over a period of 30 min to a stirred solution of $1 \mathrm{M} 2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{MgCl}$ in diethyl ether $(230 \mathrm{~g}$, $15.2 \mathrm{~cm}^{3}, 15.2 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the reaction mixture heated under reflux for 4 h . Deionized water ($25.0 \mathrm{~cm}^{3}$) was added slowly over 10 min and stirring continued for a further 1 h , after which the reaction mixture was transferred to a separatory funnel and the layers separated. The ether layer was dried over MgSO_{4} and the drying agent then removed by suction filtration. The filtrate was evaporated to dryness in vacuo to give a yellow oil. The product was washed with light petroleum (b.p $60-80^{\circ} \mathrm{C}$) to give a pale yellow solid. Yield: $1.2 \mathrm{~g}, 65 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{P}_{2}$) C, 73.7 (74.4); H, 6.8 (7.1); N, 52 (58) \% ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 472$ IR $\left(\mathrm{KBr}\right.$ disc, $\left.\mathrm{cm}^{-1}\right): 3396 \mathrm{w}, 1815 \mathrm{w}, 1560 \mathrm{~s}, 1520 \mathrm{vs}, 1439 \mathrm{vs}, 1377 \mathrm{~s}, 1268 \mathrm{w}, 1198 \mathrm{w}$, $1156 \mathrm{~s}, 1130 \mathrm{~s}, 1066 \mathrm{~s}, 1030 \mathrm{~s}, 956 \mathrm{~s}, 897 \mathrm{~s}, 845 \mathrm{vs}, 800 \mathrm{~s}, 751 \mathrm{~s}, 731 \mathrm{vs}, 718 \mathrm{~s}, 607 \mathrm{~s}, 562 \mathrm{w}$, $487 \mathrm{~s}, 455 \mathrm{~s}, 396 \mathrm{w}, 292 \mathrm{w}$ and 230 vs . FAB mass spectrum: $m / z 485,[M]^{+}$.
cis-[$\left.\mathrm{PtCl}_{2}\left\{(\mathrm{PhO})_{2} \mathbf{P N}(\mathbf{E t}) \mathbf{N}(\mathbf{E t}) \mathbf{P}(\mathbf{O P h})_{2}\right\}\right]$ 25. A solution of $(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Et})$ $\mathrm{N}(\mathrm{Et}) \mathrm{P}(\mathrm{OPh})_{2}(0.175 \mathrm{~g}, 0.34 \mathrm{mmol})$ in dichloromethane $\left(10.0 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right](0130 \mathrm{~g}, 034 \mathrm{mmol})$ in dichloromethane (50 cm^{3}) and the colourless solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and diethyl ether ($20.0 \mathrm{~cm}^{3}$) added. The white product was collected by suction filtration. Yield: $0.178 \mathrm{~g}, 65 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}$) C, 42.4 (42.7); $\mathrm{H}, 3.9$ (3.8); $\mathrm{N}, 3.4$ (3 6) $\% .{ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left.\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 92.3,{ }^{1} J^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right) 5503 \mathrm{~Hz}$. IR (KBr disc. cm^{-1}) 2991 s , $1585 \mathrm{vs}, 1484 \mathrm{vs}, 1455 \mathrm{vs}, 1385 \mathrm{~s}, 1348 \mathrm{~s}, 1186 \mathrm{vs}, 1113 \mathrm{vs}, 1069 \mathrm{vs}, 1023 \mathrm{~s}, 968 \mathrm{vs}, 822 \mathrm{~s}$, $763 \mathrm{vs}, 688 \mathrm{~s}, 652 \mathrm{~s}$, $614 \mathrm{w}, 586 \mathrm{~s}$, $535 \mathrm{w}, 439 \mathrm{w}, 325 \mathrm{~s}, 299 \mathrm{~m}, 236 \mathrm{vs}$ and 227vs FAB mass spectrum: $m / z 786,[M]^{+}$.
cis- $\left[\mathrm{PdCl}_{2}\left\{(\mathrm{PhO})_{2} \mathbf{P N}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}(\mathbf{O P h})_{2}\right\}\right]$ 26. A solution of $(\mathrm{PhO})_{2} \mathrm{PN}(\mathrm{Et})$ $\mathrm{N}(\mathrm{Et}) \mathrm{P}(\mathrm{OPh})_{2}(0.182 \mathrm{~g}, 0.35 \mathrm{mmol})$ in dichloromethane $\left(10.0 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of $\left[\mathrm{PdCl}_{2}(\mathrm{cod})\right](0.100 \mathrm{~g}, 0.35 \mathrm{mmol})$ in dichloromethane (5 0 cm^{3}) and the yellow solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a .10 \mathrm{~cm}^{3}$ and diethyl ether ($20.0 \mathrm{~cm}^{3}$) added. The yellow product was collected by suction filtration. Yield $0123 \mathrm{~g}, 50 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pd}$) C, 48.0 (48.2); $\mathrm{H}, 4.4$ (4.3), $\mathrm{N}, 4.0$ (40) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 116.6$. IR (KBr disc, cm^{-1}): 2975s, 1585vs, 1484vs, $1455 \mathrm{vs}, 1377 \mathrm{~s}$, 1348w, 1177vs, 1119vs, 1070s, 1024s, 955vs, 822s, 763vs, 682s, $654 \mathrm{~s}, 614 \mathrm{w}, 575 \mathrm{~s}, 518 \mathrm{w}, 496 \mathrm{w}, 329 \mathrm{~s}, 296 \mathrm{~s}$, 237 vs and 225 vs . FAB mass spectrum $m / z 698,[M]^{+}$.
cis-[$\left.\mathbf{P t C l}_{\mathbf{2}}\left\{\mathbf{P h}_{\mathbf{2}} \mathbf{P N}(\mathbf{E t}) \mathbf{N}(\mathbf{E t}) \mathbf{P P h}_{\mathbf{2}}\right\}\right]$ 27. To a solution of $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right](0040 \mathrm{~g}, 0.11$ $\mathrm{mmol})$ in dichloromethane $\left(5.0 \mathrm{~cm}^{3}\right)$ was added solid $\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}(0.048 \mathrm{~g}$, 0.11 mmol) and the colourless solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and diethyl ether ($100 \mathrm{~cm}^{3}$) added. The white product was collected by suction filtration Yield $0060 \mathrm{~g}, 78 \%$. Microanalysis Found (Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pt}$) C, 47.7 (47.4); $\mathrm{H}, 44$ (4.1); $\mathrm{N}, 34$ (3.8) \%. ${ }^{3!} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) . \delta(\mathrm{P}) 100.4,{ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right) 4055 \mathrm{~Hz}$. IR (KBr disc, cm^{-} $\left.{ }^{1}\right): 3053 \mathrm{~s}, 2972 \mathrm{~s}, 1572 \mathrm{vs}, 1480 \mathrm{vs}, 1436 \mathrm{vs}, 1380 \mathrm{~s}, 1311 \mathrm{w}, 1182 \mathrm{vs}, 1104 \mathrm{vs}, 1027 \mathrm{w}$,
$997 \mathrm{~s}, 921 \mathrm{w}, 872 \mathrm{w}, 749 \mathrm{vs}, 720 \mathrm{vs}, 692 \mathrm{~s}$, $656 \mathrm{~s}, 630 \mathrm{w}, 578 \mathrm{~s}$, $556 \mathrm{w}, 527 \mathrm{~s}, 507 \mathrm{vs}, 493 \mathrm{w}$, $471 \mathrm{w}, 314 \mathrm{~s}, 233 \mathrm{vs}$ and 225 vs . FAB mass spectrum: $m / z 722,[M]^{+}$.
cis-[$\left.\mathbf{P d C l}_{2}\left\{\mathbf{P h}_{2} \mathbf{P N}(\mathbf{E t}) \mathbf{N}(\mathbf{E t}) \mathbf{P P h}_{2}\right\}\right]$ 28. To a solution of $\left[\mathrm{PdCl}_{2}(\mathbf{c o d})\right](0030 \mathrm{~g}, 0.11$ mmol) in dichloromethane ($150 \mathrm{~cm}^{3}$) was added solid $\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}(0048 \mathrm{~g}$, 0.11 mmol) and the yellow solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and diethyl ether $\left(200 \mathrm{~cm}^{3}\right)$ added. The yellow product was collected by suction filtration Yield: $0052 \mathrm{~g}, 78 \%$. Microanalysis Found (Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pd}$) C, 52.8 (53.1); $\mathrm{H}, 4.6$ (4.8); N, 4.2 (4.4) $\%{ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) . \delta(\mathrm{P}) 1322$ IR (KBr disc, cm^{-1}). 3053w, 2972s, 1618w, 1585w, $1479 \mathrm{~s}, 1436 \mathrm{vs}, 1380 \mathrm{~s}, 1312 \mathrm{w}, 1183 \mathrm{w}, 1118 \mathrm{vs}, 1101 \mathrm{vs}, 1026 \mathrm{w}, 997 \mathrm{~s}, 918 \mathrm{w}, 750 \mathrm{vs}$, $719 \mathrm{vs}, 691 \mathrm{~s}, 654 \mathrm{~s}, 609 \mathrm{w}, 574 \mathrm{~s}, 522 \mathrm{~s}, 490 \mathrm{w}, 292 \mathrm{w}$ and 225 vs . FAB mass spectrum $m / z 634,[M]^{+}$.
cis-[PtMe(Cl) $\left\{\mathbf{P h}_{2} \mathbf{P N}(\mathbf{E t}) \mathbf{N}\left(\mathbf{E t t}^{\mathbf{~}} \mathbf{P P h}_{2}\right\}\right]$ 29. To a solution of $[\mathrm{PtMe}(\mathrm{Cl})(\mathrm{cod})]$ $(0.038 \mathrm{~g}, \quad 0.11 \mathrm{mmol})$ in dichloromethane $\left(10.0 \mathrm{~cm}^{3}\right)$ was added solid $\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{PPh}_{2}(0.048 \mathrm{~g}, 011 \mathrm{mmol})$ and the colourless solution stırred for $c a$ 2 h The solution was concentrated under reduced pressure to $c a 10 \mathrm{~cm}^{3}$ and diethyl ether ($20.0 \mathrm{~cm}^{3}$) added. The white product was collected by suction filtration Yield: $0.058 \mathrm{~g}, 79 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{P}_{2} \mathrm{Pt}$) C, 48.5 (49 6), H, 4.6 (4.7); $\mathrm{N}, 3.8(3.9) \% .{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta\left(\mathrm{P}_{\mathrm{A}}\right.$ trans to $\left.\mathrm{CH}_{3}\right) 114.2,{ }^{1} \mathrm{~J}\left({ }^{195} \mathrm{Pt}-\right.$ $\left.{ }^{31} \mathrm{P}_{\mathrm{A}}\right) 2016 \mathrm{~Hz}, \delta\left(\mathrm{P}_{\mathrm{B}}\right.$ trans to Cl$) 96.8,{ }^{1} \mathrm{~J}\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}_{\mathrm{B}}\right) 4577 \mathrm{~Hz}$. IR $\left(\mathrm{KBr}\right.$ disc, $\left.\mathrm{cm}^{-1}\right)$: $3054 \mathrm{~s}, 2970 \mathrm{~s}, 2874 \mathrm{~s}, 1671 \mathrm{w}, 1479 \mathrm{~s}, 1436 \mathrm{vs}, 1377 \mathrm{~s}, 1312 \mathrm{w}, 1180 \mathrm{~s}, 1122 \mathrm{vs}, 1103 \mathrm{vs}$, $997 \mathrm{w}, 750 \mathrm{vs}, 717 \mathrm{vs}, 693 \mathrm{vs}, 652 \mathrm{~s}, 580 \mathrm{~s}, 554 \mathrm{~s}, 524 \mathrm{vs}, 492 \mathrm{~s}, 301 \mathrm{w}, 242 \mathrm{~s}$ and 210 vs. FAB mass spectrum: $m / z 702,[M]^{+}$.
cis- $\left[\mathrm{PtCl}_{2}\left\{\left(\mathrm{PhCH}_{2}\right)_{2} \mathbf{P N}(\mathbf{E t}) \mathbf{N}(\mathbf{E t}) \mathbf{P}\left(\mathrm{CH}_{2} \mathbf{P h}\right)_{2}\right\}\right]$ 30. To a solution of $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$ $(0.050 \mathrm{~g}, \quad 0.13 \mathrm{mmol})$ in dichloromethane $\left(15.0 \mathrm{~cm}^{3}\right)$ was added sold $\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}(0.068 \mathrm{~g}, 0.13 \mathrm{mmol})$ and the colourless solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 2.0$ cm^{3} and diethyl ether $\left(20.0 \mathrm{~cm}^{3}\right)$ added. The white product was collected by suction filtration. Yield: $0.087 \mathrm{~g}, 84 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pt}$) C, 48.8 (49.4), $\mathrm{H}, 4.7$ (4.9), $\mathrm{N}, 3.1(3.6) \%{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 1083,{ }^{1} J\left({ }^{195} \mathrm{Pt}-\right.$
$\left.{ }^{31} \mathrm{P}\right) 4033 \mathrm{~Hz},{ }^{2} J\left({ }^{31} \mathrm{P}_{\mathrm{A}}{ }^{-31} \mathrm{P}_{\mathrm{B}}\right) 17 \mathrm{~Hz}$. IR (KBr disc, cm^{-1}): $3026 \mathrm{~s}, 2979 \mathrm{~s}, 2926 \mathrm{~s}, 1601 \mathrm{~s}$, $1495 \mathrm{vs}, 1452 \mathrm{vs}, 1386 \mathrm{~s}, 1357 \mathrm{w}, 1260 \mathrm{~s}, 1172 \mathrm{vs}, 1124 \mathrm{~s}, 1073 \mathrm{~s}, 988 \mathrm{w}, 917 \mathrm{w}, 857 \mathrm{~s}$, $838 \mathrm{~s}, 808 \mathrm{~s}$, 790s, $773 \mathrm{~s}, 755 \mathrm{vs}, 695 \mathrm{vs}, 610 \mathrm{w}, 582 \mathrm{~s}, 569 \mathrm{w}, 535 \mathrm{w}, 472 \mathrm{w}, 317 \mathrm{~s}, 235 \mathrm{~s}$ and 229vs FAB mass spectrum: $m / z 778,[M]^{+}$.
cis- $\left[\mathrm{PtCl}_{2}\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathbf{E t}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}\right\}\right]$ 31. To a solution of $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right](0.100 \mathrm{~g}, 0.26 \mathrm{mmol})$ in dichloromethane $\left(5.0 \mathrm{~cm}^{3}\right)$ was added solid $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}-\mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Et}) \mathrm{N}(\mathrm{Et}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{o}-\mathrm{OCH}_{3}\right)_{2}(0.154 \mathrm{~g}, 0.26 \mathrm{mmol})$ and the colourless solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 20 \mathrm{~cm}^{3}$ and dethyl ether $\left(200 \mathrm{~cm}^{3}\right)$ added. The white product was collected by suction filtration. Yield: $0.107 \mathrm{~g}, 70 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}$) C, 45.1 (45.6); H, 4.4 (4.5); N, 2.8 (3.3) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 902,{ }^{1} J\left({ }^{195} \mathrm{Pt}^{-31} \mathrm{P}\right) 4535 \mathrm{~Hz}$. IR (KBr disc, cm^{-1}): $3065 \mathrm{w}, 2937 \mathrm{w}$, $2864 \mathrm{w}, 1588 \mathrm{~s}, 1573 \mathrm{~s}, 1477 \mathrm{vs}, 1463 \mathrm{~s}, 1430 \mathrm{vs}, 1375 \mathrm{w}, 1282 \mathrm{~s}, 1253 \mathrm{~s}, 1182 \mathrm{~m}, 1165 \mathrm{~m}$, $1109 \mathrm{~m}, 1075 \mathrm{~m}, 1045 \mathrm{~m}, 1019 \mathrm{~s}, 943 \mathrm{w}, 801 \mathrm{~s}, 757 \mathrm{~s}, 692 \mathrm{~m}, 633 \mathrm{~m}, 581 \mathrm{~m}, 557 \mathrm{~m}, 506 \mathrm{~m}$, 446w, 337w, 303w, 280w and 229s. FAB mass spectrum: $m / z 842,[M]^{+}$.
cis- $\left[\mathrm{PtCl}_{2}\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}\right\}\right]$ 32. To a solution of $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right](0075 \mathrm{~g}, 020 \mathrm{mmol})$ in dichloromethane $\left(5.0 \mathrm{~cm}^{3}\right)$ was added solid $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{o}-\mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{o}-\mathrm{OCH}_{3}\right)_{2}(0110 \mathrm{~g}, 020 \mathrm{mmol})$ and the colourless solution stirred for $c a 2 \mathrm{~h}$ The solution was concentrated under reduced pressure to ca $20 \mathrm{~cm}^{3}$ and dethyl ether $\left(200 \mathrm{~cm}^{3}\right)$ added. The white product was collected by suction filtration. Yield: $0.101 \mathrm{~g}, 57 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}$) C, 48.1 (48 8); H, 34 (3.9); N, 28 (3.2) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left.\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 88.5,{ }^{1} J{ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right) 4438 \mathrm{~Hz}$. IR $\left(\mathrm{KBr}\right.$ disc, $\left.\mathrm{cm}^{-1}\right): 3386 \mathrm{~s}, 3067 \mathrm{~s}, 2932 \mathrm{~s}$, 2833s, 1637w, 1587vs, 1571s, 1474vs, 1455vs, 1428vs, 1276s, 1251s, 1164w, 1136w, 1072w, 1016s, 965 w, 800s, 762vs, 694w, 646s, 581s, 558s, 526w, 509w, 484w, 445s, $365 w, 276 w, 230$ s and $215 v s$. FAB mass spectrum: $m / z 814,[M]^{+}$
cis-[$\left.\mathrm{PtCl}_{2}\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathbf{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\right\}\right]$ 33. To a solution of $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right](0.070 \mathrm{~g}, 0.19 \mathrm{mmol})$ in dichloromethane $\left(5.0 \mathrm{~cm}^{3}\right)$ was added solid $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{o}-\mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{o}-\mathrm{CH}_{3}\right)_{2} \quad(0.090 \mathrm{~g}, \quad 0.19 \mathrm{mmol})$ and the colourless solution stirred for $c a 1 \mathrm{~h}$ The solution was concentrated under reduced
pressure to $c a 2.0 \mathrm{~cm}^{3}$ and diethyl ether $\left(15.0 \mathrm{~cm}^{3}\right)$ added. The white product was collected by suction filtration. Yıeld: $0.092 \mathrm{~g}, 69 \%$. Microanalysis• Found (Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pt}$) C, 47.5 (48.0); H, 4.3 (4.6); N, 3.5 (3.7) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left.\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 110.3,{ }^{1} J^{195} \mathrm{Pt}^{-31} \mathrm{P}\right) 4289 \mathrm{~Hz}$. IR (KBr disc, cm^{-1}): $2894 \mathrm{~s}, 1654 \mathrm{w}, 1591 \mathrm{~s}$, $1561 \mathrm{~s}, 1447 \mathrm{vs}, 1379 \mathrm{~s}, 1283 \mathrm{~s}, 1203 \mathrm{w}, 1162 \mathrm{w}, 1133 \mathrm{~s}, 1084 \mathrm{~s}, 946 \mathrm{w}, 808 \mathrm{~s}, 762 \mathrm{vs}$, $723 \mathrm{~s}, 684 \mathrm{w}, 576 \mathrm{~s}, 554 \mathrm{w}, 531 \mathrm{w}, 515 \mathrm{w}, 494 \mathrm{~s}, 455 \mathrm{~s}, 420 \mathrm{~s}, 303 \mathrm{w}, 286 \mathrm{w}, 235 \mathrm{~s}$ and 230 vs. FAB mass spectrum: $m / z 714,[M-\mathrm{Cl}]^{+}$.
$\left[\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OCH}_{3}\right)\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}\right\}\right]$ 34. To a stirred solution of $\left[\left\{\mathrm{Pd}_{(}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OCH}_{3}\right)(\mu-\mathrm{Cl})\right\}_{2}\right] \quad(0050 \mathrm{~g}, 0.09 \mathrm{mmol})$ in dichloromethane ($100 \mathrm{~cm}^{3}$) was added solid $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.030 \mathrm{~g}, 0.18 \mathrm{mmol})$ and the reaction mixture stirred for a further $30 \mathrm{~min} A$ solution of $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}-\right.$ $\left.\mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{o}-\mathrm{OCH}_{3}\right)_{2}(0.100 \mathrm{~g}, 0.18 \mathrm{mmol})$ in dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ was then added dropwise to the reaction mixture over a period of 10 min and the resulting dark brown solution stirred for 2 h . The solution was concentrated under reduced pressure to $c a 50 \mathrm{~cm}^{3}$ and diethyl ether ($25.0 \mathrm{~cm}^{3}$) added. The light brown product was collected by suction filtration. Yıeld: $0109 \mathrm{~g}, 65 \%$ Microanalysis: Found (Calcd for $\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{OP}_{3} \mathrm{Pd}$) C, 528 (53 5); H, 5.6 (5.6); N, $3.1(3.2) \%$. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 104.8$ and $92.1,{ }^{2} J\left({ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}\right) 66 \mathrm{~Hz}$. IR $(\mathrm{KBr}$ disc, cm^{-1}): $2933 \mathrm{w}, 1586 \mathrm{~m}, 1574 \mathrm{~m}, 1515 \mathrm{~m}, 1474 \mathrm{~s}, 1431 \mathrm{~s}, 1275 \mathrm{~s}, 1245 \mathrm{~s}, 1164 \mathrm{~m}$, $1135 \mathrm{~m}, 1075 \mathrm{w}, 1043 \mathrm{w}, 1018 \mathrm{~m}, 950 \mathrm{~m}, 839 \mathrm{~s}, 797 \mathrm{~m}, 756 \mathrm{~m}, 737 \mathrm{w}, 657 \mathrm{w}, 616 \mathrm{~m}, 580 \mathrm{w}$, 557m, 523w, 501w, 436w and 358w. FAB mass spectrum: $m / z 794,\left[M-\mathrm{PF}_{6}\right]^{+}$.
$\left[\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OCH}_{3}\right)\left\{\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\right\}\right]$ 35. To a stirred solution of $\left[\left\{\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OCH}_{3}\right)(\mu-\mathrm{Cl})\right\}_{2}\right](0.130 \mathrm{~g}, 0.23 \mathrm{mmol})$ in dichloromethane $\left(10.0 \mathrm{~cm}^{3}\right)$ was added solid $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.075 \mathrm{~g}, 0.46 \mathrm{mmol})$ and the reaction mixture stirred for a further 30 min . A solution of $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}-\mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{o}-\right.$ $\left.\mathrm{CH}_{3}\right)_{2}(0.222 \mathrm{~g}, 0.46 \mathrm{mmol})$ in dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ was then added dropwise to the reaction mixture over a period of 10 min and the resulting dark brown solution stirred for 2 h . The solution was concentrated under reduced pressure to $c a 50 \mathrm{~cm}^{3}$ and diethyl ether $\left(25.0 \mathrm{~cm}^{3}\right)$ added The light brown product was collected by suction filtration. Yeeld: 0.280 g, 70% Microanalysis: Found (Calcd for $\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{OP} 3 \mathrm{Pd}$) C, 52.8 (53.5); H, 5.6 (56); N, 3.1 (3.2) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{\mathrm{l}} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 113.4$ and
$105.2,{ }^{2} J\left({ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}\right) 66 \mathrm{~Hz}$. IR (KBr disc, $\left.\mathrm{cm}^{-1}\right) .2924 \mathrm{vs}, 1624 \mathrm{w}, 1588 \mathrm{~s}, 1523 \mathrm{vs}, 1448 \mathrm{vs}$, $1381 \mathrm{w}, 1278 \mathrm{~s}, 1186 \mathrm{~s}, 1132 \mathrm{~s}, 1081 \mathrm{~s}, 1023 \mathrm{~s}, 948 \mathrm{w}, 839 \mathrm{vs}, 806 \mathrm{~s}, 757 \mathrm{vs}, 719 \mathrm{~s}, 682 \mathrm{w}$, $611 \mathrm{w}, 556 \mathrm{vs}, 538 \mathrm{w}, 508 \mathrm{w}, 488 \mathrm{~s}, 469 \mathrm{~s}, 280 \mathrm{w}, 242 \mathrm{~s}$ and 229 vs . FAB mass spectrum: $m / z 730,\left[M-\mathrm{PF}_{6}\right]^{+}$.

Chapter 4

The Preparation and Coordination Chemistry of Phosphorus (III) Derivatives of Piperazine and Homopiperazine.

4.1 Introduction

One of the important roles occupied by ligands in catalytic metal complexes is to offer steric protection to the catalytically active site. ${ }^{107}$ This requrement is achieved by incorporating bulky substituent groups into the ligand which hinder the approach of the polymerisation reactants and 'steer' them towards the reacting polymer chain. With this requirement in mind, we have studied the reactions of the cyclic amine compounds piperazine and homopiperazine with different chlorophosphines to ascertain the possibility of synthessising diphosphine chelates which would offer significant steric hindrance by forming umbrella-like ligands around a metal centre. Here we report on the synthesis of diphosphine derivatives of piperazine and homopiperazine and therr reactions with different metal compounds.

Results and Discussion

4.2 Synthesis of phosphorus (III) derivatives of piperazine

Reaction of piperazine with two equivalents of the chlorophosphines $\mathrm{Ph}_{2} \mathrm{PCl}$, $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PCl}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PCl}$, in the presence of NEt_{3}, proceeds in thf to give 36,37 and 38 respectively (Equation 4.1).

$$
\begin{aligned}
\mathrm{R}_{2}= & \mathrm{Ph}_{2}(36), \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(37) \\
& \text { and } \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}(\mathbf{3 8}) \quad \text { Equation } 4.1
\end{aligned}
$$

Addition of chlorodiphenylphosphine in thf to a solution of piperazine in thf, at room temperature, results in the immediate precipitation of $\left[\mathrm{Et}_{3} \mathrm{NH}\right] \mathrm{Cl}$ as the reaction proceeds. Removal of the ammonium salt by filtration, reduction of the volume of thf in vacuo and addition of diethyl ether gives $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}$ 36. This method is an adaptation of a previously published literature method ${ }^{52}$ and typically results in 36 in yields of $70-80 \%$. Air- and moisture- tolerant, 36 is readily soluble in both dichloromethane and thf. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 6}$ comprises a singlet at $\delta(\mathrm{P})$ 62.9. The possibility of this peak representing the mono-substituted amine was rejected after performing in situ ${ }^{31} \mathrm{P}$ NMR studies. Monitoring of the reaction mixture at regular intervals, immediately after completion of the chlorodiphenylphosphine additıon, shows a phosphorus-containing species, with a chemical shift of $\delta(\mathrm{P}) 35.1$, to be the initial reaction product. This is assumed to be the mono-substituted amine and gradually decreases in intensity as the reaction proceeds, to leave 36 as the only phosphorus containing compound (Equation 4.2). FAB^{+}mass spectrometry and elemental analysis (Table 4.1) both support the proposed identity of 36 as a diphosphine and the IR spectrum of 36 also supports this conclusion as there is no band associated with a $v(\mathrm{~N}-\mathrm{H})$ stretch The IR spectrum of 36 does however show bands corresponding to $v(\mathrm{CN})\left(1478 \mathrm{~cm}^{-1}\right)$ and $v(\mathrm{PN})\left(930 \mathrm{~cm}^{-1}\right)$.

Equation 4.2

Formation of the ligands $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \quad 37$ and $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right) 38$ is achieved by employing the same experimental technique used in the synthesis of 36 This results in both 37 and $\mathbf{3 8}$ being isolated as colourless, solid products in good yield (71 and 72% respectively). The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 37 comprises a singlet at $\delta(\mathrm{P}) 1442$, the large downfield shift when compared to 36 reflecting the close proximity of the phosphorus centre to the strongly electronegative oxygen atoms. FAB^{+}mass spectrometry shows the expected parent-
ion peak ($\mathrm{m} / \mathrm{z}[M]^{+} 362$) and elemental analysis is in good agreement with calculated values (Table 4.1). The IR spectrum of 37 shows bands which can be attributed to $v(\mathrm{CN})\left(1479 \mathrm{~cm}^{-1}\right)$ and $v(\mathrm{PN})\left(918 \mathrm{~cm}^{-1}\right)$. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 38 also shows a singlet ($\delta(\mathrm{P}) 137.9$) which, like 37 , is shifted significantly downfield when compared to $36 . \mathrm{FAB}^{+}$mass spectrometry again shows the parent-ion peak ($\mathrm{m} / \mathrm{z}[M]^{+}$ 266) and elemental analysis is in good agreement with calculated values (Table 4.1). The IR spectrum shows bands at 1438 and $952 \mathrm{~cm}^{-1}$ which are assigned to $v(\mathrm{CN})$ and $v(\mathrm{PN})$.

Table 4.1 Elemental analysis data for compounds $\mathbf{3 6 - 3 8}$ (calculated values in parentheses)

Compound	Formula	\mathbf{C}	\mathbf{H}	\mathbf{N}
$\mathbf{3 6}$	$\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}$	$73.2(74.0)$	$6.2(6.2)$	$5.5(6.2)$
$\mathbf{3 7}$	$\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)$	$52.2(53.0)$	$4.3(4.4)$	$7.3(7.7)$
$\mathbf{3 8}$	$\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$	$35.6(36.1)$	$6.2(6.0)$	$9.9(10.5)$

The reactions of 36 and 37 with equimolar quantities of $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right]$ in dichloromethane proceed according to Equation 4.3 to yield the seven-membered, P, P^{\prime} chelates cis- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}\right\}\right] \quad 39$ and cis- $\left[\mathrm{PtCl}_{2}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right.\right.$ $\left.\left.\mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right\}\right] 40$.

Equation 4.3

Addition of the solid diphosphınes 36 and 37 to stirred dichloromethane solutions of $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$ results in the formation of colourless solutions. Stirring is continued for a further 2 hours, after which time diethyl ether is added and the products 39 and 40 are precipitated as colourless solids in good yield (79 and 89% respectively) The ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of both compounds show singlets with satellites from coupling to ${ }^{195} \mathrm{Pt}$, the nature of the substituent groups on the phosphorus being reflected in the positions of the chemical shifts $(\delta(\mathrm{P}) 53.5$ and 99.6 respectively) and the magnitude of the ${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right.$) coupling constants (3972 and 5480 Hz respectively). Both parameters for each compound are in agreement with values previously reported for similarly substituted phosphines when trans to a chloride in a Pt(II) complex ${ }^{32,48}$ The IR spectra of 39 and 40 show bands which can be assigned to $v(C N)$ (1435 and $1477 \mathrm{~cm}^{-1}$ respectively) and $\mathrm{v}(\mathrm{PN})$ (960 and $966 \mathrm{~cm}^{-1}$ respectively), the latter showing an increase in the P-N bond order when compared to the free ligand, and elemental analysis data is in agreement with the calculated values (Table 4.3). For $39 \mathrm{FAB}^{+}$ mass spectrometry shows the expected parent-ion peaks and a peak corresponding to the loss of a chloride ion ($\mathrm{m} / \mathrm{z} 720[M]^{+}$and $685[M-\mathrm{Cl}]$), for 40 , however, it fails to show a parent-ion peak but instead fragmentation patterns consistent with the loss of chloride ions ($\mathrm{m} / \mathrm{z} 597[M-\mathrm{Cl}]^{+}$and $\left.566[M-2 \mathrm{Cl}]^{+}\right] .\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{~N}$ $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) 37$ also reacts with $\left[\mathrm{PtMe}_{2}(\mathrm{cod})\right]$, in dichloromethane, to produce the P, P^{\prime} chelate cls-[PtMe $\left.2\left\{\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right\}\right] 41$ (Equation 4.4).

Equation 4.4

Addition of the solid ligand 37 to a stirred dichloromethane solution of $\left[\mathrm{PtMe}_{2}(\mathrm{cod})\right]$ results in a colourless solution. Addition of diethyl ether, after stirring for 2 hours, results in the precipitation of 41 as a colourless solid in moderate yield (63\%). The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 41 show a singlet at $\delta(\mathrm{P})$ 154.9, a downfield shift of 107
ppm from the free ligand, with satellites from coupling to ${ }^{195} \mathrm{Pt}$ The value of the ${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)$ coupling constant (2977 Hz) is significantly smaller than that observed for the analogous dichloro- complex 40 but is consistent with values reported for similar complexes where phosphorus is trans to a methyl group ${ }^{32}$. Elemental analysis is in agreement with calculated values (Table 4.3)

The reaction of 36 wth an equimolar quantity of $\left[\mathrm{PdCl}_{2}(\mathrm{cod})\right]$ in thf results in the bidentate, P, P^{\prime} chelate complex cis- $\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}\right]\right.$, 42 (Equation 4.5). The product was prepared and isolated using the same technique employed in the synthesis of its platinum analogue 39 , resulting in a yellow solid in 62% yield.

42
Equation 4.5

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 42 shows the anticipated singlet at $\delta(\mathrm{P}) 101.7$, a downfield shift of approxımately 40 ppm when compared to the free ligand 36 . FAB^{+} mass spectrometry showed a strong parent-ion peak and a peak corresponding to the loss of a chloride ion ($\mathrm{m} / \mathrm{z} 632[M]^{+}$and $597[M-\mathrm{Cl}]^{+}$) and elemental analysis is in agreement with the calculated values (Table 4.3). Once again bands at $1435 \mathrm{~cm}^{-1}$ and $959 \mathrm{~cm}^{-1}$, attributable to $v(\mathrm{CN})$ and $v(\mathrm{PN})$ respectively, are evident in the IR spectrum as are two $v(\mathrm{PdCl})$ stretches at 320 and $298 \mathrm{~cm}^{-1}$ which are indicative of a cts $-\mathrm{PdCl}_{2}$ geometry. Slow diffusion of diethyl ether into a dichloromethane solution of $\mathbf{4 2}$ gives the product as yellow crystals. The X-ray structure of 42 contains two crystallographically independent molecules and shows the product to have the expected square planar geometry about the Pd centre (Figure 4.1). The bidentate nature of the co-ordination to the metal results in the formation of two 7 -membered Pd-P-N-C-C-N-P ring systems that differ by which carbon atoms of the ligand backbone they incorporate. The $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{~N}$ backbone of the ligand adopts a boat conformation and forms an 'umbrella-like' structure around the Pd centre. Table 4.2 shows selected bond lengths and angles for 42.

Figure 4.1 Solid state structure of $c l s$ - $\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}\right\}\right] 42$.

Table 4.2 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for compound 42.

Bond	Length	Bond	Angle
$\mathrm{Pd}(1)-\mathrm{P}(1)$	$2.253(5)[2.263(5)]$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$	$94.0(2)[94.7(2)]$
$\mathrm{Pd}(1)-\mathrm{P}(2)$	$2.256(5)[2.246(5)]$	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$88.9(2)[87.2(5)]$
$\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$2.381(5)[2.367(5)]$	$\mathrm{P}(2)-\mathrm{Pd}(1)-\mathrm{Cl}(1)$	$858(2)[86.1(2)]$
$\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$2.390(4)[2.387(5)]$	$\mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$92.1(2)[92.0(2)]$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.697(14)[1692(14)]$	$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$120.6(6)[121.7(6)]$
$\mathrm{P}(2)-\mathrm{N}(2)$	$1.675(14)[1.71(2)]$	$\mathrm{Pd}(1)-\mathrm{P}(2)-\mathrm{N}(2)$	$123.3(6)[121.5(7)]$

N B The values in parentheses are for the second crystallographically independent molecule.

The structure also reveals that the square planar palladium centre is distorted and in both of the two independent molecules the bite angle of the piperazine is larger than the ideal 90° [94.0 (2) and 94.7 (2)] and the $\mathrm{Cl}-\mathrm{Pd}-\mathrm{Cl}$ angles are also greater than 90° [92.1 (2) and 92.0 (2)]. The mean deviations of $\mathrm{PdP}_{2} \mathrm{Cl}_{2}$ from the plane are $0.14 \AA$ for one of the molecules and $0.02 \AA$ for the second. In both molecules the P-N, Pd-P and $\mathrm{P}-\mathrm{Cl}$ bond lengths are all typical of single bonds and are comparable to those observed in Chapter 2 for compounds 9 and 10.

Table 4.3 Elemental analysis data for complexes $39-43$ (calculated values in parentheses).

Cpd	Formula	C	H	N
39	$\mathrm{cls}-\left[\mathrm{PtCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}_{\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}\right]}\right.\right.$	45.9 (46.7)	3.7 (3.9)	3.2 (39)
40	$c_{c s-\left[\mathrm{PtCl}_{2}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\right\}\right]}$	30.4 (30.6)	2.8 (2.6)	4.3 (45)
41	$c l s-\left[\mathrm{PtMe}_{2}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\right\}\right]$	36.3 (36.8)	3.9 (3.8)	4.6 (4.8)
42	cis-[$\left.\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}\right\}\right]$	52.9 (53.3)	4.5 (4.5)	4.3 (4.4)
43	${ }_{c s-}\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}\right\}\right]$	57.6 (58.0)	3.9 (4.3)	3.8 (4.2)

The reaction of 36 with $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{pip})_{2}\right]$ in dichloromethane proceeds, with displacement of the piperidines, to give cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}\right\}\right], 43$ (Equation 4.6).

43
Equation 4.6

The $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{pip})_{2}\right]$ was suspended in dry dichloromethane and 36 added as a solid in one portion. The reaction mixture was then heated to reflux for 15 minutes, cooled and the solvent volume reduced in vacuo to $c a 2 \mathrm{~cm}^{3}$. Addition of methanol to the solution gave 43 as a yellow solid in approximately 70% yield. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 43 displays a singlet at $\delta(\mathrm{P}) 97.2$, a downfield shift of around 35 ppm upon complexation and similar in magnitude to the shift observed in Chapter 2 between compounds 1 and 13. The IR spectrum of 43 shows four strong bands due to $v(C O)\left(2021,1917,1901\right.$ and $\left.1888 \mathrm{~cm}^{-1}\right)$, confirming the $c l s$ binding of the chelate and the terminal nature of the carbonyl ligands. FAB^{+}mass spectrometry does not show the peak for the expected parent-ion but exhibits a fragmentation pattern consistent with the sequential loss of four carbonyl ligands ($\mathrm{m} / \mathrm{z} 634$ [$M-\mathrm{CO}]^{+}, 606$ [$M-2 \mathrm{CO}^{+}, 578\left[M-3 \mathrm{CO}^{+}, 550[M-4 \mathrm{CO}]^{+}\right.$). Elemental analysis is in good
agreement with calculated values (Table 4 3) The complex can therefore be identified as possessing the expected octahedral geometry around the Mo centre and, as described previously for $\mathbf{4 2}$, synthesis of the $P-P$ ' chelate results in the formation of two 7-membered ring systems which differ only by which carbon atoms of the ligand backbone they incorporate

Compounds 39-43 demonstrate the ability of $\mathrm{Ph}_{2} \mathrm{PN}_{\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2} \text { and }}$ $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ to act as a bidentate chelating ligands and form seven-membered metallacycles. Reactions with compounds containing $\mathrm{Au}(\mathrm{I})$ and Ru (II) show that $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}, \quad\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}$ can also act as a bridging ligands between two metal centres.

Reactions of the ligands $\mathbf{3 6}, 37$ and 38 with two equivalents of [$\mathrm{AuCl}(\mathrm{tht})]$ in dichloromethane proceed according Equation 4.7 to give the bimetallic gold species $\left[\mathrm{Ph}_{2} \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\{\mathrm{AuCl}\} \mathrm{Ph}_{2}\right] \quad 44 \quad\left[\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\{\mathrm{AuCl}\}\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right] 45$ and $\left[\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\{\mathrm{AuCl}\}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right]$, 46.

Equation 4.7

Addition at room temperature of the solid ligands $\mathbf{3 6}, \mathbf{3 7}$ and $\mathbf{3 8}$ to dichloromethane solutions of 2 equivalents of $[\mathrm{AuCl}($ tht $)]$, followed by addition of diethyl ether, results in the precipitation of the products $\mathbf{4 4 , 4 5}$ and 46 as colourless solids in varying yields (55,86 and 76% respectively). The elemental analysis values for each product are in good agreement with the calculated values (Table 4.4) and the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra all show singlets. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{Ph}_{2} \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\{\mathrm{AuCl}\} \mathrm{Ph}_{2}\right] 44$ shows a singlet at $\delta(\mathrm{P}) 80.7$, while the chemical shifts of $\left[\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\{\mathrm{AuCl}\}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right] \mathbf{4 5}$, $(\delta(\mathrm{P}) 1364)$
and $\quad\left[\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\{\mathrm{AuCl}\}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right], \quad 46 \quad(\delta(\mathrm{P}) \quad 131.7)$ are significantly further downfield due to the phosphorus centres proximity to highly electronegative oxygen atoms. The FAB^{+}mass spectrum of $\mathbf{4 5}$ shows the expected parent-ion peak ($\mathrm{m} / \mathrm{z}[M]^{+} 827$), however, the FAB^{+}mass spectra of 44 and 46 do not contain parent-ion peaks but both show strong peaks corresponding to $[M-\mathrm{Cl}]^{+}(\mathrm{m} / \mathrm{z}$ 883 for 44 and $\mathrm{m} / \mathrm{z} 695$ for 46). The IR spectra of all three compounds show bands corresponding to $v(\mathrm{CN})$ and $v(\mathrm{PN})\left(1434\right.$ and $966 \mathrm{~cm}^{-1}$ respectively for 44,1445 and $966 \mathrm{~cm}^{-1}$ respectively for 45 and 1445 and $967 \mathrm{~cm}^{-1}$ respectively for 46).

Reaction of 36 with equimolar quantities of the chloro-bridged dimer $\left[\left\{\operatorname{RuCl}(\mu-\mathrm{Cl})\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{1} \mathrm{Pr}\right)\right\}_{2}\right]$ also gave a complex in which $\mathbf{3 6}$ acts as a bridging ligand. Addition of the solid diphosphine to a thf solution of $\left[\left\{\mathrm{RuCl}(\mu-\mathrm{Cl})\left(\eta^{6}-p\right.\right.\right.$ $\left.\left.\left.\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{\prime} \mathrm{Pr}\right)\right\}_{2}\right]$ results in the formation of $\left[\left\{\mathrm{RuCl}_{2}\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{1} \mathrm{Pr}\right)\right\}_{2}\right.$ $\left.\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}\right\}\right], 47$, which was isolated as a light brown solid in good yield (75\%) (Equation 4.8).

47
Equation 4.8

Elemental analysis is in good agreement with calculated values (Table 4.4) and the IR spectrum shows the bands which can be attributed to $v(\mathrm{CN})\left(1432 \mathrm{~cm}^{-1}\right)$ and $v(\mathrm{PN})$ ($953 \mathrm{~cm}^{-1}$). ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies show a singlet with a chemical shift 69.8 ppm , a downfield shift of only 7 ppm compared to the free ligand. FAB^{+}mass spectrometry shows the expected parent-ion peak ($\mathrm{m} / \mathrm{z} 1066[\mathrm{M}]^{+}$), a peak assigned to $[\mathrm{M}-\mathrm{Cl}]^{+}(\mathrm{m} / \mathrm{z}$
1031) and a strong peak corresponding to the loss of a $\mathrm{RuCl}_{2}\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{\mathrm{P} P r}\right)$ fragment ($\mathrm{m} / \mathrm{z} 760$).

Table 4.4 Elemental analysis data for complexes 44 to 47 (calculated values in parentheses).

Cpd	Formula	\mathbf{C}	\mathbf{H}	\mathbf{N}
$\mathbf{4 4}$	$\left[\mathrm{Ph}_{2} \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left\{\mathrm{AuCl}^{2} \mathrm{PH}_{2}\right]\right.$	$36.0(36.6)$	$2.8(3.1)$	$2.4(3.1)$
$\mathbf{4 5}$	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2} \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\{\mathrm{AuCl}\}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\right]$,	$23.2(23.2)$	$1.9(1.9)$	$3.3(3.4)$
$\mathbf{4 6}$	$\left[\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2} \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}^{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left\{\mathrm{AuCl}^{2}\right\}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\right]$	$13.3(13.1)$	$2.2(2.2)$	$3.8(38)$
$\mathbf{4 7}$	$\left[\left\{\mathrm{RuCl}_{2}\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}_{2}\right)\right\}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}\right\}\right]$	$53.1(54.0)$	$5.3(5.3)$	$2.2(2.6)$

4.4 Synthests of phosphorus (III) derivatives of homopiperazine.

Compounds 36, $\mathbf{3 7}$ and $\mathbf{3 8}$ demonstrate that piperazine reacts successfully with the chlorophosphines $\mathrm{Ph}_{2} \mathrm{PCl},\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PCl}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PCl}$ to produce bis substituted $\mathrm{P}-\mathrm{N}$ ligand systems. An analogous set of ligands can be synthesised by reacting the same chlorophosphines with homopiperazine. Homopiperazine differs from piperazine by containing an extra CH_{2} group, therefore forming a 7 -membered nitrogen-carbon ring system. Reaction of homopiperazine with two equivalents of $\mathrm{Ph}_{2} \mathrm{PCl},\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PCl}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PCl}$, in the presence of NEt_{3}, proceeds in thf to give $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2}$, 48, $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)$, 49 and $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ $\mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right), 50$ respectively (Equation 4.9).

Equation 4.9

Addition of thf solutions of each chlorophosphine to stirred solutions of homopiperazine, also in thf, resulted in the immediate precipitation of $\left[\mathrm{Et}_{3} \mathrm{NH}\right] \mathrm{Cl}$ as the reactions proceed. The reaction mixtures were then stirred for two hours after the completion of the chlorophosphine additions. In sttu ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies performed at this stage revealed that in each case only one phosphorus-containing species was present in the reaction mixtures. The ammonium salts were then removed by suction filtration and the filtrates evaporated to dryness in vacuo to leave 48, 49 and 50 as colourless solids The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2} 48$, shows a singlet at $\delta(\mathrm{P}) 65.7$ and while the spectra of $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)$, 49 and $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right), 50$ also show singlets these are significantly further downfield, at $\delta(\mathrm{P}) 148.3$ and $\delta(\mathrm{P}) 1438$ respectively, due to the phosphorus atom containing an oxygen substituent. The chemical shift values of all three ligands are slightly downfield from the values observed for the analogous piperazine derivatıves, $\mathbf{3 6}, \mathbf{3 7}$ and $\mathbf{3 8}$, suggesting that the addition of an extra CH_{2} group into the ligand backbone causes a slight deshielding of the phosphorus centres. FAB^{+}mass spectrometry confirms the proposed identities of the products as diphosphines, showing peaks corresponding to the expected parent-ions in each case ($\mathrm{m} / \mathrm{z}[M]^{+} 468$ for $48,[M]^{+} 376$ for 49 and $[M]^{+} 280$ for 50). For each of the products elemental analysis is in agreement with calculated values (Table 4.5) and the IR spectra show bands which can be assigned to $v(\mathrm{CN})$ and $v(\mathrm{PN})$ (1431 and $921 \mathrm{~cm}^{-1}$ respectively for 48,1459 and $916 \mathrm{~cm}^{-1}$ respectively for 49 and 1450 and $931 \mathrm{~cm}^{-1}$ respectively for 50).

Table 4.5 Elemental analysis data for complexes 48, 49 and 50 (calculated values in parentheses).

Compound	Formula	\mathbf{C}	\mathbf{H}	\mathbf{N}
$\mathbf{4 8}$	$\mathrm{Ph}_{2} \mathrm{PN}^{2}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2}$	$72.4(74.3)$	$6.1(6.4)$	$48(5.9)$
$\mathbf{4 9}$	$\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)$	$53.8(54.3)$	$4.3(4.8)$	$6.9(7.4)$
$\mathbf{5 0}$	$\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$	$38.8(38.6)$	$6.8(6.4)$	$10.4(10.0)$

4.5 Coordination chemistry of $R_{2} P N\left(C_{5} H_{l 0}\right) N P R_{2}, R_{2}=P h_{2}$ and $C_{6} H_{4} O_{2}$

The reactions of 48 and 49 with equimolar quantities of $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right]$ in dichloromethane proceed according to Equation 4.10 to yield the bidentate, P, P^{\prime} chelates cis- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2}\right\}\right] 51$ and cis- $\left[\mathrm{PtCl}_{2}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right)\right.\right.$ $\left.\mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right\}$] 52. Addition of the solid diphosphines 48 and 49 to dichloromethane solutions of $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$ results in the formation of colourless solutions which are stirred for a further 2 hours. After this time diethyl ether was added to the reaction mixture and the products $\mathbf{5 1}$ and $\mathbf{5 2}$ precipitated as colourless solids in excellent yield (92 and 84% respectively).

Equation 4.10

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the products show singlets, at $\delta(\mathrm{P}) 64.1$ and 102.3 respectively, with satellites from coupling to ${ }^{195} \mathrm{Pt}$. As with 39 and 40 the magnitude of the couplings (4092 and 5466 Hz respectively) and the positions of the chemical shifts reflect the nature of the substituents on the phosphorus atoms. The IR spectra of 51 and 52 shows two bands indicating a cis- PtCl_{2} geometry (300 and $277 \mathrm{~cm}^{-1}$ for 51 and 306 and $279 \mathrm{~cm}^{-1}$ for 52) as well as bands corresponding to $v(\mathrm{CN})$ at 1436 and $1478 \mathrm{~cm}^{-1}$ respectively, and $v(\mathrm{PN})$, at 936 and $951 \mathrm{~cm}^{-1}$ respectively. The $v(\mathrm{CN})$ and $v(\mathrm{PN})$ values both represent an increase in frequency from the free ligand and indicate an increase in bond order upon complexation. Elemental analyses are in good agreement with calculated values (Table 46). FAB^{+}mass spectrometry studies on 51 show the parent-ion peak and a peak that can be assigned to the loss of a chloride ion $\left(\mathrm{m} / \mathrm{z}[M]^{+} 734\right.$ and $\left.[M-\mathrm{Cl}]^{+} 699\right)$. However, on 52 they fail to show the parent-ion peak but instead a peak corresponding to the loss of a chloride ion ($\mathrm{m} / \mathrm{z}[M-\mathrm{Cl}]^{+}$ 606).
$\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2} 48$ and $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right), 49$ also react successfully with equimolar quantities of $\left[\mathrm{PtMe}_{2}(\mathrm{cod})\right]$ to give the P, P^{\prime}, chelates cis-[PtMe $\left.2\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2}\right\}\right] \quad 53$ and $c i s-\left[\mathrm{PtMe}_{2}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{N}\right.\right.$ $\left.\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right\}\right] 54$ (Equation 4.11). The same synthetic technique as that used in the formation of the dichloro analogues 51 and 52 was employed to give 53 and 54 as colourless solids in moderate yields (64 and 66% respectively).

Equation 4.11

The resulting ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of both products show singlets (at $\delta(\mathrm{P}) 89.1$ for 53 and $\delta(\mathrm{P}) 156.9$ for 54) with satellites from coupling to ${ }^{195} \mathrm{Pt}$. In each case the magnitude of the coupling (2231 Hz for 53 and 2937 Hz for 54) is, as anticipated, significantly smaller than the value observed for the analogous dichloro complexes but is in agreement with values previously reported for similar Pt (II) systems containing a phosphorus trans to a methyl group. ${ }^{32}$ The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for 54 is also in agreement with the values recorded for the analogous piperazine complex 41. FAB^{+}mass spectrometry studies on both 53 and 54 fail to show parent-ion peaks but instead show peaks which can be attributed to the loss of a methyl group (m / z [$M-$ $\left.\mathrm{CH}_{3}\right]^{+} 678$ for 53 and 586 for 54). Elemental analyses are in good agreement with calculated values (Table 4.6) and the IR spectra show bands corresponding to $v(\mathrm{CN})$ and $v(\mathrm{PN})$ (1435 and $925 \mathrm{~cm}^{-1}$ respectively for 53 and 1480 and $919 \mathrm{~cm}^{-1}$ respectively for 54).

The reactions of 48 and 49 with equimolar quantities of $\left[\mathrm{PdCl}_{2}(\operatorname{cod})\right]$ in dichloromethane result in the formation of the bidentate, P, P^{\prime} chelate complexes $c l s$ $\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2}\right\}\right] 55$ and $c l s-\left[\mathrm{PdCl}_{2}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right\}\right]$ 56 (Equation 4.12). Addition of the solid diphosphines 48 and 49 to dichloromethane solutions of $\left[\mathrm{PdCl}_{2}(\operatorname{cod})\right]$ results in the formation of yellow solutions. Addition of
diethyl ether, after stirring for a further 2 hours, results in the precipitation of the products 55 and 56 as yellow solids in 87 and 94% yields respectively.

Equation 4.12

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{5 5}$ and $\mathbf{5 6}$ show singlets at $\delta(\mathrm{P}) 92.6$ and 125.6 , with the downfield shift between 55 and the free ligand 48 being comparable to that observed between the piperazine compounds 42 and $36 . \mathrm{FAB}^{+}$mass spectrometry shows the expected parent-ion peaks ($\mathrm{m} / \mathrm{z}[M]^{+} 646$ and $\mathrm{m} / \mathrm{z}[M]^{+} 553$ respectively) and peaks due to the loss of a chloride ion $\left(\mathrm{m} / \mathrm{z}[M-\mathrm{Cl}]^{+} 611\right.$ and $[M-\mathrm{Cl}]^{+} 518$ respectively). Elemental analyses are in good agreement with calculated values (Table 46).The IR spectrum of 55 shows two bands which can be assigned to $v(\mathrm{CN})$ and $v(\mathrm{PN})$ (1437 and $953 \mathrm{~cm}^{-1}$ respectively) as well as two distinct $v(\mathrm{PdCl})$ stretches at 312 and $289 \mathrm{~cm}^{-1}$ which indicate a $c l s-\mathrm{PdCl}_{2}$ geometry. The IR spectrum of 56 also shows bands which can be assigned to $v(\mathrm{CN})\left(1459 \mathrm{~cm}^{-1}\right), v(\mathrm{PN})\left(916 \mathrm{~cm}^{-1}\right)$ and $v(\mathrm{PdCl})\left(306\right.$ and $276 \mathrm{~cm}^{-1}$).

The complexes 51 to 56 demonstrate the ability of $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2}, 48$ and $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right), 49$ to act as bidentate, P, P^{\prime} chelating ligands in the same manner as previously described for the ligands $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2} 36$ and $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) 37$ in complexes 39 to 43 . However, unlike 36 and 37, which only form seven-membered metallacycles when acting as chelating ligands, 48 and 49 are able to form one seven- and one eight - membered metallacycle due to the extra CH_{2} group in the ligand backbone (as demonstrated in Figure 4.2 for the reaction of the ligands with $\left[\mathrm{PtCl}_{2}(\right.$ cod $\left.)\right]$).

8 -membered ring

7-membered ring

Figure 4.2 Different ring sizes in complexes containing the ligands 48 and 49

As well as acting as chelates, 48 and 49 , like 36,37 and 38 , also demonstrate the ability to act as bridging ligands between two metal centres when reacted with two equivalents of $[\mathrm{AuCl}(\mathrm{tht})]$. Reaction of the ligands with the [$\mathrm{AuCl}(\mathrm{tht})]$ in dichloromethane proceeds according to Equation 4.13 to give the bimetallic gold species $\left[\mathrm{Ph}_{2} \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\{\mathrm{AuCl}\} \mathrm{Ph}_{2}\right]$ and $57\left[\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{N}\right.$ $\left.\mathrm{P}\{\mathrm{AuCl}\}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right] 58$.

Equation 4.13

Employing the same technique used in the synthesis of 44,45 and 46 results in the isolation of 57 and 58 as colourless solids in good yields (76 and 81% respectively). The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of both 57 and 58 show singlets (at $\delta(\mathrm{P}) 78.7$ and $\delta(\mathrm{P})$ 139.9) which are comparable to the values reported for the complexes 44 and 45. Elemental analyses are in good agreement with calculated values (Table 4.6). FAB^{+} mass spectrometry studies on 57 and 58 failed to show a parent-ion peak and instead, in both cases, showed a peak corresponding to the loss of a chloride ion ($\mathrm{m} / \mathrm{z}[M-$
$\mathrm{Cl}]^{+} 897$ for 57 and 805 for 58). The \mathbb{R} spectra of the products both show bands corresponding to $v(\mathrm{CN})$ and $v(\mathrm{PN})$ (1433 and $903 \mathrm{~cm}^{-1}$ respectively for 57 and 1441 and $908 \mathrm{~cm}^{-1}$ respectively for 58).

Table 4.6 Elemental analysis data for complexes 51 to 58 (calculated values in parentheses).

Cpd	Formula	C	H	N
51	$\left[\mathrm{PtCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2}\right\}\right]$	46.4 (47.5)	3.9 (4.1)	34 (3.8)
52	$\left[\mathrm{PtCl}_{2}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right\}\right]$	31.5 (31 8)	2.9 (28)	3.9 (44)
53	$\left[\mathrm{PtMe}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2}\right\}\right]$	53.1 (53.6)	4.9 (5.2)	3.8 (4.0)
54	$\left[\mathrm{PtMe}_{2}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right\}\right]$	37.1 (37.9)	3.9 (40)	4.5 (47)
55	$\left[\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2}\right\}\right]$	53.3 (54.0)	4.8 (47)	4.2 (44)
56	$\left[\mathrm{PdCl}_{2}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}^{\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right\}}\right\}\right.$	35.9 (36.8)	3.6 (3.3)	46 (5.0)
57	[$\left.\mathrm{Ph}_{2} \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\{\mathrm{AuCl}\} \mathrm{Ph}_{2}\right]$	356 (37.4)	3.2 (3.2)	2.7 (3.0)
58	$\left[\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{P}\{\mathrm{AuCl}\} \mathrm{N}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\{\mathrm{AuCl}\}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right]$	23.8 (24.3)	21 (2.1)	3.2 (3.3)

4.6 Conclusions.

Both piperazine and homopiperazine are readily functionalised with chlorophosphines to produce new bis-substituted phosphine ligands. Subsequent reactions of these ligands with $\mathrm{Pt}(\mathrm{II}), \mathrm{Pd}(\mathrm{II})$ and $\mathrm{Mo}(0)$ result in the formation of 7 and 8 -membered chelate rings. Further reactions with $\mathrm{Au}(\mathrm{I})$ and $\mathrm{Ru}(\mathrm{II})$ result in the ligands acting as bidentate bridging ligands. The spectroscopic data for dervatives of the two amines, which incorporate the same phosphorus substituents, is very similar suggesting that the extra CH_{2} in the homopiperazine ligands has little effect on the electronic properties of the ligands and resulting complexes There is, however, a great deal of scope for further work involving these systems. Although Figure 4.1 confirms that the ligand 36 does indeed form an umbrella-like structure around the palladium centre, the steric properties of a ligand constitute only one of many parameters that have to be taken into consideration when designing an effective catalytic system. Further studies into the electronic properties of these types of ligands are required. As well as the possibility of forming new bis-substituted piperazine and
homopiperazine derivatıves through reactions with various other chlorophosphines it may also be possible to isolate the mono-substituted intermediates and form unsymmetrical products via reaction with a second, different chlorophosphine. Further investigations on the reactions of the ligands with different metals can also be conducted.

Experimental

General experimental conditions and instrumentation were as set out on page 12 and as described in Chapters 2 and 3. $\left[\left\{\operatorname{RuCl}(\mu-\mathrm{Cl})\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{1} \mathrm{Pr}\right)\right\}_{2}\right]^{108}$ was prepared using the literature procedure and piperazine, homopiperazine, 1,2-phenylenephosphoro-chloridite and 2-chloro-1,3,2-dioxaphospholane were used without further purification.
$\mathbf{P h}_{2} \mathbf{P N}\left(\mathbf{C}_{2} \mathbf{H}_{4}\right)_{2} \mathbf{N P P h}_{2}$ 36. A solution of chlorodiphenylphosphine $\left(5.1 \mathrm{~g}, 4.2 \mathrm{~cm}^{3}\right.$, $24.0 \mathrm{mmol})$ in thf $\left(200 \mathrm{~cm}^{3}\right)$ was added dropwise over a period of 30 min to a stirred solution of piperazine $(1.00 \mathrm{~g}, 120 \mathrm{mmol})$ and triethylamine $\left(2.40 \mathrm{~g}, 33 \mathrm{~cm}^{3}, 24.0\right.$ $\mathrm{mmol})$ in thf $\left(30 \mathrm{~cm}^{3}\right)$ at room temperature. Stirrng was continued for 24 h , during which time triethylammonium hydrochloride separated from the colourless solution. This precipitate was removed by suction filtration and the filtrate evaporated to dryness in vacuo to give a white solid product. Yield: $3.92 \mathrm{~g}, 75 \%$. Microanalysis: Found (Calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{P}_{2}$) C 73.2 (74.0), H 6.2 (6.2), N 5.5 (6.2) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta(\mathrm{P}) 62.9$. IR (KBr disc, cm^{-1}) $3065 \mathrm{w}, 2951 \mathrm{w}, 2830 \mathrm{w}, 2816 \mathrm{w}$, $1583 \mathrm{w}, 1478 \mathrm{~s}, 1431 \mathrm{~s}, 1360 \mathrm{~m}, 1307 \mathrm{w}, 1290 \mathrm{~m}, 1250 \mathrm{~m}, 1181 \mathrm{~m}, 1156 \mathrm{~m}, 1127 \mathrm{~m}, 1080 \mathrm{~s}$, 1029w, 996w, 956w, 930m, $744 \mathrm{~m}, 699 \mathrm{~m}, 567 \mathrm{~m}, 545 \mathrm{~s}, 520 \mathrm{~m}, 473 \mathrm{~m}, 435 \mathrm{~s}, 324 \mathrm{w}$ and 231s. FAB mass spectrum: $m / z 455,[M+\mathrm{H}]^{+}$.
$\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathbf{P N}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ 37. A solution of 1,2-phenylenephosphorochloridite ($4.65 \mathrm{~g}, 16.7 \mathrm{mmol}$) in thf $\left(60.0 \mathrm{~cm}^{3}\right)$ was added dropwise over a period of 1 h to a stirred solution of piperazine $(0.72 \mathrm{~g}, 8.3 \mathrm{mmol})$ and triethylamine $(1.69 \mathrm{~g}, 2.3$ $\left.\mathrm{cm}^{3}, 167 \mathrm{mmol}\right)$ in thf $\left(70.0 \mathrm{~cm}^{3}\right)$. Stirring was continued for a further 2 h , during which time triethylammonum hydrochloride separated from the colourless solution. This precipitate was removed by suction filtration and the filtrate evaporated to
dryness in vacuo to give a white solid product. Yield: $2.15 \mathrm{~g}, 71 \%$. Microanalysis: Found (Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$) C 52.2 (53.0), H 4.3 (4.4), N 7.3 (7.7) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta(\mathrm{P})$ 144.2. IR (KBr disc, cm^{-1}): $3066 \mathrm{w}, 2956 \mathrm{w}, 1610 \mathrm{w}, 1479 \mathrm{vs}$, $1442 \mathrm{~m}, 1373 \mathrm{~m}, 1334 \mathrm{~m}, 1260 \mathrm{~m}, 1231 \mathrm{~s}, 1144 \mathrm{~m}, 1094 \mathrm{~m}, 1009 \mathrm{~m}, 918 \mathrm{w}, 818 \mathrm{~s}, 725 \mathrm{~s}$, $740 \mathrm{~m}, 677 \mathrm{~m}, 611 \mathrm{~m}, 561 \mathrm{~m}, 512 \mathrm{~m}, 428 \mathrm{w}, 375 \mathrm{~m}$ and 237 s . FAB mass spectrum m / z 363, $[M]^{+}$.
$\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{\mathbf{2}}\right) \mathbf{P N}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{\mathbf{2}} \mathbf{N P}\left(\mathrm{C}_{2} \mathrm{H}_{\mathbf{4}} \mathrm{O}_{2}\right)$ 38. A solution of 2-chloro-1,3,2-dioxaphospholane ($5.69 \mathrm{~g}, 4.0 \mathrm{~cm}^{3}, 45.0 \mathrm{mmol}$) in thf ($700 \mathrm{~cm}^{3}$) was added dropwise over a period of 1 h to a stirred solution of piperazine ($1.93 \mathrm{~g}, 22.5 \mathrm{mmol}$) and triethylamine ($454 \mathrm{~g}, 6.2$ $\left.\mathrm{cm}^{3}, 45.0 \mathrm{mmol}\right)$ in thf $\left(80.0 \mathrm{~cm}^{3}\right)$. Stirring was continued for a further 2 h , during which time triethylammonium hydrochloride separated from the colourless solution. This precipitate was removed by suction filtration and the filtrate evaporated to dryness in vacuo to give a white solid product. Yield: $4.31 \mathrm{~g}, 72 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$) C 356 (36.1), H 6.2 (6.0), N 9.9 (10.5) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta(\mathrm{P})$ 137.9. IR (KBr disc, cm^{-1}): $3010 \mathrm{w}, 2959 \mathrm{w}, 2888 \mathrm{w}, 1560 \mathrm{~m}$, $1438 \mathrm{~m}, 1378 \mathrm{~m}, 1318 \mathrm{~m}, 1218 \mathrm{~s}, 1152 \mathrm{~m}, 1086 \mathrm{~m}, 1051 \mathrm{~m}, 1005 \mathrm{~m}, 952 \mathrm{~m}, 866 \mathrm{w}, 752 \mathrm{~m}$, $679 \mathrm{~m}, 582 \mathrm{~m}, 549 \mathrm{~m}, 416 \mathrm{w}$ and 237s. FAB mass spectrum: $\mathrm{m} / \mathrm{z} 266,[M]^{+}$.
cis-[$\left.\mathbf{P t C l}_{\mathbf{2}}\left\{\mathbf{P h}_{\mathbf{2}} \mathbf{P N}\left(\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}}\right)_{\mathbf{2}} \mathbf{N P P h}_{\mathbf{2}}\right\}\right]$ 39. To a solution of $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right](0.100 \mathrm{~g}, 0.26$ $\mathrm{mmol})$ in dichloromethane $\left(5.0 \mathrm{~cm}^{3}\right)$ was added solid $\mathrm{Ph}_{2} \mathrm{PN}_{\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}} \mathrm{NPPh}_{2}(0.120 \mathrm{~g}$, 026 mmol) and the colourless solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and diethyl ether ($10.0 \mathrm{~cm}^{3}$) added. The white product was collected by suction filtration. Yield: $0.152 \mathrm{~g}, 79 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pt}$) C, 45.9 (46.7), H 37 (3.9), N 3.2 (3.9) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 53.5,{ }^{1} J\left({ }^{195} \mathrm{Pt}^{-31} \mathrm{P}\right) 3972 \mathrm{~Hz} \mathrm{IR}\left(\mathrm{KBr} \mathrm{disc}, \mathrm{cm}^{-}\right.$ ${ }^{1}$): $3052 \mathrm{~s}, 1618 \mathrm{w}, 1481 \mathrm{~s}, 1435 \mathrm{vs}, 1369 \mathrm{~s}, 1309 \mathrm{~s}, 1261 \mathrm{~s}, 1098 \mathrm{vs}, 960 \mathrm{vs}, 747 \mathrm{~s}, 695 \mathrm{vs}$, $550 \mathrm{~s}, 519 \mathrm{~s}, 284 \mathrm{w}, 230 \mathrm{vs}$ and 218 vs . FAB mass spectrum: $m / z 720,[M]^{+}$.
cis- $\left[\mathrm{PtCl}_{\mathbf{2}}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{\mathbf{4}} \mathrm{O}_{\mathbf{2}}\right) \mathrm{PN}\left(\mathrm{C}_{\mathbf{2}} \mathbf{H}_{4}\right)_{2} \mathbf{N P}\left(\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{O}_{2}\right)\right\}\right]$ 40. To a solution of $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$ $(0.100 \mathrm{~g}, 0.26 \mathrm{mmol})$ in dichloromethane $\left(15.0 \mathrm{~cm}^{3}\right)$ was added solid $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)(0.097 \mathrm{~g}, 0.26 \mathrm{mmol})$ and the colourless solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0$
cm^{3} and diethyl ether $\left(15.0 \mathrm{~cm}^{3}\right)$ added. The white product was collected by suction filtration. Yield. $0.150 \mathrm{~g}, 89 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}$) C, 304 (30.6), H 2.8 (2.6), N 4.3 (4.5) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta(\mathrm{P})$ 99.7, ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{31}{ }^{31} \mathrm{P}\right) 5480 \mathrm{~Hz}$. IR (KBr disc, cm^{-1}): $3096 \mathrm{w}, 2925 \mathrm{w}, 1477 \mathrm{~s}, 1373 \mathrm{~m}, 1330 \mathrm{~m}$, $1263 \mathrm{~m}, 1231 \mathrm{~s}, 1134 \mathrm{~m}, 1109 \mathrm{~s}, 1047 \mathrm{w}, 1008 \mathrm{~m}, 966 \mathrm{vs}, 936 \mathrm{~m}, 862 \mathrm{~s}, 760 \mathrm{w}, 697 \mathrm{~m}$, $626 \mathrm{~m}, 583 \mathrm{~m}, 542 \mathrm{~m}, 421 \mathrm{~m}, 334 \mathrm{w}$ and 306 w . FAB mass spectrum: $\mathrm{m} / \mathrm{z} 597,[\mathrm{M}-\mathrm{Cl}]^{+}$.
 $(0.080 \mathrm{~g}, \quad 0.24 \mathrm{mmol})$ in dichloromethane $\left(10.0 \mathrm{~cm}^{3}\right)$ was added solid $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)(0.087 \mathrm{~g}, 0.24 \mathrm{mmol})$ and the colourless solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to ca 1.0 cm^{3} and diethyl ether $\left(40.0 \mathrm{~cm}^{3}\right)$ added. The white product was collected by suction filtration. Yield: $0.089 \mathrm{~g}, 63 \%$. Microanalysis: Found (Caled for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}$) C, 36.3 (36 8), H 3.9 (3.8), N $4.6(4.8) \%{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{P}) 154.9,{ }^{1} \mathrm{~J}\left({ }^{195} \mathrm{Pt}-\right.$ $\left.{ }^{31} \mathrm{P}\right) 2977 \mathrm{~Hz}$. IR (KBr disc, cm^{-1}): 2885w, 1480s, $1449 \mathrm{w}, 1373 \mathrm{~m}, 1334 \mathrm{~m}, 1262 \mathrm{~m}$, $1234 \mathrm{~s}, 1198 \mathrm{w}, 1142 \mathrm{~m}, 1098 \mathrm{~s}, 1009 \mathrm{~m}, 966 \mathrm{~s}, 935 \mathrm{~m}, 827 \mathrm{~s}, 739 \mathrm{~s}, 689 \mathrm{~m}, 623 \mathrm{~m}, 577 \mathrm{~m}$, 534 m and 420 m . FAB mass spectrum: $m / z 587,[M]^{+}$.
cis-[$\left.\mathrm{PdCl}_{2}\left\{\mathrm{Ph}_{2} \mathbf{P N}\left(\mathrm{C}_{2} \mathbf{H}_{4}\right)_{2} \mathbf{N P P h}_{2}\right\}\right]$ 42. To a solution of $\left[\mathrm{PdCl}_{2}(\operatorname{cod})\right](0.100 \mathrm{~g}, 0.35$ $\mathrm{mmol})$ in dichloromethane $\left(5.0 \mathrm{~cm}^{3}\right)$ was added solid $\mathrm{Ph}_{2} \mathrm{PN}_{\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}(0.160 \mathrm{~g} \text {, }}$ 0.35 mmol) and the yellow solution stirred for ca 2 h . The solution was concentrated under reduced pressure to $c a .1 .0 \mathrm{~cm}^{3}$ and diethyl ether $\left(10.0 \mathrm{~cm}^{3}\right)$ added. The yellow product was collected by suction filtration. Yield: $0.137 \mathrm{~g}, 62 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pd}$) C 52.9 (53.3), $\mathrm{H}, 4.5$ (4.5), N 4.3 (4.4) $\%{ }^{31} \mathrm{P}-$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P})$ 101.7. IR ($\mathrm{KBr} \mathrm{disc}, \mathrm{cm}^{-1}$): 3051w, $1571 \mathrm{w}, 1479 \mathrm{~s}, 1435 \mathrm{vs}$, $1308 \mathrm{~s}, 1261 \mathrm{~s}, 1180 \mathrm{~s}, 1098 \mathrm{vs}, 1050 \mathrm{~s}, 959 \mathrm{vs}, 924 \mathrm{~s}, 745 \mathrm{~s}, 691 \mathrm{vs}, 561 \mathrm{~s}, 515 \mathrm{vs}, 501 \mathrm{vs}$, $357 \mathrm{~s}, 275 \mathrm{~s}, 231 \mathrm{~s}$ and 213 vs . FAB mass spectrum: $m / z 632,[M]^{+}$.
cis-[$\left.\mathrm{Mo}(\mathrm{CO})_{\mathbf{4}}\left\{\mathrm{Ph}_{\mathbf{2}} \mathbf{P N}\left(\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}}\right)_{\mathbf{2}} \mathbf{N P P h}_{\mathbf{2}}\right\}\right]$ 43. To a partially dissolved solution of $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{pip})_{2}\right](0.500 \mathrm{~g}, 130 \mathrm{mmol})$ in dichloromethane $\left(20.0 \mathrm{~cm}^{3}\right)$ was added solid $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}(0.590 \mathrm{~g}, 1.30 \mathrm{mmol})$. The solution was heated to reflux for $c a$ 15 min and allowed to cool to room temperature. The solution was concentrated under reduced pressure to $c a 2.0 \mathrm{~cm}^{3}$ and methanol $\left(15.0 \mathrm{~cm}^{3}\right)$ added. The yellow product
was collected by suction filtration. Yield: $0635 \mathrm{~g}, 72 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Mo}$) C 57.6 (58.0) H 3.9 (4.3), N 3.8 (4.2) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 97.2$. IR (KBr disc, cm^{-1}): 3055w, 2962s, 2021vs, 1917vs, 1901vs, $1888 \mathrm{vs}, 1481 \mathrm{~s}, 1435 \mathrm{~s}, 1365 \mathrm{~s}, 1260 \mathrm{vs}, 1089 \mathrm{vs}, 1021 \mathrm{vs}, 959 \mathrm{vs}, 801 \mathrm{vs}, 745 \mathrm{~s}, 695 \mathrm{vs}$, $586 \mathrm{~s}, 554 \mathrm{~s}, 523 \mathrm{~s}, 385 \mathrm{~s}, 247 \mathrm{~s}, 230 \mathrm{~s}$ and $224 \mathrm{~s} . \mathrm{FAB}$ mass spectrum: $m / z 634$, [$M-$ CO^{+}.
[$\left.\mathbf{P h}_{2} \mathbf{P}(\mathbf{A u C l}) \mathbf{N}\left(\mathbf{C}_{2} \mathbf{H}_{4}\right)_{2} \mathbf{N P}(\mathbf{A u C l}) \mathbf{P h}_{2}\right]$ 44. To a solution of $[\mathrm{AuCl}($ tht $)](0071 \mathrm{~g}, 0.22$ $\mathrm{mmol})$ in dichloromethane $\left(5.0 \mathrm{~cm}^{3}\right)$ was added solid $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}(0.050 \mathrm{~g}$, 0.11 mmol) and the colourless solution stirred for $c a .1 \mathrm{~h}$ The solution was concentrated under reduced pressure to $c a .1 .0 \mathrm{~cm}^{3}$ and diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$ added. The white product was collected by suction filtration. Yield: $0.054 \mathrm{~g}, 53 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Au}_{2}$) C 36.0 (36.6), H 2.6 (3.1), N 24 (3.1) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P})$ 80.7. IR $\left(\mathrm{KBr}\right.$ disc, $\left.\mathrm{cm}^{-1}\right): 3242 \mathrm{w}, 3005 \mathrm{w}$, 1629 w, 1479s, 1434vs, 1368s, 1261s, 1105vs, 1044s, $996 \mathrm{w}, 966 \mathrm{~s}$, 754 s , $693 \mathrm{vs}, 578 \mathrm{~s}$, $536 \mathrm{~s}, 495 \mathrm{~s}, 333 \mathrm{~s}, 246 \mathrm{~s}, 230 \mathrm{~s}$ and 207 vs . FAB mass spectrum $\cdot \mathrm{m} / \mathrm{z} 883,[\mathrm{M}-\mathrm{Cl}]^{+}$
[$\left.\left(\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{O}_{2}\right) \mathbf{P}(\mathbf{A u C l}) \mathbf{N}\left(\mathrm{C}_{\mathbf{2}} \mathbf{H}_{4}\right)_{\mathbf{2}} \mathbf{N P}(\mathbf{A u C l})\left(\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}} \mathrm{O}_{\mathbf{2}}\right)\right]$ 45. To a solution of [$\mathrm{AuCl}(\mathrm{tht})$] $(0.184 \mathrm{~g}, \quad 0.58 \mathrm{mmol})$ in dichloromethane $\left(150 \mathrm{~cm}^{3}\right)$ was added solid $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)(0.104 \mathrm{~g}, 0.29 \mathrm{mmol})$ and the colourless solution stirred for $c a .1 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0$ cm^{3} and diethyl ether $\left(30.0 \mathrm{~cm}^{3}\right)$ added. The white product was collected by suction filtration. Yield. $0.205 \mathrm{~g}, 86 \%$ Microanalysis: Found (Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Au}_{2}$) C 23.2 (23.2), H 1.9 (1.9), N 3.3 (3.4) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 136.4$. $\mathrm{IR}\left(\mathrm{KBr} \mathrm{disc}, \mathrm{cm}^{-1}\right): 3054 \mathrm{w}, 2928 \mathrm{w}, 2906 \mathrm{w}, 1445 \mathrm{~m}, 1373 \mathrm{~m}$, $1261 \mathrm{~m}, 1230 \mathrm{~s}, 1138 \mathrm{~m}, 1116 \mathrm{~s}, 1094 \mathrm{~m}, 1045 \mathrm{w}, 966 \mathrm{~s}, 940 \mathrm{~m}, 867 \mathrm{~s}, 774 \mathrm{~m}, 765 \mathrm{~m}, 742 \mathrm{~s}$, $699 \mathrm{~m}, 636 \mathrm{~m}, 580 \mathrm{~m}, 545 \mathrm{w}, 410 \mathrm{w}, 372 \mathrm{w}, 333 \mathrm{~m}, 228 \mathrm{~m}$ and $233 \mathrm{~m} . \mathrm{FAB}$ mass spectrum: $m / z 827,[M]^{+}$.
[$\left.\left(\mathrm{C}_{2} \mathbf{H}_{\mathbf{4}} \mathrm{O}_{\mathbf{2}}\right) \mathbf{P}(\mathbf{A u C l}) \mathbf{N}\left(\mathrm{C}_{\mathbf{2}} \mathrm{H}_{4}\right)_{\mathbf{2}} \mathbf{N P}(\mathbf{A u C l})\left(\mathrm{C}_{2} \mathbf{H}_{4} \mathrm{O}_{2}\right)\right]$ 46. To a solution of [$\mathrm{AuCl}($ tht $)$] $(0.160 \mathrm{~g}, \quad 0.50 \mathrm{mmol})$ in dichloromethane $\left(15.0 \mathrm{~cm}^{3}\right)$ was added solid $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)(0068 \mathrm{~g}, 0.25 \mathrm{mmol})$ and the colourless solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0$
cm^{3} and diethyl ether $\left(30.0 \mathrm{~cm}^{3}\right)$ added. The white product was collected by suction filtration. Yield: $0.140 \mathrm{~g}, 76 \%$ Microanalysis: Found (Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Au}_{2}$) C 13.3 (13.1), H 2.2 (2.2), N 3.8 (3.8) $\% .{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P})$ 131.7. IR (KBr disc, cm^{-1}): 2961w, 2904w, 1470w, 1445m, 1374m, $1336 \mathrm{~m}, 1263 \mathrm{~m}, 1229 \mathrm{w}, 1143 \mathrm{~m}, 111 \mathrm{~s}, 1026 \mathrm{~s}, 967 \mathrm{~s}, 922 \mathrm{~s}, 822 \mathrm{~m}, 773 \mathrm{~s}, 734 \mathrm{~m}, 696 \mathrm{~s}$, $627 \mathrm{~m}, 584 \mathrm{~m}, 393 \mathrm{w}, 325 \mathrm{~m}$ and 206 m . FAB mass spectrum: $\mathrm{m} / \mathrm{z} 695,[M-\mathrm{Cl}]^{+}$.
$\left[\left\{\mathbf{R u C l}_{2}\left(\eta^{\mathbf{6}}-\boldsymbol{p}-\mathrm{MeC}_{6} \mathbf{H}_{4}{ }^{\mathbf{P}} \mathbf{P r}\right)\right\}_{2}\left\{\mathbf{P h}_{2} \mathbf{P N}\left(\mathbf{C}_{2} \mathbf{H}_{4}\right)_{\mathbf{2}} \mathbf{N P P h}_{\mathbf{2}}\right\}\right]$ 47. To a solution of $[\{\mathrm{RuCl}(\mu-$ $\left.\left.\mathrm{Cl})\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{4} \mathrm{Pr}\right)\right\}_{2}\right](0.250 \mathrm{~g}, 0.40 \mathrm{mmol})$ in thf $\left(20.0 \mathrm{~cm}^{3}\right)$ was added solid $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}(0.185 \mathrm{~g}, 0.40 \mathrm{mmol})$ and the brown solution stirred for ca 12 h . The solution was concentrated under reduced pressure to $c a 2.0 \mathrm{~cm}^{3}$ and diethyl ether ($100 \mathrm{~cm}^{3}$) added. The red/brown product was collected by suction filtration and washed with diethyl ether $\left(2 \times 10.0 \mathrm{~cm}^{3}\right)$. Yield: $0.299 \mathrm{~g}, 69 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{48} \mathrm{H}_{56} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Ru}_{2}$) C 53.1 (540), H 5.3 (5.3), N 22 (2.6) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}) $\cdot \delta(\mathrm{P}) 69.8$. IR (KBr disc, cm^{-1}): $3044 \mathrm{~m}, 2964 \mathrm{~m}, 2871 \mathrm{~m}, 1586 \mathrm{w}, 1483 \mathrm{~s}$, $1432 \mathrm{vs}, 1374 \mathrm{~m}, 1300 \mathrm{w}, 1261 \mathrm{~m}, 1190 \mathrm{~m}, 1119 \mathrm{~s}, 1085 \mathrm{vs}, 1060 \mathrm{~s}, 1030 \mathrm{~m}, 953 \mathrm{vs}, 895 \mathrm{~m}$, $799 \mathrm{w}, 750 \mathrm{~s}, 699 \mathrm{vs}, 682 \mathrm{~s}, 560 \mathrm{~m}, 527 \mathrm{~m}, 483 \mathrm{~m}, 444 \mathrm{~m}, 346 \mathrm{w}, 291 \mathrm{~m}, 212 \mathrm{~s}, 233 \mathrm{~s}, 227 \mathrm{~s}$ and 218s FAB mass spectrum: $m / z 1066,[M]^{+}$.
$\mathbf{P h}_{2} \mathbf{P N}\left(\mathbf{C}_{5} \mathbf{H}_{10}\right) \mathbf{N P P h}_{2}$ 48. A solution of chlorodiphenylphosphine $\left(6.87 \mathrm{~g}, 5.6 \mathrm{~cm}^{3}\right.$, 31.2 mmol) in thf ($50.0 \mathrm{~cm}^{3}$) was added dropwise over a period of 1 h to a stirred solution of homopiperazine $(1.56 \mathrm{~g}, 156 \mathrm{mmol})$ and triethylamine $\left(3.13 \mathrm{~g}, 4.3 \mathrm{~cm}^{3}\right.$, $31.3 \mathrm{mmol})$ in thf $\left(75 \mathrm{~cm}^{3}\right)$ at room temperature. Stirring was continued for 2 h , during which time triethylammonium hydrochloride separated from the colourless solution This precipitate was removed by suction filtration and the filtrate evaporated to dryness in vacuo to give a white solid product Yield: $4.92 \mathrm{~g}, 68 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{P}_{2}$) C 73.4 (74.4), H 6.1 (64), N 5.2 (5.9) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta(\mathrm{P}) 65.7$. IR (KBr disc, cm^{-1}): $3049 \mathrm{~m}, 2920 \mathrm{~s}, 2844 \mathrm{~m}, 1584 \mathrm{w}, 1477 \mathrm{~m}$, $1431 \mathrm{~m}, 1380 \mathrm{w}, 1362 \mathrm{~m}, 1304 \mathrm{w}, 1287 \mathrm{w}, 1239 \mathrm{w}, 1167 \mathrm{~m}, 1107 \mathrm{~s}, 1091 \mathrm{~s}, 1067 \mathrm{~m}, 1049 \mathrm{~s}$, $1024 \mathrm{~m}, 972 \mathrm{~s}, 921 \mathrm{~s}, 803 \mathrm{w}, 742 \mathrm{~s}, 695 \mathrm{~s}, 643 \mathrm{~m}, 556 \mathrm{w}, 515 \mathrm{~m}, 490 \mathrm{~m}$ and $435 \mathrm{~m} . \mathrm{FAB}$ mass spectrum: $m / z 468,[M]^{+}$.
$\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ 49. A solution of 1,2-phenylenephosphorochloridite $(4.65 \mathrm{~g}, 16.7 \mathrm{mmol})$ in thf $\left(55.0 \mathrm{~cm}^{3}\right)$ was added dropwise over a period of 1 h to a stirred solution of homopiperazine ($0.84 \mathrm{~g}, 8.3 \mathrm{mmol}$) and triethylamine (1.69 $\left.\mathrm{g}, 2.3 \mathrm{~cm}^{3}, 16.7 \mathrm{mmol}\right)$ in thf ($850 \mathrm{~cm}^{3}$). Stirring was continued for a further 2 h , during which time triethylammonium hydrochloride separated from the colourless solution. This precipitate was removed by suction filtration and the filtrate evaporated to dryness in vacuo to give a white solid product. Yield: $2.58 \mathrm{~g}, 82 \%$. Microanalysis: Found (Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$) C 53.8 (54.3), H 4.3 (4.8), N 6.9 (7.4) $\% .{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 148.3$. $\mathrm{IR}\left(\mathrm{KBr}\right.$ disc, $\left.\mathrm{cm}^{-1}\right): 3061 \mathrm{w}, 2941 \mathrm{w}, 1477 \mathrm{~s}, 1459 \mathrm{~m}$, $1373 \mathrm{~m}, 1339 \mathrm{~m}, 1315 \mathrm{w}, 1284 \mathrm{w}, 1233 \mathrm{~s}, 1163 \mathrm{~m}, 1116 \mathrm{~m}, 1095 \mathrm{~m}, 1052 \mathrm{w}, 1007 \mathrm{w}$, $993 \mathrm{~m}, ~ 983 \mathrm{~m}, 916 \mathrm{~m}, 818 \mathrm{~s}, 755 \mathrm{~m}, 736 \mathrm{~m}, 684 \mathrm{~m}, 666 \mathrm{~m}, 613 \mathrm{~m}, 533 \mathrm{w}, 510 \mathrm{~m}, 409 \mathrm{w}$ and 388w. FAB mass spectrum: $m / z 376,[M]^{+}$.
$\left(\mathbf{C}_{2} \mathbf{H}_{4} \mathrm{O}_{2}\right) \mathbf{P N}\left(\mathbf{C}_{5} \mathrm{H}_{\mathbf{1 0}}\right) \mathbf{N P}\left(\mathrm{C}_{2} \mathbf{H}_{4} \mathrm{O}_{2}\right) \mathbf{5 0}$. A solution of 2-chloro-1,3,2-dioxaphospholane ($5.69 \mathrm{~g}, 4.0 \mathrm{~cm}^{3}, 45.0 \mathrm{mmol}$) in thf ($55.0 \mathrm{~cm}^{3}$) was added dropwise over a period of 1 h to a stirred solution of homopiperazine ($2.25 \mathrm{~g}, 22.5 \mathrm{mmol}$) and triethylamine (4.54 g, $\left.6.2 \mathrm{~cm}^{3}, 45.0 \mathrm{mmol}\right)$ in thf $\left(1000 \mathrm{~cm}^{3}\right)$. Stirring was continued for a further 2 h , during which time triethylammonium hydrochloride separated from the colourless solution. This precipitate was removed by suction filtration and the filtrate evaporated to dryness in vacuo to give a white solid product. Yeld $4.91 \mathrm{~g}, 78 \%$. Microanalysis: Found (Calcd. for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$) C 38.8 (38.6), H 6.8 (6.4), N 10.4 (10.0) \%. ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \cdot \delta(\mathrm{P}) 143.8$. IR (KBr disc, $\left.\mathrm{cm}^{-1}\right) \cdot 2959 \mathrm{w}, 2887 \mathrm{w}, 1450 \mathrm{~m}, 1372 \mathrm{w}$, $1317 \mathrm{w}, 1282 \mathrm{w}, 1199 \mathrm{~s}, 1048 \mathrm{~s}, 991 \mathrm{~m}, 931 \mathrm{~m}, 907 \mathrm{~m}, 747 \mathrm{~m}, 681 \mathrm{~m}, 595 \mathrm{w}, 551 \mathrm{~m}, 524 \mathrm{~m}$, 420w and 206m. FAB mass spectrum: $m / z 376,[M]^{+}$.
cis- $\left[\mathrm{PtCl}_{\mathbf{2}}\left\{\mathbf{P h}_{2} \mathbf{P N}\left(\mathbf{C}_{5} \mathbf{H}_{\mathbf{1 0}}\right) \mathbf{N P P h}_{2}\right\}\right]$ 51. To a solution of $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right](0.100 \mathrm{~g}, 0.26$ $\mathrm{mmol})$ in dichloromethane $\left(10.0 \mathrm{~cm}^{3}\right)$ was added solid $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2}(0.125 \mathrm{~g}$, 026 mmol) and the colourless solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and diethyl ether ($40.0 \mathrm{~cm}^{3}$) added. The white product was collected by suction filtration. Yield: $0.180 \mathrm{~g}, 92 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pt}$) C, 46.4 (47.5), H 3.9 (4.1), N 3.4 (3.8) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 641,{ }^{1} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right) 4092 \mathrm{~Hz}$. IR (KBr disc, cm^{-} ${ }^{1}$): $3056 \mathrm{w}, 3020 \mathrm{w}, 2941 \mathrm{w}, 2921 \mathrm{w}, 2864 \mathrm{w}, 1479 \mathrm{~m}, 1465 \mathrm{w}, 1455 \mathrm{w}, 1436 \mathrm{~s}, 1363 \mathrm{w}$,
$1274 \mathrm{~m}, 1179 \mathrm{~s}, 1098 \mathrm{~s}, 1037 \mathrm{~s}, 999 \mathrm{~m}, 949 \mathrm{w}, 936 \mathrm{~m}, 896 \mathrm{~m}, 850 \mathrm{w}, 745 \mathrm{~s}, 757 \mathrm{~m}, 712 \mathrm{~m}$, $691 \mathrm{~s}, 664 \mathrm{~m}, 619 \mathrm{w}, 584 \mathrm{~m}, 555 \mathrm{~m}, 534 \mathrm{~m}, 508 \mathrm{~s}, 475 \mathrm{~m}, 445 \mathrm{w}, 390 \mathrm{w}, 355 \mathrm{w}, 300 \mathrm{~m}$ and 277 m . FAB mass spectrum: $m / z 734,[M]^{+}$.
cis- $\left[\mathrm{PtCl}_{2}\left\{\left(\mathrm{C}_{6} \mathbf{H}_{\mathbf{4}} \mathrm{O}_{\mathbf{2}}\right) \mathbf{P N}\left(\mathrm{C}_{5} \mathrm{H}_{\mathbf{1 0}}\right) \mathbf{N P}\left(\mathrm{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}} \mathrm{O}_{2}\right)\right\}\right]$ 52. To a solution of $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$ $(0.179 \mathrm{~g}, 0.48 \mathrm{mmol})$ in dichloromethane $\left(15.0 \mathrm{~cm}^{3}\right)$ was added solid $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)(0.180 \mathrm{~g}, 0.48 \mathrm{mmol})$ and the colourless solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to ca 1.0 cm^{3} and diethyl ether $\left(30.0 \mathrm{~cm}^{3}\right)$ added. The white product was collected by suction filtration. Yield: $0.104 \mathrm{~g}, 84 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P} 2 \mathrm{Pt}$) C, 31.5 (31.8), H 29 (2.8), N 3.9 (4.4) \%. ${ }^{31} \mathrm{P}_{-}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 102.3$, ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{31}{ }^{31} \mathrm{P}\right) 5466 \mathrm{~Hz}$. IR (KBr disc, cm^{-1}): 2946w, 2885w, 2618w, 1478s, 1376w, $1330 \mathrm{~m}, 1231 \mathrm{~s}, 1156 \mathrm{~m}, 114 \mathrm{~m}, 1095 \mathrm{~m}, 1053 \mathrm{w}, 1009 \mathrm{~m}, 951 \mathrm{~m}, 859 \mathrm{~s}, 747 \mathrm{~m}, 686 \mathrm{w}$, $626 \mathrm{~m}, 545 \mathrm{~m}, 421 \mathrm{w}, 306 \mathrm{~m}$ and 279 m . FAB mass spectrum: $\mathrm{m} / \mathrm{z} 606,[\mathrm{M}-\mathrm{Cl}]^{+}$.
cis-[$\left.\mathrm{PtMe}_{2}\left\{\mathrm{Ph}_{\mathbf{2}} \mathbf{P N}\left(\mathbf{C}_{5} \mathbf{H}_{\mathbf{1 0}}\right) \mathbf{N P P h}_{\mathbf{2}}\right\}\right]$ 53. To a solution of $\left[\mathrm{PtMe}_{2}(\mathbf{c o d})\right](0.100 \mathrm{~g}, 0.30$ $\mathrm{mmol})$ in dichloromethane ($100 \mathrm{~cm}^{3}$) was added solid $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2}(0.140 \mathrm{~g}$, 0.30 mmol) and the colourless solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and diethyl ether ($30.0 \mathrm{~cm}^{3}$) added. The white product was collected by suction filtration. Yield: $0.130 \mathrm{~g}, 64 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pt}$) C, 53.1 (53 6), H 4.9 (5.2), N 3.8 (4.0) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 89.1,{ }^{1} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right) 2231 \mathrm{~Hz}$. IR ($\mathrm{KBr} \mathrm{disc}, \mathrm{cm}^{-}$ ${ }^{1}$): 3054w, 2932w, 2856w, 1478w, 1460w, 1435s, 1360w, 1336w, 1306w, 1272w, $1179 \mathrm{~m}, 1096 \mathrm{~s}, 1028 \mathrm{~s}, 999 \mathrm{w}, 925 \mathrm{w}, 880 \mathrm{~m}, 841 \mathrm{w}, 753 \mathrm{~m}, 696 \mathrm{~s}, 647 \mathrm{~m}, 619 \mathrm{w}, 578 \mathrm{~m}$, $550 \mathrm{w}, 528 \mathrm{~m}, 504 \mathrm{~s}, 468 \mathrm{~m}, 441 \mathrm{w}, 387 \mathrm{w}$ and 351w. FAB mass spectrum: $m / z 678,[M-$ $\mathrm{CH}_{3}{ }^{+}$.
cis-[PtMe $\left.\left\{\left(\mathbf{C}_{6} \mathbf{H}_{4} \mathrm{O}_{2}\right) \mathbf{P N}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{O}_{2}\right)\right\}\right]$ 54. To a solution of [$\mathrm{PtMe}_{2}(\mathrm{cod})$] $(0.100 \mathrm{~g}, 0.30 \mathrm{mmol})$ in dichloromethane $\left(10.0 \mathrm{~cm}^{3}\right)$ was added solid $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)(0.114 \mathrm{~g}, 0.30 \mathrm{mmol})$ and the colourless solution stirred for $c a 2 \mathrm{~h}$ The solution was concentrated under reduced pressure to $c a 1.0$ cm^{3} and diethyl ether ($35.0 \mathrm{~cm}^{3}$) added. The white product was collected by suction filtration. Yield: $0.120 \mathrm{~g}, 66 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}$) C ,
37.1 (37.9), H 3.9 (4.0), N 45 (4.7) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \cdot \delta(\mathrm{P}) 156.9,{ }^{1} J\left({ }^{195} \mathrm{Pt}-\right.$ $\left.{ }^{31} \mathrm{P}\right) 2937 \mathrm{~Hz}$. IR (KBr disc, cm^{-1}): 2942w, 2883w, 1655w, 1480s, 1375w, 1335m, $1234 \mathrm{~s}, 1162 \mathrm{~m}, 1113 \mathrm{~m}, 1096 \mathrm{~m}, 1054 \mathrm{~m}, 1008 \mathrm{~m}, 919 \mathrm{~m}, 826 \mathrm{~s}, 738 \mathrm{~s}, 675 \mathrm{~m}, 623 \mathrm{~m}$, $535 \mathrm{~m}, 421 \mathrm{w}$ and 233 w FAB mass spectrum $\mathrm{m} / \mathrm{z} 586,\left[M-\mathrm{CH}_{3}\right]^{+}$.
cis-[$\mathbf{P d C l}_{\mathbf{2}}\left\{\mathbf{P h}_{2} \mathbf{P N}\left(\mathbf{C}_{5} \mathbf{H}_{\mathbf{1 0}}\right) \mathbf{N P P h _ { 2 } \}]} \mathbf{5 5}\right.$. To a solution of $\left[\mathrm{PdCl}_{2}(\mathbf{c o d})\right](0.152 \mathrm{~g}, 0.53$ $\mathrm{mmol})$ in dichloromethane ($20.0 \mathrm{~cm}^{3}$) was added solid $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2}(0.250 \mathrm{~g}$, 0.53 mmol) and the yellow solution stirred for $c a 2 \mathrm{~h}$ The solution was concentrated under reduced pressure to $c a .1 .0 \mathrm{~cm}^{3}$ and diethyl ether ($40.0 \mathrm{~cm}^{3}$) added. The yellow product was collected by suction filtration. Yield: $0.300 \mathrm{~g}, 87 \%$ Microanalysis: Found (Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pd}$) C 533 (54.0), $\mathrm{H}, 4.8$ (4.7), N 42 (4.4) \%. ${ }^{31} \mathrm{P}$ $\left\{{ }^{\mathrm{I}} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 926$ IR (KBr disc, cm^{-1}): 3051w, 2921w, 1479w, 1453w, 1437s, 1375w, 1347w, 1282w, 1176m, 1098s, 1036s, 1000w, 953m, 896m, 855w, $820 \mathrm{w}, 755 \mathrm{~s}, 711 \mathrm{~m}, 697 \mathrm{~s}, 660 \mathrm{~m}, 619 \mathrm{w}, 580 \mathrm{~m}, 548 \mathrm{~m}, 528 \mathrm{w}, 505 \mathrm{~s}, 484 \mathrm{~m}, 312 \mathrm{~m}$ and 289 m. FAB mass spectrum: $m / z 646,[M]^{+}$.
cis- $\left[\mathrm{PdCl}_{2}\left\{\left(\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{O}_{2}\right)\right\}\right]$ 56. To a solution of $\left[\mathrm{PdCl}_{2}(\mathrm{cod})\right]$ $(0.285 \mathrm{~g}, 1.00 \mathrm{mmol})$ in dichloromethane $\left(250 \mathrm{~cm}^{3}\right)$ was added solid $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)(0.378 \mathrm{~g}, 1.00 \mathrm{mmol})$ and the yellow solution stirred for $c a 2 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and diethyl ether ($30.0 \mathrm{~cm}^{3}$) added. The yellow product was collected by suction filtration. Yield: $0.520 \mathrm{~g}, 94$ \% Microanalysis: Found (Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pd}$) $\mathrm{C}, 35.9$ (36 8), H 3.6 (3.3), N $4.6(5.0) \%{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{P})$ 125.6. IR (KBr disc, cm^{-1}): $3067 \mathrm{w}, 2954 \mathrm{w}, 1618 \mathrm{~m}, 1595 \mathrm{~m}, 1477 \mathrm{~s}, 1459 \mathrm{~s}, 1376 \mathrm{~m}, 1330 \mathrm{~m}, 1261 \mathrm{~m}, 1230 \mathrm{~s}$, $1155 \mathrm{~s}, 1095 \mathrm{~s}, 1052 \mathrm{~m}, 1008 \mathrm{~m}, 916 \mathrm{~m}, 903 \mathrm{~m}, 847 \mathrm{~s}, 748 \mathrm{~s}, 683 \mathrm{~m}, 624 \mathrm{~m}, 540 \mathrm{~m}, 421 \mathrm{~m}$, 336w, 306w, 276w and 232w. FAB mass spectrum: $m / z 553,[M]^{+}$.
[$\left.\mathbf{P h}_{2} \mathbf{P}(\mathbf{A u C l}) \mathbf{N}\left(\mathbf{C}_{5} \mathbf{H}_{\mathbf{1 0}}\right) \mathbf{N P (A u C l}\right) \mathbf{P h}_{\mathbf{2}}$] 57. To a solution of $[\mathrm{AuCl}($ tht $)](0.192 \mathrm{~g}, 0.60$ $\mathrm{mmol})$ in dichloromethane $\left(15.0 \mathrm{~cm}^{3}\right)$ was added solid $\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NPPh}_{2}(0.140 \mathrm{~g}$, 0.30 mmol) and the colourless solution stirred for $c a 1 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0 \mathrm{~cm}^{3}$ and diethyl ether ($35.0 \mathrm{~cm}^{3}$) added. The white product was collected by suction filtration. Yield: $0214 \mathrm{~g}, 76 \%$. Microanalysis Found (Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Au}_{2}$) C 35.6 (37.4), H 3.2 (3.2), N 2.7
(3.0) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 787$. IR ($\mathrm{KBr} \mathrm{disc}, \mathrm{cm}^{-1}$): 3052w, 2019w, $1479 \mathrm{~m}, 1433 \mathrm{~s}, 1371 \mathrm{~m}, 1346 \mathrm{w}, 1319 \mathrm{w}, 1285 \mathrm{w}, 1267 \mathrm{~m}, 1240 \mathrm{w}, 1168 \mathrm{w}, 1158 \mathrm{~s}, 1106 \mathrm{~s}$, $1060 \mathrm{~m}, 1023 \mathrm{w}, 995 \mathrm{~s}, 903 \mathrm{~s}, 753 \mathrm{~s}, 737 \mathrm{~m}, 693 \mathrm{~s}, 666 \mathrm{~m}, 579 \mathrm{w}, 562 \mathrm{~s}, 549 \mathrm{~m}, 527 \mathrm{~m}$, $483 \mathrm{~m}, 364 \mathrm{w}$ and 327 m . FAB mass spectrum: $m / z 897,[M-\mathrm{Cl}]^{+}$.
[$\left.\left(\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{O}_{2}\right) \mathbf{P}(\mathbf{A u C l}) \mathbf{N}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathbf{N P}(\mathbf{A u C l})\left(\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{O}_{2}\right)\right]$ 58. To a solution of [$\mathrm{AuCl}(\mathrm{tht})$] $(0.140 \mathrm{~g}, 0.44 \mathrm{mmol})$ in dichloromethane $\left(15.0 \mathrm{~cm}^{3}\right)$ was added solid $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right) \mathrm{PN}\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \mathrm{NP}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)(0.083 \mathrm{~g}, 0.22 \mathrm{mmol})$ and the colourless solution stirred for $c a 1 \mathrm{~h}$. The solution was concentrated under reduced pressure to $c a 1.0$ cm^{3} and diethyl ether ($30.0 \mathrm{~cm}^{3}$) added. The white product was collected by suction filtration. Yield: $0.150 \mathrm{~g}, 81 \%$. Microanalysis: Found (Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Au}_{2}$) C 23.8 (24.3), H 2.1 (2.1), N 3.2 (3.3) \%. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{P}) 1399$. IR (KBr disc, cm^{-1}): 2952w, $1655 \mathrm{w}, 1475 \mathrm{~s}, 1441 \mathrm{~s}, 1375 \mathrm{~m}$, $1329 \mathrm{~m}, 1284 \mathrm{w}, 1229 \mathrm{~s}, 1151 \mathrm{~m}, 1114 \mathrm{~m}, 1094 \mathrm{~m}, 1051 \mathrm{~m}, 1006 \mathrm{~m}, 908 \mathrm{~m}, 867 \mathrm{~s}, 776 \mathrm{~m}$, $764 \mathrm{~m}, 744 \mathrm{~m}, 686 \mathrm{~m}, 637 \mathrm{~m}, 556 \mathrm{w}, 423 \mathrm{w}, 393 \mathrm{w}, 332 \mathrm{~m}$ and $224 \mathrm{w} . \mathrm{FAB}$ mass spectrum: $m / z 805,[M-\mathrm{Cl}]^{+}$.

Chapter 5

Catalytic Studies of Diphosphinoamine Ligands

5.1 Introduction

Using the Catalyst Evaluation services at BP Chemicals Ltd and St. Andrews University, tests were performed on a number of the prepared ligands to ascertain their ability to promote the palladium catalysed formation of polyketone from CO and ethene. A total of six ligands were screened. The diphenylphosphine derivatives of N, N^{\prime}-dimethylurea, $\left[\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}\right], N, N '$-dimethylthiourea, $\left[\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CS}\right]$, N, N^{\prime}-diethylthiourea, $\left[\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CS}\right]$, and hydrazine, $\left[\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}\right]$, were all tested at the CATS service at St. Andrews University and two palladium complexes containing diphosphine derivatives of N, N^{\prime}-dimethylhydrazine, $\left[\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OCH}_{3}\right)\left\{\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{o}-\mathrm{OCH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{o}-\mathrm{OCH}_{3}\right)_{2}\right\}\right]^{+} \mathrm{PF}_{6}{ }^{-}$and $\left[\mathrm{Pd}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OCH}_{3}\right)\left\{\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{o}-\mathrm{CH}_{3}\right)_{2} \mathrm{PN}(\mathrm{Me}) \mathrm{N}(\mathrm{Me}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{o}-\mathrm{CH}_{3}\right)_{2}\right\}\right]^{+} \mathrm{PF}_{6}{ }^{-}$, were tested at BP Chemicals Ltd, Sunbury-on-Thames.

5.2 Results and discussion

Test results involving all six ligands were poor and showed little or no production of polymeric material. The results of the screenings conducted at CATS are summarised in Table 5.1. The test with dppe was carried out in order to check the protocol of the experiments and, other than in this control, polymeric material was not formed in any of the other experiments, only low levels of oligomeric materials, with $\mathrm{n}=0-2$. Metallic looking residues were apparent in all cases in addition to varying amounts of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{OMe}$ and other unidentified ligand decomposition products within the reaction medium. The ligands would appear to be unstable to the methanol reaction medıum and rapidly undergo some form of methanolysis of the $\mathrm{P}-\mathrm{N}$ bond. Reducing the temperature of the reaction from $85^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (experiment 8) did not influence the ligand stability. One small noteworthy observation is that in experiments involving the ligand with a piperazine backbone (5, 6 and 8) the diester oligomers are

Expt	Ligand	Observations	Relative amounts by GCMS (Arbitrary Units)							
			$\mathrm{n}=0$		$\mathrm{n}=1$			$\mathrm{n}=2$		
			Methylpropionate	D-1ethylketone	Keto-ester	Diester	Diketone	Keto-ester	Diester	Diketone
7	dppe	Reaction medium a solid mass of polymer, weight 68 g	08	5.7	8.4	2.4	2.3	1.7	0.6	0.4
1	$\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}$	Darkly coloured solid residue Traces of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{OMe}$ together with other ligand decomposition fragments	3.8	0.6	63	0.5	0.1	0.6	0.3	-
4	$\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CO}$	Darkly coloured solid residue Traces of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{OMe}$ together with other ligand decomposition fragments	1.2	0.2	1.2	2.3	-	-	0.6	-
3	$\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Me})\right\}_{2} \mathrm{CS}$	Darkly coloured solhd residue Traces of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{OMe}$	0.2	0.3	-	-	-	-	-	-
2	$\left\{\mathrm{Ph}_{2} \mathrm{PN}(\mathrm{Et})\right\}_{2} \mathrm{CS}$	Darkly coloured solid residue Traces of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{OMe}$ and larger amounts of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{OMe}$ or $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{SMe}$	2.7	-	2.1	0.5	-	-	-	-
5	$\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}$	Darkly coloured soldd residue Large amounts of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{OMe}$	0.1	-	0.1	22	-	-	0.6	-
6	$\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}$	Darkly coloured solid residue Large amounts of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{OMe}$	0.2	-	0.3	5.5	-	-	1.1	-
8	$\mathrm{Ph}_{2} \mathrm{PN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{NPPh}_{2}$	Darkly coloured solid residue Large amounts of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{OMe}$	-	-	0.2	2.8	-	0.5	1.7	-

Table 5.1 Test results from the Catalyst Evaluation Service at St. Andrews University.
formed in preference to the normally observed keto-esters, with a diester:keto-ester ratio of $20: 1$.

Unfortunately, the tests conducted at BP Chemicals Ltd on the diphosphine derivatives of N, N '-dimethylhydrazine farled to give sufficient amounts of polymeric material to conduct any detailed analysis.

5.1 Conclusions.

The test results show that the particular ligands used do not promote the palladium-catalysed formation of polyketone from CO and ethylene under the conditions employed. It would be of interest to carry out further experiments in aprotic solvents to determine whether the ligand breakdown observed might be avoided. Also further tests with ligands containing different diphosphine groups would give a greater indication as to whether the relevant ligand backbones (i.e. urea, thiourea, hydrazine and piperazine) or the phosphine substituents exert a greater influence on the ability of the ligands to promote catalytic activity.

Experimental

St Andrews University. In all cases, with the exception of experiments 6 and 8, a $250 \mathrm{~cm}^{3}$ batch autoclave fitted, with a glass liner and magnetic stirrer bar for mixing, was used. The catalysts were prepared in-situ from $\mathrm{Pd}(\mathrm{OAc})_{2}\left(5.0 \times 10^{-5}\right.$ $\mathrm{mol})$, (P-P) $\left(50 \times 10^{-5} \mathrm{~mol}\right)$ and p-toluenesulfonic acid $\left(11 \times 10^{-5} \mathrm{~mol}\right)$ in $10 \mathrm{~cm}^{3}$ of methanol as solvent (catalyst concentration $5.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$). The batch autoclave experiments were charged with an initial 45 bar of CO/ethene (1:1) and the reactions carried out at $85^{\circ} \mathrm{C}$ for 17 h .

In experiment 6 the catalyst concentration was reduced to $2.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ and the reaction time to 5 h .

In experiment 8 the catalyst concentration was reduced to $20 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ (prepared in-situ from $\left.\left[\mathrm{Pd}(\mathrm{MeCN})_{2}(p \text {-tolSO})_{3}\right)_{2}\right]\left(1.0 \times 10^{-4} \mathrm{~mol}\right)$ and (P-P) $\left(12 \times 10^{-4}\right)$ in $50 \mathrm{~cm}^{3}$ methanol). The reaction temperature and time were also reduced to $65^{\circ} \mathrm{C}$ and 5 h , respectively.

BP Chemicals Ltd CO/ethene/propene termonomers were prepared as follows: dichloromethane ($80 \mathrm{~cm}^{3}$) was charged into a dry $300 \mathrm{~cm}^{3}$ autoclave under nitrogen. This was cooled to $-78^{\circ} \mathrm{C}$ and then propene (12.0 g) was condensed in. The stirred autoclave was then heated to a temperature of $70^{\circ} \mathrm{C}$ and pressurised to 45 bar using a 1:1 mixture CO and ethene. A solution of borane in $10 \mathrm{~cm}^{3}$ dichloromethane was introduced, followed by more dichloromethane ($10 \mathrm{~cm}^{3}$). The procatalyst was then introduced as a solution in $10 \mathrm{~cm}^{3}$ dichloromethane, followed by a further $10 \mathrm{~cm}^{3}$ dichloromethane, thus bringing the total volume of this solvent in the autoclave to 120 cm^{3}. The pressure was adjusted to 50 bar by addition of 1:1 CO/ethene and maintained at this pressure throughout the polymerisation by addition of the aforementioned gas mixture on demand from a ballast vessel of known volume After 3 h the pressure was released and the polymerisation mixture cooled to room temperature. Any resultant white polymer was isolated by filtration, washed with methanol and dried under reduced pressure.

Appendix

Single Crystal X-ray Crystallography Data.

Details of data collections and refinements for;

```
                    cls-[PtCl }2{{\mp@subsup{\textrm{Ph}}{2}{}\textrm{PN}(\textrm{Me})\mp@subsup{}}{2}{}\textrm{CO}}
    cis-[PtCl }2{{\mp@subsup{\textrm{Ph}}{2}{}\textrm{PN}(\textrm{Et}\mp@subsup{}}{2}{2}\textrm{CO}}
cls-[PdCl 2{{Ph
cis-[PdCl }{{{\mp@subsup{\textrm{Ph}}{2}{}\textrm{PN}(\textrm{Et})\mp@subsup{}}{2}{}\textrm{CO}}
[Pd{OPPh
[Pd{OPPh}
cls-[Mo(CO)4}4{\mp@subsup{\textrm{Ph}}{2}{}\textrm{PN}(\textrm{Me})\textrm{C}(\textrm{O})\textrm{N}(\textrm{Me})\mp@subsup{\textrm{PPh}}{2}{}}
```



```
[PtCl 2 {(Ph
    cls-[PdCl }2{(\textrm{PhO}\mp@subsup{)}{2}{}\textrm{PN}(\textrm{Et})\textrm{N}(\textrm{Et})\textrm{P}(\textrm{OPh}\mp@subsup{)}{2}{}}
```



```
cis-{\mp@subsup{PdCl }{2}{2}{\mp@subsup{\textrm{Ph}}{2}{}\textrm{PN}(\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{H}}{4}{}\mp@subsup{)}{2}{}\mp@subsup{\textrm{NPPh}}{2}{}}]
```

All crystallographic work on the above was carried out at Loughborough University.

Compound	3	4	9
Empirical Formula	$\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{Pt}$	$\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{Pt}$	$\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OP}{ }_{2} \mathrm{Pd}$
Formula Weight	722.4	7505	633.7
Colour/size (mm)	Clear / $0.16 \times 0.16 \times 0.28$	Clear / $0.08 \times 01 \times 0.2$	Yellow / $0.05 \times 0.05 \times 0.1$
Crystal System	Orthorhombic	Triclinic	Monoclinic
Space Group	$\mathrm{P} 2_{1} \mathrm{cn}$	P1	$\mathrm{P} 21 / \mathrm{c}$
a (\AA)	10.0447 (5)	9.8640 (4)	9.90760 (10)
b (\AA)	144768 (7)	10.8209 (4)	14.6999 (2)
c (\AA)	18.5427 (9)	15.1644 (6)	190506 (2)
$\alpha\left({ }^{\circ}\right)$	90	78.4300 (10)	90
$\beta 0^{\circ}$	90	80.0560 (10)	101.70
$\gamma\left({ }^{\circ}\right)$	90	66.6640 (10)	90
Volume ($\AA^{\mathbf{3}}$)	2696.4 (2)	1448.16 (10)	2716.94 (5)
Z	4	2	4
Density (calc., $\mathbf{M g} / \mathrm{cm}^{3}$)	1.780	1.721	1.549
$\mu\left(\mathrm{mm}^{-1}\right)$	5.544	5.165	1.021
F (000)	1408	736	1280
Ind. Refl.	3199	6504	3916
Final R1/wR2	0.0209 / 0.0389	$00257 / 0.0590$	$0.0263 / 00576$
Goodness of fit on $\mathrm{F}^{\mathbf{2}}$	0.828	0.978	0.964
Largest Diff. Peak/Hole ($\mathrm{e}^{\AA^{-3} \text {) }}$	0 525, -0.600	1.971, -1.570	0.380, -0.492

Compound	10	11	12. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
Empirical Formula	$\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{Pd}$	$\mathrm{C}_{56} \mathrm{H}_{56} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Pd}$	$\mathrm{C}_{59} \mathrm{H}_{62} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Pd}$
Formula Weight	947.3	1327.5	1298.7
Colour/size (mm)	Yellow/ $0.06 \times 02 \times 0.2$	Yellow / 0.06 $\times 0.1 \times 0.2$	Yellow / $0.1 \times 0.15 \times 0.15$
Crystal System	Monoclinic	Triclinic	Monoclinic
Space Group	P2 ${ }_{1} / \mathrm{c}$	P1	$\mathrm{P} 21 / \mathrm{n}$
a (\AA)	14.2866 (3)	11.6946 (3)	104350 (2)
b (\AA)	276453 (5)	15.4866 (6)	18.7436 (3)
c (\AA)	9.7662 (2)	18.5407 (3)	15.69190 (10)
α (${ }^{\circ}$)	90	76.1840 (10)	90
$\beta\left({ }^{\circ}\right.$)	92.6320 (10)	71.8340 (10)	94.3620 (10)
$\gamma\left({ }^{\circ}\right)$	90	72.8060 (10)	90
Volume ($\mathbf{A}^{\mathbf{3}}$)	3853.16 (13)	3007.91 (12)	3060.28 (8)
Z	4	2	2
Density (calc., $\mathbf{M g} / \mathrm{cm}^{3}$)	1.633	1.486	1.409
$\mu\left(\mathrm{mm}^{-1}\right)$	1.326	0.930	0.826
F (000)	1904	1364	1324
Ind. Refl.	9018	8562	4475
Final R1/wR2	0.0470 / 0.1041	$0.0430 / 0.1130$	0.1033 / 0.2379
Goodness of fit on $\mathrm{F}^{\mathbf{2}}$	0.969	1022	0.891
Largest Diff. Peak/Hole ($\mathrm{e}^{\AA^{-3} \text {) }}$	0.893, -1.100	2.305, -0.463	1.707, -3.409

Compound	13	15. CHCl_{3}	17.dmso. CHCl_{3}
Empirical Formula	$\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{MoN}_{2} \mathrm{O}_{5} \mathrm{P}_{2}$	$\mathrm{C}_{50} \mathrm{H}_{51} \mathrm{Au}_{2} \mathrm{Cl}_{5} \mathrm{~N}_{2} \mathrm{OP}_{2}$	$\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{Cl}_{5} \mathrm{~N}_{2} \mathrm{OPPtS}_{2}$
Formula Weight	664.42	1068.7	750.8
Colour/size (mm)	Clear / $0.04 \times 0.15 \times 0.2$	Clear / $0.1 \times 0.1 \times 03$	Clear / $0.16 \times 0.14 \times 0.06$
Crystal System	Monoclinic	Monoclinic	Triclinic
Space Group	P2/c	P2 ${ }_{1} / \mathrm{c}$	P1
a (\AA)	12.05470 (10)	14.5596 (5)	11.4044 (5)
b (\AA)	17.0186 (2)	15.4267 (5)	11.5628 (5)
c (\AA)	14.662	16.1541 (5)	11.9275 (5)
α (')	90	90	69.23
$\beta\left({ }^{\circ}\right.$)	944850 (10)	98.36	71.9290 (10)
$\gamma\left({ }^{\circ}\right.$)	90	90	74.8710 (10)
Volume ($\AA^{\mathbf{3}}$)	2998.72 (4)	35898 (2)	1377.76 (10)
Z	4	4	2
Density (calc., $\mathrm{Mg} / \mathrm{cm}^{3}$)	1.472	1.977	1.810
$\mu\left(\mathrm{mm}^{-1}\right)$	0.586	8.652	5.800
F (000)	1352	2024	726
Ind. Refl.	4303	8391	3885
Final R1/wR2	$0.0251 / 0.0609$	0.0354 / 0.0752	$00503 / 0.1149$
Goodness of fit on $\mathrm{F}^{\mathbf{2}}$	0.950	0.849	0.622
Largest Diff. Peak/Hole (e \AA^{-3})	0.227, -0.264	1.245, -1.011	2.564, -4.492

Compound	26	31. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	42
Empirical Formula	$\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pd}$	$\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{Cl}_{5} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}$	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{Cl}_{5} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pd}$
Formula Weight	697.8	961.9	631.8
Colour/size (mm)	Yellow/ $0.15 \times 0.2 \times 0.2$	Clear / $0.08 \times 0.1 \times 0.12$	Clear / $0.04 \times 0.1 \times 0.1$
Crystal System	Monoclinic	Monoclinic	Monoclinic
Space Group	$\mathrm{P}_{1} / \mathrm{n}$	$\mathrm{C} 2 / \mathrm{c}$	$\mathrm{P}_{1} / \mathrm{n}$
a (\AA)	22.2887 (4)	24.3478 (7)	11.2228 (11)
b (\AA)	88062 (2)	14.2665 (3)	27.882 (3)
$\mathbf{c}(\AA)$	32.0433 (5)	14.7842 (4)	17.936 (2)
$\alpha\left({ }^{\circ}\right.$	90	90	90
$\beta{ }^{(0)}$	105.61	111.4580 (10)	96.646 (3)
$\gamma\left({ }^{\circ}\right)$	90	90	90
Volume ($\AA^{\mathbf{3}}$)	6057.3 (2)	47795 (2)	5574.9 (9)
Z	8	4	8
Density (calc., $\mathbf{M g} / \mathrm{cm}^{3}$)	1.530	1.373	1505
$\mu\left(\mathrm{mm}^{-1}\right)$	0.931	3.316	0.922
F (000)	2832	1964	2560
Ind. Refl.	8687	5551	8047
Final R1/wR2	0.0449 / 0.0728	0.0874 / 0.1953	0.0827/0.1570
Goodness of fit on $\mathrm{F}^{\mathbf{2}}$	1.009	0.964	0.880
Largest Diff. Peak/Hole ($\mathrm{e}^{\AA^{-3} \text {) }}$	0.338, -0.328	3.119, -4.798	1.112, -1.319

References.

1 L. H. Pignolet (Ed.), Homogeneous Catalysis with Metal Phosphine Complexes, Plenum Press, New York, 1983.
2 R. B. King, Transition Metal Organometallic Chemistry An Introduction, Academic Press, New York, 1969.
3 C. A. McAuliffe in Comprehensive Coordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon Press, Oxford, 1987, Volume 2, p. 989.
4 A. Pidcock in Transtion Metal Complexes of Phosphorus, Arsenic and Antimony Ligands, ed. C. A. McAuliffe, MacMillan, London, 1973, p. 3. C. A. Tolman, Chem Rev., 1977, 71, 313.

6 G. Booth, Adv. Inorg Chem Radiochem., 1964, 6, 1.
7 G. R. Dobson, I. W. Stolz and R. K. Sheline, Adv Inorg Chem Radoochem, 1965, 8, 1.
8 R. G. Hayter in Preparative Inorganic Reactions, ed. W. L. Jolley, Vol 2, Wilet-Interscience, New York, 1965, p. 228.
9 W. Levason and C. A. McAuliffe, Adv Inorg Chem Radiochem, 1972, 14, 173.

10 G. Wilkinson, F. G. A. Stone and E. W. Abel (Eds.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982.
11 C. A. McAuliffe and W. A. Levason, Phosphine, Arsine and Stibine Complexes of the Transition Elements, Elsevier, Amsterdam, 1979.
12 R. J. Puddephatt, Chem Soc Rev., 1983, 99.
13 I. Haiduc and I. Silaghi-Dumitrescu, Coord Chem Rev., 1986, 74, 127.
14 B. Chaudret, B. Delavaux and R. Polblanc, Coord Chem Rev., 1988, 88, 191.
15 R. B. King, Acc Chem Res., 1980, 13, 243.
16 R. Keat, L. M. Muir, K. W. Muir and D. S. Rycroft, J Chem Soc., Dalton Trans. 1981, 2192.
17 H. -J. Chen, J. F. Barendt, R. C. Haltiwanger, T. G. Hill and A. D. Norman, Phosphorus, Sulfur, Slicon and Relat Elem., 1986, 26, 155.
18 J. S. Field, R. J. Haines and C. N. Sampson, J. Chem Soc., Dalton Trans, 1987, 1933.

19 H. Nöth and L. Meinel, Z. Anorg Allg Chem., 1967, 349, 225.
20 T. T. Bopp, M. D. Havlicek and J. W Gılje, J Am. Chem Soc, 1971, 93, 3051.

21 M. D. Havlicek and J. W. Gilje, Inorg Chem., 1972, 11, 1624.
22 H. Noth and R. Ullman, Chem Ber, 1974, 107, 1019.
23 K. V. Katti, V. S. Reddy and P. R. Singh, Chem Soc Rev, 1995, 24, 97.
24 K. Utvary, E. Freundlinger and V. Gutmann, Monatsch Chem., 1966, 97, 348.
25 A Weisz and K. Utvary, Monatsch Chem, 1968, 99, 2498.
26 N. Weferling and R. Schmutzler, Am Chem. Soc, Symp Series, No 171, Phosphorus Chemistry (L. D. Quin and J. G. Verkade, Ed.), 1981, 425.
27 N. Weferling, R. Schmutzler and W. S. Sheldrick, Liebtgs Ann Chem., 1982, 167.

28 G. Bettermann, R. Schmutzler, S. Pohl and U. Thewalt, Polyhedron, 1987, 6, 1823.

29 R. Vogt and R. Schmutzler, Z Naturforsch., Tetl B, 1989, 44, 690.
30 W. Krueger, R. Schmutzler, H. M. Schiebel and V. Wray, Polyhedron, 1989, 8, 293.

31 R. Vogt, P. G. Jones, A. Kolbe and R. Schmutzler, Chem Ber., 1991, 124, 2705.

32 P. Bhattacharyya, A. M. Z. Slawin, M. B. Smith, D. J. Williams and J. D. Woollins, J. Chem Soc , Dalton Trans., 1996, 3647.
33 P. B. Hitchcock, S. Morton and J. F. Nixon, J Chem Soc, Dalton Trans, 1985, 1295.

34 M. Gruber, P. G. Jones and R. Schmutzler, Chem Ber., 1990, 123, 1313.
35 T. Q. Ly, A. M. Z. Slawin and J. D. Woollins, Polyhedron, 1999, 18, 1761.
36 D. J. Birdsall, J. Green, T. Q. Ly, J. Novosad, M. Necas, A. M. Z. Slawin, J. D. Woollins and Z. Zak, Eur J Inorg Chem., 1999, 1445.

37 M. Gruber and R. Schmutzler, Phosphorus, Sulfur, Sllicon and Relat Elem., 1993, 80, 181.

38 M. Gruber and R. Schmutzler, Phosphorus, Sulfur, Silicon and Relat Elem., 1993, 80, 195.

39 M. Gruber and R. Schmutzler, Phosphorus, Sulfur, Sllicon and Relat. Elem, 1993, 80, 205

40 H. Noth and R. Ullmann, Chem Ber, 1976, 109, 1942.

41 K. V. Kattı, P. R. Singh and C. L. Barnes, Inorg. Chem., 1992, 31, 4588.
42 K. V. Kattr, P. R. Singh, W. A. Volkert, A. R. Ketring and K. K. Katti, Appl Radiat. Isot., 1992, 43, 1151.

43 K. V. Katti, Y. W. Ge, P. R. Singh, S. V. Date and C. L Barnes, Organometallics, 1994, 13, 541.
44 K. V. Katti, P. R. Singh and C. L. Barnes, J. Chem. Soc , Dalton Trans , 1993, 2153.

45 P. R. Singh, H Jimenez, K. V. Katti, W. A. Volkert and C. L. Barnes, Inorg Chem., 1994, 33, 736.

46 M. W. Wang, E. W. Volkert, P. R. Singh, K. K. Katti, P. Lusiak, K. V. Katti and C. L Barnes, Inorg Chem., 1994, 33, 1184.

47 V. S. Reddy and K. V. Katti, Inorg Chem., 1994, 33, 2695.
48 V. S. Reddy, K. V. Katti and C. L. Barnes, Chem. Ber, 1994, 127, 1355.
49 V. S. Reddy, K. V. Katti and C. L. Barnes, Inorg Chem, 1995, 34, 5483.
50 V. S. Reddy, K. V. Katti and C. L. Barnes, Chem Ber., 1994, 127, 979.
51 V. S. Reddy, K. V. Katti and C. L. Barnes,'Inorg Chem, 1995, 34, 1273.
52 C. J. Thomas and M. N. S. Rao, Z Anorg Allg. Chem., 1993, 619, 433.
53 С. А., 1974, 80, 134777.
54 M. J. Baker, M. F. Giles, A. G. Orpen, M. J. Taylor and R. J. Watt, J Chem Soc , Chem. Commun., 1995, 197.
55 A. Sen, Acc Chem Res., 1993, 26, 303.
56 E. Drent, J. A. M. van Broekhaven and M. J. Doyle, J. Organomet Chem, 1991, 417, 235.

57 A. Sen, Adv Polym. Sci., 1986, 73174, 125.
58 J Gillet, J Polymer Photophysics and Photochemistry, 1985, 261.
59 A. Sen, A Chemtech, 1986, 48.
60 Numerous patents by Shell. Representative examples: U S. Patent 4904744 , 1990; Eur. Pat. Appl. 400 719, 1990; Eur. Pat. Appl. 373 725, 1990.

61 W. Reppe and A Magin, U. S. Pat. 2577 208, 1951.
62 W. Reppe and A. Magin, Chem. Abstr , 1952, 46, 6143.
63 T. M. Shyrne and H. V. Holler, U. S. Pat. 3984 388, 1976.
64 T. M. Shyrne and H. V. Holler, Chem. Abstr , 1976, 85, 178219.
65 A. Gough, British Pat. 1081 304, 1967.
66 A. Gough, Chem Abstr., 1967, 67, 100569.

67 A. Sen and Ta-Wang Lai, J Am Chem Soc , 1982, 104, 3520.
68 A. Sen and Ta-Wang Lai, Organometallics, 1984, 3, 866.
69 E. Drent, Eur. Pat. Appl. 121 965, 1984.
70 E Drent, Eur. Pat Appl. 181 014, 1986.
71 J. A. M. van Broekhaven, E. Drent and E. Kleı, Eur. Pat. Appl. 213 671, 1987.
72 J. A. M. van Broekhaven and E. Drent, Eur. Pat. Appl. 235 865, 1987.
73 E. Drent and P. H. M. Budzelaar, Chem Rev., 1996, 96, 663.
74 P. W. N. M. van Leeuwen, C. F Roobeek and H. J. Van der Heijden, J. Am Chem Soc., 1994, 116, 12117.
75 Z. Jiang, G. M. Dahlen, K. Houseknecht and A. Sen, Macromolecules, 1992, 25, 2999.

76 B. A. Markies, D. Krius, M. P. H. Ruetveld, K. A. N. Verterk, J. Boersma, H. Kooijman, M. Lakın, A. L. Spek and G. Van Koten, J Am Chem. Soc., 1995, 349, 399.
77 H. Noth, Z Naturforsch, 1982, 37b, 1491.
78 D. Matt, F. Ingold, F. Balegroune and D. Grandjean, J Organomet Chem., 1990, 349, 399.

79 N. W. Alcock, P. Bergamini, T. M. Gomes-Carniero, R. D. Jackson, J. Nicholls, A. G. Orpen, P. G. Pringle, S. Sostero and O. Traverso, J Chem Soc , Chem Commun., 1990, 980.
80 T. Q. Ly, A. M. Z Slawin and J. D. Woollins, J Chem Soc, Dalton Trans., 1997, 1611.
81 S M. Aucott, Ph.D. Thesis, Loughborough Unıversity, 1999.
82 N. Burford, S. Mason, R. E. Spence, J. M. Whelan, J F. Richardson and R. Rogers, Organometallics, 1992, 11, 2241.
83 S. Okaya, H. Shimomura and Y. Kushi, Chem Lett., 1992, 2019
84 R. Uson, A Laguna and M. Laguna, Inorg. Synth., 1989, 26, 85.
85 D. Drew and J. R Doyle, Inorg. Synth., 1991, 28, 346.
86 J. X. McDermott, J. F. White and G. M Whiteside, J. Am. Chem Soc., 1976, 60, 6521.

87 H. C. Clark and L. E. Manzer, J. Organomet. Chem., 1973, 59, 411.
88 J. D. Woollins (Ed.), Inorganic Experiments, VCH, Weinheim, 1994.
89 G. Giordano and R. H. Crabbtree, Inorg Synth., 1979, 19, 218.
90 J. F. Nixon, J. Chem Soc A, 1968, 2689.

91 A. R. Davies, A. T. Dronsfield, R. N. Haszeldine and D. R. Taylor, J Chem Soc, Perkin Trans., 1973, 1, 379.
92 R. Jefferson, J. F. Nixon, T. M. Painter, R. Keat and L. Stubbs, J Chem Soc, Dalton Trans., 1973, 1414.

93 M. S. Balakrishna, V. S. Reddy, S. S. Krishnamurthy, J. C. T. R. Burckett St. Laurent and J. F. Nixon, Coord Chem Rev., 1994, 1, 129.
94 J. S. Field, R. J. Haines, J. Sundermeyer and S. F. Woollam, J. Chem Soc, Dalton Trans, 1993, 2735.

95 F. A. Cotton, W. H. Ilsley and W. Kaim, J Am Chem. Soc., 1980, 102, 1918.
96 J. S. Field, R. J. Haines and J. A. Jay, J. Organomet Chem., 1978, 100, 236.
97 D. R Derringer, P. E. Fanwick, J. Moran and R. A. Walton, Inorg Chem, 1989, 28, 1384.
98 J. I. Dulebohn, D. L. Ward and D. G. Nocera, J Am Chem Soc., 1990, 112, 2969.

99 J. Ellermann, F. A. Knoch and K. J. Meier, Z Naturforsch, B, 1990, 45, 1657.
100 D. S. Dumond and M G. Richardson, J Am Chem Soc., 1988, 100, 7547.
101 A. Tarassoli, H. -J. Chen, M. L Thompson, U. S. Ullured, R. C. Haltiwanger and A. D. Norman, Inorg Chem., 1986, 25, 4152.

102 E. O. Fischer, W. Kellar, B. Z. Gasser and U. Schubert, J. Organomet Chem, 1980, 199, C24.
103 J. T. Mague and M. P. Johnson, Organometallics, 1990, 9, 1254.
104 J. T. Mague and Z. Lin, Organometallics, 1992, 11, 4139.
105 R. P. Kamalesh Babu, S. S. Krishnamurthy and M. Nethali, J Organomet Chem., 1993, 454, 157.

106 E. Rotondo, Inorg Chem., 1976, 15, 2102.
107 G. J. P. Britovsek, V. C. Gibson and D. F. Wass, Angew Chem Int Ed., 1999, 38, 428.
108 M. A. Bennett, T. N. Huang, T. W. Matheson and A. R. Smith, Inorg Synth, 1982, 21, 74.

