
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

A biomimetic approach to the pyoverdin chromophore

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Sze Chak (Jacky) Yau

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Yau, Sze-Chak. 2019. “A Biomimetic Approach to the Pyoverdin Chromophore”. figshare.
https://hdl.handle.net/2134/34026.

https://lboro.figshare.com/


University Library 

•• Loughborough 
.. University 

AuthorlFiling Title .... ~A){\ .. ?:?,~ .... QiAK ........... . 

Class Mark ........... 3. ................................................... . 
Please note that fines are charged on ALL 

overdue items. 

~. 
~J[' 

~ -

i lii~ililllili 111111111111 ~IIIIIIII 

_~ --__ I 





A Biomimetic Approach to the Pyoverdin 
Chromophore 

by 

Sze Chak (Jacky) Yau 

A Doctoral Thesis Submitted in partial fulfilment of the 
requirements 

For award of Doctor of Philosophy of Loughborough 
University 

(June 2005) 

© by Sze Chak (Jacky) Yau 



U Loughborough 
University 

Pilkington Library 

Dale -;JAo-l 2..00 G 

Class -r 
Ace 
No. 04-03 l't 11 So 



Abstract 

pyoverdins are siderophores which chelate with ferric ions forming a ligand complex. 

Pyoverdins are excreted from bacteria such as Pseudomonas, for example, 

Pseudomonas jluorescens, when grown in iron-deficient conditions, to scavenge for 

iron. Although, different species of Pseudomonas produce different pyoverdins with 

various constituents in their amino acid chains, they all share a common chromophore 

structure within the various natural siderophores. The possible biosynthesis of the 

pyoverdins chromophore is discussed. 

Herein, a biomimetic synthesis of a model of the chromophore unit based on an 

oxidative cyclisation pathway was carried. Hypervalent iodine oxidation of a phenol­

substituted tetrahydropyrimidine, and subsequent dehydrogenation, led to the 

pyrimidoquinoline ring system of the pyoverdin chromophore. Synthesis of the 7-

membered diazepinoquinoline analogue was also accomplished, and oxidative 

cyclisation of the 5-membered cyclic amidine was achieved. With the success of the 

biomimetic synthesis of these models, cyclic amidines were constructed as oxidative 

cyclisation substrates having the catechol system, the C-terminus and the N-terminus of 

the pyoverdin chromophore. 
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Abbreviations 

Acetonitrile 

Acetyl 

Allyloxycarbonyl 

Benzyl Bromide 

Benzyl group 

Benzyloxycarbonyl 

tert-Butyl 

tert-Butyloxycarbonyl 

Bis-(trifluoroacetoxy)iodobenzene 

Diacetoxy iodobenzene 

I ,8-Diazabicyclo[ 5.4.0]undec-7 -ene 

2,3 -Dichloro-5 ,6-di cyano benzoquinone 

Dichloromethane 

N,N-Dicyclohexylcarbodiimide 

Dihydroxyphenylalanine 

Diisopropylethylamine (HUnig's basc) 

Dimethylformamide 

Dimethylsulfoxide 

Ethanol 

Ethyl Acetate 

Iodobenzene 

Methanol 

Methyl trifluoromethanesulfonate 

N-Bromosuccinimide 

N-Chlorosuccinimide 

N-Hydroxysuccinimide 

Oxidative Cyc1isation 

Phthalyl 

Polyphenol Oxidase 

Pyrrolyl 

Tetrahydrofuran 

Triethylamine 

MeCN 

Ac 

Aloc 

BnBr 

Bn 

Cbz 

tBu 

Boc 

BTIB 

DAIB 

DBU 

DDQ 

DCM 

DCC 

DOPA 

DIPEA 

DMF 

DMSO 

EtOH 

EtOAc 

PhI 

MeOH 

Methyl triflate, TfOMe 

NBS 

NCS 

HOSu 

O.C 

Phth 

PPO 

Pyr 

THF 

TEA 
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Toluenesulfonyl 

(Trichloroethoxy)carbonyl 

Trifluoroacetic acid 

Trifluoromethanesulfonylazide 

Trifluoromethanesulfonic acid 

-----------

Ts 

Troc 

TFA 

Triflyl azide, TfN3 

Triflic acid, TFSA 
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1.0 Introduction - Pseudodipeptides With Cyclic Amidines 

Replacement of the amide bonds in biologically active peptides is recognized as a valid 

strategy for either the inhibition of proteolytic enzymes or the development of agonists 

and antagonists at peptide receptors. 1 Examples of amide bond replacement in many 

peptides, such as ACE (angiotensin converting enzyme) substrates, enkephalins, CCK-4-

(cholecystokinin) and insect neurokinins, have been reported. 2 Since the relationship 

between the' amide and amidine functional groups was identified,3 work on the 

pseudopeptide cyclic amidines, e.g. 2-imidazolines (4,5-dihydroimidazoles) or related 

derivatives, has been reported (Figure I) from the Jones group. This peptide bond 

replacement seems likely to prevent proteolytic degradation when a typical amide peptide 

bond is substituted with a basic heterocyclic structure.4 

Figure 1. 

The pseudopeptide 2-imidazoline is the first member of a possible series of cyclic 

pseudo peptide amidines. Extension of the work with 5-membered ring imidazolines to 

the 6-membered cyclic ring system tetrahydropyrimidine was also of interest. Attention 

on the tetrahydropyrimidine homologue as a peptide bond isostere was enhanced by the 

discovery of a group of natural compounds which contain a cyclic amidine structure. It 

had been found that a group of bacterial siderophores, pyoverdins,5 e.g. Pf CCM 2798 

(1), excreted from microorganisms often contain a tetrahydropyrimidine amino acid 

component and also contain a modified cyclic amidine derivative as a chromophore 

(Figure 2). 
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Figure 2. 

1.1 What Are Pyoverdins? 

To maintain a sufficient supply of iron, bacteria in soil need to excrete as scavengers low 

molecular weight compounds with a high complexation constant for iron(III), Fe3
+. Due 

to the low solubility of its various oxide hydrates, the concentration of free Fe3
+ in the 

soil is at best about 10-17 mol/L at pH values around 7. Complexing ligands play an 

important role for the redox processes in many biological systems, and in the case of iron 

above, the redox potential between two oxidation states, Fe2
+ and Fe3+, can be strongly 

influenced by the presence of complexing Iigands. The complexing ligands associated 

with the ferric ions are known as "siderophores". These siderophores are usually excreted 

by microorganisms, such as the fluorescent bacterium Pseudomonas jluorescens if grown 

under the iron deficient conditions.s All the Pseudomonas species produce pseudobactins 

commonly called pyoverdins. According to Bergey's Manual o/Systematic Bacteriology, 

the Pseudomonas species producing pyoverdins include P. aeruginosa, P. chlororaphis, 

p, jluorescens, P. putida and P. .l)'ringae 6 and these bacteria can be found in the 

rhizophore of some plants and are also called plant growth promoting rhizobacteria 

(PG PR). Many more siderophores from Pseudomonas strains have been discovered, 
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structurally identified through mass spectrometry 7 and nuclear magnetic resonance 

spectroscopy 8 and their specific physicochemical functionality also investigated 

throughout the past decade.9 

Pyoverdins have a common structural feature which is a dihydroxyquinoline nucleus 

responsible for the yellowish-green fluorescence. It is one of the three bidentate binding 

sites for FeJ+; the other two necessary to form an octahedral complex are contained in a 

peptide chain attached to the quinoline chromophore. Pyoverdins contain up to 12 amino 

acid chains linked together (both D and L). The other binding sites are either two 

hydroxamate units derived from ornithine (Om), or one hydroxamate and one u­

hydroxycarboxylate. The various fluorescent Pseudomonas spp. produce pyoverdins 

differing in their peptide chains, which are responsible for recognition at the cell surface. 

Siderophores usually scavenge extracellular iron(IIl), solubilize it and transport it inside 

cells through the cell membrane. 

As a fluorescent pigment, pyoverdin represents a ready marker for bacterial differences 

and, as a siderophore, it performs an important physiological function in satisfying the 

absolute iron requirement of these strictly aerobic bacteria. Although there are over 40 

different pyoverdins, each is characterized with their own particular peptide part. Each 

pyoverdin is produced from a very specific strain of Pseudomonas and usually acts as an 

iron transporter for its own strain of bacterium with high specificity and efficiency. The 

strong chelating properties of siderophores exert an antagonist action against plant 

parasites which are no longer able to acquire essential supplies of iron. In some instances, 

cross-reactivity occurs, for example, the strains Pseudomonas aeruginosa ATee 15692 

and Pseudomonas jluorescens A Tee 13525 give different pyoverdins but either 

pyoverdin can be recognised with high efficiency due to their structurally closely related 

peptide chains. 10 Some of the siderophore-mediated iron transport systems in 

Pseudomonas could also potentially function as antibiotics. 

3 



1.1.1 Example Of Siderophores - Pseudomonas fluorescens 

One of the typical siderophores is pyoverdin PfCCM 2798 (1),5 produced from the strain 

of Pseudomonasfluorescens CCM 2798. It is a Gram-negative bacterium which belongs 

to the fluorescent Pseudomonas biotype B.11 This pyoverdin is the siderophore of the' 

microorganism and shown to be an antagonist of the growth of Pseudomonas aeruginosa 

A TCC 15692. Pf CCM 298 comprises a fluorescent chromophore, a cyclic amidine 

tetrahydropyrimidine amino acid (THP) (2) and some other peptide residues as a long 

chain including 3 glycines, 2 alanines, 1 serine, I cyclic N O-hydroxyornithine and I P­
threo-hydroxyaspartic acid.sb Furthermore, the fluorescent chromophore (4) in the 

pyoverdins could be derived biosynthetically (Scheme I) from an oxidative cyclisation of 

cyclic amidine ferribactin unit (3), based on a tyrosine-derived residue. The detail of this 

possible biogenesis is discussed in the next chapter. 

Tetrahydropyrimidine (THP) 

(2)' 

o HN~ \' 

~7~ 
H,N 

I 0 

OH OH 

OH OH 

(3) (4) 

Scheme 1. 
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Another group of products of Pseudomonas jluorescens with related characteristics are 

the ferribactins, e.g. ferribactin A Tee 13525 (5), which are co-occurring compounds 

with pyoverdins that are produced from the bacterium Pseudomonas jluorescens A Tee 

13525 (Figure 3). The ferribactins also contain the tetrahydropyrimidine unit, presumably 

derived from 2,4-diaminobutyric acid and tyrosine, but lack the chromophore structure, 

and are plausible biogenetic precursors to the pyoverdin chromophore. 12
, 13 Although the 

ferribactins do not contain the chromophore, they do also chelate iron(III). Gould's 

studies 12 have shown by incorporation that tyrosine acted as a precursor to pseudobactin, 

another siderophore produced. Study of the siderophores is of potential therapeutic 

significance since they are essential growth factors for their parent organisms, and several 

strainsof Pseudomonas are severe human pathogens. 

~O,H 

H,N 

o 

H 
N 

1.2 The Aeruginosins 

D-Ser-Lys-Gly-NH 

OH 

Ferribactin ATGG 13525 

(5) 

Figure 3. 

o 

N 
H 

NH 

~~ 
/r-~/ , 0 

"'OH 
/GHO 

N\ 
GHO 

In addition to the fluorescent chromophore structure of pyoverdins, probably derived 

from oxidative cyclisation of a cyclic amidine, novel bicyclic octahydroindole amino 

acids as part of the aeruginosins have been isolated from natural sources. Aeruginosins 

98-A (6) (Figure 4) form a group of peptidic thrombin / trypsin inhibitors isolated from 

blue-green algae,l2, 14 which consist of linear peptides that contain the novel 

5 



octahydroindole amino acid which may also be derived biosynthetically from an 

oxidative cyclisation of a tyrosine residue related to the oxidative cyclisation that 

produces the pyoverdin chromophopre. 

~ HO ~ ~ 0 

(6) 

Figure 4. 

Aeruginosins 98-A and B are linear peptides isolated from the cultured freshwater blue­

green alga Microcystis aeruginosa (NJES-98) which have the function of trypsin 

inhibitors!2. 15 Aeruginosin 98-A inhibited trypsin with an ICso of 0.6 fig/ml and plasmin 

and thrombin with ICso of 6.0 fig/m I and 7.0fig/ml, respectively. Aeruginosin 98-B also 

inhibited trypsin, plasmin and thrombin with ICso of 0.6, 7.0 and 10.0 fig/ml, 

respectively. 

2.0 Formation Of Pyoverdins 

Since the structures of various pyoverdins were identified with their common 

chromophore structure, several publications have appeared on the synthesis of the 

tricyclic chromophore unit of pyoverdins by three different approaches: chemically, 

biologically, as well as by biomimetic synthesis. 

6 



2.1 Chemical Synthesis 

One of the earliest synthetic approaches towards the formation of the fluorescent 

chromophore was reported by Miller and Kolasa. 16 A physiologically important amino 

acid, D,L-dihydroxyphenylalanine (DOPA), was selected to be the direct precursor of the 

fluorescent fragment of the pyoverdins as it contains a catechol unit. The synthesis starts 

with amination of the DOPA aromatic ring via nitration and reduction (Scheme 2), 

followed by cyclisation to give dihydroquinolin-2-one (7) and alkylation with a protected 

u-halo-y-aminobutyric acid derivative in the presence of sodium hydride in THF to form 

(8). Further conversion to thioamide (9) with Lawesson's reagent promoted quantitative 

cyclisation to give the fluorescent chromophore (10). 

7 



AIOCHN~oBn 

--.-----'.~ COOEt ~ 
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H2N:(C(0H I"":: 
~ ° OH OH 
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NaH 
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Scheme 2. 

BOCHN~OBn 

Lawe:son's • sAN~OBn 
reagent I 

TrOCHN~COOtBU 

(9) 

1. Zn I KH2PO. 

2. Hg(OAc)2 

BOCHN:CCC. OBn -:?' "":: 
1 . 
~ 

N:'/' N OBn 

UCOOtBU 
(10) 
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2.2 Biogenesis 

Based on many isolation studies of the pyoverdins in the last two decades; several 

compounds biogenetically related to pyoverdins were identified and recognized as 

possible precursors towards the formation of the pyoverdin chromophore. 17 Such 

precursors include the ferribactins and dihydropyoverdins (Figure 5). 

Dihydroisopyoverdin and isopyoverdin are related natural products that have been 

isolated. 

R:(C 
1.& "Clyo 0" 

/NH 
R'/ 

Ferribactin 

R~OH 

.J---.. ~ 0yV 0" 
. NHR' 

Dihydroisopyoverdin 

R~OH 

N.J---N~OH 
lJyo 

/NH 
R'/ 

Dihydropyoverdin 

RyyyOH 

.J---.. ~ 0yV 0" 
NHR' 

Isopyoverdin 

Figure 5. 

Among the discoveries, the ferribactins are the most likely intermediates from 

condensation of tyrosine and L-2,4-diaminobutyric acid (Dab). They would subsequently 

9 



give the tricyclic chromophore via a dihydropyoverdin formed from oxidative 

cyclisation.17 

A biosynthetic study found that feeding of tyrosine to cultures of Pseudomonas 

jluorescens was successful, while DOPA was not incorporated into the chromophore.12 

This implicated tyrosine as the appropriate preliminary precursor in the biosynthesis of 

the pyoverdin chromophore. In other experiments, it was suggested that the catechol ring 

is formed by oxidation after the combination of D,L-tyrosineand diaminobutyric acid 

(Scheme 3),12,13 again suggesting that DOPA was unlikely to be the initial precursor. 

Isolation of ferribactins in Pseudomonas provided further evidence against the possibility 

of DOPA being involved in the biosynthesis. 

HO,C~ 

NH, ~ ~ OH 

Tyrosine R:(U 
Ht '1 /.: OH 

HO,C'C.(X,-,,:: OH/ ~ T 
I /NH 

NH ~ R'/ 
, OH 

DOPA Ferribactin 

Scheme 3. 

• 

Pyoverdin 

Budzikiewicz also demonstrated that a labelled [I~l-pyoverdin chromophore can be 

identified by mass spectrometry and NMR spectroscopic techniques after Pseudomonas 

aeruginosa was grown in the presence of labelled 2,4-[4-1~1-diaminobutyric acid in a 

culture medium and proposed that the formation of the chromophore unit is the result of 

condensation of L-diaminobutyric acid and D-Phe or D-Tyr amino acids. 

10 



To further strengthen the biosynthetic hypothesis, 5,6-dihydroisopyoverdin (from the 

culture medium of Azomonas macrocytogenes A TCC 12334) and isopyoverdin (from the 

culture medium of Pseudomonas putida BTP 1) were also isolated by Budzikiewicz.17 

Due to the possible rotation of the tetrahydropyrimidine ring in ferribactins (11, 12), 

either of the nitrogen atoms could participate in the oxidative cyclisation, to afford (via 

the dihydro derivatives) pyoverdin or isopyoverdin. The C-3 chiral centres of pyoverdin 

(13) or isopyoverdin (14) had identical S-configurations (Scheme 4) as expected since 

they were both biosynthesized from condensation of D-tyrosine and L-diaminobutyric 

acid. 

HOOC"' .. (l 
H0Y;HN~N 

~···"NH 
2 

(11 ) 

(13) 

rotation 

Scheme 4. 

(12) 

rY
COOH 

HOXXX~ N .-0
N 

HO ././ ././ NH2 

(14) 
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2.3 Biomimetic Synthesis 

During the time of our research, formation of a chromophore model of pyoverdin was 

reported by an enzymic "oxidative cascade" that involves the use of polyphenol oxidase 

(PPO). 18 The results of this work strongly supported the assumption of catechol 

formation only occurring after the forming of ferribactin. The biosynthetic mechanistic 

proposal (Scheme 5) involves a series of oxidations based on the isolation of 

biogenetically related pyoverdin compounds, such as ferribactin (3), catechol (15), and 

dihydropyoverdin (16). They are described as the intermediates during the oxidative 

cascade, but from the enzymic synthesis of the chromophore model, only the 

dihydropyoverdin (20) and the pyoverdin chromophore (21) were isolated from enzymic 

oxidation of the hydroxyphenyltetrahydropyrimidine (18) and the dihydroxy analogue 

(19) (Scheme 6), and the chemical yield was relatively insignificant. This demonstrated 

that the second hydroxyl in the phenolic structure could be introduced by enzymic 

oxidation. The pyoverdin chromophore model was also formed by treating both 

ferribactin model (18) and catechol (19) with a cell free extract from P. aeruginosa, 

grown under iron-limiting condition to induce the pyoverdin biosynthetic genes. Only the 

catechol (19) could be oxidized chemically with manganese dioxide to either the 

dihydropyoverdin or pyoverdin model, again in very low yield. Further oxidation of the 

dihydropyoverdin (20) with polyphenol oxidase also demonstrated the formation of 

pyoverdin (21) but neither the yield nor details of the method were given. 

12 
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(1 
HO~HNyN 

~ 
(18) (1 

HO~NyN 

~ 
/ HO 

~ / :."Oor I I MnO, 
HO~HNyN 

HO~ 

(20) (21) 

(19) 

Scheme 6. 

2.4 Aim Of The Project 

The initial aim of the work in this thesis is to complete a biomimetic synthesis of the 

pyoverdin chromophore model (21) (mono- or dihydroxy; Scheme 7), by oxidative 

cyclization of the corresponding cyclic amidine (23) or of related peptide or peptide­

derived segments, and hence to enable synthesis of the siderophores and relevant 

analogues. In addition, the octahydroindole amino acid in the aeruginosins might be 

formed based on the similar methodology. Moreover, extension of the synthesis of the 6-

membered ring cycliC amidines may also lead to 5- and 7-membered ring structures, and 

hence to homologues of the pyoverdin chromophore model. 

The first objective is thus to achieve the quinoline chromophore model of pyoverdin (21) 

via oxidative cyclisation of a cyclic amidine (Scheme 7), based on the simplified 
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tyrosine-related residue which can be obtained from 4-hydroxy or 3,4-dihydroxy­

phenyl propionic acid (22). 

o 

OH 

• • 
• 

OH OH 
(OH) (OH) 

(22) (23) 

Scheme 7. 

HN-fJ \ 
~:.) 

N [01 

-H, 

OH 

(OH) 

(24) 

» 

OH 

(OH) 

n=2,(21) 

The methods developed above will then be used to synthesize the actual 

tetrahydropyrimidine amino acid units found in pyoverdins in order to attempt their 

oxidative cyclisation. Hopefully this will enable the total synthesis of a simple pyoverdin­

type siderophore. 

To achieve the chromophore model, the initial targets are the cyclic amidines (23), 

including 2 -[2 -( 4-h ydroxypheny l)ethyl]-3,4,5 ,6-tetrah ydropyrim id i ne, 2~[2-( 4-

hydroxyphenyl)ethyl]-4,5-dihydroimidazole as well as a 2-[2-(4-hydroxyphenyl)ethyl]-

4,5,6,7-tetrahydro-1H-[1,3]diazepine. By oxidizing these phenolic cyclic amidines with a 

hypervalent iodine reagent, as a mimic of the biomimetic oxidative cyclization, 

pyrimidoquinolinones. imidazoquinolinones and diazepinoquinolinones (24) should be 

formed as models of the dihydropyoverdins in nature. These compounds (24) could be 

further converted into the tricyclic chromophore model by a biomimetic oxidation, such 

as dehydrogenation. Methods for the synthesis of cyclic amidines, followed· by a 

discussion of hypervalent iodine reagents and dehydrogenation systems is therefore 

presented herein. 
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3.0 History Of Cyclic Amidine Synthesis 

In general the synthetic procedures start from reaction of a diaminoalkane with 

carboxylic acid derivatives such as esters, acids, nitriles or iminoethers (various imidate 

salts) that are obtained from amides or nitriles. The first claim of preparation of2-methyl-

3,4,5,6-tetrahydropyrimidine (26) was by Hofmann 19. in the late 19th century. He 

reported that the cyclic amidine was prepared by heating diacetyltrimethylenediamine 

(25) in a stream of dry hydrogen chloride (Scheme 8), but neither yields nor physical 

constants of the base or any derivatives were properly recorded. But later, Branch and 

Titherley 19b reported no success in attempting the synthesis of 2-phenyl-3,4,5,6-

tetrahydropyrimidine based on Hofmann's method. 

dry HCI 
+ CH,COOH 

(25) (26) 
Hofmann method 

Scheme 8. 

During the same period, Harries and Haga 20 obtained 2,4,6-trimethyl-3,4,5,6-

tetrahydropyrimidine in a relatively pure state by fusing the hydrochloride of 2,4-

diaminopentane in the presence of sodium acetate. A similar method was adopted by 

Haga and Majima21 to prepare 2-methyl-3,4,5,6-tetrahydropyrimidine (26) (Scheme 9). 

However, use of this type of method for the preparation of 5-membered ring analogues, 

such as 2-methyl-4,5-dihydroimidazole only produced very poor results. 
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~ H,N NH,.HCI 
NaOAc, heat. ~~ 

N 

(26) 

Haga method 

Scheme 9. 

-----------

In 1939, Aspinall et al. 22 developed a different method to produce 2-alkyl (or aryl)-4,5-

dihydroimidazoles (29) efficiently by dehydration of monoacylethylenediamines (28) 

which he obtained from reaction of the corresponding ester and I ,2-ethylenediamine (27) 

after elimination of ethanol (Scheme 10). This method was also found to be reliable for 

the synthesis of 2-alkyl (or aryl)-3,4,5,6-tetrahydropyrimidine analogues from 

monoacyltrimethylenediamines. Other substituted 1,4,5,6-tetrahydropyrimidine 

derivatives and substituted imidazolines were obtained with promising results based on 

the Aspinall method by Skinner and Wunz and by Brown and Evans. 23 

0 0 N~ RJlOEt + 
H,N~ -HOEt 

RJlN--f-t.,-NH, 
-HP 

n NH, • • 
H n CaO )-~ 

R 

n = 1, 2. (27) (28) (29) 

Aspinall method - formation of dihydroimidazole & tetrahydropyrimidine 

Scheme 10. 

In fact, the most widely used general method for the synthesis of amidines was not any of 

. the above, but was introduced by Pinner24 in 1893. He reported the use of imidate salts 

(iminoether salts), formed from reaction of nitrile and anhydrous alcohol in the presence 

of the acid catalyst hydrogen chloride, on treatment with ammonia or amines in absolute 
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ethanol to produce many amidines in excellent yield. Further reaction of the amidine with 

trimethylene dibromide can afford a small amount of cyclic amidine (30), e.g. 2-phenyl-

3,4,5,6-tetrahydropyrimidine, when the reaction is left for several weeks (Scheme 11). 

R-CN • • 
[ 

NH2+] 
R----( Cl' 

OEt 

R'R"NH EtOH. HCI 

where R' & R" = H 
(30) 

Pinner method 

Scheme 11. 

As well as using nitriles to form imidate salts prior to cyclic amidine formation, another 

type of imidate salt, the hydrogen chloride salt of a thioimidate was also formed from 

nitriles by Pinner. This type of route was used later for the formation of cyclic amidines 

by Jones.2
,4 Reaction was carried out by treating nitriles with an anhydrous thiol instead 

of alcohol in the presence of acid catalyst, which resulted in the thioimidate hydrohalide 

salts (31) (Scheme 12).24,25 

R-CN + HCI + R'SH • 
NH.HCI 

R---{ 
SR' 

Thioimidate hydrochloride salt (31) 

Scheme 12. 

Although Pinner's synthetic method for general formation of amidines was successful at 

that time, several limitations were discovered and mostly were in the formation of the 

imidate salts.26 One limitation was the availability of the starting nitriles.27 In addition, 
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Pinner was not able to obtain the imidate salt (33) when he reacted hydrogen chloride and 

ethanol with ortho-substituted benzonitrile (32) (Scheme 13). 

EtO NH.HCI 

R 
HCI, EtO~x 

R' 

(32) (33) 

R=CH" NO" NH" R'=H or CH, 

Scheme 13. 

The failure was due to steric hindrance from an ortho-substituted alkyl group adjacent to 

a cyano group in an aromatic system, since other isomers readily yielded the imidate 

salts. In addition, N,N-disubstituted amidines cannot be synthesized by this general 

method. Although a cyano group cannot condense with alcohol and hydrogen halide 

when a bulky ortho-substituted group is situated next to it, several imidate salts have 

been successfully isolated by O-alkylation of the corresponding a-substituted amides in 

h f '1 'd 27 28 t e presence 0 SI ver OXI e. ' 

Nevertheless, the Pinner approach via imidate salt formation has become the most 

common route for the synthesis of cyclic amidines. Since Pinner's work, many amidines 

can be formed successfully based on the Pinner method through imidate salts but from 

various starting materials other than just from the nitrile. A survey of the various methods 

for the formation of imidate salts that lead to the formation of cyclic amidines is 

presented below. 
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3.1 Formation Of Imidates 

--~-.---=- ....... ------..,-=-- .; ... " 
Because of the usefulness of imidates for forming cyclic amidines and as a result of the 

limitations on the use of nitriles for the formation of imidate salts, a number of 

investigations on the formation of imidates (and hence of amidines) that have improved 

from the Pinner method have been reported and summarised?7, 29 

3.1.1 Imidates From Amides 

Using amides as the starting materials for the synthesis of amidines via imidates has been 

depicted as more convenient and versatile than the traditional use of nitriles.l9 Both N­

substituted and N,N-disubstituted amidines may be prepared from amides through the 

intermediate imino chloride obtained by reacting secondary and tertiary amides with 

PCI5, POCh, SOCh or COCh. However, these reagents usually dehydrate primary 

amides, making the procedure of little value for unsubstituted amidines.26 

On the other hand, imidate salts can be produced by direct O-alkylation of primary or 

secondary ami des with ethyl chloroformate (34) in benzene at room temperature. 30 

Amides and thioamides may also be alkylated directly with dimethyl sulfate (35) at 

temperature below 100 QC to yield the methyl hydrogen sulfate salts of imidates or 

thioimidates. 31 Among many alkylating reagents, triethyloxonium tetratluoroborate 

(Meerwein reagent) (36) is apparently superior for the O-alkylation of amides, reaction is 

said to occur simply at room temperature when mixing triethyloxonium tetratluoroborate 

and amide with CH2Ch as the solvent (Scheme 14). Amidines have also been formed via 

imidate tetratluoroborate salts.29
,32 
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H----:<O ° H-{NH.HCI 
+ CI---f . 

NH, O-Et O-Et 

(34) 

X 

R~ + (CH,0),SO, • 
R-{NH.CH,HSO, 

NH, x-
(35) 

X=O,S 

R~ 
NHR' [

R--{O-Etl + BF ,-

NHR' J 
R"R"'NH 

• 
NR"R'" 

R--{ 
NR' 

Scheme 14. 

3.1.2 Thioimidates From Amides Or Carboxylic Acids 

Thioimidates were first reported by Pinner as mentioned above, prepared in a similar way 

to the imidate formation from nitrile. They can also be prepared from direct S-alkylation 

ofthioamide (37) or thioacetanilide (38), which were obtained from amides, with an alkyl 

iodide to yield a thiobenzimidate salt (Scheme 15), or in the presence of sodium ethoxide 

to yield N-phenylthioacetimidate.27
, 33 
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+ 
Amide • 

Thioamide (37) 

Amide --..... ~ 

Thioacetanilide (38) 

Scheme 15. 

• 

• 

... ;/HHI 
C6H~ 

S-C2H, 

Thioimidate salt 

4 NC6H
, 

S-C2H, 

Thioimidate 

Carboxylic acids are another source for the preparation of thioimidate salts via piperidine 

thioamides (Scheme 16), an approach which was employed by Lawesson34 and Jones.2 

The reactions were carried out by use of C-termina1 amino acids (39) via their piperidine 

amides, treatment with Lawesson reagent to make the thioamide followed by methyl 

iodide for S-methylation. It has been found· that thioimidate salts are equally reactive to 

O-imidates towards the formation of amidines. 

- - 01 _Jl 
ZHN T -SM. 

• Cydic amidine 

R 
(39) 

Scheme 16. 
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3.1.3 Imidates Via Other Methods 

Some other substrates containing electrophilic carbon may also lead to imidates. In the 

presence of alcohol, hydrochloric acid, hydrazoic acid and ketone, imidate hydrochloride 

salts can be produced by a methyl group rearrangement (Scheme 17)?7 

Transesterification can be carried out to yield O-imidates from thioimidates?S 

o 
)l + HCI + HN3 + EtOH 

Me Me 
• 

NCH3·HCI 

Me~ 
O-C,Hs 

NH 

R~ + R"OH 

SR' 

NH 

-~.~ R~ + 

OR" 

R'SH 

Scheme 17. 

Imidates may be derived from alkynyl ethers. Addition of pnmary ammes to 

ethoxyacetylene (40) at reflux in ethanol gives rise to imidates, but amidines are likely to 

form as by-products because further interaction occurs between the imidates and.the 

primary amines (Scheme 18).36 This further reaction cannot occur when secondary amine 

is used, as the intermediate is incapable of undergoing the tautomeric shift. 

RNH, + C,HsO-== • + 

(40) 

• 
NR, 

HP=< 
O-C,Hs 

Scheme 18. 
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3.2 Use OfImidates To Prepare Cyclic Amidines 

Amidines could be derived from imidates and amines due to the success of the many 

imidate salt formations based on the general Pinner method. Cyclic amidines, such as 

tetrahydropyrimidine or dihydroimidazole, may thus be formed like ordinary amidines 

but with use of diamines as the bis-nucleophilic reagent to construct the carbon backbone 

of the ring in good yield. 

2-Substituted-4,5-dihydroimidazoles (42) have been extensively reported from heating 

diaminoalkanes with imidates or their salts.27 These 2-position substituents in imidates 

include phenyl, tolyl, phenylacetyl, a-aminoalkyl or other amide groups. The mechanism 

of the heterocycle formation was indicated, for example, by isolation of an intermediate 

N-(2-aminoethyl)mandelamidine hydrochloride (41) whose cyclisation was completed by 

losing ammonia slowly at room temperature (Scheme 19), or more readily in hot alcohol 

to give the corresponding dihydroimidazole.37 

R--{NH.HCI H2N) 6 N 
• • R-f;) 

Q-R' H2N H 

I 
Dihydroimidazole (42) 

-NH, 

R = C,H5 

intennediate (41) 

Scheme 19. 
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Another suggestion for the mechanism of reaction of imidates with a-phenylenediamine 

was investigated by King and Acheson.38 Benzimidazole (43) was formed in the presence 

of one or at most two equivalents of acid, where the initial tetrahedral intermediate 

formed from amine attack at the imidate carbon eliminated ammonia to afford an 

intermediate N-substituted imidate. Elimination of alcohol took place as cyclisation was 

completed by a second nucleophilic attack from the second amine in an intramolecular 

. condensation (Scheme 20) to give the corresponding benzimidazole (43). 

(XNH' 

NH ---{NH,. I ..-:; 
[CC "'j R---{ HCI. R NH, 

I 0 .~OM • 
OM. OM. 

NH, 
Cl 

Cl 

l-NH
, 

H 
(XNH' ~yR -CH,OH 

• I ..-:; \ OM • o N N~ 
UR 

Benzimidazole (43) 

Scheme 20_ 

Similar reaction to form dihydroimidazoles by using 2-bromoethylamine (44) instead of 

diamine gave only disappointing yields of imidazoline product (Scheme 21 ).39 

+ .. 

(44) poor yield 

Scheme 21. 
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Extension of the cyclic amidine formation from reaction of imidates with 1,2-

diaminoethane to 1,3-diaminopropane produces tetrahydropyrimidines. Both 2-

substituted 3,4,5,6-tetrahydropyrimidines and 4,5-dihydroimidazoles were obtained 

effectively under the same conditions when ethyl 4-substituted-phenylacetimidate salts 

were reacted with 1,2-diaminoethane or 1,3-diaminopropane under reflux with ethanol 

for 10 hours (Scheme 22).40 

~ ,NH 
+ H N---\ J~ 2 

2 

Scheme 22. 

Alcohol. f':, 
• x'OJ' 

H 

5- and 6-Membered ring amidine units could also be assembled from thioimidates made 

from carboxylic acids via piperidine thioamides and S-alkylation. lones's group was able 

to synthesise a number of pseudopeptide units, such as imidazolines4 and 

tetrahydropyrimidine2 amino acid units when some other imidate salts seemed to be 

unstable towards the conditions of cyclic amidine formation. He reported the successful 

synthesis of 5- and 6-membered ring amidines by coupling of S-methyl thioimidate salts 

with the appropriate corresponding diaminoester or diaminodipeptide (Scheme 23). 

SMe -

ZNH~C02_H~i_i~ii:.~.:ZNH~NOI 
"'-..R "-

"R 

diaminodipeptide 

MaOH,65'C 

R' = peptide unit 

i, DCC. pentafluorophenol; then piperidine; iI, Lawesson's reagent. toluene, 80'C; iii, Mel, 40'C. 

Scheme 23. 
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4.0 Hypervalent Iodine 

The term hypervalency is used to refer to bonding in elements of Group V-VIII of the 

periodic table where those elements contain a valency higher than normal, with 10 or 12 

electrons in their outer shell. 

lodanes ArIL2 with decet structure are known as aryl-A? -iodanes and are the most 

common iodanes. They have pseudotrigonal bipyramid geometry with an aryl group and 

lone pairs of electron in equatorial positions and two heteroatom ligands (L) in axial 

positions. These molecules contain a hypervalent linear three-centre four-electron (3c-4e) 

bond system with 2 electrons from a doubly occupied 5p orbital on iodine and one 

electron from each of the ligands. 

The partial negative charges on the apical heteroatom ligands and partial positive charge 

on the central iodine atom are due to the filled non-bonding molecular orbital which has a 

node at the central iodine (Figure 6). The resulting highly polarized 3c-4e bond makes the 

aryl-A? -iodine an electrophilic agent. Most of the electron density is placed at the ends of 

the linear L-I-L triad, explaining why electronegative ligands stabilize iodanes. 

L-- --L 

Figure 6. 

anti bonding orbital * non bonding orbital * bonding orbital 
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The hypervalent bonds between the iodine and ligands (L-I-L) can be regarded as ionic 

bonds, where the aryl carbon-iodine bond is covalent and made up of two electrons with 

5Sp2 hybridization at iodine to form a CAr-I a-bond. 

Organo-)} -iodanes are the most common hypervalent iodine reagents used in organic 

synthesis, due to the strong soft electrophilic iodine centre that can be attacked by 

virtually any nuc\eophile and the superleaving group ability of the phenyliodonio group. 

Various numbers of carbon or heteroatom ligands attached to the iodine atom can affect 

their reactivity. RIL2 and R2IL are the most common types classified. The presence of 

two heteroatom ligands in RIL2, at the apical positions relative to their iodine atom is 

particularly useful in functional group oxidations, where one is used for a ligand 

exchange step and the other used for a reductive elimination reaction, where both of the 

ligands act as leaving groups. The weak hypervalent bond means that the intermediates in 

reactions are readily broken down resulting in reductive elimination of iodobenzene and 

formation of the end-product. The second class of ,,? -iodanes, R2IL, are not good 

oxidizing agents, but can transfer one carbon ligand to a variety of nucleophiles. 

In general, the majority of organo-).J -iodanes utilise two modes of ligand exchange 

reactions: (i) introduction of a nuc\eophile, occurring at iodine(lII) with no change in the 

oxidation state and (ii) the reduction of hypervalent iodine to iodide, called reductive 

elimination. Heteroatom ligands of iodanes can be readily substituted by introducing 

another nuc\eophile. Two mechanistic alternatives, associative and dissociative are 

suggested where one adds a nuc\eophile prior to loss of the ligand, and the other 

eliminates its ligand first, respectively (Figure 7), but the earlier mechanism is preferred 

since it requires minimum energy in the intermediate species. The highly energetic 

dicoordinated iodonium species involved in the dissociated pathway is unlikely.41 
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Associative pathway 

Nu-
ArlL, IArlL,Nul- ---.. ArlLNu + L-

Dissociative pathway 
Nu-

ArlL, --•• Arn + L- ------<.~ ArlLNu 

Figure 7. 

Nucleophiles react with partially positively charged iodine at the C-I cr* orbital and result 

in intermediate formation of a trans-tetracoordinate iodate with a square-planar 

arrangement (Figure 8). Isomerisation to cis iodate followed by elimination of a 

heteroatom ligand L produces a new aryl-A? -iodane Arl(Nu)L. The whole process is 

called heteroatom ligand exchange with a nucleophile via addition-elimination. Further 

ligand exchange with another nucleophile may also occur with a similar sequence to 

produce ArlNu2 or even ArINuNu'. 

L 
I • 

Ar-I""'" . 

I"·· 
L 

-
L . 
I~,···· • 

Ar- I-'---Nu 
.(1 -

L 

L - • 
1-,.···· • 

~-~ Ar-I-'---L 

./1 
Nu 

L 
I • 

- Ar-I~"'· 
I ...... 

Nu 

repeat -
Nu' 
I • 

Ar-I····'" . 

I".' 
Nu 

Figure 8. 

Ligand exchange can occur with a range of nucleophiles including oxygen nucleophiles, 

nitrogen nucleophiles, heteroatom nucleophiles or carbon nucleophiles. 

One of the important transformations of the hypervalent t..J -iodanes is the reductive 

elimination to afford a univalent iodide. It has been described as a facile and energetically 

favourable process and often proceeds without the assistance of added reagents. 

Elimination of an iodide from organo-t..J -iodane reagents often results in the formation of 
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a cationic, electron-deficient intennediate so the ability of aryl-A? -iodanyl groups to 

undergo elimination increases with increase in the electron-withdrawing nature of the 

ring substituents and the leaving aryl-A? -iodanyl group is tenned a hypernucleofuge. 

4.1 Preparation Of HypervaJent Iodine Reagents 

In order to modify the reactivity and ligand exchange character at hypervalent iodine, 

many varieties of hypervalent iodine reagents can be prepared, developed and substituted 

conveniently by introducing a new heteroatom group, from a fundamental iodobenzene. 

4.1.1 Bis(acyJoxy)iodoarenes 

Diacetoxy-iodobenzene (DAIB) is regarded as one of the basic hypervalent iodine 

reagents and can be prepared from iodobenzene, hydrogen peroxide and acetic anhydride 

(Scheme 24).42 Other bis(acyloxy)iodoarenes can be made by further substitution of the 

DAIB, for example, bis(trifluoroacetoxy)iodobenzene (BTlB) is obtained from reaction 

of boiling trifluoroacetic acid with DAIB or more generally, bis(acyloxy)iodobenzenes 

are produced by reacting the diacetoxy-iodobenzene with any acid (Scheme 24).43 The 

BTlB reagent is far more reactive in oxidations than the original DAIB reagent. 

H,O, 
Phi • Phl(OAC), 

Ac,0 

Phl(OAc), 

Phl(O,CR), 

Scheme 24. 
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4.1.2 Dihaloiodoarenes 

Reaction of iodobenzene with hydrochloric acid in the presence of sodium perborate 

tetrahydrate and acetonitrile yields dichloroiodobenzene. Further reaction of this 

dichloroiodobenzene with hydrofluoric acid and yellow mercuric oxide gave 

difluoroiodobenzene (Scheme 25). Many difluoroiodoarenes are stable at ambient 

temperature and prepared in situ. They can melt without decomposition if they are pure 

and should be kept in PTFE or polyethylene containers rather than glass containers to 

avoid slow attack on the glass. 44 

HCI HF 
Arl ArlCI2 -----.~ ArlF2 

NaBO,.4H,o HgO 

Scheme 25. 

4.1.3 Reagents Of Iodine(V) 

Common iodine(V) oxidizing reagents can be prepared from oxidation of iodobenzene. 

For example, iodylbenzene was obtained directly by oxidizing iodobenzene using 

aqueous hypochlorite solution (Scheme 26) at pH 8.2 and a phase transfer catalyst, 

tetrabutylammonium hydrogen sulfate, at room temperature for less than an hour.45 

The famous Dess-Martin reagent is also one of the best known iodine(V) reagents used 

for oxidation. It is prepared in two steps from o-iodobenzoic acid. Initial reaction with 

potassium bromate and acid, and then further treatment with acetic anhydride and p­

toluenesulfonic acid hydrate (Scheme 26) yields the Dess-Martin reagent, I, 1,1-

triacetoxy-l, I-dihydro-I ,2-benziodoxol-3(l H)_one.46 
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HOCI/H2O 
Phi • Phl02 

cat. 

0\ AcO OAc 

cqOH 

,I 

(XI 
KBr03 Ac,O ~OAC 

1/./ 1 '0 1 0 
W /./ /./ 

CO H 2 
0 0 

Scheme 26. 

4.2 Use Of Hypervalent Iodine Compounds 

In recent years, a number of uses of hypervalent iodine reagents in organic synthesis have 

been reported and many of them involve carbon-carbon or carbon-hetero bond formation 

through two general pathways. First, reaction may involve hypervalent iodine precursors 

that generate carbon-centered reactive intermediates, such as free radicals, carbocations 

or cation-radicals and then trapping with organic substrate. In general, this reaction is an 

oxidation of organic substrate with bis(acyloxy)iodoarenes. The second type of reaction 

proceeds via coupling of carbon ligands in the tricoordinate iodine intermediate that can 

be generated by addition of a carbon nucleophile to an iodonium salt. Hypervalent 

iodine(V) reagents are well known for oxidation of alcohols to form ketones or 

aldehydes, whilst iodine(III) reagents provide more variety of oxidation, such as 

spirocyclic oxidation, aromatic nucleophilic addition or heterocylic alkylation. 

4.2.1 Radical Decarboxylative Alkylation With Bis(trifluoroacetoxy)­

iodobenzene 

Heterocyclic compounds are alkylated by mixing of carboxylic acid with 

bis(trifluoroacetoxy)iodobenzene where the iodobenzene reagent can serve as an alkyl 
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radical generator in the presence of carboxylic acid via decarboxylative radical 

decomposition (Scheme 27).41 The heterocycle can be regarded as the appropriate organic 

substrate to trap the alkyl radical being generated, and this results in the formation of 

alkylated heterocycle compound. 

Generate radical 

RCOOH OCOR hv or heat 
Phl(CO,CF3h I 

[RCO;I [R·I Ph-I • 
\ -CO, 
OCOR 

Overall 

Q Phl(CO,CF3), 

R--Q + RCOOH • 
hv or heat 

Scheme 27. 

Hypervalent iodine(I1I) reagents can also be used for the radical alkylation of electron­

deficient alkenes to give a reductive addition product. 

4.2.2 Phenol Oxidation - Spirocyclic Intramolecular Reaction 

The use of hypervalent iodine reagents in the oxidative cyclisation of phenols or phenol 

ethers has been reported increasingly in the past decade and it has become a key synthetic 

tool for natural product synthesis because of its effectiveness in intramolecular oxidative 

spirocyclization. A brief review of the reaction is presented here and further detail of this 

reaction will be discussed in a later section since this oxidative cyclization is also a key 

step in our plans for the biomimetic synthesis of the pyoverdin chromophore. 

Reagents like bis(acyloxy)iodoarenes are useful for the formation of spirodienones by 

oxidation of an appropriate p-substituted phenol in the presence of a suitable external or 
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internal nucleophilic source. The construction of the spirodienone molecule proceeds 

either via concerted addition-and-elimination of iodine reagent or via formation of 

phenoxenium ions (Scheme 28). The hypervalent iodine oxidation of para- and artha­

substituted phenols with nucleophilic side chains could afford a variety of 

spirocyclohexadienone derivatives effectively. Many natural product syntheses employ 

hypervalent iodine reagents as part of the sequence. Reaction with a phenolic substrate is 

followed by nucleophilic attack of alcohol, water, alkene, amide, carboxylic acid, oxime, 

fluoride ion or electron-rich aromatic ring to give a cross-conjugated cyclohexadienone 

either by an inter- or intramolecular reaction pathway. 47 

PhlX, 

-HX 

x = OAc or OCOCF, 
-Phi" 
-x -

Scheme 28. 

-Phi 
-x-

o n 
~u 

Kita and co-workers in 1987 used reactive BTIB to give qUinone monoacetals or 

spirolactones from artha or para-substituted phenols in the presence of external 

alcohols. 48 When water is employed instead of alcohol, a quinone is formed. 49 This 

method is useful for formation of various 1,4-naphthoquinones and aza-analogues.so 
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4.3 Oxidative Cyclization - Formation Of Cyclic Systems 

Reports indicate that a possible biosynthesis of the pyoverdin chromophore is from an 

oxidative cyclization of a tyrosine derived tetrahydropyrimidine.12
, 18 Efforts to model 

this have led to a focus on hypervalent iodine(I1I) reagents which are able to oxidize 

phenols as described in previous sections. Other than just for oxidation of phenol or 

phenol ether, several papers also report the synthesis of spiroheterocyclic products by 

oxidative cyclization of phenolic amines or amides with diacetoxyiodobenzene (DAIB) 

or bis(tritluoroacetoxy)iodobenzene (BTIB), but some unexpected cyclised quinolines or 

indoles were also observed when various phenolic N-substituents were used. 51, 52 This 

unusual phenomenon was first explained by Kita (Scheme 29) when he oxidized N-alkyl­

N-benzoyltyramines (4S) with DAIB to give bicyclic hexahydoindol-6-ones (48) in fair 

yield (Scheme 29).51 He proposed that the formation of reduced indolones (48) was due 

to an intramolecular Michael-type addition of the amino group (formed by hydrolysis of 

an intermediate) to the double bond of the dienone intermediate where as secondary 

amides would give either the spirocyclic hexadienones (47) or the corresponding quinol 

ethers (46) depending on the solvent used. In all cases, if the amide has acted as a 

nucleophile, it is through the oxygen rather than the nitrogen atom. Cyclisation through 

nitrogen is needed for the pyoverdin series. 

After Kita's discovery, Ciufolini et al. also reported similar formation of spirocyclic 

lactams and lactones as well as reduced quinolone derivatives (Scheme 30).52 He 

attempted to investigate the formation of spirolactams (S3), i.e. an internal N-nucleophile, 

from N-substituted phenolic imines (49), N-substituted imino ethers (SO), secondary 

phenolic amines (SI) and phenolic imidazolines (S2) but none led to the formation of 

spirolactam (S3) (Scheme 30). Instead the quinolones (S4) were said to be isolated from 

secondary phenolic amines (SI) and phenolic imidazolines (S2) (although no 

experimental details were given) and a spirolactone was obtained from the N-substituted 

imino ether (SO). He suggested that the reason for bicyclic rather than the usual 
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spirocyclic formation was due to the suppression of the nucleophilicity of nitrogen in the 

amine or ami dine under the acidic conditions of DAIB so they would not compete 

effectively with the solvent or acetate ion, hence bicyclic amine formed. However the 

presence of basic or acid scavengers did not alter the outcome. Ciufolini proposed a 

mechanism for the oxidative cyclisation as a unimolecular reaction, i.e. forming a 

dienone cation by loss of iodobenzene etc., followed by nucleophilic attack (Scheme 28), 

whereas Kita suggested a bimolecular reaction which a nucleophilic attack is concerted 

with the iodine reagent leaving the associated oxy group (Scheme 29). 

(45) 

OH 

NCOR 
I 
R' 

6TI6 

R'=H 

8TI6 

R'=8Ikyl 

";(OCOCF,)Ph J),0 

~ ~II 
(;8 
rc;ROH RCONH OR' 

(46) 

R 
b CF,CH,OH 

or CH,CI,' K,CO, o 

(47) 

o R' 

H,O 
O~~l 

-H+ ~ 

OCOPh 

Hydroindolenone (48) 

Scheme 29. 
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Ciufolini also attempted oxidative cyclisation of oxazoline and oxazine derivatives under 

the same hypervalent iodine conditions, resulting in the formation of spirolactams 

(Scheme 31) by N-nucleophile attack while both the oxazine and oxazoline ring were 

opened by subsequent hydrolysis without any sign of quinolone formation. 

Co ~ NHTs 
AcO( 

0 
N 

DAIB. Ac.,O 
N H • 

-...:::: 48% NTs 
..Q-

- \ 
HO ..Q- Ac 

0 

0 Eln 0 

Hf: 

, 
AcO ' 

DAIB, Ac.,O ~N 
Bn • ;/ 

17 % 
..Q-

0 
HO 

Scheme 31. 

Nevertheless, Kita's work on hypervalent iodine chemistry has broadened the synthesis 

of spirocyclic lactones or lactams by hypervalent iodine oxidation to bicyclic 

hydroindolenones and hydroquinolenones. Wipf 53 has adopted Kita's method to 

synthesize some Stemona alkaloid natural products 'useful alkaloids of pharmaceutical 

interest' via a formation of azabicyclic hydroindolenone derivatives (57) in highly 

stereoselective fashion, by oxidation of tyramine or tyrosine derivatives with a small 

excess of BTlB or DAlB, respectively, in the presence of an alcohol. In reaction with 

protected tyramine (55), methanol as nucleophilic source and also as co-solvent attacks 

the electrophilic aromatic ring created by the hypervalent iodine reagent, forming the 

spiroaddition of methoxy dienone (56) (Scheme 32). On basification, attack by the 
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nitrogen lone pair from the carbamate led to stereoselective cis-azabicyclic enone 

formation (57). Similar reaction with tyrosines (58) also yielded another cis-azabicyclic 

enone (exo) derivative (61) (Scheme 32) either through separate steps, via spirocyclic 

(59) and then ring opening to hydroxydienone (60) followed by ring closure, or in one 

pot, but the mechanistic approach is quite different from the tyramine case due to the 

carboxyl group that is present. One possible explanation of exo-isomer formation is the 

presence of an intramolecular H-bond between the tertiary alcohol and the ester 

functionality that is responsible for the extra stability in the exo-isomer. 

H 
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CO,H 

RHN 
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Scheme 32. 
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5.0 Dehydrogenation 

Dehydrogenation reactions are becoming of broad synthetic utility. A typical reaction is 

when a pair of hydrogen atoms are removed in a reaction substrate to give unsaturated 

bonds in the product. Dehydrogenation is often used during the last step of a synthesis for 

forming polycyclic aromatic compounds or their derivatives or formation of steroid 

derivatives.54 More recently, it was also used for coupling of secondary silanes55 or for 

inversion of a fJ-chiral carbon centre of a steroid-based substrate.56 

Traditional methods of dehydrogenation often involved sui fur or selenium. They are still 

useful for the synthesis of unsubstituted polycyclic aromatic ring systems even though 

they are unpleasant to handle. Apart from the sui fur-type dehydrogenation, metal 

catalysed dehydrogenation is also common, such as palladium or platinum supported on 

activated charcoal. Oxidising reagents like manganese dioxide, 2,3-dichloro-5,6-dicyano-

1,4-benzoquinone (DDQ) or o-iodoxybenzoic acid (lBX) have been reported as used for 

dehydrogenation. Newer catalytic transition metal complexes reported by Crabtree57 and 

Jensen 58 have been of interest over the last two decades. Crabtree used an iridium 

complex to dehydrogenate cyclopentanes to cyclopentadienyls using a hydrogen 

acceptor. This iridium complex, now known as a "pincer-ligated iridium" complex, has 

been used for selective dehydrogenation of alkanes and alkyl groupS.59 
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5.1 Dehydrogenation With Sulfur And Selenium 

Sulfur and selenium are the classical reagents for dehydrogenation. Sulfur exists in 

several molecular forms including a stable eight-membered ring crown conformation or 

as linear chains of widely variable length. 60 Selenium also exists in various forms, such as 

a cyclic Ses structure. 

The reason suI fur and selenium act as dehydrogenation reagents is due to their tendency 

to complete their outer electronic configurations of3s23p4 or 4s24p4. This can be achieved 

by acquisition of two electrons with formation of the gases, H2S and H2Se, that are 

however toxic with distinctive odours. The exact mechanism of dehydrogenation by 

using selenium and suI fur is not well established hence it will not be discussed here. 

Evidence suggests a radical mechanism is involved, with abstraction of hydrogen atoms 

from allylic or benzylic positions, while other possible mechanisms are not conclusively 

ruled out.60 Some typical examples of dehydrogenation of hydroaromatic compounds are 

shown below (Scheme 33). It is interesting to compare the dehydrogenation of the phenyl 

ketone using sulfur and palladium-carbon; the carbonyl group survived well under the 

sulfur conditions whereas reaction over palladium-carbon gave the reduced but aromatic 

hydrocarbon 2-benzylnaphthalene as prodUCt.61 

41 



£CS Me 

5 
• 

< ( ) ) 
Me Me 

5 

0 

"':: PdlC 
"':: 

~ ~ 

! 5,2700(; 

0 

58% 

Scheme 33. 

5.2 Catalytic Dehydrogenation 

In general, dehydrogenation on a metal catalyst proceeds more readily and in better yield 

when the starting material structure is closer to aromatic. Bulky substituents tend to 

reduce the rate of reaction, but alkyl substitution has little influence on the overall 

reaction rate or the temperature required, except where the substituent interferes with 

adsorption on the catalyst surface. Therefore, methyl groups may cause inhibition to a 

dehydrogenation reaction since steric blockage may hinder association with the catalyst.62 

The rate of dehydrogenation of cis-9,10-dimethyl-9,10-dihydroanthracene (62) to 9,10-
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dimethylanthracene over 10 % Pd/C in refluxing diglyme greatly exceeded that of the 

corresponding trans stereoisomer (63) as measured by the percentage conversion (90 % 

and 2 % respectively) in a 12 hour reaction (Scheme 34).63 Similar results were obtained 

using monoethyl and diethyl homologues of (62). 

H\ 
CH, 

H~ •. CH, 

PdlC PdlC 
• • 

90% 2% 
" H CH, CH, H,C~ H 

(62) 
(63) 

Scheme 34. 

Catalytic dehydrogenation mayor may not necessarily employ a solvent. In the absence 

of solvent, reactions are usually carried out at higher temperature, 300 0(: and above. 

Reactions in solution are generally conducted in high boiling solvents at reflux, such as 

cumene, nitrobenzene, quinoline and polyglycol ethers.63 

Catalytic dehydrogenation is a reverse of catalytic hydrogenation, the two processes 

involving the same mechanisms but proceeding from the opposite direction. Unlike 

hydrogenation, little study of dehydrogenation has been conducted. Experimental 

evidence supports the generalization that hydrogenation involves cis addition of two 

hydrogen atoms from the less hindered side of the double bond or polycyclic ring system. 

Hence, dehydrogenation involves predominantly cis hydrogen abstraction. Competing 

secondary processes, including olefin isomerisation, hydrogen exchange and 

epimerisation, may occur simultaneously on the catalyst surface, complicating attempts to 

study the mechanism of the hydrogenation-dehydrogenation process. In spite of these 

difficulties, it is now reasonably well established that hydrogenation occurs by stepwise 
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transfer of hydrogen atoms to the adsorbed molecule, rather than by concerted cis 

addition. The simplest explanation of the mechanism of dehydrogenation was proposed 

by Horiuti and Polanyi.64 

5.3 Quinone Reagents 

Quinone reagents have become more popular in recent years for dehydrogenation. They 

have been used for a wide range of compounds including natural products and 

carcinogenic hydrocarbon metabolites,65 such as steroid or chromone derivatives. One 

reason for their popularity is due to mild reaction conditions, usually around 100 QC or 

below. Among many quinone reagents, 2,3-dichloro-5,6-dicyano-I,4-benzoquinone 

(DDQ), p-chloranil and o-chloranil are the most widely used (Figure 9). For 

dehydrogenation of steroids, traditional reagents such as 9,10-phenanthraquinone and its 

nitro derivatives are frequently used62 but DDQ is increasingly employed for the same 

purpose. 

CI~CN 
CIYCN 

o 

DDQ 

CI~CI 
CIYCI 

o 

p-chloranil 

Figure 9. 

o-chloranil 

A first versatile use of DDQ for dehydrogenation was reported by Linstead, Braude, 

Jackrnan and co-workers 54,66 with an ionic mechanism suggested for the process.67 
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The reaction is a bimolecular process, where the initial rate determing step is based on 

slow hydride ion transfer from the substrate to the quinone (eq. I). The resulting product 

conjugate acid transfers its remaining proton much more rapidly to the hydroquinone 

anion, leading to the dehydrogenation product and the hydroquinone (eq. 2). 

--,s",lo,,-w_.~ AH+ + QH" eq. I 

AH+ + QH· fast ~ A eq.i 

eq.3 

Other than initial hydride ion transfer, it is worth mentioning that a charge transfer 

complex may intervene in the initial step of the overall reaction sequence (eq. 3),54 since 

the effective quinones are also known to favour forming such complexes. 

Acid catalysed conditions promoting the protonated quinone cation, QH+, could also 

increase the efficiency of quinones as hydride acceptors (eq. 4 - 6). Others have however 

suggested that the reaction might proceed simultaneously rather than by stepwise 

hydrogen transfer. 

--__ ~ QW eq.4 

eq.5 

----~ A + H+ eq.6 

The solvent polarity is known to affect the stereoselectivity of elimination. When 

benzene is used with DDQ in dehydrogenation it gives the cis elimination product, but 

when the solvent polarity increases, the cis elimination ability decreases.54 Most proton 

eliminations give the alkene product, but in some cases, Wagner-Meerwein-type 
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rearrangements occur prior to loss of proton, therefore attention must be paid to predict 

which intermediates may undergo Wagner-Meerwein-type rearrangements.54 

One of the most common uses of dehydrogenation is for steroid synthesis, where a 

hydride ion is removed from an allylic position. Selection of the quinone reagent used 

can lead to regioisomeric products. to4-3-Keto steroids react with DDQ alone to give to l
•
4

_ 

3-keto steroids while reaction with chloranil leads to to 4.6 -3-keto steroids. In the presence 

of anhydrous hydrogen chloride as a catalyst, DDQ reaction also gives the to 4.6 -3-keto 

steroids (Scheme 35). The outcomes can be explained based on preferred enols under 

different conditions. 

DDO 
• 

HC;~ 
~ HO 

lose of 7-H 
o 

o 

DDo 

HO lose of 1-H -
4 o 

Scheme 35. 

DDQ has also been used within the synthesis of a squalamine from methyl 

chenodeoxylcholanate56 (Scheme 36) where the a.,B-unsaturated ketone is formed via a 

dehydrogenation process which is followed by reduction with lithium in ammonia which 

resulted in inversion at the ,B-chiral carbon centre. 
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In summary, dehydrogenation via quinone reagents proceeds as a bimolecular reaction, 

with the reaction being faster in polar solvents than in non-polar solvents. The rate is 

unaffected by radical initiators, but influenced by the oxidation potential of the quinone 

and catalysed by proton donors. Consideration of which reagent to use and the 

mechanism leading to any intermediates can be useful if a particular regioisomer is 

required. 
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6.0 Result And Discussion 

6;1 Basic Chromophore Unit 

As outlined .in .the introduction, it was proposed initially to prepare models of the 

pyoverdin chromophore lacking the Nand C termini of the pseudopeptide moiety 

(Scheme 37). We also planned to investigate formation of the lower (5-membered) and 

higher (7-membered) homologues in the cyclic amidine ring. The biomimetic synthesis 

proposed would mean that the tricyclic unit could be obtained from oxidative cyclisation 

(O.C.) of a cyclic amidine carrying a phenolic substituent, in the presence of a 

hypervalent iodine reagent. Further oxidation of the cyclised tricyclic unit would produce 

the aromatic tricyclic quinoline as the chromophore model unit. 

OH 

OH 

HN-----1 )n 

~+/ 
I N 

OH 

Scheme 37. 

NJJ)n 
retro o.e N 

H 

~ => 
OH OPG 

n = 1, 2, 3 

The synthesis began with formation of the cyclic amidines required as precursors for the 

oxidative cyclisation. The 6-membered ring cyclic amidine, a tetrahydropyrimidine, can 

be considered as a model for the key unit of ferribactins, where the ferribactin is oxidized 

during biogenesis of the pyoverdin chromophore in the presence of enzymes. Begley also 

obtained models of dihydropyoverdin and the pyoverdin chromophore from cyclic 

amidines through oxidation using enzymes such as PolyPhenol Oxidase (PPO) (Scheme 

38).18 
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Cyclic amidines can be formed from an imidate salt corresponding to the C-2 carbon. To 

generate the cyclic amidine ring, a diaminoalkane is introduced and both of the amine 

groups act as nucleophiles while the imidate carbon serves as the electrophile. 

6.1.1 Formation Of Cyclic Amidine - A Ferribactin Model 

Our synthesis commenced with a simple, commercially available, carboxylic acid, 3-(4-

hydroxyphenyl)propionic acid (64) which was first reacted with 2 mole equivalent of 

benzyl bromide in acetone at reflux in the presence of potassium carbonate to protect the 

phenolic group. The carboxylic acid was also converted into the benzyl ester, so that the 

carboxylic acid group was liberated by hydrolysis with aqueous potassium hydroxide 

under reflux to afford phenol protected 3-(4-benzyloxyphenyl)propionic acid (65) in 73% 

overall yield (Scheme 39). 
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Scheme 39. 

Theoretically, amides can be formed directly by reaction of a carboxylic acid with 

aqueous ammonia, but due to the low electrophilic reactivity of the carboxylate ion the 

rate of nucleophilic substitution is very slow and requires forcing conditions. Hence the 

carboxylic acid was activated by conversion with oxalyl chloride into the acyl chloride 

(66) before reaction with concentrated ammOnIa solution to gIve. 3-(4-

benzyloxyphenyl)propanamide (67) in 73% yield over the 2 steps (Scheme 40). 

~ 

OH (GOGI), 
• 

THF. cat. DMF 
DOG to r.t.. 16h 

GI 
aq. NH3 

• 
THF 
DoG to r.t.. 16h 

OSn OSn OSn 

(65) (66) 97 % (67) 76 % 

Scheme 40. 

The cyclic amidines can be constructed through an intermediate imidate formed by 0-

alkylation of the amide, as described in the introduction. In order to activate the amide as 

an imidate, two good alkylating reagents were chosen for this O-alkylation, 
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triethyloxonium tetrafluoroborate (Meerwein's reagent) and methyl 

trifluoromethanesulfonate (methyl triflate). Weintraub et al. 19 have shown that 

Meerwein's reagent is superior to dimethyl sulfate for O-alkylation of amides. 

Preparation of cyclic amidines via O-imidates is an alternative to t,he S-methyl 

thioimidate route used by some previous workers in our group (see earlier) that usually 

takes more steps; the unpleasant smell of sulfur compounds (or Lawesson's reagent) can 

also be avoided. With insertion of the alkyl group onto the carbonyl oxygen, via lone pair 

donation from the amide nitrogen atom into the carbonyl to promote oxygen alkylation, 

electrophilicity of the carbonyl carbon should be increased and hence provide the 

reactivity required for amidine formation. Imidiate salts can be written in two octet 

resonance forms (Scheme 41) with an electrophilic carbon atom. They are isolable, 

although sensitive to moisture. 

R' 
o Methylating + / 
11 reagent 0 .A - 0)l-

R NH, R NH, 

R = (CH,),C.H4-4-0Bn 

R' = CH,CH, or CH, 

Scheme 41. 

.. 

Overall: An electrophilic reactive 
carbonyl carbon 

The yield of imidate salt formation is highly affected by three factors: hydrolysis, 

temperature and alcoholysis. Hydrolysis resulting in ester formation, usually from 

adventitious moisture, is most serious among the factors. This reaction is accelerated by 

protons and the use of anhydrous diluents and reactants is necessitated. The hydrolysis is 

fast and effective in the case of the lower aliphatic members, which tend to be 

hygroscopic in nature, 15 but less problematic with aromatic imidates. For this reason our 

reactions were performed under anhydrous conditions. The reactions were performed by 

reacting the 3-( 4-benzyloxyphenyl)propanamide with the alkylating reagent in dry DCM 

as solvent during O-alkylation to form the imidate salts, after which the solvent was 
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removed and then dry diamine (l,2-diaminoethane, 1,3-diaminopropane or 1,4-

diaminobutane) was added in the presence of dry ethanol for the cyclic amidine 

formation in situ. According to many reports, formation of imidates via O-alkylation of 

amides with Meerwein's reagent, and then formation of cyclic amidine should be 

straightforward even through the intermediate imidate is moisture sensitive. But during 

our work, it was found that when triethyloxonium tetrafluoroborate was used according 

to the standard method, barely 10% of the corresponding cyclic amidines (68 and 69; 

tetrafluoroborate salts) was obtained with another 40% starting amide compound 

recovered without any of the imidates isolated. Little improvement was seen even if the 

starting material, reagents and solvent were freshly dried for the reaction. 

On the other hand, when methyl trifluoromethanesulfonate was used as alkylating agent, 

the yields could be increased substantially for both 5- and 6-membered cyclic amidines 

(Scheme 42), based on the cyclic amidinium salt produced without basic work up. The 

trifluoromethanesulfonate salt of methyl 3-(4-benzyloxyphenyl)propaniminoether derived 

from the propanamide was reacted with 1,2-diaminoethane and with 1,3-diaminopropane 

to yield 75% of2-[2-(4-benzyloxyphenyl)ethyl]-4,5-dihydroimidazole (68) and 91% of2-

[2-(4-benzyloxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidine (69) respectively (Table I.). 

For the 7-membered ring amidine synthesis, 2-[2-(4-benzyloxyphenyl)ethyl]-4,5,6,7-

tetrahydro-IH-[1,3]diazepinium (70) was formed in 37% yield by activating the amide 

with methyl triflate and then treating with 1,4-diaminobutane in situ. The seven­

membered ring amidine thus gave much lower yield than its 5- or 6- cyclic amidine 

homologues. This is presumably due to less favourable geometry for ring closure and a 

less stable product. 
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The reaction was monitored throughout by TLC, and it was found that the alkylation step 

was incomplete at room temperature, i.e. incomplete formation of iminoether salt, 

whichever of the alkylating reagents was used. As a result only around 50% cyclic 

amidine was produced initially from the triflate reagent when the reaction proceeded at 

ambient temperature. However, if the methylation was carried out at higher the 

temperature of reflux with DCM for 3 hours (Scheme 43), the yield of amidine was 

enhanced to as much as 90% for the 6-membered ring amidine despite reducing the 

duration of the heating with diaminoalkane to I to 2 days (Table I), less than half of the 

original timing. Prolonging the heating beyond 3 hours during the alkylation gave no 

further improvement in the yield for either 5- or 6-membered cyclic amidine. This 

implied the cyclisation reaction was critically dependent on the methylation step where 
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the alkyl group attached onto the amide oxygen. If the amide could not be fully alkylated, 

lower quantities of iminoether would be present for the formation of cyclic amidine. 

Treating the imidate salt with diamine in the presence of alcohol also showed no sign of 

any reaction of the imidate salt with alcohol to produce the ester, which is presumably 

due to the more reactive nucleophilic diamine being present. 

summarized below in Table I. 

Our results are 

Table 1. A summary of formation of cyclic amidines via O-alkylation. 

Alkylating reagent! conditions Diaminoalkane / Product - the yield is based 
conditions on the assumption of salt! 

Triethyloxonium tetrafluoroborate, 1,3-diaminopropane in 10 % + 40 % s.m. 

ambient temp. in DCM 1 day EtOH, reflux 4 days 

Triethyloxonium tetrafluoroborate, 1 ,2-diaminoethane in 10 % + 32 % s.m. 

ambient temp. in DCM 1 days MeOH, reflux 4 days 

Methyl triflate, r.t in DCM 3 days 1,3-diaminopropane in 35-46 % + 30 % s.m. 

EtOH, reflux 3 days 

Methyl triflate, r.t in DCM 3 days 1,2-diaminoethane in 37-46 % + 39 % s.m. 

EtOH, reflux 3 days 

Methyl triflate, reflux 30mins in DCM, 1,3-diaminopropane in 31 % 

r.t I days EtOH, reflux 2 days 

Methyl triflate, reflux 2 h in DCM 1 ,3-diaminopropane in 45 % + 23 % S.m. 

EtOH, reflux 2 days 

Methyl triflate, reflux 3 h in DCM, r.t 2 I ,3-diaminopropane in 91 %+4%s.m. 

days EtOH, reflux 2 days 

Methyl triflate, reflux 3 h in DCM 1,2-diaminoethane in 75%+ -15%s.m. 

EtOH, reflux 2 days 

No significant improvement over 2 or 3 h reflux with the methyl triflate 
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Our original procedure proposed a basification with aqueous hydroxide during work up in 

order to obtain salt-free cyclic amidine. Unfortunately, only partial salt removal was 

achieved, and the aqueous basic extraction led to lowering the yield of 2-[2-(4-

benzyloxyphenyl)ethyl]-4,5,6,7-tetrahydro-IH-[1,3]diazepinium (70) by at least 10%. 

We decided to maintain the presence of counter ion without basification. To confirm its 

presence and identify the counter ion, it was necessary to crystallise an amidine for X-ray 

crystallography analysis. 

The structure of the 6-membered ring product, 2-[2-(4-benzyloxyphenyl)ethyl]-3,4,5,6-

tetrahydropyrimidinium triflate (69), was confirmed by X-ray crystallography (Figure 9) 

with a triflate anion coordinated with a nitrogen atom of the amidinium cation in a 

repeating chain (Figure 10). The structure also showed that the cyclic amidine exists as a 

planar amidinium portion with the centre of the three carbon unit, labeled as C2A or C2B 

below found to be pointing away from the rest of the plane, in what is known as "an open 

envelope" conformation similar to that found in cyclopentanes (for detail of X-ray results 

see Appendix I). 
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Removal of the protecting benzyl group can be achieved simply by hydrogenolysis with 

10% palladium on carbon and under an atmosphere of hydrogen to afford separately the 

triflate salts of 2-[2-(4-benzyloxyphenyl)ethyl]4,5-dihydroimidazolium (71), 2-[2-(4-

hydroxyphenyl]ethyl]3,4,5,6-tetrahydropyrimidinium (72) and 2-[2-(4-

hydroxyphenyl)ethyl]-4,5 ,6, 7 -tetrahydro-I H-[ I ,3]diazepinium (73) in up to 99% yield 

(Scheme 44). Since the polarity of the amidinium phenols increases significantly over the 

benzyl ethers, in order to obtain the pure phenols, the amidinium salts of the benzyl 

compounds must be purified by silica chromatography prior to the hydrogenolysis. The 

triflate salts survived chromatography intact. The unprotected phenolic imidazolinium 

salt was found to be less stable than the 6- & 7-membered ring cyclic amidinium salts. 

x x 
H2 ' Pd-C, MeOH, r.t. 

• 

99% 
OBn OH 

(68) - (70) x = CF3S03 n = 1 (71),2 (72) & 3 (73) 

Scheme 44. 

After our synthesis was complete, an alternative route to the terahydropyrimidine (72) 

was reported in supplementery information (Scheme 44a) by Begley et al. although only 

in very small scale. IS Our attempts to repeat their approach in the 3,4-dihydroxy series 

were unsuccessful in the ring formation step (see later). 
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6.1.2 Formation Of Quinolinone 
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In order to synthesize the chromophore model based on the pyoverdin siderophore, 

oxidative cyclisation of the phenolic cyclic amidinium salts was carried out with the mild 

selective hypervalent iodine(II1) compound bis(trifluoroacetoxy)iodobenzene (BTIB) as 

an oxidising reagent. The method was based on the reports by Kita and Ciufolini.51
, 52 The 

iodine(III) oxidizing reagents behave characteristically for hypervalent iodine, where the 

phenolic group was oxidized to alkoxy cyclohexadienones (A) (R = Me, Et; n = I, 2, 3) 

in the presence of alcohol I(Scheme 45), where the alkoxy groups (OR) are alcohol 

dependent. Ethanol and methanol were used herein as the solvent and as well as the 

source of nucleophile leading to the formation of the cyclohexadienone. The hypervalent 

iodine reagent acted as electrophile which was attacked by the mild nucleophilic phenol 

oxygen and the oxidation took place by nucleophilic alcohol attack at the para position to 

the phenolic group hence furnishing the alkoxy 4,4-disubstituted cyclohexa-2,5-dienone 

with loss of iodobenzene (Scheme 45). The alkoxy dienones are susceptible to 
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nucleophile, here the cyclic amidine nitrogen, which would promote a subsequent 

intramolecular 1,4-Michael cyclisation. 

The cyclohexadienones (A) were hard to isolate in pure form due to their instability and 

their high polarity, although NMR spectroscopic evidence indicated their formation. 

Attempts to isolate the products were unsuccessful by silica chromatography or neutral 

Florisil, but these cyclohexadienones could be spontaneously cyclised and separated in 

the presence of basic alumina via intramolecular Michael-type I A-addition by the lone 

pair of electrons from the amidinium nitrogen atom onto the (l,,B-unsaturated 

cyclohexadienone ,B-carbon. This resulted In 39 46% of various ke/o-

methoxyquinolinones (74, 76 & 78) from BTlB oxidations in methanol, which were 

separated on a basic alumina column; no enol-methoxyquinolinones were obtained. The 

moderate yields in these oxidative cyclisations were not unusual as many hypervalent 

iodobenzene transformations of complex phenolic substrates reportedly proceed in only. 

around 50% yield, which may suggest an innate limitation of oxidation with hypervalent 

iodine reagents. The cyclisation can either be carried out in situ with a mixture of BTIB 

and basic alumina in the reaction, or it can take place during alumina chromatography of 

the cyclohexadienone. This kind of intramolecular cyclisation also takes place in the 

basic environment of sodium or potassium carbonate with polar solvent, as reported by 

Kita and Wipf,S!,S3 due to neutralization of the amidine salt under basic conditions. The 

corresponding ethoxyquinolinones (75, 77 & 79)· were isolated from basic alumina 

chromatography after BTIB oxidations in ethanol. 
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Oxidation Cyclisation 
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A milder hypervalent iodine reagent, diacetoxyiodobenzene (DAIB) was also used in the 

oxidative cyclisation to give relatively similar yields of the quinolinone product as 

obtained using BTIB ·but the rate of reaction was slower since the electronegativity of the 

two acetoxy ligands is far less than the bis-trifluoroacetoxy, hence the electrophilicity of 

the iodine atom is reduced and therefore the overall reactivity is lower. Reaction with 

DAIB took at least several hours to reach the yield that could be obtained with BTlB in 

less than 30 minute at ambient temperature and no advantage was observed. 

It has been known that the oxidation of phenol with hypervalent iodine (Ill) reagent 

would promote nucleophilic addition to the ortho / para positions but this has been little 
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applied for nucleophilic nitrogen. Both oxygen and fluoride nucleophile, 68 for example 

from alcohol and pyridinium polyhydrogen fluoride, have been used for para- oxidation 

of phenol. One example of the spirocyclic addition by a nitrogen nucleophile with 

oxazine and oxazoline was reported by Ciufolini et al., and this will be discussed hiter. 

Ciufolini and his co-workers carried out a series of experiments related to our alkoxy 

addition with hypervalent iodine(III) reagent which included endeavoring to work on 

spirocyclic addition of imidazolines but only generated quinolinones through oxygen 

spiro addition and nitrogen 1,4-Michael cyclisation (Scheme 30), similar to the oxidative 

cyclisations that we report herein. However, no experimental details were presented.52 

Of the by-products of the oxidation reaction, the iodine(II1) reagent produced 

iodobenzene from the reductive elimination, that was removed by extraction between 

petroleum ether and acetonitrile, and the TFA by-product was partially removed by 

reduced pressure rotary evaporation, or remained on the basic alumina during 

chromatography. Formation of the bridgehead methoxy-octahydroazepinoquinolinone 

(78), methoxy-hexahydropyrimidoquinolinone (76) and methoxy-hexahydroimidazo­

quinolinone (74) from methanol gave at least 10 to 20 percent better yield than the ethoxy 

quinolinone counterparts (79, 77 and 75) deriving from ethanol as solvent, and perhaps 

this was due to the slightly less steric hindrance to insertion of the nitrogen in the Michael 

addition. 

Generation of the 5-membered ring methoxy- and ethoxy-hexahydroimidazoquinolinones 

(74, 75) afforded lower overall yields than other quinolinones (76 - 79). Perhaps the 

substrates were less reactive or the products were more difficult to purify using 

chromatography. Similar derivatives obtained by Ciufolini were also reported in around 

30 % yield. The geometry of the 5-membered ring dihydroimidazole possibly restricted 

the approach trajectory required for the 1,4-Michael cyclisation onto the u,ji-unsaturated 

cyclohexadienone. It must also be noticed that the keto-quinoline could exist with 

diastereomeric configurations at the ring junction. 
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Crystallisation of the tritlate salt of ethoxy-hexahydropyrimidoquinolinone (77) from 

chloroform provided crucial information after carrying out the X-raycrystallography. 

The data confirmed the cis ring junction configuration with the cyclisation having taken 

place from the opposite face to the ethoxy group (Figure II & Appendix 11). Once again 

the triflate counter ion was seen to coordinate with a protonated nitrogen atom. No sign 

of Irans diastereoisomer was observed or identified either from the NMR spectrum or the 

X-ray structure. 

. HN~ 
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~ 
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Figure 11. 
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An effort to oxidatively cyclise the phenolic amidine (72) with N-chlorosuccinimide 

failed to afford the cyclised product after alumina column. It is suggested a chlorinated 

phenol may have been formed by using NCS.69 Another mild oxidizing reagent, bis(4-

methoxyphenyl)tellurium oxide (SI) was made from base hydrolysis of bis( 4-

methoxyphenyl)tellurium dichloride (SO),70 derived from dry anisole and tellurium 

tetrachloride (Scheme 46),71 to attempt the oxidation and cyclisation of the 2-[2-(4-

hydroxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidinium (72) but again this failed to afford 

any substantial product. 

~CI'-I\_ Tee.., Me0---G--_~ te~-/; OMe 
>1000C. 6h Cl 

(80) 72% 

Scheme 46. 

aq.NaOH 
95'C. 1.5h 

• 0 

Meo-Q-Ve-{ }-OMe 
(81) 57% 

Due to the instability and polarity of the intermediate cyclohexadienone, it was 

impossible to separate any of the cyclohexadienone. Thus, it was not clear whether the 

moderate yield was due to the oxidation step or the intramolecular cyclisation step. A 

strategy was adopted to attempt to reduce the polarity of the dienone by protecting the 

amidine with a tert-butyloxycarbonyl (Boc) group in the hope that the dienone 

compounds might be able to isolate and purify. 2-[2-(4-Benzyloxyphenyl)ethyl]-1(3)­

tert-butyloxycarbonyl-3,4,5,6-tetrahydropyrimidine (S2) was produced from di-tert-butyl 

dicarbonate and the corresponding pyrimidinium triflate (69) and this was subsequently 

hydrogenated to remove its benzyl protecting group as before and produce phenol (S3) 

(Scheme 47), which was then treated with BTIB in methanol to oxidize without 

cyclisation, to yield dienone (S4) in only 20 % yield. The compound was isolated after 

silica chromatography but appeared to be unstable, decomposing by the next day at room 

temperature which may be due to the sensitive dienone group. Although we do not have 
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definitive evidence to explain why the oxidative cyclisation was overall moderate­

yielding, it is likely to be due to the instability ofthe dienone formed. 

x- HN::'J 
~+ NH 

(69) 

(Boc),O 

THF. NaHCO,. 
• 

L. 16h 

OBn 

X- = CF,SO, 

~ H,/10% Pd(OH), - C 
• 

.---::: MaOH,20h 

OBn 

(82) 61 % 

Scheme 47. 

~ 
BTlB. MeOH, N, 

• 
MeO 

1h 
.---::: 

OH o 

(83) 99 % (84) 20 % 

6.1.3 Formation Of Tetrahydropyrimidoquinolinium Salt A 

Dihydropyoverdin Model 

According to the hypotheses for the biosynthesis of the pyoverdins,17, 18 

dihydropyoverdins were recognised as one of the key intermediates in the process of 

pyoverdin chromophore formation, that occur after oxidative cyclisation offerribactin but 

before oxidation to the final pyoverdin chromophore. Following this pathway, 

preparation of our pyoverdin chromophore model through a biomimetic strategy requires 

that the alkoxy quinolinone undergoes an elimination of the alkoxy group in order to 

regain the benzene aromaticity such that the model is then equivalent to the 

dihydropyoverdin in a biomimetic sense. 

Both the methoxy and ethoxy bridgehead substituents of the keto-quinolinones (74 - 79) 

need to be removed to achieve the aromatic ring. Elimination of alcohol could be carried 
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out by acidification, where the alkoxy functionality is protonated prior to elimination. 

Various acidic protocols were attempted using (77) with the results summarised in Table 

2 below. Neither neat trifluoroacetic acid nor hydrochloric acid at ambient temperature or 

at reflux gave any sign of the desired hydroxyquinoline product. Passing the compound 

through acidic or basic Amberlyst resin also did not afford any product. Elimination 

using DBU as base also failed to yield product. Use ofneat trifluoromethanesulfonic acid 

(TFSA) at room temperature and then distillation in a Kugelrohr apparatus did however 

give the expected hydroxyquinoline from the ethoxyquinolinone. Later it was found that 

the reaction would not occur if heating was not used, despite TFSA being one of the most 

powerful monoprotic acids. Heating the reaction with TFSA is thus crucial. 

Table 2. Conditions used in attempting to remove the ethoxy group from (77). 

Conditions Work up Results 

In trifluoroacetic acid at ambient Acid removed by high No change 

temperature vacuum rotary evaporation 

In TF A with reflux for an hour As above No change 

Acidic Amberlyst resin in methanol at Filtration then remove No change 

room temperature solvent 

Acidic Amberlyst resin in DCM with As above No change 

reflux 

Stirring at room temperature with HCl Remove acid No change 

Basic Amberlyst resin in ethanol at As above No change 

room temperature 

Basic Amberlyst resin in ethanol with As above No change 

reflux 

DBU in DCM reflux No No change 

Trifluoromethanesulfonic acid (TFSA) Acid removed by ethoxy group· . 

at room temperature Kugelrohr then neutralised removed, gave 38% 

TFSA at room temperature Neutral ised to pH 8 No change 
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Although both the bridgehead ethoxy and methoxy groups in the tetrahydropyrimidino­

quinolines were removed successfully using TFSA, different quinoline derivatives were 

obtained. Elimination of ethanol from 6a-ethoxy-2,3,6,6a, 10, I Oa-hexahydro-lH,5H­

pyrimido[I,2-a]quinolin-9-one (77) in the presence of neat TFSA took place firstly by 

protonation of the ethoxy group followed by ethanol elimination on heating and 

tautomerisation to the 2,3,5,6-tetrahydro-lH-pyrimido[I,2-a]quinolin-9-01 salt (85) in 

38% yield. 

X- H~I:) x- H~I:) H~I:) X - H~I:) 
X 

Acid N -EtOH N /:',. N N 
• - • H 

/:',.1h 
c:/ EtO 

o ~ 
0 0 0 

(77) (77a) X = CF3S03 (85) 38% 

Scheme 48. 

Elimination of the methoxy group from (76) surprisingly gave a different quinoline, and 

this was identified by the observation of an unexpected singlet peak at 83.8 in the proton 

NMR spectrum which corresponded to a methoxy group. This can be explained by the 

elimination of methanol which further reacted with the excess tritlic acid to form methyl 

tritlate (Scheme 49). This methyl tritlate acted as an alkylating reagent with the initial 

elimination product 2,3,5,6-tetrahydro-lH-pyrimido[1,2-a]quinolin-9-01 resulting in the 

formation of 9-methoxy-2,3,5,6-tetrahydro-lH-pyrimido-[1,2-a]quinolinium salt (86) as 

well as a small quantity of the 2,3,5,6-tetrahydro-lH-pyrimido[I,2-a]quinolin-9-01 salt 

(85). The conversion was improved by using a combination of tritluoromethanesulfonic 

acid and "excess of methanol at retlux for 2 - 3 hours to give 32% of the methoxy­

quinolinol (86) exclusively. When heating was prolonged for a further one to two hours, a 

maximum 57% of product was obtained. 
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H~I:) 
-

H~:) CF,SO,H + MeOH - CF,SO, + 

H~I:) CF,SO, 

Y N CF,SO,H N 
",H • N 

MeOH, reflux, 4h CF,SO,Me 
MeO • c:/' 

° OH 
Methylation 

~ 

(76) 
(85) (86) 57% 

Scheme 49. 

Analogous to the methoxyquinolinol formation, elimination of the ethoxy group from the 

ethoxyquinolinone (77), as ethanol, should generate some ethyl triflate that might act as 

an ethylating agent on the phenolic group. In fact, this did not happen here, implying that 

the ethyl triflate is less effective toward the alkylation and perhaps elimination leading to 

formation of ethane also intervened. 

The formation of 9-methoxy-2,3,5,6-tetrahydro-lH-pyrimido[I,2-a]quinoline salt (86) 

was confirmed by X-ray crystallographic examination (Appendix 11). The X-ray structure 

confirmed the presence of the methoxy group at the C-9 position which supported the 

theory of re-methylation, and showed the triflate anion coordinated with the protonated 

N4 nitrogen where the protonated imine nitrogen is associated with two of the sulfonate 

oxygen atoms (Figure 12 & Appendix Ill) (Crystallographic atom numbering illustrated). 
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Figure 12. 

The counter anion was difficult to remove by basic washing and the source of anion was 

inherited either from the earlier tetrahydropyrimidine formation or from the tritlic acid 

used during the alcohol elimination. A single crsytal X-ray crystallography structural 

examination of the benzyloxytetrahydropyrimidine (see Figure 9 earlier) suggested that 

the tritlate anion is probably retained throughout the synthesis. 

Although aromatisation of the benzene ring of the quinoline could be accomplished, the 

process of protonation and elimination was harder to complete than was anticipated. This 

was probably due to the cyclic amidine nitrogen being protonated, which meant that in 

order to protonate the alkoxy group, the molecule must exist as a di-cationic species 

(77a) (Scheme 48). 
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6.1.4 Formation Of Dihydropyrimidoquinolinium Salt - A Pyoverdin 

Model 

In order to complete the biomimetic synthesis of the key pyoverdin chromophore model, 

the 9-methoxy-2,3,5,6-tetrahydro-IH-pyrimido[I,2-a]quinolinium salt (86) must be 

converted through removal of the hydrogens at C-5 and C-6 by oxidative 

dehydrogenation. Utilizing oxidizing reagents such as manganese dioxide, the 

dehydrogenation catalyst palladium-on-carbon, or through NBS bromination followed by 

dehydrobromination failed to promote formation of the desired product (Table 3). When 

the reaction was carried out with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) at reflux 

in dioxane it yielded up to 38% dehydrogenated product. Another high boiling point 

solvent, nitromethane, was used initially to give a similar effectiveness of 

dehydrogenation, but due to safety concerns of heating nitromethane, dioxane remained 

the preferred choice (Scheme 50). It is important to emphasize that the purification of the 

resulting dehydrogenated product was problematic. Neither silica nor florisil flash 

chromatography were able to deliver the pure product, it either eluted with the starting 

material or associated with the DDQ reagent or its by-product; Running liquid 

chromatography-mass spectrometry indicated that the starting material and 

dehydrogenated product were co-eluting. Fortunately, pure 9-methoxy-2,3-dihydro-lH­

pyrimido[I,2-a]quinolinium salt (87), could be obtained by column chromatography of 

the crude products over basic alumina with a gradual increase in eluent polarity of 

methanol in dichloromethane from 3 - 6%. 
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Table 3. Conditions used for dehydrogenation of 9-methoxy-2,3,5,6-tetrahydro-lH­

pyrimido[1,2-a]quinolinium salt (86). 

Reagent Conditions Column Product 

Pd-C Reflux 3 day, CH3N02 None No reaction 

Mn02 -Reflux 3 day, MeCN None No reaction 

NBS UV None No bromination 

DDQ Reflux 2 day, CH3N02 Silica Impure, < 20 % 

DDQ Reflux 2 day, MeCN Silica Impure, < 20 % 

DDQ Reflux 2 day, CH3N02+CCI4 Silica Impure, < 20 % 

DDQ Reflux 2 day, dioxane Silica Impure, < 20 % 

DDQ Reflux 2 day, diglyme Silica No isolation 

DDQ On silica, microwave Silica Impure, 30 % 

DDQ Reflux 2 day, dioxane Florisil Impure, 21 % 

DDQ Reflux 2 day, dioxane Basic alumina Pure, 38 % 

CF,SO, 

ooa, Dioxane, reflux 

CF,SO, - + 

HNI:) 
I N • 

OMe OMe 

(86) (87) 38 % 

Scheme 50. 

It is not exactly known what is the mechanism of the DDQ dehydrogenation. Two 

possible proposals are shown below (Scheme 51) in terms of H+ loss to form a dienamine 

followed by loss of H- (path a) with DDQ reducing from quinone to quinol, or vice versa 

by losing a hydride anion, picked up by DDQ, and then elimination of proton (path b). 

The final oxidized methoxyquinolinium product (87) was recrystallized in ether and 
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chloroform to produce a sample suitable for X-ray crystallography. From the X-ray 

structure result (Figure 13 & Appendix IV), it was found that the triflate counter ion had 

stayed firmly with the pyrimidino system and the aromatic quinoline now existed as a 

planar structure once the pair of hydrogen atoms were removed. 
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Scheme 51. 
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FI2J 

Figure 13. 

Prior to the formation of the methoxyquinolinium (87), we also prepared the much more 

polar hydroxyquinolinium (88) compound (Scheme 52) after the DDQ dehydrogenation 

of the 2,3,5,6-tetrahydro-IH-pyrimido[1,2-a]quinolin-9-01 salt (85). A proton NMR 

spectrum proved the success of the dehydrogenation but no further spectroscopic data 

was obtained as only a small quantity of product was identified and this proved much 

more difficult to handle than the less polar methoxy derivative (87). Compound (88) is 

potentially a zwitterionic species, due to the basic amidine functional group and the 

acidic phenolic group. 

CF,SO, H~I:) CF,SO, H~I:) 
DDQ, Dioxane N N .. 
reflux, 2 days 

OH OH 
(85) (88) 10% 

Scheme 52. 
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6.1.5 Formation Of Methoxytetrahydrodiazepinoquinolinium Salt - A 

Diazepine Analogue 

The methoxy bridgehead substituent of the homologous octahydrodiazepinoquinolinone 

(78) was also removed by elimination, again using trifluoromethanesulfonic acid and 

excess methanol, to give only a methoxy hexahydrodiazepinoquinolinium salt (89) in 

66% yield (Scheme 53). It was believed that the use of excess methanol (10 times) would 

lead exclusively to the exclusive methoxy product via in situ formation of methyl triflate 

as a methylating agent as proposed earlier. The original work on the removal of the 

ethoxy bridgehea<;!?fthe tetrahydropyrimidoquinolinone (77) in neat triflic acid without 

any methanol gave a mixture of both the methoxy and hydroxy 

tetrahydropyrimidoquinolinium salts in lower yield. Elimination of the ethoxy bridgehead 

of the octahydrodiazepinoquinolinone (79) in the presence of a methanol and triflic acid 

led exclusively to the methoxyhexahydrodiazepinoqunolinium salt (89) in 50 % yield. 

This demonstrated that the presence of methanol was key to pure methoxyquinoline 

formation. 

Dehydrogenation of the I O-methoxy-I ,2,3,4,6, 7,-hexahydro(1 ,3]diazepino[ I ,2-

a]quinolinium salt (89) with DDQ and dioxane at reflux for 2 days gave the desired 10-

methoxy-I ,2,3,4-tetrahydro[1 ,3]diazepino[ I ,2-a ]quinolinium (90) in 35 % yield, once 

again after column chromatography on basic alumina. Thus the 6- and 7-membered fused 

amidiniums pyrimidoquinolinone and diazepinoquinolinone were transformed to the final 

model chromophore structure and its homologue, except that the 

methoxytetrahydropyrimidoquinolinium was found to be difficult to isolate pure after the 

alkoxy elimination, until basic alumina was used for the separation. 
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Scheme 53. 

6.1.6 Fluorescence Of The Quinolinium Salts 

To assess whether the 9-methoxy-2,3-dihydro-IH-pyrimido[1 ,2-a]quinolinium salt (87) 

and I O-methoxy-I ,2,3,4-tetrahydro-[ I ,3]diazepino[1 ,2-a]quinolinium salt (90) possess 

fluorescent characteristic similar to the natural pyoverdins, both quinolinium salts were 

tested for their UV absorption and hence their fluorescence. Measurement of the UV 

absorption was set to between 200 nm and 550 nm wavelength. At a concentration of 

1.098 x 10-5 M, i.e. I mg 6-membered ring quinolinium in 250 ml I : I ratio of water and 

methanol, the UV absorption was measured respectively at pH 6.5 (original) and pH 9.0. 

It was found that by changing the pH from 6.5 to 9 or even milder acid condition gave no 

major changes in the maximum wavelength of absorption or the extinction coefficient for 
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both the 6- and 7-membered ring quinoliniums (Diagram I). At pH 6.5, the wavelength 

maxima were at 219 nm, 338 nm and 353 nm with the extinction coefficients, e = 63 x 

103, 23 x 101 and 20 x 101
• Based on this measurement, the fluorescence of the 

methoxydihydropyrimidoquinolinium was excited at the wavelength of 219 nm, 338 nm 

and 353 nm (Diagram 2) which resulted in maximum emission at 382 nm from excitation 

at 353 nm. and 372 nm from excitation at 338 nm with fluorescence of 4.8 x 106 and 5.09 

x 106 respectively at pH 6.5. Fluorescence measured at 219 nm excitation produced only 

a negligible value, the maximum emission being 1200 times less than the measurement at 

353 nm. Very little change was observed when the measurement was carried out at pH 

9.0. This indicated that pH adjustment has little effect in the 6-membered ring methoxy 

compound on either the UV absorption or the fluorescence character. Although the 7-

membered ring methoxydiazepinoquinolinium produced similar UV spectra, the 

fluorescence tests only afforded a quarter of the fluorescence values compared to the 6-

membered ring series (See Diagram 3). 
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The UV and fluorescence data as reported from Begley's synthesized chromophore 

model pyoverdins (21) were different to ours!S He reported UV spectra at pH 7.5 

(39Inm, 265 nm & 233 nm), at pH 3.5 (359nm, 308nm, 248nm & 220nm) and pH 9.5 

(406nm, e 100,000), as well as the fluorescence from excitation at 390nm, pH 7.5, giving 

emission at 445nm. This can be explained by structural variation since Begley's 

compound contained a dihydroxyphenyl group that is susceptible to basic conditions, as 

well as the amidine group that can be protonated in an acidic environment (Figure 14). 

Nevertheless, the methoxypyrimidoquinolinium proved to be remarkably fluorescent 

whilst the methoxydiazepinoquinolinium also possessed this character but to a much 

lesser extent. 

_ rl 
0XXfN ~N 

I h- h-
HO 

6.1. 7 Conclusion 

rl 
base " HOXXfN ~N H' 

_.-- I h- h- --.. 
HO 

(21) 

Figure 14. 

In order to mimic the biosyntIietic proposal for the formation of pyoverdin chromophore, 

a key precursor model, the tetrahydropyrimidinium unit, was prepared. Oxidative 

cycJisation of this intermediate via alkoxydienone and intramolecular conjugate addition, 

was the crucial step to form the important tricyclic ring quinolinone and this was 

followed by elimination to yield the quinolinium salt. 

Synthesis of the fluorescent chromophore model of the pyoverdin structure, 9-(methoxy)-

2,3-dihydro-lH-pyrimido[I,2-a]quinoline (87) was successful after dehydrogenation. The 
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total biomimetic procedure gave an overall 4.2% yield (Scheme 54) from the propionic 

acid through an amidine to the dehydrogenated product in 8 steps, i.e. regarding some 

two stage reactions as one step when the intermediates were not isolated. 

o 

OH 

• 

OH 

CF,SO, 

OH 

HN~ 
0-+j 

NH 
• 

CF,SO,- + 

HNI:) 

I N 
• 

• 

o OMe 

8 steps (87) 4.2 % 

Scheme 54. 

The seven-membered ring diazepine analogue was also synthesized, oxidatively cyclised 

and further reacted to give I O-methoxy-I ,2,3,4-tetrahydro[ I ,3]diazepino[ 1,2-a]quinoline 

(90) as final product in overall 2.7% yield (Scheme 55). 

o 
CF3SO, 

OH 

- .. 

OH 

OMe 
(90) 2.7 % 

Scheme 55. 

The X-ray crystal structures provided detailed confirmation of the progress of this 

biomimetic synthesis of the chromophore model. From the cyclic amidine to the 
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oxidatively cyclised alkoxyquinolinone, the eliminated alkoxyquinoline and the final 

fluorescent quinoline chromophore, four intermediates were characterized by X-ray 

crystallography studies. 

6.2 Formation Of Oxazine Analogues 

Following the successful oxidative cyclisation of cyclic amidines, 5-, 6- and 7-membered, 

we decided to investigate the cyclic imidate analogues. Thus the oxazine derivative, 2-[2-

(4-benzyloxyphenyl)ethyl]-5,6-dihydro-4H-(1,3]oxazinium salt (91), which may be 

regarded as analogus to the tetrahydropyrimidine series, was also· synthesized by reacting 

3-( 4-benzyloxyphenyl)propanamide with methyl triflate (Scheme 56) and then with 1.5 

equivalent of 3-aminopropan-l-ol. This cyclic imidate derivative was fonned in a 

relatively low yield of 26% with the propanamide starting material being recovered in 

10% yield, as well as N,N' -bis(3-hydroxypropyl)-3(4-benzyloxyphenyl)propanamidinium 

salt (92) in 30%. The isolation of the bis(hydroxypropyl)amidinium salt might indicate 

that the reactions of the first formed imidate salt with the amine were far more 

favourable than with the alcohol nucleophile, suggesting quantitative formation of the 

bis(hydroxypropyl)amidinium as the initial product. This was supported by the finding 

that further extensive heating at reflux of the bis(hydroxypropyl)amidinium salt (92) for 5 

days produced extra quantities of the dihydro-oxazinium product (91) in up to a total 38 

% yield. Attempting to increase the yield by reducing the ratio of the 3-aminopropan-l-ol 

and propanamide to I : I did not improve the formation of the oxazinium salt or lower 

the proportion of the bis(hydroxypropyl)amidinium salt significantly. 
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Once the benzyl protecting group of (91) was removed by hydrogenolysis in the usual 

way, the 2-[2-(4-hydroxyphenyl)ethyl]-5,6-dihydro-4H-[1 ,3]oxazinium salt (93) this 

formed was oxidized with bis(trifluoroacetoxy)iodobenzene (BTIB) in methanol in the 

presence of solid sodium bicarbonate to form the ring-opened structure 1-(3-
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hydroxypropyl)-4a-methoxy-4,4a,8,8a-tetrahydro-lH,3H-quinoline-2, 7-dione (95) in 

only 19% yield after column chromatography (Scheme 56). The expected octahydro-oxa­

azaphenanthren-6-one salt (94) was not obtained. A similar ring-opening phenomenon 

was reported by Ciufolini and Braun et al. 52 who noted that the ring-opening could occur 

for both oxazinium and oxazolinium salts after employing diacetoxyiodobenzene (DAlB) 

during an oxidation process in non-nucleophilic solvents, to give ring opened spirocyclic 

lactams. They found that the 5-membered ring oxazolinium salt leading to the 

spirolactam gave a lower yield presumably because more strain energy is involved in the 

oxidation reaction intermediate than in the 6-membered ring oxazinium analogue during 

the spirocyclisation (Scheme 57). 
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o 
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DAIB. Ae,O 

• 
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~N o.e 

o 
L'> E "'"0 = less than 2.9 kcallmol 

o 

Scheme 57. 

The reaction that we attempted was not planned to undergo a spirocyclic lactamisation, 

due to the nucleophilic solvent present. We presume that the expected 4-

methyoxydienone underwent spontaneous 1,4-Michael type cyclisation followed by 

hydrolysis of the imino ether-type reactive imidate (Scheme 56). 
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Theoretically, it would be possible to acess the oxidative cyclised octahydro-oxa­

azaphenanthren-6-one salt by O-methylating the ring opened lactam (95) and provoking 

cyclisation to the oxazine under strictly anhydrous conditions, but the sensitive 

azaphenanthrenone may not be particularly stable, so our studies on the imidates were 

concluded at this point. 

6.2.1 Conclusion 

Attempts to synthesize an oxazine substrate for oxidative cyclisation afforded a 

maximum 38% yield of the desired product. Oxidative cyclisation did proceed and led to 

a ring-opened lactam of a type analogous to those which had been reported by others. 

6.3 Dihydroxyphenyl Chromophore Model 

After the success of the oxidative cyclisation methodology to produce a 

monohydroxyphenyl chromophore model, the work was further expanded into the 

dihydroxyphenyl unit. 3-(3,4-Dihydroxyphenyl)propionic acid (96) was selected as the 

appropriate starting compound for this dihydroxy species. In the biosynthesis, the second 

hydroxyl group is believed to be inserted after ferribactin formation during an oxidation 

with an oxidase enzyme. 

The catechol group of the 3-(3,4-dihydroxyphenyl)propionic acid was protected by 

reaction with 4 mol. equiv of benzyl bromide and base, followed by hydroxide hydrolysis 

to afford a dibenzyloxy protected phenyl propionic acid (97) in 88% yield (Scheme 58). 

Following the methodology established in the monohydroxyphenyl series described 

above, the dibenzyl protected propionic acid was then converted to the corresponding 
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propanamide (98) through an acyl chloride intermediate in 80% yield over 2 steps. The 3-

(3,4-dibenzyloxyphenyl)propanoyl chloride was much less stable compared with the 

monobenzyloxy counterpart. By methylating the propanamide with methyl 

trifluoromethanesulfonate in DCM at reflux, evaporation of the solvent and replacement 

with ethanol, and subsequent introduction of 1,3-diaminopropane to the solution at reflux, 

the 2-[2-(3,4-dibenzyloxyphenyl)ethyl)-3,4,5,6-tetrahydropyrimidinium salt (99) was 

produced in 69% yield. 

When the two benzyl protecting groups were removed by hydrogenolysis with palladium­

on-carbon, a very unstable dihydroxyphenyl tetrahydropyrimidinium salt (100) was 

obtained which was found to be sensitive to oxidation in air at room temperature. On 

some occasions, this dihydroxyphenyltetrahydropyrimidinium salt was partially oxidized 

directly in air to give some of the oxidative cyclisation product 2,3,5,6-tetrahydro-1 H­

pyrimido[I,2-alquinolinium-8,9-<iiol salt (101). Evidence that the cyclised compounds 

were formed was provided by IH NMR spectroscopy of the partially oxidized amide 

material, and confirmed by reverse phase liquid chromatography-mass spectrometry (LC­

MS). A mixed chromatograph showing masses of m/z 220 (M"") for free base and mlz 218 

(M"") was observed where the mass mlz 218 detected was due to the loss of 2 protons 

during oxidative cyclisation (Scheme 58). Unfortunately, both compounds were highly 

polar and similar in character on silica or alumina, thus it proved impossible to separate 

them. Either the pure dihydroxyphenyltetrahydropyrimidinium salt (100) or the mixture 

with the dihydroxypyrimidoquinolinium diol salt (101) could be oxidized further using 

manganese dioxide to lead to the same conjugated compound, presumably the 2,3-

dihydro-IH-pyrimido[I,2-a)quinolinium-8,9-diol salt (102). Since the polarity of the 

oxidized compound remained high, the product was only distinguished by reverse phase 

LC-MS once again, with a single product of mass mlz 216 (M+) identified. Only one final 

oxidized compound was identified from the manganese dioxide oxidation, this implied 

that the dihydroxyphenyltetrahydropyrimidinium salt (100) was highly susceptible to the 

full oxidation sequence, especially in the presence of Mn02, while a mild oxidation in air 

gave the unconjugated quinoline diol (101). 
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Efforts to synthesise the same dibenzyloxyphenyltetrahydropyrimidine (99) from the 

corresponding propionic acid methyl ester (103) (prepared from the acid (97) with thionyl 

chloride in methanol at reflux) with trimethylaluminium and 1,3-diaminopropane 

according to the report by Begley et af. (Scheme 59)18 failed to produce the 

tetrahydropyrimidine after several attempts, 
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As an alternative for the 3,4-dioxygenated series, the dimethoxyphenylpropionic acid 

(104) was also converted to the tetrahydropyrimidine (106) using the usual methodology 

and in higher yield than the dibenzyloxytetrahydropyrimidine derivative (99) (Scheme 

60). The proposal was to use the dimethoxyphenyltetrahydropyrimidine for the 

promotion of a possible radical cation hypervalent iodine reaction (Scheme 60) due to the 

strong electron donating effect from the dimethoxy group. Several dimethoxyaryl 

compounds have been reported to undergo successful biaryl coupling reactions through 

the use of hypervalent iodine. However, it was not possible to isolate the desired product 

in our case, using BTIB as oxidant. 
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6.3.1 Conclusion 

The dihydrophenyl synthesis gave 69% of the corresponding cyclic amidine with benzyl 

protection (99) and up to 56% from methyl protection (106). Deprotection in the former 

case produced the free dihydroxytetrahydropyrimidne which was found to be easily 

oxidized and led directly to the formation of quinolines although the products were very 

difficult to purify via traditional column chromatography. It may be possible to achieve 

the purification using preparative scale reverse phase HPLC. 
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6.4 Biomimetic Synthesis With Amino Acid Units 

The successful biomimetic approaches to dihydropyrimidoquinolines and 

hexahydrodiazepinoquinolines described above, as models equivalent to the pyoverdin 

chromophore were based on the stepwise biosynthetic hypothesis for pyoverdin 

compounds (Scheme 61), where the tetrahydropyrimidine and tetrahydrodiazepine before 

oxidative cyclisation can be regarded as ferribactin models and the 

tetrahydropyrimidoquinoline and hexahydrodiazepinoquinoline as dihydropyoverdin 

models. We next wished to extend this biomimetic approach from the tricyclic 

chromophore model unit to the complete peptidic unit where the N- and C-termini would 

be involved in the synthesis. Both of the termini should be present prior to the ferribactin 

unit formation in order to follow the biosynthetic findings. To mimic the bioprocess, the 

N-terminus can be derived from a tyrosine amino acid starting material instead of a 

phenyl propanoic acid, since the same amino acid is a precursor in the biosynthesis of 

pyoverdins. The C-terminus can be obtained directly from a -L-2,4-diaminobutyric acid 

instead of the 1,3-diaminopropane, for the construction of the cyclic amidine peptidic 

unit. Single enantiomers of diaminobutyric acid or the racemic mixture, and single 

enantiomers of tyrosine, are readily available commercially. 
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It was decided that the synthetic work on the ammo acid units would be built up 

sequentially with incorporation of a single precursor amino acid first, either the tyrosine 

. or the diaminobutyric acid to introduce either the N- or C-terminus, with another non­

amino acid unit as the partner (Scheme 62) before investigating construction of the full 

ferribactin unit with both amino acid units combining together. 
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6.4.1 Cyclic Amidines With a C-Terminus 

To synthesize the carboxylic acid substituted cyclic amidines, different 

diaminocarboxylic acids, such as D,L-2,3-diaminopropionic acid mono hydrochloride, L-

2,4-diaminobutyric acid dihydrochloride and D,L-2,5-diaminopentanoic acid 

monohydrochloride were used. Each of the diaminocarboxylic acids was reacted with 3-

(4-benzyloxyphenyl)propanamide via the reactive imidate formed by O-alkylation with 

methyl triflate as discussed earlier (Scheme 63). As the carbon chain length increases, 

solubility of the carboxylic acid in ethanol decreases proportionally, hence the reactivity 

reduced along with the carbon chain increase. The use of the free acids in the ring 

formation was based on published precedence. 72 Formation of 2-[2-(4-
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benzyloxyphenyl)ethyl]-4,5-dihydroimidazole-4-carboxylic acid (108) provided 53% of 

thr desired product, whereas the 2-[2-( 4-benzyloxyphenyl)ethyl]-3,4,5,6-

tetrahydropyrimidine-4-carboxylic acid (109) was formed in only 16% yield at maximum 

after several attempts. 2-[2-(4-Benzyloxyphenyl)ethyl]-4,5,6,7-tetrahydro-3H­

[1,3]diazine-4-carboxylic acid failed to form from the reaction of D,L-2,5-

diaminopentanoic acid and the activated benzyloxyphenylpropanamide, presumably 

since the diaminopentanoic acid was almost insoluble in ethanol during reflux. To 

remove the problem of polarity, both the 5- and 6-membered ring cyclic amidine 

carboxylic acids were esterified with 2,3-dimethoxypropane using a small quantity of 

acid as catalyst to furnish methyl 2-[2-( 4-benzyloxyphenyl)ethyl]-4,5-dihydro-3H­

imidazole-4-carboxylate (110) and methyl 2-[2-(4-benzyloxyphenyl)ethyl]-3,4,5,6-

tetrahydropyrimidine-4-carboxylate (111) in over 95% yield. The diamino acids were not 

esterifed before reaction with the imidate, since intramolecular lactam formation is 

known to occur. Removal of the benzyl protecting group from (110) by hydrogenolysis 

afforded quantitatively the hydroxyphenyl compound (112) that was ready for the 

oxidative cyclisation, but no evidence of cyclisation, methoxy insertion from methanol or 

even of the methyl ester group was detected by proton NMR spectroscopy in the reaction 

mixture from treatment of this phenolic amidino-ester with 

bis(trifluoroacetoxy)iodobenzene in methanol. An attempt at oxidative cyclisation of 2-

[2-( 4-hydroxyphenyl)ethyl]-4,5-dihydroimidazole-4-carboxyl ic acid (113) after 

hydrogenolysis of acid (108) gave no sign of cyciisation. 

90 



o 

NH2 

OBn 

X - = CF,SO,-

X 

i) TrOMe, DCM, reflux 3h 
• 

ii) (a), EtOH, reflux, base, 1 day 

H2Nlj)n 
~.2HCI 

H2N COOH 

(a) 

+ 

+ 

HNI=-::t: X-

N eOOH 
H 

OBn 

n = 1, 53 %, (108) 
n = 2, 16 %, (109) 
n = 3 (0 %) 

HN~)n -

I,A X 
N eOOMe 

X 

2,2-dimethoxypropane 

• 
W cat., r.t., 16h 

+ 

HN=-::t: 
I N eOOMe 

H 

OBn 

n = 1 (110) 88%, 

+ 

2 (111) 99% 

1 
Pd-C, H2 
MeOH,12h 

HN~)n _ 
I,.A X 

BTlB, MeOH, base, r.t., 4h 
N eOOMe 
H 

o 
/ 

+ 

OBn 

(108) 

• 

???? o 

+ 

_HN~ 
X I N eOOH 

H 

Pd-C, H2 "'" 
MeOH,24h 

OH 

(113) 84% 

Scheme 63, 

"" .--::-
OH 

n = 1 (112) 100% 

BTIB, MeOH, base, 3h 
• ??? 

It was unknown whether the methyl ester group adjacent to the amidine would affect the 

oxidative cyclisation. To prevent such possible interference, the carboxylic acid was 

converted into another less reactive functional group, such as an amide derived from 

another amino acid, which it was believed might inhibit any influence of the ester group 

during the crucial oxidative cyclisation with the hypervalent iodine(III) reagent. In 
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addition, in ferribactin the corresponding carboxylic acid is found as an amide as part of a 

short peptide. 

The carboxylic acid group ofL-2,4-diaminobutyric acid (114) was therefore coupled with 

glycine methyl ester, the simplest amino acid being selected as the amide partner, in order 

to minimize any possible steric effects on the synthesis. Before introducing the second 

amino acid by any standard peptide coupling method, the two amino groups must be 

protected. This also prevents lactamisation upon C-activation. The benzyloxycarbonyl 

protecting group was chosen to mask the diamino unit as this would form stable 

carbamates and the cleavage process can be achieved simply and effectively when 

required. 

One common problem in peptide coupling is racemisation during the base-catalysed 

coupling reaction of an N-protected carboxyl activated amino acid, where an intermediate 

oxazolone can be formed in which the a-proton is significantly acidic. N-Carbamate 

formation from the amino acid can minimize this kind of occurrence and is thus 

preferable to other N-protecting groups, such as N-acyl protection. 

2 Mol. equiv. of benzyl chloroformate was thus reacted with the L-2,4-diaminobutyric 

acid (114) under basic conditions to yield up to 80% of doubly N-protected acid (114a) . 

The peptide coupling was performed by a mixed anhydride protocol, using iso-butyl 

chloroformate and 4-methylmorpholine followed by the addition of glycine methyl ester 

hydrochloride at - \0 °C for 2 hours (Scheme 64). To reveal the amino functional groups, 

the N,N-diprotected diaminobutyric acid amide (115) was subject to hydrogenolysis over 

Pd on charcoal in methanol in the presence of concentrated hydrochloric acid. It is 

essential to carry out the benzyloxycarbonyl group removal under acidic conditions since 

the dipeptide product, L-2,4-diaminobutyrylaminoacetic acid methyl ester (116), is then 

formed as a stable dihydrochloride salt rather than as the sensitive free diaminoester, 

likely to polymerize by itself. 
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The target L-2-[2-( 4-benzyloxyphenyl)ethyl)-3,4,5,6-tetrahydropyrimidine-4(S)-

carbonylaminoacetic acid methyl ester (117), was obtained in 43% by our standard cyclic 

amidine formation. Thus 2-( 4-benzyloxyphenyl)propanamide (67) was methylated with 

methyl triflate and the reactive imidate treated with excess L-2,4-diaminobutyrylamino­

acetic acid methyl ester dihydrochloride salt (116) in the presence of Hilnigs base. The 

increase in yield of cyclic amidine from 16% to 43% when compared to the use of L-2,4-

diaminobutyric acid (Scheme 65) proved that masking the carbonyl unit did improve the 

reaction yield substantially. The phenolic function of the carbonyl substituted 

tetrahydropyrimidine was revealed by hydrogenolysis to provide (lIS) as a substrate for 

oxidative cyclisation. 

Oxidative cyclisation of the hydroxyphenyl pyrimidine (llS) with 

bis(trifluoroacetoxy)iodobenzene in methanol in the presence of solid potassium 

bicarbonate initially afforded a small quantity of the corresponding cyclised quinoline, L-
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[(6a-methoxy-9-oxo-2,3,,5,6,6a,9,1 Oa-octahydro-I H-pyrimido[ I ,2-a ]quinoline-I­

carbonyl)amino ]acetic acid methyl ester (119), from the proton NMR spectrum of the 

crude products. Reverse phase Le-MS detected the desired product with mass mlz 350 

(M) being present. Isolation and purification of the desired product was however 

problematic. Alumina, silica or reverse phase silica chromatography only purified slightly 

the reaction mixture while the proton NMR spectroscopy still showed the compound to 

be impure. Although the I H NMR spectra indicated the presence of impurity, 

nevertheless the chemical shift of the two alkene protons in the cyclised enone (119) were 

observed as doublets at 6.12 ppm and 6.96 ppm while the two symmetric signals of total 

4 protons from the 4-hydroxyphenyl residue of the starting material would be further 

down field at 6.61 ppm and 6.96 ppm, indicating the oxidative cyclisation reaction did 

occur. It is also possible that the oxidative cyclisation reaction might lead to formation of 

a regioisomer (119a), depending on which N atom underwent cyclisation. This is seen in 

pyoverdin biosynthesis, where isopyoverdins have also been isolated. 
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6.4.1.1 Conclusion 

Construction of the carbonyl-substituted 5- and 6-membered cyclic amidine was quite 

straightforward, except the yields of tetrahydropyrimidine were disappointing due to the 

poor solubility of the diaminobutyric acid in the reaction medium, but once the carbonyl 

unit was masked by another amino acid the yield was improved significantly. Oxidative 

cyclisation of acid and ester derivatives In the dihydroimidazole and 

tetrahydropyrimidine series was unsuccessful. Preliminary work on . the oxidative 

cyclisation of the aminocarboxyltetrahydropyrimidine, having a glycine C-terminus 

carboxylic acid, proved the oxidation to be feasible but separation of the pure products 

remains as a challenge. 

6.4.2 Cyclic Amidines With an N-Terminus 

To investigate the influence of an N-terminus substituent on the biomimetic synthesis of 

chromophore models, L-tyrosine was employed as the N-terminal starting material. The· 

tyrosine amino acid is one of the key compounds involved in the biosynthesis of the 

pyoverdin chromophore. To allow the L-tyrosine to react specifically at its carbonyl 

group in cyclic amidine formation both the phenolic silJe-chain and the amino group need 

to be protected. In the presence of copper sui fate and sodium hydroxide solution, a 

copper tetrahedral complex (120) was formed by coordinating the Cu2+ ion with two 

molecules of tyrosine through their a-amino acid functions (Scheme 66). While the 

amino and carboxyl group complexed with the copper ion, the phenolic side chain was 

free for protection to take place. Under basic conditions, benzyl bromide was reacted 

with the tyrosine copper complex, resulting in 67% of O-benzyl-L-tyrosine (121) after 

acidic washing to remove the copper ion. Attempting to protect the hydroxyphenyl side­

chain directly with benzyl bromide without forming the copper complex did not prove to 

be efficient; both the amino and carboxy groups could be competitive for the benzylation 

leading to alternative benzylated tyrosines. 
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Choosing the appropriate amino protecting group for the synthesis is essential to maintain 

compatibility during the cyclic amidine formation sequence. The previously established 

methodology for the mono-hydroxyphenyl chromophore formation does highlight the 

likely hazards involved throughout the synthesis. The N-protecting group must be robust 

under basic conditions for reaction with the diamino nucleophile to form the cyclic 

amidine. It must also be stable towards hydrogenolysis, and also stable under certain 

acidic conditions since the key step oxidative cyclisation would produce acidic by­

product. Amongst the many possible amine protecting groups, neither the popular 9-

fluorenylmethoxycarbonyl (Fmoc), benzyloxycarbonyl (Cbz) carbamate protecting 

groups nor the benzyl (Bn) group were suitable for the purpose as they are susceptible to 

the conditionsused during the series of reactions, The Fmoc group is easily cleaved in the 

presence of the diamine base in amidine formation,'3 whereas the Cbz or Bn group would 

not survive under the hydrogenation conditions which are an essential part of our 

synthesis for revealing the tyrosine phenolic group. 

To decide on the most suitable protection, a range of protecting groups, phthalyl (Phth), 

pyrrolyl (Pyr), tert-butyloxycarbonyl (Boc), toluenesulfonyl (Ts) and azide (N)) were 

selected for the optimization ofthe N-terminus protection. 
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The first attempt was to protect the amino nitrogen with a cyclic derivative such as an N­

phthalyl or N-pyrrolyl group. N-(Ethoxycarbonyl)phthalimide was used for the N­

terminal protection of O-benzyltyrosine under base conditions to yield N-phthalyl-O­

benzyl-L-tyrosine (122) in 48% yield.74 Alternatively, the O-benzyl-L-tyrosine was also 

protected by employing a pyrrole protective strategy by reaction with tetrahydro-2,5-

dimethoxyfuran under mild acidic conditions 75 to give the corresponding N-pyrrolyl-O­

benzyl-L-tyrosine (124) in 49 % yield (Scheme 67). The reaction mechanism of pyrrole 

formation is suggested to be similar to the Paal-Knorr pyrrole synthesis where a diketone 

is involved. It was reported that the enantiomeric configuration of the pyrrole protected 

amino acids can be fully maintained under these conditions, with acetic acid and water: 

1 ,2-dichloroethane solvent mixtures. 

The N-phthalyl-O-benzyl-L-tyrosine (122) was converted to its amide (123) in 92% yield 

via acyl chloride formation and then treatment by passing ammonia gas through a THF 

solution of the chloride instead of the aqueous ammonia conditions we had used earlier, 

since the N-phthalyl group was sensitive when exposed to the aqueous conditions for a 

long time. The yield was doubled by changing from concentrated aqueous ammonia to 

ammonia gas (Scheme 67). However, it did not prove possible to form the 2-[ I-N­

(phthal yl )ami no-2 -( 4-benzy lox yphen yl)ethy 1]-3,4,5, 6-tetrah ydropyri m id ine on methyl 

triflate activation of the amide and 1,3-diaminopropane treatment. A literature report 

indicates that the N-phthalyl group could be sensitive in certain amine containing 

environments when heated for a period of time at reflux.76 Alternatively, the phthalyl 

imide may be attacked by the methyl triflate. For the N-pyrrolyl-O-benzyl-L-tyrosine 

(124),77 it was reacted to furnish the amide (126) in 52% yield by treatment with DCC, 

HOSu to form pyrrolyltyrosine succimide (125) and then passing ammonia gas through a 

DCM solution of the active ester. Unfortunately, this proved unsuccessful for the N­

pyrrolyltyrosine amide, and we speculate that this is due to pyrrole cleavage by the 

diaminopropane .. 
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Scheme 67. 

N-Sulfonylamides can be prepared by reaction between amines and sulfonyl chlorides in 

the presence of base and constitute one of the most stable types of nitrogen protective 

groups, since they are stable to basic hydrolysis and some catalytic reduction conditions. 

A method reported for conversion of serine into N-tosylserine was used for the synthesis 

of N-tosyl-O-benzyl-L-tyrosine.78 The O-benzyl-L-tyrosine was dissolved in water before 

mixing with toluenesulfonyl chloride in organic solution with slow addition of sodium 

hydroxide solution to produce the N-tosyl-O-benzyl-L-tyrosine (127) in up to 85% 

(Scheme 68). Yields were not consistent on repetition of this two phase protocol, which 

may be due to the solubility of the tyrosine derivative formed after the reaction and work 

up. N-Tosyl-O-benzyl-L-tyrosinamide was obtained from the corresponding N-tosyl-O­

benzyl-L-tyrosine on reaction under the peptide coupling method used above (DCC, 

HOSu followed by ammonia gas). This resulted in only 44% of the desired N­

toluenesulfonyl-O-benzyl-L-tyrosinamide (128) after chromatography, which had not 

been necessary for the other tyrosinamide derivatives. Degradation during the reaction 

seemed to be the major reason for the poor yield. In any case, reaction of the 
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tyrosinamide with methyl triflate and 1,3-diaminopropane did not afford the N­

tosylamino-tetrahydropyrimidine after several attempts and further significant 

degradation was observed from the reacted crude product. Analysing the crude mixture 

with LC-MS did indicate traces of product presence but purification through silica 

chromatography did not yield the desired product. 

o 

H2N~ 
. OH 

TSHNvloH TSHNvlNH TSHNJ) 
. DCC, HOSu, ~ 2 ,H 

~ TsCI, NaOH 

'Q 
. 

I EtOAc, r. t., eh 
h- . 

08n 
U· -...::::, Dioxane. r.t.. 5h. 'U. "" X' 'U' -...::::, 

I NH,. DCM. 10min I I 
h- ...:::- h-

08n 08n 08n 

(127) 85% (128) 44% 

Scheme 68. 

Azides have been reported as masked amine groups 79 and amino sugars 80 have been 

prepared from the analogous azides. This methodology provideds a useful method for 

hindered systems and has been described to be reproducible, reliable and can be executed 

effectively in the presence of other reactive groups and reactive solvents using 

commercially available reagents. 

It has been reported that the azide masking group could be derived from trit1yl azide, 

TfNJ, via metal catalysed diazo transfer where the TfNJ is prepared from triflic anhydride 

and sodium azide. The diazo transfer is subject to divalent copper ions as catalyst, for 

example CUS04, and homogenous reaction mixture, such as DCM, H20 and MeOH, and 

the addition of approximately I mol % concentrations of CUS04 is enough to cause the 

reaction to go completion within several minutes in the case of mono amine substrates.8o 

The exact mechanism of the metal-catalyzed diazo transfer is not known and little work 

on this has been carried out. Neat triflic azide is potentially explosive without solvent, 
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hence it should always be used In solution. The S-2-azido-3-( 4-

benzyloxyphenyl)propionic acid (129) was prepared in 34% from O-benzyltyrosine and 

tritlic azide solution in the presence of solid potassium carbonate, 1% CUS04 and mixed 

solvent of water and methanol (Scheme 69). Unfortunately, conversion of the azide 

protected tyrosine to its amide failed to yield the expected product. Therefore, the work 

with this azide protective group was abandoned. 

H20. CH 2CI2 

° 
TIN • NaN, + triflie anhydride 

, O°C.2h 

° OH 
K,CO" CuSO" H20, MeOH N, 

OH 

r.t., 16h 

(129) 34% 

Scheme 69. 

One of the commonest protecting groups for amine IS the Boc group, tert­

butyloxyIcarbonyl, but a major drawback of this functional group IS the potential 

instability under the acidic conditions which would be encountered during the oxidative 

cyclisation from the tritluoroacetic acid by-product. Fortunately, the oxidative cyclisation 

reaction could be carried out in the presence of sodium bicarbonate to promote the 

cyclisation and scavenge the acid by-product in the reaction. Hopefully, this would not 

make any significant impact on the Boc group present in the compound. Based on this 

hypothesis, the Boc carbamate protecting group was introduced to the O-benzyl-L­

tyrosine by sonication for 3-4 hours with (Boc )20 to give 90% yield of (130) under basic 

conditions (Scheme 70).81 Boc-protected tyrosine (130) was also formed by heating the 

reaction at retlux in DCM overnight to furnish a similar yield from this more standard 

method for the protection of an amine substituent with a Boc group. The carboxylic acid 
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was next transformed into the amide (133) via a peptide bond formation protocol, i.e. 

activation with dicyclohexycarbodiimide (DCC) then N-hydroxysuccinimide (HOSu) as 

(132), followed by passing ammonia gas through the mixture. One advantage of the 

DCC, HOSu coupling over the acyl chloride strategy was the relatively stable activated 

intermediate formed (132) without the acid present when SOCh is used. The Boc group 

is known to be sensitive to acid cleavage. 

S-2-[ I-N-(Boc-Amino )-2-( 4-hydroxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidinium salt 

(134) was synthesized successfully from the amide (132) in 41 % yield over our standard 

3 steps, namely O-methylation with methyl triflate and cyclisation with 1,3-

diaminopropane to give S-2-[ I-N-(Boc-Amino )-2-( 4-benzyloxyphenyl)ethyl]-3,4,5 ,6-

tetrahydropyrimidinium salt (133), and then benzyl ether cleavage by hydrogenolysis. 

The attempted oxidative cyclisation of the S-2-[ I-N-(Boc-amino )-2-( 4-

hydroxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidinium salt (134) with BTIB in methanol 

did not give any identifiable oxidized and cyclised product due to problems with 

purification (Scheme 70). More effort and investigation is needed to characterize the 

possible cyclised compounds. Whether any cyclisation proceeds through the desired 

amidine nitrogen atom or the protected amino nitrogen atom remains to be investigated 

once the products are purified. There are some reports of oxidative cyclisation. (Ciufolini 

52 and Wipf 53) using amine carbamates that show no significant cleavage using either 

Cbz, Boc, or Alloc carbamates or tosyl protecting groups when the reaction is carried out 

using hypervalent iodine reagent, but in these cases, the protected nitrogen atom of the 

tyrosine was involved as the nucleophile in the cyclisation (Scheme 71). 
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6.4.2.1 Conclusion 

--~ ----.- ---

od:> 
H \ 

R 

(43) 

OH 

~C02Me 
" 

""N H 
o \ 

H R 

exo-isomer 

Amongst the amino protecting groups introduced to the tyrosine, only the Boc protection 

showed promise, affording the N-protected amino-substituted cyclic amidine in 41 % 

yield. Oxidative cyclisation has so far produced inconclusive results. 

6.5 Peptidic Cyclic Amidines ~ A Ferribactin Formation 

In parallel with the reactions described above between the N-protected-tyrosine and the 

diaminoalkane, the N-Boc-O-benzyltyrosinamide was also reacted with L-2,4-

diaminobutyrylaminoacetic acid methyl ester (116). Incorporation of both the N-terminal 

amino acid and the C-terminal amino acid would produce an analogue of the ferribactin 

sub unit, a biosynthetic precursor towards the dihydropyoverdins and pyoverdins. 
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2- [1-(N-B oc-Am ino )-2-( 4-benzyloxyphen y I )eth yl)-3,4,5 ,6-tetrahydropyri midi n i um-4(S)­

carbonylaminoacetic acid methyl ester (135) was synthesized in only 31 % yield from the 

N-Boc-O-benzyltyrosinamide (via methyl triflate activation) and L-2,4-

diaminobutyrylaminoacetic acid methyl ester dihydrochloride (116) (Scheme 72). Similar 

to the problems experienced earlier, the solubility of the diamino compound in the 

reaction mixture limited the yield of the reaction. Column chromatography also recovered 

at least 50% of the diaminobutyric amide starting material. Removal of the benzyl 

protecting group by hydrogenolysis afforded the 2-[I-(N-Boc-amino)-2-(4-

hydroxyphenyl)ethyl)-3,4,5,6-tetrahydropyrimidinium-4(S)-carbonylaminoacetic acid 

methyl ester (136) as an analogue of the ferribactin unit relevant to the biosynthesis of 

pyoverdins. The hydroxyphenyl compound was subject to one attempt at oxidative 

cyclisation using BTlB. The initial result did not provide conclusive confirmation as to 

whether the cyciisation had taken place or whether a regioisomer, iso-dihydropyoverdin­

type compound might have been formed. 
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6.5.1 Conclusion 

The ferribactin analogue unit (136), an N-Boc-C-aminocarbonyltetrahydropyrimidine, 

was formed in 31 % yield with the majority of diamino starting material being recovered 

adue to poor solubility in the reaction solvent. Oxidative cyciisation of this ferribactin 

analogue remains a challenge and needs further work. A regioisomeric cyclisation is also 

possible .. 

7.0 Final Conclusion And Future Work 

An initial approach to the biomimetic synthesis of pyoverdin chromophore model was 

successful. A six-membered ring methoxyquinoline unit was synthesized successfully in 

a total yield of just below 5%, as well as a seven-membered ring analogue formation with 

a yield of below 3%. It is the first time this chromophore model unit was chemically 

synthesized directly through a sequence analoguos to the biosynthetic pathway, i.e. via 

cyclic amidine as the ferribactin, tetrahydropyrimidoquinoline as the dihydropyoverdin 

and dihydropyrimidoquinoline as the pyoverdin. Analysis of the fluorescent properties of 

the compounds proved that the six-membered ring quinoline is highly fluorescent and the 

seven-membered ring quinoline is much less significant. A dihydroxyphenyl analogue 

unit of the chromophore model could be easily oxidized and the products identified by 

Le-MS, but to date no further attempts to purify this compound have proved successful. 

An attempt to build a pseudopeptide analogue of the chromophore with either a protected 

tyrosine or a diaminobutyric acid, or both, led to the peptidic ferribactin formation. 

Oxidative cyclisation of this ferribactin remains to be investigated. 

The problem of the high polarity of both the dihydroxyphenyl and pseudodipeptidic 

chromophore units remain challenging, ion exchange chromatography could be the 

solution for this purification since either of the compounds may contain a counter ion or 

exist as zwitterion. This separation technique can also be incorporated within other steps 

of the methodology. As an alternative strategy, protecting the hydroxyphenyl oxygen 
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directly after oxidation in situ might reduce the polarity greatly and hence make it 

possible to identify the product more easily. The regioisomeric pyoverdin chromophore 

may form during the oxidative cyclised peptidic unit and this will need to be determined. 

Although DOPA was suggested not to be involved in the actual bioprocess (see 

introduction), its dihydroxyphenyl functional group may enhance the oxidative 

cyclisation and result in direct formation of the peptidic chromophore unit. 

8.0 Experimental - General 

Infrared spectra were recorded in the range between 4000 - 500 cm·! on a Perkin Elmer 

Paragon 1000 FT -IR spectrometer as liquid films, nujol mulls, chloroform solution, neat 

(from evaporation of an acetonitrile or dichloromethane solution) or in KBr discs as 

stated. 

NMR spectra were recorded in solution on either a Bruker 250 MHz (!H at 250MHz) or 

400 MHz CH at 400 MHz; 13C at 100 MHz) FTNMR spectrometer using CDC1), d6-

acetone, d4-methanol or d6-DMSO as the solvent as stated. Chemical shifts are quoted in 

a unit of parts per million (ppm) with the following abbreviations; s - singlet, d - doublet, 

t - triplet, q - quartet, dd - double doublet, dt - double triplet, m - multiplet and brs -

broad singlet. Coupling constant (.I) values are given in Hertz (Hz). 

Liquid Chromatography - Mass Spectrometry (LC-MS) were measured on a Waters 

600 controller instrument with a column of Waters Symmetry CB 3.5 pm, 4.6 x 50 nm 

column and a Waters 996 photodiode array detector attached to a Micromass Platform 

mass spectrometer using electrospray (ES) as the ionisation technique. High resolution 

mass spectra were recorded on a Jeol JMS SX-l02 mass spectrometer using electron 

impact (El) or fast atom bombardment (FAB) as the ionisation technique as indicated. 
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Flash column chromatography was performed on silica gel 60 (40-63 11,230-400 mesh, 

60 A) or on Fluka aluminium oxide (basic type pH 9.5 ± 0.5, 50-150 11). TLC analyses 

were performed on Merck UV active aluminium plates coated with 0.2 mm silica 60 F254 

or on alumina plastic plates. 

Melting point measurements were performed on a Gallenkamp hot stage ora Stuart 

Scientific (SMP3) melting point apparatus and are uncorrected. 

Optical rotations were obtained from a PolAAr 200 I optical activity polarimeter at 20 

DC with methanol as the solvent and a 30mm cell was used and [U]D20 values were given 

. 10·ld 2·1 In eg cm g . 

Combustion microanalysis was recorded on Perkin Elmer Analyser 2400 CHN and 

results are given in percentage. 

Commercial reagents were normally used without further purification, unless stated. Dry 

tetrahydrofuran (THF) was prepared from pre-dried THF, in the presence of potassium 

carbonate, and distilled over sodium and benzophenone under an atmosphere of nitrogen. 

Ethyl acetate was distilled over calcium chloride, and petroleum ether (b.p. 40-60DC) was 

distilled in the presence of anti-bumping granules, according to standard methods 82 for 

general use. Dry ethanol (100 %) and methanol used in reactions was purified from 

magnesium under an atmosphere of nitrogen from standard purification procedures. Dry 

dichloromethane was distilled in the presence of anhydrous calcium hydride. Both 1,2-

diaminoethane and 1,3-diaminopropane were distilled and stored in the presence of 

potassium carbonate prior to use in reactions. 

UV and Fluoresecence were measured on a Hewlett-Packard 8453 photodiode array 

UVIVisible spectrophotometer and a Spex FluoroMAX spectrofluorimeter respectively. 
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8.1 Experimental 

3-(4-Benzyloxyphenyl)propionic acid (65) 

OH 

(64) 

OH 
1) BnBr, base, Acetone, reflux 40h 

• 
2) Base, MeOH, water, reflux 4h 

o 

OH 

["" 

JJ 
(65) 

Potassium carbonate (18.28 g, 132.45 mmol), benzyl bromide (15.75 ml, 132.45 mmol) 

and 3-(4-hydroxyphenyl)propionic acid (64) (10.00 g, 60.24 mmol) in acetone (150 ml) 

were heated at reflux for 40 h. The solution was evaporated to dryness under reduced 

pressure and the residue extracted into ethyl acetate (100 ml) and washed with deionised 

water (100 ml). The organic layer was concentrated under reduced pressure, and the 

residue dissolved in methanol (100 ml) and heated at reflux with potassium hydroxide 

(6.75 g, 120.53 mmol) in deionised water (40 ml) for 4 h. The reaction mixture was 

diluted with deionised water (200 ml), washed with diethyl ether (3 x 100 ml) and the 

aqueous layer was carefully acidified to pH I with concentrated hydrochloric acid. The 

white precipitated product was collected by vacuum filtration and dried under vacuum 

over P20 S to give 3-(4-benzyloxyphenyl)propionic acid (65) (15.13 g, 98 %) as a 

colourless crude solid. M.p: (benzene/hexane) 119-121 °c (lit., 83 122-123 0C); Urnax 

(KBr)!cm" 3031 (OH), 2923,1694 (C=O), 1515, 1452, 1309, 1240 (COC), 1014 (COC), 

950, 827 and 734; OH (250 MHz; CDCI3) 2.66 (2 H, t, J 7.5, CH2Ph), 2.91 (2 H, t, J 7.5, 

CH2COOH), 5.04 (2 H, s, OCH2Ph), 6.92 (2 H, d, J 8.3,2 x Ph-H), 7.13 (2 H, d, J 8.3,2 

x Ph-H) and 7.33 -7.45 (5 H, m, 5 x Ph-H); Qc (100 MHz, CDCI 3) 30.15 (CH2)' 36.20 

(CH2), 70.46 (OCH2Ph), 115.34 (2 x CH, 2 x ArCH), 127.85 (2 x CH, 2 x ArCH), 128.32 

(CH, ArCH), 128.96 (2 x CH, 2 x ArCH),. 129.65 (2 x CH, 2 x ArCH), 132.92 (C, ArC), 

137.50 (C, ArC), 157.79 (CO, ArCO) and 179.25 (C02H); mlz (EI+) 256.1096 (M+­

C'6H'603 requires 256.1100); mlz (EI+) 256 (~, 13%),91 (100) and 65 (8). 
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3-(4-Benzyloxyphenyl)propanoyl chloride (66) 

o o 

OH Cl 

(COCI),. THF. cat.DMF 

• --?'n 
oJJ 

ooe to r.t. 16h --?'n 
oJJ 

(65) (66) 

To 3-(4-benzyloxyphenyl)propionic acid (65) (11.32 g, 44.20 mmol) and oxalyl chloride 

(5.83 ml, 66.14 mmol) in dry THF (100 ml) under an atmosphere of nitrogen at 0 QC was 

added a catalytic amount of N.N-dimethylformamide (0.10 ml). The mixture was 

allowed to reach room temperature and stirred for 16 h, and then the solvent was removed 

under reduced pressure to yield 3-(4-benzyloxyphenyl)propanoyl chloride (66) (12.40 g, 

97 %) as a white solid that was used without further purification. M.p: 56-58°C (lit., 84 

75-78 0C); Urn,x (KBr)/cm'! 3032 (Ph-H), 2935, 2858,1792 (COCI), 1610, 1511, 1452, 

1401,1386,1240 (COC), 1177, 1039 (COC), 1027,955,827,797 and 737; DH (250 MHz 

CDCI 3) 2.96 (2 H, t, J7.4, CH2Ph), 3.18 (2 H, t, J 7.4, CH2CO), 5.05 (2 H, s, OCH2Ph), 

6.93 (2 H, d, J 8.4, 2 x Ph-H), 7.12 (2 H, d, J 8.4,2 x Ph-H) and 7.33 - 7.46 (5 H, m, 5 x 

Ph-H); Dc (100 MHz CDCI 3) 30.14 (CH2)' 36.24 (CH2), 70.43 (OCH2Ph), 115.30 (2 x 

CH, 2 x ArCH), 127.88 (2 x CH, 2 x ArCH), 128.35 (CH, ArCH), 128.99 (2 x CH, 2 x 

ArCH), 129.67 (2 x CH, 2 x ArCH), 132.90 (C, ArC), 137.47 (C, ArC), 157.76 (CO, 

ArCO) and 179.39 (C=O). 
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3-(4-Benzyloxyphenyl)propanamide (67) 

o 

Cl 

1'-':: 

-?-'n 
o~ 

(66) 

aq.NH3' THF 

• 
()<>C to r.t. 16h 

o 

NH, 

-?-'n 
o~ 

(67) 

Aqueous ammonia (S.G.0.880, 50 ml) was added to 3-(4-benzyloxyphenyl)propanoyl 

chloride (66) (11.00 g, 40.07 mmol) in THF (100 ml) at 0 °C and the reaction mixture 

stirred at room temperature for 16 h. After dilution with water (100 ml) the mixture was 

extracted with ethyl acetate (3 x 80 ml), and the combined organic layer was dried with 

anhydrous magnesium sulfate, filtered and evaporated to dryness under reduced pressure. 

The crude 3-(4-benzyloxyphenyl)propanamide (67) (7.72 g, 76 %) was obtained as a 

white solid, which was recrystallised from methanol and dried under vacuum over P20S 

to give white crystals (7.llg, 70 %). M.p: 157-158 °C; Found: C, 75.11; H, 6.53; N, 5.48. 

CI6H 17N02 requires C, 75.27; H, 6.71; N, 5.49%; Umax (KBr)!cm·1 3391 (NH2), 3100 

(NH2)' 1638 (C=O), 1612 (C=O), 1518, 1425, 1260, 1232 (COC), 1039 (COC), 824 and 

733; OH (250 MHz, CDCh) 2.50 (2 H, t, J7.3, CH2Ph), 2.92 (2 H, t, J7.3, CH2CONH2), 

5.04(2 H, S,OCH2Ph), 5.32 (2 H, brs, NH2),6.91 (2 H, d,J8.1, 2x Ph-H), 7.13 (2 H, d,J 

8.1,2 x Ph-H) and 7.35 - 7.42 (5 H, m, 5 x Ph-H); Oc (lOO MHz CDCI 3) 30.94 (CH2), 

38.17 (CH2CO), 70.42 (OCH2Ph), 115.32 (2 x CH, 2 x ArCH), 127.87 (2 x CH, 2 x 

ArCH), 128.34 (CH, ArCH), 128.89 (2 x CH, 2 x ArCH), 129.70 (2 x CH, 2 x ArCH), 

133.36 (C, ArC), 137.45 (C, ArC), 157.72 (CO, ArCO) and 174.83 (C=O); mlz (EI+) 

255.1258 (M" - CI6H17N02 requires 255.1259); mlz (EI+) 255 (M+, 18%),91 (lOO) and 

65 (7). 
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2-[2-(4-Benzyloxypbenyl)ethyl]-4,5-dihydroimidazolium triflate salt (68) 

o 

NH, 

I~ 
--:?n 
oJ0 

(67) 

CF,SO,Me 
• 

DCM. reflux 3h 

HN::-J 

NH 
+ 

CF,SO;-

EtOH. 
reflux 2 days --:?n 

oJ0 
(68) 

To 3-(4-benzyloxyphenyl)propanamide (67) (1.375 g, 5.38 mmol) in dry 

dichloromethane (50 ml) under an atmosphere of nitrogen was added dropwise methyl 

trifluoromethanesulfonate (0.91 ml, 8.07 mmol, 1.5 mol. equiv.) and the reaction mixture 

stirred at reflux for 3 h and then at room temperature for 2 days. The solvent was 

removed under reduced pressure to leave a pale yellow-white moisture sensitive salt. This 

salt in dry ethanol (40 ml) was heated under reflux with dry 1,2-diaminoethane (0.54 ml, 

8.07 mmol) under an atmosphere of nitrogen for 2 days. The solvent was removed under 

reduced pressure and the crude product purified by flash column chromatography using 

methanol : dichloromethane (5 : 95 v/v) to yield the recovered amide (67) (207 mg, 15 

%) and 2-[2-(4-benzyloxyphenyl)ethyl]-4,5-dihydroimidazolium triflate salt (68) (1.73 g, 

75 %). M.p: 170-171 QC; Found: C, 53.31; H, 4.78; N, 6.48. ClOH2tN204F3S requires C, 

53.02; H, 4.92; N, 6.50%; Umax (CHCh)/cm,t 3396,3237,3176, 1600 (C=N), 1515(C=N), 

1457, 1414, 1287, 1249 (COC), 1154 (C-N), 1038 (COC), 839 and 742; OH (250 MHz, 

OMSO) 2.74 (2 H, t, J 7.2, CH2C=N), 2.86 (2 H, t, J 7.2, CH2Ph), 3.79 (4 H, s, 

NCH2CH2N), 5.08 (2 H, s, OCH2Ph), 6.97 (2 H, d, J 8.3,2 x Ph-H), 7.16 (2 H, d, J 8.3,2 

x Ph-H) and 7.36 -7.42 (5 H, m, 5 x Ph-H); oe (100 MHz, OM SO) 28.24 (CH2), 30.31 

(CH2), 44.43 (2 x NCH2), 69.53 (OCH2Ph), 115.26 (2 x CH, 2 x ArCH), 127.97 (2 x CH, 

2 x ArCH), 128.15 (CH, ArCH), 128.77 (2 x CH, 2 x ArCH), 129.54 (2 x CH, 2 x 

ArCH), 131.49 (C, ArC), 137.47 (C, ArC), 157.43 (CO, ArC-O) and 170.71 (N-C=N); 

mlz (EI+) 280.1580 (M+ - ClsH20N20 requires 280.1576); mlz (E1+) 280 (M+, 10%),239 

(13),189 (51),120 (20), 91 (100) and 57 (37). 
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2-[2-( 4-Benzyloxyphenyl)ethyIJ-3,4,5,6-tetrahydropyrimidiniu m triflate salt (69) 

o 

NH, 

CF,SO,Me 

~n 
O~ 

DCM. reflux 3 h 

(67) 

~ H,N NH, 

HN:J 

NH 
+ 

CF,SO:;------" "'" 
EtOH. reflux 2 days I 

~n 
O~ 

(69) 

To 3-(4-benzyloxyphenyl)propanamide (67) (1.00 g, 3.92 mmol) in dry dichloromethane 

(50 ml) under an atmosphere of nitrogen was added methyl trifluoromethanesulfonate 

(0.66 ml, 5.88 mmol, 1.5 mol. equiv.) at room temperature, the solution was stirred at 

reflux for 3 h and cooled to room temperature with further stirring for 2 days. The solvent 

was removed to dryness under reduced pressure to give a very pale yellow solid which 

was dissolved in dry ethanol (50 ml) and dry 1,3 diaminopropane (0.65 ml, 7.78 mmol, 

1.98 mol. equiv.) was added under a nitrogen atmosphere at room temperature. The 

reaction mixiure· was heat ··under reflux for 2 days and then the solvent was removed 

under reduced pressure to leave a residue which was purified by flash chromatography, 

via solid packed loading, using methanol : dichloromethane (5 : 95 v/v) to yield the 

recovered amide (67) (40 mg, 4%) and a very pale yellow solid, 2-[2-(4-

benzyloxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidinium triflate salt (69) (1.44 g, 83 %). 

M.p: 97-99 QC; Found: C, 54.49; H, 5.16; N, 6.22. C2oH23N204F3S requires C, 54.05; H, 

5.22; N, 6.30; Urnax (KBr)/cm·J 3294,3065,1657 (C=N), 1617(C=N), 1514, 1457,1387, 

1240 (COC), 1150 (C-N), 1035 (COC), 835 and 745; OH (250 MHz CDCI 3) 1.75 (2 H, s, 

CH2CH2CH2), 2.68 (2 H, t, J7.6, CH2Ph), 2.90 (2 H, t, J 7.6, CH2C=N), 3.27 (4 H, s, 2 x 

NCH2), 4.96 (2 H, s, OCH2Ph), 6.85 (2 H, d, J 8.3, 2 x Ph-H), 7.15 (2 H, d, J 8.3, 2 x Ph­

H), 7.27 - 7.38 (5 H, m, 5 x Ph-H) and 8.47 (2 H, s, 2 x NH, disappeared after D20 

exchange); Oc (60 MHz, CDC 13) 18.13 (CH2~H2CH2)' 32.04 (CH2), 34.92 (CH2), 39.09 

(2 x NCH2), 70.21 (OCH2Ph), 115.30 (2 x CH, 2 x ArCH), 127.79 (2 x CH, 2 x ArCH), 

128.25 (CH, ArCH), 128.84 (2 x CH, 2 x ArCH), 129.89 (2 x CH, 2 x ArCH), 130.74 (C, 

ArC), 137.22 (C, ArC), 157.92 (CO, ArC-O) and 164.06 (N-C=N); mlz (El+) 294.1739 
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(M+ - CI9H22N20 requires 294.1732); mlz (EI+) 294 (M+, 6%), 203 (100), III 3),91 

(47), and 57 (7). 

2-[2-(4-Benzy\oxypheny\)ethy\]-4,5-dihydroimidazolium tetraOuoroborate (68a) 

NH, 

I"'" -?n 
O~ 
(67) 

+ -
EI,o SF, 

DeM. r.t. 18h 

• 
EtOH. reflux 4 days 

HN~ 
NH 
+ 

-?n 
O~ 

(68a) 

To 3-(4-benzyloxyphenyl)propanamide (67) (1.00 g, 3.92 mmol) in dry dichloromethane 

(20 ml) under an atmosphere of nitrogen, was added dropwise a 1 M solution of 

triethyloxonium tetrafluoroborate in dichloromethane (4.70 ml, 4.70 mmol) at room 

temperature and the reaction was stirred for 18 h. The solvent was removed under 

reduced pressure, and to the white residue in dry ethanol (50 ml) was added dry 1,2-

diaminoethane (0.30 ml, 4.49 mmol) and the mixture heated at reflux for 4 days. The 

solvent was removed under reduced pressure and the residue purified by flash column 

chromatography with dichloromethane : methanol (95 : 5 v/v) to give a white solid of 

recovered amide (67) (320 mg, 32 %) and 2-[2-(4-benzyloxyphenyl)ethyl]-4,5-

dihydroimidazolium tetrafluoroborate (68a) (170 mg, 10 %). M.p: 139-144 °C; Umax 

(CHClj)/cm·1 3395,1651 (C=N), 1514,1454,1417,1252 (COC), 1174 (C-N), 1108, 1013 

(COC), 814 and 739; OH (400 MHz DMSO) 2.10 (2 H, d, J 7.2, CH2Ar), 2.29 (2 H, t, J 

7.7, CH2C=N), 2.50 (2 H, d, J 8.0, NCH2), 2.73 (2 H, t, J 7.7, NCH2), 5.06 (2 H, s, 

OCH2Ph), 6.75 (I H, brs, NH), 6.91 (2 H, d, J 8.4, 2 x Ph-H), 7.12 (2 H, d, J 8.4, 2 x 

PhH), 7.24 (I H, br, NH) and 7.31 - 7.45 (5 H, m, 5 x Ph-H); oe (100 MHz, DMSO) 

25.20 (CH2), 29.94 (CH2), 30.38 (NCH2), 37.34 (NCH2), 69.45 (OCH2Ph), 114.91 (2 x 

CH, 2 x ArCH), 127.96 (2 x CH, 2 x ArCH), 128.09 (CH, ArCH), 128.75 (2 x CH, 2 x 
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ArCH), 129.49 (2 x CH, 2 x ArCH), 133.96 (C, ArC), 137.61 (C, ArC), 156.89 (CO, 

ArC-O) and 173.83 (N-C=N). 

2-[2-(4-Benzyloxyphenyl)ethyIJ-3,4,5,6-tetrahydropyrimidinium tetrafluoroborate 

(69a) 

0 
HN:J 

NH, /"'V"- NH 
+ - + 

Et,O SF, H,N NH, 

I """ • ~ SF, 

~ 
DeM, r.t. 18h EtOH, reflux 4 days 

~ o ~I o ~I 
(67) (69a) 

Tetrafluoroborate compound (69a) was prepared by the same procedure as described 

above for the formation of 2-[2-(4-benzyloxyphenyl)ethyl]-3,4-dihydroimidazolium salt 

(47b), but using dry 1,3-diaminopropane (0.37 ml, 4.49 mmol) instead of 1,2-

diaminoethane. This reaction yielded a white solid of recovered amide (67) (40 mg, 40%) 

and 2-[2-( 4-benzyl oxyphen yl)eth yl]-3,4 ,5 ,6-tetrahydropyrim id i n i urn tetrafluoroborate 

(69a) (79 mg, 10 %) after flash column chromatography using methanol : 

dichloromethane (5 : 95 v/v). OH (250 MHz, CDCb), 1.77 (2 H, t, J 5.6, CH2CH2CH2), 

2.68 (2 H, t, J7.6, CH2Ar), 2.89 (2 H, t, J7.6, CH2C=N), 3.30 (4 H, s, 2 x NCH2), 4.98 (2 

H, s, OCH2Ph), 6.86 (2 H, d, J 8.5, 2 x Ph-H), 7.14 (2 H, d, J 8.5, 2 x Ph-H), 7.30 - 7.38 

(5 H, m, Ph-H) and 7.73 (2 H, s, 2 x NH). LC-MS mlz (ES+) 295 (MH+ - C19H22N20 + H 

requires 295). 
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2-[2-(4-Benzyloxyphenyl)ethyl]-4,5,6,7-tetrahydro-lH-[1,3]diazepinium triflate salt 

(70) 

o 

NH, /'yAvNH, 

CF ,SO,Me H,N 

• • 

:N 
DCM, reflux 1h 

~I 
o :::,--. 

EtOH, reflux 1 day 

(67) 

HN~ 

~~".-f NH 

~ CF,SO, 

~n 
O~ 

(70) 

To 3-(4-benzyloxyphenyl)propanamide (67) (1.00 g, 3,92 mmol) in a dry flask with dry 

dichloromethane (40 ml) was added methyl trifluoromethanesulfonate (0,66 ml, 5.88 

mmol, 1.5 mol. equiv.) under a nitrogen atmosphere, and the mixture was stirred at reflux 

for I h arid then for a further I day at ambient temperature. The solvent was removed to 

dryness under reduced pressure to give a very pale yellow solid which was re-dissolved 

in dry ethanol (50 ml) and 1,4-diaminobutane (0.79 ml, 7.84 mmol, 2 mol. equiv.) was 

added under a nitrogen atmosphere at room temperature. The reaction was brought to 

reflux for I day and the solvent was then removed under reduced pressure to afford a 

residue that was purified by flash column chromatography using methanol : 

dichloromethane (5 : 95 v/v) via solid packed loading to yield the very pale yellow solid, 

2-[2-( 4-benzyloxyphenyl)ethyl]-4,5,6,7-tetrahydro-1 H-[ I ,3]diazepinium triflate salt (70) 

(0.426 g, 24 %). M.p: 98-100 QC; Umax (CHCb)/cm'! 3448, 3306 (OH),3080, 2936, 1654 

. (C=N), 1512, 1455,1381,1331,1243 (C-N), 1165,1029 (COC) and 825; 8H (250 MHz 

CDCI 3) 1.81 (4 H, s, 2 x NCH2CH2CH2CH2N), 2.67 (2 H, t, J 7.6, CH2), 2.91 (2 H, t~ J 

7.6, CH2), 3.43 (4 H, s, 2 x NCH2), 4.96 (2 H, s, OCH2Ph), 6.86 (2 H, d, J 8.8, Ph-H), 

7.18 (2 H, d, J 8.8, Ph-H), 7.28 -7.40 (5 H, m, Ph-H) and 8.40 (2 H, s, NH); 8c (lOO 

MHz, CDCI 3) 26.24 (CH2£:H2CH2CH2), 32.58 (CH2CH2), 36.84 (CH&H2), 43.95 (2 x 

NCH2), 70.29 (OCH2Ph), 115.40 (2 x CH, 2 x ArCH), 127.89 (2 x CH, 2 x ArCH), 

128.33 (CH, ArCH), 128.93 (2 x CH, 2 x ArCH), 130.11 (2 x CH, 2 x ArCH), 130.77 (C, 

ArC), 137.33 (C, ArC), 158.01 (CO, ArCO) and 169.28 (C=NH); mlz (EI+) 308.1897 

116 



(M+ - C2oH24N20 requires 308.1894); mlz (FA B) 308 (M+, 7%), 255 (27), 235 (34) 217 

(100), 115v (25), 91 (29) and 65 (38). 

2-[2-(4-Hydroxyphenyl)ethyl)-4,5-dihydroimidazolium triflate salt (71) 

I"'" ij'n 
O~ 

(68) 

H2• Pd-C 

MeOH. r.t. 6h 
• "'" 

.--::; CF 380:;-

OH 

(71) 

To 2-[2-(4-benzyloxyphenyl)ethyl]-4,5-dihydroimidazolium triflate salt (68) (384 mg, 

1.37 mmol) was added palladium-carbon (10 %) (60 mg, 15 %w/w) followed by 

methanol (20 ml). After degassing three times and filling the flask with hydrogen gas, 

reaction was carried out by stirring under I atmosphere of hydrogen at room temperature 

for 6 h. The palladium-carbon catalyst was removed by filtration through celite and 

washed with methanol (20 m\). The solvent was removed to dryness to leave a yellow 

liquor of 2-[2-(4-hydroxyphenyl)ethyl]-4,5-dihydroimidazolium triflate salt (71) (260 

mg, lOO %). Um,x (Nujol)/cm-l 3292 (NH), 3100, 2676, 1643 (C=N), 1609 (C=N), 1558, 

1514,1497,1256 (C-N), 1169, 1030 and 828; OH (250 MHz, DMSO) 2.31 (2 H, t, J8.0, 

CH2Ph), 2; 72 (2 H, t, J 8.0, t, CH2C=N), 3.38 (4 H, s, 2 x NCH2), 6.67 (2 H, d, J 8.1, 2 x 

Ph-H) and 7.01 (2 H, d, J 8.1,2 x Ph-H); Oc (100 MHz, DMSO) 31.15 (CH2), 31.57 

(CH2), 49.23 (2 x NCH2), 115.39 (2 x CH, 2 x ArCH), 129.34 (2 x CH, 2 x ArCH), 

131.81 (C, ArC), 155.72 (COH, ArCOH) and 167.35 (N=C-N); mlz (FAB) 191.1185 

(MH+ - C llHl4N20 + H requires 191.1184). 
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2-[2-(4-Hydroxyphenyl)ethyl)-3,4,5,6-tetrahydropyrimidinium tritlate salt (72) 

HN~ 
:::--.+ j 

NH 

CF,SO;-

~n 
O~ 

H2, Pd-C 

MeOH, r.t. 6h 

OH 

(69) (72) 

HN:J 

NH 
+ 

CF,SO;-

To 2-[2-(4-benzyloxyphenyl)ethyl)-3,4,5,6-tetrahydropyrimidinium triflate salt (69) (683 

mg, 2.32 mmol) and palladium-carbon (10%) catalyst (104 mg, 15 % w/w), was added 

methanol (60 ml), After degassing the solution, the mixture was hydrogenated under 1 

atmosphere of hydrogen at room temperature for 6 h. After filtering off the palladium­

carbon catalyst over celite and washing with methanol (30 ml), the methanol was 

removed under reduced pressure to yield a yellow liquor, 2-[2-( 4-hydroxyphenyl)ethyl)-

3,4,5,6-tetrahydropyrimidinium triflate salt (72) (471 mg, 99 %). Urn• x (Nujol)/cm·l 3302 

(NH), 3162, 1660 (C=N), 1627 (C=N), 1514, 1322, 1255(C-N), 1165, 1029 834, 763 and 

723; OH (250 MHz, DMSO) 1.79 (2 H, t, J 5.5, CH2CH2CH2), 2.58 (2 H, t, J 7.3, CH2Ph), 

2.81 (2 H, t, J 7.3, CH2C=N), 3.29 (4 H, t, J 5.1, 2 x NCH2), 6.72 (2 H, d, J 8.1,2 x Ph­

H) and 7.03 (2 H, d, J 8.1,2 x Ph-H); oc(100 MHz, DMSO) 15.97 (CH2~H2CH2)' 29.62 

(CH2), 32.42 (CH2), 36.36 (2 x NCH2), 113.52 (2 x CH, 2 x ArCH), 127.45 (2 x CH, 2 x 

ArCH), 154,23 (C, ArC), 160.73 (COH, ArCOH) and 170.06 (N=C-N); mlz (F AB) 205 

(MH+, 100%), 107 (8), 98 (13) and 57 (10); mlz (FAB) 205.1340 (MH+ - C12H16N20 + H 

requires 205.1341). 
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- --------

2-[2-(4-Hydroxyphenyl)ethyl]-4,5,6,7-tetrahydro-lH-[l,3]diazepinium trifiate salt 

(73) 

CF
3
S0

3
-

HN~ 
::::.::-, ,j 

NH 

~n 
O~ 

(70) 

Pd-C, H2 , MeOH, r.t. 24h 

• 

CF
3
S0

3
-

OH 

HN~ 
::::.::-, ,j 

NH 

(73) 

To 2-[2-( 4-benzyloxyphenyl)ethyl]-4,5,6,7-tetrahydro-1 H-[I ,3]diazepinium triflate salt 

(70) (668 mg, 1.46 mmol) was added palladium-carbon (10%) (lOO mg, 15 %w/w) and 

methanol (50 ml). The reaction mixture was degassed first by attaching the reaction flask 

under vacuum before proceeding with hydrogenation under a hydrogen balloon (1 atm) 

for 24 h. The palladium-carbon was removed by filtration over celite and this washed 

with methanol (40 ml). The filtrate was evaporated to dryness to give amidinium salt (73) 

as a pale yellow oily product (522 mg. 97 %). Urnax (acetone)/cm-1 3294 (OH), 3072, 

2939,1648 (C=N), 1614, 1515, 1453,1361,1332, 1242 (C-N), 1167, 1029 (COC) and 

830; OH (250 MHz CD3CN) 1.84 - 1.88 (4 H, m, CH2CH2CH2CH2), 2.57 (2 H, t, J 7.5, 

CH2Ph), 2.83 (2 H, t, J 7.5, CH2C=N), 3.41 - 3.47 (4 H, m, 2 x NCH2), 5.74 (I H, brs, 

NH), 6.75 (2 H, d, J 8.3,2 x Ph-H) and 7.03(2 H, d, J 8.3,2 x Ph-H); Oc (lOO MHz, 

CD3CN) 26.60 (CH&H&H2CH2), 31.84 (CH2), 37.61 (CH2), 44.15 (2 x NCH2), 116.58 

(2 x CH, 2 x ArCH), 130.00 (C, ArC), 130.50 (2 x CH, 2 x ArCH), 157.63 (COH, 

ArCOH) and 169.59 (N-C=N); mlz (EI+) 218 (M+, 74%), 165 (24), 120 (30), 107 (lOO), 

98 (45), 77 (25) and 70 (23); mlz (El+) 218.1420 (M+ - C13H ISN20 requires 218.1419). 
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5a-Methoxy-l,2,5,5a,9,9a-hexahydro-4H-imidazo[I,2-a)quinolin-8-one trillate salt 

(74) via 4-[2-(4,5-dihydro-1H-imidazol-2-yl)ethyl)-4-methoxy-cyclohexa-2,5-dienone 

trinate salt (74a) 

+ + 

HN1:-J 
+ 

CF3SO;- HN1:-J CF3SO;- HN1:-J 

N MeOH, BTIB CF3SO;-H N Alumina N 
• H • H 

r.t. 1h 

MeO MeO 

OH 0 0 

(71 ) (74a) (74) 

2-[2-(4-Hydroxyphenyl)ethyl]-4,5-dihydroimidazolium triflate salt (71) (390 mg, 2.05 

mmol) was mixed with bis(trifluoroacetoxy)iodobenzene (BTlB) (1.05 g, 2.46 mmol, 1.2 

mol. equiv.) in dry methanol (8 ml). The yellow mixture was swirled at room temperature 

under an atmosphere of nitrogen for I h and then the solvent was removed to give a 

brown residue. The residue was partitioned between petroleum ether (3 x 30 ml) and 

acetonitrile (30 ml) to remove the iodobenzene into the petroleum ether layer. The 

acetonitrile layer was evaporated· to dryness under reduced pressure for basic alumina 

column chromatography of the residue using methanol and dichloromethane (3 : 97 v/v) 

to give quinolinone triflate salt (74) as a brown oil (178 mg, 39 %). U max (CHCI)/cm'! 

3360,2936,1693 (C=O), 1682 (C=N), 1614, 1455, 1417, 1271 (C-N), 1217,1099 and 

1013 (COC); OH (250 MHz, COCh) 1.87 - 1.93 (I H, m, NCH(H», 2.06 - 2.11 (I H, m, 

NCH(H)), 2.34 - 2.44 (2 H, m, NCH2CH2N), 2.59 - 2.68 (2 H, m, CH2C), 2.99 - 3.08 (2 

H, m, CH2C=N), 3.33 (3 H, s, OCH), 3.50 - 3.78 (3 H, m, CHCH2C=O & NCH), 6.16 (I 

H, d, J 10.3, CH=CHCO) and 6.75 (I H, d, J 10.3, CH=CHCO); Oc (100 MHz, COCI) 

20.68 (CH2), 27.24 (CH2), 38.96 (hH2C=O), 47.99 (NCH2), 49.84 (OCH), 51.14 

(NCH2), 57.39 (N~HCH2C=O), 71.63 (~-OCH), 131.16 (CH=~HCO), 148.01 

(CH=CHCO), 161.03 (N-C=N) and 195.66 (C=O); mlz (F AB) 221.1293 (MH+ -

C!2H!6N202 + H requires 221.1290); mlz (FA B) 221 (MH+, 100%), 149 (24),136 (26), 

91 (25),69 (28),55 (42) and 41 (37). 
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Sa-Ethoxy-l,2,S,Sa,9,9a-hexahydro-4H-imidazo[l,2-a]quinolin-8-one triflate salt 

(7S) via 4-[2-(4,S-dihydro-lH-imidazol-2-yl)ethyIJ-4-ethoxy-cyclohexa-2,S-dienone 

triflate salt (7Sa) 

+ + + 

HN1:J HN:J HN1:J CF3SO;- I CF,SO;-
N 

EtOH. BTIB ~ Alumina N 
H H CF,SO;-• • 
~ r.t. 2h 

EtO EtO 
h-

OH 0 0 

(71) (75a) (75) 

To the 2-[2-(4-hydroxyphenyl)ethyl]-4,5,-dihydroimidazolium triflate salt (71) (365 mg, 

1.92 mmol) in ethanol (5 ml), was added bis(trifluoroacetoxy)iodobenzene (BTIB) (989 

mg, 3.20 mmo1 1.2 mol. equiv.) in ethanol (5 ml) under an atmosphere of nitrogen. The 

yellow mixture was swirled at room temperature for 2 h and then the solvent was 

removed to dryness under reduced pressure. The residue was partitioned between 

petroleum ether (3 x 30 ml) and acetonitrile (30 ml) to remove the iodobenzene into the 

petroleum ether layer. The acetonitrile layer was evaporated to dryness under reduced 

pressure for basic alumina column chromatography of the residue using methanol and 

dichloromethane (3 : 97 v/v) to give quinolinone triflate salt (7S) as a brown liquor (70 

mg, 16 %). Urnax (CHCb)/cm·1 3017,2976,2937,2872,1684 (C=O), 1623 (C=N), 1419, 

1270,1215 (C-N), 1111, 1082 (COC) and 755; OH (250 MHz, CDCh) 1.17 (3 H, t,J6.9, 

CH2CH3), 1.84 - 1.92 (I H, m, 1 H, NCH(H», 2.05 - 2.15 (1 H, m, NCH(H», 2.21 -

2.43 (2 H, m, NCH2), 2.60 - 2.69 (1 H, m, CH(H», 2.99 - 3.08 (I H, m, CH(H», 3.03 (2 

H, m, CH2), 3.51 (4 H, m, OCH2CH3 & CHCH2CO), 3.66 - 3.79 (I H, m, NCH), 6.12 (I 

H, d, J 10.4, CH=CHCO) and 6.74 (I H, d, J 10.4, CH=CHCO); Oc (lOO MHz, CDCb) 

16.34 (CH2~H3), 22.17 (CH2), 29.23 (CH2), 40.34 ~H2C=O), 49.47 (NCH2), 52.66 

(NCH2), 58.98 (OCH2CH3), 59.46 ~HCH2C=O), 72.11 (C-O), 132.24 (CH=~HCO), 

149.96 ~H=CHCO), 162.55 (N=C-N) and 197.21 (C=O); mlz LC-MS (ES+) 235 (MW, 

100%), 191 (44), 189 (56), 161 (20), 146 and 84 (20); mlz (FAB) 235.1450 (MH+ -

C13H18N202 + H requires 235.1447). 
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6a-Methoxy-2,3,6,6a,1 0,1 Oa-hexa hyd ro-lH,SH-pyrim ido [1 ,2-a) q uinolin-9-one 

triflate salt (76) via 4-methoxy-4-[2-(1,4,S,6-tetrahydro-pyrimidin-2-

yl)ethyl)cyclohexa-2,S-dienone triflate salt (76a) 

HN:7J HN::J .H~I:J ~+ CF,SO:;-
~+ 

CF,SO:;-

NH MeOH, BTlB NH Alumina 
• • N CF,SO:;-

H 
r.t 1h 

MeO 
MeO 

OH 0 
(72) 

0 
(76a) (76) 

2-[2-(4-Hydroxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidinium triflate salt (72) (885 mg, 

4.33 mmol) and the bis(trifluoroacetoxy)iodobenzene (BTlB) (2.23 g, 5.19 mmol, I.2 

mol. equiv.) in dry methanol (10 ml) under an atmosphere of nitrogen was swirled for I h 

at ambient temperature before removal of the· solvent to yield a pale brown residue. The 

by-product iodobenzene was removed by partitioning of the residue between petroleum 

ether (3 x 30 ml) and acetonitrile (40 ml). The acetonitrile layer was collected and 

evaporated to dryness under reduced pressure for flash column chromatography of the 

residue with basic alumina pH 9.5 using methanol and dichloromethane (3 : 97 v/v). The 

brown liquor obtained from the chromatography was the quinolinone triflate salt (76) 

(464 mg, 46 %). Urn" (CHCI3)/cm'! 3511,3284,3152,2957, 1691 (C=O), 1644 (C=N), 

1597,1324,1254 (C-N), 1159, 1030 (COC) and 757; OH (250 MHz, acetone) 2.11 - 2.21 

(3 H, m, CH2 & CH(H», 2.79 - 2.91 (4 H, m, 2 x CH2), 3.04 (I H, dd, J 16.7 & 5.2, 

CH(H», 3.38 (3 H, s, OCH3), 3044 - 3.51 (2 H, m, CH2), 3.62 - 3.67 (1 H, m, CH(H», 

3.77 - 3.86 (I H, m, CH(H», 4.45 (I H, dd, J 12.3 & 5.2, NCH), 6.13 (I H, d, J lOA, 

CH=CHCO), 7.05 (I H, d, J lOA, CH=CHCO). Oc (100 MHz, acetone) 19.90 

(CH2~H2CH2)' 25.10 (CH2), 25.39 (CH2), 40.05 ~H2C=0), 41.29 (NCH2), 47.11 

(NCH2), 51.77 (OCH3), 59.57 (CH), 74.34 (C-OCH3), 132.30 (CH=CHCO), 152.05 

~H=CHCO), 161.76 (N-C=N) and 195.25 (C=O); mlz (EI+) 234.1373 (M+ - C13H!8N202 

requires 234.1368). 
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6a-Ethoxy-2,3,6,6a,lO,lOa-hexahydro-lH,5H-pyrimido[1,2-a[quinolin-9-one triflate 

salt (77) via 4-ethoxy-4-[2-(1,4,5,6-tetrahydro-pyrimidin-2-yl)ethyl]cyclohexa-2,5-
-

dienone triflate salt (77a) 

HN~ 
::,...+j 

NH 

(72) 

CF,SO;-

EtOH, BTIB 

r.t. 1 h 

OH 

HN::'J 
::,...+ 

NH 

EtO 

(77a) 

CF,SO;- H~I:) 
Alumina 

• N H CF,SO;-

0 
0 

(77) 

To 2-[2-(4-hydroxyphenyl)ethyl]-3,4,5-tetrahydropyrimidinium triflate salt (72) (490 

mg, 2.40 mmol) in ethanol (8 ml) was added bis(trifluoroacetoxy)iodobenzene (BTIB) 

(1.24 g, 2.88 mmol, 1.2 mol. equiv) in ethanol (8 ml) under an atmosphere of nitrogen. 

The yellow mixture was swirled under an atmosphere of nitrogen at ambient temperature 

for I h before removing the solvent to yield a pale brown residue. Extraction of the 

residue was carried out to remove the by-product iodobenzene by using petroleum ether 

(3 x 30 ml) and acetonitrile '(30 ml). The acidic polar organic layer, acetonitrile at pH I, 

was collected and evaporated to dryness under reduced pressure then purified by flash 

column chromatography with basic alumina pH 9.5 using methanol and dichloromethane 

(3 : 97 v/v). A pale yellow solid was collected after solvent removal as the corresponding 

cyclised quinolinone triflate salt (77) (204 mg, 34 %). M.p: (ethyl acetate) 154-155 QC; 

Found: C, 44.91; H, 5.07; N, 6.89. CIsH21N20sF4S requires C, 45.22; H, 5.31; N, 7.03%; 

Umax (CHCb)/cm·1 3018, 1688 (C=O), 1645 (C=N), 1214 (C-N), 1028 (COC) and 757; OH 

(250 MHz, CDCb) 1.19 (3 H, t, J 6.9, CH2CHJ), 2.03 - 2.09 (4 H, m, CH2CH2), 2.66 (I 

H, dd, J 12.4 & 16.4, CH(H», 2.89 - 2.94 (2 H, m, CH2), 3.01 - 3.10 (1 H, m, CH(H», 

3.29 - 3.26 (I H, m, CH(H», 3.43 - 3.51 (4 H, m, OCH2CHJ & CH2), 3.58 - 3.68 (I H, 

m, CH(H», 3.98 (I H, dd, J 5.0 & 12.4, NCH), 6.11 (I H, d, J 10.4, CH=CHCO) and 

6.84 (I H, d, J 10.4, CH=CHCO); oe (100 MHz, CDCb) 14.88 (CHJ), 17.80 

(CH2~H2CH2), 22.95 (CH2), 23.73 (CH2), 37.81 ~H2C=O), 39.55 (NCH2), 45.15 
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(NCH2), 58.17 (O~H2CH3), 58.46 (CH), 71.71 (C-O), 130.05 (CH=~HCO), 150.29 

~H=CHCO), 159.30 (N-C=N), 193.31 (C=O); mlz (EI+) 248.1525 (M' - C!4H20N202 

requires 248.1525); m/z (EI+) 248 (M', 100%),219 (94), 203 (96),191 (27), 176 (88), 

165 (27),122 (28),109 (42), 98 (24), 91 (25),77 (34), 54 (67) and 41 (40). 

4a-Methoxy-l ,5,6,8,9,10,11 ,12a-octahyd ro-4aH-azepino[1 ,2-a Iq uin oIin -2-one trifla te 

salt (78) 

HN:J CF3S03 -
CF3S03 

H~I:) NH 

BTIB, MeOH, r.t.1h .. N 

° 
OH 

/ 
° 

(73) (7a) 

To 2-[2-( 4-hydroxyphenyl)ethyl]-4,5,6, 7-tetrahydro-1 H-[I ,3]diazepinium triflate salt (73) 

(427 mg, 1.95 mmol) in dry methanol (20 ml) was added 

bis(trifluoroacetoxy)iodobenzene (1.01 g, 2.35 mmol, 1.2 mol. equiv.) in dry methanol 

(20 ml). After stirring for I h at ambient temperature, the solvent was removed under 

pressure. The iodobenzene by-product was removed by partitioing the residue between 

acetonitrile (30 ml) and petroleum ether (3 x 30 ml). The acetonitrile layer was collected 

and the solvent was removed under reduced pressure for flash column chromatography of 

the residue over basic alumina with methanol: dichloromethane (5 : 95 v/v) to yield a 

brown oily product (78) (204 mg, 44%). Umax (CHCI3)/cm'! 3279, 3131, 2939, 1691 

(C=O), 1631 (C=N), 1455, 1367, 1328, 1272, 1246 (C-N), I i57 and 1029 (COC); OH 

(250 MHz CDCh) 2.11 (4 H, bs, CH2CH2CH2CH2), 2.70 (1 H, dd, J 11.9 & 16.8, 

NCH(H», 2.95 (2 H, t, J 6.6, CH2CH2), 3.06 (1 H, dd, J 5.1 & 16.4, NCH(H», 3.33 (3 H, 
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s, OCH3), 3.35 - 3.47 (I H, m, CH(H)C=O), 3.62 - 3.79 (4 H, m, CH2CH2 & NCH2), 

3.86 - 3.95 (I H, m, CH(H)C=O), 4.00 (I H, dd, J 4.8 & 11.9, NCH), 6.15 (I H, d, J 

10.3, CH=CHCO) and 6.87 (I H, d, J 10.3, CH=CHCO); Qc (lOO MHz, CDCb) 25.01 

(CH2~H2~H2CH2)' 25.95 (2 x CH2), 41.23 (NCH2), 43.64 (NCH2), 51.33 (CH2C=O), 

51.38 (OCH]), 60.94 ~HCH2)' 73.24 (C), 131.79 (CH=~HCO), 150.59 ~H;CHCO), 

166.33 (N-C=N) and 194.60 (C=O); m/z (FAB) 249.1603 (MH+ - C!4H20N202 + H 

requires 249.1603); mlz (FAB) 249 (MH+, 100%), 187 (18), 141 (43),97 (31) and 83 

(47). 

7 a-Etboxy-l ,2,3,4, 7,7 a,ll, lla-octabyd ro-6H- [1,3 Jdiazepi nor 1 ,2-a ) q uinol in-l O-one 

trinate salt (79) 

CF3S03 HN:J 
NH 

STIS, EtOH, r.t. 2h .. 

° OH 
(70) (79) 

To 2-[2-( 4-hydroxyphenyl)ethyl]-4,5,6,7-tetrahydro-IH-[ I ,3]diazepinium tritlate (70) 

(748 mg, 2.03 mmol) in dry ethanol (30 ml) was added bis(trifluoroacetoxy)iodobenzene 

(1.31 g, 3.05 mmol, 1.5 mol. equiv.) and basic alumina (2.0 g). The reaction mixture was 

swirled under a nitrogen atmosphere at ambient conditions for 2 h, the alumina was 

filtered off and washed with ethanol (10 ml). The filtrate was concentrated under reduced 

pressure and the residue purified by flash column chromatography over basic alumina 

with methanol and dichloromethane (6 % MeOH). The pale yellow solid obtained was 

identified as 7a-ethoxy-1 ,2,3,4,7, 7a, 11,11 a-octahydro-6H-[1 ,3]diazepino[1 ,2-a]quinolin­

IO-one triflate salt (79) (233 mg, 29 %). M.p: 165-166 QC; U max (Acetonitrile)/cm'! 3282, 
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3133,2972,1684,1635,1475,1249,1259, and 1029; OH (400 MHz Acetone) 1.2.1 (3 H, 

t, J 7.0, OCH2CHJ), 1.29 (I H, m, NCH2CH(H», 2.15 - 2.26 (4 H, m, NCH2 & CH2), 

2.86 - 2.94 (3 H, m, CH2 & NCH(H», 3.08 (I H, dd, J 5.2 & 16.9, CHCH(H)C=O), 3.58 

- 3.78 (5 H, m, CH2, NCH2 & CHCH(H)C=O), 3.90 - 4.18 (2 H, m, OCH2), 4.47 (I H, 

dd, J 5.2 & 12.4, NCHCH2C=0), 6.10 (I H, d, J 10.4, CH=CHCO), 7.09(1 H, d, J 10.4, 

CH=CHCO) and 8.68 (I H, brs, NH+); oe (100 MHz, Acetone) 16.23 (OCH2rHJ), 25.49 

(CH2), 25.71 (CH2), 25.85 (CH2), 26.58 (CH2), 41.57 (NCH2), 43.96 (NCH2), 51.63 

<rH2C=0),59.64 (OCH2CHJ), 61.90 (CH2rH), 73.89 <r-OCH2CHJ), 131.58, 

(CH=rHCO), 152.00 (rH=CHCO), 161.20 (N=C-N) and 194.72 (C=O); mlz (FAB) 

263.1756 (MW - ClsH22N202 + H requires 263.1756); mlz (FAB) 263 (MH+, 38%),154 

(22), 136 (32), 107 (34),8972),77 (100), 63 (55) and 51 (63). 

Treatment of 2-[2-(4-hydroxyphenyl)ethyl]-3,4,S,6-tetrahydropyrimidinium triflate 

salt with NCS. 

HN:J 
N EtOH. NCS 

• AI~ 
r.t. 2h 

o 
OH ~ o 

(72) 

To the 2-[2-(4-hydroxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidiniurn triflate salt (72) 

(250 mg, 1.22 mmol) dissolved in ethanol (5 ml) was added an excess of N­

chlorosuccinimide (543 mg, 1.26 mmol, 1.1 mol. equiv.) in ethanol (5 ml) under a 

nitrogen atmosphere. The solution gradually became yellow while swirling at room 

temperature for 2 h. The solvent was removed under reduced pressure for flash column 

chromatography of the residue with basic alumina but yielded none of the desired 

quinolinone product and the amidine recovered. 
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Di-(4-rnethoxyphenyl)telluriurn dichloride (80) 85 

In a dry 500 rnl 3-neck round bottom flask equipped with a thermometer and a reflux 

+ TeCl, 
>1000C Cl 

. Meo-Q-te-{ }-OMe 
Cl 

6h 

(80) 

condenser fitted with a calcium chloride drying tube, were placed tellurium tetrachloride 

(18.0 g, 66 mmol) and dry anisole (43.2 g, 0.40 mol). The mixture was heated at reflux 

for 6 h, as the yellow solid dissolved over 100°C, and then cooled to room temperature 

before the solvent was removed by evaporation under high vacuum. The yellow residue 

of crude solid was dissolved in boiling acetonitrile (200 ml) and the solution was filtered 

hot and then cooled down to -25°C immediately to give (80) as a very pale pink solid 

(18.82 g, 72 %). M.p: 169-171 °c (lit., 85 182_183 0C); Umax (Nujol)/cm-1 2921,2850, 

2725,2669,1582,1454,1376,1296,1258,1173,1019,814, 803, 787 and 722; OH (400 

MHz OM SO) 3.82 (6 H, s, 2 x OCH3), 7.11 (4 H, d, J9.0, 4 x Ph-H) and 7.88 (4 H, d, J 

9.0, 4 x Ph-H); oe (100 MHz, OMSO) 55.81 (2 x OCH3), 115.11 (4 x CH, 4 x ArCH), 

128.64 (2 x C, 2 x ArC), 136.46 (4 x CH, 4 x ArCH) and 161.39 (2 x C, 2 x ArC). 

Di-(4-methoxyphenyl)telluriurn oxide (DAT) (81) 86 

aq. NaOH 
• 

(80) 
(81 ) 

In aqueous sodium hydroxide (lOO ml, 5 %) was added di-(4-methoxyphenyl)tellurium 

dichloride (80) (5.00 g, 12.60 mmol). The undissolved mixture was heated to 95°C for 
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1.5 h to form a white solid precipitate. The precipitate was filtered off and washed with 

deionised water (3 x 10 ml) then dried over P205 to give OAT (81) as a pale yellow solid 

(2.58 g, 57 %). M.p: 182-183 QC (lit., 86 187_189 QC); Urnax (Nujol)/cm'12922, 2852,1581, 

1487,1469,1376,1290,1245,1177,1025,822,810,787 and 722; OH (250 MHz OMSO) 

3.74 (6 H, s, 2 x OCH3), 7.01 (4 H, d, J 8.2,4 x Ph-H) and 7.70 (4 H, d, J 8.2,4 x Ph-H); 

lie (100 MHz, DMSO) 56.16 (2 x OCH3), 115.62 (4 x CH, 4 x ArCH), 130.89 (2 x C, 2 x 

ArC), 132.87 (4 x CH, 4 x ArCH) and 162.00 (2 x C, 2 x ArC). 

Oxidation of 2-[2-(4-hydroxyphenyl)ethyl)-3,4,5,6-tetrahydropyrimidinium triflate 

salt with hypervalent tellurium oxidising reagent 

CF,SO, 
H~C) H~I:) 

N 
DAT * H N .. EtOH, r.t. 2h CF,SO, 

0 OH ~ 0 
(72) 

To 2-[2-(4-hydroxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidinium triflate salt (72) (506 

mg, 2.47 mmol) was added di-(4-methoxyphenyl)tellurium oxide (DAT) (81) (1.38 g, 

3.705 mmol, 1.5 mol. equiv.) in dry ethanol (20 ml). The yellow reaction mixture was 

swirled at ambient temperature under an atmosphere of nitrogen for 2 h. The ethanol was 

removed to reduced pressure and flash column chromatography of the residue with basic 

alumina using methanol: dichloromethane (3 : 97 v/v) gave some white solid that could 

not be characterised. 
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2-[2-(4-Benzyloxyphenyl)ethyl]-1(3)-tert-butyloxycarbonyl-3,4,5,6-tetrahydro­

pyrimidine(82) 87 

CF,SO;-

~n 
O~ 

• 
Base. aq.THF. reflux 16h ~n 

O~ 
(69) (82) 

2-[2-(4-Benzyloxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidinium triflate salt (69) (1.00 g, 

3.40 mmol) and sodium bicarbonate (0.58 g, 6.90 mmol) in aqueous THF (I : 1 %v/v, 60 

ml) was treated with di-tert-butyl dicarbonate (1.42 g, 6.78 mmol) in THF (10 ml). The 

reaction mixture was heated under reflux for 16 h and then concentrated by evaporation 

under reduced pressure. The residue was partitioned between chloroform (100 m!) and 

saturated aqueous sodium bicarbonate (60 ml) and the organic layer was washed with 

deionised water and dried with anhydrous magnesium sui fate. The solvent was removed 

under reduced pressure and the crude residue was purified by flash column 

chromatography using methanol : dichloromethane (5 : 95 v/v) to yield the desired 

product (82) as a white solid (817 mg, 61 %). M.p: 108-109 °C (lit., 87111_112 0C); Urn .. 

(CHCI))/cm-1 3360,3314,2975,2939, 1688 (NCOO), 1639 (C=N), 1534, 1512, 1453, 

1365,1279,1249 (C-N), 1174, 1015 (COC) and 740; OH (250 MHz, CDCh) 1.42 (9 H, s, 

3 x CH)), 1.50 (2 H, bs, NCH2CH2CH2N), 2.44 (2 H, t, J 7.5, CH2CH2), 2.89 (2 H, t, J 

7.5, CH2CH2), 2.99 - 3.02 (2 H, m, NCH2), 3.20 - 3.23 (2 H, m, NCH2), 5.00 (2 H, s, 

OCH2Ph), 6.87 (2 H, d, J 8.6,2 x Ph-H) 7.10 (2 H, d, J 8.6,2 x Ph-H) and 7.33 -7.39 (5 

H, rn, 5 x Ph-H); Oc (lOO MHz, CDCh) 28.79 (3 x CH)), 30.57 (CH2), 31.27 (CH2), 37.30 

(CH2), 37.70 (CH2), 39.11 (CH2), 70.42 (OCH2Ph), 79.69 (O~(CH)h), 115.20 (CH, 

ArCH), 127.83 (CH, ArCH), 128.29 (CH, ArCH), 128.94 (CH, ArCH), 129.68 (CH, 

ArCH), 133.62 (C, ArC), 137.52 (C, ArC), 157.02 (C-O, ArCO), 157.56 (C=O) and 

172.89 (N-C=N). 
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2-[2-(4-Hydroxyphenyl)ethyl]-1(3)-tert-butyloxycarbonyl-3,4,5,6-tetrahydro­

pyrimidine(83) 87 

I~ 
~n 
O~ 

(82) 

H2, Pd(OH), - C 
MeOH, r.t. 20h 

• 

OH 

(83) 

To 2-[2-( 4-benzyloxyphenyl)ethyl]-1 (3)-tert-butyloxycarbonyl-3 ,4,5 ,6-tetrahydro­

pyrimidine(82) (344 mg, 0.87 mmol) in a dry 50 ml flask was added palladium 

hydroxide-carbon (10%) (35 mg, 10 %w/w) followed by methanol (10 ml). Under an 

atmosphere of hydrogen, the reaction was degassed through evacuation and refilled three 

times with a 3-way tap before swirling under I atmosphere of hydrogen for 20 h. The 

resulting suspension was filtered through celite to remove the catalyst, the solids were 

washed with methanol (20 ml) and the filtrate was evaporated under reduced pressure to 

give the title compound (83) as a yellow oil (263 mg, 99 %). Urnax (CHCI3)/cm-1 3325, 

2977,2931,1689 (NCOO), 1519, 1450, 1365, 1249 (C-N), 1164,833 and 756; OH (250 

MHz, CDCh) 1.42 (9 H, s, 3 x CH3), 1.46 - 1.52 (2 H, m, CH2CH2CH2), 2.42 (2 H, t, J 

7.3, CH2), 2.84 (2 H, t, J 7.3, CH2), 2.99 (2 H, d, J 5,8, NCH2), 3.16 - 3.21 (2 H, m, 

NCH2), 6.75 (2 H, d, J 8.3,2 x Ph-H) and 6.98 (2 H, d, J 8.3,2 x Ph-H); Oc (100 MHz, 

CDCh) 28.79 (3 x CH3), 30,23 (CH2~H2CH2), 31.31 (CH2), 36.36 (CH2), 37.47 (NCH2), 

39.05 (NCH2), 79.96 (C(CH3)3), 115.95 (2 x CH, 2 x ArCH) 129.69 (2 x CH, 2 x ArCH), 

131.99 (C, ArC), 153.40 (COH, ArCOH), 157.27 (C=O) and 173.81 (N-C=N). 
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4-Methoxy-4-[2-(1-tert-butyloxycarbonyl-3,4,5,6-tetrahydropyrimid-2-yl)ethyl)­

cycIohexa-2,5-dienone (84) 87 

OH 

(83) 

BTIB, MeOH, r.t. 1 h 

o 

(84) 

To 2-[2-( 4-hydroxyphenyl)ethyl]-1 (3)-tert-butyloxycarbonyl-3,4,5 ,6-tetrahydro­

pyrimidinium triflate salt (83) (290 mg, 0.953 mmol) was added 

bis(trifluoroacetoxy)iodobenzene (BTIB) (603 mg, 1.14 mmol) and dry methanol (8 ml). 

Under an atmosphere of nitrogen, the mixture was swirled for I h at room temperature 

and the methanol was removed under reduced pressure to give a brown liquor. The 

iodobenzene by-product formed from the reaction was removed from the brown liquor by 

partitioning between petroleum ether (3 x 30 ml) and acetonitrile (30 ml». The 

acetonitrile layer was collected and the solvent removed under pressure. The crude 

residue was purified by flash column chromatography using ethyl acetate to yield the title 

compound as a colourless oil (84) (60 mg, 20 %) that turned to a brown oil after 24 hour. 

llmax (CHCb)/cm" 3325, 2974, 2933, 1685 (NCOO), 1669 (C=N), 1531, 1451, 1390, 

1366, 1275, 1252 (C-N), 1170, 1094, 1074 (COC) and 862; liH (250 MHz, CDCb) 1.42 

(9 H, s, 3 x CH3), 1.54 - 1.59 (2 H, m, CH2CH2CH2), 2.09 - 2.17 (4 H, m, 2 x CH2), 3.13 

(2 H, q, J 6.0, NCH2), 3.20 (3 H, s, OCH3), 3.22 - 3.27 (2 H, m, NCH2), 6.35 (2 H, d, J 

1004,2 x CH=CHCO) and 6.74 (2 H, d, J lOA, 2 x CH=CHCO); lie (100 MHz, CDCb) 

28.76 (3 x CH3), 30.51 (CH2CH2CH2), 30,97 (CH2), 34.88 (CH2), 36.28 (NCH2), 37040 

(NCH2), 53.52 (OCH3), 75.54 (C(CH3h), 79,87 (C-O), 132.12 (2 x CH=CHCO), 150.93 

(2 x ~H=CHCO), 157.16 (C=O), 185.62 (N-C=N) and 198.88 (C=O). 
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2,3,5,6-Tetrahydro-lH-pyrimido[1,2-a]quinolin-9-ol triflate salt (85) 

CF3SO; 

TFSA then pH 8 
,H 

" • CF3SO; 
r.t. 1h 

o OH 

(77) (85) 

To 6a-ethoxy-2,3,6,6a, I 0, I Oa-hexahydro-IH,5H-pyrimido[1 ,2-a]quinolin-9-one triflate 

salt (77) (78 mg, 0.31 mmol) was added trifluoromethanesulfonic acid (0,5 ml), The 

reaction was swirled at room temperature for I h before the remaining acid and by­

product were removed by kugelrohr distillation at 110°C (3 mbar), The brown residue 

obtained was dissolved in dichloromethane (30 ml) and then neutralised to pH 8 with 

saturated sodium carbonate solution (10 ml), The organic layer was collected, dried with 

anhydrous magnesium sulfate and evaporated to dryness under reduced pressure to give a 

yellow oil, which was purified by flash column chromatography using methanol : 

dichloromethane (7 : 93 to 10 : 90 v/v) to yield a pale yellow oil (85) (24 mg, 38 %), mlz 

(EI+) 202,1109 (M+ - Cl2Hl4N20 requires 202.1106); Urnax (CHCh)/cm-1 3267 (OH), 

3116,2958,1647 (C=N), 1604, 1496, 1442, 1326, 1276, 1249 (C-N), 1222, 1203, 1157 

and 1029; OH (250 MHz, acetone) 2.35 (2 H, t, J 5.5, NCH2CH2CH2N), 3,00 (4 H, s, 

CH2CH2), 3,64 (2 H, t, J 5,5, NCH2), 4,04 (3 H, t, J 5,5, NCH2), 5.42 (I H, brs, OH), 6_86 

(1 H, dd, J 2,0 & 8.2, Ph-H), 7.12 (1 H, d, J2_0, Ph-H) and 734 (1 H, d, J 8.2, Ph-H); Oc 

(100 MHz, acetone) 18.21 (CH2h.H2CH2), 21.23 (CH2), 21.32 (CH2), 38,12 (NCH2), . 

43,65 (NCH2), 107,02 (CH, ArCH), 114,76 (CH, ArCH), 121.82 (C-N), 128,88 (CH, 

ArCH), 138.59 (C, ArC), 156.20 (CO, ArCO) and 16_87 (N-C=N); mlz (EI+) 202 (M+, 

100%),174,146 (40) and 117, 
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9-Methoxy-2,3,5,6-tetrahydro-lH-pyrimido-[1,2-a]quinoliniu m triflate salt (86) 

CF3SO; H~I:) H~I:) 
TFSA, MeOH, 

N base, reflux 4h N CF3SO; ,H • . ' 
MeO 

0 OMe 

(76) (86) 

To 6a-methoxy-2,3,6,6a, I 0, I Oa-hexahydro-IH,5H-pyrimido[1 ,2-a]quinolin-9-one triflate 

salt (76) (94 mg, 0.40 mmol) was added trifluoromethanesulfonic acid (0.5 ml) and dry 

methanol (3 ml) and this was heated at reflux for 4 h. The solvent was removed from the 

brown reaction mixture and the residue was neutralized with saturated sodium carbonate 

solution (10 ml) to pH 8 and extracted with ethyl acetate (4 x 10 ml). The organic layers 

were combined and dried with anhydrous magnesium suI fate. After solvent removal 

under reduced pressure, the residue was purified by flash column chromatography using 

methanol : dichloromethane (10 : 90 v/v) to give a brown solid, identified as the title 

compound (86) (49 mg, 57 %). Recrystallisation from dichloromethane and a few drops 

of ethyl acetate gave colourless crystals which proved to be the trifluoromethanesulfonate 

salt of the quinoline from X-ray crystallography. M.p: 120-121 QC; Found: C, 45.83; H, 

4.47; N, 7.57. CI4HI7N204F3S requires C, 45.90; H, 4.67; N, 7.64; Urnax (CHCh)/cm·1 

3479,3301,2958,1660 (C=N), 1619, 1510, 1326, 1281, 1253 (C-N), 1224, 1162 and 

1030 (COC); OH (250 MHz CDCh) 2.29 (2 H, q, J 5.8, CH2CH2CH2), 2.80 - 2.86 (2 H, 

m, CH2), 2.93 - 2.98 (2 H, m, CH2), 3.62 (2 H, t, J 5.8, NCH2), 3.82 (3 H, s, OCH3), 3.92 

(2 H, t, J 5.8, NCH2), 6.69 - 6.73 (2 H, m, 2 x Ph-H) and 7.13 (I H, d, J 8.8, Ph-H); Oc 

(100 MHz, CDCI 3) 18.99 (CH2!::H2CH2), 22.11 (CH2CH2), 28.42 ~H2CH2)' 38.62 

(NCH2), 44.19 (NCH2), 55.82 (OCH3), 103.45 (CH, ArCH), 110.43 (CH, ArCH), 118.38 

(C, ArC), 129.26 (CH, ArCH), 137.89 (C, ArC), 159.78 (CO, ArCO) and 161.53 (N-
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C=N); mlz (EI+) 216.1259 (M' - C!3H'6N20 requires 216.1262); LC-MS m/z (ES+) 217 

(MH+, 100%),202 (23), 115 (33), 106 (30) and 74 (22). 

9-(Methoxy)-2,3-dihydro-lH-pyrimido[1,2-a]quinolinium triflatc salt (87) 

CF3S03 

DDQ, Dioxane, reflux 2 days 

CF3S03 - + 

HNI:) 
I N 

OMe OMe 

(86) (87) 

To 9-methoxy-2,3,5,6-tetrahydro-IH-pyrimido-[1,2-a]quinolinium triflate salt (86) (64 

mg, 0.30 mmol) was added 1,4-dioxane (5 ml) and 2,3-dichloro-5,6-

dicyanobenzoquinone (DDQ) (104 mg, 0.45 mmol, 1.5 mol. equiv.) and the mixture 

heated at reflux under a nitrogen atmosphere for 2 days. A pale brown precipitate was 

filtered off and the filtrate was concentrated under reduced pressure to give a brown 

residue that was purified by flash column chromatography over basic alumina with 

methanol and dichloromeihane (3 - 6 % MeOH) to yield a yellow oil (24 mg, 38 %) 

which was crystallized with ether and dichloromethane to give yellow crystals of the 

quinolinium triflate salt (87). M.p: 159°C; U max (Acetonitrile)/cm" 3253, 2922, 1642 

(C=N), 1623, 1586, 1523, 1274, 1237 (C-N), 1156, 1028 (COC) and 839; OH (250 MHz 

CD]OD) 2.32 (2 H, q, J 5.9, CH2CH2CH2), 3.58 (2 H, t, J 5.9, NCH2), 3.99 (3 H, s, 

OCH]), 4.40 (2 H, t, J 6.0, NCH2), 6.77 (I H, d, J 9.2, Qu-H), 7.15 (I H, dd, J2.3 & 8.9, 

Qu-H), 7.25 (I H, d,J2.3, Qu-H), 7.77 (I H, d,J8.9, Qu-H) and 8.01 (I H, d,J9.2, Qu­

H); Oc (100 MHz, CD]OD) 19.82 (CH2~H2CH2)' 39.05 (NCH2), 45.84 (NCH2), 56.62 

(OCH]), 99.94 (CH, QuCH), 112.48 (CH, QuCH), 115.07 (CH, QuCH), 117.79 (C, 

QuC), 132.51 (CH, QuCH), 140.93 (C, Quc), 141.73 (CH, QuCH), 153.96 (CO, QuCO) 
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and 165.09 (N=C-N); mlz (EI+) 214.1185 (M+ - C13H1SN20 requires 214.1184); mlz 

(EI+) 214 (M+, 100%), 199 (30),159 (73), 69 (28) and 57 (33). 

2,3-Dihydro-lH-pyrimido[1,2-alquinolinolin-9-o1 triflate salt (88) 

CF3S03 

(85) 

CF3S03-H~~ 

DDQ, Dioxane, reflux 42 hi",) 
------------. I N 

OH 

(88) 

OH 

To 2,3,5,6-tetrahydro-IH-pyrimido[I,2-alquinolin-9-ol triflate salt (85) (72 mg, 3.56 x 

104 mol) in dry acetonitrile (20 ml) was added 2,3-dichloro-5,6-dicyanobenzoquinone 

(DDQ) (97 mg, 4.27 x 10-4 mol) and the mixture was heated at reflux under a nitrogen 

atmosphere for 42 h. After removal of the solvent under reduced pressure, the orange 

residue was purified twice by flash column chromatography with silica using MeOH : 

DCM (15: 85 v/v) to yield a small quantity of product (88) (8 mg, 10 %). 8H (250 MHz 

Acetone) 2.45 (2 H, brs, NCH2CH2CH2N), 3.72 (2 H, brs, NCH2), 4.56 (2 H, t, J 5.7, 

NCH2), 6.97 (1 H, d, J 9.2, Qu-H), 7.13 (1 H, d, J 8.6, Qu-H), 7.35 (1 H, s, Qu-H), 7.81 

(I H, d, J 8.6, Qu-H) and 8.14 (2 H, d, J 9.2, Qu-H). 
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1 O-Methoxy-l,2,3,4,6, 7 ,-hexahydro- [l,3)diazepino[l,2-a )quinolinium triflate salt 

(89) 

-
CF,SO, 

CF,SO, 

TFSA, MeOH, reflux 5h 

? 
.0 OMe 

(78) (89) 

To 4a-methoxy-1 ,5,6,8,9, I 0, I I, 12a-octahydro-4aH-azepino[ I ,2-aJquinolin-2-one triflate 

salt (78) (60 mg, 0.15 mmol) was added methanol (5 ml) and trifluoromethansulfonic 

acid (I ml) and the solution was brought to reflux for 5 h. The solvent was removed 

under reduced pressure and the residue was diluted with ethyl acetate (10 ml) and 

neutralized to pH 8 - 9 with saturated sodium carbonate solution (15 m\). The organic 

layer was collected and dried with anhydrous magnesium suI fate.· The solvent was 

removed under reduced pressure for flash column chromatography of the residue with 

methanol and dichloromethane (2 - 6 % MeOH) to yield the desired product (89) as an oil 

(38 mg, 66 %). Umax (CHCh)/cm·1 3269,3107,2954, 1613 (C=N), 1512, 1453, 1244 (C­

N), 1160 and 1029 (COC); OH (250 MHz CDCIJ) 2.21 - 2.30 (4 H, m, CH1CH2CH2CH2), 

2.77 (2 H, t, J 7.0, CH2), 3.00 (2 H, t, J7.0, CH2), 3.83 (3 H, s, OCHJ), 3.84 - 3.89 (2 H, 

m, NCH1), 4.28 (2 H, t, J 5.8, NCH2), 6.70 (I H, d, J 2.4, Ph-H), 6.74 (I H, dd, J2.4 & 

8.2, Ph-H) and 7.13 (I H, d, J 8.2, Ph-H); oe (100 MHz, Acetone) 23.05 

(CH2CH2CH2CH2), 25.09 (CH1CH1QH2CH2), 25.47 <QH2CH2), 3 1.92 (CH2~H2), 44.94 

(NCH1), 51.96 (NCH2), 56.04 (OCHJ), 105.13 (CH, ArCH), 111.77 (CH, ArCH), 121.03 

(C, ArC), 129.44 (CH, ArCH), 141.66.48 (CH, ArCH), 160.64 (CO, ArCO) and 168.71 

(N-C=N); mlz (EI+) 230.1419 (M+ - CI4HI8N10 requires 230.1419); mlz (EI+) 230 (M+, 

100%),201 (65), 176 (36), 91 (29),69 (30) and 57 (48). 
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10-Meth oxy-l,2,3,4,6, 7 ,-hexa hyd ro-[1,3) diazepino [1 ,2-a) q uinolin iu m trifla te salt 

(89) 

TFSA. MeOH. reflux 5h 

• 

J 
OMe 

o 
(79) 

(89) 

To the dissolved 7a-ethoxy-1 ,2,3,4,7, 7a, 11, I1 a-octahydro-6H-[ I ,3)diazepino[ I ,2-

a)quinolin-IO-one tritlate salt (79) (153 mg, 0.37 mmol) in dry methanol (20 ml) was 

added tritluoromethanesulfonic acid (I ml). The mixture was heated at reflux under a 

nitrogen atmosphere for 5 h and the solvent was removed under pressure. The brown 

residue was diluted with ethyl acetate (10 ml) and basified with saturated sodium 

carbonate solution (15 ml). The organic layer was separated and the aqueous layer 

extracted with ethyl acetate (3 x 15 ml). The combined organic layers were dried over 

anhydrous magnesium suI fate and the solvent was removed . for tlash column 

chromatography of the residue with methanol and dichloromethane (3 - 6 % MeOH). The 

resulting product (70 mg, 50 %) was identified as 10-methoxy-I,2,3,4,6,7,-hexahydro­

[1 ,3]diazepino[ I ,2-a]quinolinium tritlate salt (89), having identical spectral data to those 

reported above for the material prepared from the methoxydiazepinoquinolinone tritlate 

salt (78). 
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1 0-Methoxy-l,2,3,4-tetrahydro-[ 1,3)diazepino[1,2-a)quinolinium triflate salt (90) 

CF,SO, H~D CF,SO, H~D 
DDQ, Dioxane N I N • 

reflux 2 days 
-;/' 

::::,... 
OMe OMe 

(89) (90) 

To 1 O-methoxy-I ,2,3,4,6, 7,-hexahydro-[1 ,3)diazepino[1 ,2-a)quinolinium triflate salt (89) 

(68 mg, 0.18 mmol) in 1,4-dioxane (5 ml) was added 2,3-dichloro-5,6-

dicyanobenzoquinone (DDQ) (\54 mg, 0.358 mmol, 2 mol. equiv.). The mixture was 

heated at reflux under an atmosphere of nitrogen for 2 days after which time the solvent 

was removed under reduced pressure and the residue purified by column chromatography 

over basic alumina with methanol (3-6 %) in dichloromethane to yield a yellow orange 

oil (24 mg, 35 %) of the quinolinium triflate salt (90). U max (CHCI)/cm'! 3284,2921, 

1633 (C=N), 1574, 1455, 1361, 1246 (C-N), 1156, 1029 (COC) and 846; OH (250 MHz 

CDCh) 2.13 - 2.17 (2 H, m, CH2CH2CH2CH2), 2.29 - 2.33 (2 H, m, CH2CH2CH2CH2), 

3.88 - 3.92 (2 H, m, NCH2), 3.98 (3 H, s, OCH), 4.60 (2 H, t, J 6.1, NCH2), 7.01 (I H, d, 

J 2.2, Qu-H), 7.09 (I H, dd, J2.2 & 8.7, Qu-H), 7.34 (\ H, d, J9.3, Qu-H), 7.67 (\ H, d, 

J 8.7, Qu-H) and 7.84 (I H, d, J 9.3, Qu-H); Oc (100 MHz CDCI) 23.17 

(CH2~H2CH2CH2)' 23.75 (CH2CH&H2CH2), 44.62 (NCH2), 50.27 (NCH2), 56.12 

(OCH), 99.15 (CH, QuCH), 113.69 (CH, QuCH), 114.34 (CH, QuCH), 117.36 (C, 

QuC), 131.15 (CH, QuCH), 139.93 (C, Quc), 140.46 (CH, QuCH), 158.21 (CO, QuCO) 

and 163.52 (N=C-N); mlz (EI+) 229.1336 (MH+ - C!4H!6N20 + H requires 229.1341); 

mlz (EI+) 229 (M+, 89%), 215 (16), 201 (65), 176 (36), 91 (29),69 (30), 57 (48) and 41 

(30). 
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2-[2-(4-Benzyloxyphenyl)ethyl]-5,6-dihydro-4H-[1,3]oxazinium triflate salt (91) & 

N,N'-his-(3-hydroxypropyl)-3-(4-Benzyloxyphenyl)propionamidinium triflale salt 

(92) 

CF3S03 CF3S0):OH 

° H~I:) CF 3S03Me, DCM 

NH, reflux 3h H~I jOH 

• ° + 3-amino-1-propanol, N 
EtOH, reflux 2 days H 

OBn 
OBn 

(67) OBn 

(91 ) (92) 

To 3-(4-benzyloxyphenyl)propanamide (67) (500 mg, 1.98 mmol) in dry 

dichloromethane (20 ml) was added methyl trifluoromethanesulfonate (0.33 ml, 2,94 

mmol, 1.5 mol. eguiv,) under an atmosphere of nitrogen. The reaction was heated under 

reflux for 3 h and then stirred for a further 2 days at ambient temperature. The solvent 

was removed under reduced pressure which gave a white solid that was re-dissolved in 

ethanol (20 ml) to which was added 3-aminopropan-I-ol (221 mg, 0.23 ml, 2.94 mmol) 

and the mixture heated at reflux under an atmosphere of nitrogen for 2 days. The organic 

solvent was removed under pressure and the residue was purified by solid loading flash 

column chromatography with MeOH : DCM (5-10 % MeOH) to yield, first eluting 

recovered amide (67) (50 mg, 10 %), then white crystals of oxazinium salt (91) (238 mg, 

26 %) and lastly the oily dihydroxypropylamidinium triflate salt (92) (309 mg, 30 %). 

For the 2-[2-(4-benzyloxyphenyl)ethyl]-5,6-dihydro-4H-[1 ,3]oxazinium triflate salt (91): 

M.p: 130-131 QC; U rn• x (CHCb)/cm-' 3297,2905,2864, 1638 (C=N), 1555, 1512, 1453, 

1250 (COC), 1013 (COC), 916, 817 and 740; OH (250 MHz CDCb) 1.58 (2 H, g, J6.11, 

CH2CH2CH2), 2.46 (2 H, t, J 7.5, CH2), 2.91 (2 H, t, J 7.5, CH2), 3.33 - 3.40 (2 H, m, 

NCH2), 3.50 (2 H, t, J 5.6, OCH2CH2), 5.04 (2 H, s, OCH2Ph), 5.72 (I H, brs, NH salt), 

6.90 (2 H, d,J8.7, 2 x Ph-H), 7.12 (2 H, d,J8.7, 2 x Ph-H) and 7.32 -7.44 (5 H, m, 5 x 
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Ph-H); Oe (100 MHz CDCb) 30.88 (CH2hH2CH2), 32.22 (CH2hH2), 36.25 (QH2CH2), 

38.67 (NCH2), 59.24 (N=C-OCH2)' 70.08 (OCH2Ph), 114.99 (2 x CH, 2 X ArCH), 

127.42 (2 x CH, 2 x ArCH), 127.92 (CH, ArCH), 128.56 (2 x CH, 2 x ArCH), 129.35 (2 

x CH, 2 x ArCH), 133.05 (C, ArC), 137.12 (C, ArC), 157.36 (CO, ArCO) and 173.37 (0-

C=N); mlz (EI+) 313.1594 (MH20+ - CI9H21N02 + H20 requires 313.1600); mlz (EI+) 

313 (MH+, 13%), 121 (10),91 (100),69 (15), 57 (11) and 55 (11). 

For the N,N'-bis-(3-hydroxypropyl)-3-(4-benzy1oxypheny1)propionarnidiniurn triflate salt 

(92): muma, (CHCb)/crn·1 3416 (OH), 2929 (OH), 1655 (C=N), 1511, 1453, 1246 (C-N), 

1167, 1029 (COC), 913, and 742; OH (400 MHz CDCb) 1.73 - 1.80 (4 H, rn, 2 x 

NCH2CH2CH2), 2.72 (2 H, t, J7.6, CH2), 2.86 (2 H, t, J 7.6, CH2), 3.29 - 3.34 (4 H, rn, 2 

x NCH2), 3.60 (2 H, t, J 5.6, CH2CH20H), 3.70 (2 H, t, J 5.6, CH2CH20H), 4.99 (2 H, s, 

OCH2Ph), 6.89 (2 H, d, J 8.8,2 x Ph-H), 7.10 (2 H, d, J 8.8,2 x Ph-H), 7.29 - 7.39 (5 H, 

rn, 5 x Ph-H), 8.20 (1 H, brs, OH) and 8.32 (I H, brs, OH); oe (lOO MHz CDCI)) 29.65 

(CH2CH2CH2), 30.81 (CH2CH2CH2), 31.59 (CHiQH2), 32.04 (hH2CH2), 39.53 (NCH2), 

42.74 (NCH2), 59.29 (CH20H), 60.36 (CH20H), 70.04 (OCH2Ph), 115.32 (2 x CH, 2 X 

ArCH), 127.46 (2 x CH, 2 x ArCH), 127.97 (CH, ArCH), 128.56 (2 x CH, 2 x ArCH, 

129.50 (2 x CH, 2 x ArCH), 130.29 (C, ArC), 136.90 (C, ArC), 157.89 (CO, ArCO) and 

165.70 (N=C-N); Iz (FAB) 371.2327 (MW - C22 H)oN20) + H requires 371.2334); tri/z 

(FAB) 371 (MH+, 19%),338 (7), 219 (24), 163 (9), 109 (11), 91 (34),69 (49), 57 (lOO) 

and 43 (47). 
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2-[2-(4-Benzyloxyphenyl)ethyl)-5,6-dihydro-4H-[1,3)oxazinium triflate salt (91) 

-
CF3S03 

EtOH, reflux 5 days 
• 

OBn 
OBn 

(92) 
(91) 

Further retlux of N,N' -his-(3-hydroxypropyl)-3-( 4-benzyloxyphenyl)-propionamidinium 

tritlate salt (92) (309 mg, 0.59 mmol) in ethanol (30 ml) for 5 days under a nitrogen 

atmosphere followed by solvent removal for tlash column chromatography of the residue 

with methanol and dichloromethane (3 - 6 % MeOH) furnished 2-[2-(4-

benzyloxyphenyl)ethyl)-5,6-dihydro-4H-[1 ,3J-oxazinium tritlate salt (91) (98 mg, 36 %) 

with spectroscopic identical to the earlier sample. 

2-[2-(4-Hydroxyphenyl)ethyl)-5,6-dihydro-4H-[1,3)oxazin ium triflate salt (93) 

-
CF3S03 

CF
3
S0

3
-

Pd-C, H2, MeOH, r.t. 16h 

• 

OBn OH 

(91) (93) 

To 2-[2-( 4-benzyloxyphenyl)ethyIJ-5,6-dihydro-4H-[ I ,3]oxazinium tritlate salt (91) (107 

mg, 0.240 mmol) and palladium-carbon (10 %) catalyst (16 mg) was added methanol (20 
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ml). The reaction proceeded with stirring under I atmosphere of hydrogen overnight and 

. the catalyst was filtered off over celite and the solids washed with methanol (20 ml). The 

filtrate was collected and concentrated under reduced pressure to give 2-[2-(4-

hydroxyphenyl)ethyl]-5,6-dihydro-4H-[1,3]oxazinium triflate salt (93) as an oil (82 mg, 

96 %). Urnax (CHCI))/cm· 1 3304 (OH), 2943,1659,1642,1631 (C=N), 1553, 1515, 1452, 

1370, 1237, 1070 and 830; OH (400 MHz CD)OD) 1.49 - 1.57 (2 H, m, NCH2CH2CH2), 

2.30 (2 H, t, J 7.6, CH2CH2), 2.69-(2 H, t, J 7.6, CH2CH2), 3.11 (2 H, t, J 6.9, NCH2CH2), 

3.39 (2 H, t, J 6.3, OCH2CH2CH2N), 6.57 (2 H, d, J 8.4, 2 x Ph-H) and 6.89 (2 H, d, J 

8.4, 2 x Ph-H); oe (100 MHz CD)OD) 32.24 (NCH2hH2), 33.19 (hH2CH2), 37.28 

(CH2hH2), 39.47 (NhH2CH2), 60.32 (OCH2CH2), 116.62 (2 x CH, 2 x ArCH), 130.30 (2 

x CH, 2 x ArCH), 132.28 (C, ArC), 157.80 (CO, ArCO) and 175.69 (O-C=N); mlz (FAB) 

205.1105 (MH+ - C12H1SN02 + H requires 205.1103); mlz (FAB) 205 (MH+, 6%), 120. 

(87), 107 (100), 91 (18) and 76 (30). 

1-(3-Hydroxypropyl)-4a-methoxy-4,4a,8,8a-tetrahydro-lH,3H-quinoline-2,7-dione 

(95) 

CF3SO; o 

BTIB, MeOH 

• 
r.t. 4h 

OH 

(93) (95) 

To 2-[2-( 4-hydroxyphenyl)ethyl]-5,6-dihydro-4H-[1 ,3]oxazinium salt (93) (82 mg, 0.231 

mmol) in a 50 ml round bottom flask, was added excess bis(trifluoroacetoxy)iodobenzene 

(119 mg, 0.227 mmol, 1.2 mol. equiv.), dry methanol (20 ml) and sodium bicarbonate (30 

mg). The reaction mixture was left to stir for 4 hour at ambient temperature before 

evaporating off the solvent under reduced pressure. The crude residue was purified by 
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flash column chromatography on silica with MeOH : DCM (3 - 9 % MeOH) to yield a 

colourless oil (95) (11 mg, 19 %). No other compounds were obtained from the eluent. 

'Um,x (neat)/cm·1 3395 (NH), 2936, 1681 (C=O), 1614 (NH), 1484, 1454, 1416, 1371, 

1324,1253,1225, 1082 (COC), 921, and 788; QH(250 MHz CDJOD) 1.77 - 1.86 (2 H, 

m, NCH2CH2CH2), 2.06 - 2.21 (2 H, m, CH2CH2), 2.40 - 2.69 (2 H, m, CH2CH2), 2.98 -

3.09 (2 H, m, NCH2), 3.36 (3 H, s, OCHJ), 3.54 - 3.59 (3 H, m, CH20H & CH(H)), 3.80 

- 3.85 (I H, m, CH(H)), 4.20 - 4.27 (1 H, m, NCH), 6.10 (I H, d, J 10.3, CH=CHCO) 

and 7.05 (I H, d, J 10.3, CH=CHCO); Qc (lOO MHz, CD)OD) 27.47 ~H2CH2)' 28.41 

(NCH2~H2CH2)' 31.58 (CH2~H2), 42.88 (CHCH2C=O), 43.62 (N~H2CH2)' 51.21 

(OCH)), 56.88 ~HCH2)' 60.07 (CH20H), 75.09 (CH)Og, 131.60 (CH=CHCO), 153.95 

~H=CHCO), 172.13 (NC=O) and 197.72 (C=O); m/z (EI+) 253.1309 (M+ - C13 HI9N04 

requires 253.1314); mlz (EI+) 253 (M+, 34%), 235 (41), 221 (46),209 (39), 152 (59), 124 

(100), 91 (48) and 55 (36). 

3-(3,4-Dibenzyloxyphenyl)propionic acid (97) 

o o 

OH OH 
3.2 x BnBr. base 

OH • OBn 
Acetone, reflux 18h 

OH 
OBn 

(96) (97) 

3-(3,4-Dihydroxyphenyl)propionic acid (96) (5.00 g, 27.45 mmol), benzyl bromide 

(15.01 g, 10.44 ml, 87.76 mmol, 3.2 mol. equiv.) and potassium carbonate (12.13 g, 

87.76 mmol, 3.2 mol. equiv.) in dry acetone (150 ml) were heated at reflux for 18 h. The 

solvent was evaporated under reduced pressure to leave a residue which was extracted 

with ethyl acetate (150 ml) and washed with water (3 x 50 ml). The organic layer was 

concentrated under reduced pressure and the residue was re-dissolved in methanol (100 
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ml) to which was added potassium hydroxide (3.08 g, 54.90 mmol, 2 mol. equiv.) in 

water (30 ml) and the mixture heated at reflux for 4 h. The reaction mixture was cooled, 

diluted with water (150 ml) and washed with diethyl ether (3 x 70 ml). The aqueous layer 

was collected and acidified to pH I with concentrated hydrochloric acid to form a pale 

brown precipitate which was collected by filtration and dried over P20S in a drying pistol 

to yield the 3-(3,4-dibenzyloxyphenyl)propionic acid (97) (8.70 g, 88 %). M.p: 104-107 

QC (lit., 88 116-117 QC - MeOH); Urnax (neat)!cm'\ 3031 (OH), 2912,1702 (C=O), 1516, 

1452, 1428, 1301, 1261 (C-O), 1138, 1016,734 and 695; OH (400 MHz CD]Cl) 2.65 (2 

H, t, J 7.8, CH2), 2.87 (2 H, t, J7.8, CH2), 5.16 (2 H, s, OCH2Ph), 5.17 (2 H, s, OCH2Ph), 

6.76 (I H, dd, J 2.4 & 8.2, Ph-H), 6.84 (I H, d, J 2.4, Ph-H), 6.91 (I H, d, J 8.2, Ph-H) 

7.34 - 7.40 (6 H, m, 6 x Ph-H) and 7.45-7.47 (4 H, m, 4 x Ph-H); oe (lOO MHz, CD]CI) 

30.13 (CH2), 35.64 (CH2), 71.45 (OCH2Ph), 71.53 (OCH2Ph), 115.46 (CH, ArCH), 

115.62 (CH, ArCH), 121.12 (CH, ArCH), 127.33 (2 x CH, 2 x ArCH), 127.41 (2 x CH, 2 

x ArCH), 127.76 (CH, ArCH), 127.80 (CH, ArCH), 128.46 (2 x CH, 2 x ArCH), 128.47 

(2 x CH, 2 x ArCH), 133.66 (C, ArC), 137.33 (C, ArC), 137.45 (C, ArC), 147.65 (CO, 

ArCO), 149.01 (CO, ArCO) and 178.56 (C=O). 

3-(3,4-Dibenzyloxypheny1)propanamide (98) 

o 

OH 

OSn 

OSn 
(97) 

(COCI)" THF, cat. DMF, 
OQCtor.t.16h 

• 
• 

NH3aq, THF, r.t. 10h 

o 

NH, 

OSn 

OSn 
(98) 

To 3-(3,4-dibenzyloxyphenyl)propionic acid (97) (I g, 2.76 mmol) and oxalyl chloride 

(0.54 g, 0.37 ml. 4.14 mmol, 1.5 mol. equiv.) in dry THF (40 ml) under an atmosphere of 
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nitrogen at 0 QC was added N;N-dimethylfonnamide catalyst (0.01 ml). The reaction 

mixture was left at room temperature for 16 h before removing the solvent under reduced 

pressure to give an unstable green liquor. The liquor was dissolved in THF (30 ml), 

concentrated ammonia solution (20 ml) was added and the mixture was left to stir for 10 

h. Water (50 ml) was added to the reaction and extracted with ethyl acetate (3 x 30 ml). 

The combined organic layers were dried over anhydrous sodium suI fate, and solvent 

removal under reduced pressure afforded a pale white solid (0.80 g, 80 %) which was 

identified as 3-(3,4-dibenzyloxyphenyl)propanamide (98). M.p: 108-110 QC (lit., 88 126 

QC -MeOH); U m .. (neat)/cm'! 3387 (NH), 3200, 2927, 1650 (C=O), 1515, 1453, 1425, 

1382,1262,1137 and 1008; OH (400 MHz CD)CI) 2.42 (2 H, t,J7.6, CH2), 2.85 (2 H, d, 

J 7.6, CH2), 5.13 (2 H, s, OCH2Ph), 5.15 (2 H, s, OCH2Ph), 5.20 (I H, brs, NH), 5.39 (I 

H, brs, NH), 6.71 (I H, dd,J2.1 & 8.4, Ph-H), 6.80 (I H, d,J2.1, Ph-H), 6.85 (I H, d,J 

8.4, Ph-H), 7.28 - 7.38 (6 H, m, 6 x Ph-H) and 7.43 -7.45 (4 H, m, 4 x Ph-H); Oc (lOO 

MHz, CD3CI) 20.94 (CH2), 37.67 (CH2), 71.22 (OCH2Ph), 71.45 (OCH2Ph), 115.34 (CH, 

ArCH), 115.48 (CH, ArCH), 121.14(CH, ArCH), 127.33 (2 x CH, 2 x ArCH), 127.39 (2 

x CH, 2 x ArCH), 127.78 (2 x CH, 2 x ArCH), 128.48 (2 x CH, 2 x ArCH), 128.49 (2 x 

CH, 2 x ArCH), 134.05 (C, ArC), 137.36 (C, ArC), 137.41 (C, ArC), 147.52 (CO, 

ArCO), 148.84 (CO, ArCO) and 169.59 (NH2C=O); mlz (EI+) 361.1675 (M+ -

C23H23N03 requires 361.1678); m/z (EI+) 361 (M+, 6%),270 (2), 181 (7),91 (100) and 

65 (6). 

2-[2-(3,4-Dibenzyloxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidinium trinate salt (99) 

H~:) CF
3
S0

3
-

0 

Methyl trillate,DCM, reflux 3h N 
H NH, .. 

OBn .. 
OBn 

1,3-diaminopropane 
EtOH, reflux 5h 

OBn 
OBn 

(98) (99) 
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To 3-(3,4-dibenzyloxyphenyl)propanamide (98) (500 mg, 1.38 mmol) dissolved in DCM 

(50 ml) was added 1.5 equivalent of methyl triflate (0.34 g, 0.23 ml, 2.08 mmol) and the 

mixture left at reflux for 3 h under an atmosphere of nitrogen before further stirring at 

ambient temperature overnight. The solvent was removed under reduced pressure to give 

a residue which was re-dissolved in ethanol (40 ml) and 2 equivalent of 1,3-

diaminopropane (0.23 ml, 2.76 mmol) was introduced before heating at reflux for 5 h 

under an atmosphere of nitrogen. The reaction solvent was evaporated under reduced 

pressure to give a solid for flash column chromatography with MeOH : DCM (6 : 94 v/v) 

which yielded as a pale yellow oil the 2-[2-(3,4-dibenzyloxyphenyl)ethyl]-3,4,5,6-

tetrahydropyrimidiniurn triflate salt (99) (500 mg, 69 %). Urna, (neat)/cm·1 
. 3293, 3246, 

3065,2928, 1660 (C=N), 1625, 1513, 1454, 1427, 1378, 1321, 1246 (C-N), 1224, 1162, 

1136 and 1028 (COC); OH (400 MHz CD3CI) 1.55 - 1.61 (2 H, rn, CH2CH2CH2), 2.57 (2 

H, t, J 8.0, CH2), 2.83 (2 H, t, J 8.0, CH2), 3.46 (4 H, brs, 2 x NCH2), 5.03 (2 H, s, 

OCH2Ph), 5.12 (2 H, s, OCH2Ph), 5.16 (2 H, s, OCH2Ph), 6.68 (I H, dd, J2.0 & 8.2, Ph­

H), 6.78 (I H, d, J 8.2, Ph-H), 6.95 (2 H, d, J2.0, Ph-H) ,7.26 -7.33 (6 H, m, 6 x Ph-H) 

and 7.38 - 7.45 (4 H, rn, 4 x Ph-H); oe (100 MHz, CD3CI) 17.69 (CH2~H2CH2), 32.25 

(CH2), 34.60 (CH2), 38.65 (NCLb), 70.92 (OCH2Ph), 71.32 (OCH2Ph), 115.11 (CH, 

ArCH), 115.16 (CH, ArCH), 121.13(CH, ArCH), 127.48 (2 x CH, 2 x ArCH), 127.61 (2 

x CH, 2 x ArCH), 127.84 (CH, ArCH), 127.87 (CH, ArCH), 128.45 (2 x CH, 2 x ArCH), 

128.47 (2 x CH, 2 x ArCH),13 1.84 (C, ArC), 137.18 (C, ArC), 137.27 (C, ArC), 147.52 

(CO, ArCO), 148.94 (CO, ArCO) and 163.53 (N-C=N); mlz (FAB) 401.2233 (MH+ -

C26H2SN202 + H requires 401.2229); mlz (FAB) 401 (MH+, 100%),309 (22), 219 (20), 

191 (21), 91 (92), 69 (66), 55 (94) and 43 (50). 
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2-[2-(3,4-Dihydoxyphenyl)ethyl[-3,4,5,6-tetrahydropyrimidinium trillate salt (100) 

H~J CF3S03 H~J CF3SO; 

. I 
N N 

H' Pd-C, H2, MeOH, Lt. 16h H 

OBn • OH 

OBn OH 

(99) (100) 

To 2-[2-(3,4-dibenzyloxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidinium triflate salt (99) 

(231 mg, 0.42 mmol) was added palladium-carbon (10 %) (46 mg, 20 %w/w) followed 

by methanol (40 ml). After degassing the solution, the mixture was stirred under I 

atmosphere of hydrogen for 16 h. The dark solution was filtered through celite under a 

nitrogen blanket and the solids were washed with methanol (20 ml). The filtrate was 

evaporated under reduced pressure to furnish a dark green oil (100) (130 mg 84 %). It is 

important to keep the reaction and product under an inert atmosphere because of the 

instability of the compounds. Urn• x (Acetonitrile)/cm'! 3615,3538,3318 (OH), 3162, 3000 

(OH), 2942, 1660 (C=N), 1625, 1519, 1444, 1374, 1271 (C-N), 1159, 1032,917 and 749; 

OH (400 MHz C0300) 1.91 (2 H, brs,CH2CH2CH2), 2.62 (2 H, brs, CH2), 2.82 (2 H, brs, 

CH2), 3.35 (4 H, brs, 2 x NCH2), 6.55 (1 H, d, J 7.2, Ph-H), 6.67 (1 H, s, Ph-H) and 6.73 

(1 H, d, J 7.2, Ph-H); Oc (100 MHz, C0300) 19.02 (CH2CH2CH2), 33.17 (CH2), 36.04 

(CH2)' 39.82 (2 x NCH2), 116.57 (2x CH, 2 x ArCH), 120.79 (CH, ArCH), 131.41 (C, 

ArC), 145.26 (CO, ArCO), 146.49 (CO, ArCO) and 164.77 (N-C=N); mlz (FAB) 

221.1292 (MH+ - C!2H!6N202 + H requires 221.1290); mlz (FAB) 221 (MH+, 100%) 98 

(25) and 55 22). 
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3-(3,4-Dibenzyoxyphenyl)propionic acid methyl ester (103) 

o o 

OSn 

SOCI2 , MeOH 
OMe OH 

.. OSn 

-400 C,6h 

OSn OSn 

(97) (103) 

To 3-(3,4-dibenzyloxyphenyl)propionic acid (97) (5.00 g, 13.80 mmol) in methanol (150 

ml) and cooled to -40 °c in acetonitrile-dry ice bath, was added thionyl chloride (3.28 g, . 

2.00 ml, 27.60 mmol, 2 mol. equiv.) dropwise with stirring and the reaction mixture was 

left to stir for 6h to give a brown solution. After removing the solvent under reduced 

pressure, the brown residue was partitioned between DCM (3 x 50 ml) and water (80 ml) 

and the DCM layers were collected, dried with anhydrous magnesium suI fate and 

evaporated under reduced pressure to give a brown oil (3.94 g, 76 %), 3-(3,4-

dibenzyoxyphenyl)propionic acid methyl ester (103). Urnax (neat)!cm'\ 3029,2947,2864, 

1731 (C=O), 1588, .1512, 1453, 1433, 1379, 1260 (C-O), 1222, 1135, 1024,851,807, 

736 and 696; OH (400 MHz CD3Cl) 2.58 (2 H, t, J 7.8, CH2), 2.86 (2 H, t, J 7.8, CH2), 

3.66 (3 H, s, OCH3), 5.14 (2 H, s, OCH2Ph), 5.15 (2 H, s, OCH2Ph), 6.72 (1 H, dd, J 2.1 

& 8.2, Ph-H), 6.83 (I H, d, J2.1, Ph-H), 6.87 (1 H, d, J 8.2, Ph-H), 7.20 -7.29 (6 H, m, 6 

x Ph-H) and 7.34 - 7.37 (4 H, m, 4 x Ph-H); oe (lOO MHz, CD3CI) 30.50 (CH2), 35.85 

(CH2), 51.60 (OCH3), 71.42 (OCH2Ph), 71.53 (OCH2Ph), 115.47 (CH, ArCH), 115.60 

(CH, ArCH), 121.13 (CH, ArCH), 127.33 (2 x CH, 2 x ArCH), 127.39 (2 x CH, 2 x 

ArCH), 127.75 (CH, ArCH), 127.79 (CH, ArCH), 128.47 (4 x CH, 4 x ArCH), 134.06 

(C, ArC), 137.37 (C, ArC), 137.50 (C, ArC), 147.58 (CO, ArCO), 149.01 (CO, ArCO) 

and 173.36 (C=O); mlz (EI+) 376.1680 (M' - C24H2404 requires 376.1675); mlz (El+) 

376 (M+, 19%),285 (8),181 (19),91 (100) and 65 (18). 
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3-(3,4-Dimethoxyphenyl)propanamide (105) 

o 0 

1) (GOGI)" DMF, 
OH THF, OOG to r.t. 12h 

OMe 

OMe 

(104) 

2) NH3 (aq), THF, 
OOG to r.t. 10h 

.. 

(105) 

NH, 

OMe 

OMe 

To 3-(3,4-dimethoxyphenyl)propionic acid (104) (2.00 g, 9.51 mmol) was added THF 

(20 ml) and oxalyl chloride (1.81 g, 1.27 ml, 14.27 mmol, 1.5 mol. equiv.) at 0 QC in an 

ice bath while under an atmosphere of nitrogen. To the mixture in the ice bath, a catalytic 

amount of N,N-dimethylformamide (0.01 ml) was slowly added which led to gas 

evolution. After 30 min stirring at 0 QC, the reaction was stirred at room temperature for 

12 h before removing the THF u8nder reduced pressured to give a yellow liquor. To the 

yellow liquor re-dissolved in THF (30 ml) was added concentrated ammonia solution 

(S.G 0.888, 10 ml) under ice bath cooling and the mixture further stirred for 10 h at 

ambient temperature. After dilution with water (30 ml), the mixture was extracted with 

ethyl acetate (3 x 50 ml) and the combined organic layer was dried with anhydrous 

magnesium sui fate and the solvent evaporated under reduced pressure to yield a white 

solid (1.54 g, 77 %) as 3-(3,4-dimethoxyphenyl)propanamide (105). M.p: 113-114 QC 

(lit., 89 120-121 QC); Found: C, 63.00; H, 7.02; N, 6.61. C!!H!sNO) requires C, 63.14; H, 

7.22; N, 6.69%; U max (neat)/cm'! 3415 (NH), 3307 (NH), 3215, 2954,1657 (C=O), 1618, 

1513, 1463, 1403, 1227, 1137, 1026 and 805; OH (250 MHz CD)CI) 2.52 (2 H, t, J 7.6, 

CH2), 2.92 (2 H, t, J 7.6, CH2), 3.86 (3 H, s, OCH), 3.87 (3 H, s, OCH), 5.40 (2 H, brs, 

NH2) and 6.72 - 6.76 (3 H, m, 3 x Ph-H); Oc (lOOMHz, CD)CI) 31.06 (CH2), 37.85 

(CH2)' 55.84 (OCH), 55.91 (OCH), 111.29 (CH, ArCH), 111.65 (CH, ArCH), 120.11 

(CH, ArCH), 133.28 (C, ArC), 147.49 (CO, ArCO), 148.91 (CO, ArCO) and 174.61 

(NH2C=O); mlz (EI+) 209.1050 (M+ - C!IH1sNO) requires 209.1052); mlz (EI+) 209 

(M+, 55%) 164 (20), 91 (14) and 77 (12). 
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2-[2-(3,4-Dimethoxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidinium triflate salt (106) 

o 

NH2 1) nOMe, DCM, reflux 3h 

OMe 

OMe 

(105) 

2) diaminopropane, EIOH, 
reflux 5h 

H~I~ 
, .. ) CF3S03 

N 
H 

OMe 

OMe 

(106) 

To 3-(3,4-dimethoxyphenyl)propanamide (105) (\.00 g, 4.78 mmol) in dry DCM (30 ml) 

was added methyl triflate (1.17 g, 0.79 ml, 7.17 mmol, 1.5 mol. equiv.) and the mixture 

heated at reflux for 3 h and then stirred at room temperature for 6 h. After solvent 

removal under reduced pressure, the residue was re-dissolved in ethanol (30 ml), 1,3-

diaminopropane (710 mg, 0.80 ml. 9.56 mmol, 2 mol. equiv.) was added and the mixture 

heated at reflux for 5 h. The solvent was removed under reduced pressure, and the solid 

was purified by flash column chromatography with MeOH : DCM (6 % MeOH) to afford 

a pale yellow solid, 2-[2-(3,4-dimethoxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidinium 

triflate salt (106) (1.10 g, 56 %). M.p: 126-127 QC; Found: C, 45.04; H, 5.18; N, 6.99. 

C!sH2!N20sF3S requires C, 45.22; H, 5.31; N, 7.03; Urn• x (neat)/cm·! 3298,3245,3069, 

2942, 1660 (C=N), 1625, 1515, 1446, 1245 (C-N), 1157 and 1028; OH (400 MHz CD3CI) 

1.82 - 1.88 (2 H, m, CH2CH2CH2), 2.66 (2 H, dd, J 5.6 & 7.2, CH2), 2.89 (2 H, dd, J 5.6 

& 7.2, CH2), 3.33 (4 H, t, J 4.4,2 x NCH2), 3.81 (3 H, s; OCH3), 3.85 (3 H, s, OCH3), 

6.71 (I H, d, J 8.2, Ph-H), 6.74 (I H, dd, J 8.2 & 1.8, Ph-H) 6.85 (I H, d, J 1.8, Ph-H) 

and 8.53 (2 H, brs, 2 x NH); Oc (100 MHz, CD)CI) 17 .90 (CH2~H2CH2)' 32.42 (CH2), 

34.68 (CH2)' 38.84 (2 x NCH2), 55.84 (2 x OCH3), 111.18 (CH, ArCH), 111.82 (CH, 

ArCH), 120.43 (CH, ArCH), 130.84 (C, ArC), 147.77 (CO, ArCO), 149.00 (CO, AreO) 

and 163.88 (N-C=N); mlz (FAB) 249.1603 (MH+ - C!4H20N202 + H requires 249.1603); 

mlz (FAB) 249 (MH+, 100%), 233 (5), 154 (9), 136 (8) and 98 (8). 
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2-[2-(4-Benzyloxyphenyl)ethyl]-4,5-dihydroimidazolium-4-carboxylic acid triflate 

salt (108) 

o 

NH2 1) nOMe. DCM. reflux 3h 
• 

-...:::::: 2) 2.3-Diaminopropionic acid HCI. 
EtOH. reflux 1 day 

OBn 

(67) 

+ CF3S03 

HN\ 
I. ;-COOH 

N 
H 

OBn 

(108) 

To 3-(4-benzyloxyphenyl)propanamide (67) (1.00g, 3.92 mmol) in dry dichloromethane 

(40 ml) was added methyl tritluoromethanesulfonate (0.66 ml, 5.88 mmol, 1.5 mol. 

equiv.) and the mixture heated at retlux for 3 h and then stirred at room temperature for a 

further I day. A white residue was obtained after removing the solvent and this was re­

dissolved in ethanol (40 ml) to which was added 2,3-D,L-diaminopropionic acid 

dihydrochloride (826 mg, 5.88 mmol) and diisopropylethylamine (1.02 ml, 760 mg, 5.88 

mmol). The reaction inixture was heated at retlux for I day under an atmosphere of 

. nitrogen. The white precipitate formed from the reaction was filtered off, washed with 

ethanol (5 ml) and the solid recrystallised from acetone / dichloromethane to give a solid 

(108) (987 mg, 53 %) as the white tritlate salt. M.p: 150 QC; U max (Acetonitrile)/cm-13192 

(OH), 1749, 1614 (C=N), 1513, 1242 (C-N), 1177, 1028 and 636; OH (400 MHz Acetone) 

2.90 - 3.01 (4 H, m, CH2CH2), 4.19 (2 H, d, J 10.0, NCH2), 4.89 (I H, t, J 10.0, 

CH2CHCOOH), 5.05 (2 H, s, OCH2Ph), 6.94 (2 H, d, J 8.6,2 x Ph-H), 7.22 (2 H, d, J 8.6, 

2 x Ph-H), 7.29 - 7.46 (5 H, m, 5 x Ph-H) and 9.33 (I H, s, NH); Oc (100 MHz Acetone) 

29.90 (CH2), 32.00 (CH2), 49.47 (CHQH2), 60.47 (CHCH2), 70.83 (OCH2Ph), 116.25 (2 

x CH, 2 x ArCH), 128.80 (2 x CH, 2 x ArCH), 129.01 (CH, ArCH), 129.68 (2 x CH, 2 x 

ArCH), 130.79 (2 x CH, 2 x ArCH), 132.53 (C, ArC), 138.80 (C, ArC), 159.04 (CO, 

ArCO), 171.83 (N-C=N) and 175.66 (C=O); mlz (FAB) 325.1556 (MH+ - C19H20N203 + 

H requires 325.1552); mlz (FAB) 325 (MH+, 100%),279 (62), 154 (40), 136 (39) and 

107 (26). 
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2-[2-(4-Benzyloxyphenyl)ethyl]-1,4,5,6-tetrahydropyrimidinium-4(S)-carboxylic 

acid triflate salt (109) 

o 

NH, 

(67) 

1) nOMe, DCM, reflux 4h 

2) 2,4-Diaminobulyric acid dihydrochloride, 
EtOH, reflux 24h 

OBn 

HN~ CF3S03-

"::-+~ 
NH COOH 

• 

OBn 

(109) 

To 3-(4-benzyloxyphenyl)propanamide (67) (1.00 g, 3.92 mmol) in dichloromethane (40 

ml) was added methyl trifluoromethanesulfonate (0.66 ml, 5.88 mol, 1.5 mol. equiv.) and 

the mixture was heated at reflux for 4 hours followed by further stirring at room 

temperature for I day. The solvent was removed under reduced pressure, the white solid 

residue was re-dissolved in ethanol (30 ml) and L-2,4-diaminobutyric acid 

dihydrochloride (757 mg, 3.96 mmol) and diisopropylethylamine (DIPEA, 2 ml) were 

added. The mixture was heated at reflux for 24 h and the white precipitate filtered off, 

this was identified as unchanged diaminobutyric acid. The filtrate was acidified with 

hydrochloric acid to pH 2 and the solvent was removed for flash column chromatography 

of the residue with polar eluent, methanol: dichloromethane (15 : 85 v/v) to recover 

further diaminobutyric acid and the desired product as an oil (109) (310 mg, 16 %). [U]D20 

51.0 (c = 10.0 in MeOH); OH (250 MHz CDJOD) 2.04 - 2.06 (2 H, m, NCH2CH2CH), 

2.72 (2 H, t, J 7.2, CH2CH2), 2,95 (2 H, t, J 7.2, CH2CH2), 3.20 - 3,45 (2 H, m, 

NCH2CH2), 4.01 - 4,04 (1 H, m, CH2CHCOOCHJ), 5.05 (2 H, s, OCH2Ph), 6.94 (2 H, d, 

J 8,4,2 x Ph-H), 7.18 (2 H, d, J 8.4,2 x Ph-H) and 7.30 - 7.39 (5 H, m, 5 x Ph-H); oc 
(100 MHz CDJOD) 22.69 (NCH2~H2CH), 33,03 (~H2CH2)' 35.85 (CH2QH2), 38.52 

(NCH2CH2), 55.87 (CH&HCOOCHJ), 71.00 (OCH2Ph), 116.28 (2 x CH, 2 x ArCH), 

128.57 (2 x CH, 2 x ArCH), 128.88 (CH, ArCH), 129.52 (2 x CH, 2 x ArCH), 130.53 (2 

x CH, 2 x ArCH), 132.36 (C, ArC), 138.79 (C, ArC), 159.14 (CO, ArCO), 164.20 

~OOCHJ) and 171.27 (N-C=N); mlz (FAB) 339,1709 (MH+ - C20H22N20J + H requires 

339.1709); mlz (FAB) 339 (MH+, 100%),294 (6), 247 (8),154 (18,136 (20),107 (13), 

91 (58),77 (18) and 56 (13). 
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2-[2-(4-Benzyoxyphenyl)ethyl]-4,5-dihydroimidazolium-4-carboxylic acid methyl 

ester triflate salt (11 0) 

CF
3
S0

3
-

+ 
HN\ 

I ;-COOH 
N 
H 

-...:::: 

h 
OBn 

(108) 

ex. 2,2-dimethoxypropane, 
cat. HCt, r.t. 24h 

• 

+ CF3S03 

HN\ 
I ;-COOMe 

N 
H 

OBn 

(110) 

2-[2-(4-Benzyoxyphenyl)ethyl]-4,5-dihydroimidazolium-4-carboxylic acid tritlate salt 

(108) (310 mg, 0.81 mmol) was mixed with 2,2-dimethoxypropane (20 ml) and 

hydrochloric acid catalyst (I ml) at room temperature for 24 h. The white precipitate was 

filtered and dried under reduced pressure to give the expected product (110) (284 mg, 88 

%). M.p: 147-148 QC; Urnax (Acetonitrile)!cm-I 3228, 2960, 1748 (C=O), 1609, 1512, 

1457, 1244 (C-N), 1163,1027,838,815,743 and 696; OH (250 MHz CD30D) 2.80 - 2.99 

(4 H, m , CH2CH2), 3.81 (3 H, s, COOCH3), 4.09 (2 H, dd, J 3.0 & 11.4, NCH2), 4.89-

4.96 (I H, m, CH2CHCOOMe), 5.1 (2 H, s, OCH2Ph), 6.96 (2 H, dd, J2.2 & 6.7,2 x Ph­

H), 7.16 (2 H, dd, J 2.2 & 6.7, 2 x Ph-H) and 7.30 - 7.37 (5 H, m, 5 x Ph-H); Oc (100 

MHz CD30D) 29.71 ~H2CH2)' 31.96 (CH2~H2)' 48.67 (N~H2CH), 53.67 (COO~HJ), 

59.00 (CH2~HCOOMe), 70.95 (OCH2Ph), 116.29 (2 x CH, 2 x ArCH), 128.53 (2 x CH, 

2 x ArCH), 128.88 (CH, ArCH), 129.51 (2 x CH, 2 x ArCH), 130.44 (2 x CH, 2 x 

ArCH), 131.88 (C, ArC), 138.70 (C, ArC), 159.25 (CO, ArCO), 170.60 (N-C=N) and 

172.42 ~OOCHJ); mlz (EI+) 338.1632 (M+ - C2oH22N20J requires 338.1630); mlz (E1+) 

338 (M+, 25%), 279 (8), 247 (100),187 (10) and 91 (91). 
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2-[2-(4-Hydroxyphenyl)ethyl]-4,5-dihydroimidazolium-4-carboxyJic acid methyl 

ester triflate salt (112) 

+ CF3S03 

HN\ 
I ;-:-COOMe 

N 
H 

OBn 

(110) 

Pd-C, H, 

MeOH, r.t. 12h 
• 

+ CF3S03 

HN\ 
I. ;-COOMe 

N 
H 

OH 

(112) 

To 2-[2-( 4-benzyloxyphenyl)ethyl]-4,5-dihydroimidazolium-4-carboxylic acid methyl 

ester triflate salt (110) (363 mg, 0.91 mmol) and palladium-carbon (10 %) (55 mg, 15 

%w/w) was added methanol (30 ml). After degassing, the hydrogenation proceeded under 

1 atmosphere of hydrogen for 12 h. The palladium-carbon catalyst was filtered off over 

celite and the solids washed with methanol (20 ml). The filtrate was collected and the 

solvent removed under reduced pressure to give a pale yellow oil (112) (280 mg, 100 %). 

Urn,x (Acetonitri1e)/cm-13245 (OH), 2996,1744 (COOCH3), 1611, 1517, 1442,1257 (C­

N), 1172,1029,832 and 761; OH (250 MHz C0300) 2.74 - 2.93 (4 H, m, CH2CH2), 3.80 

(3 H, s, COOCH3), 4.03 - 4.13 (2 H, m, NCH2CH), 4.83 - 4.94 (I H, m, 

CH2CHCOOCH3), 6.71 - 6.74 (2 H, d, J 8.2,2 x Ph-H) and 7.03 - 7.06 (2 H, d, J 8.2,2 x 

Ph-H); oe (100 MHz C0300) 28.98 ~H2CH2)' 31.09 (CH2~H2), 47 .84 (N~H2CH), 

49.02 (COOCH3), 58.23 (CH2~HCOOCH3), 115.62 (2 x CH, 2 x ArCH), 129.55 (2 x 

CH, 2 x ArCH), 129.62 (C, ArC), 156.42 (CO, ArCO), 169.89 (N=C-N) and 171.45 

~OOCH3); mlz (E1+) 248.1165 EM+ - Ct3H16N203 requires 248.1161); mlz (EI+) 234 

(M+, 9%),189 (21),164 (13),147 (20),120 (8),107 (100), 91 (11) and 77 (15). 
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2-[2-(4-Benzyloxyphenyl)ethyl]-1,4,5,6-tetrahydropyrimidinium-4(S)-carboxylic 

acid methyl ester triflate salt (111) 

::(

CF
3
S0

3
-

HN . 

0-.+ 
NH COOH MeO OMe 

Y---
HN~ CF,S03-

~:~.~ 
NH COOMe 

• 
cat. acid, Lt. 16h 

OBn 

(109) 
OBn 

(111 ) 

To 2-[2-( 4-benzyloxyphenyl)ethyl]-1 ,4,5 ,6-tetrahydropyrimidinium-4(S)-carboxyl ic acid 

tritlate salt (109) (178 mg, 0.364 mmol) in 2,2-dimethoxypropane (10 ml) was added 

concentrated hydrochloric acid (2 ml) as catalyst and the mixture stirred at room 

temperature for 16 h. The solvent was removed to give a yellow oil as the desired product 

(111) (180 mg, 99 %). [a]020 42.1 (c = 11 in MeOH); Urnax (neat)/cm" 3149,2950,3787, 

1745 (COOCH3), 1650 (C=N), 1613, 1513, 1453, 1237 (C-N), 1177,1024,825,742 and 

697; OH (250 MHz C0300) 2.10 - 2.15 (2 H, m, NCH2CH2CH), 2.71 - 2.78 (2 H, m, 

CH2CH2), 2.93 - 2.96 (2 H, m, CH2CH2), 3.39 - 3.45 (2 H, m, NCH2CH2), 3.79 (3H, s, 

COOCH3), 4.36 - 4.38 (I H, m, CH2CHCOOCH3), 5.06 (2 H, s, OCH2Ph), 6.93 - 6.96 (2 

H, d, J 8.4,2 x Ph-H), 7.17 - 7.20 (2 H, d, J 8.4,2 x Ph-H) and 7.29 - 7.38 (5 H, m, 5 x 

Ph-H); oe (100 MHz C0300) 21.75 (NCH2CH2), 33.14 C£;H2CH2), 35.79 (CH2!::.H2), 

37.85 (NCH2CH2), 52.00 (COO!::.H3), 53.72 (CH2!::.HCOOCH3), 71.03 (OCH2Ph), 116.32 

(2 x CH, 2 x ArCH), 128.60 (2 x CH, 2 x ArCH), 128.91 (CH, ArCH), 129.56 (2 x CH, 2 

x ArCH), 130.78 (2 x CH, 2 x ArCH), 132.13 (C, ArC), 138.80 (C, ArC), 159.17 (CO, 

ArCO), 164.99 (C=O) and 171.27 (N-C=N); m/z (FAB) 353.1866 (MH+ - C2,H24N203 + 

H requires 353.1865); mlz (FAB) 353 (MH+, 100%),339 (23), 156 (21), 119 (28),105 

(24),91 (73) and 55 (41). 
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2-[2-(4-Hydroxyphenyl)ethyl)-4,5-dihydroimidazolium-4-carboxylic acid triOate salt 

(113) 

+ 
HN\ 

CF3S03- 1_ ;-COOH 

N 
H Pd-C, H, 

• 
MeOH, r.t. 24h 

OSn 

(108) 

-
+ CF3S03 

HN\ 
1_ ;-COOH 

N 
H 

OH 

(113) 

2-[2-( 4-Benzyloxyphenyl)ethyl]-4,5-dihydroimidazolium-4-carboxyI ic acid tritlate salt 

(108) (224 mg, 0,51 mmol) with palladium-carbon (15 %) (33 mg, 15% w/w) and 

methanol (30 ml), was hydrogenated under 1 atmosphere of hydrogen for 24 h, The 

reaction was filtered through celite to remove the palladium-carbon and the solids were 

washed with methanol (15 ml). The filtrate was collected and the solvent removed under 

reduced pressure to yield the oily product (113) (165 mg, 84 %). Urnax (Acetonitrile)/cm-' 

3270 (OH), 3014, 1621 (C=N), 1558, 1434, 1251 (C-N), 1176, 1031 and 638; 8H (250 

MHz C0300) 2.76 (2 H, brs, CH2CH2), 2.89 (2 H, brs, CH2CH2), 3.95 - 4.10 (2 H, m, 

CHCH2), 4.60 (I H, brs, CHCH2), 6.73 (2 H, d, J7.0, 2 x Ph-H) and 7.07 (2 H, d, J7.0, 2 

x Ph-H); 8, (100 MHz C0300) 30.35 (CH2), 32.41 (CH2), 50.07 (CH~H2)' 61.49 

~HCH2)' 116.96 (2 x CH, 2 x ArCH), 130.85 (2 x CH, 2 x ArCH), 131.26 (C, ArC), 

157.70 (CO, ArC), 171.81 (N-C=N) and 177.16 (COOH); mlz (EI+) 234.1006 (M+ -

CI2HI4N203 requires 234.1004); mlz (EI+) 234 (M+, 9%), 189 (21), 164 (13),147 (20), 

107 (100) and 77 (15). 
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L-2,4-Bis-(benzyloxycarbonylamino)butyric acid (114) 73 

H2NV'··.{NH2 

.2HCI COOH 

Benzyl chloroformale, 

_N_a_, _M_eO_H_, O_o_C_Io_r_.I_. _16_h __ .~ZHNV" •. {NHZ 

COOH 
(114) (114a) 

To finely ground L-2,4-diaminobutyric acid dihydrochloride (114) (2.50 g, 13.20 mmol) 

in methanol (50 ml) was added pyridine (5 ml) and the mixture stirred at room 

temperature for 10 h. The white precipitate formed was collected through filtration and 

the solids were dried under vacuum to give the corresponding monohydrochloride 

product (2.0 g). To this L-2,4-diaminobutyric acid monohydrochloride (2.0 g, 13 mmol) 

in aqueous sodium hydroxide (2 M, 20.00 ml, 39 mmol, 3 mol. equiv.) were added 

simultaneously with vigorous stirring, benzyl chloroformate (4.50 ml, 31 mmol, 2.4 mol. 

equiv.) and aqueous sodium hydroxide (2 M, 15.50 ml, 31 mmol, 2.4 mol. equiv.) at 0 QC 

. The reaction mixture was left to stir vigorously overnight at ambient temperature and 

the resulting solution was then washed with diethyl ether before acidifying to pH 1 with 

concentrated hydrochloric acid and extracting with chloroform (3 x 50 ml). The organic 

layers were combined and dried with Na2S04. The desired product was obtained after 

evaporating the solvent under reduced pressure to give a yellow solid, L-2,4-bis­

(benzyloxycarbonylamino)butyric acid (114a) (2.79 g, 56 %). (pure compound might 

only be obtained after column chromatography of the yellow liquor at this stage). M.p: 

100-103 QC (lit., 90 91-92 QC); [ulD20 -10.0 (c = 10.0 in MeOH); Urn., (neat)/cm·1 3332 

(OH), 3064, 2953, 1728 (C=O), 1665, 1532 (NH), 1476, 1334 (C-N), 1255 (C-O), 1045 

and 741; OH (400 MHz CD]OD) 1.84 - 1.87 (1 H, m, CH(H», 2.08 - 2.12 (I H, m, 

CH(H», 3.18 - 3.33 (2 H, m, NHCH2), 4.25 (1 H, dd, J 4.4 & 9.6, CH), 5.08 (2 H, s, 

OCH2), 5.11 (2 H, s, OCH2) and 7.29 - 7.36 (10 H, m, 10 x Ph-H); Oc (100 MHz, 

CD]OD) 32.82 (CH2), 38.59 (NCH2CH2), 53.09 (CH2~HCOOCH]), 67.51 (OCH2), 67.73 

(OCH2), 128.82 (2 x CH, 2 x ArCH), 128.98 (2 x CH, 2 x ArCH), 129.02 (2 x CH, 2 x 

ArCH), 129.50 (2 x CH, 2 x ArCH), 129.60 (2 x CH, 2 x ArCH), 138.19 (C, ArC), 
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138.36 (C, ArC), 158.76 (OC=O), 158.90 (OC=O) and 175.66 (COOH); m/z (EI-) 

385.1392 (MH' - C2oH22N206 requires 385.1400). 

L-2,4-Bis-(benzyloxycarbonylamino)butyrylaminoacetic acid methyl ester (U5) 73 

ZHNV"·.{NHZ 

COOH 

( 114a) 

Glycine methyl ester. HCI 

• 
Morpholine, 
isobutyl chloroformate, 
DMF, EtOAc, -15°C, 4h 

'"VX': 
o N CO,Me 

H 

( 115) 

To L-2,4-bis-(benzyloxycarbonylamino)butyric acid (114a) (2.79 g, 7.22 mmol) in ethyl 

acetate (100 ml) was added iso-butyl chloroformate (0.94 ml, 7.22 mmol) dropwise at -15 

QC under nitrogen followed by 4-methylmorpholine (0.79 ml, 7.22 mmol) after 10 min of 

stirring. The mixture was allowed to stir for a further 20 min at -15 QC before adding 

dropwise a suspension of glycine methyl ester hydrochloride and triethylamine (1.0 ml, 

7.22 mmol) in a mixture of dimethylformamide and ethyl acetate (1:1 v/v, 100 ml). The 

mixture was further stirred for 4 h at -15 QC before being allowing warm to room 

temperature for another 4 h. Precipitates from the reaction as hydrochlorides were filtered 

off and washed thoroughly with ethyl acetate, and the filtrate was evaporated under 

reduced pressure to give a yellow oil. The oil was poured into water in an ice bath to 

form a white solid that was dried over P20 S under vacuum in a drying pistol to give the 

expected product, L-2,4-bis-(benzyloxycarbonylamino)butyrylaminoacetic acid methyl 

ester (115) (3.13 g, 92 %). M.p: 126-127 QC (lit. 73,116_117 QC); [ulD20 -11.7 (c = 10.0 in 

MeOH); Urnax (neat)/cm'! 3317 (NH), 3064, 2951,1702 (COOCH), 1531, 1454, 1249 (C­

N), 1215, and 1027; OH (400 MHz CD3CI) 1.82-1.92 (1 H, m, CH(H», 1.91-1.99 (2 

H, m, CH2), 3.08 - 3.13 (2 H, m, NHCH2), 3.51 - 3.56 (1 H, m, CH), 3.72 (3 H, s, 

OCH3), 3.90 (1 H, dd, J 5.0 & 17.9, CH(H», 4.08 (I H, dd, J 5.0 & 17.9, CH(H», 4.32 -

4.38 (1 H, m, CH), 5.08 (4 H, s, 2 x OCH2), 5.50 (I H, brs, NH), 5.85 (I H, brs, NH), 

7.29 - 7.36 (10 H, m, 10 x Ph-H) and 7.52 (1 H, brs, OH); Oc (lOO MHz, CD3CI) 34.16 
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(CH2), 37.21 (NH~H2CH2)' 41.14 (NHCH2COOCH)), 51.96 (OCH)), 52.35 

(CH2~HC=0), 66.90 (OCH2), 67.08 (OCH2), 127.90 (2 x CH, 2 x ArCH), 128.04 (2 x 

CH, 2 x ArCH), 128.13 (2 x CH, 2 x ArCH), 128.20 (2 x CH, 2 x ArCH), 128.53 (CH, 

ArCH), 128.74 (CH, ArCH), 136.18 (C, ArC), 136.40 (C, ArC), 156.26 (NHC=O), 

157.32 (NHC=O), 170.13 (C=O) and 171.82 (NHC=O); mlz (EI+) 457.1843 (M+ -

C2)H27N)07 requires 457.1849); mlz (E1+) 457 (~, 5%), 368 (8), 353 (9), 341 (44),280 

(19), 242 (25), 146 (35), 108 (60), 91 (100) and 79 (38). 

L-2,4-Diaminobutyrylaminoacetic acid methyl ester dihydrochloride (116) 73 

.2HCI 

Pd-C, MeOH, • H2N, /"X". NH: 
HCI, H2• r.t. 16h _ V / " 

ZHN, /' NHZ VXA 
° N C02Me 

H 
o N C02Me 

H 

(115) (116) 

To L-2,4-bis-(benzyloxycarbonylamino)butyry1aminoacetic acid methyl ester (115) (1.75 

g, 4.05 mmo1 ), palladium-carbon (10 %) (351 mg, 20 %w/w), methanol (60 ml) and 

hydrochloric acid (0.84 ml, 8.10 mmol) were added in that order. After degassing, the 

mixture was stirred under a hydrogen atmosphere for 16 h. The reaction was filtered 

through celite, the solids washed with methanol and the filtrate evaporated under reduced 

pressure to furnish a pale yellow sticky solid (116) (1.05 g, 99 %) as the L-2,4-

diaminobutyrylaminoacetic acid methyl ester dihydrochloride. [a]D20 4.7 (c = 10.0 in 

MeOH); Umax (neat)/cm·1 3618,3538,3162,3001,2942, 1443, 1374, 1038, 917 and 749; 

OH (400 MHz CD)OD) 2.28 - 3.32 (2 H, m, NH2CH2CH2CH), 3.19 - 3.26 (2 H, m, 

NH2CH2), 3.75 (3 H, s, OCH)), 3.94 (I H, d, J 17.6, CH) and 4.15 - 4.17 (2 H, m, 

NHCH2COOCH)); Oc (100 MHz, CD)OD) 30.29 (NH2CH2CH2), 36.52 (NH2CH2), 41.81 

(NHCH2COOCH)), 51.91 (OCH)), 52.89 (CH), 169.56 (C=O) and 171.53 (NHC=O). 
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L-2-[2-(4-Benzyloxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidinium-4(S)-carbonyl­

aminoacetic acid methyl ester triflate salt (117) 

o 
+:;t;F3S03 HN 
I H 
~ N"-./CO,Me 

------------------~.~ 0 
1) TfOMe. DCM. reflux 3h NH, 

2) Dipeptide (116). 
EtOH. TEA. reflux 6h 

OBn 
OBn 

(67) (117) 

To 3-(4-benzyoxyphenyl)propanamide (67) (250 mg, 0.98 mmol) in DCM (30 ml) was 

added methyl triflate (0.16 ml, 1.47 mmol, 1.5 mol. equiv.) and the mixture was heated at 

reflux for 3 h under an atmosphere of nitrogen and then left to stand at room temperature 

overnight. The solvent was removed under reduced pressure to give a white solid that 

was re-dissolved in ethanol (70 ml) and L-2,4-diaminobutyryl<iminoacetic acid methyl 

ester dihydrochloride (388 mg, 1.47 mmol) and triethylamine (0.45 m1, 3.58 mmol) were 

added. The mixture was heated at reflux under an atmosphere of nitrogen for 6 h. The 

reaction solvent was removed under reduced pressure and the residue was purified by 

flash column chromatography twice with MeOH : DCM (5 - 10 % MeOH) to yield 

recovered propanamide (18 mg, 15 %) and a pure white solid (117) (234 mg, 43 %). M.p: 

85-86 DC. Umax (neat)/cm·1 3317 (NH), 2951,1702 (COOCH3), 1531, 1454, 1249 (C-O), 

1215,1027,751 and 697; OH (400 MHz CD3CI) 2.00 - 2.04 (1 H, m, NCH2CH(H)CH), 

2.14 - 2.18 (1 H, m, NCH2CH(H)CH), 2.74 (2 H, t, J 7.6, CH2), 2.95 (2 H, t, J7.6, CH2), 

3.33 - 3.40 (2 H, m, NCH2CH2), 3.72 (3 H, s, COOCH3), 3.97 - 4.00 (2 H, m, 

NHCH2C=O), 4.27 (1 H, t, J 4.2, CH), 5.07 (2 H, s, OCH2Ph), 6.96 (1 H, d, J 8.6, Ph-H), 

7.18 (1 H, d, J 8.6, Ph-H) and 7.30 - 7.43 (5 H, m, 5 x Ph-H); oe (100 MHz, CD3CI) 

22.64 (NCH2S;;H2CH), 32.95 (CH2), 36.03 (CH2), 37.55 (NCH2), 41.96 

(NHS;;H2COOCH3), 49.28 (CH2S;;H), 52.73 (COOCH3), 70.98 (OCH2Ph), 116.31 (2 x 

CH, 2 x ArCH), 128.53 (2 x CH, 2 x ArCH), 128.86 (CH, ArCH), 129.49 (2 x CH, 2 x 

ArCH), 130.61 (2 x CH, 2 x ArCH), 132.10 (C, ArC), 138.37 (C, ArC), 159.19 (CO, 

ArCO), 165.35 (N-C=N), 171.42 (C=O) and 172.10 (NHC=O); mlz (FAB) 410.2080 

160 



(MH+ - C23H27Nl04 + H requires 410.2080); mlz (FAB) 410 (MH+, 10%), 130 (61),109 

(21),91 (43),69 (75), 55 (100) and 41 (88). 

L-2-[2-(4-Hydroxyphenyl)ethyl)-3,4,5,6-tetrahydropyrimidinium-4(S)-carbonyl­

aminoacetic acid methyl ester triflate salt (118) 

+hF3S03 HN 
I H 

NH N,,-/CO,Me 

-------" 
~ 0 

Pd-C, H, 

+hF3S03 HN 
I H 
~ N,,-/CO,Me 

o MeOH. r.t. 10h 

OBn OH 
(117) (118) 

To L-2-[2-( 4-benzyloxyphenyl)ethy 1]-3,4,5 ,6-tetrahydropyri m id i ne-4(S )-carbon ylam ino­

acetic acid methyl ester triflate salt (117) (177 mg, 0.32 mmol) with palladium-carbon 

(10 %) (28 mg, 15 % w/w) was added methanol (50 ml) and the mixture degassed before 

stirring at room temperature under I atmosphere of hydrogen for 10 h. The palladium­

carbon was removed by filtration through celite and the solids washed with methanol (10 

ml), then the filtrate was evaporated under reduced pressure to afford a yellow liquor 

(118) (139 mg, 94 %). Urnax (neat)/cm-1 3304 (NH), 3064 (NH), 2924, 1740 (COOCH3), 

1654 (C=N), 1517, 1253 (C-O), 1170 and 1031; OH (400 MHz CD30D) 1.89 - 2.0 I (2 H, 

m, NCH2CH2), 2.53 - 2.55 (2 H, brs, CH2), 2.78 - 2.79 (2 H, brs, CH2), 3.03 - 3.26 (2 H, 

m, NCH2), 3.25 (3 H, m, COOCH3), 3.86 (2 H, brs, NHCH2C=O), 4.05 (I H, brs, 

CH2CH), 6.61 (2 H, d, J7.7, 2 x Ph-H) and 6.96 (2 H, d, J 7.7,2 x Ph-H); odlOO MHz, 

CD30D) 23.02 (NCH2~H2), 33.15 (CH2), 36.79 (CH2), 37.81 (NCH2), 42.00 (NH~H2 

COOCHl), 49.90 (CH2~H), 53.62 (COO~H3), 116.62 (2 x CH, 2 x ArCH), 130.60 (2 x 

CH, 2 x ArCH), 130.85 (C, ArC), 157.71 (CO, ArCO), 164.58 (N-C=N), 171.47 (C=O) 

and 171.62 (NHC=O); mlz (FAB) 320.1611 (MH+ - CI6H22Nl04 + H requires 320.1610). 
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O-Benzyl-L-tyrosine (121) 91. 

CuSO •. SH,O 

~I '-':::: BnBr, base, 
~ 60°C to r.t. Sh 

OH 

• 

o 
H,NJ 

, OH. 

Copper(lI) sulfate pentahydrate (14.06 g, 56.32 mmol) dissolved in deionised water (50 

ml) was added to a stirred solution of L-tyrosine (20 g, 110.4 mmol) in 2M sodium 

hydroxide solution (112 ml, 2.03 mol. equiv.) which gave blue precipitation. The mixture 

was heated at 60°C and then cooled down to room temperature again. Methanol (400 

ml), 2M NaOH (16 ml) and benzyl bromide (22.66 g, 15.8 ml, 132.48 mmol, 1.2 mol. 

equiv.) were added and the mixture was stirred at room temperature for 5 h. The reaction 

mixture was filtered and the blue residue was washed with methanol (50 ml) and 

deionised water (150 ml & 50 ml). The blue residue was triturated in 2M hydrochloric 

acid (5 x 80 ml) to yield a white residue which was washed with water (3 x 150 ml) and 

2M ammonium hydroxide solution (4 x 60 ml). After further washing with acetone (2 x 

50 ml), water (2 x 50 ml) and ether (2 x 50 ml), the white product was dried in a drying 

pistol overnight to remove water and other solvents. O-Benzyl-L-tyrosine (121) was 

obtained (20.2 g, 67 %). Due to its low solubility, the proton NMR spectrum was run at 

high temperature (>50 0C). M.p: 227-229 °C (lit., 910 224-226 0C); [alD24 -9.5 (c = 10.0 in 

Acetic acid) (lit., 91b [alD23 -10.2 in acetic acid); OH (250 MHz DMSO) 2.90 - 3.05 (I H, 

m, CH), 3.16 - 3.21 (2 H, rn, CH2), 4.12 (2 H, brs, NH2), 5.08 (2 H, s, CH2), 6.94 (2 H, 

d, J 8.4, 2 x Ph-H), 7.18 (2 H, d, J 8.4, 2 x Ph-H) and 7.33 - 7.44 (5 H, m, 5 x Ph-H). 
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N-Phthalyl-O-benzyl-L-tyrosine (122) 

o 
H2N~ 

, OH 

(121) 

To O-benzyl-L-tyrosine (121) (1.00 g, 3.68 mmol) in dioxane: de ionised water (100 ml, 

I : 2), was added sodium carbonate (0.40 g, 3.68 mmol). The suspension was heated at 70 

°C for 45 mins until all the solids dissolved. The mixture was cooled down to 45-50 °C, 

and then N-ethoxycarbonylphthalimide (1.21 g, 5.52 mmol, 1.5 mol. equiv.) was added 

with pH falling from 10 to 7. A precipitate formed soon after the addition and the mixture 

was left to stir for 12 h at 50°C. The mixture was then cooled to room temperature and 

the precipitate filtered off, the filtrate was collected and acidified with 2M hydrochloric 

acid to give a white precipitate. The precipitate was filtered and washed with a little 

acetone and ether and then dried under reduced pressure to yield the N-protected tyrosine 

(122) (0.70 g, 48 %). M.p: 212-213 °C (lit., 74212_214 °C); urnax (Acetonitrile)/cm· t 1768, 

1741 (Phth), 1691 (COOH), 1611, 1512, 1392, 1344, 1254, 1113, 1042 (COC) and 736; 

liH (250 MHz DMSO) 3.38 - 3.45 (2 H, m, CHCH2), 4.98 (2 H, s, OCH2Ph), 5.09 (I H, 

dd, J 11.4 & 5.0, CHCH2), 6.83 (I H, d, J 8.6, Ph-H), 7.08 (I H, d, J 8.6, I H, Ph-H), 

7.32 - 7.37 (5 H, m, 5 x Ph-H) and 7.86 (4 H, s, 4 x Ph-H); lie (100 MHz DMSO) 33.38 

(i;:.HCH2), 53.48 (CH.!::H2), 69.33 (OCH2Ph), 114.91 (2 x CH, 2 x ArCH), 123.77 (2 x 

CH,2 x ArCH), 128.05 (2 x CH, 2 x ArCH), 128.11 (CH, ArCH), 128.69 (2 x CH, 2 x 

ArCH), 129.69 (C, ArC), 130.08 (2 x CH, 2 x ArCH), 131.07 (2 x C, 2 x ArC), 135.31 (2 

x CH, 2 x ArCH), 137.35 (C, ArC), 157.27 (CO, ArCO), 167.50 (2 x C=O) and 170.48 

(COOH); mlz (El+) 401.1256 (M+ - C24Ht9NOs requires 401.1263); mlz (EI+) 401 (M+, 

4%),254 (15),197 (6),174 (11),115 (10), 91 (100) and 69 (10). 
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N-Phthalyl-O-benzyl-L-tyrosinamide (123) 

(122) 

o 

cR0C
! 

(COC!),. 0 1 "'" 

71 
~ 

(123a) 

o 

cR0NH2 

o "Q NH,,,,. MeCN, 30min 1 

• ..& 

d 
(123) 

To N-phthalyl-O-benzyl-L-tyrosine (122) (1500 mg, 3.75 mmol) in dried tetrahydrofuran 

(50 ml) was added oxalyl chloride (960 mg, 0.66 ml, 7.50 mmol) under an atmosphere of 

nitrogen at 0 QC and DMF (0.05 mt) was also added slowly as the reaction catalyst. After 

stirring for 4 h, the solvent was removed from the yellow solution under reduced pressure 

to give, as a yellow solid the corresponding acyl chloride (123a). Ammonia gas was 

slowly bubbled through this acyl chloride in acetonitrile (50 ml) for 30 min at ambient 

temperature while stirring. The reaction was monitored by TLC while a yellow 

precipitate formed. After removing the precipitate by filtration through celite and 

washing the solids with acetonitrile (15 ml), the filtrate was evaporated under reduced 
. 

pressure to yield the desired product N-phthalyl-O-benzyl-L-tyrosinamide (123) (2.76 g, 

92 %). M.p: 156-157 QC (lit., 92 158 QC); [alD20 -109.3 (c = 10.0 in MeOH) (lit., 92 [alD22_ 

162.1 in MeOH); Found: C, 71.78; H, 4.74; N, 6.91. C24H20N204 requires C, 71.99; H, 

5.03; N, 6.99%; Urnax (Acetonitrile)/cm'! 1770, 1712 (Phth), 15\0, 1384, 1347, 1241, 

1116, 1084 (COC), 878 and 719; OH (250 MHz DMSO) 3.23 - 3.48 (2 H, m, CHCH2), 

4.88 (l H, dd, J 11.7 & 4.3, CH2CH), 4.95 (2 H, s, OCH2Ph), 6.79 (2 H, d, J 8.1,2 x Ph­

H), 7,03 (2 H, d, J 8.1,2 x Ph-H), 7.31 - 7.34 (6 H, m, 4 x Ph-H & NH2), 7.69 (I H, s, 

Ph-H) and 7.80 (4 H, s, 4 x Ph-H); Oc (100 MHz DMSO) 32.80 (CH~H2)' 54.36 

(CHCH2), 68.89 (OCH2Ph), 114.43 (2 x CH, 2 x ArCH), 122.96 (2 x CH, 2 x ArCH), 

127.57 (2 x CH, 2 x ArCH), 127.64 (CH, ArCH), 128.23 (2 x CH, 2 x ArCH), 129.54 (2 

x CH, 2 x ArCH), 129.74 (C, ArC), 131.20 (C, ArC), 134.37 (2 x CH, 2 x ArCH), 136.91 
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--- -----------

(C, ArC), 156.73 (CO, ArCO), 167.41 (C=O) and 169.62 (C=O); mlz (EI+) 400.1429 (M' 

- C24H20N204 requires 400.1423); mlz (El+) 400 (M+, 4%), 253 (34), 197 (3), 130 (4), 

104 (5) and 91 (lOO). 

N-Pyrrolyl-O-benzyl-L-tyrosine (124) 

° H2N~ 
: OH Me0"(yoMe C1J 

: OH 

_wa_te_r,_A_cO_H_,_d_ic_hl_or_o_et_ha_n_e_, __ ~ 
reflux 90 min ~ 

d 
(121) 

(124) 

O-Benzyl-L-tyrosine (121) (1.00 g, 3.68 mmol) and 2,5-dimethoxytetrahydrofuran (0.47 

g, 0.48 ml, 3.68 mmol) were mixed together in deionised water (10 ml) with acetic acid 

(5 ml) and 1,2-dichloroethane (80 ml) and the mixture heated at reflux for 90 min with 

vigorous stirring. After cooling to room temperature, the reaction mixture was extracted 

with dichloromethane (3 x 25 ml). The combined organic layers were collected and dried 

with anhydrous magnesium sulfate. The organic layer was evaporated for flash column 

chromatography of the residue with diethyl ether to furnish a brown solid (124) (580 mg, 

49 %). M.p: 100-103 QC; Urnax (CHCh)/cm·1 3031 (Pyr-CH), 2928 (COOH), 1718 

(COOH), 1610, 1511, 1275, 1242, 1177, 1092 (CO C) and 727; OH (250 MHz CDCI) 

3.24 (I H, dd (ABX), J 9.2 & 14.1, CHCH(H)), 3.40 (I H, dd (ABX), J 6.0 & 14.1, 

CHCH(H)), 4.75 (I H, dd, J 6.0 & 9.2, CHCH2), 5.04 (2 H, s, OCH2Ph), 6.18 (I H, t, J 

2.1, Pyr-H), 6.71 (I H, t, J2.I, Pyr-H), 6.84 (2 H, d, J 8.5, Ph-H), 6.93 (2 H, d, J 8.5, 2 x 

Ph-H) and 7.32 - 7.40 (5 H, m, 5 x Ph-H); Oc (lOO MHz CDCI) 38.70 (CH2), 64.07 (CH), 

70.42 (OCH2Ph), 109.35 (2 x CH, 2 x PyrCH), 115.41 (2 x CH, 2 x ArCH), 120.70 (2 x 
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CH, PyrCH), 127.96 (2 x CH, 2 x ArCH), 128.43 (CH, ArCH), 128.80 (C, ArC), 129.03 

(2 x CH, 2 x ArCH), 130.35 (2 x CH, 2 x ArCH), 137.38 (C, ArC), 158.35 (CO, ArCO) 

and 176.55 (C=O); mlz (EI+) 321.1365 (~ - C2oHI9N03 requires 321.1366); mlz (El+) 

321 (M+, 9%), 225 (15),197 (23),183 (11),107 (32) and 91 (100). 

N-Pyrrolyl-O-benzyl-L-tyrosinamide (126) via N-pyrrolyl-O-benzyl-L-tyrosine-O­

succinimide (125) 

o 

000 . C,JJ={ C,yl", 
HOS". Dioxane, 0 NH3(g)" THF. 10mln U-·U "'" U r.t.16h I "'" • I 

I h- h-
h- OBn OBn 

OBn 
(124) (125) (126) 

To N-pyrrolyl-O-benzyl-L-tyrosine (124) (361 mg, 1.12 mmol) in 1,4-dioxane (30 ml) 

was added dicyclohexylcarbodiimide (DDC, 232 mg, 1.12 mmol) and N­

hydroxysuccinimde (129 mg, 1.12 mmol). After stirring the mixture overnight at room 

temperature, the white precipitate formed during the reaction was filtered off and the 

filtrate was evaporated under reduced pressure to leave a white solid intermediate, N­

pyrrolyl-O-benzyl-L-tyrosine-O-succinimide (125) (466 mg, 100 %). M.p: ·108-111 QC; 

Urn•x (CHCI3)/cm-1 2931 (COOH), 1814 (OCNCO), 1783, 1737 (OCNCO), 1610, 1512, 

1241, 1203, 1072 (COC) and 732; OH (400 MHz CDCb) 2.65 (4 H, s, 2 x CH2C=O), 3.35 

(I H, dd (ABX), J 9.8 & 14.2, CHCH(H)), 3.51 (1 H, dd (ABX), J 5.0 & 14.2, 

CHCH(H)), 5.00 (s, 2 H, OCH2Ph), 5.04 (1 H, dd, J 5.0 & 9.8, CHCH2), 6.17 (2 H, t, J 

2.2,2 x Pyr-H), 6.71 (2 H, t, J2.2, 2 x Pyr-H), 6.84 (2 H, d, J 8.8,2 x Ph-H), 6.92 (2 H, 

d, J 8.8,2 x Ph-H) and 7.34 - 7.40 (5 H, m, 5 x Ph-H); OC (100 MHz CDCb) 25.90 (2 x 

CH2C=O), 39.22 (CH2), 61.84 (CH), 70.31 (OCH2Ph), 109.73 (2 x CH, 2 x PyrCH), 

115.32 (2 x CH, 2 x ArCH), 120.77 (2 x CH, 2 x ArCH), 127.92 (2 x CH, 2 x ArCH), 
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127.96 (C, ArC), 128.38 (CH, ArCH), 128.97 (2 x CH, 2 x ArCH), 130.40 (2 x CH, 2 x 

ArCH), 137.27 (C, ArC), 158.43 (CO, ArCO), 166.37 (C=O), 168.96 (C=O); mlz (EI+) 

418.1530 (M+ - C24H22N20S requires 418.1529); mlz (E1+) 418 (M+, 17%),276 (8),197 

(60),91 (100) and 43 (27). 

The white solid of N-pyrrolyl-O-benzyl-L-tyrosine-O-succinimde (125) (131 mg, 0.312 

mmol) was dissolved in tetrahydrofuran (15 ml) and ammonia gas bubbled through the 

mixture for about 10 minutes when upon white precipitate formed. The precipitate was 

filtered off and washed with a small amount of tetrahydrofuran (5 ml), and the filtrate 

was evaporated under reduced pressure to give a pale brown solid of N-pyrrolyl-O­

benzyl-L-tyrosinamide (126) (81 mg, 81 %). M.p: 95-97 QC; [a1020 -290.0 (c = 10.0 in 

MeOH); Urnax (CHCh)/cm,1 3316 (NH), 1682 (C=O), 1510, 1240, 1024 (COC) and 730; 

OH (400 MHz CDCI)) 3.19 (I H, dd, J 10.8 & 14.4, CHCH(H)), 3.60 (I H, dd, J 4.2 & 

14.4, CHCH(H)), 4.64 (I H, dd, J 4.2 & 10.8, CHCH2), 4.99 (2 H, s, OCH2Ph), 5.46 (I 

H, brs, NH), 5.96 (I H, brs, NH), 6.21 (2 H, t, J 2.0, 2 x Pyr-H), 6.68 (2 H, t, J 2.0, 2 x 

Pyr-H), 6.87 (4 H, m, 4 x Ph-H) and 7.32 - 7.42 (5 H, m, 5 x Ph-CH); OC (100 MHz 

CDCh) 35.96 (CH.!::H2), 64.13 (.!::HCH2), 68.92 (OCH2Ph), 108.67 (2 x CH, 2 x PyrCH), 

113.82 (2 x CH, 2 x ArCH), 119.23 (2 x CH, 2 x ArCH), 126.45 (2 x CH, 2 x ArCH), 

126.91 (CH, ArCH), 127.53 (2 x CH, 2 x ArCH), 128.55 (C, ArC), 128.73 (2 x CH, 2 

ArCH), 135.97 (C, ArC) 156.65 (C, ArC) and 172.21 (C, ArC); mlz (EI+) 320.1531 (M+ -

C2oH20N202 requires 320.1525); mlz (EI+) 320 (M+, 3%), 279 (68), 224 (53), 167 (54), 

149 (100),143 (28), 99 (40), 91 (37),70 (26), 56 (65) and 43 (22). 
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N-Tosyl-O-benzyl-L-tyrosine (127) 

- TsCI, Base 

o 

TSNH0 
. OH 

• 

~ ~OBn 
Waler, EIOAc, r.t. 9h 'Y; ~OBn 

(121) (127) 

To O-benzyl-L-tyrosine (121) (250 mg, 0.92 mmol) partially dissolved in water (30 ml) 

was addedp-toluenesulfonyl chloride (351 mg, 1.84 mmol, 2 mol. equiv.) in ethyl acetate 

(10 m1). To the mixture, saturated sodium hydroxide solution (10 ml) was slowly added 

over 5 min while the starting material gradually dissolved and a white precipitate 

appeared. After 9 h at room temperature, the ethyl acetate was evaporated, and the 

residue and the aqueous layer were acidified with concentrated hydrochloric acid to pH 2 

and kept in an ice bath for 2 h. The pale yellow solid formed was filtered off and dried 

under vacuum in a drying pistol to give N-tosyl-O-benzyl-L-tyrosine (127) (332 mg, 85 

%). M.p: 127-128 °C; [a]D20 8.3 (c = 10.0 in MeOH); Umax (neat)/cm'] 3260, 3031,1727, 

1609, 1511, 1453, 1330, 1242, 1158, 1090 and 813; OH (250 MHz, CO}OO) 2.38 «3 H, 

s, CH}), 2.91 - 3.06 (2 H, m, CHCH2), 4.10 - 4.16 (1 H, m, CH), 5.01 (2 H, s, OCH2Ph), 

6.83 (2 H, d, J 8.6, 2 x Ph-H), 6.99 (2 H, d, J 8.6, 2 x Ph-H), 7.20 (2 H, d, J 8.3, 2 x Tol­

H) 7.33 - 7.43 (5 H, m, 5 x Ph-H) and 7.60 (2 H, d, J 8.3,2 x Tol-H); oc (100 MHz, 

COCb) 21.64 (CH3), 38.02 (CHCH2), 56.46 (!;.HCH2), 66.83 (OCH2Ph), 114.97 (2 x CH, 

2 x ArCH), 126.96 (C, ArC), 127.12 (2 x CH, 2 x Tol-H), 127.48 (2 x CH, 2 x ArCH), 

128.03 (CH, ArCH), 128.62 (2 x CH, 2 x ArCH), 129.66 (2 x CH, 2 x ArCH), 130.55 (2 

x CH, 2 x ArCH), 136.50 (C, ArC), 136.89 (S02C, Tol-C), 143.76 (C, Tol-C), 158.13 

(CO, ArCO) and 175.06 (COOH); mlz (E1+) 425.1294 (M+ - C2}H23NOsS requires 

425.1297); mlz (E1+) 425 (M+, 3%), 269 (3), 225 (3),197 (49),178 (3),155 (5),134 (5), 

107 (11), 91 (lOO) and 65 (12). 
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N-Tosyl-O-benzyl-L-tyrosinamide (128) 

o 

TSNH0 
, OH 

-

DCC, HOSu, Dixoane, 
Lt. Sh 

• • 

o 

TSNH0 
: NH, 

~ 
~OBn 

NH3(,), DCM, Lt. 10min 

(127) 
(128) 

To N-tosyl-O-benzyl-L-tyrosine (127) (311 mg, 073 mmol) dissolved in 1,4-dioxane (60 

ml) was added N-hydroxysuccinimide (84 mg, 0.73 mmol) and dicyclohexyIcarbodiimide 

(150 mg, 0.78 mmol) at room temperature. After 5 h stirring, the white precipitate formed 

was filtered off and the dioxane was removed under reduced pressure to give a yellow 

solid intermediate. The yellow solid was re-dissolved in DCM (60 ml) and ammonia gas 

was bubbled through the solution, and the white precipitate formed was removed by 

filtration. The filtrate was evaporated to give a pale yellow solid that was purified by 

column chromatography with DCM to yield a white solid (128) (137 mg, 44 %). M.p: 

150-151 QC; [ulD20 -4.3 (c = 10.0 in MeOH); Urn,x (neat)!cm') 3322(NH), 2925, 2848, 

1626(NH), 1569, 1436, 1309 (S=O), 1242, 1087 and 891; OH (400 MHz, CD30D) 2.33 (3 

H, s, CH3), 2.75 (I H, dd, J 8.5 & 13.8, CHCH(H», 2.96 (I H, dd, J 5.5 & 13.8, 

CHCH(H», 3.95 (I H, dd, J5.5 & 8.5, CH), 5.00 (2 H, s, OCH2Ph), 6.77 (2 H, d, J 8.6,2 

x Ph-H), 6.99 (2 H, d, J 8.6,2 x Ph-H), 7.17 (2 H, d, J 8.3,2 x Tos-H), 7.28 - 7.42 (5 H, 

m, 5 x Ph-H) and 7.51 (2 H, d, J 8.3, 2 x Tos-H); Oc (100 MHz, CD30D) 20.84 (CH~H2)' 

21.58 (CH3), 39.09 ~HCH2)' 70.96 (OCH2Ph), 115.79 (2 x CH, 2 x ArCH), 128.03 (2 x 

CH, 2 x TosCH), 128.60 (2 x CH, 2 x ArCH), 128.91 (CH, ArCH), 129.56 (2 x CH, 2 x 

TosCH), 130.10 (C, ArC), 130.50 (2 x CH, 2 x ArCH), 131.50 (2 x CH, 2 x ArCH), 

138.82 (C, ArC), 139.11 (S02C, TosC), 144.40 (C, TosC), 159.20 (CO, ArCH) and 

175.31 (COO H); mlz (E1+) 424.1462 (M+ - C23H24N204S requires 424.1457). 
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S-2-Azido-3-(4-benzyloxyphenyl)propionic acid (129) 

° H,N0 
, OH 

NaN" H,O, CH,CI, ' trillyl anhydride 

• 
K,CO" CuSO 4 

(121 ) 

° N,0
oH 

(129) 

Sodium azide (1.20 g, 18.4 mmol, 10 mol. equiv.) was dissolved in deionised H20 (Srn I), 

CH2Ch (10 ml) was added and the mixture cooled on an ice bath. 

Triftuoromethanesulfonic anhydride (1.04g, 0.62 ml, 3.68 mmol, 2 mol. equiv.) was 

added slowly over 5 min followed by stirring the mixture for another 2 h. The cloudy 

white mixture was placed in a separating funnel and the CH2Ch phase was removed. The 

aqueous phase was extracted with CH2CIz (2 x 5 ml) and the combined organic phases, 

containing the triftyl azide were collected and washed with saturated sodium carbonate 

solution (20 ml) and used without further purification. O-Benzyl-L-tyrosine (121) (500 

mg, 1.84 mmol) was combined with potassium carbonate (500 mg, 3.63 mmol), copper 

sulfate pentahydrate (10 mg, 40 ,Ulllol), deionised water (lOml), methanol (20 ml) and the· 

triftyl azide solution in dichloromethane (20 ml). The reaction mixture was stirred at 

ambient temperature overnight and then the organic solvent was removed under reduced 

pressure to give a pale blue aqueous slurry which was diluted with deionised water (50 

ml). The aqueous solution was acidified to pH 6 with concentrated hydrochloric acid, 

diluted with phosphate buffer pH 7.0 (50 ml) and extracted with ethyl acetate (4 x 30 ml) 

to remove the sulfonamide byproduct. The aqueous phase was further acidified to pH 2 

with concentrated hydrochloric acid and the product was obtained by extraction with 

ethyl acetate (3 x 30 ml), which was dried with anhydrous magnesium sulfate and the 

solvent removed under reduced pressure to yield a pale solid (129) (191 mg, 34 %). M.p: 

87-88 QC; U max (CHClj)/cm'\ 3031,2924,2112 (N), 1718 (COOH), 1610, 1512, 1453, 
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1382,1241 (COOH), 1176,1028,809,737 and 697; OH (250 MHz COCb) 3.00 (I H, dd 

(ABX), J 8.7 & 14.2, CHCH(H», 3.20 (I H, dd (ABX), J 5.0 & 14.2, CHCH(H», 4.13 (I 

H, dd, J 5.0 & 8.7, CHCH2), 5.07 (2 H, s, OCH2Ph), 6.97 (2 H, d, J 8.6,2 x Ph-H), 7.20 

(2 H, d, J 8.6,2 x Ph-H), 7.34 - 7.46 (5 H, rn, 5 x Ph-H) and 9.40 (I H, brs, OH); Oc (100 

MHz COCb) 36.75 (CHCH2), 63.25 ~HCH2)' 70.08 (OCH2Ph), 115.15 (2 x CH, 2 x 

ArCH), 127.54 (2 x CH, 2 x ArCH), 127.87 (C, ArC), 128.05 (CH, ArCH), 128.63 (2 x 

CH, 2 x ArCH), 130.37 (2 x CH, 2 x ArCH), 136.90 (CH, ArCH), 158.16 (CO, ArCO) 

and 175.36 (C=O); mlz (EI+) 297.1109 (M+ - CI6HIsN303 requires 297.1113); mlz (EI+) 

297 (M+, 2%), 225 (17),197 (14),134 (26), 91 (100) and 65 (10). 

N-tert-Butoxycarbonyl-O-benzyl-L-tyrosine (130) 

° 
-1-°ll~00H 

(Boc),O. MeOH. Base ~ 

\) Ultrasonica, r.t. 3h 

° H,N~ 
, OH 

(130) 

To O-benzyl-L-tyrosine (121) (500 mg, 1.84 mmol) mixed with sodium bicarbonate (500 

mg) in methanol (20 rnl) was added di-/er/-butyl dicarbonate (403 mg, 1.84 rnmol). The 

milky mixture was sonicated for 3 h until almost colourless. The solvent was evaporated, 

and after the addition of water (20 ml) to the residue the aqueous solution was acidified to 

pH 1-2 from pH 9 with conc. hydrochloric acid as a white precipitate appeared. The 

product was obtained by ethyl acetate extraction (3 x 40 ml), drying the organic layers 

over anhydrous sodium sulfate and then removing the solvent under reduced pressure to 

yield a white solid (130) (600 mg, 91 %). M.p: 99-100 °C (lit., 93109-110 0C); [U]020 9.7 

(c = 10.0 in MeOH) (lit., 93 [U]D26 16.35 in MeOH); Urnax (Acetonitrile)/crn·\ 3318,2976, 

1698 (COOH), 1611 (NH), 1504, 1454, 1393, 1367, 1243 (CO), 1175, 1055, 1024 

(COC), 829, 735 and 696; OH (400 MHz OMSO) 1.32 (9 H, s, 3 x CH3), 2.75 (I H, dd, J 
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10.2 & 13.8, CHCH(H», 2.94 (1 H, dd, J 4.6 & 13.8, CHCH(H», 3.38 (1 H, brs, OH), 

3.99 - 4.05 (1 H, m, CHCH2), 5.05 (2 H, s, OCH2Ph), 6.91 (2 H, d, J 8.8,2 x Ph-H), 7.16 

(2 H, d, J8.8, 2 x Ph-H), 7.31 -7.44 (5 H, m, 5 x Ph-H) and 7.80 (I H, brs, OH); Oc (100 

MHz DMSO) 29.02 (3 x CH3), 36.42 (CH,e:H2), 56.31 (,e:HCH2), 69.95 (OCH2Ph), 78.88 

<.c:(CH3)3), 115.28 (2 x CH, 2 x ArCH), 128.51 (2 x CH, 2 x ArCH), 128.63 (CH, ArCH), 

129.27 (2 x CH, 2 x ArCH), 130.98 (2 x CH, 2 x ArCH), 138.06 (2 x C, 2 x ArC), 156.34 

(CO, ArCO), 157.81 (C=O) and 174.58 (C=O); mlz (E1+) 371.1734 (M+ - C21H2SNOs 

requires 371.1733); mlz (EI+) 371 (M+, 1%),310 (I), 298 (2), 270 (1),254 (2), 226 (2), 

197 (28), 107 (5), 91 (100) and 57 (11). 

N-tert-Butoxycarbony1-0-benzyl-L-tyrosinamide (132) via N-tert-butoxycarbonyl-O­

benzyl-L-tyrosine-O-succinimide (131) 

o 

BocHN 11 ft N 
~OH BOCHN~O/ 0 

o t( 
'U
' HOSu DCC Dioxane' 0 BocHN 11 ~ ., - ~NH I • ~ ., 2 

~ OBn r.t. 5h ~OBn NH3(Ol THF. 15min "U 
(130) ~ OBn 

(131) 
(132) 

To N-tert-butoxycarbonyl-O-benzyl-L-tyrosine (130) (670 mg, 1.80 mmol) was added 

dicyclohexylcarbodiimide (DCC, 370 mg, 1.80 mmol), N-hydroxysuccinimide (HOSu, 

207 mg, 1.80 mmol) and 1 ,4-dioxane (30 ml). After 5 h stirring at ambient temperature, 

the white precipitate was filtered off and the filtrate was evaporated to dryness under 

reduced pressure to give a white solid intermediate, N-tert-butoxycarbonyl-O-benzyl-L­

tyrosine-O-succinimide (131) (810 mg, 99 %). M.p: 144-146 QC; Urnax (CHCh)/cm-1 3349, 

2976,2931, 1814 (OCNCO), 1785, 1741, 1512, 1366, 1247, 1204, 1167, and 1064 

(COC); OH (400 MHz Acetone) 1.31 (9 H, s, 3 x CH3), 2.84 (4 H, s, 2 x CH2C=O), 3.04 

(I H, dd (ABX), J 9.6 & 14.2, CHCH(H», 3.26 (1 H, dd (ABX), J 4.8 & 14.2, 
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CHCH(H», 4.68 - 4.74 (1 H, m, CHCH2), 5.05 (2H, s, OCH2Ph), 6.45 (I H, d, NH), 

6.93 (2 H, d, J 8.4,2 x Ph-H), 7.27 -7.37 (5 H, m, 5 x Ph-H) and 7.43 -7.45 (2 H, m, 2 x 

Ph-H); Oc (100 MHz Acetone) 26.74 (2 x CH2C=0), 28.91 (3 x CH), 37.30 (CHCH2), 

54.92 ~HCH2)' 70.78 (OCH2Ph), 80.28 ~(CH)h), 115.99 (2 x CH, 2 x ArCH), 128.84 

(2 x CH, 2 x ArCH), 129.03 (CH, ArCH), 129.71 (2 x CH, 2 x ArCH), 129.84 (C, ArC), 

131.80 (2 x CH, 2 x ArCH), 138.85 (C, ArC), 156.43 (CO, ArCO), 159.27 (C=O), 169.51 

(2 x C=O), and 170.71 (C=O); m/z (EI+) 468.1907 (M+ - C25H2SN207 requires 

468.1897); mlz (E1+) 468 (M+, 3%), 270 (5), 237 (6), 226 (5), 197 (69), 149 (14), 115 

(22),91 (100),69 (10), 57 (31). 

N-tert-Butoxycarbonyl-O-benzyl-L-tyrosine-O-succinimide solid (131) (781 mg, 1.73 

mmol) was dissolved in tetrahydrofuran (20 ml) and ammonia gas was bubbled through 

the solution for 15 mins until a white precipitate fully emerged. The precipitate was 

filtered off and washed with a small amount of tetrahydrofuran (5 ml). The filtrate was 

evaporated under reduced pressure to give a white solid of N-tert-butoxycarbonyl-O­

benzyl-L-tyrosinamide (132) (630 mg, 99 %). M.p: 170-171 °C (lit., 94 171-172 0C); 

[U]D20 8.6 (c = 10.0 in MeOH) (lit., 94 [U]D24 4.6 in MeOH); Urna, (Acetone)/cm·1 3348, 

2981, 2928, 1680 (C=O), 1660 (C=O), 1513, 1245, 1167 and 1023; OH (400 MHz 

Acetone) 1.32 (9 H, s, 3 x CH), 2.83 (I H, dd (ABX), J 8.4 & 14.0, CHCH(H», 3.07 (1 

H, dd (ABX), J 5.2 & 14.0, CHCH(H», 4.26 - 4.29 (1 H, m, CHCH2) 5.04 (2 H, s, CH2), 

5.94 (1 H, br d, NH), 6.51 (1 H, brs, NH), 6.89 (2 H, d, J 8.4,2 x Ph-H), 6.97 (I H, brs, 

NH), 7.16 (2 H, d, J 8.4, 2 x Ph-H), 7.29 - 7.43 (3 H, m, 3 x Ph-H) and 7.44 - 7.45 (2 H, 

m, 2 x Ph-H); OC (100 MHz Acetone) 28.53 (3 x CH), 38.11 (CHCH2), 56.45 ~HCH2)' 

70.35 (OCH2Ph), 79.14 (C(CH))), 115.34 (2 x CH, 2 x ArCH), 128.36 (2 x CH, 2 x 

ArCH), 128.53 (CH, ArCH), 129.23 (2 x CH, 2 x ArCH), 130.96 (C, ArC), 131.22 (2 x 

CH, 2 x ArCH), 138.53 (C, ArC), 156.12 (CO, ArCO), 158.50 (C=O) and 174.30 (C=O). 
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S-2-[1-N-tert-Butoxycarbonyl-2-(4-benzyloxyphenyl)ethyl]-3,4,5,6-

tetrahydropyrimidinium triflate salt (133) 

o 
BOCHNJ 

BocHN 

H~:) 
O CF3S03 

~ ~ 
, NH, 1) TfOMe, DCM, reflux 3h 'U 2) Diaminopropane, EtOH, reflux 1 day 

OBn 

(132) 

• 'U Ih-
OBn 

(133) 

To N-tert-butoxycarbonyl-O-benzyl-L-tyrosinamide (130) (184 mg, 0.497 mrnol) in dry 

dichloromethane (20 ml) was added methyl trifluoromethanesulfonate (98 mg, 0.067 ml, 

0.596 mmol) and the mixture heated at reflux for 3 h before stirring at room temperature 

for a further 24 h. The solvent was evaporated under reduced pressure and the residue 

was re-dissolved in dry methanol (15 m\) with addition of 1,3-diaminopropane (44 mg, 

0.050 ml, 0.596 mmo\). The mixture was heated at reflux for 1 day before the solvent was 

completely removed under reduced pressure for flash column chromatography of the 

residue with methanol (3 - 6 %) in dichloromethane. The isolated colourless liquid was 

identified as the desired product (133) (129 mg, 47 %). In addition, the 

tetrahydropyrimidine with the N-tert-butoxycarbonyl group removed was also recovered. 

Umax (CHCh)/cm·1 3294,3238,3054,2977,1717, 1667 (C=N), 1615, 1514, 1456, 1368, 

1280, 1242 (C-N), 1224, 1158, 1028 and 756; OH (250 MHz CDCh) 1.34 (9 H, s, 3 x 

CH3), 1.83 (2 H, t, J 5.3, CH2CH2CH2), 2.96 - 3.15 (2 H, m, CHCH2), 3.28 - 3.42 (4 H, 

m, NCH2), 4.44 - 4.51 (I H, m, CHCH2), 4.96 (2 H, s, OCH2Ph), 6.03 (I H, brs, NH), 

6.86 (2 H, d, J 8.3,2 x Ph-H), 7.20 (2 H, d, J 8.3,2 x Ph-H), 7.31 -7.37 (5 H, rn, 5 x Ph­

H) and 8.73 (1 H, brs, NH); Oc (100 MHz CDCI3) 18.32 (CH2~H2CH2)' 28.46 (3 x CH3), 

37.66 (CH~H2), 39.22 (2 x NCH2), 55.29 ~HCH2), 70.26 (OCH2Ph), 81.27 (~(CH3)3), 

115.49 (2 x CH, 2 x ArCH), 127.66 (C, ArC), 127.89 (2 x CH, 2 x ArCH), 128.36 (CH, 

ArCH), 128.94 (2 x CH, 2 x ArCH), 130.83 (2 x CH, 2 x ArCH), 137.24 (C, ArC), 

156.10 (CO, ArCO), 158.44 (C=O) and 165.33 (N-C=N); mlz (FAB) 410.2442 (MH+­

C24H31N303 + H requires 410.2444); mlz (FAB) 410 (MH+, 100%),354 (43), 155 (43), 

137 (39), 113 (36) and 92 (48). 
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S-2-[l-N-tert-butoxycarbonyl-2-(4-hydroxyphenyl)ethyl)-3,4,5,6-

tetrahydropyrimidinium triflate salt (134) 

CF,SO,- +~ 
HN 

BOCHN~ 
. N 
; H 

~H~I~ CF,SO, 
BocHN ,.:) 

. N 
~ H 

Pd-C, H2 , MeOH 

~ 
~OBn 

Lt 24h '11; ~OH 
(133) (134) 

To S-2-[I-N-tert-butoxycarbonyl-2-(4-benzyloxyphenyl)ethyIj-3,4,5,6-tetrahydro­

pyrimidinium triflate salt (133) (170 mg, 0.304 mmol) was added palladium-carbon 

(10%) (30 mg, 18 %w/w) and methanol (30 ml). After degassing, hydrogenation 

proceeded under a balloon of hydrogen at I atmosphere for 24 hour. After filtering off the 

palladium-carbon through celite which was washed with methanol (15 ml), the filtrate 

was evaporated under reduced pressure to yield the desired oil (134) (123 mg, 87 %). 

[UjD20 2.5 (c = 10.6 in MeOH); l)max (Acetonitrile)/cm- I 3301 (OH), 3248, 3054 (OH), 

2979,1712,1667 (C=N), 1614, 1517, 1446, 1369, 1250 (C-N), 1165, 1029 and 638; OH 

(400 MHz Acetone) 1.30 (9 H, s, 3 x CH), 1.79 (2 H, brs, CH2CH2CH2), 2.85 - 2.90 (2 

H, rn, CHCH2), 3.20 - 3.26 (4 H, rn, 2 x NCH2), 4.21 (1 H, brs, CH), 6.66 (2 H, d, J 8.0, 

2 x Ph-H) and 6.98 (2 H, d, J 8.0, 2 x Ph-H); Oc (100 MHz Acetone) 18.07 

(CH2.C.H2CH2), 27.59 (3 x CH), 37.53 (CH~H2)' 38.84 (2 x NCH2), 55.48 (~HCH2)' 

80.66 (QCH3h), 115.63 (2 x CH, 2 x ArCH), 125.99 (C, ArC), 130.52 (2 x CH, 2 x 

ArCH), 156.39 (CO, ArCO), 157.09 (C=O) and 164.65(N-C=N); mlz (EI+) 319.1897 (M+ 

- C17H2sN)O) requires 319.1896); m/z (EI+) 319 (M+, 11%),245 (26), 203, (70), 156 

(19),139 (33),112 (46), 107 (63), 56 (lOO) and 44 (86). 
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2-[ l-(N-tert-Bu toxycarbonylam in 0)-2-( 4-benzyloxyphenyl)ethyl) -3,4,5,6-

tetrahydropyrimidinium-4-carbonylaminoacetic acid methyl ester triflate salt (135) 

HN +:;;F3S03 
o H 11 H 

>(
0 ~ 11 1) nOMe, DCM, Y0'y"'N~ N~CO,Me 
'y'" ~ reflux3h /' \ 11 ; ~ 

11 ) NH, • 0 "(}= I '-":: 0 
o "(} 2) Diamino, EtOH, DIPEA, 

I 
reflux 6h 

~ ~ OBn 
OBn 

(132) 
(135) 

To N-tert-butoxycarbonyl-O-benzyl-L-tyrosinamide (132) (150 mg, 0.41 mmol) in DCM 

(30 ml) was added methyl triflate (101 mg, 0.07 ml, 0.62 mmol, 1.5 mol. equiv.) and the 

mixture heated at reflux under an atmosphere of nitrogen for 3 h and then stirred 

overnight at room temperature. The solvent was removed under reduced pressure to 

produce an imidate intermediate which was re-dissolved in ethanol (50 ml). To this 

solution, L-2,4-diaminobutyrylaminoacetic acid methyl ester dihydrochloride (116) (148 

mg, 0.57 mmol, 1.4 mol. equiv,) and diisopropylethylamine (DIP EA) (117 mg, 0.14 ml, 

0.82 mmol, 2 mol. equiv,) were added simultaneously and the solution heated for 6 h at 

reflux under an atmosphere of nitrogen. The solvent was removed under reduced 

pressure and the residue was purified by flash column chromatography twice with MeOH 

: DCM (10 % MeOH) to produce a pure yellow oil (135) (86 mg, 31 %) followed by 

recovered starting diamine (74 mg, 50 %). Urnax (neat)!cm,1 3299 (NH), 1748 (COOCH), 

1666 (C=O), 1513, 1245 (C-O), 1163 and 1028; OH (250 MHz CD)CI) 1.34 (9 H, s, 3 x 

CH), 1.82 (2 H, brs, NCH2CH2), 3,12 (2 H, d, J 7.6, CHCH2), 3.48 - 3.53 (3 H, m, 

CH2CHC=O & NCH2), 3.68 (3 H, s, COOCH), 3.88 - 4.21 (2 H, m, NHCH2C=O), 4.42 

(I H, brs, CH2CHNH), 4.98 (2 H, s, OCH2Ph), 6.18 (I H, brs, NH), 6.90 (2 H, d, J 8.5,2 

x Ph-H), 7.20 (2 H, d, J 8.5,2 x Ph-H), 7.33 -7.40 (5 H, m, 5 x Ph-H), 9.10 (1 H, brs, 

NH) and 9.15 (I H, brs, NH); Oc (100 MHz, CD)CI) 21.01 (NCH2!::H2), 27.99 (3 x CH), 

36.44 (CH!::H2), 36.63 (NCH2), 41.27 (NH!::H2C=O), 51.78 (C Hz!::H C=O», 52.29 

(COOCH), 55.90 (NHCHCH2), 69,94 (CH20), 81.56 (!::(CH))), 115.32 (2 x CH, 2 x 
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ArCH), 126.60 (C, ArC), 127.49 (2 x CH, 2 x ArCH), 128.00 (CH, ArCH), 128.56 (2 x 

CH, 2 x ArCH), 130.41 (2 x CH, 2 x ArCH), 136.80 (C, ArC), 156.28 (C=O), 158.25 

(CO, ArCO), 165.54 (N-C=N), 169.59 (C=O) and 169.67 (NHC=O); mlz (FAB) 

525.2711 (MH+ - C28H)6N406 + H requires 525.2713); mlz (FAB) 525 (MH+, 100%),469 

(39),227 (16),154 (29),136 (27), 91 (77) and 57 (47). 

2-[1-(N-tert-Butoxycarbonylamino)-2-(4-hydroxyphenyl)ethyl]-3,4,5,6-tetrahydro­

pyrimidinium-4-carbonylaminoacetic acid methyl ester triflate salt (136) 

H~hF3S03 . H~hF3S0; HJ H HJ H 
>(0 

N N co Me 

>(O~N ,_: ~ N, /C02Me 
~ i ~ '--/ 2 11 .....,. 

g '0-0 Pd-C,H2 ° - ° 
I : MeOH, r.t. 10h '0 

OBn OH 
(136) 

(135) 

To 2-[ I-(N-tert-butoxycarbonylamino )-2-( 4-benzyloxyphenyl)ethyl]-3,4,5,6-tetrahydro­

pyrimidinium-4-carbonylaminoacetic acid methyl ester triflate salt (135) (55 mg, 0.82 

mmol) palladium-carbon (10 %) (11 mg, 20 % w/w) and methanol (30 ml) were added, 

After degassing the solution, the reaction was carried out by stirring under I atmosphere 

of hydrogen for 10 h. After removal of the solids by filtering through celite and washing 

with methanol (10 ml), the filtrate was collected and the solvent evaporated under 

reduced pressure to give as a yellow oil the hydroxyphenyl compound (136) (36 mg, 70 

%). [a]D20 33.3 (c = 10.0 in MeOH); U max (neat)/cm-] 3355 (NH), 1653 (C=O), 1253 (C­

O) and 1030; OH (250 MHz CO)OO) 1.39 (9 H, s, 3 x CH), 1.84 - 1.90 (I H, m, 

NCH2CH(H», 2.00 - 2.02 (I H, m, NCH2CH(H», 2.92 (2 H, d, J 7.3, CHCH2), 3.29 -

3.35 (3 H, m, CH2CHC=0 & NCH2), 3.70 (3 H, s, COOCH), 3.92 - 4.02 (2 H, m, 

NHCH2C=0), 4.16 - 4.22 (I H, m, CH2CHNH), 6.72 (2 H, d, J 8.4, 2 x Ph-H) and 7,08 

(2 H, d, J 8.4,2 x Ph-H); Oc (lOO MHz, CO)OO) 23.44 (NCH2CH2), 28.63 (3 x CH), 
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37.80 (CH~.H2)' 38.56 (NCH2), 41.91 (NH~H2C=O), 49.89 (CH2CHC=O), 55.01 

(COO~HJ), 57.84 (CH2~HNH), 81.30 (QCHJ)J), 116.42 (2 x CH, 2 x ArCH), 127.75 

(C, ArC), 131.50 (2 x CH, 2 x ArCH), 157.85 (CO, ArCO), 163.66 (N-C=N), 171.39.59 

(C=O) and 174.65 (NHC=O); mlz (FA B) 435.2239 (MH+ - C21HJoN406 + H requires 

435.2244); mlz (FAB) 435 (MH+, 100%),379 (43), 227 (12), 195 (10),176 (22),154 

(19), 136 (29), 107 (19) 83 (14), and 57 (32). 

Attempted oxidative cyclisation of S-2-[2-(4-hydroxyphenyl)ethyl]-3,4,5,6-

tetrahydropyrimidinium-4-carbonylaminoacetic acid methyl ester triflate salt (118) 

with STIS 

+hF3S03 HN 
I H 

N"-./CO,Me 

~ BTIB, MeOH, base 
o • 

'-'::: r. t. 6h 

+:;;F3S03 HN 
I H 

N N"-./CO,Me 

o 
MeO 

OH o 
(118) 

(119) 

To S-2-[2-(4-hydroxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidinium-4-carbonyl­

aminoacetic acid methyl ester triflate salt (118) (100 mg, 0.31 mmol) dissolved in 

methanol (50 ml) was added bis(trifluoroacetoxy)iodobenzene (159 mg, 0.37 mmol) and 

basic alumina (200 mg). After stirring at room temperature for 6 hour, the reaction was 

stopped by removing the solvent under reduced pressure and the residue was partitioned 

between petroleum ether and acetonitrile. The acetonitrile layer was collected but initial 

column chromatography on alumina (OCM : MeOH, 3 - 15 % MeOH) failed to produce 

any product or starting material. LC-MS of the crude residue after extraction indicated 

the presence of the oxidative cycIised compound (119). LC-MS mlz (ES+) 350.64 (MH+ 

- C17H2SNJOs + H requires 350.40) 
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Attempted synthesis of 2-[I-(phthalylamino)-2-(4-benzyloxyphenyl)ethyl]-3,4,S,6-

tetrahydropyrimidinium triflate salt 

c40", 
°'U

O 

d 
(123) 

TfOMe, DeM, reflux 1.5h 

• x • 
A/" EtOH, reflux 2 days 

H,N NH, 

To N-phthalyl-O-benzyl-L-tyrosinamide (123) (200 mg, 0.50 mmol) in dry acetonitrile 

(15 ml) under an atmosphere of nitrogen was added dropwise methyl 

trifluoromethanesulfonate (0.065 ml, 0.57 mmol, 1.1 mol. equiv.) and the reaction 

mixture was stirred at reflux for 1.5 h and then for a further I day at room temperature. 

The solvent was removed under reduced pressure to leave a pale yellow white salt. This 

pale yellow white salt in dry methanol (20 ml) was heated under refluxed with 1,3-

diaminopropane (37 mg, 0.042 ml, 0.50 mmol) and diisopropylethylamine (65, mg, 0.087 

ml, 0.5 mmol) under an atmosphere of nitrogen for 2 days. The solvent was removed 

under reduced pressure, and attempts to isolate any product from the residue by flash 

column chromatography on silica using methanol: dichloromethane (5 : 95 v/v) failed, 

with no conclusive product being obtained. 
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Attempted oxidative cyclisation of 2-[2-(4-hydroxyphenyl)ethyl]-4,5-

dihydroimidazolium-4-carboxylic acid methyl ester triflate salt (112) 

+ CF3S03 

HN\ 
I ;-COOMe 

N 
H BTIB, MeOH, Base ( 

) . 
r.t. 4h 

OH 

(112) 

To 2-[2-(4-hydroxyphenyl)ethyIJ-4,5-dihydroimidazolium-4-carboxylic acid methyl ester 

tritlate salt (112) (157 mg, 0.394 mmol) dissolved in dry methanol (20 ml), was added 

BTIB reagent (203 mg, 0.473 mmol, 1.2 mol. equiv.) and basic alumina (I g). The 

reaction was stirred at ambient temperature for 4 h and the solid alumina was filtered off, 

the filtrate was evaporated under reduced pressure to give a brown residue. 'H NMR 

spectroscopy of the crude residue indicated no signal for the expected methoxy group. 

Further attempts to purify the crude product on silica or alumina TLC plates failed to give 

any conclusive identification of the expected product. 

Attempted synthesis of S-2-[1-(1-pyrrole)-2-(4-benzyloxyphenyl)ethyl]-3,4,5,6-

tetrahydropyrimidinium triflate salt 

~ 
~OBn 

(126) 

-
+ ~ CF3S03 

ClJ) nOMe, DCM, reflux 3h 
. N 

-------;X~-. ~ H 

H2N~NH2 EtOH, reflux 1 day ~ 
OBn 
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To N-pyrrolyl-O-benzyl-L-tyrosinamide (126) (166 mg, 0.518 mmol) in dichloromethane 

(10 m!) was added methyl trifluoromethanesulfonate (0.07 ml, 0.622 mmol) and the 

mixture heated at reflux for 3 h then left at room temperature for I day. The solvent was 

removed under reduced pressure and the residue was re-dissolved in ethanol (20 ml) and 

1,3-diaminopropane (57mg, 0.065 ml, 0.77 mmol, 1.5 mol. equiv.) and the mixture was 

heated at reflux for 2 days. The solvent was removed under reduced pressure and the 

residue was subject to chromatography on silica with methanol: dichloromethane (3 : 97 

v/v) but 1 H NMR spectroscopy of the eluent indicated the loss of the pyrrole protecting 

group. 

Brornination of 9-rnethoxy-2,3,S,6-tetrah yd ro-1H-pyrirnido [1,2-a Iq uinolin i urn 

triflate salt (86) 

CF3S03 

NBS. EtOAc, UV 

TEA, r. t. 18h 

OMe 

(86) 

To 9-methoxy-2,3,5,6-tetrahydro-IH-pyrimido-[1 ,2-a]quinolinium triflate salt (86) (48 

mg, 0.131 mmol) in ethyl acetate (20 ml) was added N-bromosuccinimide (NBS) (11 mg, 

0.144 mmol, 1.1 mol. equiv.) and a few drops of triethylamine. The reaction was 

irradiated under an ultraviolet lamp for 18 h in a flask fitted with a reflux condenser. The 

precipitate formed was filtered off and washed with ethyl acetate (5 ml). Neither the 

precipitate nor the filtrate could be identified as the desired product. The starting material 

was identified by lH NMR spectroscopy of the filtrate after the solvent was removed 

under reduced pressure. 
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Attempted synthesis of 2-[2-(4-benzyoxyphenyl)ethyl]-,4,5,6,7-tetrahydrodiazepinium-

4-carboxylic acid triflate salt 

o 

NH, 

OBn 

(67) 

TfOMe. DCM. reflux 4h >(. 
L-Omithine HCI. DIPEA. EtOH. 
reflux 2 days 

N~ 
~N'--LCOOH 

H 
??? 

OBn 

To 3-(4-benzyloxyphenyl)propanamide (67) (500 mg, 1.96 mmol) in dichloromethane 

(40 ml) was added methyl trifluoromethanesulfonate (0.33 ml, 2.94 mmol. 1.5 mol. 

equiv.) and the mixture heated to reflux for 4 hour and then stood at room temperature for 

2 days. The solvent was removed and the residue was re-dissolved in ethanol (40 ml) and 

L-ornithine hydrochloride (661 mg, 3.92 mmol, 2 mol. equiv.) was added with 

diisopropylethylamine (507 mg, 0.68 ml, 3.92 mmol). The mixture was heated under 

reflux for 29 h with most of the L-ornithine remaining insoluble. The majority of the 

starting diamino acid was recovered through filtration. The filtrate was evaporated under 

reduced pressure for flash column chromatography of the residue using silica with MeOH 

: DCM (6 : 94 v/v), but there was very little sign of the desired product. 
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Appendix I 

X-Ray crystal structure of 2-[2-(4-benzyloxyphenyl)ethyl]-3,4,5,6-tetrahydropyrimidinium 

triflate salt (69) 

F23A e.:r: F22A 
F21A C21A 

521~~02IA 
022A ~ --~023A 

CIA ", N1A 

C38 
N28 - - - _~C78 C88 

0228 
5218 " 
~~ 0238 

0218 

_~-IIIIIPF228 

F218 

C12A CllA Cl0A 013A 

0138 

Data were collected at 150(2) K on a Bruker SMART 1000 diffractometer. The structure was 

solved by direct methods and refined by full-matrix least-squares on F2 using the SHELXTL 

suite of programs I. All the non-hydrogen atoms were refined with anisotropic atomic 

displacement parameters; hydrogen atoms were inserted at calculated positions using a riding 

model except for those bonded to nitrogen, which were located from difference maps and not 

further refined. Details of the data collection and structure refinement are given in Table I. 

I. Sheldrick G.M. (200 I). SHELXTL version 6.12, Bruker AXS, Madison, Wisconsin, USA. 

The asymmetric unit contains two independent pairs of cations and anions. The triflate anions 

link the cations into I D chains running parallel to b; there are two independent types of 

chain, those containing the atoms labeled "A" and those containing the atoms labeled "B". 



Table 1. Crystal data and structure refinement for cmpd 69. 

Identification code rcfj9 

Empirical formula C20 H23 F3 N2 04 S 

Formula weight 444.46 

Temperature 150(2) K 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

Z 

Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Crystal description 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 25.00° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on F2 

Final R indices [1>2sigma(I)) 

R indices (all data) 

Largest diff. peak and hole 

0.71073 A 

Triclinic 

P-I 

a=9.7172(12) A 

b = 9.9309(12) A 

c = 22.313(3) A 

2079.6(4) A3 

4 

1.420 Mglm3 

0.212 mm-! 

928 

0.40xO.19xO.14mm3 

Colourless block 

1.83 to 25.00°. 

a= 85.946(2)°. 

13= 88.961(2)°. 

y = 75.522(2)°. 

-I I <=h<=1 I, -I I <=k<=1 I, -26<=1<=26 

14782 

7290 [R(int) = 0.0358) 

99.2% 

Semi-empirical from equivalents 

1.00000 and 0.869189 

Full-matrix least-squares on F2 

7290/0/541 

1.037 

RI = 0.0520, wR2 = 0.1348 

RI = 0.0732, wR2 = 0.1492 

0.938 and -0.502 e.k3 

II 



Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x 103) 

for cmpd 69. U(eq) is defined as one third of the trace of the orthogonalized u;j tensor. 

x y z U(eq) 

N(IA) 9881(2) 4079(2) 3597(1) 25(1) 

C(IA) 9968(3) 4277(3) 4239(1) 29(1) 

C(2A) 9163(3) 3371(3) 4596(1) 31(1) 

C(3A) 9629(3) 1885(3) 4418(1) 31(1) 

N(2A) 9568(2) 1878(2) 3763(1 ) 26(1) 

C(4A) 9676(3) 2925(3) 3395(1) 23(1) 

C(5A) 9685(3) 2753(3) 2737(1) 27(1) 

C(6A) 11195(3) 2039(3) 2547(1) 35(1) 

C(7A) 11358(3) 1628(3) 1909(1) 27(1) 

C(8A) 11727(3) 237(3) 1784(1) 31(1) 

C(9A) 12015(3) -163(3) 1203(1) 30(1) 

C(10A) 11934(3) 839(3) 736(1) 24(1) 
-

C(IIA) 11534(3) 2242(3) 850(1) 29(1) 

C(12A) 11246(3) 2625(3) 1429(1) 30(1) 

O(l3A) 12245(2) 575(2) 146(1) 32(1) 

C(14A) 12659(3) -859(3) 14(1) 36(1) 

C(15A) 13004(3) -944(3) -641(1) 28(1) 

C(16A) 11935(3) -456(3) -1067(1) 35(1) 

C(17A) 12231(3) -575(3) -1670(1) 39(1) 

C(18A) 13590(4) -1194(3) -1857(1) 40(1) 

C(19A) 14661(3) -1680(3) -1437(1) 38(1) 

C(20A) 14369(3) -1548(3) -831(1) 32(1) 

N(lB) 6263(2) 8824(2) 3690(1) 27(1) 

C(lB) 5948(3) 9129(3) 4319(1) 31(1) 

C(2B) 6453(3) 7812(3) 4718(1) 28(1) 

C(3B) 5861(3) 6664(3) 4493(1) 29(1) 

N(2B) 6195(2) 6549(2) 3854(1) 27(1) 

C(4B) 6402(3) 7586(3) 3493(1) 24(1) 

C(5B) 6785(3) 7337(3) 2852( 1) 27(1) 

C(6B) 5531(3) 7174(3) 2476(1) 27(1) 

C(7B) 6023(3) 6717(3) 1860(1) 23(1) 

C(8B) 6517(3) 5310(3) 1763(1) 26(1) 

C(9B) 6986(3) 4866(3) 1203( 1) 26(1) 

111 



C(lOB) 6959(3) 5838(3) 726(1) 24(1) 

qlIB) 6470(3) 7255(3) 816(1) 25(1) 

q12B) 6004(3) 7679(3) 1375(1) 26(1) 

O(l3B) 7404(2) 5539(2) 153(1) 31(1) 

q14B) 7792(3) 4097(3) 28(1) 32(1) 

q15B) 8145(3) 3988(3) -626(1) 25(1) 

C(l6B) 7083(3) 4337(3) -1059(1) 33(1) 

q17B) 7412(3) 4178(3) -1659(1) 37(1) 

q18B) 8797(3) 3656(3) -1836(1) 35(1) 

q19B) 9861(3) 3310(3) -1412(1) 36(1) 

q20B) 9539(3) 3474(3) -809(1) 30(1) 

S(2IB) 5967(1) 2835(1) 3627(1) 25(1) 

0(2IB) 5961(2) 2757(3) 4267(1) 49(1) 

0(22B) 6435(2) 3992(2) 3339(1) 33(1) 

0(23B) 6553(2) 1541(2) 3365(1) 38(1) 

q21B) 4101(3) 3227(3) 3428(2) 48(1) 

F(2IB) 3516(2) 2209(2) 3635(1) 57(1) 

F(22B) 3952(2) 3372(3) 2837(1) 91(1) 

F(23B) 3392(2) 4351(3) 3660(2) 118(1) 

S(2IA) 10049(1) 8205(1) 3572(1) 24(1) 

0(2IA) 9661(2) 9351(2) 3130(1) 35(1) 

O(22A) 9496(2) 8506(3) 4158(1) 48(1) 

0(23A) 9964(2) 6900(2) 3373(1) 46(1) 

C(2IA) 11939(3) 7990(3) 3675(1) 40(1) 

F(2IA) 12455(2) 6986(2) 4095(1) 58(1) 

F(22A) 12652(2) 7669(3) 3179(1) 79(1) 

F(23A) 12213(2) 9150(2) 3845(1) 81(1) 

IV 



Table 3. Bond lengths [A] and angles [0] for cmpd 69. 

N(lA)-q4A) 1.321(3) q5B)-q6B) 1.539(4) 

N(IA)-qIA) 1.467(3) q6B)-q7B) 1.511(3) 

qIA)-q2A) 1.510(4) q7B)-qI2B) 1.388(4) 

q2A)-q3A) 1.511(4) C(7B)-q8B) 1.390(4) 

q3A)-N(2A) 1.464(3) q8B)-q9B) 1.386(3) 

N(2A)-q4A) 1.304(3) q9B)-C(IOB) 1.382(4) 

q4A)-q5A) 1.490(3) qIOB)-0(13B) 1.371(3) 

q5A)-q6A) . 1.528(4) qIOB)-qIIB) 1.396(4) 

q6A)-q7 A) 1.504(3) qIIB)-qI2B) 1.379(3) 

q7A)-q8A) 1.384(4) 0(13B)-C(l4B) 1.433(3) 

q7A)-qI2A) 1.393(4) qI4B)-C(15B) 1.497(3) 

q8A)-q9A) 1.387(4) qI5B)-C(20B) 1.388(4) 

q9A)-qIOA) 1.377(4) C(l5B)-C(16B) 1.388(4) 

qIOA)-O(13A) 1.376(3) qI6B)-C(17B) 1.381(4) 

qIOA)-qIIA) 1.390(4) q 17B)-C(l8B) 1.377(4) 

qIIA)-qI2A) 1.377(3) C( 18B)-C( 19B) 1.377(4) 

O(l3A)-qI4A) 1.429(3) C(19B)-C(20B) 1.387(4) 

qI4A)-qI5A) 1.497(4) S(2IB)-0(2IB) 1.424(2) 

qI5A)-q20A) 1.385(4) S(21 B)-0(23B) 1.430 I (19) 

qI5A)-qI6A) 1.391(4) S(21 B)-0(22B) 1.4439(19) 

qI6A)-qI7A) 1.379(4) S(21 B)-C(21 B) 1.813(3) 

qI7A)-qI8A) 1.381(5) q2IB)-F(23B) 1.293(4) 

qI8A)-qI9A) 1.384(4) q21 B)-F(22B) 1.324(4) 

qI9A)-q20A) 1.384(4) q21 B)-F(21 B) 1.330(4) 

N(lB)-q4B) 1.310(3) S(2IA)-O(23A) 1.421(2) 

N(lB)-qIB) 1.466(3) S(21 A )-0(22A) 1.427(2) 

q I B)-q2B) 1.508(4) S(2IA)-0(2IA) 1.4322(19) 

q2B)-q3B) 1.518(4) S(21 A)-C(2 lA) 1.813(3) 

q3B)-N(2B) 1.461(3) q2IA)-F(22A) 1.309(3) 

N(2B)-q4B) 1.315(3) q2 I A)-F(2 lA) 1.326(3) 

q4B)-q5B) 1.493(3) q2IA)-F(23A) 1.327(4) 

q4A)-N(lA)-qIA) 122.8(2) C(4A)-N(2A)-q3A) 123.8(2) 

N(lA)-qIA)-q2A) 109.5(2) N(2A)-C(4A)-N(IA) 121.1(2) 

q IA)-q2A)-C(3A) 110.5(2) N(2A)-C(4A)-q5A) 118.5(2) 

N(2A)-q3A)-q2A) 109.1(2) N(lA)-C(4A)-q5A) 120.2(2) 
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C(4A)-C(5A)-C(6A) 108.8(2) . O(l3B)-C(IOB)-C(IIB) 115.1(2) 

C(7 A)-C(6A)-C(5A) 115.6(2) C(9B)-C(IOB)-C(IIB) 119.5(2) 

C(SA)-C(7 A)-C(12A) 118.0(2) C(12B)-C(11 B)-C(l OB) 120.2(2) 

C(SA)-C(7 A)-C(6A) 120.6(2) C(IIB)-C(12B)-C(7B) 121.1(2) 

C(12A)-C(7 A)-C(6A) 121.2(2) C(IOB)-0(13B)-C(14B) 116.S2(19) 

C(7 A)-C(SA)-C(9A) 121.4(2) O(l3B)-C(14B)-C(15B) IOS.9(2) 

C(IOA)-C(9A)-C(SA) 119.7(3) C(20B)-C(ISB)-C(16B) IIS.6(2) 

O( \3A)-C(\ OA)-C(9A) 12S.I(2) C(20B)-C(ISB)-C(14B) 120.4(2) 

0(13A)-C(IOA)-C(IIA) IIS.0(2) C(16B)-C(ISB)-C(14B) 120.9(3) 

C(9A)-C(IOA)-C(IIA) 119.S(2) C(17B)-C(16B)-C(ISB) 120.S(3) 

C(12A)-C(IIA)-C(IOA) 119.9(2) C(ISB)-C(17B)-C(16B) 120.S(3) 

C(IIA)-C(12A)-C(7A) 121.1(3) C( 19B)-C(l8B)-C(l7B) 119.5(3) 

C(IOA)-0(\3A)-C(l4A) 116.41(19) C(lSB)-C( 19B)-C(20B) 120.2(3) 

0(13A)-C(14A)-C(ISA) IOS.9(2) C(19B)-C(20B)-C(ISB) 120.6(3) 

C(20A)-C(ISA)-C(I6A) 119.1(3) 0(2 I B)-S(2 I B)-0(23B) 114.99(13) 

C(20A)-C(ISA)-C(14A) 120.9(3) 0(21 B)-S(21 B)-0(22B) IIS.5I(12) 

C(l6A)-C(ISA)-C(l4A) 119.9(3) 0(23B)-S(21 B)-0(22B) 113.56(11) 

C(17 A)-C(I6A)-C(ISA) 120.4(3) 0(21 B)-S(21 B)-C(21 B) 103.9S(IS) 

C(l6A)-C(17 A)-C(l SA) 120.3(3) 0(23B)-S(21 B)-C(21 B) 103.31 (IS) 

C(17 A)-C(lSA)-C(l9A) 119.7(3) 0(22B)-S(21 B)-C(21 B) 103.3S(13) 

C(ISA)-C(l9A)-C(20A) 120.1(3) F(23B)-C(21 B)-F(22B) 109.4(3) 

C(19A)-C(20A)-C(ISA) 120.4(3) F(23B)-C(21 B)-F(21 B) 106.7(3) 

C(4B)-N(IB)-C(1 B) 123.2(2) F(22B)-C(21 B)-F(21 B) 108.1(3) 

N( I B)-C( I B)-C(2B) 109.S(2) F(23B)-C(21 B)-S(21 B) 111.3(3) 

C(I B)-C(2B)-C(3B) 109.6(2) F(22B)-C(21 B)-S(21 B) 110.2(2) 

N(2B)-C(3B)-C(2B) IOS.8(2) F(21 B)-C(21 B)-S(21 B) 111.1 (2) 

C( 4B)-N(2B)-C(3 B) 123.7(2) 0(23A)-S(2I A)-0(22A) 115.7S(14) 

N( I B)-C( 4B)-N(2B) 120.6(2) 0(23A)-S(2IA)-0(2IA) 114.64(12) 

N(\ B)-C(4B)-C(SB) 120.2(2) 0(22A)-S(2IA)-0(2IA) 114.40(13) 

N(2B)-C(4B)-C(SB) 119.1(2) 0(23A)-S(2IA)-C(2I A) 103.38(14) 

C(4B)-C(SB)-C(6B) 113.2(2) 0(22A)-S(21 A)-C(2IA) 102.44(\3) 

C(7B)-C(6B)-C(SB) 111.0(2) 0(2 IA)-S(2 IA)-C(2 lA) 103.S3(\3) 

C( 12B)-C(7B)-C(SB) 118.0(2) F(22A)-C(2 IA)-F(2 lA) 107.6(3) 

C( 12B)-C(7B)-C(6B) 121.4(2) F(22A)-C(2IA)-F(23A) 107.6(3) 

C(SB)-C(7B)-C(6B) 120.6(2) F(2IA)-C(2IA)-F(23A) 107.3(3) 

C(9B)-C(SB)-C(7B) 121.6(2) F(22A)-C(2IA)-S(2I A) 1\ I.S(2) 

C(IOB)-C(9B)-C(SB) 119.6(2) F(2I A)-C(2IA)-S(2I A) 111.2(2) 

O(l3B)-C(IOB)-C(9B) 12S.4(2) F(23 A )-C(2 I A )-S(21 A) 1\ 1.2 

VI 



Table 4. Anisotropic displacement parameters (A2x \03) for cmpd 69. The anisotropic 

displacement factor exponent takes the form: _21t2[ h2 a·2UII + ... + 2 h k a' b' UI2] 

Ull U22 U33 U23 UJ3 Ul2 

N(IA) 36(1) 21(1 ) 2I( 1) -4(1) 1(1) -10(1) 

C(IA) 39(2) 27(1) 23(1) -6(1) -2(1) -12(1) 

C(2A) 41(2) 30(2) 24(1) -7(1) 1(1) -10(1) 

C(3A) 45(2) 25(1) 24(2) 0(1) -2(1) -11 (I) 

N(2A) 36(1) 19(1) 24(1) -4(1) -2(1) -9(1 ) 

C(4A) 21(1) 22(1) 25(1) -4(1) 0(1) -4(1) 

C(5A) 34(2) 25(1) 23(1) -4(1) -2(1 ) -7(1) 

C(6A) 35(2) 52(2) 20(1) -5(1) 1(1) -14(1) 

C(7A) 24(1) 38(2) 22(1) -6(1) 2(1) -13{1 ) 

C(8A) 34(2) 34(2) 23(1 ) 5(1) 3(1) -6(1) 

C(9A) 36(2) 24(1) 27(2) -2(1) 7(1) -6(1) 

C(IOA) 28(1) 26(1) 22(1) -3(1) 2(1) -12(1) 

C{lI A) 40(2) 24(1) 24(1) -1 (1) 2(1) -12(1 ) 

C(I2A) 39(2) 26(1) 27(2) -9(1) 2(1) -I 1 (I) 

O{l3A) 53(1) 23(1) 20(1) -5(1) 9(1) -12(1) 

C(I4A) 55(2) 21 (1) 32(2) -5(1) 11 (1) -8(1) 

C(I5A) 43(2) 19(1) 25(J) -5(1) 6(1) -11(1) 

C(I6A) 34(2) 31(2) 42(2) -5(1) 4(1) -10(1) 

C(I7A) 52(2) 37(2) 32(2) -3(1) -10(1) -19(2) 

C(I8A) 65(2) 35(2) 23(2) -9(1) 8(1) -18(2) 

C(I9A) 42(2) 36(2) 35(2) -8( I) 14(1 ) -7(1 ) 

C(20A) 33(2) 30(2) 32(2) -3(1) 2(1) -7(J) 

N(I B) 40(1) 21(1) 24(1) -1(1) 0(1) -12(1) 

C(IB) 45(2) 24(1) 26(2) -8(1) 3(1) -1 I (I) 

C(2B) 30(2) 33(2) 23(1) -6(1) 3(J) -11(1) 

C(3B) 37(2) 26(1) 24(1) 1(1) 3(1) -11 (1) 

N(2B) 38(1) 20(1) 26(1) -7(1) 5(1) -12(1) 

C(4B) 23(1) 24(1) 24(1) -2(1) -1(1) -7(1 ) 

C(5B) 27(2) 33(2) 25(1) -4(1 ) 2(1) -12(1) 

C(6B) 24(1) 33(2) 24(J) -5(1) 3(1) -6(1) 

C(7B) 20(1) 31(1) 22(1) -4(1) 1(1) -10(1) 

VII 



C(88) 29(2) 29(1) 21 (I) 2(1) 2(1) -9(1) 

C(98) 31(2) 22(1) 25(1) -4(1) 2(1) -8(1) 

C(l08) 26(1) 28(1) 22(1) -5( I) 3(1 ) -12(1) 

C(118) 32(2) 24(1) 23(1) 0(1) 1(1) -12(1) 

C(128) 30(2) 25(1) 26(1) -7(1) 1(1) -8(1) 

0(138) 52(1) 23(1) 22(1) -7(1) 10(1) -16(1) 

C(148) 47(2) 21(1) 27(2) -3(1 ) 7(1) -8(1) 

C(\58) 36(2) 18(1) 24(1) -4(1) 4(1) -12(1) 

C(168) 31(2) 32(2) 35(2) 3(1) 3(1) -8(1 ) 

C(178) 45(2) 42(2) 30(2) 2(1) -S(I) -22(2) 

C(IS8) 54(2) 34(2) 22(2) -7(1) S(I) -20(1) 

C(198) 37(2) 36(2) 34(2) -5(1) 10(1) -S(I) 

C(208) 33(2) 31(2) 27(2) -2(1) -1(1) -9(1) 

S(218) 29(1) 23(1) 24(1) -4(1) 1(1) -10(1) 

0(218) 54(1) 83(2) 24(1) -11(1) 5(1) -40(1 ) 

0(228) 39(1) 21(1) 42(\) -5(1) 5(1) -13(1 ) 

0(238) 47(1) 19(1) 49(\) -6(1) 7(1) -9(1) 

C(218) 32(2) 45(2) 63(2) 13(2) -S(2) -11 (2) 

F(218) 45(1) SI(2) 55(1 ) IS(I) -13(1) -40(1 ) 

F(228) 66(2) 142(2) 72(2) 62(2) -44(1) -59(2) 

F(238) 3S(I) 62(2) 243(4) -17(2) 27(2) 10(1 ) 

S(2IA) 25(1) 22(1) 25(1) -1(1) 0(1) -S(I) 

0(2IA) 45(1) 24(1) 36(1) 3(1) -7(1) -9(\) 

0(22A) 30(1) 81(2) 28(1) -4(1) 7(1) -3(1) 

0(23A) 59(2) 21(1) 61(2) 0(1) -17(1) -15( I) 

C(2IA) 30(2) 42(2) 45(2) 2(2) 4(1) . -7( I) 

F(2IA) 34(1) 67(1) 64(1) 12(1) -11 (I) 4(1) 

F(22A) 39(1) 116(2) 70(2) 6(1) 30(1) -I (I) 

F(23A) 49(1) 63(1) 143(2) -13(1 ) -33(1) -29(1 ) 

VIII 



---------------------------

Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters (A'x 10 3) 

forcmpd 69. 

x y z U(eq) 

H(IAI) 9556 5268 4314 34 

H(IA2) 10975 4025 4368 34 

H(2AI) 8131 3737 4522 37 

H(2A2) 9337 3398 5030 37 

H(3AI) 10611 1458 4560 37 

H(3A2) 8998 1333 4607 37 

H(5AI) 9367 3676 2515 33 

H(5A2) 9026 2181 2644 33 

H(6AI) 11814 2673 2606 42 

H(6A2) 11543 1191 2817 42 

H(8A) 11784 -459 2104 37 

H(9A) 12267 -1123 1\27 35 

H(II A) 11461 2936 528 34 

H(l2A) 10967 3586 1502 36 

H(l4A) 11877 -1310 1\6 43 

H(14B) 13502 -1351 257 43 

H(16A) 10995 -38 -941 42 

H(17A) 11497 -231 -1958 47 

H(18A) 13790 -1284 -2273 48 

H(19A) 15597 -2106 -1564 46 

H(20A) 15110 -1873 -545 38 

H(lBI) 4912 9503 4370 38 

H(lB2) 6431 9841 4432 38 

H(2BI) 6132 7984 5136 34 

H(2B2) 7505 7523 4717 34 

H(3B I) 6287 5769 4720 34 

H(3B2) 4819 6886 4552 34 

H(5BI) 7568 6483 2838 33 

H(5B2) 7137 8127 2671 33 

H(6BI) 5087 6476 2685 33 

H(6B2) 4806 8075 2435 33 
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H(8B) 6534 4636 2089 31 

H(9B) 7323 3900 1147 31 

H(II B) 6459 7929 490 30 

H(12B) 5664 8646 1431 31 

H(14C) 6995 3667 130 38 

H(14D) 8625 3596 274 38 

H(16B) 6123 4687 -941 39 

H(I7B) 6677 4432 -1951 44 

H(18B) 9016 3536 -2249 42 

H(19B) 10819 2957 -1532 43 

H(20B) 10279 3233 -519 36 

H(INA) 9951 4812 3332 40 

H(2NA) 9400 1139 3601 40 

H(INB) 6441 9536 3463 40 

H(2NB) 6315 5681 3720 40 

x 



Table 6. Torsion angles ['] for cmpd 69. 

C( 4A)-N(1 A)-C(l A)-C(2A) -25.6(3) 

N( 1 A)-C( 1 A)-C(2A)-C(3A) 51.0(3) 

C(1 A)-C(2A)-C(3A)-N(2A) -50.9(3) 

C(2A )-C(3 A)-N(2A)-C( 4A) 25.7(4) 

C(3A)-N(2A)-C(4A)-N( 1 A) 1.4(4) 

C(3A)-N(2A)-C( 4A)-C(5A) 176.3(2) 

C(1 A)-N(1 A)-C(4A)-N(2A) -1.4(4) 

C(1 A)-N(l A)-C( 4A)-C(5A) -176.3(2) 

N(2A)-C( 4A)-C(5A)-C( 6A) -83.4(3) 

N(l A)-C( 4A)-C(5A)-C( 6A) 91.6(3) 

C( 4A)-C(5A)-C(6A)-C(7 A) 172.9(2) 

C(5A)-C(6A)-C(7 A)-C(8A) -112.7(3) 

C(5A)-C(6A)-C(7 A)-C(l2A) 72.1(3) 

C(12A)-C(7 A)-C(8A)-C(9A) 1.6(4) 

C(6A)-C(7 A)-C(8A)-C(9A) -173.7(3) 

C(7 A)-C(8A)-C(9A)-C(1 OA) 0.0(4) 

C(8A)-C(9A)-C(1 OA)-O( 13A) 177.4(2) 

C(8A)-C(9A)-C(10A)-C(IIA) -1.4(4) 

O(13A)-C(10A)-C(IIA)-C(l2A) -177.8(2) 

C(9A)-C(1 OA)-C(11 A)-C(12A) 1.1 ( 4) 

C(10A)-C(IIA)-C(12A)-C(7A) 0.5(4) 

C(8A)-C(7A)-C(12A)-C(IIA) -1.9(4) 

C(6A)-C(7A)-C(12A)-C(IIA) 173.5(2) 

C(9A)-C( 1 0A)-O(l3A)-C( 14A) 1.2(4) 

C(IIA)-C(10A)-O(13A)-C(14A) 180.0(2) 

C(1 OA)-O( 13A)-C( 14A)-C(15A) -178.0(2) 

O( 13A)-C( 14A)-C(l5A)-C(20A) 115.6(3) 

O(13A)-C(14A)-C(15A)-C(I6A) -66.6(3) 

C(20A)-C(15A)-C(16A)-C(17 A) 0.2(4) 

C(l4A)-C(15A)-C(16A)-C(17 A) -177.7(2) 

C(15A)-C(16A)-C(17 A)-C(l8A) 0.6(4) 

C(I6A)-C(17 A)-C(l8A)-C(19A) -0.7(4) 

C(17A)-C(18A)-C(19A)-C(20A) 0.0(4) 

C(18A)-C( 1 9A)-C(20A)-C(15A) 0.8(4) 
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C( I 6A)-C( I SA)-C(20A)-C(1 9A) -0.9(4) 

C( I 4A)-C( I SA)-C(20A)-C(1 9A) 176.9(2) 

C( 4B)-N( I B)-C(I B)-C(2B) 2S.3(4) 

N(I B)-C( I B)-C(2B)-C(3B) -S2.1(3) 

C( I B)-C(2B)-C(3B)-N(2B) S2.3(3) 

C(2B)-C(3 B)-N(2B)-C( 4 B) -26.1(4) 

C( I B)-N( I B)-C( 4B)-N(2B) 3.2(4) 

C(I B)-N(I B)-C(4B)-C(SB) -177.4(2) 

C(3B)-N(2B)-C(4B)-N(1 B) -2.6(4) 

C(3 B)-N(2B)-C( 4 B)-C( S B) 17S.0(2) 

N( I B)-C( 4B)-C(SB)-C(6B) -106.7(3) 

N(2B)-C( 4B)-C(SB)-C(6B) 72.S(3) 

C( 4 B)-C( SB)-C( 6B)-C(7B) -171.7(2) 

C( S B)-C( 6B)-C(7B)-C( I 2B) -92.3(3) 

C(SB)-C(6B)-C(7B)-C(SB) S7.4(3) 

C( I 2B)-C(7B)-C(SB)-C(9B) 0.3(4) 

C(6B)-C(7B)-C(SB)-C(9B) -179.4(2) 

C(7B)-C(SB)-C(9B)-C( lOB) -0.3(4) 

C(SB)-C(9B)-C(1 OB)-O( I 3B) 179.3(2) 

C(SB)-C(9B)-C(1 OB)-C(I I B) O.S( 4) 

O(l?B)-C(IOB)-C(1 1 B)-C(12B) -179.6(2) 

C(9B)-C(IOB)-C(IIB)-C(12B) -0.7(4) 

C(IOB)-C(IIB)-C(12B)-C(7B) 0.7(4) 

C(SB)-C(7B)-C(1 2B)-C( I I B) -0.S(4) 

C(6B)-C(7B)-C( I 2B)-C( I I B) 179.2(2) 

C(9B)-C(1 OB)-O( I 3B)-C( I 4B) 6.6(4) 

C(IIB)-C(IOB)-0(13B)-C(14B) -174.S(2) 

C( I OB)-O(l 3B)-C( I 4B)-C( I SB) 176.0(2) 

O( I 3B)-C( I 4B)-C( I SB)-C(20B) 109.4(3) 

0(1 3 B)-C(l 4B)-C(15B)-C(1 6B) -73.6(3) 

C(20B)-C( I SB)-C( I 6 B)-C(l 7B) -0.2(4) 

C( I 4B)-C(1 SB)-C( I 6B)-C(1 7B) -177.3(2) 

C(I SB)-C(16B)-C(1 7B)-C(1 SB) 0.S(4) 

C(I 6B)-C(1 7B)-C(1 SB)-C(I 9B) -1.0(4) 

C(I 7B)-C(1 SB)-C(I 9B)-C(20B) 0.6(4) 

C(I SB)-C(I 9B)-C(20B)-C(1 SB) 0.0(4) 
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C(16B)-C(15B)-C(20B)-C( 19B) -0.2(4) 

C(14B)-C(15B)-C(20B)-C(19B) 176.9(2) 

0(21 B)-S(21 B)-C(21 B)-F(23B) 56.5(3) 

0(23B)-S(21 B)-C(21 B)-F(23B) 176.9(3) 

0(22B )-S(21 B )-C(21 B )-F(23 B) -64.5(3) 

0(21 B)-S(21 B)-C(21 B)-F(22B) 178.0(2) 

0(23B)-S(21 B)-C(21 B)-F(22B) -61.6(3) 

0(22B)-S(21 B)-C(21 B)-F(22B) 57.0(3) 

0(21 B)-S(21 B)-C(21 B)-F(21 B) -62.3(3) 

0(23B)-S(21 B)-C(21 B)-F(21 B) . 58.1(3) 

0(22B)-S(21 B)-C(21 B)-F(21 B) 176.7(2) 

0(23A)-S(21 A)-C(21 A)-F(22A) 57.8(3) 

0(22A)-S(21 A)-C(21 A)-F(22A) 178.5(2) 

0(21 A)-S(21 A)-C(21 A)-F(22A) -62.2(2) 

0(23A)-S(21 A)-C(21 A)-F(21 A) -62.5(2) 

0(22A)-S(21 A)-C(21 A)-F(21 A) 58.2(3) 

0(21 A)-S(21 A)-C(21 A)-F(21 A) 177.5(2) 

0(23A)-S(21 A)-C(21 A)-F(23A) 178.0(2) 

0(22A)-S(21 A)-C(21 A)-F(23A) -61.3(3) 

0(21 A)-S(21 A)-C(21 A)-F(23A) 58.0(3) 

Table 7. Hydrogen bonds forcmpd 69 [A and 0J. 

D-H ... A d(D-H) d(H ... A) 

N(1 A)-H(1 NA) ... 0(23A) 0.92 2.09 

N(2A)-H(2NA) ... 0(21 A)# I 0.89 2.09 

N(1 B)-H(I NB) ... O(23B)#2 0.89 2.02 

N(2B)-H(2NB) ... 0(22B) 0.91 1.91 

Symmetry transfonnations used to generate equivalent atoms: 

#1 x,y-l,z #2x,y+l,z 

d(D ... A) <:(DHA) 

2.831(3) 137.4 

2.947(3) 162.0 

2.825(3) 150.1 

2.816(3) 172.0 
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Appendix 11 

X-ray crystal structure of6a-Ethoxy-2,3,6,6a, 1 0, 1 Oa-hexahydro-lH,5H-pyrimido[1 ,2-a]quinolin-9-

one triflate salt (77) in eis-formation 

F(21 

Table I. Crystal data and structure refinement for cmpd 77. 

Identification code 

Chemical formula 

Formula weight 

Temperature 

Radiation, wavelength 

Crystal system, space group 

Unit cell parameters 

Cell volume 

Z 

rcfj 12 

C 1,H21 F3N,O,S 

398.40 

150(2) K 

MoKa, 0.71073 A 
monoclinic, P2 1/c 

a = 10.3397(8) A 
b = 17.5817(14) A 
c = 10.9510(9) A 
1815.2(3) A' 
4 

a = 90° 

J3 = 114.243(2)° 

y= 90° 
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Calculated density 

Absorption coefficient 11 

F(OOO) 

Crystal colour and size 

Reflections for cell refinement 

Data collection method 

9 range for data collection 

Index ranges 

Completeness to 9 = 25.00° 

Intensity decay 

Reflections collected 

Independent reflections 

Reflections with F'>2cr 

Absorption correction 

Min. and max. transmission 

Structure solution 

Refinement method 

Weighting parameters a, b 

Data 1 restrai nts 1 parameters 

Final R indices [F'>2cr] 

R indices (all data) 

Goodness-of-fit on F' 

Largest and mean shiftlsu 

Largest ditf. peak and hole 

1.458 glcm3 

0.237 mm-I 

832 

colourless, 0.30 x 0.16 x 0.04 mm3 

3181 (9 range 2.16 to 26.69°) 

Bruker SMART 1000 CCD ditfractometer 

Ol rotation with narrow frames 

2.16 to 25.00° 

h-12to 12, k-20 to 20, 1-13 to 13 

100.0 % 

0% 

13091 

3196 (Ri" = 0.0406) 

2134 

semi-empirical from equivalents 

0.932 and 0.991 

direct methods 

Full-matrix least-squares on F' 

0.0350, 3.7526 

3196 186 1 267 

RI = 0.0540, wR2 = 0.1143 

RI = 0.0899, wR2 = 0.1386 

1.048 

0.000 and 0.000 

0.505 and -0.419 e A-3 
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Table 2. Atomic coordinates and equivalent isotropic displacement parameters (A') 

for cmpd 77. U", is defined as one third of the trace ofthe orthogonalized u;j tensor. 

x y z U", 

N(IA) 0.2837(3) 0.36176(17) 0.2787(3) 0.0294(7) 
C(I) 0.4 I n( 4) 0.33 I 0(2) 0.3797(3) 0.0394(10) 
C(2) 0.5405(4) 0.3544(3) 0.3482(4) 0.0485(11 ) 
C(3) 0.5148(4) 0.3320(3) 0.2070(4) 0.0453(1 I) 
N(4) 0.3711(3) 0.35431(19) 0.1169(3) 0.0336(8) 
C(4A) 0.2676(4) 0.36931(19) 0.1531(3) 0.0280(8) 
C(5) 0.1314(4) 0.3963(2) 0.0454(3) 0.03 I 5(8) 
C(6) 0.0077(4) 0.3982(2) 0.0859(3) 0.0306(8) 
C(7A) 0.0566(4) 0.4302(2) 0.2278(3) 0.0290(8) 
C(7) -0.0659(4) 0.4364(2) 0.2678(4) 0.0350(9) 
C(8) -0.0936(4) 0.3873(2) 0.3451(4) 0.0389(9) 
C(9) -0.0099(5) 0.3185(2) 0.3954(4) 0.0436(10) 
0(1) -0.0380(4) 0.27242( \7) 0.4643(4) 0.0683(10) 
C(1O) 0.1109(4) 0.3047(2) 0.3538(4) 0.0353(9) 
C(IOA) 0.1711(4) 0.37874(19) 0.325 I (3) 0.0284(8) 
0(2) 0.1097(3) 0.50451(13) 0.2203(2) 0.0314(6) 
C(I I) O. I 597(4) 0.5488(2) 0.3418(3) 0.0363(9) 
C(12) 0.1281(6) 0.6302(2) 0.3049(4) 0.0592(14) 
C(13) 0.5297(6) 0.4099(3) -0.1689(6) 0.0795(13) 
F(I) 0.6128(19) 0.3588(9) -0.0857(17) 0.117(5) 
F(2) 0.5995(14) 0.4464(11 ) -0.2334(16) 0.133(4) 
F(3) 0.5271(18) 0.4682(7) -0.0864(14) 0.137(4) 
F(lX) 0.5803(13) 0.3497(5) -0.0863(10) 0.071(2) 
F(2X) 0.5891(9) 0.3983(10) -0.2597(8) 0.117(3) 
F(3X) 0.5769(11) 0.4724(4) -0.1073(12) 0.113(3) 
S(I) 0.34277(12) 0.39427(6) -0.2630 I (9) 0.0398(3) 
0(3) 0.2926(3) 0.3860(2) -0.1606(3) 0.0673(10) 
0(4) 0.2923(5) 0.4595(2) -0.3465(4) 0.0841(12) 
0(5) 0.3401(4) 0.3266(2) -0.3337(3) 0.0804(12) 
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Table 3. Bond lengths [A] and angles [0] for cmpd 77. 

N(IA}--C(4A) 1.322(4) N(1A}--C(I) 1.472(5) 
N(IA}--C(IOA) 1.480(4) C(1}--C(2) 1.509(5) 
CC2}--C(3) 1.509(5) C(3)-N(4) 1.460(5) 
N( 4}--C( 4A) 1.312(5) CC4A}--C(5) 1.495(5) 
C(5}--C(6) 1.517(5) CC6}--C(7 A) 1.530(5) 
CC7A)-O(2) 1.432(4) CC7 A}--C(7) 1.504(5) 
CC7 A}--C(1 OA) 1.523(5) CC7}--C(8) 1.320(5) 
CC8}--C(9) 1.457(6) C(9)-O(I) 1.221 (5) 
CC9}--C( 10) 1.515(5) CCIO}--C(IOA) 1.530(5) 
0(2}--C( 11) 1.442(4) CCII}--C(12) 1.486(5) 
C(13)-F(3X) 1.277(7) CCI3)-F(I) 1.316(8) 
CCI3)-F(IX) 1.350(7) CCI3)-F(2) 1.360(8) 
C(13)-F(3) 1.374(8) CCI3)-F(2X) 1.381 (8) 
CCI3)-S(I) 1.800(6) S(I)-O(5) 1.413(3) 
S(I)-O(3) 1.423(3) S(1)-O(4) 1.425(3) 

CC4A)-N(IA}--C(1) 119.8(3) CC 4A)-N(1A}--C(1 OA) 123.8(3) 
CC I )-N(I A}--C(IOA) 116.3(3) N(1A}--C(1 }--C(2) 110.3(3) 
CCI }--C(2}--C(3) 110.7(3) N( 4}--C(3}--C(2) 109.0(3) 
CC 4A)-N( 4}--C(3) 125.4(3) N(4}--C(4A)-N(IA) 121.6(3) 
N( 4}--C( 4A}--C(5) 116.5(3) N(IA}--C( 4A}--C(5) 121.9(3) 
CC4A}--C(5}--C(6) 114.2(3) CC5}--C(6}--C(7 A) 109.8(3) 
0(2}--C(7 A}--C(7) 109.8(3) 0(2}--C(7 A}--C(IOA) 112.1(3) 
CC7}--C(7A}--C(lOA) 110.2(3) 0(2}--C(7 A}--C(6) 104.6(3) 
C(7}--C(7 A}--C(6) 110.8(3) CCIOA}--C(7 A}--C(6) 109.2(3) 
CC8}--C(7}--C(7 A) 124.8(4) CC7}--C(8}--C(9) 122.2(4) 
O( I }--C(9}--C(8) 122.0(4) 0(1 }--C(9}--C(1 0) 120.9(4) 
CC8}--C(9}--C( I 0) 117.1(3) CC9}--C( IO}--C( lOA) 112.4(3) 
N( IA}--C(IOA}--C(7 A) 112.0(3) N(I A}--C(IOA}--C(I 0) 110.0(3) 
CC7 A}--C(1 OA}--C( 10) 112.6(3) CC7 A)-O(2}--C( 11) 116.2(2) 
0(2}--C(1I}--C( 12) 108.3(3) F(3X}--C( 13)-F( I) 102.8(13) 
F(3X}--C(13)-F(IX) 111.2(8) F( I}--C( 13)-F(1 X) 15.9(13) 
F(3X}--C(13)-F(2) 72.5(7) F(I}--C( 13)-F(2) 110.3(9) 
F(I X}--C(13)-F(2) 125.2(10) F(3X}--C(13)-F(3) 28.0(5) 
F(I }--C(13)-F(3) 103.7(10) F(I X}--C(13)-F(3) I 04.5( I 0) 
F(2}--C(13)-F(3) 98.5(7) F(3X}--C(13)-F(2X) 108.8(6) 
F(I }--C(13)-F(2X) 92.4(11 ) F(I X}--C(13)-F(2X) 101.7(7) 
F(2}--C(13)-F(2X) 37.7(6) F(3}--C( 13)-F(2X) 135.9(6) 
F(3X}--C(13)-S( I) 121.4(6) F(I}--C(13)-S(I) 122.3(10) 
F(I X}--C(13)-S(I) 107.1(6) F(2}--C( 13)-S(I) 116.7(8) 
F(3}--C(13)-S( I) 100.6(7) F(2X}--C(13)-S(1 ) 104.8(6) 
0(5)-S(I)-O(3) 114.5(2) 0(5)-S(I)-O(4) 114.0(2) 
0(3)-S( 1)-0(4) 115.6(2) O( 5)-S( I)-C( 13) 102.5(2) 
0(3)-S( I)-C( 13) 102.6(2) 0(4)-S(I)-C(13) 105.6(2) 

XVII 



Table 4. Hydrogen coordinates and isotropic displacement parameters (A') for cmpd 77. 

x y z U 

H(IA) 0.4116 0.2748 0.3810 0.047 
H(IB) 0.4318 0.3502 0.4695 0.047 
H(2A) 0.6282 0.3296 0.4120 0.058 
H(2B) 0.5538 0.4101 0.3586 0.058 
H(3A) 0.5845 0.3576 0.1804 0.054 
H(3B) 0.5264 0.2764 0.2020 0.054 
H(4) 0.356(4) 0.360(2) 0.039(4) 0.040 
H(5A) 0.1066 0.3626 -0.0334 0.038 
H(5B) 0.1460 0.4481 0.0179 0.038 
H(6A) -0.0301 0.3462 0.0827 0.037 
H(6B) -0.0691 0.4304 0.0225 0.037 
H(7) -0.1278 0.4786 0.2350 0.042 
H(8) -0.1707 0.3972 0.3688 0.047 
H(10A) 0.0767 0.2725 0.2725 0.042 
H(10B) 0.1875 0.2767 0.4260 0.042 
H(IOC) 0.2165 0.4069 0.4118 0.034 
H(IIA) 0.2632 0.5416 0.3924 0.044 
H(IIB) 0.1117 0.5323 0.3991 0.044 
H(12A) 0.1728 0.6455 0.2453 0.089 
H(12B) 0.1654 0.6615 0.3861 0.089 
H(12C) 0.0252 0.6373 0.2591 0.089 

xviii 



Table 5. Torsion angles [0) for cmpd 77. 

cc 4A}-N(1 A}-C(I }-C(2) 
N(lA}-C(1 }-C(2}-C(3) 
CC2}-C(3}-N( 4}-C( 4A) 
CC3}-N(4}-C(4A}-C(5) 
CCIOA}-N(1 A}-C( 4A}-N(4) 
CC I OA}-N(I A}-C( 4A}-C(5) 
N(IA}-C( 4A}-C(5}-C(6) 
CC5}-C(6}-C(7 A}-O(2) 
CC5}-C(6}-C(7 A}-C(I OA) 
CCI OA}-C(7 A}-C(7}-C(S) 
CC7 A}-C(7}-C(S}-C(9) 
C(7}-C(S}-C(9}-C( 1 0) 
CCS}-C(9}-C(IO}-C(10A) 
CC I}-N(IA}-C(1 OA}-C(7 A) 
CCl }-N(lA}-C(1 OA}-C(1 0) 
CC7}-C(7 A}-C(I OA}-N(1 A) 
O(2}-C(7 A}-C( IOA}-C( 10) 
CC6}-C(7 A}-C(1 OA}-C(1 0) 
CC9}-C(I O}-C( IOA}-C(7 A) 
CCIOA}-C(7A}-O(2}-C(II) 
CC7A}-O(2}-C(ll}-C(12) 
F(I}-C(l3}-S(1 }-O(5) 
F(2}-C(l3}-S(I}-O(5) 
F(2X}-C(13}-S(1 }-O(5) 
F(1 }-C(13}-S(1 }-O(3) 
F(2}-C(13}-S(1 }-O(3) 
F(2X}-C(13}-S(1 }-O(3) 
F(1 }-C(13}-S(I}-O( 4) 
F(2}-C(13}-S(I}-O( 4) 
F(2X}-C(13}-S(I}-O( 4) 

33.2(5) 
-54.2(5) 
-19.1(6) 
175.9(4) 
179.3(3) 

0.1(5) 
-12.0(5) 

5S.9( 4) 
-61.3(4) 
-20.5(5) 

-3.1(6) 
-0.7(6) 
27.9(5) 

163.6(3) 
-70.3(4) 
171.5(3) 
169.4(3) 
-75.1(4) 
-51.5(4) 
-63.5(4) 

-146.2(4) 
-56.9(11) 

S4.1(11) 
45.6(7) 
62.0(11) 

-156.9(11) 
164.6(7) 

-176.5(11) 
-35.5(11) 
-73.9(7) 

Table 6. Hydrogen bonds for cmpd 77 [A and 0). 

D-H ... A 

N(4}-H(4) .. .o(3) 

d(D-H) 

0.SI(4) 

d(H ... A) 

2.06(4) 

CCl OA}-N(1 A}-C(I }-C(2) 
CCl }-C(2}-C(3}-N(4) 
CC3}-N(4}-C(4A}-N(1 A) 
CCl}-N(1 A}-C(4A}-N(4) 
CCl}-N(1 A}-C( 4A}-C(5) 
N(4}-C( 4A}-C(5}-C(6) 
CC 4A}-C(5}-C(6}-C(7 A) 
CC5}-C(6}-C(7 A}-C(7) 
O(2}-C(7 A}-C(7)-Z:(S) 
CC6}-C(7 A}-C(7}-C(S) 
CC7}-C(S}-C(9}-O( 1) 
O( 1 }-C(9}-C( 1 O}-C( I OA) 
CC 4A}-N(IA}-C(1 OA}-C(7 A) 
CC4A}-N(IA}-C(I OA}-C(1 0) 
O(2}-C(7 A}-C(I OA}-N(I A) 
CC6}-C(7 A}-C(I OA}-N(1 A) 
CC7}-C(7 A}-C(I OA}-C(1 0) 
CC9}-C(1 O}-C(I OA}-N(IA) 
CC7}-C(7A}-O(2}-C(II) 
CC6}-C(7A}-O(2}-C(II) 
F(3X}-C(l3}-S(I }-O(5) 
F(I X}-C(13}-S(I }-O(5) 
F(3}-C(13}-S(I }-O(5) 
F(3X}-C( 13}-S(1 }-O(3) 
F(IX}-C(13}-S(1 }-O(3) 
F(3}-C(13}-S(1 }-O(3) 
F(3X}-C(13}-S( 1}-O( 4) 
F(lX}-C(l3}-S(I}-O( 4) 
F(3}-C(l3}-S(I}-O( 4) 

d(O ... A) 

2.S60(4) 

«OHA) 

171(4) 

-150.0(3) 
46.6(5) 
-3.3(6) 
-4.2(5) 

176.7(3) 
16S.S(3) 
42.3(4) 

177.2(3) 
-144.4(4) 

100.5(4) 
-178.2(4) 
-154.5(4) 

-19.7(5) 
106.4(4) 
-65.9(4) 

49.6(4) 
46.S(4) 

-177.3(3) 
59.3(4) 

178.3(3) 
169.1(S) 
-61.S(7) 

-170.7(S) 
-72.0(9) 

57.2(7) 
-5\.7(S) 

49.5(9) 
178.6(6) 
69.7(S) 
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Appendix III 

X-Ray crystal structure of 9-methoxy-2,3,5,6-tetrahydro-IH-pyrimido-( I ,2-aJquinolinium triflate 

salt (85) 

021 
023 

Usual data collection conditions - summarized in Table I. 

The structure was solved by direct methods and refined by full-matrix least-squares on F2. All 

non-hydrogen atoms were refined with anisotropic atomic displacement parameters and 

hydrogen atoms bonded to carbon were inserted at calculated positions, and that bonded to N2, 

was located from difference maps and not further refined . 

The structure comprises zig-zag chains of alternating cations and anions, linked by hydrogen 

bonding. The chains interact with each other via 7t-7t stacking. 

xx 



Table I. Crystal data and structure refinement for cmpd 85. 

Identification code 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

Z 

Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

ReHections collected 

Independent reflections 

Completeness to theta = 24.99° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data-j restraints / parameters 

Goodness-of-fit on F' 

Final R indices [1>2sigma(I)] 

R indices (all data) 

Largest diff. peak and hole 

rcfj6 

CI4 HI7 F3 N2 04 S 

366.36 

150(2) K 

0.71073 A 

Monoclinic 

P2(l )/n 

a = 7.7502(10) A 

b = 10.3944(14) A 

c= 19.814(3) A 

1566.4(4) A' 

4 

1.554 Mglm' 

0.262 mm-' 

760 

0.50 x 0.13 x 0.08 mm' 

2.09 to 24.99°. 

p= 101.093(2)°. 

-9<=h<=9, -12<=k<=8, -23<=1<=23 

8878 

2715 [R(int) = 0.0334] 

98.2% 

Multiscan 

1.00000 and 0.771695 

Full-matrix least-squares on F2 

2715/0/217 

1.045 

RI = 0.0423, wR2 = 0.1049 

RI = 0.0567, wR2 = 0.1154 

0.677 and -0.388 eA' 
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Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (A2x 103) 

for cmpd 85. V(eq) is defined as one third of the trace ofthe orthogonalized Vij tensor. 

x y z V(eq) 

N(I) 7211(2) -161(2) 1410(1) 24(1) 

C(I) 5891(3) -638(2) 1798(1) 28(1) 

C(2) 6796(3) -1139(2) 2489(1 ) 30(1) 

C(3) 8136(3) -2153(2) 2403(1 ) 32(1) 

N(2) 9228(2) -1660(2) 1934(1) 27(1) 

C(4) 8792(3) -712(2) 1500(1 ) 24(1) 

C(5) 10100(3) -257(2) 1088(1 ) 30(1) 

C(6) 9963(3) 1192(2) 996(1) 30(1) 

C(7) 8099(3) 1538(2) 701(1) 27(1) 

C(8) 7629(3) 2501(3) 220(1 ) 34(1) 

C(9) 5883(3) 2798(3) -48(1) 33(1) 

C(IO) 4578(3) 2101(2) 168(1) 28(1) 

C(II) 4995(3) 1113(2) 645(1 ) 26(1) 

C(12) 6746(3) 841(2) 91 O( I) 24(1) 

0(1) 2815(2) 2287(2) -74(1) 35(1) 

C(13) 2326(4) 3377(3) -510(1) 39(1) 

S(21) 12876(1) -3925(1) 1979(1) 26(1) 

0(21) 14707(2) -3999(2) 2252(1) 43(1) 

0(22) 11761(3) -4059(2) 2473(1) 52(1) 

0(23) 12350(2) -2902(2) 1496(1) 40(1) 

C(21) 12439(4) -5370(3) 1463(1) 38(1) 

F(21) 13564(3) -5461(2) 1035(1) 85(1) 

F(22) 12658(2) -6424(2) 1841(1) 56(1) 

F(23) 10817(3) -5403(2) 1107(1) 83(1) 
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Table 3. Bond lengths [A] and angles [0] for cmpd 85. 

N(I)-C(4) 1.334(3) C(9)-C(10) 1.377(3) 

N(I)-C(12) 1.434(3) C(IO)-O(I) 1.371(3) 

N(I)-C(I) 1.479(3) C(1 0)-C(11) 1.391(3) 

C(1)-C(2) 1.506(3) C(11)-C(12) 1.387(3) 

C(2)-C(3) 1.512(3) 0(1)-C(13) 1.431(3) 

C(3)-N(2) 1.464(3) S(21 )-0(21 ) 1.4203(18) 

N(2)-C(4) 1.307(3) S(21)-0(22) 1.4309(19) 

C(4)-C(5) 1.495(3) S(21 )-0(23) 1.4358(18) 

C(5)-C(6) 1.519(4) S(21 )-C(21) 1.813(3) 

C(6)-C(7) 1.495(3) C(21)-F(23) 1.318(3) 

C(7)-C(8) 1.381(4) C(21 )-F(22) 1.321 (3) 

C(7)-C(12) 1.402(3) C(21 )-F(21) 1.332(3) 

C(8)-C(9) 1.389(3) 

C(4)-N(1 )-C(12) 120.50(19) C(9)-C(10)-C(ll) 120.7(2) 

C(4)-N(1)-C(I) 119.7(2) C(12)-C(II)-C(l0) 119.4(2) 

C(12)-N(l )-C( I) 119.70(18) C(ll )-C( 12)-C(7) 121.0(2) 

N(I)-C(I)-C(2) 109.96(19) C(11)-C(12)-N(I) 120.5(2) 

C( I )-C(2)-C(3) 110.4(2) C(7)-C(12)-N(I) 118.5(2) 

N(2)-C(3)-C(2) 108.73(19) C(1 0)-0(1 )-C(13) 116.9(2) 

C(4)-N(2)-C(3) 124.93(19) 0(21 )-S(21 )-0(22) 115.20( 13) 

N(2)-C(4)-N(I) 121.8(2) 0(21 )-S(21 )-0(23) 115.39(11) 

N(2)-C(4)-C(5) 118.7(2) 0(22)-S(21 )-0(23) 113.31(12) 

N(I)-C(4)-C(5) 119.5(2) 0(21 )-S(21 )-C(21) 103.52(12) 

C( 4 )-C( 5)-C( 6) 109.9(2) 0(22)-S(21 )-C(21) 103.49(13) 

C(7)-C(6)-C(5) 109.01(19) 0(23)-S(21 )-C(21) 103.86(11) 

C(8)-C(7)-C(12) 117.7(2) F(23)-C(21 )-F(22) 106.7(2) 

C(8)-C(7)-C(6) 123.5(2) F(23)-C(21 )-F(21) 109.4(2) 

C(12)-C(7)-C(6) 118.8(2) F(22)-C(21 )-F(21) 106.0(2) 

C(7)-C(8)-C(9) 122.2(2) F(23)-C(21 )-S(21) 112.26(19) 

C( 1 0)-C(9)-C(8) 118.9(2) F(22)-C(21 )-S(21) 112.16(18) 

O(l)-C(10)-C(9) 124.0(2) F(21 )-C(21 )-S(21) 110.1(2) 

O(l)-C(10)-C(ll) 115.3(2) 
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Table 4. Anisotropic displacement parameters (A'x 103) for cmpd 85. The anisotropic 

displacement factor exponent takes the form: -21t'[ h' a"U" + ... + 2 h k a* b* U"] 

U" U" U33 U23 U13 U" 

N(I) 23(1) 24(1) 28(1) 0(1) 10(1) -1(1) 

C(I) 27(1) 25(1) 36(1) 3(1 ) 15(1) -1(1) 

C(2) 34(1) 28(1) 33(1) 2(1) 15(1 ) -3(1) 

C(3) 31(1) 27(1) 38(1) 6(1) 10(1) -4(1) 

N(2) 23(1) 24(1) 35(1) 0(1) 6(1) -I (I) 

C(4) 23(1) 24(1) 27(1) -5(1 ) 6(1) -3( I) 

C(5) 24(1) 34(2) 35(1) -I (I) 12(1) 0(1) 

C(6) 26(1) 33(1) 33(1) 4(1) 8(1) -7(1) 

C(7) 28(1) 26(1) 27(1) -2(1) 10(1) -6(1) 

C(8) 33(1) 37(2) 35(1) 5(1) 10(1) -8(1) 

C(9) 40(1) 32(2) 28(1) 7(1) 6(1) -I (I) 

C(IO) 27(1) 30(1) 26(1) -4(1) 5(1) 0(1) 

C(1I) 27(1) 26(1) 27(1) -I (I) 9(1) -2(1) 

C(12) 28(1) 22(1) 23(1) -4(1) 8(1) -2(1) 

0(1) 29(1) 36(1) 38(1) 6(1) 3(1) 4(1) 

C(13) 41(1) 37(2) 35(1) 1(1) -I (I) 6(1) 

S(21) 25(1) 25(1) 29(1) 0(1) 8(1) -I (I) 

0(21) 30(1) 32(1) 63(1) 3(1) 0(1) -3(1) 

0(22) 58(1) 60(1) 48(1) -8(1) 34(1) -15(1) 

0(23) 45(1) 25(1) 47(1) 6(1) 6(1) 6(1 ) 

C(21) 50(2) 29(2) 34(1) 1(1) 3(1) 3(1) 

F(21) 145(2) 57(1) 70(1) -22(1) 62(1) -2(1) 

F(22) 64(1) 25(1) 68(1) 9(1) -11(1) -7(1) 

F(23) 85(1) 43(1) 91(2) -12(1) -56(1) 4(1 ) 
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Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 10 3) 

for cmpd 85. 

x y z U(eq) 

H(lA) 5189 -1334 1536 34 

H(l8) 5082 69 1862 34 

H(2A) 5914 -1514 2733 36 

H(28) 7389 -421 2770 36 

H(3A) 8880 -2358 2854 38 

H(38) 7531 -2950 2212 38 

H(5A) 9874 -682 633 36 

H(58) 11302 -489 1327 36 

H(6A) 10343 1624 1445 36 

H(68) 10740 1481 683 36 

H(8) 8528 2976 68 41 

H(9) 5595 3472 -374 40 

H(II) 4089 630 787 31 

H(l3A) 1043 3409 -649 58 

. H(13B) 2856 3303 -919 58 

H(l3C) 2745 4165 -259 58 

H(IN) 10467 -1936 2017 40 
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Table 6. Torsion angles [0] for cmpd 8S. 

C( 4)-N(1 )-C(1 )-C(2) 31.S(3) C(ll)-C(10)-0(1)-C(13) 173.7(2) 

C(12)-N(1 )-C(1 )-C(2) -IS2.0(2) 0(21 )-5(21 )-C(21 )-F(23) -173.4(2) 

N(I )-C(1 )-C(2)-C(3) -SS.2(3) 0(22)-5(21 )-C(21 )-F(23) 66.1 (2) 

C(I )-C(2)-C(3)-N(2) 48.8(3) 0(23)-5(21 )-C(21 )-F(23) -S2.S(2) 

C(2)-C(3)-N(2)-C(4) -19.8(3) 0(21 )-5(21 )-C(21 )-F(22) 66.S(2) 

C(3)-N(2)-C( 4)-N(I) -S.3(4) 0(22)-5(21 )-C(21 )-F(22) -S4.1(2) 

C(3)-N(2)-C( 4)-C(S) 17S.9(2) 0(23)-5(21 )-C(21 )-F(22) -172.63(19) 

C(12)-N(1 )-C(4)-N(2) -177.4(2) 0(21 )-5(21 )-C(21 )-F(21) -S1.3(2) 

C(1 )-N(I )-C( 4)-N(2) -1.0(3) 0(22)-5(21 )-C(21 )-F(21) -171.8(2) 

C(12)-N(1 )-C( 4)-C(S) I.S(3) 0(23)-5(21 )-C(21 )-F(21) 69.6(2) 

C(1 )-N(I)-C(4)-C(S) 177.9(2) 

N (2)-C( 4 )-C( S)-C( 6) -143.8(2) 

N(I )-C( 4)-C(S)-C(6) 37.3(3) 

C( 4)~C(S)-C(6)-C(7) -S3.6(3) 

C(S)-C(6)-C(7)-C(8) -142.4(2) 

C(S)-C(6)-C(7)-C(12) 36.4(3) 

C(12)-C(7)-C(8)-C(9) 0.8(4) 

C(6)-C(7)-C(8)-C(9) 179.7(2) 

C(7)-C(8)-C(9)-C( 1 0) -0.7(4) 

C(8)-C(9)-C(1 0)-0(1) -178.3(2) 

C(8)-C(9)-C(l0)-C(11) -0.1(4) 

0(1)-C(l0)-C(II)-C(l2) 179.0(2) 

C(9)-C(10)-C(11)-C(l2) 0.7(4) 

C(1O)-C(11)-C(12)-C(7) -0.S(3) 

C(1O)-C(11)-C(12)-N(I) 179.1(2) 

C(8)-C(7)-C( 12)-C( 11) -0.2(3) 

C(6)-C(7)-C(12)-C(11) -179.1(2) 

C(8)-C(7)-C( 12)-N(I) -179.9(2) 

C(6)-C(7)-C( 12)-N(I) 1.2(3) 

C(4)-N(I)-C(12)-C(l1) IS7.9(2) 

C(1)-N(I)-C(12)-C(II) -18.S(3) 

C(4)-N(I )-C( 12)-C(7) -22.4(3) 

C(1 )-N(I)-C(12)-C(7) 161.2(2) 

C(9)-C(10)-O(l)-C(13) -8.1 (3) 

XXVI 



Table 7. Hydrogen bonds for cmpd 85 [A and 0]. 

D-H ... A d(D-H) d(H ... A) d(D ... A) «DHA) 

N(2)-H(lN) ... O(23) 0.99 2.19 3.0\3(3) 140.5 

N(2)-H( I N) ... F(22)# I 0.99 2.50 3.086(2) 117.9 

N(2)-H(lN) ... O(22) 0.99 2.52 3.225(3) 128.6 

Symmetry transformations used to generate equivalent atoms: #1 -x+5/2, y+1I2, -z+1I2 
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Appendix IV 

X-Ray crystal structure of 9-(Methoxy)-2,3-dihydro-lH-pyrimido[1 ,2-a]quinolinium triflate 

salt (87) 

Table I. Crystal data and structure refinement for cmpd 87. 

Identification code 

Chemical formula 

Formula weight 

Temperature 

Radiation, wavelength 

Crystal system, space group 

Unit cell parameters 

Cell volume 

Z 

Calculated density 

Absorption coefficient fl 

F(OOO) 

Crystal colour and size 

Reflections for cell refinement 

Data collection method 

rcfj 10 

C14H1,F3N,O,S 

364.34 

150(2) K 

MoKa, 0.71073 A 

monoclinic, P21/c 

a = 6.6746(12) A 

b = 22.837(4) A 

c= 10.1575(18)A 

1543.4(5) A3 

4 

1.568 g/cm3 

0.266 mm-1 

752 

/3 = 94.556(3)° 

pale yellow, 0.31 x 0.16 x 0.09 mm3 

3452 (9 range 2.20 to 27.46°) 

Bruker SMART 1000 CCD difTractometer 

w rotation with narrow frames 
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e range for data collection 

Index ranges 

Completeness to e ; 24.99° 

Intensity decay 

Reflections collected 

Independent reflections 

Reflections with F'> 2cr 

Absorption correction 

Min. and max. transmission 

Structure solution 

Refinement method 

Weighting parameters a, b 

Data f restraints f parameters 

Final R indices [F'>2crl 

R indices (all data) 

Goodness-of-fit on F' 

Largest and mean shiftfsu 

Largest diff. peak and hole 

1.78 to 24.99° 

h-7t07,k-26t027, 1-12to 12 

99.9% 

0% 

10854 

2706 (Rin' ; 0.0443) 

2041 

semi-empirical from equivalents 

0.922 and 0.977 

direct methods 

Full-matrix least-squares on F' 

0.0542, 13.5055 

2706170 f 237 

RI ; 0.0970, wR2; 0.2538 

RI; 0.1185, wR2; 0.2635 

1.187 

0.000 and 0.000 

1.007 and -0.378 e A-3 
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Table 2. Atomic coordinates and equivalent isotropic displacement parameters (A') 

for cmpd 87. U,q is defined as one third of the trace of the orthogonalized Uii tensor. 

x y z U,q 

N(IA) 0.5495(8) 0.3501(2) 0.3455(5) 0.0292(13) 
C(1) 0.5267(11) 0.2856(3) 0.3304(8) 0.0372(17) 
C(2) 0.732(2) 0.2583(6) 0.3359(18) 0.040(4) 
C(3) 0.846(3) 0.2736(12) 0.463(2) 0.038(5) 
C(2X) 0.675(3) 0.2531(7) 0.428(2) 0.042(5) 
C(3X) 0.887(4) 0.2753(13) 0.420(2) 0.034(5) 
N(4) 0.8656(10) 0.3386(3) 0.4542(7) 0.0470(17) 
C(4A) 0.7164(11) 0.3726(3) 0.4086(7) 0.0310(16) 
C(5) 0.7396(11) 0.4350(3) 0.4224(7) 0.0347(17) 
C(6) 0.5946(11) 0.4706(3) 0.3725(7) 0.0348(17) 
C(7A) 0.4116(11) 0.4478(3) 0.3079(7) 0.0307(16) 
C(7) 0.2584(12) 0.4839(3) 0.2544(7) 0.0381(18) 
C(8) 0.0872(12) 0.4604(3) 0.1900(7) 0.0410(19) 
C(9) 0.0673( 11) 0.4004(3) 0.1771(7) 0.0359(17) 
C(IO) 0.2198(10) 0.3633(3) 0.2280(7) 0.0330(16) 
C(10A) 0.3935(11) 0.3866(3) 0.2934(6) 0.0306(16) 
0(1) -0.0957(8) 0.3724(2) 0.1164(5) 0.0460(14) 
C(11) -0.2486(13) 0.4081(4) 0.0488(8) 0.055(2) 
C(12) 1.2114(12) 0.3690(3) 0.8233(8) 0.0397(18) 
F(I) 1.2796(8) 0.3308(2) 0.9163(4) 0.0573(14) 
F(2) 1.2515(9) 0.4224(2) 0.8719(5) 0.0680(17) 
F(3) 1.0108(8) 0.3641(3) 0.8111(6) 0.0755(18) 
S(1) 1.3165(3) 0.35685(8) 0.66859(18) 0.0332(5) 
0(2) 1.2116(8) 0.3990(2) 0.5823(5) 0.0432(14) 
0(3) 1.2638( 1 0) 0.2969(2) 0.6379(6) 0.0566(18) 
0(4) 1.5265(8) 0.3681(3) 0.6960(6) 0.0523(16) 
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Table 3. Bond lengths [A] and angles [0] for cmpd 87. 

N(IA}-C(4A) 1.343(9) N(lA}-C(IOA) 1.403(9) 
N(lA}-C(I) 1.488(8) C(1}-C(2) I.S0S(16) 
C(1}-C(2X) 1.53S(18) C(2}-C(3) 1.49(3) 
C(3}-N(4) 1.49(3) C(2X}-C(3X) I.S2(3) 
C(3X}-N(4) I.SO(3) N(4}-C(4A) 1.317(9) 
C(4A}-C(S) 1.438(10) C(S}-C(6) 1.333(10) 
C(6}-C(7A) 1.43S(IO) C(7A}-C(7) 1.390(10) 
C(7A}-C(lOA) 1.410(10) C(7}-C(S) 1.379(11) 
C(S}-C(9) I.3SI(I I) C(9}-O(I) 1.367(9) 
C(9}-C(10) 1.392(10) C(10}-C(l0A) 1.394(10) 
O(I}-C(I I) 1.439(9) C(12}-F(2) 1.33S(9) 
C(12}-F(I) 1.339(S) C(12}-F(3) 1.340(9) 
C(12}-S(I) \.792(S) S(I}-O(4) 1.431(6) 
S(I}-O(3) 1.442(6) S(I}-O(2) 1.444(S) 

C(4A}-N(IA}-C(lOA) 121.0(6) C(4A}-N(IA}-C(I) 120.1(6) 
C(IOA}-N(IA}-C(I) IIS.S(S) N(IA}-C(I}-C(2) I OS. 7(S) 
N ( I A}-C( I }-C(2X) 110.9(S) C(2}-C( I }-C(2X) 40.3(S) 
C(3 }-C(2}-C( I) 109.7(IS) C(2}-C(3 }-N( 4) 102.6(1 S) 
C(3X}-C(2X}-C(I) 111.0(16) N( 4 }-C(3 X}-C(2X) 102(2) 
C( 4A}-N( 4}-C(3) 122.S(II) C( 4A}-N( 4}-C(3X) 124.9(12) 
C(3}-N(4}-C(3X) 20.9(10) N( 4}-C( 4A}-N( I A) 121.2(6) 
N(4}-C(4A}-C(5) IIS.S(6) N(lA}-C(4A}-C(S) 120.3(7) 
C(6}-C(5}-C(4A) 119.9(7) C(S}-C(6}-C(7 A) 121.1(7) 
C(7}-C(7A}-C(IOA) 119.S(7) C(7}-C(7 A}-C(6) 122.4(7) 
C( lOA }-C(7 A}-C( 6) IIS.O(7) C(S}-C(7}-C(7 A) 120.7(7) 
C(7}-C(S}-C(9) 120.0(7) O( I }-C(9}-C(S) 12S.I(7) 
0(1}-C(9}-C(10) 114.S(7) C(S}-C(9}-C(l0) 120.4(7) 
C(9}-C(I O}-C( lOA) 120.1(7) C(IO}-C(IOA}-N(I A) 121.2(6) 
C(10}-C(IOA}-C(7A) 119.2(7) N(lA}-C( IOA}-C(7 A) 119.6(6) 
C(9}-O(I}-C(II) 117.3(6) F(2}-C( 12}-F( I) 106.7(6) 
F(2}-C(l2}-F(3) 106.3(6) F(I}-C(12}-F(3) 106.9(7) 
F(2}-C(12}-S( I) 112.6(6) F(I }-C(12}-S(I) 112.5(5) 
F(3}-C(12}-S(I ) 111.3(6) 0(4 }-S( I }-O(3) 115.6(4) 
0(4 }-S( I }-O(2) 114.7(3) 0(3}-S( I }-O(2) 113.S(3) 
0(4 }-S( I}-C( 12) 104.3(4) 0(3 }-S( I }-C(I 2) 103.4(4) 
O(2}-S(I}-C( 12) 103.0(3) 
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Table 4. Hydrogen coordinates and isotropic displacement parameters (A') for cmpd 87. 

x y z u 

H(IA) 0.4517 0.2764 0.2449 0.045 
H(IB) 0.4506 0.2697 0.4022 0.045 
H(IC) 0.5504 0.2743 0.2388 0.045 
H(IO) 0.3873 0.2744 0.3463 0.045 
H(2A) 0.7199 0.2152 0.3279 0.048 
H(2B) 0.8056 0.2728 0.2614 0.048 
H(3A) 0.9799 0.2545 0.4715 0.046 
H(3B) 0.7713 0.2622 0.5396 0.046 
H(2X1) 0.6346 0.2587 0.5190 0.050 
H(2X2) 0.6698 0.2106 0.4083 0.050 
H(3X1) 0.9831 0.2551 0.4838 0.041 
H(3X2) 0.9317 0.2705 0.3296 0.041 
H(4) 0.9815 0.3548 0.4802 0.056 
H(5) 0.8581 0.4507 0.4669 0.042 
H(6) 0.6126 0.5118 0.3798 0.042 
H(7) 0.2717 0.5252 0.2622 0.046 
H(8) -0.0171 0.4855 0.1545 0.049 
H(IO) 0.2056 0.3222 0.2181 0.040 
H(IIA) -0.3037 0.4351 0.1118 0.082 
H(IIB) -0.3563 0.3831 0.0092 0.082 
H(IIC) -0.1899 0.4307 -0.0207 0.082 
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Table 5. Torsion angles [0] for cmpd 87. 

C( 4A}-N(1 A}-C(I }-C(2) 
C(4A}-N(IA}-C(1 }-C(2X) 
N(I A}-C(1}-C(2}-C(3) 
C( I }-C(2}-C(3}-N( 4) 
C(2}-C(1 }-C(2X}-C(3X) 
C(2}-C(3}-N( 4}-C( 4A) 
C(2X}-C(3X}-N(4}-C(4A) 
C(3}-N(4}-C( 4A}-N(1 A) 
C(3}-N(4}-C(4A}-C(5) 
C( I OA}-N(I A}-C(4A}-N( 4) 
C(I OA}-N(I A}-C(4A}-C(5) 
N( 4}-C(4A}-C(5}-C(6) 
C( 4 A}-C( 5}-C( 6}-C(7 A) 
C(5}-C(6}-C(7 A}-C(1 OA) 
C( 6}-C(7 A}-C(7}-C(8) 
C(7}-C(8}-C(9)-O( I) 
0(1 }-C(9}-C( I O}-C( lOA) 
C(9}-C(1 O}-C(I OA}-N(IA) 
C( 4A}-N(IA}-C(1 OA}-C(I 0) 
C( 4A}-N(1 A}-C(I OA}-C(7 A) 
C(7}-C(7 A}-C(1 OA}-C(I 0) 
C(7}-C(7 A}-C(1 OA}-N(I A) 
C(8}-C(9)-O(I}-C( 11) 
F(2}-C(12}-S(1)-O( 4) 
F(3}-C(12}-S(1 )-0(4) 
F (1 }-C(12 }-S( I )-0(3) 
F(2}-C(12}-S( I )-0(2) 
F(3}-C(12}-S(1 )-0(2) 

-25.3(12) 
17.6(13) 
58.2(18) 

-63.9(18) 
43.0(17) 
42.5(19) 

-44(2) 
-12.4( 15) 
170.6(12) 

-178.0(7) 
-1.0( I 0) 

177.3(7) 
1.7(11) 

-2.8(10) 
178.2(7) 
179.5(7) 

-179.4(6) 
-179.9(6) 
-179.9(6) 

-0.2(10) 
-1.4(10) 

178.9(6) 
6.9(11 ) 

56.3(6) 
175.6(5) 

56.8(6) 
-63.8(6) 

55.5(6) 

Table 6. Hydrogen bonds for cmpd 87 [A and 0]. 

D-H ... A d(D-H) d(H ... A) 

N(4}-H(4) ... 0(2) 0.88 2.05 

C(I OA}-N(IA}-C(I }-C(2) 
C(I OA}-N(IA}-C(I }-C(2X) 
C(2X}-C( I }-C(2 }-C(3) 
N(1 A}-C(1 }-C(2X}-C(3X) 
C( I }-C(2X}-C(3X}-N(4) 
C(2}-C(3}-N( 4 }-C(3X) 
C(2X}-C(3X}-N( 4 }-C(3) 
C(3X}-N(4}-C(4A}-N(IA) 
C(3X}-N(4}-C( 4A}-C(5) 
C( I }-N(I A}-C( 4A}-N( 4) 
C( I }-N( I A}-C( 4A}-C(5) 
N(1 A}-C(4A}-C(5}-C(6) 
C(5}-C(6}-C(7 A}-C(7) 
C(I OA}-C(7 A}-C(7}-C(8) 
C(7 A}-C(7}-C(8}-C(9) 
C(7}-C(8}-C(9}-C( I 0) 
C(8}-C(9}-C(I O}-C(1 OA) 
C(9}-C( I O}-C( I OA}-C(7 A) 
C(I }-N( I A}-C( I OA}-C(I 0) 
C(I }-N( I A}-C(1 OA}-C(7 A) 
C(6}-C(7 A}-C(I OA}-C(I 0) 
C(6}-C(7 A}-C(1 OA}-N(I A) 
C(I 0}-C(9)-O(1 }-C(lI) 
F(I}-C(12}-S(I)-O(4) 
F(2}-C(12}-S(I)-O(3) 
F(3}-C( 12}-S(1)-O(3) 
F(I}-C(12}-S(I)-O(2) 

d(D ... A) 

2.908(8) 

«DHA) 

165.0 

155.1(9) 
-162.0(11) 

-42.4(16) 
-52(2) 

60(2) 
-60(5) 

48(5) 
12.7(16) 

-164.3(13) 
2.4(10) 

179.5(6) 
0.2(11) 

-179.6(7) 
1.5(10) 

-0.5(11 ) 
-0.5(11 ) 

0.6(11 ) 
0.4( 10) 

-0.3(10) 
179.4(6) 

-178.3(6) 
2.0( I 0) 

-173.2(7) 
-64.4(6) 
177.5(5) 
-63.2(6) 
175.6(5) 
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