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Abstract 

 

Several seven-coordinate manganese complexes have been synthesised, characterised 

and tested for both superoxide dismutase and catalase activity. Macrocyclic ring 

contractions have led to a series of new seven coordinate mononuclear manganese(II) 

macrocycles that have potential for their use as working superoxide dismutase 

mimics. 

 

Numerous polynuclear seven coordinate manganese(II) macrocycles have been 

synthesised via Schiff base condensation. Subsequent reduction of the imine bonds 

has led to a variety of reduced amine analogues with varying axial ligands. The 

geometry has been compared about the manganese centres where possible. From the 

results of each complex tested for superoxide dismutase activity, the µ-chloro 

bridged tetranuclear complex [Mn2(C24H29N6O2)(Cl)2]2(ClO4)2 has proved to be the 

most efficient mimic with a calculated KMcCF value of 7.7 x 10
6
 [M

-1
 s

-1
]. 

 

A method for measuring catalase activity has been developed, and the most efficient 

catalase active compound was found to be [Mn5(C24H29N6O2)2(OAc)2(ClO4)2](ClO4)2 

with one molecule of complex breaking down approximately 59000 molecules of 

hydrogen peroxide after one minute. Catalase testing showed that a reduction of the 

imine bonds produced an increase in activity overall for the complexes of H2L1 

(C24H29N6O2), but a decrease was observed for the reduced tripodal complexes. An 

increase in the number of manganese centres resulted in a rise in catalase activity.  

 

Many of the complexes tested for catalase activity showed an induction period prior 

to the activity being observed. This may suggest that the complexes undergo a 

change in structure, or that there is a rearrangement occurring before catalase activity 

may be observed. The results that are presented indicate that the axial ligands have 

an effect on the rate of catalase activity and the observed induction period. 

 

Of the molecules that were tested for both superoxide dismutase and catalase 

activity, the pentanuclear complex [Mn5(C24H29N6O2)2(OAc)2(ClO4)2](ClO4)2 
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showed high activity for both analyses. This may be due to the extra manganese 

centre within the complex and the axial ligands that are present when compared with 

other tetranuclear complexes. The complex [Mn5(HL1)(OAc)2(ClO4)2](ClO4)2 may 

prove to be a good candidate for a working superoxide dismutase mimic. 

 

Ring contracted complexes show high rates of superoxide dismutase activity but 

possess limited catalase activity.  

 

Attempts have been made to produce a direct method of measuring superoxide 

dismutase activity using a stop-flow technique to complement the results using the 

indirect NBT (Nitro blue Tetrazoleum) method. This was carried out by analysing 

low concentration solutions of both complex and superoxide on a millisecond 

timescale. Progress has been made for this method with preliminary results being 

obtained. 
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1 Chapter One - Introduction  
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1.1 Macrocyclic chemistry 

 

A macrocycle is a cyclic organic compound; and a macrocyclic ligand must have at 

least nine atoms in the ring and a minimum of three potential donor atoms that can 

coordinate to a metal ion. The introduction of varying donor atoms and aromatic 

rings within a macrocyclic system can potentially provide control over some aspects 

of geometry and donors. An example of a macrocyclic complex is shown below in 

Figure 1-1 as reported by Harding et al.1
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Figure 1-1 – Ba2+ macrocyclic complex 

 

The denticity of the ligand is the number of atoms through which a ligand 

coordinates to a metal. Polydentate ligands can impose an unlimited range of three 

dimensional geometric constraints and properties upon the metal ion. A macrocycle 

can be designed to impose a certain stereochemistry and potentially give tighter 

control over some aspects of geometry around a metal centre and the donors within 

the system can be altered according to the metal it is desired to bind into the 

macrocyclic system. A macrocyclic ligand that imposes pentagonal geometry onto 

the metal centre is shown in Figure 1-2.
2
 In this system, the pyridinediimine head 

unit has a bite angle of 70.2
o
 (N1-Mn-N2), imposed onto the metal ion creating a 

slight distortion from the ideal geometry of 72
o
 which would be expected for a 

pentagonal bipyramidal geometry. 
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Figure 1-2 – Macrocyclic complex with imposed geometry 

 

Macrocyclic complexes are more stable than complexes of non-cyclic ligands, and 

this is due to both kinetic and thermodynamic stability effects. The kinetic and 

thermodynamic effects together, are referred to as the ‘Macrocyclic effect’.
3-5

 

 

Macrocyclic complexes are more kinetically inert than non-macrocyclic ligands 

because there are no terminal donors and therefore they do not dissociate readily. It is 

not possible to break a single M-L bond and move the donor away, there has to be 

additional bond breakage or extensive rearrangement of the coordination sphere, 

therefore higher activation energy is needed to dissociate the ligand from the metal 

ion than for an open chain analogue.  

 

For the thermodynamic component, both entropy and enthalpy are involved:
4
  

 

∆G = ∆H-T∆S 

 

Due to entropy effects, as the denticity of the ligand increases, so does the stability 

constant of the complex formed. The entropy factor (∆S) is more favourable for 

macrocyclic ligands because there is less rearrangement of the molecule on 

coordination. The enthalpy factor (∆H) however, can be either favourable or 

unfavourable. 



 

 

4 

 

A macrocyclic ligand is less solvated than that of a monodentate ligand, and so a 

macrocycle has less amine hydrogen bonded water molecules to be displaced upon 

the formation of a complex creating a negative effect in terms of entropy for a 

macrocyclic ligand. For a macrocyclic ligand, there is a limitation of internal rotation 

during complex formation and less hydrogen bonded solvent molecules to be 

displaced during the formation of the complex.
5, 6

 

 

The most important factor for the stability constant of a macrocyclic complex is the 

relative size of the metal ion and the macrocyclic hole, and this is important when 

designing a macrocyclic host for a particular metal ion. A complex is most stable 

when the macrocyclic cavity is a good fit for the central ion. If the cavity is too small 

for the metal ion, then the ion may become displaced from the plane of the ring and 

if the ion is too small then the bonds that coordinate the metal to the ligand are longer 

and also weaker. By introducing variations into a macrocycle it is possible to 

selectively chelate certain metal ions depending upon the number, type and position 

of the donor atoms in the system.  

 

In a coordination complex, the central metal ion acts as a Lewis acid and is 

coordinated to the donor atoms in the ligand that act as Lewis bases. According to 

the hard soft acid base theory, hard cations will form more stable complexes with 

hard ligands and soft cations will form more stable complexes with soft ligands.
7, 8

 

Hard donor ligands will also favour the higher oxidation states of a metal ion and a 

softer donor will favours the lower oxidation states of a metal ion. An example of a 

complex that contains a soft silver ion which is bound to soft sulfur donor atoms is 

illustrated in Figure 1-3
9
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Figure 1-3 – An example of a soft metal ion bound to soft donor ligands within a 

macrocyclic system 

 

The ligand illustrated in Figure 1-3 can be used for the synthesis of a silver complex 

but binding would not occur in the same fashion with a harder manganese 2
+
 ion 

which does not bind to sulfur donor atoms. All of these factors need to be taken into 

account when designing a ligand for a particular metal ion. 

 

The properties associated with macrocycles have stimulated much interest in their 

chemistry.
4, 10

 They have the ability to mimic some properties of proteins such as the 

transport of oxygen in mammalian and other respiratory systems. In nature, proteins 

can hold a metal centre in a transitional geometry that is critical for the chemical 

activity of the protein this is known as an entactic state. Similarly, a macrocyclic 

ligand may tune the properties of a metal ion (e.g. redox potential) by imposing a 

particular geometry.
3
 

 

1.1.1 Schiff base reactions 

 

Schiff base condensation has been of great importance in macrocyclic chemistry,
11, 12

 

and has been used in the formation of many macrocyclic systems. This type of 

reaction involves the synthesis of an imine bond by reacting a carbonyl group with a 

primary amine, losing water in the process (Figure 1-4) .
13-15
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Figure 1-4 – Schiff base reaction 

 

The size of the metal ion and the coordination properties of the counter ions are also 

important in the design of a Schiff base macrocycle.
12, 16

 An isolated imine bond as 

shown in Figure 1-4 is susceptible to hydrolysis, However, upon coordination to a 

metal ion, the stability of the bond is increased and less likely to undergo hydrolysis. 

 

A Schiff base macrocycle can be altered by the reduction of the imine bonds to form 

amines, in this system the complex becomes less susceptible to hydrolysis. This 

process renders the nitrogen donors harder, again altering and influencing the 

binding properties of the macrocycle and the stability of a given complex. 

 

1.1.2 Template synthesis 

 

A basic problem in all macrocyclic synthesis is the formation of polymers rather than 

cyclic products. To avoid the polymerisation reaction, high dilution conditions are 

sometimes used, requiring large volumes of solvent to reduce the chances of the 

molecules reacting with each other. An alternative way to overcome the 

polymerisation reaction is to use a metal ion in a template reaction. 

 

Schiff base condensation reactions are commonly used for macrocyclic template 

reactions. A template reaction is one where a metal ion directs the cyclisation of a 

ligand. During this in situ reaction, the metal ion coordinates to the donor atoms and 

organises the intermediates into the conformation that is required to give the desired 

cyclic product. The presence of a metal ion template preferentially leads to a cyclic 

product, whereas attempts at formation of a macrocyclic ligand without a metal 

template can lead to oligomeric oils or gums.
17

 The bite angle can change slightly 

depending on the size of the metal that is bound to the ligand. A larger metal ion 

would decrease the bite angle and a smaller ion would increase the bite angle. 
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Limitations may exist when designing a macrocyclic complex, as not all metal ions 

will fit into a specific macrocyclic cavity or the favoured geometry of the metal ion 

may be different to that imposed by the ligand. 

 

During a template reaction, the metal ion can have two possible roles; firstly, the 

thermodynamic template effect is when the presence of the metal ion promotes the 

formation of the macrocycle as its metal complex and so the ion may shift the 

position of equilibrium between products and reactants for example. Secondly, the 

kinetic template effect is when the metal ion may direct the steric course of a 

condensation so that formation of the required cyclic product is facilitated.
3, 15

 

 

An example of such a reaction is where 2,6-diacetylpyridine (DAP), which contains 

a pyridyl nitrogen donor for the metal ion to bind, reacts with a diamine, in the 

presence of Mn(II), forming two imine bonds
18, 19

 as shown in Figure 1-5.  
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Figure 1-5 – Template reaction 

 

Template reactions tend to be metal ion specific, therefore, certain desired metal 

complexes may not be directly accessible using the template synthesis, and this may 

be because the metal ion does not favour the desired geometry for the ligand to form. 

 

A change in metal ion can have a profound effect on the nature of a templated 

product, this is because different metal ions may have preferences for different 

geometries, for example, a d
8
 ion such as Ni(II) has a stereochemical preference for a 

tetragonal geometry and will not form a seven coordinate compound, however a d
5 

ion such as Mn(II) has no stereochemical preferences and readily adopts the 

geometry imposed by the ligand. The kinetic template effect can be used to direct the 
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geometry of the product via organisation of the reacting components.
20

 There are two 

factors that can contribute to the formation of a seven coordinate Mn(II) complex. 

Firstly, a pyridinediimine section with three planar nitrogen donors sits rigid with an 

arc of approximately 138
o
, this leaves ample room for two further donors in the same 

plane. Secondly, the length of the alkyl chain and the number of donors is important 

in defining the geometry of the complex.
18, 21

 

 

A possible route for introducing a target metal ion into a ligand system, would be to 

firstly form the macrocyclic ligand in the presence of a metal ion which allows 

formation of the macrocycle. This can then be followed with a transmetallation 

reaction in which one metal ion is displaced for a more strongly bound metal ion of 

interest and the geometry of the ligand may be imposed onto the new metal ion. 

 

For a Schiff base template reaction, a macrocycle may form as a [1+1] macrocycle, 

which is the reaction of one dicarbonyl head unit with one molecule of diamine in the 

presence of a metal ion, (see Figure 1-1 and Figure 1-5) or as a [2+2] macrocycle 

which is the reaction of two dicarbonyl head units with two molecules of amine in 

the presence of a metal ion. A [1+1] macrocycle will form in the presence of a 

smaller ion and a [2+2] macrocycle will form in the presence of a large ion. For 

example an amine chain is not long enough to form as [1+1] macrocycle. An 

example of a [2+2] macrocycle can be seen in Figure 1-6
22
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Figure 1-6 – [2+2] macrocycle 
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The general considerations of possible mechanisms for the routes of formation of 

both [1+1] and [2+2] Schiff base macrocycles were outlined by Nelson et al. as 

shown in Figure 1-7
23

 

 

 

Figure 1-7 – Routes for template reactions of Schiff base macrocycles 

 

The scheme shows that firstly, the intermediate (3) may undergo condensation with a 

dicarbonyl (1) to form the new species (6), this can then further react with a diamine 

(2) to give a [2+2] product (5). Secondly, a reverse sequence of condensation steps 

can occur to form the product via the diamino species (7) (v+vi). Thirdly, the 

intermediate (3) can undergo a bimolecular self condensation (step vii) to produce 

the product (5). The fourth route involves self condensation between two molecules 

of the diamine-diimine species (7) undergoing a transamination reaction. A 

transamination reaction involves the transfer of an amine group from one molecule to 

another via nucleophilic substitution of the primary amine, which can be used as a 
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route to form new imines.(step viii). A scheme for a transamination reaction can be 

seen in Figure 1-8.
23
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Figure 1-8 – Schematic illustration for a transamination reaction 

 

The mechanism for a ring closure reaction of a macrocyclic complex was proposed 

to involve one intramolecular, and one intermolecular transamination
23

 as illustrated 

in Figure 1-9.  

 



 

 

11 

N

N N

O O

O O

NH
2

NH
2

Ba
2+

N

N N

N
H

N

NN

Ba
2+

Ba
2+

NH
2

NH
2

NH
2

N

N N

N

NN

Ba
2+

NH
2

NH
2

NH
2

O

O

NH
2

Ba
2+

Ba
2+

N

NN

N

N N

O O

O O

NH
2

O

O

NH
2

+

+

+

N

N N

O O

O O

NH
2

NH
2

Ba
2+

N

N N

N
H

N

NN

Ba
2+

Ba
2+

NH
2

NH
2

NH
2

N

N N

N

NN

Ba
2+

NH
2

NH
2

NH
2

O

O

NH
2

Ba
2+

Ba
2+

N

NN

N

N N

O O

O O

NH
2

O

O

NH
2

+

+

+

 

Figure 1-9 – Transamination reaction for ring closure 

 

The mechanism for the reaction shown in Figure 1-9 involves a bimolecular reaction 

between two molecules of the initial complex. An intermolecular transamination 

reaction occurs via nucleophilic attack from one NH2 group upon the imino carbon of 

the second molecule. The imine is then reformed with elimination of the amine. Next 

an intramolecular transamination reaction occurs from the uncoordinated NH2 at the 

neighbouring imine group of the second molecule. Nelson et al.23
 observed that an 

excess of amine or Ba
2+

 suppressed the macrocycle formation. It is possible that an 

excess of amine provides free NH2 groups which are available for nucleophilic attack 

of the imino-carbon groups of the initial molecule shown in Figure 1-9. The extra 

NH2 groups that are available due to excess amine, can then introduce competition 
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for the self-condensation reaction of macrocyclic formation. In the presence of 

excess Ba
2+

 it is possible that an equilibrium can exist between the initial complex as 

shown in Figure 1-7, and a binuclear species as illustrated in Figure 1-10, where the 

primary amines become bound to the free Ba
2+

 and are then not available for 

nucleophilic attack.
23 
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Figure 1-10 – Excess barium during macrocyclic preparation 

 

1.1.3 Macrocyclic ring contraction 

 

Macrocyclic ring contractions may occur when there is a functional group available 

such as –OH or =NH and if there is a mismatch in size for the metal and the cavity in 

which it sits.
15

 Several Schiff base macrocycles have been shown to undergo ring 

contractions as a result of nucleophilic addition of a secondary amine across an 

adjacent imine bond. An example can be seen in Figure 1-11
24-27

 in which the 

transamination reaction is observed.  
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Figure 1-11 –Ring contraction mechanism 

 

Nelson et al.23
 describe the formation of a ring contracted Ba

2+
 macrocycle as shown 

below in Figure 1-12. 
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Figure 1-12 – Macrocyclic ring contraction 

 

The macrocycle contains an 18 membered inner ring (9) rather than the expected 24 

membered ring (8) reducing the denticity of the macrocycle from eight to six. The 

unexpected macrocycle formed due to the mismatch in cavity size of the macrocycle 

and the barium metal ion forming two five-membered imidazolidine rings as 

illustrated in Figure 1-12.
25

 

 

Fenton and co workers
28

 showed that two separate attempts at a cyclocondensation 

reaction involving N,N-bis(2-aminoethyl)-2-phenylethylamine and 2,6-

diformylpyridine in the presence of a barium ion yielded different products. These 
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were the expected 24 membered Schiff base macrocycle and a macrocycle with an 

unexpected ring contraction at one side arm producing an 18 membered macrocycle 

with an imidazolidine ring. The two products that were formed are illustrated in the 

reaction
28

 shown in Figure 1-13. 
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Figure 1-13 – Two separate attempts of a cyclocondensation reaction 

 

The reaction scheme shown in Figure 1-13 shows that when the imidazolidine ring is 

formed as a result of the ring contraction, the number of donor atoms available to the 

barium ion is reduced from eight to six. The macrocyclic hole becomes reduced in 

size as a result of the ring contraction and there is an addition of a hydroxy group 

onto the ligand. 

 

The non-contracted [2+2] tetraimine species would be the expected result for this 

type of reaction as shown by Nelson et al23
 and Fenton and co workers evidently 

found it difficult to reproduce the conditions to form the ring contracted species. The 
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size of the barium ion was the driving force for the ring contraction, to produce a 

macrocyclic cavity with a size more suited to the ion that is present.  

 

In this thesis, design and synthesis of several different types of manganese 

macrocyclic complexes will be described. The complexes were prepared for 

biological testing, to analyse the effects that different ligands and geometries may 

produce on the observed activity. 

 

1.2 Tripodal ligands 

 

Tetradentate tripodal ligands contain a central tertiary nitrogen atom that is attached 

to three arms, each of which contains a donor atom Y as illustrated in Figure 1-14:
29, 

30
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Figure 1-14 – General structure of a tripodal ligand 

 

During the course of this work, a particular focus on the synthesis of tripods with 

nitrogen as the donor atom has been adopted. Multidentate nitrogen donor ligands are 

interesting due to their potential applications in areas such as catalysis, transport 

processes and modelling of several biological compounds.
29

 Several tripods have 

been synthesised and are known by a four letter abbreviation of the full name of the 

ligand, for example, N,N-bis(2aminoethyl)ethane-1,2-diamine is better known as 

tren, the structure of which is shown in Figure 1-15.
31
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Figure 1-15 – The structure of tren 

 

In these tripodal systems, the tertiary nitrogen caps the ligand and differences can be 

introduced by altering the length of the arms and the nature of the nitrogen donor 

atoms. All routes of synthesis use the alkylation of a nitrogen atom from either an 

ammonium ion or a primary or secondary amine precursor to form the tertiary 

nitrogen of the tripod.  

 

When a tripod is symmetrical, then all three arms are the same and this usually has 

C3v symmetry about the central nitrogen atom. However, when differences are 

introduced into the arm lengths of the ligand, the tripod becomes asymmetric and the 

symmetry is usually Cs or lower. Only more recently have ligands of lower 

symmetry been prepared.
31

 

 

Crystal structures of the free ligand have shown both a splayed conformation as well 

as an internally hydrogen bonded system where all three arms are folded to form a 

cavity into which a metal ion can bind. This is usually seen in ligands that are 

protonated.
30

  

 

A tripodal ligand will usually bind to a transition metal using all four nitrogen atoms, 

although examples exist where the ligand binds to a metal using less than the number 

of full donor atoms available to it. An example of this can be seen with a tripod 

containing a long arm when bound to a copper ion as seen in Figure 1-16.
31, 32
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Figure 1-16 – Hypodentate Cu(II) Complex 

 

The reason that some tripodal ligands bind in this way, may be due to the stability of 

the complexes formed, usually explained in terms of the chelate effect. Chelation can 

become less entropically favoured when the chelate ring contains six or more atoms 

as the ring can become strained, so tripods with a long pendant arm may coordinate 

in this hypodentate fashion.
32, 33

 

 

A tripodal amine ligand is able to undergo a Schiff base reaction to form a wider 

variety of ligands that are available for complexation. A Schiff base ligand prepared 

from tren and salicylaldehyde, known as the saltren ligand, has previously been 

prepared and its coordination chemistry with various metal ions has also been 

investigated (Figure 1-17).
24, 34, 35
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Figure 1-17 – Structure of the saltren ligand 

 

McKee and co-workers
36, 37

 have illustrated that by varying the ratio of manganese 

ion to saltren ligand, different complexes can be prepared. Crystallographic data 

were obtained for two forms of tripodal complex to form both the mononuclear 
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manganese complex A)
37

 [Mn(L)]
2+

 and the tetranuclear complex B)
36

 [Mn4O2(L)2]
2+

 

both illustrated below in Figure 1-18. 

 

A) B)A) B)A) B)A) B)

 

 

Figure 1-18 – Products of reactions involving different ratios of manganese to 

saltren ligand 

 

To form complex A), the reaction was carried out as a 1:1 molar ratio of manganese 

ion to saltren ligand. To form complex B), a 2:1 ratio was required and this complex 

exists as a tetranuclear system with two tripodal ligands forming two independent, 

centrosymmetric cations within the unit cell. For each complex, the manganese ion is 

in a six coordinate geometry, with each donor atom from the saltren ligand, except 

for the two oxo ions present in complex B).  

 

In this thesis, the attempted synthesis of various asymmetric tripodal ligands will be 

described. These were reacted with a salicylaldehyde ligand to form Schiff base 

ligands that can be used for the synthesis of various complexes in different molar 

ratios. Different arm lengths should provide a wider variety of geometries about the 

manganese ion; this may be directly related to the biological activity of the 

complexes. 
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1.3 Superoxide dismutase activity 

 

The superoxide anion (O2
-.
) formed by a one electron reduction of O2, is an example 

of a free radical due to the presence of its unpaired electron.
38

 The molecular orbital 

diagram for oxygen is shown in Figure 1-19: 
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Figure 1-19 – Molecular orbital diagram of O2 

 

From the molecular orbital diagram shown in Figure 1-19, the bond order of 

molecular oxygen can be calculated as 2, however, once the oxygen undergoes a one 

electron reduction, the bond order is reduced to 1.5 with the extra electron placed in 

the x* or the y* antibonding orbitals. The superoxide molecule then has a longer 

bond length due to the existence of the extra electron that is present. Due to the 

unpaired electron, superoxide exists as a very reactive free radical,
39,40

 its 
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decomposition produces further undesired harmful species such as the hydroxyl 

radical and hydrogen peroxide.
41

 

 

In living cells, low levels of the superoxide radical anions are produced in the 

mitochondria as a by-product of aerobic respiration that is essential for cell function. 

However, a fine balance exists between the reactive oxygen species produced and the 

amount of superoxide scavengers (antioxidants) present in the cells, which protect 

tissues from oxidative damage. Oxidative stress may develop when this balance is 

disrupted.
42, 43 

In acute inflammation, for example, the production of superoxide is 

increased at a rate that overwhelms the capacity of the superoxide dismutase (SOD) 

enzyme to remove it,
44

 and oxidative stress is responsible for contributing to the 

symptoms of the ageing process, arthritis and degenerative diseases such as 

Alzheimer’s and Parkinson’s diseases. Manganese SODs are a class of 

oxidoreductases
44

 which play a critical role in scavenging intramitochondrial free 

radicals as a defence against oxidative stress.
40, 45-47

 

 

Different types of superoxide dismutase enzymes exist within living cells and all are 

important antioxidants,
45

 There are four major classes of SOD which are Mn, Fe, 

Cu/Zn and Ni.
41, 46, 48-50

 In humans, there are three different types of superoxide 

dismutase enzymes, these are SOD 1 which is a Cu/Zn enzyme and is found in the 

cytoplasm of the cell, SOD 2 is a manganese SOD and is found in the mitochondria 

and SOD 3 is an extracellular Cu/Zn enzyme. Superoxide dismutase protects the cells 

from its damaging and uncontrolled reactions by catalysing the dismutation of 

superoxide (O2‾•) into oxygen and hydrogen peroxide, preventing the formation of 

dangerous OH• radicals
51, 52

 (see Equation 1). Once this reaction is complete, the 

hydrogen peroxide is then either broken down to water and oxygen via a catalase 

enzyme, or it may reduce the M
(n+1)

-SOD enzyme
53
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M
(n+1)

-SOD+ O2‾• → M
n+

-SOD+O2 

M
n+

-SOD + O2‾• + 2H
+
 → M

(n+1)
-SOD + H2O2 

 

Where M=Cu (n=1), M=Mn (n=2), M = Fe (n=2), M = Ni (n=2) 

Equation 1 - Dismutation of superoxide into oxygen and hydrogen peroxide 

 

Mn(SOD) was discovered in 1970 and is a redox active manganese enzyme which 

has a mononuclear core at the active site.
38

 Cu/Zn SOD enzymes have shown to 

possess catalytic rates in excess of 2x10
9
 M

-1
 s

-1
 
54

 with Mn and Fe SODs possessing 

rates of an order of magnitude slower than the Cu/Zn enzymes depending upon the 

source of the enzyme present.
55

 

 

Natural SOD enzymes have been shown to have promising therapeutic properties but 

suffer as drug candidates due to immunogenic responses.
56

 Their large molecular 

weights also prevent the molecules passing through cell membranes.
57

 The active site 

of the human MnSOD can be seen in Figure 1-20 below.
58

 

 

 

Figure 1-20 –Active site structure of human MnSOD 

 

The diagram in Figure 1-20 shows that the active site of the native human MnSOD 

contains a five coordinate manganese centre with distorted trigonal bipyramidal 

geometry. The manganese is coordinated to three nitrogen atoms from the His 
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residues (26, 74 and 163) an oxygen atom from Asp (159) and one oxygen from a 

bound OH2 (water) molecule. The mechanism for the reaction with superoxide 

involves cycling between oxidised Mn
3+

 and reduced Mn
2+

. In the reduced form, 

MnSOD is thought to react with superoxide through two pathways involving 

Mn
3+

SOD-O2
2-

 and Mn
3+

SOD which is often called the inhibited complex.
59-61

 The 

redox cycling is illustrated in Figure 1-21 below. 

 

Mn
3+

SOD(OH
-
) + O2‾• + (H

+
)       Mn

2+
SOD(H2O) + O2 

Mn
2+

SOD(H2O) + O2‾• + (H
+
)      Mn

3+
SOD(OH

-
) + H2O2 

Mn
2+

SOD(H2O) + O2‾•    Mn
3+

SOD(H2O)-O2
2-

 

Mn
3+

SOD(H2O)-O2
2-

 + (H
+
)      Mn

3+
SOD(OH

-
) + H2O2 

Figure 1-21 – Redox cycling in human MnSOD 

 

A more detailed mechanism was proposed by Bull et al. as shown in Figure 1-22, 

which allows for the reversibility of steps: 

 

 

Figure 1-22 – Mechanism for MnSOD as outlined by Bull et al. 

In the mechanism shown in Figure 1-22, the inactive enzyme arises by an internal 

rearrangement of the P-Mn
2+

: O2‾• to yield the inactive enxyme X. 
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Considerable interest is being shown in the development of low molecular weight 

synthetic therapeutic SOD mimetics which provide a low energy reaction pathway 
62

. 

These types of compounds may be important for the treatment of rheumatoid and 

osteoarthritis, which are conditions that are associated with oxidative stress.
45, 48, 53

  

 

Riley et al. developed the very active SOD mimics that are manganese(II) complexes 

incorporating the macrocyclic ligand 1,4,7,10,13-pentaazacyclopentadecane 

[Mn([15]aneN5)Cl2]. All of the complexes are seven-coordinate high spin d
5
 Mn(II) 

dichloro complexes and can effectively catalyse the dismutation of superoxide.
55, 63, 

64
 The generic structure of this macrocycle is shown below. 
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Figure 1-23 - Generic structure of [Mn([15]aneN5)Cl2] 

 

This class of molecule was investigated by altering the number of substituents, their 

placement, and their stereochemistry with two key features thought necessary for 

improvement: 

 

 Increase the kinetic stability of the complex by increasing the rigidity of the 

molecule. 

 Increase SOD activity, resulting in lower dosage, diminishing exposure to the 

metal. 

 

Riley et al. found that an increase in the number of carbon substituents increased the 

stability of the complex non-linearly. The stereochemistry of the R groups, however, 
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had a large effect on SOD activity, but little effect on stability assuming the number 

of constituents remain constant. 

 

Riley at al.39
 with the aid of computer modelling, synthesised the complex M40403, 

the structure of which is shown below in Figure 1-24. The complex M40403 was 

derived from the 1,4,7,10,13-pentaazacyclopentadecane containing the added 

pyridine functionality. This complex was shown to exceed the catalytic rate of the 

native human MnSOD enzyme and has the advantage of being a much smaller 

molecule. The complex M40403 has successfully completed phase I safety clinical 

trials in healthy human subjects,
44, 64

 and has more recently entered phase II clinical 

trials.
65

 

 

N

NHNH

N

Mn
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Figure 1-24 - Structure of M40403 

 

The catalytic cycle for the SOD mimics as prepared by Riley et al. was proposed and  

is illustrated below in Figure 1-25.
63, 64, 66

 A detailed understanding of the mechanism 

is important for designing a synthetic, low molecular weight MnSOD complex. 

 

H H 
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Figure 1-25 – Proposed catalytic cycle of a SOD mimic 

 

The catalytic cycle consists of two reaction pathways: 

 

 A pH independent inner sphere (IS) pathway 

 A pH dependent outer sphere (OS) pathway 

 

Riley et al. claimed that where the inner sphere binding of the superoxide radical to a 

vacant coordination site at the manganese centre occurs, the rate of the formation of 

the vacant site is the rate determining step of the reaction and for the outer sphere 

pathway, the proton coupled electron transfer step was rate limiting. 

 

However, Dees et al41
 have suggested that the water exchange mechanism is an 

interchange dissociative (Id) mechanism where the incoming superoxide anion also 

plays a role in the overall substitution process. Water exchange rate constants and 

activation parameters were assessed to come to this conclusion. Firstly the activation 

entropies and volumes gave positive values. Secondly, the water exchange rate 

constants decreased with an increase of π acceptor ability of the ligand. They also 

found that for the inner sphere pathway, the second order rate constants were 

significantly higher than the values for the water exchange rate suggesting that the 

release of H2O cannot be the rate determining step. 
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Maroz et al.
67

 suggested that the oxidation of the metal centre is not the rate 

determining step. Three complexes that were analysed are shown below in Figure 

1-26. 

 

N

NH NH

NH NH

Mn

Cl

Cl

N

NH NH

NH NH

Mn

Cl

Cl

N

NH NH

NH NH

Mn

Cl

Cl

SODm1 SODm2 SODm3  

Figure 1-26 - Complexes analysed by Maroz et al 

 

The moderately active catalyst SODm1 reacted with superoxide at a similar rate as 

the ineffective catalyst SODm3. Cyclic voltammetry showed that the redox potential 

of the Mn(III)/Mn(II) couple is similar for two complexes with very different SOD 

activities. Maroz et al. suggested that the [Mn
III

(L)O2]
+
 intermediate oxidizes the 

next molecule of superoxide and that this is the crucial point in the catalytic cycle. 

Maroz et al. proposed the following reaction mechanism: 

 

[MnII(L)]2

[MnIII(L)O2]
+[MnII(L)O2]

O2 O2
.-

O2
.-H2O2

2H+

Rate determining

Fast Fast

[MnII(L)]2

[MnIII(L)O2]
+[MnII(L)O2]

O2 O2
.-

O2
.-H2O2

2H+

Rate determining

Fast Fast

+

 

Figure 1-27 - Proposed catalytic cycle 
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The mechanism illustrated in Figure 1-27 involves three steps:
67

 

 

 Activation of the complex by reaction with superoxide to form the 

deprotonated Mn(III) intermediate. 

 Reduction of the intermediate with a second superoxide, influenced by its 

structure. The metal centre is reduced back to the initial Mn(II) maintaining a 

pseudooctahedral geometry. 

 Hydrogen peroxide is released and the complex returns to its original 

conformation. 

 

Riley et al. postulated that only ligands with conformational flexibility could possess 

SOD activity.
64

 Conversely, Liu et al.56
 synthesised seven coordinate iron and 

manganese complexes with the acyclic and rigid Hdapsox ligand, shown below in 

Figure 1-28, which demonstrated catalytic activity similar to that found for 

macrocyclic pentadentate ligands. This suggests that the water release and 

conformational rearrangement of the ligand are not the rate limiting step in the 

overall inner sphere SOD pathway of the SOD mimics.
56

 

 

N

N N
N N

O O
O

NH
2
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2

O

M
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2

H
2
O

M = Mn(II), Fe(II), Fe(III)  

Figure 1-28 - Hdapsox ligand complex 

 

For a SOD mimic to be effective in vivo as well as in vitro, it should be non-toxic, 

non-immunogenic and inexpensive. They should also have a high metabolic half-life 

and be able to penetrate into the cells as well as having a high stability constant.
68
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Manganese-containing systems are preferred due to the lower toxicity of the free 

aquated manganese ion in vivo, it is also the least likely to react with hydrogen 

peroxide to produce hydroxyl radicals.
64, 69

  

 

Devereux et al.70
 suggested that there is possibly significant cytotoxic activity in 

these complexes. Where a molecule possesses superoxide dismutase activity and no 

catalase activity, the cytotoxic hydroxyl radical does not become broken down. This 

may be considered as a potential anticancer compound where high levels of 

superoxide may exist in cancerous growths. 

 

1.3.1 Methods of measurement 

 

The indirect analysis of superoxide dismutase relies on a spectrophotometric change 

of a redox indicator. This was first carried out by McCord and Fridovich in their 

development of a Cytochrome c assay.
71

 Since then, many indirect assays have been 

developed where the amount of superoxide is estimated by reaction of the superoxide 

with a redox indicator such as NBT (Nitro blue tetrazolium) which is often used in 

the xanthine/xanthine oxidase system.  

 

In the xanthine/xanthine oxidase system, the xanthine oxidase aerobically oxidises 

the xanthine to urate, producing a constant flux of superoxide in the process. During 

this reaction, the yellow indicator NBT
2+

 scavanges the superoxide causing NBT
2+

 to 

be reduced to the blue formazan (MF
+
) which produces a spectral change. Inhibition 

of the reduction of the indicator in the presence of the superoxide dismutase mimic is 

taken as a measure of superoxide dismutase activity.
71-73

 There are underlying 

assumptions that the SOD mimic has removed superoxide from the system and that 

this is the only reason for the decrease in the formazan production. However, the 

indirect methods cannot kinetically distinguish between a catalytic and a 

stoichiometric dismutation and are prone to giving false positives when the 

superoxide dismutase mimic oxidises the indicator or reacts stoichiometrically with 

the superoxide.
74

 To determine if a complex is truly catalytically active, a result 
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obtained using an indirect method should ideally be complemented with the results 

from a direct method of analysis to support the results obtained.  

 

One example of a direct method is the stop-flow technique, in which a solution of the 

putative catalyst is rapidly mixed with superoxide solution. This method allows the 

precise measurement of the decay of superoxide to be visually measured 

spectrophotometrically. For the direct methods, if there is a first order decay of 

superoxide observed then the reaction is a truly catalytic reaction. If however the 

reaction is found to be second order, then the reaction is deemed to be a non-catalytic 

decay.
75 

 

1.4 Catalase Activity 

 

Catalase is a metalloenzyme that removes the potentially harmful hydrogen peroxide 

(H2O2) of which, some is produced during the disproportionation of the superoxide 

radical as shown in Equation 1. Catalase helps to protect living organisms from the 

reactive oxygen species (ROS) that are responsible for oxidative stress.
53

 Most 

catalases are heme-containing enzymes, however, a manganese containing catalase 

was first isolated and purified from the lactobacillus plantarum in 1983.
76

 Since then, 

various other manganese catalases have been purified and isolated from other 

organisms.  

 

The crystal structure of the manganese catalase from a lactobacillus plantarum 

showed that the active site contained a dimanganese core linked with a µ-glutamate 

carboxylate and two µ-oxygen atoms as illustrated in Figure 1-29.
77, 78
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Figure 1-29 – Catalase active site of the lactobacillus plantarum 

 

Hydrogen peroxide can be produced at increased levels in different pathological 

situations and when the level of H2O2 is too high for the catalase enzymes, cellular 

damage can arise due to the production of the mutagenic OH∙ radical that is formed 

when H2O2 reacts with Fe
2+

 or Cu
2+

. Due to the toxicity of H2O2, organisms have 

developed methods to aid in its fast decomposition which requires a two electron 

catalyst. Naturally occurring manganese catalases contain two manganese centres,
79

 

carboxylate bridges,  and their binding mode can alter the observed activity.
78, 80, 81

 

Nitrogen containing heterocyclic bases known as histidines exist in the vicinity of the 

active site of manganocatalases. The addition of base during the testing of catalase 

models has often been shown to increase catalytic activity and Pecoro et al.82
 

suggested that base was needed to deprotonate the hydrogen peroxide to initiate the 

reaction for binding to the manganese ions. During decomposition, one molecule of 

catalase can convert millions of molecules of H2O2 per second. 
83-85

 

 

H2O2 is decomposed by catalase to molecular oxygen and water according to 

Equation 2 shown below:
43, 80, 86, 87

 

 

2H2O2 → 2H2O + O2 

Equation 2 – Removal of hydrogen peroxide 

 

A possible mechanism for the catalase activity is shown below in Figure 1-30:
78
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Figure 1-30 – Possible mechanism for catalase activity 

 

During catalysis, the manganese centres cycle between Mn2
(III)

 and Mn2
(II)

 and one 

molecule of H2O2 is oxidised to oxygen while another is reduced to H2O. During the 

oxidative reaction, H2O2 replaces the terminal H2O ligand from one of the Mn(III) 

centres and protonates the µ-oxo bridge. Reduction of the manganese dimer results in 

the formation and release of O2. The second molecule of H2O2 binds to the 

manganese(II) as a bridging hydroperoxo ligand. O-O bond cleavage followed by 

reoxidation to Mn2
(III)

 with loss of H2O completes the cycle.
78, 79, 88, 89

 

 

When designing manganese catalase mimics, it is important to explore how changes 

in geometry of the manganese centre and the nature of the complexes can affect 

reaction rates and provide suggestions for increasing catalase activity. This in turn 

may lead to a more detailed understanding of the mechanisms involved in the 

catalytic cycle. 
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Early examples of manganese catalase mimics were based on porphyrin manganese 

dimer complexes. However, the dimeric units would dissociate during catalysis, and 

although efforts were made to stabilise the complex via addition of rigid linkers, the 

rate of catalase activity was slow compared to the natural enzyme.
79

 Since then, 

porphyrin derivatives have been prepared that show increased rates of catalytic 

activity.
79, 90

 

 

Dismukes et al. later synthesised a family of dinuclear complexes with varying 

coordination environments and oxidation states, an example of this type of complex 

is illustrated below in Figure 1-31
88
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Figure 1-31 – Dinuclear manganese catalase mimic 

 

Following their studies, they proposed a mechanism of catalase activity for a 

hydroxide derivative of the complex shown in Figure 1-31, this was a ping pong 

mechanism as shown below in Figure 1-32. 
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Figure 1-32 – Proposed mechanism for catalase activity of a dinuclear Manganese 

complex 

 

For the mechanism shown in Figure 1-32, the substrate binds to the µ-hydroperoxide 

to (10’) by exchange of the hydroxide bridge (µ-OH
- 
+ H2O2  µO2H

-
 +H2O) this 

is steps A B C. Steps D   E follow formation of the oxidised complex 

6A and preceeds its reduction E A. Dismukes et al. suggested that substrate 

binding to the oxidised complex (11) or reduction to (10’) is accelerated by excess 

hydroxide and the step that is accelerated by excess hydroxide may involve the 

reduction of 11 to form complex 12 (D E).
88

 

 

Mn-Salen complexes have been shown to be particularly promising catalase mimics. 

These complexes have also shown to posess superoxide dismutase activity as well as 
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catalase activity, with catalase activity varying significantly with ligand substituents. 

A ping pong mechanism was suggested by Abashkin and Burt
86

 for a Mn Salen 

complex as shown in Figure 1-33. 
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Figure 1-33 – Structure of a manganese salen complex 

 

It was suggested that the H2O2 molecule binds to the Mn(III) metal centre, which 

then becomes oxidised releasing a molecule of water. In the second step, a peroxide 

molecule approaches the oxo manganese(V) intermediate, transforming the oxygen 

back to peroxide forming O2 and H2O (see Figure 1-34). 

 

Mn Mn Mn

OH2O2 H2O2H2O H2O + O2

Mn Mn Mn

OH2O2 H2O2H2O H2O + O2

 

Figure 1-34 – Ping pong mechanism for manganese salen complexes 

 

Throughout his thesis, various manganese complexes have been investigated for their 

catalase and superoxide dismutase activity; this is with the intention of helping to 

identify key differences and geometric constraints that may induce higher rates of 

activity. The observed changes may help to facilitate the understanding of the 

catalytic activity. 

 

Model compounds that may be successful for both superoxide dismutase activity and 

catalase activity may be of interest for the role of both antioxdant actions in one 

potential pharmaceutical compound however, in the case where a compound shows 

only superoxide dismuatse activity or only catalase activity, then there may be scope 

for further developments and testing of that compound. The absence of either 

superoxide dismutase activity or catalase activity may be an essential feature for the 
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treatment of specific conditions, for example, where a compound shows high 

superoxide dismutase activity, the potentially harmful OH∙ radical may be produced 

which in the absence of a catalase mimic may survive long enough to show 

significant cytotoxicity, thus providing a potential scope for their use against 

cancerous cells which may have heightened levels of superoxide present. Catalase 

mimics which show no superoxide dismutase activity may be required for conditions 

which produce harmful hydrogen peroxide at a rate which overwhelmes the natural 

enzyme’s capacity at which it is able to deal with. 

 

The aims of this thesis were to develop a wide range of low molecular weight seven 

coordinate manganese(II) complexes with slight geometric alterations introduced 

around the metal centres. This type of complex was expected to show both 

superoxide dismutase and/or catalase activity. Structure activity relationships may 

improve the understanding of the catalytic cycle involved in these two important 

reactions which may prevent oxidative stress. 
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2 Chapter Two - Synthesis and Structure 
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2.1 Organic preparations 

 

The pyridine head units for the macrocyclic complexes of H2L1, H4L2 and H2L3 

were prepared in house as described below. The head units of the complexes contain 

the carbonyl functional group (C=O) which is able to undergo a Schiff base 

condensation reaction with the appropriate amines to form the desired macrocyclic 

complexes. The two head units differ slightly with 2,6-diacetylpyridine containing 

two methyl groups where these are not present in the 2,6-diformylpyridine head unit. 

This was with the intention of forming complexes with slight differences in geometry 

around the metal centre, with the notion that without the methyl groups, there would 

be more flexibility in the macrocycle around the metal centre. Two different types of 

complex have been synthesised due to macrocyclic ring contractions that occur with 

the use of the diformylpyridine head unit.  

 

2.1.1 2,6-Diacetylpyridine 

 

2,6-Diacetylpyridine was prepared in two stages, firstly, 2,6-pyridinedicarboxylic 

acid undergoes an esterification reaction to form the product 2,6-dimethylpyridine 

dicarboxylate as illustrated.
100

 

 

Step 1: 

N

O

OHOH

O

N

OO

OMeMeO
1. SOCl2

2. MeOH

 

 

The 
1
H NMR data were used to confirm the presence of the methyl groups which 

were found as a singlet at δ(H) 3.96 ppm, this was not present in the NMR found for 

the start material 2,6-pyridinedicarboxylic acid, confirming that the reaction was 

successful.  
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The second stage of the reaction is the formation of 2,6-diacetylpyridine from 2,6-

dimethylpyridine dicarboxylate in a Claisen condensation reaction as illustrated 

below.
100

 

 

Step 2: 

N

OO

OMeMeO N

OO

MeMe1. EtOAc / NaOEt

2. Conc. HCl

 

 

Analysis of the 
1
H NMR for the product formed in this reaction showed that the 

signal for the methyl group has shifted to δ(H) 2.73 ppm, this is due to the removal 

of the electron density on the oxygen atom from the OMe group of the 2,6-

dimethylpyridine dicarboxylate. Fine crystals of 2,6-diacetylpyridine were formed 

during this reaction. Crystals of the macrocyclic complexes further verified the 

success of this reaction. 

 

2.1.2 2,6-Diformylpyridine 

 

Activated manganese dioxide (MnO2) which is an oxidant, was freshly prepared in 

house and used for the oxidation of the precursor to 2,6-diformylpyridine which was 

formed in good yield and purity. This was then used as the head unit for the 

macrocyclic complexes of H2L3.  

 

N

OH OH

N

O O

MnO2

 

 

During the preparation of 2,6-diformylpyridine, a υ(C=O) stretch at 1700 cm
-1

 in the 

infrared spectrum proved that the reaction had taken place Crystals of the 

macrocyclic complexes further verified the success of this reaction. 
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2.2 Polynuclear complexes 

 

The [2+2] macrocycle H2L1 shown in Figure 2-1 was prepared via Schiff base 

template condensation of 2,6-diacetylpyridine (DAP) with 1,3-diamino-2-

hydroxypropane, utilising a Ba
2+

 ion from barium perchlorate. Borohydride reduction 

was then carried out to form the [2+2] macrocycle RedH2L1 as illustrated in Figure 

2-1. The [2+2] macrocycle H2L3 shown in Figure 2-1 was prepared via Schiff base 

template condensation of 2,6-diformylpyridine (DFP) with 1,3-diamino-2-

hydroxypropane, utilising a Ba
2+

 ion from barium perchlorate.
100
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Figure 2-1 – [2+2] macrocycles H2L1, RedH2L1 and H2L3 

 

The use of barium as the template ion produces the [2+2] macrocycles of H2L1, 

RedH2L1 and H2L3 in good yield and purity. Once the barium complex is formed, 

the complex can be transmetallated by manganese(II) ions forming a complex which 

is more stable than the barium complex. The manganese ions have a higher affinity 

for the donors within the ligand system. The transmetallation reaction will not work 

with all transition metal ions due to the geometry that is imposed by the macrocyclic 

ligand and the nature of the donors within the system, however manganese(II) has no 

preferred geometry and readily adopts the pentagonal bipyramidal geometry that is 

imposed upon it, whilst having a high affinity for the donors in accordance with 

HSAB theory, which states that a hard acid will coordinate more strongly with a hard 
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base and a soft acid will coordinate more strongly with a soft base. A hard species is 

generally small in size with a high charge and a soft species tends to be large in size 

with a low charge. Nitrogen is a medium soft donor, which is made slighty softer 

within the macrocyclic system that has an imine bond, however, the barium ion is 

hard and so is easily displaced for the more softer manganese ion. The barium 

macrocycle then acts as a precursor for a transmetallation reaction with manganese 

allowing synthesis of a range of tetranuclear and pentanuclear manganese(II) 

macrocycles with differing axial ligands.  

 

When the mononuclear barium macrocyclic complex [Ba(H2L1)(H2O)](ClO4)2 is 

formed, the charge on the barium is +2, therefore, two negatively charged perchlorate 

anions are present to maintain electric neutrality.  

 

The structure of a barium complex of H2L1 has previously been reported by Adams 

et al91
 and the structure of the cation is shown in Figure 2-2. 

 

 

Figure 2-2 – Dimeric [Ba(H2L1)(H2O)2]2
4+ 

cation with perchlorate anions and 

hydrogens omitted for clarity 
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The complex was found to crystallise in the triclinic space group P1. The macrocycle 

shows substantial folding between the pyridyl fragments and a dimerisation via two 

bridging water molecules. Two perchlorate anions are not directly coordinated to the 

complex but are involved in extended hydrogen bonding to the coordinated water 

molecules.
91

 

 

2.2.1 [Ba(H2L3)(ClO4)]2(ClO4)2 

 

 

Figure 2-3- Structure of [Ba(H2L3)(ClO4)]2
2+with perchlorate anions, and 

hydrogens omitted for clarity. Dashed lines represent hydrogen bonding 

 

A Schiff Base condensation reaction was used for the preparation of the barium 

complex yielding either large clear crystals or a white powder that crystallises as 

clear blocks under slow diffusion of ether into a DMF solution. 

 

[Ba(H2L3)(ClO4)]2(ClO4)2 crystallised as large clear block shaped crystals in the 

triclinic space group P1 with R1 = 0.0374. The details of the crystal structure and 

refinement can be found in Table 27 in appendix 1.  

 

The metric parameters for this type of compound were as expected. The macrocycle 

shows substantial folding between the pyridyl fragments as seen for the published 

structure for the barium complex of H2L1 previously described and a dimerisation 
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due to the coordinated perchlorate ions. The dimerisation is then strengthened by 

hydrogen bonds that form between the alcohol units on adjacent macrocyclic units. 

 

The structure of the [Ba(H2L3)(ClO4)]2
2+

 cation as shown in Figure 2-3 shows that 

each macrocycle binds a single eleven coordinate barium ion. Selected bond lengths 

and angles for [Ba(H2L3)(ClO4)]2(ClO4)2 are given Table 1. 

 

Table 1 - Selected bond lengths [Å] and angles [
o
] for [Ba(H2L3)(ClO4)]2(ClO4)2 

Ba(1)–O(1) 2.783(3) Ba(1)–O(5) 2.876(3) 

Ba(1)–N(5) 2.918(3) Ba(1)–N(4) 2.933(3) 

Ba(1)–N(1) 2.935(3) Ba(1)–N(6) 2.949(3) 

Ba(1)–N(2) 2.958(3) Ba(1)–O(2) 2.976(2) 

Ba(1)–N(3) 3.004(3) Ba(1)–O(8) 3.090(3) 

 

O(1)–Ba(1)–O(8A) 72.96(8) O(1)–Ba(1)–N(5) 113.53(8) 

O(8A)–Ba(1)–N(5) 96.46(8) O(8A)–Ba(1)–N(4) 78.97(8) 

O(1)–Ba(1)–N(4) 148.42(8) N(5)–Ba(1)–N(4) 55.28(8) 

O(1)–Ba(1)–N(1) 57.21(8) O(8A)–Ba(1)–N(1) 127.35(8) 

N(4)–Ba(1)–N(1) 140.10(8) N(5)–Ba(1)–N(1) 89.14(8) 

O(8A)–Ba(1)–N(6) 83.80(8) O(1)–Ba(1)–N(6) 58.86(8) 

N(5)–Ba(1)–N(6) 54.76(8) N(4)–Ba(1)–N(6) 104.45(8) 

N(1)–Ba(1)–N(6) 57.62(8) O(1)–Ba(1)–N(2) 112.70(8) 

O(8A)–Ba(1)–N(2) 166.22(8) N(4)–Ba(1)–N(2) 91.85(8) 

N(5)–Ba(1)–N(2) 69.79(8) N(6)–Ba(1)–N(2) 88.64(8) 

N(1)–Ba(1)–N(2) 55.65(8) O(8A)–Ba(1)–O(2) 73.64(7) 

O(1)–Ba(1)–O(2) 124.42(7) N(5)–Ba(1)–O(2) 113.27(7) 

N(4)–Ba(1)–O(2) 58.07(8) N(1)–Ba(1)–O(2) 148.74(8) 

N(6)–Ba(1)–O(2) 153.42(8) N(2)–Ba(1)–O(2) 110.29(7) 

O(1)–Ba(1)–N(3) 154.48(8) O(8A)–Ba(1)–N(3) 124.68(8) 

N(4)–Ba(1)–N(3) 56.63(8) N(5)–Ba(1)–N(3) 84.67(8) 

N(6)–Ba(1)–N(3) 134.43(8) N(1)–Ba(1)–N(3) 107.95(8) 

O(2)–Ba(1)–N(3) 56.07(7) N(2)–Ba(1)–N(3) 55.09(8) 

Symmetry operations for equivalent atoms A   x,y1,z       
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The [Ba(H2L3)(ClO4)]2
2+

 cation is centrosymmetric and each barium ion binds to all 

6 nitrogen donors and two oxygen donors within the macrocycle. The bite angle of 

the pyridine diimine head unit 107.95(8)
o
 (for N1–Ba1–N3), and 104.45(8)

o
 (for N4–

Ba1–N6) is much smaller than those of the manganese bound complexes of L1 due 

to the larger size of the barium ion. Each barium ion also binds to two oxygen atoms 

from one bridging perchlorate and one oxygen atom from the second bridging 

perchlorate.  

 

Figure 2-4– Hydrogen bonding for [Ba(H2L3)(ClO4)]2.(ClO4) 

 

Hydrogen bonding exists between the two alcohol units strengthening the 

dimerisation, with further hydrogen bonding observed between one alcohol unit from 

the macrocyclic unit to a perchlorate ion on a second dimeric macrocyclic unit as 

illustrated in Figure 2-4. 

 

At this stage, there is no ring contraction observed for the barium precursor 

[Ba(H2L3)(ClO4)]2.(ClO4)2 which crystallises as a dimeric molecule. When the 

barium complex is used in a transmetallation reaction to form a manganese complex, 
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one imine bond undergoes a nucleophilic attack from the solvent molecule forming a 

ring contracted species to accommodate the size of the manganese ion.  

 

2.2.2 [Ba(L5)(ClO4)2(OH2)].(OH2) 

 

 

Figure 2-5 - Structure of [Ba(L5)(ClO4)2(H2O)].H2O. with hydrogens omitted for 

clarity. Dashed lines represent hydrogen bonding 

 

Large colourless crystals of [Ba(L5)(ClO4)2(H2O)].H2O, the structure of which is 

shown in Figure 2-5
92

 were formed from the reaction mixture of 2,6-

diformylpyridine, 1, 3-diaminopropane and barium perchlorate in a methanolic 

solvent by Rebecca Dennett as part of a BSc honours project.  

 

The crystals obtained as described above crystallised in the monoclinic space group 

C2/c with R1 = 0.0227. The details of the crystal structure and refinement can be 

found in Table 29 in appendix 1.  

 

The molecule described here crystallises differently to that of the complex 

[Ba(H2L3)(ClO4)]2(ClO4)2 described earlier and illustrated in Figure 2-3 due to there 

being no alcohol groups in the macrocyclic ligand. Here, there is a two fold axis 

which runs through Ba1-Cl1, the asymmetric unit contains a single eleven coordinate 

barium ion that is bonded to all six nitrogen donors of the macrocycle which is 
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folded to accommodate the metal. Two bidentate perchlorate anions are coordinated 

with one on each side of the macrocycle. A water molecule is coordinated on the 

convex side of the macrocycle to complete the coordination sphere. A non-

coordinated water molecule (O2W) is hydrogen bonded to O1W and to the 

perchlorate ion. The perchlorate anion and the water molecules on the convex side of 

the macrocycle are all disordered and was modelled with equal occupancy of the two 

positions about a two fold axis running through Ba1 and Cl1 within the complex. 

 

The selected bond lengths and angles for [Ba(L5)(ClO4)2(H2O)].H2O are reported in 

Table 2:  

 

Table 2 - Selected bond lengths [Å] and angles [°] for [Ba(L5)(ClO4)2(H2O)].H2O 

Ba(1)–O(1W) 2.836(4) Ba(1)–N(2) 2.9217(16) 

Ba(1)–N(1) 2.8856(16) Ba(1)–N(3) 3.0002(15) 

Ba(1)–O(5) 2.893(4) Ba(1)–O(1) 3.0253(14) 

 

N(1)–Ba(1)–O(5) 77.19(8) O(1W)–Ba(1)–N(1) 148.48(11) 

O(5A)–Ba(1)–O(5) 75.11(15) O(1W)–Ba(1)–O(5) 73.93(10) 

N(1A)–Ba(1)–N(2) 118.24(4) O(1W)–Ba(1)–N(2) 100.79(12) 

O(5)–Ba(1)–N(2) 71.63(8) O(1W)–Ba(1)–N(3) 67.18(9) 

N(1)–Ba(1)–N(3) 115.02(5) O(1W)–Ba(1)–O(1) 130.24(8) 

O(5A)–Ba(1)–N(3) 80.34(9) N(1)–Ba(1)–O(1) 65.68(4) 

N(2)–Ba(1)–N(3) 66.22(5) N(2)–Ba(1)–O(1) 66.01(4) 

O(5)–Ba(1)–O(1) 134.03(7) N(3)–Ba(1)–O(1) 63.66(4) 

O(5)–Ba(1)–N(3) 113.95(9) N(2)-Ba(1)-N(3A) 112.35(5) 

Symmetry operations for equivalent atoms A   x,y,z+3/2 

 

The angle of the pyridine diimine head unit 112.35(5)
o
 (for N2–Ba1–N3A) is much 

smaller than that of the manganese bound complexes of L1 due to the larger size of 

the barium ion but is larger than the angle observed for the complex 

[Ba(H2L3)(ClO4)]2(ClO4)2. Longer bond lengths are also observed for the Ba-donor 

ligand than for the manganese bound complexes previously described. 
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[Ba(L5)(ClO4)2(H2O)].H2O packs as a two dimensional sheet as shown in Figure 2-6 

where only one portion of the disorder is shown. The complex molecules are linked 

via hydrogen bonding from the water molecules. The disorder of the groups 

coordinated on the convex side of the macrocycle gives rise to two possible hydrogen 

bonding nets related by a two fold axis. 

 

Figure 2-6 – Packing diagram for [Ba(L5)(ClO4)2(H2O)].H2O shown perpendicular 

to the a axis 

 

The reduced analogue of H2L1, named RedH2L1, was prepared using sodium 

borohydride to reduce the imine bonds of the barium macrocycle as illustrated Figure 

2-7. 

C=N-R
R

R

H-BH3
-

R2C

H

N R2C

H

N-R + BH3

MeOH
R2C

H

N
R

BH3
H

R

 

Figure 2-7 – Borohydride reduction 

 

During the reduction, borohydride donates a hydrogen to the imine bond and the 

residual BH3 then complexes with the nitrogen atom. The second hydrogen is from 
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the hydroxyl group of the alcoholic solvent which forms a hydrogen bond to the 

nitrogen of the imine bond. At this stage, the H-BH2OMe borate molecule is formed 

and there are three remaining B-H bonds available for the reduction of further 

imines. 

 

After extraction of the ligand, transmetallation reactions with various manganese 

salts were completed. Reduction was carried out in this way to form the complex in a 

high yield. IR analysis of the reduced macrocycle confirmed that a reduction had 

taken place due to the disappearance of the imine stretch at 1639 cm
-1

 observed for 

the complex of H2L1. In principle, it is possible to form any combination of the R,R’, 

S,S’ and R,S isomers with regard to the dimethylhead units of the macrocycle 

following reduction of the imine bonds, however, due to the folding of the 

macrocycle that is observed for both complexes of H2L1 and H2L3, there are likely to 

be less isomers formed as the folding may restrict the position that the borohydride 

can approach the imine bonds. Riley et al39
 found that when borohydride was used 

for the reduction of M40403, only the R,R-diastereoisomer was formed, as 

monitored by HPLC. This result is expected due to being the least stereochemically 

restricted approach to the imine bond with each borohydride approaching from 

opposite sides of the macrocyclic plane.  

 

Table 3 - Key IR data 

Ligand Key IR data (cm
-1

) 

H2L1 3431 υ(O-H), 1639 υ(C=N), 1584 υ(C=C) 

RedHL1 3299 υ(O-H), 1574 υ(C=C), 1095 

H2L3 3380 υ(O-H), 1654 υ(C=N), 1586 υ(C=C)  

L5 1642 υ(C=N), 1586 υ(C=C) 

 

Each complex was analysed using infrared (IR) spectroscopy, elemental analysis, 

FAB mass spectrometry and, where possible, X-ray crystallography. The IR data 

were initially used to confirm the absence of an amine and carbonyl stretches 

associated with the reactant materials and the presence of an imine bond at 1643 – 

1658 cm
-1

 confirming that the reaction had taken place. A band at 1565 – 1598 cm
-1

 

is associated with the pyridyl ring of the two head units. Where perchlorate ions were 
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present, a broad peak was observed at ~1100 cm
-1

 with a sharp peak at 625 cm
-1

, the 

first of which is due to the υ3 asymmetric stretch and the latter being a symmetrical 

bend. 

 

On formation of the barium precursor, a transmetallation reaction was carried out to 

form the manganese complexes of H2L1 RedH2L1 and HL3. During formation of the 

H2L1 and RedH2L1 complexes, there can be a monodeprotonation of one of the 

alcohol groups for each macrocyclic ligand due to the formation of a dimeric species 

in which the hydrogen sits between the two oxygens of the macrocycle with 

hydrogen bonding. The monodeprotonation introduces a negative charge into each of 

the two macrocyclic units, so for a complex which contains for example, negatively 

charged chloride axial ligands, there remain two uncoordinated negatively charged 

counter ions such as perchlorate. In the case where there is a chloride ligand present 

for example, these will bind in the axial position in favour of the perchlorate anions 

due to the chloride having a stronger ligand field, and possessing a higher affinity for 

the manganese. Complexes of H2L3 were found to undergo a macrocyclic ring 

contraction. IR peaks confirming the axial ligand were observed, for example, azide 

and isothiocyanate ligands showed sharp peaks at 2046 and 2037 cm
-1

 respectively. 

 

2.2.3 [Mn2(HL1)(Cl)2]2(ClO4)2.2DMF 

 

[Mn2(HL1)(Cl)2]2(ClO4)2 was prepared via transmetallation of the barium precursor 

with MnCl2.4H2O under reflux in dry methanol solvent. During the synthesis a 

colour change was observed from colourless to orange on addition of manganese 

chloride. The solid product was collected via filtration from the cooled reaction 

vessel however, more product could be recovered from the filtrate thereafter by 

reducing the volume of the solvent to approximately 5 ml under reduced pressure. 

FAB ms analysis suggested that a dimer was present as indicated by the 

fragmentation pattern with m/z of 1327 which corresponds to the fragment 

[Mn2(HL2)(Cl)2]2(ClO4)
+
. Suitable crystals for X-ray diffraction were grown from 

DMF by slow diffusion of ether. The structure of the cation is shown in Figure 2-8. 
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Figure 2-8 – Structure of [Mn2(HL1)(Cl)2]2
2+

 with perchlorate anions, hydrogens 

and solvent molecules omitted for clarity. Dashed lines represent hydrogen bonds 

 

The crystal structure of [Mn2(HL1)(Cl)2]2(ClO4)2 was previously reported by McKee 

and co-workers;
93

 it crystallised in the orthorhombic space group Pbcn with R1 = 

0.0706. 

 

The complex prepared here was found to crystallise in the same space group but the 

refinement has been improved with R1 = 0.0375. The details of the crystal structure 

and refinement can be found in Table 23 in Appendix 1. 

 

The [Mn2(HL1)(Cl)2]2
2+

 cation lies on a crystallographic 2-fold axis passing through 

Cl1 and Cl3. Each macrocycle binds two Mn(II) ions and the cation is dimeric with 

the two macrocyclic units linked by bridging chloride ions thus creating a 

tetramanganese system. During the synthesis of the molecule, two of the four 

pendant alcohol groups are deprotonated. The diagram shown in Figure 2-8 indicates 

that there is one macrocycle which is fully protonated and one macrocycle which is 

fully deprotonated, however this is probably an artefact and occurs because the 

hydrogen that is present was freely refined and located on O2, this was then 

symmetry generated on O2A under –x, y, 0.5-z. Hydrogen bonds exist between the 
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alcohol groups of the adjacent macrocycles with a bond distance of 2.491(2) Å. Each 

manganese ion is seven-coordinate with each metal centre having pentagonal 

bipyramidal geometry. Selected bond lengths and angles for 

[Mn2(HL1)(Cl)2]2(ClO4)2.2DMF are given in Table 4 below. 

 

Table 4-Selected bond lengths [Å]and angles [
o
] for [Mn2(HL1)(Cl)2]2(ClO4)2.2DMF 

Mn(1)–N(2) 2.225(2) Mn(1)–N(3) 2.261(2) 

Mn(1)–O(1) 2.2670(16) Mn(1)–N(1) 2.284(2) 

Mn(1)–Cl(2) 2.5419(7) Mn(1)–Cl(1) 2.6008(8) 

Mn(2)–N(5) 2.218(2) Mn(2)–O(2) 2.2710(15) 

Mn(2)–N(6) 2.281(2) Mn(2)–N(4) 2.2963(19) 

Mn(2)–Cl(2) 2.5358(7) Mn(2)–Cl(3) 2.5944(8) 

 

N(2)–Mn(1)–N(3) 70.30(7) N(2)–Mn(1)–O(1) 143.05(7) 

N(3)–Mn(1)–O(1) 144.60(7) N(2)–Mn(1)–N(1) 70.28(7) 

N(3)–Mn(1)–N(1) 138.88(8) O(1)–Mn(1)–N(1) 72.83(7) 

N(2)–Mn(1)–Cl(2) 90.16(5) N(3)–Mn(1)–Cl(2) 103.69(6) 

O(1)–Mn(1)–Cl(2) 90.38(4) N(1)–Mn(1)–Cl(2) 87.67(6) 

N(2)–Mn(1)–Cl(1) 94.82(5) N(3)–Mn(1)–Cl(1) 79.25(6) 

O(1)–Mn(1)–Cl(1) 84.89(4) N(1)–Mn(1)–Cl(1) 92.81(6) 

Cl(2)–Mn(1)–Cl(1) 174.87(2) N(5)–Mn(2)–O(2) 142.57(7) 

N(5)–Mn(2)–N(6) 70.40(7) O(2)–Mn(2)–N(6) 72.82(6) 

N(5)–Mn(2)–N(4) 70.24(7) O(2)–Mn(2)–N(4) 147.18(7) 

N(6)–Mn(2)–N(4) 139.30(7) N(5)–Mn(2)–Cl(2) 90.50(6) 

O(2)–Mn(2)–Cl(2) 89.17(4) N(6)–Mn(2)–Cl(2) 100.05(6) 

N(4)–Mn(2)–Cl(2) 90.24(6) N(5)–Mn(2)–Cl(3) 94.14(5) 

O(2)–Mn(2)–Cl(3) 84.48(4) N(6)–Mn(2)–Cl(3) 77.46(6) 

N(4)–Mn(2)–Cl(3) 95.45(5) Mn(1A)–Cl(1)–Mn(1) 73.76(3) 

Mn(2A)–O(2)–Mn(2) 86.59(5)   

Symmetry operations for equivalent atoms A   x+1,y,z3/2        

 

The pentagonal plane contains three nitrogen donors from a pyridinediimine unit 

with a bite angle of 138.88(8)
o
 (N3-Mn1-N1) and two oxygen donors from the 
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macrocycle. The coordination sphere is completed by a bridging chloride ion that sits 

in the axial position and serves to link the two macrocyclic units and a further axial 

chloride ligand which bridges the two manganese ions within each macrocyclic unit. 

The bridge angles between the manganese centres within the macrocylic units are 

considerably smaller [Mn1A-Cl1-Mn1, 73.76(3)
o
] and [Mn(2A)–O(2)–Mn(2), 

86.59(5)
o
] than the equivalent bridge angles which link the macrocyclic units [Mn2-

Cl2-Mn1, 115.67(3)
o
]. The bond distances observed for the bridge angles between 

the manganese centres within the macrocylic units are [Mn1-Cl1, 2.6008(8) Å], and 

[Mn2–Cl3, 2.5944(8) Å]. The bond distances observed for the equivalent bridge 

angles which link the macrocyclic units are 2.5419(7) Å for Mn1-Cl2, and 2.5358(7) 

Å for Mn2-Cl2. 

 

The principal interaction between adjacent cations is π-π stacking between the 

pyridinediimine head units of two adjacent molecules this is observed between the 

overlapping sections as illustrated in Figure 2-9 below. The centroid - centroid 

distance is 3.760 Å and the centroid of the ring is 3.707(1) Å from the mean plane of 

the second ring under symmetry operation -0.5-x+2, -0.5+y+1, z. The π-π stacking 

continues between adjacent molecules of the complex and can be seen in the packing 

diagram as viewed down the c axis shown in Figure 2-10 below. 
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Figure 2-9 – π-π stacking for [Mn2(HL1)(Cl)2]2(ClO4)2 

 



 

 

53 

 

Figure 2-10 – Packing diagram for [Mn2(HL1)(Cl)2]2(ClO4)2 as viewed down the c 

axis 

 

 

a 

b 

c o 
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2.2.4 [Mn2(HL1)(N3)2]2(ClO4)2.2DMF 

 

 

Figure 2-11 –Structure of [Mn2(HL1)(N3)2]2
2+

 with perchlorate anions hydrogens 

and solvate DMF molecules omitted for clarity. Dashed lines represent hydrogen 

bonding 

 

The crystal structure of [Mn2(HL1)(N3)2]2
2+

 is illustrated in Figure 2-11. 

[Mn2(HL1)(N3)2]2(ClO4)2.2DMF crystallises in the monoclinic spacegroup P21/c and 

was refined to R1 = 0.0399. The details of the crystal structure and refinement can be 

found in Table 24 in Appendix 1. 

 

The structure of a different solvate, [Mn2(C24H29N6O2)(N3)2]2(ClO4)2.3MeCN, has 

previously been published by McKee and coworkers
93

. The published structure 

crystallised in the triclinic spacegroup P1 with R1 = 0.0667. The published structure 

was crystallised from an acetonitrile solution by vapour diffusion of diethylether and 

the complex prepared here was crystallised from a DMF solution by vapour diffusion 
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of diethylether and was found to crystallise with two uncoordinated molecules of 

DMF, however the structures of the cations are similar. 

 

The [Mn2(HL1)(N3)2]2
2+

 cation is broadly similar to the structure of 

[Mn2(HL1)(Cl)2]2(ClO4)2. As before, the macrocycle binds two Mn(II) ions and the 

molecule is dimeric with two macrocyclic units linked by the bridging azide ligands 

forming a tetramanganese system. Each macrocycle is mono deprotonated with the 

hydrogen freely refined on O1 and symmetry generated on O1A under –x+1, -y+1, -

z+4 and so hydrogen bonds exist between the alcohol groups of the adjacent 

macrocycles. The hydrogen bonding as illustrated in Figure 2-11 appears different to 

that for the previous complex which is shown in Figure 2-8, this is because second 

macrocyclic unit is symmetry generated for the complex described here. 

 

Each manganese ion is seven-coordinate with pentagonal bipyramidal geometry. 

Selected bond lengths and angles are shown in Table 5 below. 

 

Table 5 -Selected bond lengths [Å] and angles [
o
] for 

[Mn2(HL1)(N3)2]2(ClO4)2.2DMF 

N(1)–Mn(1) 2.3079(14) N(2)–Mn(1) 2.2430(14) 

N(3)–Mn(1) 2.2962(13) Mn(1)–O(2) 2.2587(11) 

Mn(1)–N(8) 2.2803(14) Mn(1)–O(1) 2.2883(11) 

Mn(1)–N(11) 2.3127(15) Mn(1)–Mn(2) 3.1122(4) 

O(2)–Mn(2) 2.2514(11) N(4)–Mn(2) 2.2736(14) 

N(5)–Mn(2) 2.2407(15) N(6)–Mn(2) 2.2705(13) 

Mn(2)–O(1) 2.2775(11) Mn(2)–N(11) 2.3209(15) 

Mn(2)–N(8A) 2.3223(14) N(8)–Mn(2A) 2.3223(14) 
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N(2)–Mn(1)–O(2) 141.71(5) N(2)–Mn(1)–N(8) 95.30(5) 

O(2)–Mn(1)–N(8) 91.50(5) N(2)–Mn(1)–O(1) 140.28(5) 

O(2)–Mn(1)–O(1) 77.36(4) N(8)–Mn(1)–O(1) 88.69(5) 

N(2)–Mn(1)–N(3) 69.69(5) O(2)–Mn(1)–N(3) 72.31(5) 

N(8)–Mn(1)–N(3) 107.38(5) O(1)–Mn(1)–N(3) 145.76(5) 

N(2)–Mn(1)–N(1) 69.31(5) O(2)–Mn(1)–N(1) 148.62(5) 

N(8)–Mn(1)–N(1) 88.94(5) O(1)–Mn(1)–N(1) 71.28(4) 

N(3)–Mn(1)–N(1) 136.94(5) N(2)–Mn(1)–N(11) 98.34(5) 

O(2)–Mn(1)–N(11) 79.36(5) N(8)–Mn(1)–N(11) 166.12(5) 

O(1)–Mn(1)–N(11) 79.18(5) N(3)–Mn(1)–N(11) 79.95(5) 

N(1)–Mn(1)–N(11) 93.47(5) N(2)–Mn(1)–Mn(2) 146.25(4) 

O(2)–Mn(1)–Mn(2) 46.27(3) N(8)–Mn(1)–Mn(2) 118.41(4) 

O(1)–Mn(1)–Mn(2) 46.88(3) N(3)–Mn(1)–Mn(2) 99.45(4) 

N(1)–Mn(1)–Mn(2) 107.29(4) N(5)–Mn(2)–O(2) 142.67(5) 

N(5)–Mn(2)–N(6) 69.48(5) O(2)–Mn(2)–N(6) 146.29(5) 

N(5)–Mn(2)–N(4) 70.05(5) O(2)–Mn(2)–N(4) 72.63(5) 

N(6)–Mn(2)–N(4) 137.03(5) N(5)–Mn(2)–O(1) 139.43(5) 

O(2)–Mn(2)–O(1) 77.73(4) N(6)–Mn(2)–O(1) 72.21(5) 

N(4)–Mn(2)–O(1) 150.21(5) N(5)–Mn(2)–N(11) 106.63(5) 

O(2)–Mn(2)–N(11) 79.33(5) N(6)–Mn(2)–N(11) 80.39(5) 

N(4)–Mn(2)–N(11) 97.95(5) O(1)–Mn(2)–N(11) 79.23(5) 

N(5)–Mn(2)–N(8A) 91.75(5) O(2)–Mn(2)–N(8A) 87.96(5) 

N(6)–Mn(2)–N(8A) 103.91(5) N(4)–Mn(2)–N(8A) 91.11(5) 

O(1)–Mn(2)–N(8A) 84.80(5) N(11)–Mn(2)–N(8A) 161.35(5) 

Mn(1)–N(11)–Mn(2) 84.39(5) Mn(1)–N(8)–Mn(2A) 127.76(6) 

Symmetry operations for equivalent atoms A   x+1,y+1,z+4        

 

The pentagonal plane contains three nitrogen atoms from a pyridinediimine unit with 

a bite angle of 136.94(5)
o
 (for N3-Mn1-N1) and 137.03(5)

o
 (for N6–Mn2–N4) and 

two oxygen donors from the macrocycle. The coordination sphere is completed by 

two exogenous bridging azide ligands, one in the axial position bridging the two 

macrocyclic units, and a further axial azide ligand which bridges the two manganese 

ions within the macrocyclic unit. The bridge angles between the manganese centres 
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within the macrocylic units are considerably smaller [Mn1-N11-Mn2, 84.38(5)] than 

the equivalent bridge angles which link the macrocyclic units [Mn1-N8-Mn2, 

127.76(6)] and all equivalent bridging angles are larger than those observed for the 

complex [Mn2(HL1)(Cl)2]2(ClO4)2. The bond distances observed for the bridge 

angles between the manganese centres within the macrocylic units are 2.3127(15)Å 

for Mn1-N11, and 2.3209(15)Å Mn2–N11. The bond distances observed for the 

equivalent bridge angles which link the macrocyclic units are 2.2803(14)Å for Mn1-

N8, and 2.3223(14)Å for Mn2-N8A. 

 

The principal interaction of adjacent layers is the π-π stacking between the pyridine 

diimine head units of two adjacent molecules, this is observed between the 

overlapping sections as illustrated in Figure 2-12 below. 

 

 

Figure 2-12 – π-π stacking of [Mn2(HL1)(N3)2]2
2+

 

 

The centroid - centroid distance is 4.106 Å and the centroid of the ring is 3.439(1) Å 

from the mean plane of the second ring on the adjacent molecule under symmetry 
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operation -x+2, -y+1, -z+4. The π-π stacking continues between adjacent molecules 

of the complex and can be seen in the packing diagram as viewed down the a axis 

shown in Figure 2-13. The packing diagram in Figure 2-13 as viewed down the a 

axis illustrates how the molecules pack as sheets through π-π interactions on adjacent 

molecules. 

 

 

 

Figure 2-13 – Packing diagram for [Mn2(HL2)(N3)2]2(ClO4)2.2DMF as viewed down 

the a axis 

 

a 

c 

b o 
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2.2.5 [Mn5(L1)2(OAc)2(DMF)2](ClO4)4.4DMF 

 

 

Figure 2-14 – Structure of [Mn5(L1)2(OAc)2(DMF)2]
2+ with perchlorate anions, 

hydrogens and DMF solvate molecules omitted for clarity 

 

Orange crystals of the complex [Mn5(L1)2(OAc)2(DMF)2](ClO4)4.4DMF were 

obtained by slow diffusion of ether into a DMF solution of the complex, and the 

structure of [Mn5(L1)2(OAc)2(DMF)2]
2+

 is illustrated in Figure 2-14, this complex 

crystallised in the triclinic space group P1 with R1 = 0.0679, details of the crystal 

structure and refinement can be found in Table 25 in appendix 1. 

 

A similar structure [Mn5(L1)(OAc)2(ClO4)2](ClO4)2.2H2O, has previously been 

published by McKee and co-workers,
94

 but is a different solvate to the one described 

here. The published structure crystallised in the monoclinic space group P21/c with 

R1 = 0.0816.  
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The pentanuclear cation [Mn5(L1)2(OAc)2(DMF)2]2
2+

 is centrosymmetric with two 

binuclear manganese macrocyclic units bridged by a central 6-coordinate manganese 

ion and two acetate groups. Selected bond lengths and angles for 

[Mn5(L1)2(OAc)2(DMF)2](ClO4)4.4DMF are given in Table 6 below. 

 

Table 6 - Selected bond lengths (Å) and bond angles (
o
) for 

[Mn5(L1)2(OAc)2(DMF)2](ClO4)4.4DMF 

Mn(1)–N(2) 2.199(7) Mn(1)–O(1) 2.205(5) 

Mn(1)–O(3) 2.213(5) Mn(1)–O(2) 2.222(5) 

Mn(1)–N(3) 2.255(6) Mn(1)–N(1) 2.254(6) 

Mn(1)–O(5) 2.286(5) Mn(1)–Mn(3) 3.0163(13) 

O(1)–Mn(2) 2.199(5) O(1)–Mn(3) 2.214(5) 

N(4)–Mn(2) 2.257(6) N(5)–Mn(2) 2.220(6) 

N(6)–Mn(2) 2.260(6) Mn(2)–O(4) 2.130(6) 

Mn(2)–O(2) 2.190(5) Mn(2)–Mn(3) 3.2245(12) 

O(2)–Mn(3) 2.132(5) O(3)–Mn(3) 2.207(5) 

 

N(2)–Mn(1)–O(1) 144.4(2) N(2)–Mn(1)–O(3) 104.4(2) 

O(1)–Mn(1)–O(3) 83.15(19) N(2)–Mn(1)–O(2) 146.2(2) 

O(1)–Mn(1)–O(2) 69.06(18) O(3)–Mn(1)–O(2) 79.45(18) 

N(2)–Mn(1)–N(3) 71.0(3) O(1)–Mn(1)–N(3) 74.4(2) 

O(3)–Mn(1)–N(3) 89.3(2) O(2)–Mn(1)–N(3) 142.7(2) 

N(2)–Mn(1)–N(1) 72.4(3) O(1)–Mn(1)–N(1) 141.5(2) 

O(3)–Mn(1)–N(1) 100.1(2) O(2)–Mn(1)–N(1) 73.9(2) 

N(3)–Mn(1)–N(1) 143.4(3) N(2)–Mn(1)–O(5) 91.5(2) 

O(1)–Mn(1)–O(5) 87.98(19) O(3)–Mn(1)–O(5) 162.6(2) 

O(2)–Mn(1)–O(5) 83.37(19) N(3)–Mn(1)–O(5) 102.7(2) 

N(1)–Mn(1)–O(5) 77.8(2)   

 

During synthesis of the complex [Mn5(L1)2(OAc)2(DMF)2](ClO4)4.4DMF, the 

transmetallation reaction is carried out with a ligand to manganese ratio of 1:2.5 

respectively which enables the macrocycle to form as a pentanuclear complex rather 
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than a tetranuclear complex, this would not be expected to form as a pentanuclear 

complex with MnCl2 as the manganese salt due to the nature of the bonding 

involved. Acetate salts in methanol are sensitive to how the solution is treated and in 

turn affects how the transmetallation product forms.
94

  

 

Each oxygen atom of a carboxylate ion has two electron pairs, the one directed away 

from the R group is called the syn pair and the other is refered to as anti. Carboxylate 

ions can bind using either syn-syn or syn-anti binding modes, as illustrated in Figure 

2-15 below
95-97

 

 

 

Figure 2-15 – Different binding modes for carboxylate ligands 

 

The binding mode of the acetate ligands in the pentanuclear complex described here 

is classified as syn-(syn, anti), this is because there is both three atom and single 

atom bridging modes displayed. Firstly, Mn2 and Mn3 are linked by a three atom 

bridge but Mn3 and Mn1 are bridged by a single oxygen atom from the acetate 

ligand 

 

The cation consists of two dinuclear macrocyclic units that are bridged by a six 

coordinate octahedral manganese atom and two supporting acetate groups. The 

diimine section of the macrocycle contains a slightly larger angle of 143.4(3)
o
 (for 

N3–Mn1–N1) than that observed for [Mn2(HL1)(Cl)2]2
2+

 and [Mn2(HL1)(N3)2]2
2+

, 

which is due to the two oxygen donors within the macrocycle binding to the central 

manganese ion. The central manganese is bonded to the two alkoxide oxygen donors 

from each macrocyclic unit and two oxygen donors from the bridging acetate 
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ligands. Bridging of the two manganese ions within the macrocyclic unit occurs via 

the oxygen of a DMF molecule used as a solvent for the recrystallisation. Acetate 

axial ligands bridge the two macrocyclic units with one oxygen bridging the central 

manganese ion and one manganese ion from one macrocyclic unit, the other oxygen 

binds to a manganese ion in the corresponding macrocyclic unit. 

 

The principal interaction between adjacent molecules is π-π stacking between the 

pyridinediimine head units of two adjacent cations. The π-π stacking occurs due to 

the nature of the packing of molecules within a crystal lattice. This is observed 

between the overlapping adjacent sections as illustrated in Figure 2-16 below. 

 

 

Figure 2-16 – π-π Stacking in [Mn5(L1)(OAc)2(DMF)2]
2+

 

 

The centroid - centroid distance of the two rings is 3.704 Å and the centroid of the 

ring is 3.247(1) Å from the mean plane of the second ring on the adjacent molecule 

under symmetry operation –x-1, -y+1, -z-1. The π-π stacking continues between 

adjacent molecules of the complex and the π-π stacking can be seen in the packing 

diagram as viewed down the a axis shown in Figure 2-17. 
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Figure 2-17 - Packing diagram for [Mn5(L1)(OAc)2(DMF)2](ClO4)4.4DMF as 

viewed down the a axis 

 

The packing diagram for [Mn5(L1)(OAc)2(DMF)2](ClO4)4.4DMF as viewed down 

the a axis and shown in Figure 2-17 illustrates how the molecules pack through π-π 

interactions on adjacent molecules. This diagram has been extended downwards to 

illustrate the additional π-π stacking interactions that occur between the pyridyl head 

units of adjacent molecules. 

 

a 

b 

c 

o 
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2.2.6 [Mn2(RedHL1)(Cl)2]2[MnCl4].4DMF.EtOH 

 

 

Figure 2-18 –Structure of [Mn2(RedHL1)(Cl)2]2
2+with the [MnCl4]

2- anion, 

hydrogens and solvent molecules omitted for clarity. Dashed lines represent 

hydrogen bonding 

 

The complex [Mn2(RedHL1)(Cl)2]2MnCl4.4DMF.EtOH crystallised in the triclinic 

space group P1 with R = 0.0659. The crystal structure of the 

[Mn2(RedHL1)(Cl)2]2.
2+

 cation is illustrated in Figure 2-18. Data were collected 

using synchrotron radiation at Daresbury Laboratory SRS Station 9.8.
98

 Details of the 

crystal structure and refinement can be found in Appendix 1. 

 

The [Mn2(RedHL1)(Cl)2]2
2+

 cation was formed by reaction of the reduced ligand 

(RedHL1) with MnCl2 in a methanol solvent under reflux. Each macrocycle binds 

two Mn(II) ions and the cation is dimeric with the two macrocyclic units linked by 

bridging chloride ions thus creating a tetramanganese system. During the synthesis of 

the molecule, there is a mono deprotonation of the macrocycles with the hydrogen 

freely refined on O2 and symmetry generated on O2A. The hydrogen bonding as 
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illustrated in Figure 2-18 appears different to that in [Mn2(HL1)(Cl)2]2.
2+

 as 

illustrated Figure 2-8, the hydrogens presented here are positioned differently due to 

centrosymmetry within the molecule, here the second macrocyclic unit is symmetry 

generated. Selected bond lengths and angles for 

[Mn2(RedHL1)(Cl)2]2[MnCl4].4DMF.MeOH are illustrated in Table 7 below:  

 

Table 7 - Selected bond lengths (Å) and bond angles (
o
) for 

[Mn2(RedHL1)(Cl)2]2[MnCl4].4DMF.MeOH 

Mn(1)–N(2) 2.259(5) Mn(2)–N(5) 2.264(5) 

Mn(1)–O(2) 2.290(3) Mn(2)–O(2) 2.306(3) 

Mn(1)–N(1) 2.336(5) Mn(2)–Cl(1) 2.6553(16) 

Mn(1)–Cl(1) 2.6419(17) Mn(2) –N(4) 2.327(5) 

Mn(1)–O(1) 2.260(4) Mn(2) –N(6) 2.308(5) 

Mn(1)–N(3) 2.327(5) Mn(2)–Cl(2A) 2.5293(15) 

Mn(1)–Cl(2) 2.5410(16) N(1)–C(2) 1.461(7) 

Mn(1)–Mn(2) 3.1900(11) C(8)–N(3) 1.468(9) 
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N(2)–Mn(1)–O(1) 144.88(17) N(4)–Mn(2)–Cl(1) 87.90(13) 

O(1)–Mn(1)–O(2) 71.99(12) Cl(1)–Mn(1)–Mn(2) 53.16(4) 

O(1)–Mn(1)–N(3) 72.59(16) O(1)–Mn(2)–N(6) 143.59(15) 

N(2)–Mn(1)–N(1) 69.45(18) O(1)–Mn(2)–O(2) 72.35(12) 

O(2)–Mn(1)–N(1) 73.97(13) N(6)–Mn(2)–O(2) 71.64(14) 

N(2)–Mn(1)–Cl(2) 87.96(14) N(5)–Mn(2)–N(4) 69.9(2) 

O(2)–Mn(1)–Cl(2) 88.88(10) O(2)–Mn(2)–N(4) 146.69(17) 

N(1)–Mn(1)–Cl(2) 92.10(12) N(5)–Mn(2)–Cl(2A) 89.00(13) 

O(1)–Mn(1)–Cl(1) 83.16(10) O(2)–Mn(2)–Cl(2A) 90.65(9) 

N(3)–Mn(1)–Cl(1) 87.49(15) O(1)–Mn(2)–Cl(1) 83.52(10) 

Cl(2)–Mn(1)–Cl(1) 173.67(5) N(6)–Mn(2)–Cl(1) 87.78(12) 

N(2)–Mn(1)–O(2) 143.13(17) O(1)–Mn(2)–N(5) 144.40(18) 

N(2)–Mn(1)–N(3) 72.4(2) N(5)–Mn(2)–N(6) 71.79(19) 

O(2)–Mn(1)–N(3) 144.40(17) N(5)–Mn(2)–O(2) 143.25(18) 

O(1)–Mn(1)–N(1) 145.33(14) O(1)–Mn(2)–N(4) 74.61(16) 

N(3)–Mn(1)–N(1) 140.40(18) N(6)–Mn(2)–N(4) 140.44(18) 

O(1)–Mn(1)–Cl(2) 93.62(11) O(1)–Mn(2)–Cl(2A) 90.58(10) 

N(3)–Mn(1)–Cl(2) 96.77(15) N(6)–Mn(2)–Cl(2A) 95.01(13) 

N(2)–Mn(1)–Cl(1) 97.82(14) N(4)–Mn(2)–Cl(2A) 93.83(13) 

O(2)–Mn(1)–Cl(1) 84.94(10) N(5)–Mn(2)–Cl(1) 97.78(13) 

N(1)–Mn(1)–Cl(1) 87.53(13) O(2)–Mn(2)–Cl(1) 84.33(9) 

Cl(2)–Mn(1)–Mn(2) 121.01(4) Cl(2A)–Mn(2)–Cl(1) 173.19(6) 

Mn(1)–Cl(1)–Mn(2) 74.06(4) Mn(2A)–Cl(2)–Mn(1) 118.43(5) 

Symmetry operations for equivalent atoms A x+1,y+1  

 

The pentagonal plane of the macrocycle contains three nitrogen atoms from the head 

unit with a bite angle of 140.40(18)
o
 (for N3–Mn1–N1) and 140.44(18) (for N6–

Mn2–N4). The bridging angles between the manganese ions in one macrocyclic unit, 

are considerably smaller 74.06(4)
o
 (for Mn1-Cl1-Mn2) than the equivalent bridge 

angles for the chloride ions which bridge the two macrocyclic units 118.43(5)
o
 (for 

Mn2A–Cl2–Mn1). These angles are slightly larger than those observed for the 

complex [Mn2(HL1)(Cl)2]2(ClO4)2. Bond distances observed for the manganese ions 

that are bridged within the macrocyclic unit are 2.6419(17) Å for Mn1-Cl1, and 
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2.6553(16) Å for Mn2–Cl1. The bond distances observed for the bridges that link the 

macrocyclic units are 2.5410(16) Å for Mn1-Cl2, and 2.5293(15) Å for Mn2–Cl2A. 

 

Positional disorder exists about two of the methyl groups of the head unit where 

reduction of the imine bond has taken place. These were modelled with a 70:30 

occupancy of the two positions.  

 

The principal interaction between adjacent molecules is the π-π stacking that is 

present between the pyridinediimine head units of two adjacent cations, this is 

observed between the overlapping sections as illustrated in Figure 2-19 below. The 

centroid - centroid distance is 3.597 Å and the centroid of the ring is 3.396(1) Å from 

the mean plane of the second ring on the adjacent molecule under symmetry 

operation –x, -y+1, -z. 

 

 

 

Figure 2-19 – π-π stacking for [Mn2(RedHL1)(Cl)2]2
2+

 

 

The packing diagram for [Mn2(RedHL1)(Cl)2]2[MnCl4].4DMF.MeOH as viewed 

down the b axis shown below in Figure 2-20. 
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Figure 2-20 – Packing diagram for [Mn2(RedHL1)(Cl)2]2[MnCl4].4DMF.MeOH 

 

The packing diagram as viewed down the b axis is shown in Figure 2-20, this 

diagram illustrates how the complex [Mn2(RedHL1)(Cl)2]2[MnCl4].4DMF.MeOH 

packs with π-π stacking. 

 

The complex [Mn2(RedHL1)(N3)2]2(ClO4)2. was also prepared with corresponding 

data obtained in both elemental analysis and FAB mass spectroscopy. IR analysis 

showed no υ(C=N) stretch and a strong υ(N3) at 2050 cm
-1

, however no crystals were 

analysed under single crystal X-ray diffraction Despite varying conditions for crystal 

growth, the crystals of this complexes did not form.  

a 

b c o 
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2.2.7 Complexes of H4L2 

 

The [4+4] macrocycle H4L2 shown in Figure 2-21 was prepared via Schiff base 

reaction of 2,6-diacetylpyridine with 1,3-diamino-2-hydroxypropane using 

manganese(II) perchlorate as a direct template, this was carried out by refluxing 

overnight in a methanolic solvent. This method has previously been published and 

the structure reported by McKee et al.99, 100
 During the synthesis of the complexes of 

H4L2, an orange solid formed in solution. The solid product was collected via 

filtration from the cooled reaction vessel and good analysis was obtained for the 

complexes of H4L2. 
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Figure 2-21 – H4L2 Ligand 

 

The crystal structure as published by McKee et al99
 is illustrated below in Figure 

2-22. 
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Taken from reference
99

 

Figure 2-22–Structure of [Mn4L2](ClO4)4 

 

The published structure as shown in Figure 2-22 crystallised in the monoclinic space 

group C2/c with R1 = 0.043. The [Mn4L2]
4+

 cation contains a crystallographic 2-fold 

axis which passes through the cubane core of the molecule. All four alcohol groups 

were found to be deprotonated and each one bridges three manganese centres 

forming a cubane structure. Each manganese centre is seven coordinate with 

pentagonal bipyramidal geometry. The perchlorate anions are likely to be semi 

coordinated due to the long distances observed.  

 

McKee et al.99
 initially showed a synthesis for the [4+4] complex by preparation of a 

barium precursor, followed by a transmetallation with manganese perchlorate. A 

possible route was proposed for the formation of the [4+4] complex as shown in 

Figure 2-23. 
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Figure 2-23 – Possible route for the formation of a [4+4] complex of L2 

 

The reason that a [4+4] complex is able to form in this instance, is due to the lack of 

strongly bound axial ligands, this allows the formation of four Mn-alkoxide bonds 

during the transmetallation reaction. These four bonds then hold the ligands in an 

orientation which favours the [4+4] macrocycle. 

 

In the scheme shown in Figure 2-23, Mn-alkoxide bonds can be formed between two 

of the binuclear macrocyclic units which are in a cofacial orientation (I) resulting in a 

cubane core. Transamination reactions occur via hydrolysis of the imine bond which 

results in the formation of (II) after which, the resulting terminal amine is free to 

rotate and can add at an imine which is on the second macrocycle via nucleophilic 
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attack at the carbon atom (III). One C-N bond then breaks to either reform (II) or 

leaving a new intermolecular imine link and releasing another free amine which is 

involved in a Schiff base reaction with the free carbonyl to form (V).
99

 

 

2.3 Macrocyclic ring contractions 

 

The [2+2] macrocycle L3 shown in Figure 2-24 can be prepared via Schiff base 

template condensation as previously seen for ligand L1 but with the use of DFP as 

the head unit in place of DAP. The DFP head unit undergoes a condensation reaction 

with 1,3-diamino-2-hydroxypropane, utilising a Ba
2+

 ion
1, 92

. The barium macrocycle 

acts as a precursor for a transmetallation reaction in order to synthesise various 

manganese macrocycles with differing axial ligands.  

 

For the ring contracted species, there is a nucleophilic attack at one of the imine 

bonds of H2L3 from the OH group of the alcohol solvent used. 

 

N

N

N

OH

N

N

N

OH

 

Figure 2-24– Ligand H2L3 

 

Ring contraction of the H2L3 ligands forms the H2L4 ligand as illustrated in Figure 

2-25: 
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Figure 2-25 – Ring contracted ligand H2L4 

 

Each macrocycle was analysed using IR, elemental analysis and mass spectrometry 

and where possible, X-ray analysis was performed. The IR data were initially used to 

confirm the absence of an amine or carbonyl stretch associated with the reactant 

materials and the presence of an imine bond at 1637 – 1654 cm
-1

. A band at 1586 – 

1592 cm
-1

 is associated with the pyridyl ring of the two head units.  
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2.3.1  [Mn(H2L4)(NCS)2].MeOH.DMF 

 

 

Figure 2-26 –Structure of [Mn(H2L4)(NCS)2].MeOH.DMF with solvate molecule 

and hydrogens omitted for clarity. Dashed line represents hydrogen bonding 

 

Large yellow crystals of the complex shown in Figure 2-26 were obtained from a 

solution prepared by Soraya Sanchez-Ballester as part of an Erasmus project. Data 

were collected using synchrotron radiation at Daresbury Laboratory SRS Station 

9.8.
98

 [Mn(H2L4)(NCS)2].MeOH.DMF crystallised in the triclinic space group P1 

with R1 = 0.0564. The details of the crystal structure and refinement can be found in 

Table 28 of appendix 1. 

 

The complex [Mn(H2L4)(NCS)2].MeOH.DMF was prepared via transmetallation of 

the precursor [Ba(H2L3)(ClO4)]2(ClO4)2. During this reaction, the macrocycle has 

undergone a ring contraction via nucleophilic attack from a solvent methanol 

molecule at one of the imine bonds, forming a six-membered ring that sits in a chair 

conformation. This process reduces the size of the cavity in the macrocycle and the 

size of the macrocycle is reduced from a 20 membered macrocycle to a 16 membered 

macrocycle, thus the ligand is a modified form that is derived from the complex 
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[Ba(H2L3)(ClO4)]2(ClO4)2. The mechanism for the ring contraction is given in Figure 

2-27 below: 

 

 

Figure 2-27 – Ring contraction mechanism 

 

The molecule contains one seven coordinate manganese ion that is bound to five 

nitrogen donors from the macrocycle forming a pentagonal bipyramidal geometry, 

with two nitrogen bound thiocyanate axial ligands. The selected bond lengths and 

angles are given in Table 8 below: 

 

Table 8 - Selected bond lengths [Å] and angles [
o
] for 

[Mn(H2L4)(NCS)2].MeOH.DMF 

Mn(1)–N(8) 2.178(3) Mn(1)–N(7) 2.237(3) 

Mn(1)–N(6) 2.263(3) Mn(1)–N(3) 2.274(3) 

Mn(1)–N(4) 2.343(3) Mn(1)–N(5) 2.425(3) 

Mn(1)–N(8) 2.178(3) Mn(1)–N(7) 2.237(3) 

 

H 

H 
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N(8)–Mn(1)–N(7) 174.80(12) N(8)–Mn(1)–N(6) 86.89(11) 

N(7)–Mn(1)–N(6) 90.54(11) N(8)–Mn(1)–N(3) 92.16(11) 

N(7)–Mn(1)–N(3) 92.81(11) N(6)–Mn(1)–N(3) 136.58(11) 

N(8)–Mn(1)–N(4) 94.16(11) N(7)–Mn(1)–N(4) 85.93(11) 

N(6)–Mn(1)–N(4) 151.37(11) N(3)–Mn(1)–N(4) 72.02(10) 

N(8)–Mn(1)–N(5) 94.34(12) N(7)–Mn(1)–N(5) 80.53(11) 

N(6)–Mn(1)–N(5) 70.35(11) N(3)–Mn(1)–N(5) 152.68(10) 

N(4)–Mn(1)–N(5) 81.05(11) N(8)–Mn(1)–N(6) 86.89(11) 

N(8)–Mn(1)–N(7) 174.80(12)   

 

The angle 72.02(10)
o
 for N3–Mn1–N4, is slightly larger than that observed for the 

manganese bound pyridine diimine sections for non contracted species of H2L1, and 

is closer to the ideal angle of 72 
o
 for a pentagonal bipyramidal geometry. The bond 

length 2.570(6) Å for Mn1–N2, which is the nitrogen that has formed part of the six 

membered ring but remains bound to the manganese centre, is longer than all other 

Mn-donor bond lengths within the molecule. 

 

There is some hydrogen bonding present within the molecule observed between the 

alcohol group from O2 and N7 of the nitrogen bound axial thiocyanate molecule, this 

hydrogen bond is illustrated in Figure 2-26. 

 

The principal interaction of adjacent layers is the π-π stacking that is present between 

the pyridine diimine units of two adjacent molecules under symmetry operation –

x+3, -y+2, -z. The π-π stacking is illustrated below in Figure 2-28. 
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Figure 2-28 - π-π stacking for [Mn(H2L4)(NCS)2].MeOH.DMF 

 

The centroid – centroid distance for the overlapping sections of the π-π stacking 

between the pyridyl head units is 3.585 Å. 
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2.4 Dinuclear complexes 

 

2.4.1 [Mn2(L6)(NCS)4].2DMF 

 

 

Figure 2-29 –Structure of [Mn2(L6)(NCS)4] with solvent molecules and hydrogens 

omitted for clarity 

 

The complex [Mn2(L6)(NCS)4] was prepared via transmetallation of the barium 

precursor [Ba(L6)(ClO4)2] with manganese perchlorate in a 1:2 ratio followed 

quickly with the addition of excess sodium thiocyanate. The solution was stirred in 

methanol at room temperature overnight, during which time, a colour change was 

observed from clear to orange, with some orange solid present. Large orange crystals 

of [Mn2(L6)(NCS)4].2DMF were obtained via slow diffusion of ether into a DMF 

solution of redissolved clean product. The details of the crystal structure and 

refinement can be found in Table 30 in appendix 1. A similar structure with the 

formula [Mn2(L6)(NCS)3(CH3O)] has previously been reported for this ligand 

system by McKee and coworkers
101

 and is available on the crystallographic structural 

database (CSD). The published structure was found to crystallise in the monoclinic 

spacegroup P21/a with R1 = 0.0452. The published structure differs where one of the 

bridging thiocyanate ligands has been replaced by a µ-methoxy ligand. 
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The structure as illustrated in Figure 2-29 crystallised in the triclinic space group P1 

with R1 = 0.0320.  

 

The [Mn2(L6)(NCS)4] complex is centrosymmetric, and contains two equivalent 

manganese ions that are six coordinate, they are bound to three nitrogen atoms from 

the pyridinediimine head units of the macrocycle, a nitrogen atom from the terminal 

axial thiocyanate ligands and two from the bridging nitrogen bound thiocyanate 

ligands. The selected bond lengths and angles for [Mn2(L6)(NCS)4].2DMF are given 

in Table 9 below: 

 

Table 9 - Selected bond lengths [Å] and angles [°] for [Mn2(L6)(NCS)4].2DMF 

Mn(1)–N(4) 2.091(7) Mn(1)–N(5) 2.125(9) 

Mn(1)–N(2) 2.204(10) Mn(1)–N(1) 2.347(9) 

Mn(1)–N(3) 2.371(9)   

 

N(4)–Mn(1)–N(5) 99.6(3) N(4)–Mn(1)–N(2) 161.9(3) 

N(5)–Mn(1)–N(2) 98.5(3) N(4)–Mn(1)–N(1) 108.3(4) 

N(5)–Mn(1)–N(1) 94.7(3) N(2)–Mn(1)–N(1) 70.5(7) 

N(4)–Mn(1)–N(3) 109.3(4) N(5)–Mn(1)–N(3) 87.4(3) 

N(2)–Mn(1)–N(3) 71.0(7) N(1)–Mn(1)–N(3) 141.4(5) 

Mn(1)–N(4)–Mn(1A) 105.7(3)   

Symmetry operations for equivalent atoms A   x+1,y,z+1        

 

The macrocyclic ligand is stepped to allow bridging of the manganese centres and 

the manganese separation of 3.540 Å (for Mn1-Mn1A) is slightly longer than that of 

the published structure [Mn-Mn’, 3.418 Å]. The angle of the thiocyanate bridge was 

found to be 105.7(3)
o
 (for Mn1–N4–Mn1A). The pyridinediimine head unit sits with 

a bite angle of 141.4(5)
o
 (for N1–Mn1–N3) which is just slightly larger than the 

equivalent unit for the reported structure of 140.5(2)
o
. There remains two 

uncoordinated DMF solvent molecules for the structure reported here. 
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The principal interaction between molecules of [Mn2(L6)(NCS)4] is the π-π stacking 

that is present between the pyridine diimine units of two adjacent molecules as 

illustrated in Figure 2-30 below. 

 

 

Figure 2-30 – π-π stacking for [Mn2(L6)(NCS)4] 

 

The centroid - centroid distance is 3.771 Å and the centroid of the ring is 3.371(1) Å 

from the mean plane of the second ring under symmetry operation -x + 1, -y + 1, -z + 

1. 
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Figure 2-31 – Packing diagram for [Mn2(L6)(NCS)4] as viewed down the a axis 

 

The diagram in Figure 2-31 shows how molecules of the complex 

[Mn2(L6)(NCS)4].2DMF are packed as viewed down the a axis, with the main π-π 

stacking interaction between molecules of [Mn2(L6)(NCS)4]. 

 

a 

b 

c 

o 
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2.4.2 [Pb2(L8)(NCS)4] 

 

 

Figure 2-32 –Structure of [Pb2(L8)(NCS)4] with hydrogens omitted for clarity 

 

Large yellow crystals of the complex shown in Figure 2-32 were obtained from a 

solution prepared by Rebecca Dennet in preparation for a transmetallation reaction 

with manganese as part of a BSc honours project. [Pb2(L8)(NCS)4] crystallised in the 

orthorhombic space group pbcn with R1 = 0.0276. The details of the crystal structure 

and refinement can be found in Table 31 in Appendix 1. 

 

A similar structure which differs where the head units were formed from diacetyl 

pyridine have previously been published by Drew et al.19
 which crystallised in the 

orthorhombic space group pnca with R1 = 0.087. The published structure contains a 

30 membered macrocycle with a 2 fold axis that is non planar. The Pb ion was found 

to bond to three nitrogen atoms [2.54(3), 2.56(3), 2.47(2) Å] and and two oxygen 

atoms [2.96(3), 2.88(3) Å] from the macrocycle. 

 

The structure obtained here as shown in Figure 2-32 also contains a thirty membered 

macrocycle that is non planar and consists of two pyridine diimine head units with a 

total of six nitrogen donor atoms and four oxygen donor molecules along the length 
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of the macrocycle. Selected bond lengths and angles for the structure described are 

shown in Table 10 below: 

 

Table 10 - Selected bond lengths [Å] and angles [°] for [Pb2(L8)(NCS)4] 

N(1)–Pb(1) 2.562(3) N(2)–Pb(1) 2.536(3) 

N(3)–Pb(1) 2.622(3) Pb(1)–N(4) 2.497(3) 

Pb(1)–N(5) 2.708(3)   

 

N(4)–Pb(1)–N(2) 74.76(10) N(4)–Pb(1)–N(1) 83.74(11) 

N(2)–Pb(1)–N(1) 63.84(9) N(4)–Pb(1)–N(3) 80.86(11) 

N(2)–Pb(1)–N(3) 63.37(9) N(1)–Pb(1)–N(3) 127.16(9) 

N(4)–Pb(1)–N(5) 148.49(10) N(2)–Pb(1)–N(5) 74.31(9) 

N(1)–Pb(1)–N(5) 88.06(9) N(3)–Pb(1)–N(5) 80.09(9) 

 

The Pb(II) ion was found to bond to the three nitrogen atoms of the pyridine diimine 

section with 2.562(3) Å (for N1–Pb1), 2.536(3) Å (for N2–Pb1) and 2.622(3) Å (for 

N3–Pb1) which are similar equivalent bond lengths for the published structure. 

 

There are two Pb metal ions coordinated to the macrocycle with each ion bound to 

the nitrogens of the pyridine diimine head unit providing an angle of 127.16(9) ° (for 

N1–Pb1–N3). Each metal ion is bound to a thiocyanate molecule both above and 

below the plane of the macrocycle with an angle of 148.49(10)
o
. The structure 

published by Drew et al, show that the Pb molecules are sulphur bound to the 

thiocyanate molecules [2.91(2) and 3.00(2) Å and with Pb-S-C angles of 102
o
 and 

104
o
]. The structure described here shows that the Pb atoms are nitrogen bound to the 

axial thiocyanate ligands with bond lengths of 2.497(3) Å (for Pb1–N4) and 2.708(3) 

Å (for Pb1–N5) with Pb-N-C angles of 149.78
o
and 122.64

o
. 

 



 

 

84 

2.5 [1+1] Mononuclear complexes 

 

Low molecular weight seven coordinate manganese complexes are of interest for 

their potential use as working antioxidants, here, a range of [1+1] mononuclear 

complexes were synthesised in good yield using a Schiff base condensation reaction 

with manganese as a direct template. These were carried out utilising either a 2,6-

diacetylpyridine or 2,6-diformyl pyridine head unit and variations in axial ligand. 

Infrared analysis was initially used to confirm the presence of an imine bond 

presenting a sharp peak at 1637 to 1648 cm
-1

, and a disappearance of a carbonyl 

stretch at ~1700 cm
-1

, NCS peaks were observed between 2019 to 2057 cm
-1

 and 

perchlorate peaks were observed at ~ 1088 and 625 cm
-1

. FAB mass spectroscopy 

analysis confirmed that the [1+1] reaction had taken place and elemental analysis 

were carried out for each of the mononuclear complexes. A borohydride reduction 

reaction was carried out directly on the manganese complexes with very low yield 

and only one complex [Mn(RedL10)(H2O)2](Cl)2 provided crystals that were suitable 

for X-ray analysis. 

 

2.5.1 [Mn(L9)(OH2)2](ClO4)2 

 

 

Figure 2-33 –Structure of [Mn(L9)(OH2)2]
2+with perchlorate anions and hydrogens 

omitted for clarity 
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Large orange crystals of [Mn(L9)(OH2)2](ClO4)2 crystallised in the monoclinic 

spacegroup C2/c with R1 = 0.0343. The details of the crystal structure and 

refinement can be found in Table 32 in Appendix 1.  

 

The crystal structure has previously been published by McKee and co workers.
102

 

The published structure was also found to crystallise in the monoclinic spacegroup 

C2/c with R = 0.064 

 

There is a crystallographic two fold axis passing through Mn1-N1 and C1. The 

crystal structure of [Mn(L9)(OH2)2]
2+

 as illustrated in Figure 2-33 contains a single 

seven-coordinate manganese ion that is coordinated to the N3O2 donor set of the 

ligand which forms a pentagonal plane, two exogenous water molecules are bound to 

the manganese in the axial positions in preference to the perchlorate anions which 

remain uncoordinated. 

 

Selected bond lengths and angles for [Mn(L9)(OH2)2](ClO4)2 are given in Table 11 

below: 

 

Table 11 - Selected bond lengths [Å] and angles [°] for [Mn(L9)(OH2)2](ClO4)2 

Mn(1)–O(1WA) 2.2195(12) Mn(1)–N(1) 2.2613(17) 

Mn(1)–O(1) 2.2496(12) Mn(1)–N(2) 2.2861(12) 

 

O(1WA)–Mn(1)–O(1W) 179.06(7) O(1WA)–Mn(1)–O(1) 82.74(5) 

O(1W)–Mn(1)–O(1) 96.53(5) O(1)–Mn(1)–O(1A) 78.12(6) 

O(1W)–Mn(1)–N(1) 90.47(4) O(1)–Mn(1)–N(1) 140.94(3) 

O(1WA)–Mn(1)–N(2) 95.64(5) O(1W)–Mn(1)–N(2) 84.69(5) 

O(1)–Mn(1)–N(2) 72.75(5) O(1A)–Mn(1)–N(2) 146.61(5) 

N(1)–Mn(1)–N(2) 69.72(3) N(2)–Mn(1)–N(2A) 139.43(7) 

Symmetry operations for equivalent atoms A   x,y,z+1/2        

 

The manganese ion has approximate pentagonal bipyramidal geometry where the 

donors of the pentagonal plane are the three nitrogens from the pyridine diimine head 

unit of the molecule which provides an angle of 139.43(7)
o
 (for N2-Mn1-N2A) 
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resulting in a slight distortion from a regular pentagonal plane of 138
o
, and two 

oxygen atoms from the ligand. The axial ligands provide an angle of 179.06(7)
o
 (for 

O1WA–Mn1–O1W) which is slightly bent away from the ideal linear angle of 180 
o
. 

 

The packing diagram for [Mn(L9)(OH2)2](ClO4)2 as viewed down the b axis is 

shown in Figure 2-34. 

 

Figure 2-34 – Packing diagram for [Mn(L9)(OH2)2](ClO4)2 as viewed down the b 

axis 

 

Figure 2-34 shows that the crystals pack as hydrogen bonded sheets, with hydrogen 

bonds observed between the axial bound water molecules and the unbound 

perchlorate anions with distances of 2.799 Å and 2.895 Å. 

 

a 

b 
c 

o 
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2.5.2 [Mn(L9)(Cl)2] 

 

 

Figure 2-35 –Structure of [Mn(L9)(Cl)2] with hydrogens omitted for clarity 

 

Large orange crystals of the complex [Mn(L9)(Cl)2] crystallised in the monoclinic 

space group I2/a with R1 = 0.0273. The details of the crystal structure and 

refinement can be found in Table 33 in Appendix 1  

 

The crystal structure has previously been published by McKee and co workers.
18

 The 

published structure which was a different solvate to the one described here 

crystallised in the triclinic space group P1 with R1 = 0.0363. 

 

There is a crystallographic two fold axis passing through Mn1-N2 and C5. The 

crystal structure as shown in Figure 2-35 crystallised in the same manner as the 

complex [Mn(L9)(OH2)2](ClO4)2 previously described with two exogenous chloride 

ions bound to the manganese in the axial position in place of water molecules. There 

are no uncoordinated perchlorate ions for this structure due to the negative charge 

that is present on the chloride axial ligands. 

 

Selected bond lengths and angles for [Mn(L9)(Cl)2] are shown in Table 12. 
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Table 12 - Selected bond lengths [Å] and angles [°] for [Mn(L9)(Cl)2] 

Mn(1)–N(2) 2.2983(15) Mn(1)–N(1) 2.3445(11) 

Mn(1)–O(1A) 2.3736(9) Mn(1)–Cl(1) 2.4901(3) 

 

N(2)–Mn(1)–N(1) 68.09(3) N(2)–Mn(1)–O(1A) 138.99(2) 

N(1)–Mn(1)–O(1A) 152.84(4) N(2)–Mn(1)–Cl(1) 95.119(10) 

N(1)–Mn(1)–Cl(1) 88.69(3) O(1A)–Mn(1)–Cl(1) 86.62(2) 

Cl(1)–Mn(1)–Cl(1A) 169.762(19) N(1)–Mn(1)–N(1A) 136.17(6) 

Symmetry operations for equivalent atoms A   x+1,y,z+3/2        

 

The nitrogen atoms from the pyridine diimine head unit of the molecule provide an 

angle of 136.17(6)
o
 (for N1–Mn1–N1A) which is slightly smaller than that of the 

equivalent angle for the water bound complex [Mn(L9)(OH2)2](ClO4)2 described 

above, the angle results in a slight distortion from a regular pentagonal plane of 138
o
, 

the manganese is also bound to the two oxygen atoms of the pentagonal plane from 

the ligand. The axial ligands provide an angle of 169.762(19)
o
 (for Cl1–Mn1–Cl1A) 

which is slightly bent away from the ideal linear 180
o
 angle and this is more 

pronounced than that observed for the water bound complex [Mn(L9)(OH2)2](ClO4)2 

described above due to the larger radius of the chloride ligand.  

 

Hydrogen bonding of adjacent molecules is present and is illustrated in Figure 2-36. 
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Figure 2-36 – Hydrogen bonding in [Mn(L9)(Cl)2]. 

 

The hydrogen bonds exist between O1A within the pentagonal plane of the ligand 

and the axial ligand Cl1 with a distance of 3.158 Å. 

 

 

Figure 2-37 – Packing diagram for [Mn(L9)(Cl)2] as viewed down the c axis 

 

o 

c 

a 

b 
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The packing diagram for [Mn(L9)(Cl)2] illustrated in Figure 2-37 also shows that 

there is some π-π stacking interactions between the pyridine unit of one molecule 

with an imine from a second molecule with a distance of 4.145 Å. 

 

2.5.3 [Mn(L10)(OH2)2](ClO4)2 

 

 

Figure 2-38 –Structure for [Mn(L10)(OH2)2]
2+ with perchlorate anions and 

hydrogens omitted for clarity 

 

Large orange crystals of the complex [Mn(L10)(OH2)2](ClO4)2 were found to 

crystallise in the monoclinic spacegroup C2/c with R1 = 0.0320. The details of the 

crystal structure and refinement can be found in Table 34 in Appendix 1 

 

The crystal structure of the [1+1] [Mn(L10)(OH2)2]
2+

 cation as illustrated in Figure 

2-38 contains a single seven-coordinate manganese ion that is coordinated to the 

N3O2 donor set of the ligand that forms a pentagonal plane, two exogenous water 

molecules are bound to the manganese in the axial position in preference to the 

perchlorate anions which remain uncoordinated to the manganese. 

 

The molecule has a crystallographic 2-fold axis which runs through (Mn1-N1-C1) 

and the manganese ion has approximate pentagonal bipyramidal geometry where the 

donors of the pentagonal plane are the three nitrogen atoms from the pyridinediimine 
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head unit of the molecule. Selected bond lengths and angles for 

[Mn(L10)(OH2)2](ClO4)2 are given in Table 13: 

 

Table 13 - Selected bond lengths [Å] and angles [°] for [Mn(L10)(OH2)2](ClO4)2 

Mn(1)–O(1W) 2.1924(15) Mn(1)–N(1) 2.211(2) 

Mn(1)–N(2) 2.2518(17) Mn(1)–O(1) 2.2610(15) 

C(4)–N(2) 1.272(3)   

 

O(1W)–Mn(1)–N(1) 93.41(4) O(1W)–Mn(1)–N(2) 91.92(6) 

N(1)–Mn(1)–N(2) 71.03(4) O(1W)–Mn(1)–O(1) 83.70(6) 

N(1)–Mn(1)–O(1) 143.19(4) N(2)–Mn(1)–O(1) 72.40(6) 

O(1WA)–Mn(1)–O(1W) 173.19(9) N(2A)–Mn(1)–N(2) 142.07(9) 

Symmetry operations for equivalent atoms A   x,y,z+1/2        

 

The pyridine diimine head unit provides an angle of 142.07(9)
o
 (for N2A–Mn1–N2) 

which is slightly larger than that of the equivalent angle for the water bound complex 

[Mn(L9)(OH2)2](ClO4)2 described above, the angle results in a slight distortion from 

a regular pentagonal plane of 138
o
, the manganese is also bound to the two oxygen 

atoms of the pentagonal plane from the ligand. The axial ligands with an angle of 

173.19(9) 
o
 (for O1WA–Mn1–O1W) are slightly bent away from the ideal linear 

180
o
 angle and this is more pronounced than that observed for the water bound 

complex [Mn(L9)(OH2)2](ClO4)2 described above. 

 

The principal interactions between molecules are the hydrogen bonds which exist 

between the axial water molecules and the uncoordinated perchlorate anions. The 

packing diagram for [Mn(L10)(OH2)2](ClO4)2 as viewed down the b axis is shown 

below in Figure 2-39. 
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Figure 2-39 – Packing diagram for [Mn(L10)(OH2)2](ClO4)2 as viewed down the b 

axis 

 

Figure 2-39 shows that the crystals pack as hydrogen bonded sheets in a similar 

fashion to that of the complex [Mn(L9)(OH2)2](ClO4)2, described previously with 

distances of 2.794 Å and 2.806 Å for the observed hydrogen bonds. 

a 

b 

c 
o 
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2.5.4 [Mn(RedL10)(OH2)2](Cl)2 

 

 

Figure 2-40 – Structure of [Mn(RedL10)(OH2)2]
2+ with chloride anions omitted for 

clarity 

 

The crystal structure of the [Mn(RedL10)(OH2)2]
2+

 cation is illustrated in Figure 

2-40. [Mn(RedL10)(OH2)2](Cl)2 crystallised in the monoclinic spacegroup P21/c 

with R1 = 0.0599. The details of the crystal structure and refinement can be found in 

Table 35 in Appendix 1. 

 

[Mn(RedL10)(OH2)2](Cl)2 crystallises in the same manner as the previously 

described imine analogue [Mn(L10)(OH2)2](ClO4)2. The bond distance for the imine 

bond in the original complex [Mn(L10)(OH2)2](ClO4)2 was found to be 1.272(3) Å. 

The increased bond length for the reduced analogue [Mn(RedL10)(OH2)2]2Cl for the 

equivalent bond is 1.442(11) Å (for N1–C2) and 1.461(11) Å (for C8–N3), this 

increased bond length is a good indication that the reduction reaction has been 

successful. 

 

The selected bond lengths and angles for [Mn(RedL10)(OH2)2](Cl)2 are given in 

Table 14. 
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Table 14 - Selected bond lengths [Å] and angles [°] for [Mn(RedL10)(OH2)2](Cl)2 

Mn(1)–O(3) 2.180(8) Mn(1)–N(3) 2.286(6) 

Mn(1)–N(2) 2.208(7) Mn(1)–N(1) 2.290(7) 

Mn(1)–O(1) 2.288(6) N(1)–C(2) 1.442(11) 

Mn(1)–O(2) 2.308(5) C(8)–N(3) 1.461(11) 

Mn(1)–O(4) 2.187(6)   

 

O(3)–Mn(1)–O(4) 172.2(3) O(3)–Mn(1)–N(2) 92.6(3) 

O(4)–Mn(1)–N(2) 95.0(2) O(3)–Mn(1)–N(3) 86.9(3) 

O(4)–Mn(1)–N(3) 96.6(2) N(2)–Mn(1)–N(3) 72.4(2) 

O(3)–Mn(1)–O(1) 94.7(3) O(4)–Mn(1)–O(1) 79.7(2) 

N(2)–Mn(1)–O(1) 144.5(2) N(3)–Mn(1)–O(1) 73.4(2) 

O(3)–Mn(1)–N(1) 94.0(3) O(4)–Mn(1)–N(1) 87.1(2) 

N(2)–Mn(1)–N(1) 72.9(2) N(3)–Mn(1)–N(1) 145.3(2) 

O(1)–Mn(1)–N(1) 140.8(2) O(3)–Mn(1)–O(2) 82.6(2) 

O(4)–Mn(1)–O(2) 90.4(2) N(2)–Mn(1)–O(2) 145.2(2) 

N(3)–Mn(1)–O(2) 141.1(2) O(1)–Mn(1)–O(2) 70.3(2) 

N(1)–Mn(1)–O(2) 73.1(2)   

 

The manganese ion has approximate pentagonal bipyramidal geometry where the 

donors of the pentagonal plane are the three nitrogen atoms from the pyridine 

diimine head unit of the molecule providing an angle of 72.9(2)
o
 (for N2–Mn1–N1) 

which is slightly larger than that of the equivalent angle for the water bound complex 

[Mn(L10)(OH2)2](ClO4)2 before reduction as described above, the angle is slightly 

distorted from a regular pentagonal plane of 72
o
, The Mn-N bond lengths where the 

reduction has taken place are longer with  2.290(7) Å for Mn1–N1 and 2.286(6) Å 

for Mn1–N3 when compared to the complex [Mn(L10)(OH2)2](ClO4)2 described 

above. The manganese is also bound to the two oxygen atoms of the pentagonal 

plane from the ligand. The axial ligands are slightly bent with an angle of 172.2(3) 
o
 

(O3–Mn1–O4) from the ideal linear angle of 180
o
. 

 

Hydrogen bonding exists between the axial water bound molecules and the unbound 

chloride anions, as illustrated in Figure 2-41. 
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Figure 2-41 – Hydrogen bonding for [Mn(RedL10)(OH2)2](Cl)2 

 

There is π-π stacking present between the pyridine diimine units of two adjacent 

molecules as shown in Figure 2-42 below. 

 

 

Figure 2-42 - π-π  stacking for [Mn(RedL10)(OH2)2](Cl)2 

 

The centroid - centroid distance is 3.819 Å and the centroid of the ring is 3.658 Å 

from the mean plane of the second ring under symmetry operation -x, -y-1, -z-1. 

 



 

 

96 

2.5.5 [Mn(L10)(NCS)2].DMF 

 

 

Figure 2-43 –Structure for [Mn(L10)(NCS)2].DMF with solvate molecule and 

hydrogens omitted for clarity 

 

Irregular shaped orange crystals of the complex [Mn(L11)(NCS)2].DMF as 

illustrated in Figure 2-43 crystallised in the triclinic space group P1 with R1 = 

0.0509 (Figure 2-43). The details of the crystal structure and refinement can be found 

in Table 36 in Appendix 1. The crystal structure has previously been published by 

Drew and co-workers
2
 without the presence of a DMF solvate molecule. The 

published structure also crystallised in the triclinic space group P1 with R1 = 0.075. 

The crystal structure as illustrated in Figure 2-43 crystallises in the same manner as 

the water bound complex [Mn(L10)(H2O)](ClO4)2 with two exogenous thiocyanate 

ions which are nitrogen bound to the manganese in the axial positions. Due to the 

negative charge on the axial ligands, there are no uncoordinated anions present. 

 

Selected bond lengths and angles for [Mn(L10)(NCS)2].DMF are given in Table 15. 
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Table 15 - Selected bond lengths [Å] and angles [°] for [Mn(L10)(NCS)2].DMF 

Mn(1)–N(2) 2.212(3) Mn(1)–N(31) 2.229(4) 

Mn(1)–N(21) 2.240(4) Mn(1)–N(3) 2.246(3) 

Mn(1)–N(1) 2.246(4) Mn(1)–O(1) 2.279(3) 

Mn(1)–O(2) 2.295(3)   

 

N(2)–Mn(1)–N(31) 94.13(12) N(2)–Mn(1)–N(21) 93.70(11) 

N(31)–Mn(1)–N(21) 172.11(11) N(2)–Mn(1)–N(3) 70.57(12) 

N(31)–Mn(1)–N(3) 90.37(13) N(21)–Mn(1)–N(3) 93.14(13) 

N(2)–Mn(1)–N(1) 70.84(11) N(31)–Mn(1)–N(1) 91.75(14) 

N(21)–Mn(1)–N(1) 89.90(14) N(3)–Mn(1)–N(1) 141.41(11) 

N(2)–Mn(1)–O(1) 143.54(10) N(31)–Mn(1)–O(1) 83.06(12) 

N(21)–Mn(1)–O(1) 91.21(12) N(3)–Mn(1)–O(1) 73.10(12) 

N(1)–Mn(1)–O(1) 145.34(10) N(2)–Mn(1)–O(2) 143.29(11) 

N(31)–Mn(1)–O(2) 90.64(11) N(21)–Mn(1)–O(2) 82.50(11) 

N(3)–Mn(1)–O(2) 145.87(10) N(1)–Mn(1)–O(2) 72.64(10) 

O(1)–Mn(1)–O(2) 73.18(11)   

 

The manganese ion has approximate pentagonal bipyramidal geometry where the 

donors of the pentagonal plane are the three nitrogen atoms from the pyridine 

diimine head unit of the molecule providing an angle of 70.84(11)
o
 for N2–Mn1–N1 

which is slightly smaller than that of the equivalent angle for the water bound 

complex [Mn(L10)(OH2)2](ClO4)2 as described above, the angle is slightly distorted 

from a regular pentagonal plane of 72
o
, the manganese ion is also bound to the two 

oxygen donors of the pentagonal plane from the ligand. The axial ligands with an 

angle of 172.11(11)
o
 (for N31–Mn1–N21) are slightly bent away from the ideal 

linear angle of 180
 o

. The molecule crystallises with one uncoordinated molecule of 

DMF which was used as a solvent during the recrystallisation process. 

 

Some π-π stacking is present between the pyridine diimine units of two adjacent 

macrocycles as shown in Figure 2-44.  
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Figure 2-44 – π-π  stacking for [Mn(L10)(NCS)2] 

 

The centroid - centroid distance is 3.724 Å and the centroid of the ring is 3.360(1) Å 

from the mean plane of the second ring under symmetry operation 1-x, 1-y, -z. 

 

2.5.6 [Mn(L11)(Cl)2] 

 

 

Figure 2-45 –Structure for [Mn(L11)(Cl)2] 

 

Yellow crystals of the complex [Mn(L11)(Cl)2] were found to crystallise in the 

monoclinic space group C2/c with R = 0.0363 (Figure 2-45). The details of the 

crystal structure and refinement can be found in Table 37 in Appendix 1 
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The structure as shown in Figure 2-45 contains a single seven-coordinate manganese 

ion that is coordinated to all five nitrogen donors of the ligand which form a 

pentagonal plane, two exogenous chloride ligands are bound to the manganese in the 

axial position. 

 

The molecule contains a crystallographic 2-fold axis which runs through Mn1-N2 

and C5. The manganese atom has approximate pentagonal bipyramidal geometry. 

The selected bond lengths and angles for the complex [Mn(L11)(Cl)2] are given in 

Table 16 below: 

 

Table 16 - Selected bond lengths [Å] and angles [°] for [Mn(L11)(Cl)2] 

Mn(1)–N(2) 2.329(2) Mn(1)–N(1) 2.3722(15) 

Mn(1)–Cl(1) 2.4645(4) Mn(1)–N(4) 2.6707(16) 

 

N(2)–Mn(1)–N(1) 67.40(4) N(2)–Mn(1)–Cl(1) 91.656(14) 

N(1)–Mn(1)–Cl(1) 93.65(4) N(2)–Mn(1)–N(4) 136.65(4) 

N(1)–Mn(1)–N(4) 69.55(5) N(1A)–Mn(1)–N(1) 134.79(8) 

Cl(1A)–Mn(1)–Cl(1) 176.69(3)   

Symmetry operations for equivalent atoms A   x,y,z+1/2        

 

 The donors of the pentagonal plane are the three nitrogen atoms from the pyridine 

diimine head unit of the molecule providing an angle of 134.79(8) (N1A–Mn1–N1) 

which is slightly smaller than the equivalent angles in complexes of L9 and L10 as 

described above, the angle is slightly distorted from a regular pentagonal plane of 

138 
o
, the manganese ion is also bound to a further two nitrogen donors of the 

pentagonal plane from the ligand and these are shown to have longer bond lengths 

than that observed for the other nitrogen donors of the pentagonal plane, with 

2.6707(16) Å observed for Mn1–N4. The axial ligands provide an angle of 

176.69(3)
o
 (for Cl1–Mn1–Cl1A) which is slightly bent away from the ideal linear 

angle of 180
o
 but is less pronounced than for the chloride bound complex of L9 

[Mn(L9)(Cl)2] previously described. 
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There is some π-π stacking that is present between the pyridine diimine units of two 

macrocycles as shown in Figure 2-46 below. 

 

Figure 2-46 – π-π  stacking for [Mn(L11)(Cl)2] 

 

The centroid - centroid distance is 3.877 Å and the centroid of the ring is 3.340(1) Å 

from the mean plane of the second ring under symmetry operation -x, -y, -z. 
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2.5.7 [Mn(L12)(OH2)(Cl)]ClO4 

 

 

Figure 2-47 –Structure for [Mn(L12)(OH2)(Cl)]
+
 with perchlorate anion omitted for 

clarity 

 

Orange crystals of the complex [Mn(L12)(OH2)(Cl)](ClO4) were obtained from a 

solution prepared by Soraya Sanchez-Ballester as part of an Erasmus project. 

[Mn(L12)(OH2)(Cl)](ClO4) crystallised in the triclinic space group P1 with R1 = 

0.0480. The details of the crystal structure and refinement can be found in Table 38 

in Appendix 1 

 

The crystal structure of the [Mn(L12)(OH2)(Cl)]
+
 cation is illustrated in Figure 2-45, 

it contains a single seven coordinate manganese ion that is coordinated to the N3O2 

donor set of the ligand which forms a pentagonal plane, one exogenous chloride, and 

one water ligand are bound to the manganese in the axial position in favour of the 

perchlorate anion which remains uncoordinated to the molecule. 

 

Selected bond lengths and angles for [Mn(L12)(OH2)(Cl)](ClO4) are given in Table 

17. 
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Table 17 - Selected bond lengths [Å] and angles [°] for [Mn(L12)(OH2)(Cl)](ClO4) 

Mn(1)–O(1W) 2.202(5) Mn(1)–N(1) 2.273(6) 

Mn(1)–N(2) 2.280(6) Mn(1)–N(3) 2.292(6) 

Mn(1)–O(2) 2.297(5) Mn(1)–O(1) 2.349(5) 

Mn(1)–Cl(1) 2.507(3)   

 

O(1W)–Mn(1)–N(1) 91.47(19) O(1W)–Mn(1)–N(2) 91.2(2) 

N(1)–Mn(1)–N(2) 69.0(2) O(1W)–Mn(1)–N(3) 91.1(2) 

N(1)–Mn(1)–N(3) 69.1(2) N(2)–Mn(1)–N(3) 138.1(2) 

O(1W)–Mn(1)–O(2) 90.81(19) N(1)–Mn(1)–O(2) 140.7(2) 

N(2)–Mn(1)–O(2) 150.1(2) N(3)–Mn(1)–O(2) 71.6(2) 

O(1W)–Mn(1)–O(1) 79.23(18) N(1)–Mn(1)–O(1) 139.1(2) 

N(2)–Mn(1)–O(1) 71.4(2) N(3)–Mn(1)–O(1) 149.6(2) 

O(2)–Mn(1)–O(1) 79.69(18) O(1W)–Mn(1)–Cl(1) 173.07(15) 

N(1)–Mn(1)–Cl(1) 94.62(15) N(2)–Mn(1)–Cl(1) 87.86(16) 

N(3)–Mn(1)–Cl(1) 94.19(17) O(2)–Mn(1)–Cl(1) 86.57(14) 

O(1)–Mn(1)–Cl(1) 93.98(13)   

 

As with the mononuclear complexes which contain the diacetylpyridine head unit 

previously described, the manganese ion for mononuclear complexes containing the 

diformyl pyridine head unit have approximate pentagonal bipyramidal geometry 

where the donors of the pentagonal plane are the three nitrogen atoms from the 

pyridine diimine head unit of the molecule providing an angle of 138.1(2)
o
 (for N2–

Mn1–N3), the manganese ion is also bound to the two oxygen donors of the 

pentagonal plane from the ligand. The axial ligands with an angle of 173.07(15)
o
 (for 

O1W–Mn1–Cl1) are slightly bent away from the ideal linear angle of 180
o
. 

 

Hydrogen bonding exists between the O1 molecule which forms part of the ligand 

structure and the Cl1 axial ligand on adjacent molecules with a distance of 2.144 Å 

and this can be seen in Figure 2-48 below. 
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Figure 2-48 – Hydrogen bonding on adjacent molecules of 

[Mn(L12)(OH2)(Cl)](ClO4) 

 

In addition to the hydrogen bonding that is observed, there are some π-π stacking 

interactions that exist between the pyridine diimine units on adjacent molecules, this 

can be seen below in Figure 2-49. 

 

 

Figure 2-49 - π-π stacking for [Mn(L12)(OH2)(Cl)](ClO4) 

 

The centroid - centroid distance is 3.849 Å and the centroid of the ring is 3.293(1) Å 

from the mean plane of the second ring under symmetry operation –x+1, -y+2, -z+1. 

 



 

 

104 

2.5.8 [Mn(L12)(OH2)2](ClO4)2 

 

 

Figure 2-50 –Structure of [Mn(L12)(OH2)2]
2+ with perchlorate anions omitted for 

clarity 

 

The crystal structure of the [Mn(L12)(OH2)2]
2+

 cation is illustrated in Figure 2-50. 

Orange crystals of the complex [Mn(L12)(OH2)2](ClO4)2 were obtained from a 

solution prepared by Soraya Sanchez-Ballester as part of an Erasmus project. The 

complex crystallised in the monoclinic space group C2/c with R1 = 0.0407. The 

details of the crystal structure and refinement can be found in Table 39 in Appendix 

1. 

 

The crystal structure shown in Figure 2-50 contains a single seven coordinate 

manganese ion that is coordinated to the N3O2 donor set of the ligand which forms a 

pentagonal plane, two exogenous water ligands are bound to the manganese in the 

axial position in favour of the two uncoordinated perchlorate anions. 

 

The molecule contains a crystallographic 2-fold axis that passes through Mn1-N2 

and C4. Selected bond lengths and angles for [Mn(L12)(OH2)2](ClO4)2 are given 

Table 18 below: 
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Table 18 - Selected bond lengths [Å] and angles [°] for [Mn(L12)(OH2)2](ClO4)2 

Mn(1)–O(2) 2.1913(15) Mn(1)–O(1) 2.2836(14) 

Mn(1)–N(1) 2.2921(16) Mn(1)–N(2) 2.296(2) 

 

O(2)–Mn(1)–O(1) 95.45(6) O(2)–Mn(1)–N(1) 87.10(6) 

O(1)–Mn(1)–N(1) 71.81(6) O(2)–Mn(1)–N(2) 93.38(4) 

O(1)–Mn(1)–N(2) 138.94(4) N(1)–Mn(1)–N(2) 68.69(5) 

O(2A)–Mn(1)–O(2) 173.25(9) N(1)–Mn(1)–N(1A) 137.39(9) 

Symmetry operations for equivalent atoms A   x,y,z+3/2        

 

The manganese ion has approximate pentagonal bipyramidal geometry as described 

for previous mononuclear complexes, where the donors of the pentagonal plane are 

the three nitrogen atoms from the pyridine diimine head unit of the molecule 

providing an angle of 137.39(9)
o
 (for N1–Mn1–N1A) which is slightly distorted 

from a regular pentagonal plane of 138
o
 and also slightly smaller than that previously 

described for the complex [Mn(L9)(OH2)2](ClO4)2 which contains a dimethyl head 

unit. The manganese ion is also bound to the two oxygen donors of the pentagonal 

plane from the ligand. The axial ligands are slightly bent with an angle of 173.25(9)
o
 

(O2–Mn1–O2A) away from the ideal linear angle of 180
o
.  

 

The packing diagram for the complex [Mn(L12)(OH2)2](ClO4)2 as viewed down the 

b axis is illustrated below in Figure 2-51. 
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Figure 2-51 – Packing diagram for [Mn(L12)(OH2)2](ClO4)2 as viewed down the b 

axis 

 

The packing diagram for [Mn(L12)(OH2)2](ClO4)2 as shown in Figure 2-51 

illustrates how the molecules pack with hydrogen bonds which exist between the 

axial bound water molecules and the uncoordinated perchlorate anions with a 

distance of 2.785 Å and further hydrogen bonding which exists from the perchlorate 

anion to an oxygen atom (O1) from the ligand of an adjacent molecule with a 

distance of 2.808 Å. 

a 

b 
c 
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2.5.9 [Mn(L13)(OH2)2](ClO4)2 

 

 

Figure 2-52 - Structure of [Mn(L13)(OH2)2]
2+

 with perchlorate anions and 

hydrogens omitted for clarity 

 

 

Orange crystals of the complex [Mn(L13)(OH2)2](ClO4)2 as illustrated in Figure 2-52 

were obtained from a solution prepared by Soraya Sanchez-Ballester as part of an 

Erasmus project. The complex crystallised in the monoclinic space group P21/c with 

R1 = 0.0677. The details of the crystal structure and refinement can be found in 

Table 40 in Appendix 1. 

 

The structure of the [Mn(L13)(OH2)2]
2+

 cation as shown in Figure 2-52 forms in the 

same manor as described previously for mononuclear complexes and contains two 

exogenous water ligands that are bound to the manganese in the axial position in 

favour of the uncoordinated perchlorate anions. 

 

The molecule contains a crystallographic 2-fold axis that passes through Mn1-N1 

and C3. Selected bond lengths and angles for [Mn(L13)(OH2)2](ClO4)2 are given in 

Table 19: 
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Table 19 - Selected bond lengths [Å] and angles [°] for [Mn(L13)(OH2)2](ClO4)2 

Mn(1)–N(1) 2.233(7) Mn(1)–O(1W) 2.216(8) 

Mn(1)–O(2W) 2.239(8) Mn(1)–O(1) 2.248(7) 

Mn(1)–O(2) 2.271(7) Mn(1)–N(2) 2.250(8) 

Mn(1)–N(3) 2.267(9)   

 

N(1)–Mn(1)–O(1W) 96.7(3) N(1)–Mn(1)–O(2W) 93.4(3) 

O(1W)–Mn(1)–O(2W) 169.9(3) N(1)–Mn(1)–O(1) 144.1(3) 

O(1W)–Mn(1)–O(1) 82.4(3) O(2W)–Mn(1)–O(1) 88.9(3) 

N(1)–Mn(1)–O(2) 142.1(3) O(1W)–Mn(1)–O(2) 89.5(3) 

O(2W)–Mn(1)–O(2) 83.1(3) O(1)–Mn(1)–O(2) 73.7(3) 

N(1)–Mn(1)–N(2) 71.1(3) O(1W)–Mn(1)–N(2) 92.0(3) 

O(2W)–Mn(1)–N(2) 90.3(4) O(1)–Mn(1)–N(2) 73.0(3) 

O(2)–Mn(1)–N(2) 146.2(3) N(1)–Mn(1)–N(3) 70.2(3) 

O(1W)–Mn(1)–N(3) 93.3(3) O(2W)–Mn(1)–N(3) 91.0(3) 

O(1)–Mn(1)–N(3) 145.6(3) O(2)–Mn(1)–N(3) 72.2(3) 

N(2)–Mn(1)–N(3) 141.4(3)   

 

The manganese ion has approximate pentagonal bipyramidal geometry where the 

donors of the pentagonal plane are the three nitrogen atoms from the pyridine 

diimine head unit of the molecule, providing an angle of 71.1(3)
o
 (for N1–Mn1–N2) 

which is slightly distorted from a regular pentagonal plane of 72
o
, and is similar to 

the equivalent angle for the complex [Mn(L10)(OH2)2](ClO4)2 previously described 

which contains the dimethyl head unit. The angle for the pyridine diimine unit is 

slightly larger for this complex than was described for the complex 

[Mn(L12)(OH2)2](ClO4)2. The manganese ion is also bound to the two oxygen 

donors of the pentagonal plane from the ligand. The axial ligands are slightly bent 

with an angle of 169.9(3)
o
 (for O1W–Mn1–O2W) away from the ideal linear angle 

of 180
o
, this is more pronounced than that previously described for both 

[Mn(L10)(OH2)2](ClO4)2 and [Mn(L12)(OH2)2](ClO4)2. 
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The packing diagram for [Mn(L13)(OH2)2](ClO4)2 as viewed down the a axis is 

shown below in Figure 2-53. 

 

 

Figure 2-53 – Packing diagram for [Mn(L13)(OH2)2](ClO4)2 as viewed down the a 

axis 

 

The packing diagram for [Mn(L13)(OH2)2](ClO4)2 as shown in Figure 2-53, 

illustrates how the molecules pack via hydrogen bonding which exists between the 

uncoordinated perchlorate anions and the axial bound water ligands on adjacent 

molecules with distances of 2.996 Å and 3.028 Å respectively. 

 

c 

b 
a 

o 
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2.5.10 [Mn(L15)(Cl)2].MeOH 

 

 

Figure 2-54 –Structure for [Mn(L15)(Cl)2].MeOH  

 

Orange crystals of the complex [Mn(L15)(Cl)2].MeOH were crystallised in the 

triclinic space group P1 with R1 = 0.0394 (see Figure 2-54). The details of the 

crystal structure and refinement can be found in Table 42 in appendix 1 

 

The complex [Mn(L15)(Cl)2].MeOH was prepared as for complex [Mn(L13)(Cl)2], 

however, during the reaction, one of the imine bonds in this complex has undergone 

nucleophilic attack from a solvent methanol molecule which has become part of the 

ligand structure. During this reaction, the original imine bond length, taken from the 

water bound complex [Mn(L13)(OH2](ClO4)2,was found to be 1.272(3) Å, however, 

the equivalent bond where the nucleophilic attack has taken place, has led to an 

increase in bond length to 1.438(3) Å (for C7–N3) which indicates that a single bond 

is present for the complex [Mn(L15)(Cl)2].MeOH.  

 

The crystal structure as shown in Figure 2-54 contains a single seven coordinate 

manganese ion that is coordinated to the N3O2 donor set of the ligand which forms a 

pentagonal plane, two exogenous chloride ligands are bound to the manganese in the 

axial position. 
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Selected bond lengths and angles are given below in Table 20 below: 

 

Table 20 - Selected bond lengths [Å] and angles [°] for [Mn(L15)(Cl)2].MeOH 

Mn(1)–N(2) 2.232(2) Mn(1)–N(1) 2.249(2) 

Mn(1)–O(2) 2.2528(18) Mn(1)–O(3) 2.3037(19) 

Mn(1)–N(3) 2.331(2) Mn(1)–Cl(2) 2.5311(8) 

Mn(1)–Cl(1) 2.5697(8) C(7)–N(3) 1.438(3) 

 

N(2)–Mn(1)–N(1) 71.73(9) N(2)–Mn(1)–O(2) 143.32(8) 

N(1)–Mn(1)–O(2) 144.54(8) N(2)–Mn(1)–O(3) 142.76(8) 

N(1)–Mn(1)–O(3) 71.04(8) O(2)–Mn(1)–O(3) 73.83(7) 

N(2)–Mn(1)–N(3) 70.81(8) N(1)–Mn(1)–N(3) 141.66(8) 

O(2)–Mn(1)–N(3) 73.70(7) O(3)–Mn(1)–N(3) 145.54(7) 

N(2)–Mn(1)–Cl(2) 88.84(6) N(1)–Mn(1)–Cl(2) 90.34(6) 

O(2)–Mn(1)–Cl(2) 86.37(5) O(3)–Mn(1)–Cl(2) 92.41(5) 

N(3)–Mn(1)–Cl(2) 96.77(6) N(2)–Mn(1)–Cl(1) 94.86(6) 

N(1)–Mn(1)–Cl(1) 94.70(6) O(2)–Mn(1)–Cl(1) 88.23(5) 

O(3)–Mn(1)–Cl(1) 87.12(5) N(3)–Mn(1)–Cl(1) 80.65(6) 

Cl(2)–Mn(1)–Cl(1) 174.49(3)   

 

The manganese ion sits in a pentagonal bipyramidal geometry where the donors of 

the pentagonal plane are the three nitrogen atoms from the pyridine diimine head unit 

of the molecule providing an angle of 71.73(9)
o
 (for N2–Mn1–N1) which is slightly 

distorted from a regular pentagonal plane of 72
o
, this angle is very similar to that 

reported for the equivalent angle in the complex [Mn(L13)(OH2)2](ClO4)2, the 

manganese ion is also bound to the two oxygen donors of the pentagonal plane from 

the ligand. The axial ligands are slightly bent away with an angle of 174.49(3)
o
 (for 

Cl2–Mn1–Cl1) from the ideal linear angle of 180
o
. 

 

There is some π-π  stacking that is present between the pyridinediimine units of two 

adjacent macrocycles as shown in Figure 2-55 below. 
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Figure 2-55 – π-π  stacking for [Mn(L15)(Cl)2].MeOH 

 

The centroid - centroid distance is 4.003 Å and the centroid of the ring is 3.629(1) Å 

from the mean plane of the second ring under symmetry operation –x+1, -y, -z. 

 

2.6  Tripodal ligands 

 

Tripodal amines are important in the design of Schiff base complexes and by altering 

the arm lengths of the ligands, slight changes in geometry can be imposed onto a 

metal centre and increased flexibility may occur which may bring about changes in 

the biological activity of the molecule. Tripodal ligands were prepared and used in a 

Schiff base condensation reaction with salicylaldehyde. 

 

Tren is a commonly used commercially available symmetrical tripodal amine and 

was used without further purification in the synthesis of a Schiff base manganese 

tripodal complex with salicylaldehyde.  

 

The synthesis of asymmetric tripodal amines were attempted using the methods 

outlined by Blackman et al.30
 by varying the arm lengths of the tripod. The syntheses 

of the products have been carried out with varying molar ratios of MnCl2.4H2O to 

ligand. Initially attempts were made to prepare mononuclear complexes with a 1:1 

stoichiometry of MnCl2.4H2O to ligand, this was then extended to form the µ-oxo 

tetranuclear complexes with a cubane core by using excess MnCl2.4H2O.
30, 36, 37
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Each complex was analysed using IR, elemental analysis and mass spectrometry 

Suitable crystals did not form for X-ray crystallography to be performed. This may 

be due to lack of symmetry in the molecules. Complete condensation of all the 

primary amine groups was confirmed by the lack of a υ(N-H) stretching band in the 

region 3150 – 3450 cm
-1

 and the presence of a υ(C=N) stretch.  

 

In forming the asymmetric tripods as HCl salts, problems were first encountered in 

the neutralisation of the ligand to enable the tripod to undergo a Schiff base reaction 

with salicylaldehyde. Initial attempts included the use of a methanolic sodium 

hydroxide (NaOH) solution to alter the pH of the solution containing the tripod. 

However this method seemed unsuccessful and it seemed possible to easily add too 

much of the NaOH and it is possible that a sodium salt of the tripodal ligand can be 

formed. The use of sodium hydrogen carbonate was then used to neutralise the 

tripod, and this method again was unsuccessful. Finally, triethylamine was used and 

has led to the preparation of successful asymmetric tripodal amines.  

 

During the Schiff base reaction of the tripod with salicylaldehyde, an imine bond is 

formed. Attempts to reduce the imine bonds were carried out with the use of 

borohydride. The product was analysed using IR initially, the imine stretch 

disappeared on formation of the reduced ligands. This confirmed the reaction was 

successful. The results of the reduction seem to be successful and the catalase 

activity of the products of the reduction can be compared to those of the complexes 

containing the imine bonds. However, crystals could not be formed for the tripodal 

ligands which may be due to lack of symmetry in the molecules.  

 

The crystal structures of the complexes reported here show that the molecules have 

formed as seven coordinate Mn(II) complexes. The crystal structures have also 

clarified how the complexes have formed, whether as [2+2], [2+2] dimeric 

molecules, ring contractions or [1+1] mononuclear complexes. The appropriate bond 

lengths and angles have been indicated to show where differences arise around the 

metal centres and how the axial ligands have bonded. These parameters are important 
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for structure activity relationships as these may provide the key to understanding the 

nature of the antioxidant activities of the complexes tested. 
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3 Chapter Three – Biological testing 
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3.1 Electrochemistry 

 

Electrochemical data were obtained using a 0.5 mmol solution of complex in 

acetonitrile, with 0.1 M tertiarybutylammonium perchlorate as the supporting 

electrolyte. A 5 mmol ferrocene standard solution was prepared with 0.1 M 

tertiarybutylammonium perchlorate as the supporting electrolyte. A single 

compartment cell was used containing a platinum working electrode, a platinum 

counter electrode and a Ag/Ag
+
 reference electrode. All cyclic voltammograms were 

recorded at room temperature, using a scan rate of 100 mV/s
-1

. 

 

The Ag/Ag
+
 reference electrode was placed into the solution as a solid silver wire 

and is referred to as a pseudo reference electrode, so called because although it 

provides a constant potential, the reference potential is unknown and varies with 

different conditions. The presence of the ferrocene (Fc) is important as an internal 

standard for determining the potential scale if any electrochemical peaks were to be 

quoted from the samples under analysis. Thus, it is common practice to measure the 

reversible redox potentials for the oxidation of Fc to Fc
+
 versus the reference 

electrode and subsequently correct potentials to the Fc/Fc
+
 scale, see Figure 3-1.

103
 

 

Results were recorded using an EG&G potentiostat/galvanostat model 263A and the 

programme Powersuite. 

 

Initial testing of some of the seven coordinate manganese complexes was conducted 

in order to look for any redox activity of the compounds. The results from the 

electrochemistry are illustrated in Figure 3-2. 
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Figure 3-1 – Cyclic voltammogram of ferrocene standard 

 

The cathodic peak (Epc) for ferrocene occured at a potential of 0.33 V and the anodic 

peak (Epa) occured at 0.20 V. The redox couple E1/2 then occured at E1/2 = (Epc + 

Epa)/2 = 0.27 V. The fc/fc
+
 couple occurs at 0.40 V versus the standard hydrogen 

electrode (SHE).
104
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[Mn2(HL1)(N3)2]2(ClO4)2

[Mn(L10)(H2O)2](ClO4)2

[Mn4(L2)(ClO4)2]2

[Mn2(HL1)(OAc)2]2(ClO4)2

 

Figure 3-2 – Cyclic voltammetry of seven-coordinate manganese complexes 

 

Figure 3-2 shows that the complexes tested are electrochemically silent in the 

potential range -0.8 – 0.8 V and that the seven-coordinate Mn(II) complexes are 

resistant to oxidation, however, there is a slight increase in current which may 

suggest that some electrochemistry could be observed with a higher potential 

window. The complex [Mn2(HL1)(N3)2]2(ClO4) presents a higher increase in current 

when compared to the other seven-coordinate complexes that were tested. The slight 

increase in current may be due to the axial azide ligand as this complex has the same 

ligand system as that of the acetate bound complex, [Mn2(HL1)(OAc)2]2(ClO4)2. 

 

Seven-coordinate Mn(II) complexes with pentagonal bipyramidal geometry have 

previously been shown to be electrochemically silent as published by McKee and co 

workers.
94

 Seven-coordinate manganese complexes containing a pentagonal 

bipyramidal geometry generally do not show metal-based redox activity, and this has 
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previously been suggested by McKee and coworkers
94

 to be due to a Franck Condon 

barrier, where electron motion is effectively instantaneous in relation to the nuclear 

motion and reorganisation of the reactant atoms and surrounding materials is 

achieved by thermal fluctuations, the vibrational energy associated with the structural 

reorganisation of the molecule is high for the initial geometry.
105, 106

  

 

3.2 Superoxide dismutase activity 

 

Many of the complexes that were synthesised were subjected to indirect testing of 

their superoxide dismutase activity using the xanthine / xanthine oxidase indirect 

method as described below, firstly to see if there is any activity. The intention of this 

was to see what effects different axial ligands may have on the activity, determine if 

the number of manganese ions present has a substantial effect on the rates observed, 

and what effect the reduction of imine bonds has, altogether providing a catalogue of 

results to compare. The different rates may help identify the functional requirements 

for a superoxide dismutase mimic. To complement the results, it was hoped that a 

direct method of analysis could be achieved so that accurate results could be obtained 

for catalytic activity, however, although convincing results for the direct method 

have not yet been obtained, there is scope for the development of the method, and 

method development thus far is described below. 

 

3.2.1 Indirect analysis 

 

In collaboration with Prof. M. Devereux and Dr. A. Kellet at the Dublin Institute of 

Technology, the superoxide dismutase activities of the metal complexes were 

assessed using an indirect modified nitro-blue-tetrazolium (NBT) assay with 

xanthine–xanthine oxidase system as the source of O2‾•. In this method, the xanthine 

oxidase aerobically oxidises the xanthine to urate, producing O2‾• in the process. 

Nitro blue tetrazolium (NBT) is used as an indicator, this scavenges the O2‾• formed 

in the reaction, which causes reduction of the yellow NBT
2+

 to the blue formazan 

(MF
+
) as illustrated below in Figure 3-3. 
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Figure 3-3 – Reaction of NBT to blue formazan 

 

The quantitative reduction of NBT to blue formazan by the O2‾• was followed 

spectrophotometrically at 550 nm and 25
o
C for 180 s (results from 60 – 180s were 

used). In the presence of a SOD mimic, the absorbance values of the blue formazan 

decrease with increasing concentration of complex, this is because the SOD mimic 

will compete with the NBT to scavenge the O2‾•, this then allows the SOD activity of 

the complex to be calculated.
72, 73

 The NBT assay is an indirect method of analysis 

because the extent of the reduction of the appearance of the blue formazan in the 

presence of a SOD mimic is taken as a measure of SOD activity. The use of an 

indirect method could present potential problems because side reactions that may 

occur can interfere with the measurements made and the mechanism of catalysis 

cannot be determined. However, the indirect method offers conditions that 

approximate better the in vivo conditions and the reaction is not measured on a 

millisecond timescale as with the direct method. 

 

The indirect method assumes that there are no side reactions occurring and that only 

the catalytic superoxide dismutase reaction is taking place. A schematic 

representation of the xanthine/xanthine oxidase method is illustrated in Figure 3-4. 
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Figure 3-4 – Schematic representation of the NBT indirect assay method 
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3.2.2 Experimental 

 

All reagents were obtained from Sigma–Aldrich Chemical Co. Ltd., and all 

glassware was washed in nitric acid and solutions protected from light using 

aluminium foil to prevent degradation of any chemicals. 

 

Solution 1 was prepared by adding sodium xanthine (50 µM), and NBT (0.01617 g, 

100 µM) to a volumetric flask (200 ml) and made to volume with phosphate buffer 

solution (50 mM, pH 7.8). 

 

Solution 2 was prepared as a 1:10 dilution of xanthine oxidase in phosphate buffer 

solution (50 mM, pH 7.8), which was stored on ice throughout to prevent the enzyme 

from denaturing. 

 

Solution 3 was prepared by dissolving the complex in dimethylsulfoxide (0.1 mmol, 

50 ml). Dimethylsulfoxide was used because it does not affect the production of 

superoxide at volumes up to 30 µl. 

 

The prepared solutions were then added to a 1 cm path length quartz cuvette in 

varying amounts as described in Table 21 using a micropipette. 

 

Table 21 - Volumes of solutions used for the NBT assay 

Total 

Volume 

(ml) 

Solution 1 

(X+NBT) (ml) 

Phosphate buffer 

solution (µl) 

Solution 2 

(XO) (µl) 

Solution 3 

(Complex) (µl) 

3.05 3.0 30 20 0 

3.05 3.0 20 20 10 

3.05 3.0 10 20 20 

3.05 3.0 0 20 30 

 

The results of the SOD testing for three different concentrations of 

[Mn2(HL1)(Cl)2]2(ClO4)2 and also without any added complex are shown below in 
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Figure 3-5. The graph shows the absorbance values of blue formazan obtained at 550 

nm versus time for each experiment and calculations were made using the results 

from 1 – 3 minutes.  
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Figure 3-5 – Graph showing SOD activity of [Mn2(HL1)(Cl)2]2(ClO4)2 

 

For the reference sample, which contains no SOD mimic, the rate of change of 

absorbance is 0.025 per minute, and represents the rate of formation of O2‾• without 

any complex added and this is referred to as the flux. The flux is used to calculate the 

% inhibition of NBT in the presence of a complex, when the inhibition of NBT is 

100% then the rate of change of absorbance is equal to 0. When there is 0% 

inhibition, the rate of change of absorbance is equal to the slope of the flux. The 

calibration graph is illustrated in Figure 3-6, i.e: 

 

% Inhibition Change in absorbance per second 

0 3.6165 x 10
-4

 (slope) 

100 0 
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Figure 3-6 – Calibration graph for NBT assay 

 

The % inhibition for each concentration is then calculated from the graph shown in 

Figure 3-6 using the equation y = m x + c, where y = % inhibition and x = rate for 

each concentration substituted and obtained from the graph in Figure 3-5. After 

calculating the concentration of the compound in each sample, a graph showing % 

inhibition versus concentration is produced as shown in Figure 3-7. The graph was 

used to calculate the half maximal inhibitory concentration referred to as the IC50 

value, which is derived from linear regression analyses and given as the 

concentration (μM) equivalent to 1 unit of SOD activity. One unit of SOD activity is 

the concentration of the complex that causes 50% inhibition in the reduction of NBT, 

i.e from the equation obtained from the graph in Figure 3-7 where y = 50. 
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Figure 3-7 - Graph of inhibition (%) versus concentration for complex 

[Mn2(HL1)(Cl)2]2(ClO4)2 

 

The IC50 values, which are dependent upon the detector used, and the concentration 

of the detector [NBT], can be used to calculate the apparent kinetic rate KMcCF using 

the calculation proposed by McCord and Fridovich shown in Equation 3
107, 108

 where 

kNBT (pH 7.8) = 5.94 x10
4
 mol

-1 
L s

-1
: 

 

KMcCF = kNBT x [NBT] / IC50 

Equation 3 – Equation for the kinetic SOD rate of activity KMcCF 

 

The calculated rates are more appropriate for a comparison of results with literature 

values, as IC50 values will be smaller where a lower [NBT] has been used and the 

calculated rate is independent of both the nature and concentration of detector used. 
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3.2.3 Results 

 

Polynuclear complexes 

 

N
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Complex IC50 (µM) 

(NBT assay)  

kMcCF 

(M
-1

s
-1

)  

[Mn2(HL1)(Cl)2]2(ClO4)2 0.77 7.7 x 10
6 

[Mn2(RedHL1)(Cl)2]2MnCl4 0.82 7.2 x 10
6
 

[Mn2(HL1)(N3)2]2(ClO4)2 1.53 3.7 x 10
6 

[Mn2(RedHL1)(N3)2]2(ClO4)2 0.99 6.0 x 10
6
 

[Mn2(HL1)(NCS)2]2(ClO4)2 Inactive 0 

[Mn2(L1)(OAc)2]2(ClO4)2 1.60 3.6 x 10
6 

[Mn5(L1)2(OAc)2(ClO4)2](ClO4)2 1.07 5.7 x 10
6 

[Mn4(L2)(ClO4)4] 1.30 4.6 x 10
6
 

[Mn4(L2)(ClO4)2(NCS)2] 0.90 6.6 x 10
6
 

 

For the complexes tested, [Mn2(HL1)(Cl)2]2(ClO4)2 showed the greatest potential as 

a working SOD mimic displaying an IC50 value of 0.77 µM which gives a calculated 

kMcCF value of 7.7x10
6
 M

-1
s

-1
. Although the complex 

[Mn5(L1)2(OAc)2(ClO4)2](ClO4)2 also showed high activity and contains the same 

ligand structure as [Mn2(HL1)(Cl)2]2(ClO4)2, the extra manganese centre did not 
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produce a higher rate as may be expected. This may be due to the bridging basic 

acetate ligands producing an inhibition of the SOD activity. This also indicates that 

the bridging chloride ligand is important for the observed rate of superoxide 

dismutase activity. A chloride ligand is expected to dissociate more readily from the 

manganese than an acetate ligand. Thus, the results may suggest that the ease of 

dissociation of the ligand is important and that the ligand may be substituted by the 

incoming superoxide molecule. This is supported by the result obtained for the 

polynuclear complex of L1 [Mn2(HL1)(NCS)2]2(ClO4)2 containing the strongly 

bound thiocyanate axial ligand which did not display any SOD activity. 

 

A reduction of the imine bonds, forming the complex [Mn2(RedHL1)(Cl)2]2[MnCl4] 

which is similar in structure to [Mn2(HL1)(Cl)2]2(ClO4)2 produced a slight reduction 

in the rate of superoxide dismutase activity with an IC50 value of 0.82 µM and a 

kMcCF value of 7.2x10
6
 M

-1
s

-1
.This may mean that the complex contains a more ideal 

geometry before the reduction has taken place for the SOD activity to occur at the 

manganese centre, however, there is a difference in the counter ion that is present in 

the two complexes, the reduced analogue contains a MnCl4 ion which could possibly 

interfere with the SOD activity that has been observed. There is also a possibility that 

the differences that have been observed are due to errors that may be encountered in 

the method and that the reduction for this complex system does not alter the 

geometry of the manganese enough to increase the SOD activity significantly. 

However, the results that have been obtained for the complex 

[Mn2(HL1)(N3)2]2(ClO4)2 and the reduced analogue [Mn2(RedHL1)(N3)2]2(ClO4)2 

which gave calculated KMcCF values of 3.7 x 10
6
 M

-1
s

-1
 and 6.0 x 10

6
 M

-1
s

-1
 

respectively, suggest that a reduction for this complex does produce an increase in 

SOD activity which may be due to an increase in the flexibility of the ligand, 

allowing easier access to the manganese centres for the superoxide radical. 

 

Complexes of L2 also showed good SOD activity with the complexes 

[Mn4(L2)(ClO4)4] and [Mn4(L2)(ClO4)2(NCS)2] showing calculated KMcCF values of 

4.6 x 10
6
 M

-1
s

-1
and 6.6 x 10

6
 M

-1
s

-1
 respectively, the difference that is observed 

shows that the presence of the thiocyanate bound axial ligands for this ligand system 

increases SOD activity. The [4+4] nature of L2 and the dimeric [2+2] nature of 
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complexes for L1, produce different structures for each types of complex and there 

may be less access to the manganese centres for complexes of L2, it is possible that 

the bulkier perchlorate ligands prevent access to the manganese centres for the 

superoxide molecule to react. It could be possible to test this with the presence of 

different axial ligands such as the chloride ligand which is less bulky and less 

strongly bound than the thiocyanate ligand which would be expected to produce a 

faster rate of SOD activity than that found for the thiocyanate bound complex. 

 

Mononuclear complexes – Ring contracted species 

 

N

N

N

OH

N
OR

N

N

OH

N

N

N N

OR

N

N

L3 L5  

Where R referes to either MeOH or EtOH 

Complex IC50 (µM) 

(NBT assay)  

kMcCF 

(M
-1

s
-1

)  

[Mn(L4)(NCS)2].MeOH 2.70 2.2 x 10
6
 

[Mn(L4)(NCS)2].EtOH 3.77 1.6 x 10
6
 

[Mn(L4)(N3)2].MeOH 1.10 5.2 x 10
6
 

[Mn(L5)(NCS)2].MeOH Inactive 0 

 

The ring contracted species [Mn(L4)(NCS)2].MeOH and [Mn(L4)(N3)2].MeOH 

proved to possess high rates of catalytic activity even in the presence of a thiocyanate 

ligand which apparently rendered alternative ligand system complexes inactive. The 

complex [Mn(L4)(N3)2].MeOH showed the highest rate of activity with a calculated 

KMcCF  of 5.2 x 10
6
 M

-1
 s

-1
 when compared to the thiocyanate bound complex 

[Mn(L4)(NCS)2].MeOH which had a calculated KMcCF  of 2.2 x 10
6
 M

-1
 S

-1 

Consequently, there is potential for even higher rates to be achieved with the 

 4 
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presence of alternative axial ligands such as the chloride or aqua ligands, these 

complexes when compared to those of the tetranuclear complexes of L1 have no 

bridging ligands and are not dimers. This may be important for the mechanism of 

SOD activity, possibly providing an easier access for the O2‾• ion to the manganese 

centre. SOD activity was also found to decrease when the MeOH group was replaced 

with EtOH across the imine bond for complexes of L4, and this may lead to a slightly 

different geometry at the metal centre. 

 

The complex [Mn(L5)(NCS)2].MeOH did not show any superoxide dismutase 

activity, and the difference between the complexes of L4 and L5 is the presence of 

the OH groups that are present in the ligand system of L4, despite the OH groups 

remaining uncoordinated to the manganese ion. The OH group is present in L4 in the 

six membered ring that is formed during the ring contraction process, the presence of 

the OH group may stabilise the position that the nitrogen is coordinated to the 

manganese centre by possibly introducing rigidity into the system, however, the L5 

complex did contain a thiocyanate axial ligands which when present in the 

tetranuclear complex [Mn2(HL1)(NCS)2]2(ClO4)2, was also inactive, so with the 

presence of an alternative axial ligand, there is the potential for SOD activity to be 

observed for this ligand system. 
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Complex IC50 (µM) 

(NBT assay)  

kMcCF 

(M
-1

s
-1

)  

[Mn(L9)(Cl)2] 2.44 2.4 x 10
6
 

[Mn(L9)(OH)2](ClO4)2 2.08 2.9 x 10
6
 

[Mn(L10)(Cl)2] Inactive 0 

[Mn(L11)(Cl)2] 2.91 2.0 x 10
6
 

[Mn(L12)(Cl)2] 2.60 2.3 x 10
6
 

[Mn(L15)(NCS)2].MeOH 2.09 2.8 x 10
6
 

 

The mononuclear complexes [Mn(L9)(Cl)2], [Mn(L10)(Cl)2] and [Mn(L11)(Cl)2] 

were the least active of the ligand systems tested, with [Mn(L10)(Cl)2] inactive as a 

SOD mimic. The complex [Mn(L10)(Cl)2] is a macrocyclic complex and contains a 

more rigid ligand structure than [Mn(L9)(Cl)2] or [Mn(L11)(Cl)2]. All three 

complexes contain two methyl groups on the pyridine diimine head unit of the 

complex. The complex [Mn(L9)(Cl)2] contains two oxygen donor molecules in the 

ligand system as well as three nitrogen donors from the head unit all forming the 

pentagonal plane of the molecule, whereas [Mn(L11)(Cl)2] contains five nitrogen 

donor atoms, rates for KMcCF of 2.4 x 10
6
 and 2.0 x 10

6
 M

-1
 s

-1
 have been reported 

here respectively and although the rates are very similar, a slight increase in rate was 

obtained for complex [Mn(L9)(Cl)2] indicating that the type of donor in the ligand 

system is also important. 

 

The fact that there are differing rates for SOD activity with slight differences in 

geometry and ligand systems, indicates that the metal does not dissociate from the 

ligand for those complexes tested and that the geometry has some effect on the rates 

that have been achieved with the ease of dissociation for the axial ligand being an 

important factor for the design of a SOD mimic. The rates that have been reported 

fall within the ranges for SOD activity of other previously published structures. 

 

Some values for SOD activity obtained from the literature are given in Table 22. 
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Table 22 – Values for SOD activity of known compounds 

Compound Kcat (M
-1

 s
-1

) Method  

Mn(ClO4)2 + EDTA
109

 3.4 x 10
4
 Indirect 

Mn(ClO4)2
109

 1.3 x 10
6
 Indirect 

SODm1
67

 3.6 x 10
6
 Pulse radiolysis 

SODm2
67

 2.35 x10
8
 Pulse radiolysis 

SODm3
67

 Inactive Pulse radiolysis 

M40403
110

 1.6 x 10
7
 Stopped-flow 

MnSOD
56, 111

 5.5 x 10
8
 Indirect 

S,S-Dimethyl-M40403
39

 1.6 x 10
9
 Stopped-flow 

Cu/Zn SOD
54, 112

 2 x 10
9
 Pulse radiolysis 

* For structure of SODm1, SODm2 and SODm3 see Figure 1-26  

* For structure of M40403 see Figure 1-24 

 

The results for SOD activity obtained from the literature show that there are 

complexes that have been prepared with catalytic rates of activity that exceed that of 

the natural MnSOD enzyme itself, and that changes in geometry of the manganese 

centre can provide a faster rate of reaction. The table also shows that Mn(ClO4)2 has 

a high rate of catalytic activity, and when EDTA
4-

 was added to the solution, the 

reaction was partly inhibited. The results that have been obtained for the complexes 

in this thesis, have shown higher rates than that of Mn(ClO4)2 which supports the 

idea that the ligand and its geometry on the manganese centre is providing some 

impact on the rate that is being achieved. 
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3.2.4 Direct analysis – Stopped-flow technique 1 

 

Stop-flow analysis is a direct method for measuring the fast rate of superoxide 

dismutase activity. The superoxide radical is generated at initially high 

concentrations and then the decay of the superoxide absorbance is followed 

spectrophotometrically in the UV region, allowing a precise measurement of the rate 

to be made.
75

 The stopped-flow technique is limited to complexes with a Kcat higher 

than 1.5 x10
5
 M

-1
s

-1
 because superoxide self-dismutates with a second order rate 

constant of 1.5 x 10
5
 M

-1
s

-1
 at 21 

o
C. The direct method is less prone to false 

positives than the indirect methods; 
72

 thus, attempts were made to develop a method 

of analysis using a stopped-flow technique to complement the results obtained for the 

indirect xanthine/xanthine oxidase method previously described. 

 

A schematic representation of the stopped-flow equipment is shown below in Figure 

3-8. Superoxide solution is placed into syringe A and complex solution is placed into 

syringe B; on pushing the driver, liquid from both syringes is pushed out into the 

mixer in a 1:1 ratio into the cell and optical measurements are recorded. 
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Figure 3-8 – Schematic representation of stopped-flow equipment 

 

For the stopped-flow technique, the experimental set up consisted of an SFA-20 

stopped-flow set up connected to a HP 8453 diode array detector.  

 

Experimental 

 

A solution of potassium superoxide was prepared under nitrogen, by adding 

potassium superoxide (0.201 g) and tertiary butylammonium perchlorate (1.703 g, 

0.10 M to increase ionic strength) into a volumetric flask (50 ml) and made to 

volume with analytical grade dimethylsulfoxide (DMSO). The solution was then 

placed into an ultra sonic bath for 30 mins, or until the solution was yellow, 

indicating the presence of superoxide. The solution was then filtered to remove any 

excess solid potassium superoxide. This was stored in darkness by wrapping in 

aluminium foil to prevent decomposition through irradiation. 

 

A solution of [Mn2(RedHL2)(Cl)2]2[MnCl4] (0.0073 g, 1x10
-4

 M) was prepared by 

making to volume in analytical grade DMSO (50 ml) and varying concentrations in 
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the range 1x10
-5

 M to 1x10
-7

M were prepared via serial dilution of the initial 

complex solution. 

 

A solution of [Mn(L10)(OH2)2]2(ClO4)2 (0.0028g, 1x10
-4

M) was prepared by making 

to volume in analytical grade DMSO (50 ml) and varying concentrations in the range 

1x10
-5

 M to 1x10
-7

M were prepared via serial dilution of the initial complex solution. 

 

During analysis, superoxide solution was placed into syringe A. Complex solution 

was placed into syringe B (see Figure 3-8). The two solutions were then pushed into 

the cell where the solutions mix in a 1:1 ratio. This allows changes in absorbance to 

be measured at 270 nm upon mixing. 

 

3.2.5 Results 

 

Absorbance spectra were initially recorded and used to determine where max appears 

for both the superoxide solution and the complex solution by placing the analyte of 

interest into syringe A and pure DMSO in to syringe B (see Figure 3-8) then 

injecting the solutions into the cell, this was carried out to see that there was no 

overlap of the peaks from the two solutions. Figure 3-9 below demonstrates the 

observed superoxide peak which was recorded at both the start of the analysis and at 

the end of the analysis to confirm that the superoxide solution was stable throughout. 
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Figure 3-9 – Absorbance spectrum for a superoxide solution 

 

The concentration of superoxide solution was calculated as 0.002 mol
-1 

dm
3
. Taken 

from the known extinction cooefficient of 2686 ± 29 M
-1

 cm
-1

 for superoxide in 

DMSO.
113, 114

 

 

The overlay of the absorbance peaks for the superoxide solution and the complex 

[Mn2(RedHL2)(Cl)2]2[MnCl4] are shown in Figure 3-10. 
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Figure 3-10 – Absorbance spectrum of [Mn2(RedHL1)(Cl)2]2[MnCl4] overlaid with 

superoxide 

 

The absorbance spectrum shown in Figure 3-10 confirms that there is no overlap in 

absorbance at 270 nm between the complex [Mn2(RedHL2)(Cl)2]2[MnCl4] solution 

and the superoxide solution. This confirms that the kinetic trace can be followed for 

superoxide at 270 nm without interference from the complex solution. 

 

The kinetic trace for the stopped-flow analysis of superoxide mixed with the 

complex [Mn2(RedHL2)(Cl)2]2[MnCl4] at a concentration of 1x10
-7 

M as followed at 

270 nm is shown below in Figure 3-11. 
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Figure 3-11 – Kinetic trace for stopped-flow analysis of superoxide and 1x10-7M 

[Mn2(RedHL2)(Cl)2]2[MnCl4] 

 

The kinetic trace illustrated in Figure 3-11 shows that the reaction is complete on 

mixing of the solutions. There is an increase in absorbance as the solutions enter the 

cell, however, only the tail end of the reaction can be seen for this example. The 

absorbance reading becomes stable at ~ 0.554 which may be due to the complex in 

the solution. This shows that the complex has not been broken down during the 

reaction. The kinetic trace shown is for the lowest concentration of complex that was 

prepared, previous analyses were carried out at concentrations of 1x10
4 

M and the 

kinetic trace was similar in appearance to that shown in Figure 3-11. Lower 

concentrations were analysed, with the intention of slowing the reaction to a level 

that could be measured with the technique described. 

 

The same analysis were carried out with the mononuclear complex 

[Mn(L10)(H2O)2](ClO4)2 which has been shown to have a lower catalytic activity 

than the complex [Mn2(RedHL2)(Cl)2]2[MnCl4] as shown using the indirect NBT 

assay previously described. The absorbance spectrum of [Mn(L10)(H2O)2](ClO4)2 

overlaid with superoxide is shown below in Figure 3-12. 

 



 

 

138 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200

A
b

so
rb

an
ce

Time (s)
 

Figure 3-12 – Overlay of superoxide with [Mn(L10)(H2O)2](ClO4)2 
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Figure 3-13 – Kinetic trace for stopped-flow analysis of superoxide and 1x10-7M 

[Mn(L10)(H2O)2](ClO4)2 

 

The kinetic trace as shown in Figure 3-13, also shows the initial increase in 

absorbance as the solutions enter the cell. The absorbance then falls slowly from 

0.867 down to 0.805. This may be due to changes occurring to the complex whilst in 

solution.  
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Despite many attempts using the diode array detector, this technique was 

unsuccessful for monitoring the reactions for superoxide due to its detection limit of 

0.5 s. However absorbance values could be used to monitor where max appears for 

any complex under analysis and ensure no overlap occurs between the complex and 

the superoxide peak. 

 

3.2.6 Direct analysis – Stopped-flow technique 2 

 

In attempts to allow measurement of faster rates by the stopped-flow technique, the 

stopped-flow equipment was coupled with a fluorimeter which was used as the light 

source and an oscilloscope to allow a faster measurement to be made (see fig Figure 

3-14 below). For this experiment, the amount of light passing through the cell was 

recorded at 270 nm, so when superoxide which absorbs light at 270 nm entered the 

cell, the amount of light hitting the detector was reduced, hence a drop in voltage was 

recorded on the oscilloscope. The voltage was then expected to rise back to the base 

level reading as the superoxide is broken down. 
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Figure 3-14 – Stop-flow set up 

 

(see Figure 3-8 for schematic representation of the stopped-flow equipment) 
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Experimental 

 

A solution of superoxide was prepared as previously described for the stopped-flow 

technique 1. A solution of [Mn2(RedHL2)(Cl)2]2MnCl4 (0.0073g, 1x10
-4

M) was 

prepared by making to volume in DMSO (50 ml) and varying concentrations in the 

range 1x10
-5

 M to 1x10
-7

 M were prepared via serial dilution of the complex 

solution. A solution of [Mn(L10)(OH2)2]2(ClO4)2 (0.0028g, 1x10
-4

M) was prepared 

by making to volume in DMSO (50 ml) and varying concentrations in the range 

1x10
-5

 M to 1x10
-7

 M were prepared via serial dilution of the complex solution. 

Complex solutions were prepared with a controlled amount of water, 0.06 % once 

mixed in the cuvette.
56

 During analysis: superoxide solution was placed into syringe 

A and complex solution was placed into syringe B (see Figure 3-8), the two solutions 

were then pushed into the cell where the solutions mix in a 1:1 ratio. Results were 

recorded on a Lecroy waverunner LT364 500mHz oscilloscope as voltage versus 

time at 270 nm and the results exported into excel for manipulation. 
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3.2.7 Results 

 

Initial experiments involved the detection of superoxide at 270 nm during mixing 

with [Mn2(RedHL2)(Cl)2]2[MnCl4] and to see if any changes occur with varying 

concentrations of complex. This complex was chosen due to its activity observed 

using the modified NBT assay described earlier. As seen previously in Figure 3-10 

no interference in the absorbance peaks were observed for this complex with 

superoxide at 270 nm as shown in Figure 3-15, so any change in voltage is due to the 

presence of superoxide in the solution.  
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Figure 3-15 – Pure DMSO  

 

Figure 3-15 shows that there is no change in voltage observed when a sample of pure 

DMSO is analysed at a wavelength of 270 nm 

 

The following output readings of voltage versus time were obtained for superoxide 

when combined in the stopped-flow with different concentrations of the complex 

[Mn2(RedHL2)(Cl)2]2[MnCl4], these were recorded to see any differences that may 

be observed in the peak and whether the reaction could be slowed enough for a 

catalytic rate to be measured. 
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Figure 3-16 - Reaction of superoxide solution with 1x10-4 M 

[Mn2(RedHL2)(Cl)2]2[MnCl4] 
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Figure 3-17 - Reaction of superoxide solution with 1x10-5 M 

[Mn2(RedHL2)(Cl)2]2[MnCl4] 
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Figure 3-18 - Reaction of superoxide solution with 1x10-6 M 

[Mn2(RedHL2)(Cl)2]2[MnCl4] 
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Figure 3-19 - Reaction of superoxide solution with 1x10-7 M 

[Mn2(RedHL2)(Cl)2]2[MnCl4] 

 

The results that were obtained for the different concentrations of complex 

[Mn2(RedHL2)(Cl)2]2MnCl4 could not be used for the measurement of a catalytic rate 

as there was not a significant difference in the voltage rise back to the base line level 
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which represents the decay of superoxide, this is likely to be due to the reaction 

being complete on a scale that is too fast for the stopped-flow set up which has a 

mixing time of 30 ms. 

 

The previous experiment was then repeated using the mononuclear complex 

[Mn(L10)(H2O)2](ClO4)2. This complex was chosen due to its much lower activity as 

observed using the modified NBT assay technique, this was with the intention of 

slowing the reaction down which would help to enable more measureable peaks.  

 

The overlay of the absorption spectrum for superoxide with the complex 

[Mn(L10)(H2O)2](ClO4)2 was previously illustrated in Figure 3-12 and was shown 

not to interfere with the superoxide at a wavelength of 270 nm. 

 

The following output readings of voltage versus time were obtained for superoxide 

when combined in the stopped-flow with different concentrations of the complex 

[Mn(L10)(H2O)2](ClO4)2. 
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Figure 3-20 – Reaction of superoxide solution with 1x10-4 M 

[Mn(L10)(H2O)2](ClO4)2 
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Figure 3-21 – Reaction of superoxide solution with 1x10-5 M 

[Mn(L10)(H2O)2](ClO4)2 
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Figure 3-22 – Reaction of superoxide solution with 1x10-6 M 

[Mn(L10)(H2O)2](ClO4)2 
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Figure 3-23 - Reaction of superoxide solution with 1x10-7 M 

[Mn(L10)(H2O)2](ClO4)2 

 

Optimisation of this technique may be obtained with altering the amount of 

superoxide in the sample as well as that of the complex which may provide a more 

accurate result for this type of method. There is a possibility that the optimisation 

may be different with each complex as those with a faster catalytic activity may 

require a lower concentration of complex and a higher concentration of superoxide to 

enable a measurement to be made. 

 

For all of the measurements that were made using the stopped-flow technique 2, it 

seems apparent that the voltage drop that is observed on mixing may be due to the 

turbidity of the DMSO mixing with water and this could be overcome with further 

testing with the technique which may involve varying the amaount of water present 

and altering the ratio in which the two syringes mix. It is possible that the reaction is 

occurring on a millisecond mixing scale as the voltage drop is present before 0 

seconds. To enable the reaction to be monitored and produce accurate kinetic rates, 

the reaction must be brought to a scale that allows measurement after the solutions 

have fully mixed, this could possibly be achieved with further probing of lower 

concentrations, lower temperatures and where possible, the addition of a 

microcuvette to minimise the dead time of stopped-flow technique. 
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3.3 Catalase Activity 

 

The equipment for measuring catalase activity was set up for oxygen collection using 

two upturned 1000 cm
3
 measuring cylinders containing water. A water bath was 

maintained with a constant temperature of 25 
o
C as illustrated in Figure 3-24.  

 

 

Figure 3-24 – Equipment used for measuring catalase activity 

 

Volumetric determination of oxygen evolved was carried out by allowing the 

temperature of the water in the tank to equilibrate to 25 
o
C for a minimum of thirty 

minutes. Once complete, a sample of complex (1mg) was placed into methanol (1 

ml) inside a three-necked round bottom flask. The solution was stirred and the flask 

sealed. Hydrogen peroxide (7.25 mol l
-1

, 2 ml) was then injected through a rubber 

septum into the round bottom flask and the oxygen evolution was monitored every 

10 seconds for 10 minutes. Each sample was tested with and without the addition of 

base (triethylamine). In the cases where triethylamine was used, 0.010g was added to 

the flask before the addition of hydrogen peroxide. The addition of base during 

catalase testing has previously been shown to increase catalytic activity. 
83, 84
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The hydrogen peroxide used was standardised by titration with KMnO4, followed 

with standardisation of the KMnO4 with (NH4)2Fe(II)(SO4)2.6H2O. The hydrogen 

peroxide was found to have a concentration of 7.25 ±.0.08 mol l
-1

. When 100 % of 

the hydrogen peroxide (2 ml) is broken down a volume of 162 ml of oxygen would 

be expected to be produced when the reaction is complete. However the amount that 

was collected was often 60 – 100 ml higher than that calculated, this may be due to 

the exothermic nature of the reaction as this would cause the volume of gas to 

expand. 

 

3.3.1 Results 

 

Initial tests were carried out on the known catalase mimic; cis-[Mn(phen)2Cl2] to 

check the equipment before use with the prepared samples. The results for catalase 

activity of cis-[Mn(phen)2Cl2] have previously been reported by McCann et al 80
 

which showed that approximately 5382 molecules of hydrogen peroxide were broken 

down for each manganese atom in the complex during the first minute, known as the 

turnover number (see Equation 4). On repeating this experiment with the set up 

described here, approximately 5314 molecules of hydrogen peroxide were broken 

down for each manganese atom in the complex during the first minute. There is 

expected to be some error in the readings obtained for the set up described. McCann 

et al80
 also showed that a simple manganese salt (MnCl2) was considerably less 

active than the complex cis-[Mn(phen)2Cl2] with 918 molecules of hydrogen 

peroxide broken down for each manganese ion during the first minute. 

 

Calculation for turnover number: 

 

2H2O2  O2 + 2H2O 

 

It is assumed that 1 mole of O2 occupies 22400 ml, and 1 ml then contains (1/22400) 

= 45 x 10
-6

 moles of oxygen. Thus 90 x 10
-6

 moles of hydrogen peroxide are broken 

down for every 1 ml of oxygen that is produced. This equates to (90 x 10
-6

 x (NA)) = 
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5.4198 x 10
19

 molecules of hydrogen peroxide broken down for every 1 ml of 

oxygen that is produced. 

 

The number of molecules of complex that are present in the sample = 

(Mass(g)/Rmm) x NA 

* NA = Avagadro’s Constant = 6.022 x 10
23

 mol
-1

 

 

For the overall calculation of turnover number, the following calculation was then 

used: 

 

(5.4198 x 10
19

 x Rate (ml/s
-1

)) / Number of molecules of complex present 

Equation 4 – Calculation for turnover number 

 

A test was first carried out without any complex present, both with and without base 

which showed that there were no measureable amounts of oxygen released. Each 

complex was then tested for catalase activity without the presence of triethylamine 

and no activity was observed for any complex except for those complexes containing 

the acetate bridging ligand. A carboxylate group in the active site of the naturally 

occurring enzyme is known to be one of the most important structural features of the 

catalase.
78, 81, 115
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Polynuclear complexes of H2L1  

 

Polynuclear complexes of H2L1 including their reduced analogues have been 

compared to see what effect the different axial ligands and the ligand structure have 

on the activity of the complexes. The results of the catalase testing for complexes of 

H2L1 and RedH2L1 with base added, are illustrated in Figure 3-25 and complexes of 

H4L2 are illustrated in Figure 3-27 below. 
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[Mn5(HL1)2(OAc)2(ClO4)2](ClO4)2

[Mn2(HL1)(Cl)2]2(ClO4)2

[Mn2(RedHL1)(Cl)2]2(MnCl4)

[Mn2(HL1)(N3)2]2(ClO4)2

[Mn2(RedHL1)(N3)2]2(ClO4)2

[Mn2(HL1)(OAc)2]2(ClO4)2

[Mn2(HL1)(NCS)2]2NCS
 

Figure 3-25 – Catalase activity of polynuclear complexes of H2L1 and RedH2L1 

 

The graph displayed in Figure 3-25 shows the catalase activity for complexes of L1 

with base and demonstrates clear differences in the curves obtained for catalase 

activity. The results have been used to calculate the number of molecules of H2O2 

broken down by one molecule of complex known as the turnover number, both after 
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1 minute and during the fastest rate of reaction. The rate of the reaction during the 

fastest part of the reaction has been taken from the slope of the graph during the 

catalase activity. 

 

Complex 
Fastest rate 

(ml/s
-1

) 

Turnover 

Number*
a
  

Turnover 

after 60 

seconds 

[Mn2(HL1)(Cl)2]2(ClO4)2 1.1 130 7807 

[Mn2(RedHL1)(Cl)2]2[MnCl4] 2.7 328 21302 

[Mn2(HL1)(N3)2]2(ClO4)2 1.1 49 7830 

[Mn2(RedHL1)(N3)2]2(ClO4)2 6.1 867 52006 

[Mn5(HL1)2(OAc)2(ClO4)2](ClO4)2 7.2 975 58524 

[Mn2(HL1)(OAc)2]2(ClO4)2 1.2 141 0 

[Mn2(HL1)(NCS)2]2 2 197 0 

*Turnover number = Maximun number of molecules of hydrogen peroxide converted to oxygen per 

molecule of complex
116

 

a
 = Per second during the fastest part of the reaction 

 

The turnover after 60 second was calculated to highlight those complexes which 

showed an induction period. 

  

The results that are obtained for catalase activity are subject to errors, thus the 

turnover number that is calculated is an approximate figure in which the error is 

difficult to estimate due to the set up of the equipment, changes in temperature that 

may occur and the volumes and weights that are used, however, several of the tests 

were repeated and those results were reproducible. 

 

Initial observations indicate that the pentanuclear µ-OAc complex 

[Mn5(HL1)2(OAc)2(ClO4)2](ClO4)2 is the most efficient catalase mimic of those 

tested in this set of results with the fastest rate observed at 7.2 ml/s
-1

 and 

approximately 1000 molecules of hydrogen peroxide broken down per second for 

each molecule of complex during the fastest rate of activity and approximately 59000 

molecules broken down after one minute. Although the complex 

[Mn5(HL1)2(OAc)2(ClO4)2](ClO4)2 shows the fastest rate, the reduced µ-N3 complex 
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[Mn2(RedHL1)(N3)2]2(ClO4)2 has the highest initial rate of activity with 

approximately 52000 molecules of hydrogen peroxide broken down after the first 

minute of activity when compared to approximately 33000 molecules broken down 

by [Mn5(HL1)2(OAc)2(ClO4)2](ClO4)2 after one minute. The µ-N3 complex displayed 

a shorter initial delay in undergoing catalytic activity but did not reach the rates 

observed by the pentanuclear µ-OAc complex. 

 

When the results for catalase activity are compared for differences between the imine 

and the reduced amine analogues, it can be seen that there is a significant increase in 

catalase activity for the reduced analogue of each of the complex type tested. The 

complex containing the azide ligand shows the fastest catalase activity when 

compared with both the chloro and the isothiocyanate analogue. This is true for both 

the imine and amine form of the complexes as a direct comparison. Catalase activity 

is slow to begin in the presence of an isothiocyanate axial ligand which suggests that 

the isothiocyanate ligand hinders catalase activity and there is a possibility that the 

delay is due to a ligand exchange that occurs at the manganese centre in the presence 

of H2O2, and when compared to the azide and the chloro complex, the isothiocyanate 

ligand is more tightly bound to the manganese centre, requiring more energy to 

remove the ligand. 

 

A close up diagram of the graph shown in Figure 3-25 has been produced to show a 

clearer picture of the delay that is observed for the complexes before catalase activity 

begins and is shown below in Figure 3-26. 
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[Mn5(HL1)2(OAc)2(ClO4)2](ClO4)2

[Mn2(HL1)(Cl)2]2(ClO4)2

[Mn2(RedHL1)(Cl)2]2(MnCl4)

[Mn2(HL1)(N3)2]2(ClO4)2

[Mn2(RedHL1)(N3)2]2(ClO4)2

[Mn2(HL1)(OAc)2]2(ClO4)2

[Mn2(HL1)(NCS)2]2NCS
 

Figure 3-26 – Induction periods for catalase activity of L1 complexes  

 

The diagram in Figure 3-26, clearly shows that there is some delay for each complex 

tested except that of [Mn2(RedHL1)(Cl)2]2(MnCl4). The immediate reaction that is 

observed for this complex may partly be due to the extra manganese that is present in 

the counter ion, which is not present in the imine analogue [Mn2(HL1)(Cl)2]2(ClO4)2 

or in the the reduced azide bound complex [Mn2(RedHL1)(N3)2]2(ClO4)2.  

 

The delay that is observed for most complexes may be due to some rearrangement 

that is taking place within the ligand before catalase activity can be observed. In the 

natural catalase enzyme, it is thought that the H2O2 replaces the terminal H2O ligand 

from one of the Mn(III) centres and protonates the µ-oxo bridge. The reduction of 

the manganese dimer then results in the formation and release of O2 (see Figure 

1-30). The difference in the delay for each complex may be due to a removal of the 

axial ligands or at least one axial ligand before the reaction can take place, which 
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may be why there is a difference in the amount of delay that is observed depending 

on how strongly bound the axial ligand is to the manganese centre. Dismukes et al 

have previously suggested that the number of strong donors at the metal centre are 

important to activate substrates.
88

 The complex which showed the longest delay was 

[Mn2(HL1)(OAc)2]2(ClO4)2. The differences may also indicate the stability of the 

complexes and maybe that the complex [Mn2(HL1)(OAc)2]2(ClO4)2 is resistant to 

rearrangement. The results also suggest that the ligand may still be bound to the 

manganese ion and that it is not free manganese that is causing the reaction because 

there are clear differences observed in the rate that catalase activity occurs once the 

reaction begins for different complexes, and the turnover number is also much higher 

than that reported earlier by McCann et al80
 for the simple manganese salt MnCl2. 

 

Polynuclear complexes of L2  
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[Mn4(L2)(ClO4)4]

[Mn4(L2)(NCS)2](ClO4)2

[Mn4(L2)(ClO4)4]

[Mn4(L2)(NCS)2](ClO4)2  

Figure 3-27 - Catalase activity for polynuclear complexes of H4L2 
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Complex 
Fastest rate 

(ml/s
-1

) 

Turnover 

Number*
a
   

Turnover 

after 60 

seconds 

[Mn4(HL2)(NCS)2](ClO4)2 0.4 46 2757 

[Mn4(HL2)(ClO4)4] 0.4 41 0 

*Turnover number = Maximun number of molecules of hydrogen peroxide converted to oxygen per 

molecule of complex
116

 

a
 = Per second during the fastest part of the reaction 

 

The graph shown in Figure 3-27 shows that the [4+4] ring expanded complexes of 

H4L2 are much less active than the complexes of H2L1 and although both complexes 

of H4L2 show the same shaped curve and rate for catalase activity, the perchlorate 

bound complex [Mn4(HL2)(ClO4)4] shows a longer initial delay before catalase 

activity is observed. For the complexes of H4L2, it appears that the presence of the 

isothiocyanate ligand improves catalase activity in this ligand system whereas the 

presence of the isothiocyanate ligand decreased catalase activity for complexes of 

H2L1, this may be due to the structure of the ligands. The ligand system of H4L2 

forms as a [4+4] structure with a cubane core involving the manganese centres, 

whereas H2L1 forms as a dimeric molecule that is bridged by the axial ligands. The 

dimeric molecule is more likely to come apart than the ligand of H4L2 which may 

provide more access for the hydrogen peroxide molecules to react with the 

manganese centres and for catalase activity to be observed. For the hydrogen 

peroxide molecules to react with the manganese centes of H4L2, there may have to 

be some rearrangement of the ligand system as a whole, or that there is limited 

access to the manganese centres for the axial ligands to be displaced by the hydrogen 

peroxide molecules. It may be possible, that the hydrogen peroxide molecule needs 

to get into close proximity to the manganese centre before catalase activity can begin 

and with the structure of H4L2, the perchlorate ligand which is more bulky than the 

isothiocyanate ligand may be preventing the hydrogen peroxide molecule having 

access to the only site possible to react with the manganese where there could be a 

transition state in which the manganese is bound to both the axial ligand and the 

hydrogen peroxide molecule before catalase activity begins. 
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The result for catalase activity of the pentanuclear complex 

[Mn5(HL1)2(OAc)2(ClO4)2](ClO4)2 without the addition of the base triethylamine is 

shown below in Figure 3-28. The profile for this complex with the addition of 

triethylamine is shown in Figure 3-25.  
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Figure 3-28 – Catalase activity for [Mn5(HL1)2(OAc)2(ClO4)2](ClO4)2 without the 

addition of base 

 

Complex 
Fastest rate 

(ml/s
-1

) 

Turnover 

Number*
a
   

Turnover 

after 60 

seconds 

[Mn5(HL1)2(OAc)2(ClO4)2](ClO4)2 

(without addition of triethylamine) 
1.7 32 0 

*Turnover number = Maximun number of molecules of hydrogen peroxide converted to oxygen per 

molecule of complex
116

 

a
 = Per second during the fastest part of the reaction 

 

Catalase activity for the complex [Mn5(HL1)2(OAc)2(ClO4)2](ClO4)2 without the 

addition of triethylamine was found to show a long induction period, but once 

catalase activity occurs, it continues at a rate of 1.7 ml/s
-1

 with approximately 30 
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molecules of hydrogen peroxide broken down for each molecule of complex per 

second. The fact no other complexes of L1 show any catalase activity without the 

presence of base, indicates that the acetate group is important for this type of 

complex. Bridging carboxylate ligands are suggested to prevent the formation of 

Mn
(II)

Mn
(III)

 or Mn
(III)

Mn
(IV)

 oxidation states which are kinetically inactive.
117

 The 

bridging central manganese in the complex [Mn5(HL1)2(OAc)2(ClO4)2](ClO4)2 is in 

an octahedral environment which no other complex tested posseses, this too may be 

an important feature of the complex. Some activity was observed for the tetranuclear 

complex, although this was not initiated until after ten minutes had passed, so the 

extra manganese centre is also a key factor for this ligand system. The sigmoidal 

shape of the curve that is obtained for the catalase activity of the complex 

[Mn5(HL1)2(OAc)2(ClO4)2](ClO4)2 without the addition of base is also of importance 

as it gives the representation of a cooperative binding curve that is observed for the 

oxygen binding of haemoglobin. Cooperative binding occurs due to substrate 

activation of the catalyst, this is where the affinity of a ligand for a molecule with 

several binding sites increases once one substrate ligand becomes bound to the 

molecule, so here, it may be that there is a long induction period, but once the 

hydrogen peroxide becomes bound to the complex, the affinity for the hydrogen 

peroxide to bind to the manganese centres increases depending on the amount of 

hydrogen peroxide that has become bound. Sigmoidal curves are characteristic of 

transitions between two different states, which involves the making or disruption of 

numerous weak interactions which are non covalent bonds.
118-120

 

 

Ring contracted species 

 

Catalase activity for the ring contracted complexes of L4 and L5 were tested and 

compared as shown below in Figure 3-29. 
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Figure 3-29 – Catalase activity for ring contracted species 

 

Complex 
Fastest rate 

(ml/s
-1

) 

Turnover 

Number*
a
   

Turnover 

after 60 

seconds 

[Mn(L4)(Cl)2].MeOH 0 0 0 

[Mn(L4)(NCS)2].MeOH 0 0 0 

[Mn(L4)(NCS)2].EtOH 0.001 0 0 

[Mn(L5)(NCS)2].MeOH 0.35 14 0 

*Turnover number = Maximun number of molecules of hydrogen peroxide converted to oxygen per 

molecule of complex
116

 

a
 = Per second during the fastest part of the reaction 

 

The results show that the ring contracted species have very limited catalase activity. 

Of the complexes tested, only [Mn(L4)(NCS)2].EtOH and [Mn(L5)(NCS)2].MeOH 

showed any activity, and [Mn(L4)(NCS)2].EtOH did not show any signs of activity 

until after 4 minute, and once oxygen was being produced, the reaction continued at 

a rate of 0.001 ml/s
-1

. The complex [Mn(L5)(NCS)2].MeOH was shown to be slightly 

faster producing oxygen at a rate of 0.35 ml/s
-1

, and breaking down 14 molecules of 
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hydrogen peroxide per molecule of complex per second during the fastest rate. The 

differences observed suggest that the overall ligand structure has some effect on the 

rate of activity because, in this case, when comparing the complexes 

[Mn(L4)(NCS)2].MeOH and [Mn(L5)(NCS)2].MeOH, the complexes are very 

similar and the axial ligands are the same, however, the complex 

[Mn(L4)(NCS)2].MeOH has the addition of an OH group within the ligand structure 

which results in a slower rate of catalase activity. The extra OH group in the L3 

ligand system are not bound to the manganese ion directly but it is hydrogen bonded 

to the axial NCS ligand, which may be preventing the thiocyanate ligand from being 

removed to enable the hydrogen peroxide to bind to the manganese centre. The L5 

complex ligand system may provide more access to the manganese for the hydrogen 

peroxide molecule which is consequently broken down. The overall lack of activity 

observed for the ring contracted species may also be due to the formation of the ring 

within the ligand system, which may prevent a rearrangement of the molecule 

occurring to allow access of the hydrogen peroxide molecule to the manganese 

centre thus enabling catalase activity.  

 

The results also suggest that the complexes do not degrade and that the manganese 

does not become displaced from the ligand system, this is because there is either no 

activity observed, which if the manganese was displaced, there would be expected to 

at least some activity, or for the two complexes which showed slight activity, there 

are differences in the observed rate which supports the idea that the manganese 

bound to the different ligands leads to the differences in the rate of catalase activity. 

 

Dinuclear complex L6 

 

Naturally occurring manganese catalase has been shown to possess a dinuclear 

manganese centre.
77, 78

 The results for catalase activity of the dinuclear complex 

prepared using ligand L6 is shown in Figure 3-30.  
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Figure 3-30 – Catalase activity for dinuclear complex [Mn2(L6)(NCS)4] 

 

Complex 
Fastest rate 

(ml/s
-1

) 

Turnover 

Number*
a
   

Turnover 

after 60 

seconds 

[Mn2(L6)(NCS)4] 0.1 7 0 

*Turnover number = Maximun number of molecules of hydrogen peroxide converted to oxygen per 

molecule of complex
116

 

a
 = Per second during the fastest part of the reaction 

 

The result obtained for complex L6 show that overall, the complex has very little 

catalase activity when compared to the polynuclear complexes of L1 and L2. The 

complex tested contains nitrogen bound thiocyanate axial ligands which were shown 

to reduce catalase activity for complexes of L1 and L2 and each manganese centre in 

the complex [Mn2(L6)(NCS)4] is bridged by two thiocyanate axial ligands and bound 

to a further thiocyanate ligand each. The bridging thiocyanate ligands would be 

difficult to remove and the initiation of catalase activity may be initiated at the non 

bridging thiocyanate axial ligands, so it is possible that with alternative axial ligands 

in place of the thiocyanate ligands such as the -µCl bridge, the activity could be 

improved for complexes with the ligand system L6, however, attempts to synthesis 

such complexes were unsuccessful.  
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[1+1] Mononuclear complexes 

 

For clarity, the catalase activity for the mononuclear complexes with a 

diacetylpyridine head unit which contains a methyl group which is attached to the 

imine bonds are shown first in Figure 3-31. The results for catalase activity for the 

mononuclear complexes with a diformylpyridine head unit, where there are no 

methyl groups present across the imine bonds are shown in Figure 3-32. 
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Figure 3-31 – Catalase activity for mononuclear complexes with a diacetylpyridine 

head unit 
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Figure 3-32 – Catalase activity for mononuclear complexes with a diformylpyridine 

head unit 
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Complex 
Fastest rate 

(ml/s
-1

) 

Turnover 

Number*
a
   

Turnover after 

60 seconds 

[Mn(L9)(OH2)2](ClO4)2 7.7 181 23754 

[Mn(L9)(Cl)2] 2.9 23 4737 

[Mn(L9)(NCS)2] 0.3 6 687 

[Mn(L10)(OH2)2](ClO4)2 0.8 27 0 

[Mn(L10)(Cl)2] 0.3 10 0 

[Mn(L10)(NCS)2] 0.3 13 0 

[Mn(L11)(Cl)2] 0.7 24 1537 

[Mn(L11)(NCS)2] 12.0 160 23659 

[Mn(L12)(Cl)2] 5.4 20 7604 

[Mn(L13)(NCS)2] 0.6 3 1685 

[Mn(L14)(NCS)2] 0.18 7 416 

[Mn(L15)(Cl)2].MeOH 0.7 8 0 

[Mn(L16)(OH2)2](ClO4)2 7.5 150 9000 

*Turnover number = Maximun number of molecules of hydrogen peroxide converted to oxygen per 

molecule of complex
116

 

a
 = Per second during the fastest part of the reaction 

 

The results illustrated in Figure 3-31 and Figure 3-32 indicate that, of the 

mononuclear complexes tested, [Mn(L9)(OH2)2](ClO4)2 shows the highest activity 

with a rate of 7.7 ml/s
-1

 during the fastest rate and approximately 24000 molecules of 

hydrogen peroxide broken down after one minute. The complex which showed least 

catalase activity was [Mn(L14)(NCS)2] with approximately 400 molecules of 

hydrogen peroxide broken down per minute per molecule of complex during the 

fastest rate and no catalase was seen after one minute with the complex 

[Mn(L14)(NCS)2]. 

 

The mononuclear complexes of L10 which possesses a more rigid structure than L9 

or L11 displays less catalase activity overall. This may be due to an increased 

flexibility in the ligands of L9 and L11. The complexes of L10 are also more likely 

to be more kinetically stable than those complexes of L9 and L11. This may have 
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hindered the formation of a required geometry or exchange reaction of the axial 

ligands at the manganese centre with a hydrogen peroxide molecule that may be 

required for catalase activity. 

 

The axial ligands that are bound to the manganese centre have some impact upon the 

observed rates. Ligands of L9 and L10 both showed that the rate of catalase activity 

was highest in the presence of water bound axial ligands, followed by those with 

chloride bound axial ligands, and finally, activity was dramatically reduced in the 

presence of thiocyanate axial ligands. This trend would be expected due to the 

strength that the axial ligand is bound to the manganese centre. An OH2 ligand is 

removed with greater ease than that of a chloride and of a thiocyanate ligand, 

respectively. 

 

[Mn(L9)(Cl)2] and [Mn(L12)(Cl)2] that share a similar structure and where the only 

difference is the methyl groups on the head unit show a very similar activity. 

However, the ligand [Mn(L12)(Cl)2] which contains no methyl groups showed 

slightly faster catalase activity. This again may be related to the flexibility of the 

molecule, as the presence of the methyl groups would be expected to increase the 

rigidity of the molecule. 

 

When the results for the more rigid complexes of L10 are compared with L13 which 

contains no methyl groups in the head unit, and where both L10 and L13 contain 

thiocyanate axial ligands, the methyl groups seemed to make more of an impact on 

the differences seen. The complex [Mn(L13)(NCS)2] showed much higher activity 

even with the presence of the thiocyanate ligands than for each of the complexes of 

L10 including the OH2 bound complex. 

 

The complex [Mn(L15)(Cl)2].MeOH, which has a similar structure to 

[Mn(L10)(Cl)2] and [Mn(L13)(Cl)2] but has undergone nucleophilic attack of 

methanol across one imine bond, displayed an activity that was similar to that of 

[Mn(L13)(Cl)2] and was higher than that of [Mn(L10)(Cl)2]. This indicates that there 

may only be a slight rearrangement of the ligands, however, for each of the more 
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rigid complexes L10, L13 and L15, there is a pronounced delay in the observed 

catalase activity. 

 

The curve observed for the complexes [Mn(L9)(NCS)2] and [Mn(L11)(Cl)2] seem to 

show some initial catalase activity but the volume of oxygen that is given off may be 

levelling off at a volume of oxygen which is much lower than the expected volume 

for the reaction to be complete, and is lower than the volume that is shown for all of 

the other complexes and although it may be possible that catalase activity may 

continue at a very slow rate, the results may also suggest that the reaction is complete 

but that there is an alternative reaction occurring for the hydrogen peroxide that is 

present, it may be possible that the hydrogen peroxide is reacting with the manganese 

in the complex but that some of the hydrogen peroxide or the oxygen may become 

bound to the complex and not take part in a catalase reaction. It is also possible that 

the catalyst has altered in structure during the reaction, which has rendered the 

catalyst inctive part way through the testing. By altering the axial ligands that are 

present for these complexes, there appears to be a catalase reaction that is able to 

occur.  

 

The results for catalase activity of the mononuclear complexes have been shown on a 

larger scale to show more clearly how the induction period differs for the various 

complexes and these results are shown below in Figure 3-33. 
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Figure 3-33 - Delay observed for catalase activity of mononuclear complexes with a 

diacetyl pyridine head unit 
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Figure 3-34 - Delay observed for catalase activity of mononuclear complexes with a 

diformyl pyridine head unit 
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The close up illustrations of the induction periods for catalase activity show that 

there is a clear difference for the ligands under observation. Figure 3-33 shows that 

the complex systems of L10 have a much longer induction period than any other 

ligand system. The L10 ligand system is a macrocyclic system which is expected to 

be more stable than the non-macrocyclic systems, so this may be preventing a 

rearrangement of the macrocycle which may be required for the catalase activity to 

begin. Complexes of L11 show catalase activity with no delay and this ligand system 

is non-macrocyclic and contains a single manganese centre with pentagonal 

bipyramidal geometry from an N5 donor set in place of an N3O2 donor set, this is also 

true for complexes of L16 which show a slight delay, however, where two methyl 

groups are attached to two nitrogens of the L11 ligand system, there exists one 

hydrogen attached to the nitrogen in place of the methyl groups. The methyl groups 

that are attached in L11 may play a part in the increased activity that is observed for 

this ligand system. 
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Catalase activity of the tripodal complexes 

 

The results illustrated in Figure 3-35 show that the catalase activity of the tripodal 

complexes occurs almost without delay. 
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Figure 3-35 – Catalase activity of tripodal complexes 

 

Complex 
Fastest rate 

(ml/s
-1

) 

Turnover 

Number*
a
   

Turnover after 

60 seconds 

[Mn(RedSaltren)] 3.7 93 11372 

[Mn4(O)2(RedSaltren)2] 1.2 100 8839 

[Mn(Saltren)] 8.8 172 24336 

[Mn4(O)2(Saltren)2] 6.0 504 50177 

[Mn4(O)2(ABAP-Sal)2] 1.2 61 8372 

[Mn(ABAP-Sal)] 0.5 31 0 

[Mn(RedBAEP-Sal)] 10.3 262 37477 

*Turnover number = Maximun number of molecules of hydrogen peroxide converted to oxygen per 

molecule of complex 

a
 = Per second during the fastest part of the reaction 



 

 

169 

 

The most promising complex of those tested is the tetranuclear complex 

[Mn4(O)2(Saltren)2] which has been calculated to break down approximately 30000 

molecules of H2O2 per molecule of complex after one minute. Although most of the 

tripodal complexes did not display any delay before catalase activity was observed, 

there was a delay for the complexes containing the ABAP ligand, with the 

mononuclear complex [Mn(ABAP-Sal)] showing no catalase activity after one 

minute. We were able to reduce the delay that was observed for the mononuclear 

complex [Mn(ABAP-Sal)] by increasing the number of manganese centres present to 

form the complex [Mn4(O)2(ABAP-Sal)2]. This indicates that an increase in the 

number of manganese centres is important in addition to the geometry of the metal 

centre. 

 

The curve observed for the complex [Mn(ABAP-Sal)] seems to level off at a volume 

of oxygen given off which is much lower than the expected volume for the reaction 

to be complete. The volume was lower than that shown for all of the other 

complexes, and although it may be possible that catalase activity may continue at a 

very slow rate, the results may also suggest that the reaction is complete but that 

there is an alternative reaction occurring for the hydrogen peroxide that is present. It 

may be possible that the hydrogen peroxide is reacting with the manganese but that 

some of the hydrogen peroxide or the oxygen may become bound to the complex and 

not take part in a catalase reaction.  

 

The highest reaction rate that was obtained for the tripodal complexes was that of 

complex [Mn(RedBAEP-Sal)] which reached a rate of 10.3 ml/s
-1

. The reaction rate 

for [Mn(RedBAEP-Sal)] was much higher than that of the complex 

[Mn(RedSaltren)] which has a rate of 3.7 ml/s
-1

. The difference in structure for the 

two complexes [Mn(RedSaltren)] and [Mn(RedBAEP-Sal)], is that [Mn(RedSaltren)] 

is a symmetrical tripod with a chain of two carbons for each arm of the tripod; 

[Mn(RedBAEP-Sal)] is an asymmetric tripod with two arms containing a 2 carbon 

chain and the third arm containing a three carbon chain, so the increase in one arm 

length causes catalase activity to be more efficient. There is a possibility of 

increasing the rate with the synthesis of the tetranuclear complex using the BAEP 
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ligand via synthesis of a 2:1 ratio of manganese to ligand. Attempts to form this 

complex did not produce a product with a good analysis for characterisation. 

 

The results have also revealed that a reduction of the imine bond decreased the 

catalytic activity. For example, a reduction of the Saltren ligand resulted in a rate that 

was reduced from 6.0 ml/s
-1

 as seen for the complex [Mn4(O)2(Saltren)2], to just 1.2 

ml/s
-1

 of oxygen produced for the complex [Mn4(O)2(RedSaltren)2], approximately 

50000 molecules of hydrogen peroxide were broken down per molecule of complex 

after one minute compared with approximately 9000 molecules respectively. This 

difference was also observed for the mononuclear complexes [Mn(Saltren)] and 

[Mn(RedSaltren)] although the difference was less pronounced with rates of 8.8 ml/s
-

1
, and 3.7 ml/s

-1
, 24000 and 11000 molecules approximately of hydrogen peroxide 

broken down after one minute for each molecule of complex respectively. 

 

The results for catalase activity for the tripodal complexes are shown on a close up 

scale to illustrate more clearly how the induction period changes for different 

complex systems. These are shown below in Figure 3-36. 
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Figure 3-36 – Delay for catalase activity observed for the tripodal complexes 

 

The graph illustrated in Figure 3-36 clearly show that there is good potential for 

catalase activity with no induction period observed for complexes of 

[Mn4(O)2(Saltren)2] and [Mn(RedSaltren)]. The mononuclear complex of the Saltren 

ligand [Mn(Saltren)] does show a short induction period before catalase activity 

begins and that by reducing the imine bonds, this induction period is removed. A 

reduction of the imine bonds is likely to impose a slightly different geometry onto 

the manganese centre which may be why there is no induction period observed after 

reduction. However, the reverse is true for the tetranuclear system of the saltren 

ligands, the complex [Mn4(O)2(RedSaltren)2] which has undergone a reduction 

shows no induction period, whereas the complex [Mn4(O)2(Saltren)2] is slightly 

slower to show any catalase activity. The manganese centres for the tetranuclear 

systems contain a cubane core which may contribute to the observed catalase 

activity. 
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Expansion of Research 
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To extend the findings of the research as presented in this thesis, it is important 

firstly to find ways in which to increase the yields of the reduced complexes if they 

are to be used in a scale up procedure for further testing and analysis and in a 

commercial setting. Currently, the imine analogues of the complexes presented are 

very simple to prepare and can be obtained with high purity and good yields which 

provides an ideal situation for commercial production. 

 

Toxicity issues must be addressed with each type of complex formed if used as a 

potential pharmaceutical ingredient and also, the stability of the complexes when 

stored in different conditions may alter greatly. 

 

In general, many of the reduced complexes that were synthesised produced only very 

small crystals, which were often too small for X-ray analysis to be performed. By 

manipulating the different conditions for crystal growth further, it may be possible to 

produce larger crystals and analyse their geometry further which can lead to more 

comparisons to be made. 

 

For each of the complexes that have been prepared, a range of possibilities exist as to 

the differing axial ligands and variations that may be introduced and which will 

possibly lead to an increase in the observed activity. This can only add to the 

catalogue of complexes prepared and aid in the understanding of a particular 

catalytic antioxidant activity. 

 

The tripodal ligands that have been synthesised have not produced crystals for 

analysis. Perseverance with this type of complex may lead to crystals being formed 

with the right conditions. Some success was found with crystals that were formed for 

the reduced analogues however; they were not large enough for X-ray analysis to be 

performed. The successful synthesis of the complex [Mn4(O)2(RedBAEP-Sal)2] may 

lead to a complex that displays very fast catalytic activity with limited initial delay. 

 

When the structures of the tripods can be compared and analysed, it would be 

interesting to observe the superoxide dismutase activity that these complexes may 

show. The tripodal complexes hold potentially many variations in their structure, as 
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the synthesis can be carried out with varying molar amounts which may lead to new 

complexes. A reduction of the imine analogue introduces many new forms of the 

complex to be analysed also. A breakthrough in the formation of a pure and neutral 

tripod may lead to higher yields and purity. The catalase activity of the tripodal 

ligand complexes seems promising and further analysis and biological testing is 

required in this area. 

 

Further work must be continued on the development of a direct method for analysing 

superoxide dismutase activity. The reaction occurs on a millisecond timescale and 

lowering the reaction time may produce results that can be analysed more accurately 

and compared with results from the indirect modified NBT assay method used. This 

may require more variations in concentration for both superoxide solution and 

complex solution. The introduction of a microcuvette accessory will minimise the 

dead time for a stop-flow technique. Part of the process for developing a direct 

method should include the effects of variations in solvent, pH, temperature and the 

amount of water present to gain maximum results. 
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Conclusions 
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A wide range of simple and air stable seven coordinate manganese complexes have 

been successfully synthesised, producing a catalogue of complexes that display small 

differences in geometry around the metal centre and consequently differing 

biological activity. Some new complexes have been prepared with the reduction of 

imine bonds where possible, and a range of ring contracted species which have 

allowed the analysis of similar ligand structures to be compared. 

 

A range of tripodal complexes have also been synthesised with the formation of 

some asymmetric examples and complexes which have been synthesised with firstly 

a mononuclear centre via 1:1 stoichiometric reaction of ligand : manganese then in a 

1:2 ratio respectively to form a dimeric compound with a tetranuclear core. Their 

catalase activities have been measured and compared to see what helps drive the 

catalytic reaction.  

 

Several of the prepared complexes were subject to indirect analysis of superoxide 

dismutase activity and overall, the tetranuclear complexes showed high rates of 

superoxide dismutase activity that are within the range reported in the literature. The 

complex [Mn2(HL1)(Cl)2]2(ClO4)2 showed the highest calculated KMcCF value of 7.7 

x 10
6
 M

-1
 s

-1
, indicating that the bridging chloride ligand is important for the 

observed rate of superoxide dismutase activity. A chloride ligand is expected to 

dissociate more readily from the manganese than other axial ligands such as acetate 

and thiocyanate. Thus, the results suggests that the ease of dissociation of the ligand 

is important and that the ligand may be substituted by the incoming superoxide 

molecule. The results suggested that the reaction was not a result of the complex 

systems falling apart and that the complexes have good stability during the catalytic 

reaction. 

 

The ring contracted species showed some SOD activity even with thiocyanate axial 

ligands which rendered other complexes inactive and so there is potential for even 

higher rates to be achieved with the presence of alternative axial ligands such as the 

chloride ligand. These complexes do not exist as dimeric molecules and the axial 

ligands are not bridging so there is a lower molecular weight for these complexes 
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which means that a lower dosage would be required when considering it as a 

potential working SOD mimic. 

 

The results for the catalase testing showed the effect that different ligands produced 

and how an increase in the number of manganese centres can prove to be important. 

The results reported in this thesis have shown that catalase activity is largely affected 

by the overall structure of the ligand which may be linked to differing geometries of 

the manganese centre and providing access to the hydrogen peroxide molecule for 

the reaction to occur. For the non tripodal ligands, an overall increase in activity was 

observed upon reduction of the imine bond and when compared to the non reduced 

complex which has a similar structure. In addition to the structure of the ligand being 

important, there were also complexes that were similar, which differed only in the 

type of axial ligand, suggesting that the dissociation constants may be important and 

maybe the axial ligand is dissociated before the hydrogen peroxide can be broken 

down. The complex [Mn5(HL1)2(OAc)2(ClO4)2](ClO4) was shown to possess the 

highest rate of catalase activity and contains the acetate axial ligands, carboxyl axial 

ligands are present in the active site of the naturally occurring enzyme and so is an 

important feature in the design of a catalase active compound, this is due to the basic 

nature of the ligand and its binding mode may be a factor for this reaction. This 

complex was shown to produce a cooperative binding curve during catalase activity. 

The non-tripodal ligands tended to show an induction period before oxygen was 

evolved from the reaction, and this delay suggests that there is some rearrangement 

of the complex before catalase activity can begin. Reduction of the complexes 

appears to reduce the delay for this reaction. 

 

The tripodal ligands showed very high rates of catalase activity, and this class of 

complex is different to those previously mentioned in that reduction of the imine 

bonds resulted in a lower rate of catalase activity. There was almost no delay for the 

production of oxygen in the catalase reaction with the tripodal ligands, suggesting 

that there is less rearrangement of the molecule required. It has also been shown that 

differences in the arm lengths of the tripodal complex create different rates of 

activity, also supporting the idea that the geometry of the complex is important for 

the reaction. 
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Of the complexes tested, all except the ring contracted species displayed both 

superoxide dismutase and catalase activity, and there is much scope for the 

development of the compounds as working antioxidants. For the ring contracted 

species, the fact that they do not possess catalase activity means that these 

compounds have the potential for use in research as anticancer compounds. In 

naturally occurring antioxidants, the concentration of superoxide is regulated by 

dismutation of the superoxide radical into hydrogen peroxide (SOD activity) which is 

then converted to water (peroxide activity) or dismutated to water and dioxygen 

(catalase activity) Both the superoxide radical and hydrogen peroxide are good 

regulators of cell death and in particular hydrogen peroxide is implicated as a 

mediator of apoptosis in cells
121

 

 

The cellular damage which is caused by hydrogen peroxide is likely to be produced 

in part through radical production which is formed once hydrogen peroxide reacts 

with Fe
2+

 or Cu
2+

. Many tumour cells have increased rates of metabolism when 

compared with normal cells which typically leads to an increase in the number of 

reactive oxygen species. MnSOD has been shown to be depleted in most cancers 

when compared to normal tissue and in the absence of superoxide dismutase activity, 

the superoxide radical can further metabolise to peroxynitrite (OONO
-
) and the 

perhydroxyl radical (HO2∙) which plays a role in tumour formation.
44

 It has been 

demonstrated that by returning MnSOD enzyme activity to levels which are close to 

that in non-malignant cells results in the conversion of excess superoxide into 

hydrogen peroxide which leads to a decrease in tumour cell growth.
122-124
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4 Chapter Four - Experimental 
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4.1 General experimental conditions 

 

Starting materials were purchased from a commercial source and were used without 

further purification unless otherwise stated. The prepared compounds were 

characterised via IR spectroscopy, FAB, CHN analysis and in some cases by X-ray 

crystallography. IR spectra were performed using KBr pellets on a Perkin Elmer 

Paragon 1000PC. CHN analysis was performed using a CE-440 Elemental analyser 

by Mrs Pauline King. Mass spectra for barium macrocycles were recorded on a 

JEOL SX102 mass spectrometer, manganese complexes were recorded at the EPSRC 

National Mass Spectrometry Service Centre at Swansea University. All samples were 

run using Fast Atom Bombardment (FAB) and masses were calculated using average 

masses. UV / Vis analysis was performed on a Perkin Elmer UV / Vis Lambda 12 

spectrometer. Details for X-ray crystallography, data collection: APEX2 (Bruker, 

1998); 
98

 cell refinement: SAINT (Bruker, 1998);
98

 data reduction: SAINT; 

program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used 

to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL 

(Sheldrick, 2001)
125

 and Mercury 2.2 unless otherwise stated. Structures were also 

searched with use of the EPSRC’s chemical database service at Daresbury.
126

 

 

4.2 Polynuclear complexes 

4.2.1 2,6-Diacetylpyridine 

 

Step 1: 2,6-Pyridinedicarboxylic acid  2,6-dimethylpyridine dicarboxylate
100

 

 

N

O

OHOH

O

N

OO

OMeMeO
1. SOCl2

2. MeOH

1

2

 

 

2,6-Pyridinedicarboxylic acid (31.010 g, 0.20 mol) was refluxed in thionyl chloride 

(200 ml) for 10 h. Most of the thionyl chloride was then removed under reduced 
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pressure. 2,6-Pyridinedicarboxylic acid chloride solidified out when the solution was 

cooled in an ice bath. Dry methanol (250 ml) was added drop wise to the cooled solid 

and the resulting solution was refluxed for 30 minutes. The solution was then placed 

onto a rotary evaporator which initiated precipitation this was then completed with 

the use of an ice bath to cool the solution. The white crystals were filtered and 

washed with ice cold methanol and dried in vacuo. Yield: 36.110 g, 0.18 mol, 92%. 

 

IR (KBr disc, cm
-1

) 1740 υ(RCOOR’), 1571 υ(C=C), 1437, 1289, 1244, 1164, 1144, 1080, 

995, 952, 852, 812, 757, 723, 697, 646, 462, 433 

 

Anal. (%) Found  C = 55.2 H = 4.8 N = 7.1 

C9H9NO4   C = 55.4 H = 4.7 N = 7.2  

 

NMR (CDCl3, ppm, 
1
H) 3.96 (s, 6H, CH3), 7.98 (t, 1H, CHAr

1
), 8.25 (d, 2H, CHAr

2
) 

 

Step: 2: 2,6-Dimethylpyridine dicarboxylate  2,6-Diacetylpyridine
100

 

 

N

OO

OMeMeO N

OO

MeMe1. EtOAc / NaOEt

2. Conc. HCl

1

2

 

 

Sodium ethoxide was freshly prepared by placing sodium (7.809 g) slowly into 

absolute ethanol (100 ml) with stirring until no sodium remained. This was then 

reduced to dryness using a rotary evaporator. The sodium ethoxide was placed into a 

1l round-bottom flask and xylene (50 ml), 2,6-dimethylpyridine dicarboxylate 

(19.705 g) and ethyl acetate (32.510 g) were added. A brown/yellow colour 

developed on mixing. A further 110 ml of xylene was added and the suspension was 

refluxed for 19 h at 140 – 150 
o
C. The solution was then allowed to cool to room 

temperature and distilled water (75 ml) was added slowly, followed by concentrated 

hydrochloric acid (140 ml). The solution was refluxed for 30 mins at 140 – 150 
o
C to 

complete the reaction. The xylene/water azeotrope was distilled off using a Dean 

Stark collector, returning the aqueous phase to the reaction vessel. The solution was 
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allowed to cool slowly to room temperature (2 h). The solution was then neutralised 

by the slow addition of sodium hydrogen carbonate. Diethyl ether (100 ml) was 

added and the solution was filtered to remove a small amount of solid. A further 

aliquot of diethyl ether (100 ml) was added and the aqueous layer was extracted with 

diethyl ether (4 x 100 ml). The ethereal layers were then combined and allowed to 

evaporate to yield needles of 2,6-Diacetylpyridine. Yield: 9.680 g, 0.06 mol, 58 %. 

 

IR (KBr disc, cm
-1

) 1700 υ(C=O), 1579 υ(C=C), 1412, 1361, 1235, 995, 953, 817, 736, 

594, 562, 418 

 

Anal. (%) Found   C = 65.2 H = 5.3 N = 8.2 

C9H9NO2    C = 66.2 H = 5.6 N = 8.6  

 

NMR (CDCl3, ppm, 
1
H) 2.73 (s 6H CH3), 7.92 (t 1H CHAr

1
), 8.15 (d 2H CHAr

2
) 

 

4.2.2 [Ba(H2L1)(H2O)2](ClO4)2 

 

N

N

N

N

N

N

OHOH

(H2L1) 

 

2,6-Diacetylpyridine (4.083 g, 25.04 mmol) and Ba(ClO4)2.3H2O (5.860 g, 15.02 

mmol) were dissolved in methanol (200 ml) and heated to reflux. 1,3-Diamino-2-

hydroxypropane (2.277 g, 25.28 mmol) in methanol (20 ml) was added. Refluxing 

continued for 2.5 h. The solution was evaporated under reduced pressure to 

approximately 100 ml and allowed to stand at room temperature for several hours. A 
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white solid was collected by filtration. Washed with methanol and dried in vacuo.
93, 

94, 100
 Yield: 7.003 g, 9.09 mmol, 70 %.  

 

IR: (KBr disc, cm
-1

) 3431 υ(O-H), 3097, 2911, 1639 υ(C=N), 1584 υ(C=C), 1451, 1430, 

1380, 1365, 1273, 1242, 1188, 1099 υ(ClO4-), 994, 932, 813, 781, 745, 715, 625 υ(ClO4-

) 

 

Anal (%) Found     C = 35.6 H = 4.3 N = 10.2 

[Ba(H2L1)(H2O)2](ClO4)2    C = 35.7 H = 4.3 N = 10.4 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fragment 

Molecular weight 

(Calc) 

671 100 [Ba(H2L1)](ClO4)]
+
 671 

571 22 [Ba(H2L1)]
+
 571 

 

4.2.3  [Mn2(HL1)(Cl)2]2(ClO4)2.H2O 

 

MnCl2.4H2O (1.077 g, 5.44 mmol) in methanol (50 ml) was added to a refluxing 

suspension of [Ba(H2L1)(H2O)2](ClO4)2 (2.057g, 2.67 mmol) in methanol (300 ml). 

Refluxing was continued for 2 h. The solution was then allowed to cool and the fine 

orange powder product was collected via filtration, washed with methanol and dried 

in vacuo93, 100
 Yield: 1.17 g, 0.82 mmol, 66 %.  

 

Suitable crystals were obtained for X-ray analysis by slow diffusion of ether into a 

solution of product dissolved in dimethylformamide. The product was found to 

crystallise with the formula [Mn2(HL1)(Cl)2]2(ClO4)2.2DMF. 

 

IR (KBr disc, cm
-1

) 3418 υ(O-H), 3071, 2916, 1643 υ(C=N), 1582 υ(C=C), 1420, 1381, 

1250, 1196, 1088 υ(ClO4-), 1010, 817, 741, 625  
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Anal. (%) Found     C = 39.6 H = 3.8 N = 11.1 

[Mn2(HL1)(Cl)2]2(ClO4)2.H2O   C = 39.9 H = 4.2 N = 11.6 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fragment 

Molecular weight 

(Calc) 

1327 3 [Mn2(HL1)(Cl)2]2(ClO4)
+
 1327 

1226 7 [Mn2(HL1)(Cl)2]2
+
 1226 

613 4 [Mn2(HL1)(Cl)2]
+
 613 

577 100 [Mn2(HL1)(Cl)]
+
 577 

540 14 [Mn2(HL1)]-H
+
 540 

 

4.2.4 [Mn2(HL1)(N3)2]2(ClO4)2.H2O.MeOH 

 

[Ba(H2L1)(H2O)2](ClO4)2 (0.773 g, 1.00 mmol) in methanol (250 ml) was brought to 

reflux. Mn(ClO4)2.6H2O (0.702 g, 1.94 mmol) in methanol (20 ml) was added 

followed quickly by NaN3 (0.65 g, 10 mmol) in methanol. Refluxing continued for 3 

h. The orange solid was then collected by filtration, washed with methanol and dried 

in vacuo.
93

 Yield: 0.469 g, 0.31 mmol, 31 %. 

 

Suitable crystals were obtained for X-ray analysis by slow diffusion of ether into a 

solution of product dissolved in dimethylformamide. The product was found to 

crystallise with the formula [Mn2(HL1)(N3)2]2(ClO4)2.2DMF. 

 

IR: (KBr disc, cm
-1

) 3373 υ(O-H), 3080, 2910, 2046 υ(N3), 1653 υ(C=N), 1585 υ(C=C), 

1419, 1375, 1250, 1193, 1092 υ(ClO4-), 1013, 817, 743, 622 υ(ClO4-)
 

 

Anal. (%) Found      C = 38.9 H = 3.9 N = 22.2 

[Mn2(HL1)(N3)2]2(ClO4)2.H2O.MeOH  C = 39.2 H = 4.2 N = 22.4 
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FAB 

M/z 
Rel. Abundance 

(%) 
Fragment 

Molecular weight 

(Calc) 

1367 3 
[Mn2(HL1)(N3)]2(ClO4)2 

-2H
+
 

1367 

627 25 [Mn2(HL1)(N3)2]
+
 627 

584 100 [Mn2(HL1)(N3)]-H
+
 584 

541 4 [Mn2(HL1)] 541 

 

4.2.5 [Mn4(HL1)(L1)(NCS)4]NCS.H2O 

 

[Ba(H2L1)(H2O)2](ClO4)2 (2.000 g, 2.60 mmol) in methanol (200 ml) was brought to 

reflux. Mn(ClO4)2.6H2O (1.800g, 4.97 mmol) in methanol (20 ml) was added 

followed quickly by NaNCS (1.620 g, 20.01 mmol) in methanol (80 ml). Refluxing 

continued overnight.
100

 The orange solid was collected by filtration and the product 

washed with water and dried in vacuo. Yield: 0.469 g, 0.32 mmol, 28 %. 

 

IR: (KBr disc, cm
-1

) 3417 υ(O-H), 2923, 2037 υ(NCS
-
), 1633 υ(C=N), 1587 υ(C=C), 1457, 

1421, 1376, 1252, 1199, 1090, 1015, 812 

 

Anal. (%) Found    C = 43.3 H = 4.0 N = 14.9 

[Mn4(HL1)(L1)(NCS)4]NCS.H2O  C = 43.5 H = 4.1 N = 15.6 
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FAB 

M/z 

Rel. 

Abundance 

(%) 

Fragment 
Molecular weight 

(Calc) 

1318 8 [Mn4(HL1)(L1)(NCS)4]+ 1318 

1258 15 [Mn4(HL1)(L1)(NCS)3]-H
+
 1259 

1200 6 [Mn4(HL1)(L1)(NCS)2]-H
+
 1201 

600 100 [Mn2(HL1)(NCS)]-H
+
 601 

542 10 [Mn2(HL1)]-H
+
 543 

 

4.2.6 [Mn2(HL1)(OAc)(ClO4)]2.2H2O 

 

[Ba(HL1)(H2O)2](ClO4)2 (0.501 g, 0.65 mmol) was refluxed in methanol (15 ml). 

Mn(OAc).4H2O (0.384 g, 1.6 mmol) was refluxed in methanol (15 ml) for 15 

minutes, this was added to the refluxing barium solution and refluxing continued for 

1 hr forming an orange solid that was collected by filtration, washed with methanol 

and dried in vacuo.
24, 94, 127

 Yield: 0.240 g, 0.17 mmol, 52 %. 

 

IR: (KBr disc, cm
-1

) 3427 υ(O-H), 3087, 2924, 2883, 1658 υ(C=N), 1565 υ(C=C), 1408, 

1374, 1362, 1277, 1243, 1195, 1092 υ(ClO4), 1040, 1009, 966, 890, 876, 810, 742, 

735, 646, 623 υ(ClO4-), 582  

 

Anal. % Found    C = 43.1 H = 4.3 N = 11.3 

[Mn2(HL1)(OAc)(ClO4)]2.2H2O  C = 43.4 H = 4.8 N = 11.7 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fragment 

Molecular weight 

(Calc) 

601 100 [Mn2(HL1)(OAc)]
+

 602 

1301 1 [Mn2(HL1)(OAc)]2
+
ClO4 1303 

 



 

 

187 

4.2.7 [Mn5(HL1)2(OAc)2(ClO4)2](ClO4)2.2MeOH 

 

[Ba(H2L1)(H2O)2](ClO4)2 (0.769 g, 1.00 mmol) was refluxed in methanol (15 ml). 

Mn(OAc).4H2O (0.613 g, 2.50 mmol) in cold methanol (20 ml) was added and 

refluxing continued for 1 hr. An orange solid formed on cooling which was removed 

via filtration, washed with methanol and dried in vacuo.
24, 94, 100

 Yield: 0.280 g, 0.16 

mmol, 33 %. 

 

Suitable crystals were obtained for X-ray analysis by slow diffusion of ether into a 

solution of product dissolved in dimethylformamide. The product was found to 

crystallise with the formula [Mn5(HL1)2(OAc)2(DMF)2](ClO4)4.4DMF. 

 

IR: (KBr disc, cm
-1

) 3448 υ(OH), 2921, 2880, 1642 υ(C=N), 1577 υ(C=C), 1417, 1379, 

1249, 1198, 1099 υ(ClO4-), 1017, 896, 811, 738, 625 υ(ClO4-) 

 

Anal. % Found     C = 37.6 H = 3.9 N = 9.5 

[Mn5(HL1)2(OAc)2(ClO4)2](ClO4)2.2MeOH  C = 37.7 H = 4.1 N = 9.8 

 

FAB 

M/z 

Rel. 

Abundance 

(%) 

Fragment 
Molecular weight 

(Calc) 

1556 5 [Mn5(HL1)2(OAc)2(ClO4)2]
+
(ClO4) 1555 

774 22 [Mn3(HL1)(OAc)3]
+
 774 

655 12 [Mn3(HL1)(OAc)]
+
 655 

601 100 [Mn2(HL1)(OAc)]
+
 601 
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RedL1 structure 

 

N

N

N

N

N

N

OHOH

H H

HH

(RedH2L1) 

 

The initial reduction step for ligands of RedHL1 were carried out using borohydride 

reduction of the barium presursor [Ba(H2L1)(H2O)2](ClO4)2 in the following manner: 

 

[Ba(H2L1)(H2O)2](ClO4)2 (0.808 g, 1.05 mmol) was stirred in methanol (15 ml). 

Sodium tetraborate (0.200 g, 0.50 mmol) and then sodium borohydride (0.153 g, 4.00 

mmol) was added slowly over 30 mins. Stirring was continued for 2 h at room 

temperature. The solvent was then reduced to approximately 2 ml under reduced 

pressure with the remaining left to evaporate at room temperature in air. Ammonium 

chloride in water (1.000 g, 10 ml) was added to the residue and the product extracted 

with dichloromethane (3 x 15 ml). The organic fractions were then combined and 

washed with water before drying over magnesium sulphate which was then filtered 

and the solvent removed under reduced pressure yielding a yellow sticky product. 

Yield: 0.119 g, 0.1%. 

 

IR (KCl Plate, cm
-1

) 3299 υ(O-H), 1697, 1574 υ(C=C), 1446, 1359, 1301, 1235, 1095 

υ(ClO4), 818, 754 

 

4.2.8 [Mn2(RedHL1)(Cl)2]2[MnCl]4.2H2O 

 

RedHL1 (0.108 g, 0.10 mmol) was brought to reflux in methanol (20 ml). 

MnCl2.4H2O (0.055 g, 0.28 mmol) in methanol (10 ml) was then added and refluxing 
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continued for 2 h. The resulting yellow solution was reduced to approximately 2 ml 

and a pale cream coloured solid was then removed via filtration, washed with 

methanol and dried in vacuo. Yield: 0.072 g, 0.05 mmol, 99 %. 

 

The product was recrystallised by slow diffusion of ethanol into a solution of the 

product in dimethylformamide. The product was found to crystallise with the 

formula [Mn2(RedHL1)(Cl)2]2[MnCl]4.4DMF.EtOH.  

 

IR: (KBr disc, cm
-1

) 3405 υ(O-H), 3222, 2973, 2935, 2858, 1669, 1598 υ(C=C), 1577, 

1383, 1309, 1248, 1167, 1131, 1096, 1078, 1012, 984, 942, 896, 837, 811, 755, 598  

 

Anal% Found      C = 39.4 H = 4.7 N = 11.1 

[Mn2(RedHL1)(Cl)2]2[MnCl]4.H2O   C = 39.5 H = 5.2 N = 11.5 

 

FAB  

M/z 
Rel. Abundance 

(%) 
Fragment 

Molecular weight 

(Calc) 

1243 4 [Mn2(RedHL1)(Cl)2]2 -H
+
 1243 

621 100 [Mn2(RedHL1)(Cl)2]-H
+
 621 

585 47 [Mn2(RedHL1)(Cl)]
+
 583 

 

4.2.9 [Mn2(RedHL1)(N3)2]2(ClO4)2.2H2O 

 

RedHL1 (0.147 g, 0.20 mmol) was brought to reflux in methanol (20 ml). Mn(ClO4)2 

(0.055 g, 0.28 mmol) in methanol (10 ml) was added followed quickly by NaN3 

(0.065 g, 1 mmol) and refluxing continued for 2 h. A white solid precipitate formed 

on cooling, this was collected via filtration, washed with methanol and dried in vacuo 

Yield: 0.056 g, 0.04 mmol, 44 %. The product obtained did not crystallise using slow 

diffusion from various solvents. 
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IR: (KBr disc, cm
-1

) 3365 υ(O-H), 3262, 2977, 2915, 2864, 2050 υ(N3), 1601, 1578 

υ(C=C), 1465, 1383, 1323, 1275, 1261, 1169, 1099 υ(ClO4-), 1010, 981, 947, 895, 841, 

809, 757, 623 υ(ClO4-)
 

 

Anal% Found      C=38.5 H = 4.6 N = 21.6 

[Mn2(RedHL1)(N3)2]2(ClO4)2.2H2O   C=38.3 H = 5.2 N = 22.3 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fragment 

Molecular weight 

(Calc) 

1229 4 [Mn4(RedHL1)2(N3)3]
+
 1228 

1186 9 [Mn4(RedHL1)2(N3)2]
+
 1186 

1142 13 [Mn4(RedHL1)2(N3)]
+
 1144 

834 100 [Mn2(RedHL1)(N3)2]
+
(ClO4)2 834 

551 23 [Mn2(RedHL1)]
+
 551 

 

4.2.10 [Mn4(L2)(ClO4)4](ClO4)2.2EtOH 

 

N

NN

N
OH

N

N

N

N

N

N

N
OH

N

OH

OH

(H4L2) 

 

2,6-Diacetylpyridine (0.979 g, 6.00 mmol) and Mn(ClO4)2.6H2O (2.152 g, 5.95 

mmol) were dissolved in methanol (100 ml) and heated to reflux. 1,3-Diamino-2-

hydroxy propane (0.541 g, 6.01 mmol) was dissolved in cold methanol (40 ml) and 

added slowly into the refluxing solution. Refluxing was then continued overnight. 
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The resulting orange solid suspension was collected via filtration, washed with 

ethanol and dried in vacuo. a further crop was collected by reducing the solvent in 

vacuo. The solvent was again collected via filtration, washed with eethanol and dried 

in vacuo.
99, 100

 Yield 0.820 g, 0.47 mmol, 16 %. 

 

IR: (KBr disc, cm
-1

) 3421 υ(OH), 3013, 1654 υ(C=C), 1587 υ(C=N), 1359, 1298, 1254, 

1199, 1142, 1109, 1086 υ(ClO4-), 1014, 897, 812, 746, 625 υ(ClO4-)
 

 

Anal% Found      C = 35.5 H = 3.9 N = 9.8 

[Mn4(L2)(ClO4)4](ClO4)2.2EtOH   C = 35.2 H = 3.9 N = 9.5 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fragment 

Molecular weight 

(Calc) 

1381 5 [Mn4(L2)(ClO4)3]
+
 1381 

1281 9 [Mn4(L2)(ClO4)2]
+
 1286 

1183 5 [Mn4(L2)(ClO4)]
+
 1183 

641 100 
[Mn2(L2)(ClO4)]

+ 

(1/2 molecule) 
641 

 

4.2.11 [Mn4(L2)(NCS)2](ClO4)2 

 

2,5-Diacetylpyridine (0.326 g, 2.00 mmol) and Mn(ClO4)2.6H2O (0.508 g, 1.40 

mmol) were dissolved in methanol (30 ml) and heated to reflux. 1,3-diamino-2-

hydroxy propane (0.180 g, 2.00 mmol) was dissolved in cold methanol (10 ml) and 

added slowly into the refluxing solution. Refluxing was then continued overnight. 

Sodium thiocyanate (0.649 g, 8.00 mmol) in methanol (10 ml) was added. The 

resulting orange solid suspension was collected by filtration, washed with methanol 

and dried in vacuo. A further crop was collected by reducing the solvent in vacuo. 

the solid was collected via filtration, washed with methanol and dried in vacuo. Yield 

0.259 g, 0.19 mmol, 19 %. 
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IR: (KBr disc, cm
-1

) 3426 υ(OH), 3078, 2901, 1643 υ(C=C), 1589 υ (C=N), 1420, 1373, 

1250, 1196, 1095 υ(ClO4-), 1011, 810, 741, 625 υ(ClO4-)
 

 

Anal. (%) Found    C = 42.8 H = 4.3 N = 14.5 

[Mn4(L2)(NCS)2](ClO4)2   C = 42.9 H = 4.0 N = 14.0 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fragment 

Molecular weight 

(Calc) 

1300 5 [Mn4(L2)(NCS)2].NCS
+
 1300 

1258 30 [Mn4(L2)(NCS)2]-H
+
 1258 

600 100 [Mn2(L2)(NCS)]
+
 600 

 

4.3 Ring contracted macrocycles 

 

4.3.1 MnO2 

 

MnSO4 (100 g) was dissolved in boiling water (125 ml). KMnO4 (90 g) in cold water 

(2.5l) was added into the boiling solution slowly over 4-5 hours to form a black 

suspension which was collected via filtration. This was washed with boiling water. 

Active MnO2 was obtained after drying at 110-120 
◦
C for 48 hours. 

 

4.3.2 2,6-Diformylpyridine 

 

N

OH OH

N

O O

MnO2

1

2

3

 

 

Manganese dioxide was suspended in chloroform (300 ml) and 2,6-Pyridinemethanol 

(4.909 g, 0.04 mol) was added. The solution was refluxed for 5 h. The remaining 
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black solid was filtered and washed with ether (5 x 100 ml) the filtrate and the 

washings were evaporated to dryness under reduced pressure to yield a cream 

coloured solid. Yield: 2.256 g, 0.02mol, 50 %. 

 

IR: (KBr disc, cm
-1

) 3085 υ(C-H), 2861, 1719 υ(C=O), 1579 υ(C=C), 350, 1261, 1210, 

1086, 992, 806, 786, 699, 622, 494, 414 

 

Anal. (%) Found   C = 61.7 H = 3.8 N = 10.1 

C7H5NO2   C = 62.2 H = 3.7 N = 10.4 

 

NMR (CDCl3, ppm, 
1
H) 8.02 (t 1H CHAr

1
), 8.13 (d 2H CHAr

2
), 10.11 (s 2H H

3
) 

 

4.3.3 [Ba(H2L3)(ClO4)]2(ClO4)2 

 

N

N

N

OH

N

N

N

OH

(H2L3) 

 

2,6-Diformylpyridine (1.352 g, 10.01 mmol) was dissolved in methanol (100 ml). 

Ba(ClO4)2.3H2O (1.951 g, 5.00 mmol) in methanol (10 ml) was added. 1,3-Diamino-

2-hydroxy propane (0.933 g 10.36 mmol) in methanol (10 ml) was added and stirring 

continued for 1 hr. The solvent was then reduced in vacuo to 10 ml and upon 

standing for several hours, large colourless crystals formed.
1, 92

 Yield: 3.251 g, 2.28 

mmol, 45 %. 
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IR: (KBr disc, cm
-1

) 3380 υ(O-H), 2909, 1654 υ(C=N), 1586 υ(C=C), 1458, 1397, 1354, 

1324, 1265, 1092 υ(ClO4), 1046, 1000, 983, 939, 817, 804, 785, 766, 738, 661, 625 

υ(ClO4), 547 

 

Anal% Found    C = 33.7 H = 3.1 N = 11.7 

[Ba(H2L3)(ClO4)]2(ClO4)2  C = 33.6 H = 3.1 N = 11.8 

 

FAB 

M/z Rel. Abundance (%) Fragment 
Molecular weight 

(Calc) 

615 100 [Ba(H2L3)]
+
(ClO4) 615 

515 6 [Ba(H2L3)]
+
 516 

 

4.3.4 [Mn(L4)(NCS)2].MeOH 

 

N
N

N N
OH

OH

N
N

MeO

(L4.MeOH) 

 

[Ba(H2L3)(ClO4)]2(ClO4)2 (0.751 g, 1.05 mmol) was dissolved in methanol (35 ml). 

MnCl2.4H2O (0.198 g, 1.00 mmol) in methanol (10 ml) was added followed by 

sodium thiocyanate (0.162 g, 2.00 mmol) in methanol (10 ml) and stirring continued 

overnight. The solvent was reduced to ~ 2ml and the resulting solid was filtered, 

washed with water and dried in vacuo. The methanol filtrate was allowed to stand 

yielding orange crystals which were collected via filtration and dried in vacuo. Yield: 

0.534 g, 0.81 mmol, 77 %. 
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The product was recrystallised by slow diffusion of ether into a solution of the 

product in dimethylformamide. The product was found to crystallise with the 

formula [Mn(L4)(NCS)2].MeOH.DMF. 

 

IR: (KBr disc, cm
-1

) 3302 υ(O-H), 2902, 2068 υ(NCS), 1654 υ(C=N), 1587 υ(C=C), 1458, 

1416, 1388, 1351, 1326, 1266, 1162, 1086, 1052, 1022, 1001, 957, 931, 802, 786, 

738, 663, 634, 551  

 

Anal% Found    C = 47.9 H = 4.2 N = 18.8  

[Mn(L4)(NCS)2].MeOH  C = 47.5 H = 4.5 N = 19.3. 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fragment 

Molecular weight 

(Calc) 

551 100 
[Mn(L4)(NCS)2]-CH3, 

-2H
+
 

551 

509 33 [Mn(L4)(NCS)]
+
 509 

450 25 [Mn(L4)]
+
 450 

 

4.3.5 [Mn(L4)(Cl)2].MeOH.2H2O 

 

[Ba(H2L3)(H2O)2](ClO4)2] (0.814 g, 1.08 mmol) was dissolved in methanol (200ml). 

MnCl2·4H2O (0.473 g, 2.38 mmol) in methanol (20ml) was quickly added. The 

solution obtained was stirred overnight at room temperature, yielding a pale yellow 

solution. The solvent was reduced to 10ml under reduced pressure. After one night at 

room temperature, white crystals were obtained. Yield 0.239g. The solution was 

filtered and the yellow filtrate was reduced to 5ml under reduced pressure. After 2 

days at room temperature, yellow crystals were observed and isolated. Yield 0.090 g. 

0.06 mmol, 5.6%. 

 

Crystals obtained were too clustered for X-ray to be performed. 
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IR: (KBr disc, cm
-1

) 3331 υ(O-H), 2932 υ(C-H), 1637 υ(C=N), 1593 υ(C=C), 1381, 1274, 

1149, 1072 υ(ClO4-), 821, 678, 625 υ(ClO4-) 

 

Anal% Found    C = 43.4 H = 4.8 N = 14.5  

[Mn(L4)(Cl)2].MeOH.2H2O  C = 44.1 H = 5.3 N = 14.7 

 

4.3.6 [Mn(L4)(N3)2].MeOH 

 

[Ba(H2L3)(ClO4)]2(ClO4)2 (0.507 g, 0.7 mmol) was dissolved in methanol (40 ml) 

and stirred under nitrogen. Mn(ClO4)2.6H2O (0.506 g, 1.4 mmol) in methanol (10 ml) 

followed by sodium azide (0.445 g, 7 mmol) in methanol (10 ml). Stirring continued 

overnight. The solvent was reduced to ~ 2ml and the resulting solid was filtered. A 

further crop was obtained by reducing the filtrate. Yield: 0.27 g, 0.2 mmol, 57 %. 

 

IR: (KBr disc, cm
-1

) 3404 υ(OH), 2058 υ(N3), 1637 υ(C=N), 1592 υ(C=C), 1458 υ(CH2), 

1087 υ(ClO4), 627 υ(ClO4) 

 

Anal% Found     C = 53.8 H = 5.9 N = 18.7 

[Mn(L4)(N3)2].MeOH    C = 54.1 H = 5.8 N = 18.0 

 

Suitable crystals of this complex did not form for X-ray analysis to be performed. 
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4.3.7 [Mn(L4)(NCS)2].EtOH 

 

N
N

N N
OH

OH

N
N

EtO

(L4.EtOH) 

 

[Ba(H2L3)(ClO4)]2(ClO4)2 (0.374 g, 0.50 mmol) was stirred in ethanol (30 ml). 

Mn(ClO4)2.6H2O (0.254 g, 0.70 mmol) was added followed with NaNCS (0.234 g, 

4.00 mmol). Stirring continued in a stoppered flask for 18 h at room temperature. A 

white solid thought to be a barium salt was collected from the solution via filtration, 

washed with methanol and dried in vacuo. The yellow filtrate was allowed to stand at 

room temperature forming yellow crystals. Yield: 0.109 g, 0.18 mmol, 37 %. 

 

IR: (KBr disc, cm
-1

) 3304 υ(O-H), 2902, 2069 υ(NCS), 1653 υ(C=N), 1586 υ(C=C), 1458, 

1416, 1388, 1350, 1326, 1266, 1161, 1086, 1052, 1022, 1002, 957, 930 

 

Anal% Found     C = 48.0 H = 5.3 N = 18.7 

[Mn(L4)(NCS)2].EtOH   C = 48.2 H = 5.1 N = 18.8 
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4.3.8 [Ba(L5)(ClO4)2(OH2)2] 

 

N

NN

NN

N

(L5) 

 

2,6-Diformylpyridine (1.080 g, 10 mmol) was dissolved in methanol (100 ml). 

Ba(ClO4)2.3H2O (1.954 g, 5 mmol) was added followed by 1,3-diaminopropane 

(0.910 g, 10 mmol) in methanol (20 ml). Stirring was continued for 15 mins. The 

solvent was removed under reduced pressure to approximately 10 ml. This solution 

was then placed into an ice bath to form clear crystals which were filtered and dried 

in vacuo. Yield: 2.5 g, 3.5 mmol, 70 %. 

 

IR: (KBr disc, cm
-1

) 2927, 2863, 1642 υ(C=N), 1586 υ(C=C), 1458, 1394, 1348, 1266, 

1108 υ(ClO4-), 1051, 1002, 923, 813, 744, 618  

 

Anal. (%) Found     C = 33.4 H = 3.6 N = 11.3 

[Ba(L5)(ClO4)2(H2O)2]   C = 33.4 H = 3.6 N = 11.7  
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4.3.9 [Mn(L5)(NCS)2].MeOH.H2O 

 

MnCl2.4H2O (0.504 g, 3.0 mmol) in methanol (25 ml) was added to a refluxing 

methanolic (150 ml) suspension of [Ba(L5)](ClO4)2 (1.000 g, 1.37 mmol) and reflux 

continued for 2 h forming a yellow solution. The solution was then allowed to cool. 

A solid did not form and therefore sodium thiocyanate was added in excess to form a 

neutral complex allowing yellow crystals to form.
100

 The crystals were collected via 

filtration and dried in vacuo. The crystals were too clustered for X-ray analysis and 

attempts to re-crystallise the products were made by slow diffusion of ether into an 

acetonitrile solution of the product. The crystals formed were not suitable for single 

crystal X-ray diffraction analysis. Yield: 0.68 g, 0.85 mmol, 62 %. 

 

IR: (KBr disc, cm
-1

) 3400 υ(OH), 3287, 2919, 2864, 2066 υ(NCS), 1646 υ(C=N), 1592 

υ(C=C), 1458, 1384, 1354, 1276, 1156, 1133, 1104, 1072, 1009, 960, 917, 877, 826, 

772, 670, 655  

 

Anal. (%) Found     C = 48.7 H = 4.4 N = 19.6 

[Mn(L5)(NCS)2].MeOH.H2O   C = 48.6 H = 5.1 N = 19.7 

 

FAB 

M/z 
Rel. 

Abundance (%) 
Fraction 

Molecular 

weight (Calc) 

554 8 [Mn(L5)(NCS)2].MeOH+4H
+
 554 

491 100 [Mn(L5)(NCS)].MeOH+H
+
 491 

401 12 [Mn(L5)(NCS)]+H
+
 401 
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4.4 Dinuclear complexes 

4.4.1 [Ba(L6)(ClO4)2] 

 

N

N

N

N

N

N

(L6) 

 

DFP (0.026 g, 0.20 mmol) was stirred in methanol (10 ml). Ba(ClO4)2.3H2O (0.039 

g, 0.09 mmol) in methanol (10 ml) was added. 1,4-Diaminobutane (0.018 g, 0.20 

mmol) was added in methanol (10 ml) stirring continued overnight. The solvent was 

then reduced to 5 ml under reduced pressure. Large clear crystals formed on 

standing, these were collected via filtration and dried in vacuo. Yield: 0.057 g, 0.08 

mmol, 80 %. 

 

IR: (KBr disc, cm
-1

) 2934, 1652 υ(C=N), 1587 υ(C=C), 1455, 1395, 1262, 1113 υ(ClO4-), 

1055, 1034, 923, 814, 742, 621 υ(ClO4-) 

 

Anal. (%) Found    C = 37.8 H = 3.8 N = 11.9 

[Ba(L6)(ClO4)2]   C = 37.2 H = 3.7 N = 11.8  

 

FAB  

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

610 100 [Ba(L6)(ClO4)]
+
 611 

512 31 [Ba(L6)]
+
 512 
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4.4.2 [Mn2(L6)(NCS)4].MeOH  

 

[Ba(L6)(ClO4)2] (0.036 g, 0.05 mmol) was stirred in methanol (10 ml). 

Mn(ClO4)2.6H2O (0.025 g, 0.07 mmol) was added in methanol (10 ml) followed by 

NaNCS (0.022 g, 0.20 mmol). The solution was stirred overnight and the orange 

solid was collected via filtration, washed with methanol and dried in vacuo. Yield: 

0.022 g, 0.03 mmol, 59 %. 

 

The product was recrystallised by slow diffusion of ether into a solution of the 

product in dimethylformamide. The product was found to crystallise with the 

formula [Mn2(L6)(NCS)4].2DMF. 

 

IR: (KBr disc, cm
-1

) 2910, 2847 , 2053 υ(NCS), 1966 υ(NCS), 1641 υ(C=C), 1586 υ(C=N), 

1463, 1438, 1382, 1345, 1314, 1283, 1215, 1158, 1097, 1085, 1046, 1017, 982, 959, 

925, 901, 809, 742, 666, 645, 624 

 

Anal. (%) Found     C = 43.6 H = 3.6 N = 18.4 

[Mn2(L6)(NCS)4].MeOH   C = 43.3 H = 4.0 N = 18.7  

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

658 100 [Mn(L6)(NCS)3]
+
 658 
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4.4.3  [Ba(L7)(ClO4)2].H2O 

 

N

N

N

N N

N

(L7) 

 

Ba(ClO4)2.6H2O (1.171 g, 2.64 mmol) was added to a solution of DAP (0.979 g, 6.00 

mmol) in ethanol (200 ml). The solution was brought to reflux and ethylenediamine 

(0.361 g, 6.00 mmol) was added and refluxing continued for 2.5 h. A white solid 

formed after 1h. The solid product was then filtered, washed with ethanol and dried 

in vacuo. Yield: 1.879 g, 2.58 mmol, 99 %. 

 

IR: (KBr disc, cm
-1

) 3090, 2934, 1697, 1632 υ(C=N), 1582 υ(C=C), 1420, 1375, 1289, 

1240, 1192, 1103 υ(ClO4-), 1000, 923, 812, 749, 716, 620 υ(ClO4-) 

 

Anal. (%) Found     C = 36.7 H = 3.6 N = 11.2 

[Ba(L7)(ClO4)2].H2O    C = 36.2 H = 3.9 N = 11.5 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

611 100 [Ba(L7)(ClO4)]
+
 611 

511 19 [Ba(L7)]
+
 512 
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4.4.4 [Pb2(L8)(NCS)4] 

 

O

O

N

NN

O

O

N

N N

(L8) 

 

2,6-Diformylpyridine (1.003 g, 7.42 mmol) was dissolved in dry ethanol (100 ml) at 

60 
o
C. Pb(NCS)2 (2.388 g, 7.38 mmol) and 2,2’-(ethylenedioxy)bis-ethylamine 

(1.098 g, 7.41 mmol) were added. Stirring continued for 1 hr. On standing, crystals 

formed in the solution these were collected via filtration and dried in vacuo.
17, 19, 128

 

Yield 2.355 g, 1.07 mmol, 14 %. 

 

IR: (KBr disc, cm
-1

) 3419 υ(O-H), 2867, 2031 υ(NCS), 2010 υ(NCS), 1654 υ(C=N), 1588 

υ(C=C), 1461, 1443, 1347, 1278, 1202, 1163, 1106, 1072, 1018, 814, 632, 592 
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4.5 Mononuclear complexes 

 

4.5.1  [Mn(L9)(Cl)2].H2O 

 

N

N N

OH OH (L9) 

 

Ethanolamine (0.381 g, 6.20 mmol) in methanol (4 ml) was added to a refluxing 

methanolic solution (35 ml) of 2,6-diacetylpyridine (0.504 g, 3.10 mmol). This was 

followed by the addition of MnCl2.4H2O (0.616 g, 3.10 mmol) in methanol (15 ml). 

Refluxing was then continued for 1 hr and the brown solution left to stand overnight. 

The solvent was evaporated under reduced pressure until approximately 5 ml 

remained. Ethanol (5 ml) was then added and the solvent was removed under 

reduced pressure until approximately 5 ml remained The solid product was collected 

via filtration, washed with methanol and dried in vacuo. Orange crystals formed in 

the filtrate on standing, these were collected via filtration, washed with ethanol and 

dried in vacuo.
18

 Yield: 0.590g, 1.50 mmol, 48 %. 

 

Crystals of the product gave the formula [Mn(L9)(Cl)2]. 

 

IR: (KBr disc, cm
-1

) 3471 υ(O-H), 2939, 2888, 1648 υ(C=N), 1587 υ(C=C), 1458, 1423, 

1376, 1264, 1202, 1071, 1049, 1012, 912, 872, 833, 756, 725, 686, 647, 552  

 

Anal% Found    C = 39.9 H = 5.5 N = 10.7 

[Mn(L9)(Cl)2].H2O   C = 39.7 H = 5.4 N = 10.7 
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FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

339 100 [Mn(L9)Cl]
+
 339 

302 32 [Mn(L9)]
+
 302 

 

4.5.2  [Mn(L9)(OH2)2](ClO4)2.MeOH 

 

Ethanolamine (0.240 g, 3.93 mmol) in methanol (4 ml) was added to a refluxing 

methanolic solution (30 ml) of 2,6-diacetylpyridine (0.328 g, 2.00 mmol). This was 

followed by the addition of Mn(ClO4)2.6H2O (0.730 g, 2.02 mmol) in methanol (15 

ml). The solution turned yellow on addition of Mn(ClO4)2.6H2O. Refluxing was then 

continued for 1 h. The orange/brown solution was allowed to cool and the solvent 

was evaporated under reduced pressure to approximately 5 ml. Ethanol (5 ml) was 

then added and the solvent was removed under reduced pressure until approximately 

5 ml remained. The solid was then collected via filtration, washed with ethanol and 

dried in vacuo. Yield: 0.590g, 1.03 mmol, 52 %. 

 

Crystals of the product were formed by slow diffusion of ether into a solution of the 

product dissolved in methanol, this method produced crystals with the formula 

[Mn(L9)(OH2)2](ClO4)2. 

 

IR: (KBr disc, cm
-1

) 3329 υ(O-H), 2954, 1654 υ(C=N), 1593 υ(C=C), 1459, 1370, 1313, 

1264, 1192, 1088 υ(ClO4-), 1045, 1013, 909, 873, 819, 744, 723, 649, 626 υ(ClO4-), 537  

 

Anal% Found     C = 29.6 H = 4.4 N = 7.7 

[Mn(L9)(OH2)2](ClO4)2.MeOH  C = 29.4 H = 4.8 N = 7.4 

 



 

 

206 

FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

403 100 [Mn(L9)]+(ClO4) 403 

338 32 [Mn(L9)(H2O)2]
+
 338 

303 59 [Mn(L9)]
+
 302 

 

4.5.3  [Mn(L9)(NCS)2] 

 

This reaction was carried out as for [Mn(L9)Cl2]. Quantities used: 2,6-

diacetylpyridine (0.493 g, 3.02 mmol), ethanolamine (0.180 g, 6 mmol) and MnCl2 

(0.593 g, 3 mmol). Once the reaction was complete a brown solution was formed, to 

which excess potassium thiocyanate was added forming a yellow solid which was 

collected via filtration and washed with water to remove excess KCl and dried in 

vacuo. Yield: 0.250 g, 0.60 mmol, 20 %. 

 

IR: (KBr disc, cm
-1

) 3374 υ(O-H), 3066, 2952, 2019 υ(NCS), 1690, 1648 υ(C=N), 1589 

υ(C=C), 1420, 1364, 1305, 1202, 1070, 1047, 1012, 910, 870, 820, 644  

 

Anal% Found    C = 43.1 H = 4.4 N = 15.9 

[Mn(L9)(NCS)2]   C = 42.9 H = 4.6 N = 16.7 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

362 100 [Mn(L9)(NCS)]
+
 362 

303 28 [Mn(L9)]
+
 304 
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4.5.4  [Mn(L10)(Cl)2].3H2O 

 

N

N N

O O

(L10) 

 

2,2’-Ethylenedioxybis(ethylamine) (0.552 g, 3.73 mmol) in methanol (4 ml) was 

added to a refluxing solution of 2,6-Diacetylpyridine (0.502 g, 3.08 mmol) in 

methanol (35 ml). This was followed by the addition of MnCl2.4H2O (0.611 g, 3.09 

mmol) in methanol (15 ml), refluxing was continued for 1 hr. A pink precipitate 

formed on mixing but dissolved during the hour of refluxing. The cooled brown 

solution was left to stand overnight and the solvent was then reduced down to 5 ml a 

using a rotary evaporator. The solid that formed was then filtered and washed with 

ethanol and dried in vacuo. Further crops were obtained.
18

 Yield: 1.001 g, 2.20 

mmol, 71 %. 

 

IR: (KBr disc, cm
-1

) 3508, 3405, 3145, 3062, 2921, 2879, 1645 υ(C=N), 1586 υ(C=C), 

1473, 1417, 1375, 1355, 1313, 1269, 1241, 1205, 1109, 1087, 1073, 1038, 1018, 935, 

893, 832, 825, 753, 735, 654, 546, 469 
 

 

Anal% Found    C = 40.0 H = 5.5 N = 9.1 

[Mn(L10)(Cl)2].3H2O   C = 39.6 H = 6.0 N = 9.2 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

365 100 [Mn(L10)Cl]
+
 365 

330 5 [Mn(L10)]
+
 330 
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4.5.5  [Mn(L10)(OH2)2](ClO4)2 

 

This reaction was carried out as for [Mn(L9)(H2O)2](ClO4)2, replacing ethanolamine 

with 2,2’-ethylenedioxybis(ethylamine). Quantities used: 2,6-diacetylpyridine (0.490 

g, 3.01 mmol), 2,2’-ethylenedioxybis(ethylamine) (0.451 g, 3.04 mmol) and 

Mn(ClO4)2.6H2O (1.095 g, 3.03 mmol). An orange solution formed once the reaction 

was complete. The solvent was reduced to approximately 10ml and the orange solid 

was collected via filtration, washed with ethanol and dried in vacuo. Further crops 

were obtained by removal of solvent under reduced pressure to approximately 5 ml. 

Yield: 1.530 g, 2.71 mmol, 90 %. 

 

Crystals of the product were formed by slow diffution of ether into a solution of the 

product dissolved in methanol, this produced crystals with the formula 

[Mn(L10)(OH2)2].(ClO4)2. 

 

IR: (KBr disc, cm
-1

) 3416 υ(O-H), 2928, 2881, 1648 υ(C=N), 1586 υ(C=C), 1459, 1420, 

1380, 1355, 1310, 1270, 1253, 1201, 1086 υ(ClO4-), 1018, 946, 891, 819, 727, 654, 

625 υ(ClO4-), 544, 432  

 

Anal% Found     C = 31.5 H = 4.5 N = 7.4 

[Mn(L10)(OH2)2].(ClO4)2   C = 31.9 H = 4.5 N = 7.4 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

429 100 [Mn(L10)(ClO4)]
+
 429 

330 20 [Mn(L10)]
+
 330 

 



 

 

209 

4.5.6 [Mn(RedL10)(OH2)2](Cl)2 

 

N

NH NH

O O

(RedL10) 

 

[MnL10(Cl)2] (0.804 g, 1.75 mmol) was dissolved in ethanol (40 ml). The flask was 

then flushed with nitrogen, before NaBH4 (0.545g, 14.33 mmol) was added in one 

portion. Stirring was continued at room temperature for 2 h then the temperature was 

raised to 50 
o
C. Stirring continued for 4 h. The solvent was then removed and a 

solution of LiCl in methanol (0.2 M, 20 ml) was added to the residue and stirred for 

30 mins. The solvent was removed under reduced pressure and water (30 ml) was 

added and stirred for 24 h. NaCl was added in excess and the solution extracted with 

dichloromethane (3 x 30 ml). The organic fractions were then dried over MgSO4 and 

filtered. A sticky orange product remained on removal of the solvent under reduced 

pressure.
39

 Crystallisation was set up by slow diffusion of ether into a DMF solution 

of the product yielding a small amount of crystals which gave the formula 

[Mn(RedL10)(OH2)2](Cl)2. 

 

4.5.7 [Mn(L10)(NCS)2].H2O 

 

This reaction was carried out as for [Mn(L10)Cl2]. Quantities used: 2,6-

diacetylpyridine (0.494 g, 3.03 mmol) 2,2’(ethylenedioxy)bis(ethylamine) (0.448 g, 

3.02 mmol) and MnCl2.4H2O (0.593 g, 3.00 mmol). Once the reaction was complete, 

the solvent was reduced to approximately 15 ml and excess potassium thiocyanate 

was added forming an orange precipitate which was collected via filtration and 

washed with water to remove excess KCl. The product was dried in vacuo. Yield: 

0.772 g, 1.66 mmol, 55 %. 
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Crystals of the product were formed by slow diffusion of ether into a solution of the 

product dissolved in methanol, this produced crystals with the formula 

[Mn(L10)(NCS)2]. 

 

IR: (KBr disc, cm
-1

) 3377 υ(O-H), 3064, 2922, 2876, 2044 υ(NCS), 1645 υ(C=N), 1585 

υ(C=C), 1458, 1418, 1376, 1350, 1306, 1266, 1249, 1202, 1103, 1088, 1065, 1029, 

1018, 958, 942, 930, 886, 827, 728, 654, 539 
 

 

Anal% Found     C = 44.1 H = 4.5 N = 14.8 

[Mn(L10)(NCS)2].H2O   C = 44.0 H = 4.9 N = 15.1 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

446 2 [Mn(L10)(NCS)2]
+
 446 

388 100 [Mn(L10)(NCS)]
+
 388 

330 20 [Mn(L10)]
+
 330 

 

4.5.8 [Mn(L11)(Cl)2] 

 

N

N N

N N

(L11) 

 

N,N-Dimethylethylenediamine (0.568 g, 6.44 mmol) in methanol (4 ml) was added 

to a refluxing solution of 2,6-diacetylpyridine (0.508 g, 3.11 mmol). This was 

followed by the addition of MnCl2.4H2O (0.611 g, 3.11 mmol) in methanol (15 ml). 

A pink solid precipitated on mixing. Refluxing was continued for 1 hr and the cooled 



 

 

211 

solution was allowed to stand overnight. The volume of the solution was then 

reduced to approximately 5 ml under reduced pressure, and ethanol (5 ml) was 

added. The solvent was reduced down to 5 ml leaving a yellow solid that was 

collected by filtration washed with ethanol and dried in vacuo.
18

 Yield: 0.720 g, 1.68 

mmol, 54 %. 

 

Crystals of the product were formed by slow diffusion of ether into a solution of the 

product dissolved in methanol. 

IR: (KBr disc, cm
-1

) 3482, 3265, 3065, 2966, 2822, 2782, 1643 υ(C=N), 1587 υ(C=C), 

1467, 1445, 1375, 1354, 1305, 1290, 1260, 1203, 1161, 1100, 1089, 1044, 1026, 949, 

900, 830, 816, 782, 725, 654, 544 
 

 

Anal% Found     C = 47.3 H = 6.6 N = 16.0 

[Mn(L11)(Cl)2]    C = 47.5 H = 6.8 N = 16.3 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

429 7 [Mn(L11)(Cl2)]
+
 428 

393 100 [Mn(L11)(Cl)]
+
 393 

358 10 [Mn(L11)]
+
 358 

 

4.5.9  [Mn(L11)(OH2)2](ClO4)2.H2O 

 

This reaction was carried out as for [Mn(L9)(H2O)2](ClO4)2, replacing ethanolamine 

with N,N-dimethylenediamine. Quantities used: 2, 6-diacetylpyridine (0.325 g, 1.99 

mmol), N-N-dimethylenediamine (0.388 g, 4.40 mmol) and Mn(ClO4)2 6H2O (0.720 

g, 1.99 mmol). A dark orange solution formed once the reaction was complete. After  

removal of the solvent under reduced pressure to approximately 5 ml. Orange 

crystals formed and were collected via filtration washed with ethanol and dried in 

vacuo. Yield: 0.720 g, 1.2 mmol, 58 %. 
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IR: (KBr disc, cm
-1

) 3421 υ(OH), 2966, 2838, 1686, 1637 υ(C=N), 1592 υ(C=C), 1466, 

1376, 1259, 1088 υ(ClO4-), 941, 815, 778, 626 υ(ClO4) 

 

Anal.(%) Found     C = 33.5 H = 5.0 N = 10.9 

[Mn(L11)(H2O)2](ClO4)2.(OH2)   C = 33.4 H = 5.7 N = 11.4 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

457 55 [Mn(L11)]
+
(ClO4) 457 

422 100 [Mn(L11)(MeOH)2]
+
 422 

 

4.5.10  [Mn(L11)(NCS)2].2H2O 

 

This reaction was carried out as for [Mn(L11)Cl2]. Quantities used: 2,6-

diacetylpyridine (0.493 g, 3 mmol) N,N-dimethylethylenediamine (0.525 g, 6 mmol) 

and MnCl2.4H2O (0.595 g, 3 mmol). Once the reaction was complete, the solvent 

was reduced to approximately 15 ml and excess potassium thiocyanate was added 

forming a yellow precipitate which was collected by filtration, washed with water to 

remove excess KCl and dried in vacuo. Yield: 1.28 g, 2.7 mmol, 90 %. 

 

IR: (KBr disc, cm
-1

) 3422, 3069, 2861, 2827, 2039 υ(NCS), 1643 υ(C=N), 1586 υ(C=C), 

1458, 1373, 1352, 1287, 1257, 1200, 1168, 1099, 1083, 1042, 1023, 1009, 944, 902, 

815, 792, 781, 724, 653, 579, 564, 537  

 

Anal.(%) Found    C = 45.2 H = 6.2 N = 20.0 

[Mn(L11)(NCS)2].2H2O   C = 44.7 H = 6.5 N = 19.2 
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FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

474 3 [Mn(L11)(NCS)2]
+
 474 

416 100 [Mn(L11)(NCS)]
+
 416 

358 18 [Mn(L11)]
+
 358 

 

4.5.11 [Mn(L12)(OH2)(Cl)](ClO4) 

 

N

N N

OH OH (L12) 

 

MnCl2·4H2O (0.596g, 3.01mmol) was dissolved in methanol (20ml) and a solution of 

ethanolamine (0.366g, 6.00mmol) and 2, 6-diformylpyridine (0.407g, 3.01mmol) in 

methanol (20ml) were added. The solution obtained was stirred at room temperature 

for 2 hours. The solvent was then reduced to 10ml under reduced pressure. After one 

night at room temperature, no crystals were formed, therefore methanol (5 ml) was 

added to the remaining solution and NaClO4 was added in excess. The mixture was 

filtered and the solvent was reduced under reduced pressure until approximately 5ml 

remained. After one night at room temperature, orange crystals with the formula 

[Mn(L12)(OH2)(Cl)](ClO4) were observed and collected via filtration and dried in 

vacuo. Yield 0.290g, 0.46 mmol, 15 %. 

 

IR: (KBr disc, cm
-1

) 3416 υ(O-H), 2950 υ(C-H), 1653 υ(C=N), 1592 υ(C=C),1374, 1465, 

1204 υ(C-N), 810 
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FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular 

weight (Calc) 

545 100 [Mn(L12)(Cl)2]
+
(ClO4)2 474 

 

4.5.12  [Mn(L12)(OH2)2](ClO4)2 

 

Mn(ClO4)2·6H2O (0.804 g, 2.22 mmol) was dissolved in methanol (30ml). A solution 

of 2,6-diformylpyridine (0.299 g, 2.21 mmol) in methanol (20ml) and ethanolamine 

(0.266 g, 4.36 mmol) was added. The mixture obtained was stirred at room 

temperature for 2 hours, yielding a brown solution. The solvent was reduced to 10ml 

under reduced pressure. After one night at room temperature no crystals were 

formed, therefore methanol (5 ml) was added to the remaining solution and NaClO4 

was added in excess. The mixture was filtered and the solvent was removed under 

reduced pressure until approximately 5ml remained. Yellow crystals were obtained 

on standing in solution at room temperature overnight, these were collected via 

filtration, washed with ethanol and dried in vacuo. Yield 0.128 g, 0.25 mmol, 11 %. 

 

IR: (KBr disc, cm
-1

) 3414 υ(O-H), 1655 υ(C=N), 1592 υ(C=C), 1370, 1263, 1090 υ(ClO4-) 

813, 626 υ(ClO4-) 

 

Anal.(%) Found    C = 25.7 H = 3.4 N = 7.6 

[Mn(L12)(H2O)2](ClO4)2   C = 25.9 H = 3.8 N = 8.2 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

375 45 [Mn(L12)(ClO4)]
+
 375 

275 100 [Mn(L12)]-H
+
 275 
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4.5.13  [Mn(L12)(Cl)2].H2O 

 

MnCl2·4H2O (0.596 g, 3.01 mmol) was dissolved in methanol (20ml) containing 

ethanolamine (0.366 g, 6 mmol) and a solution of 2,6-diformylpyridine (0.407 g, 

3.01 mmol) in methanol (20ml) was added. The solution obtained was stirred at room 

temperature for 2 hours. The solvent was reduced to approximately 10 ml under 

reduced pressure. After one night at room temperature no crystals were formed so 

methanol (5 ml) was added to the remaining solution and NaClO4 was added in 

excess. The mixture was filtered and the solvent was reduced under reduced pressure 

to approximately 5ml The orange solid was collected via filtration and dried in 

vacuo. Yield 0.290 g, 0.79 mmol, 26 %. 

 

IR: (KBr disc, cm
-1

) 3529, 3406 υ(OH), 3358, 3096, 2934, 2893, 2018, 1676, 1636 

υ(C=N), 1590 υ(C=C), 1458, 1430, 1377, 1309, 1253, 1201, 1090 υ(ClO4-), 1020, 970, 

930, 866, 814, 744, 625 υ(ClO4-)
 

 

Anal.(%) Found   C = 36.9 H = 4.3 N = 11.6 

[Mn(L12)(Cl)2].H2O   C = 36.2 H = 4.7 N = 11.5 

 

4.5.14 [Mn(L13)(OH2)2](ClO4)2.2H2O 

 

N

N N

O O

(L13) 

 

Mn(ClO4)2.6H2O (0.874 g, 2.41 mmol) was dissolved in methanol (10ml). A solution 

of 2,6-diformylpyridine (0.302 g, 2.23 mmol) in methanol (10ml) and 2,2-

ethylendioxide bis(ethylamine) (0.354 g, 2.39 mmol) were added. The mixture 

obtained was stirred at room temperature for 2 hours, yielding an orange solution. 
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The solvent was reduced to 10 ml under reduced pressure. After one night at room 

temperature no crystals were obtained, therefore NaClO4 was added in excess. The 

mixture obtained was filtered and the solvent was reduced under reduced pressure to 

approximately 5ml. The solid product was collected via filtration, washed with 

ethanol and dried in vacuo. After one day at room temperature, yellow crystals were 

obtained from the filtrate with the formula [Mn(L13)(OH2)2](ClO4)2, these were 

isolated via filtration and dried in vacuo. Yield 0.141 g, 0.26 mmol, 12 %. 

 

IR: (KBr disc, cm
-1

) 3415 υ(OH), 2056, 1637 υ(C=N), 1618 υ(C=C), 1090 υ(ClO4-), 625 

υ(ClO4-) 

 

Anal.(%) Found    C = 27.2 H = 3.3 N = 6.6 

[Mn(L13)(OH)2](ClO4)2.2H2O  C = 27.2 H = 4.4 N = 7.2 

 

4.5.15 [Mn(L13)(Cl)2] 

 

MnCl2·4H2O (0.799 g, 4.04 mmol) was dissolved in methanol (30ml). A solution of 

2,6-diformylpyridine (0.546 g, 4.04 mmol) in methanol (20ml) and 2,2’-

ethylendioxide-bis(ethylamine) (0.669 g, 4.52 mmol) was added. The mixture 

obtained was stirred at room temperature for 2 hours, yielding a brown solution. The 

solvent was reduced to approximately 10ml under reduced pressure. After one night 

at room temperature no crystals were obtained, therefore methanol (5 ml) was added 

to the remaining solution and excess NaClO4 was added. the solvent was reduced 

under pressure until approximately 5ml remained. The solid product was then 

collected via filtration and washed with ethanol and dried in vacuo.. Yield 0.540 g. 

0.94 mmol, 23 %. 

 

IR: (KBr disc, cm
-1

) 3406 υ(O-H),2928cm
-1

, 2876, 1647 υ(C=N), 1589 υ(C=C),1370, 

1284, 1086 υ(ClO4-), 819, 626 υ(ClO4-) 

 

Anal.(%) Found    C = 26.9 H = 3.9 N = 7.2 

[Mn(L13)(Cl)2]    C = 26.5 H = 3.6 N = 7.1 



 

 

217 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

337 5 [Mn(L13)(Cl)]
+
 337 

301 100 [Mn(L13)]-H
+
 301 

 

4.5.16 [Mn(L13)(NCS)2].MeOH.H2O 

 

MnCl2.4H2O (0.807 g, 4.08 mmol) was dissolved in methanol (10ml). A solution of 

2,6-diformylpyridine (0.55 g, 4.07 mmol), NaNCS (0.674 g, 8.31 mmol) and 2,2’-

ethylendioxide-bis(ethylamine) (0.600 g, 4.04 mmol) in methanol (20ml) was added. 

The mixture was stirred at room temperature for 2 hours, yielding a yellow solution. 

The solvent was reduced to approximately 10ml under reduced pressure. After one 

night at room temperature, a yellow solid was obtained and collected via filtration 

then washed with water before drying in vacuo. Yield 1.616 g, 3.38 mmol, 83 %. 

 

Crystals of the complex were obtained by slow diffusion of ether into a DMF 

solution of the product which gave the crystallised product with the formula 

[Mn(L13)(NCS)2]. 

 

IR: (KBr disc, cm
-1

) 3243, 2924, 2874, 2057 υ(NCS), 1646 υ(C=N), 1592 υ(C=C), 1459, 

1451, 1358, 1343, 1279, 1266, 1247, 1185, 1153, 1104, 1071, 1057, 1034, 1011, 961, 

939, 929, 811, 790  

 

Anal.(%) Found    C = 40.8 H = 4.3 N = 14.9 

[Mn(L13)(NCS)2].MeOH.H2O  C = 41.0 H = 5.0 N = 15.0 

 



 

 

218 

FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

360 45 [Mn(L13)(NCS)]
+
 360 

301 100 [Mn(L13)]-H
+
 301 

 

4.5.17 [Mn(L14)(NCS)2] 

 

N

N N

NN

 (L14) 

 

MnCl2·4H2O (0.805 g, 4.07 mmol) was dissolved in methanol (10ml). A solution of 

N,N-dimethylethylendiamine (0.720 g, 8.16 mmol), 2,6-diformylpyridine (0.561 g, 

4.15 mmol) and NaNCS (0.664 g, 8.18 mmol) in methanol (20ml) was added. The 

mixture obtained was stirred at room temperature for 2 hours, yielding a yellow 

solution. The solvent was reduced to approximately 10ml under reduced pressure. 

After one night at room temperature a yellow solid was observed and isolated then 

washed with water and dried under vacuum. Yield 1.043 g, 2.07 mmol, 51 %. 

 

IR: (KBr disc, cm
-1

) 3426, 2830, 2040 υ(NCS), 1653 υ(C=N), 1588 υ(C=C), 1464, 1289, 

1017, 943, 777 

 

Anal.(%) Found    C = 41.1 H = 5.3 N = 19.3 

[Mn(L14)(NCS)2]    C = 40.4 H = 5.0 N = 19.4 
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4.5.18 [Mn(L15)(Cl)2].MeOH.H2O 

 

N

N N

O O

OMe

(L15) 

 

2,6-Diformylpyridine (0.135 g, 1.00 mmol) was stirred in methanol (50 ml). 

MnCl2.4H2O (0.198 g, 1.00 mmol) in methanol (10 ml), was added, followed by 

2,2’-ethylenedioxy-bis(ethylamine) (0.148 g, 1.00 mmol). The solution turned yellow 

on addition of the amine. Stirring was continued for 30 mins. The solvent was then 

reduced under pressure to approximately 10 ml. The orange solid product was 

collected via filtration and dried in vacuo. Crystals of the product were formed by 

slow diffusion of ether into a solution of product dissolved in DMF which yielded 

crystals of the formula [Mn(L15)(Cl)2].MeOH. Yield: 0.295 g, 0.65 mmol, 65 %. 

 

IR: (KBr disc, cm
-1

) 3371, 3202, 3213, 2922, 2878, 2053, 1966, 1629 υ(C=N), 1589 

υ(C=C), 1464, 1379, 1343, 1332, 1282, 1157, 1089, 1057, 1018, 963, 927, 821, 812, 

739 

 

Anal.(%) Found    C = 39.7 H = 5.3 N = 9.9 

[Mn(L15)(Cl)2].MeOH.H2O   C = 39.8 H = 5.3 N = 10.0 
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4.5.19 [Mn(L16)(OH2)2](ClO4)2 

 

N

N N

NH
2

NH
2 (L16) 

 

[Ba(L7)(ClO4)2] (0.379 g, 0.53 mmol) was refluxed in methanol (100 ml). 

Mn(ClO4)2.6H2O (0.254 g, 0.70 mmol) in methanol (10 ml) was added and refluxing 

continued for 1 hr. The yellow/orange solution was then reduced to approximately 10 

ml and the orange solid was collected via filtration. Crystals were obtained by slow 

diffusion of ether into a methanol solution of the product. Yield: 0.073 g, 0.14 mmol, 

27 %. 

 

IR: (KBr disc, cm
-1

) 3443 υ(O-H), 3090, 2934, 1628 υ(C=N), 1583 υ(C=C), 1452, 1437, 

1424, 1375, 1355, 1286, 1240, 1193, 1147, 1109 υ(ClO4), 1041, 1000, 922, 749, 716, 

620 

 

Anal.(%) Found    C = 28.7 H = 3.8 N = 12.4 

[Mn(L16)(OH2)2](ClO4)2   C = 29.2 H = 4.3 N = 13.1 

 

4.6 Tripodal ligands 

 

Tren is a commonly used commercially available tripodal amine and was used 

without further purification in the synthesis of a Schiff base manganese complex. 

The synthesis of asymmetric tripodal amines was attempted using the methods 

outlined by Blackman et al.30
 by varying the arm lengths of the tripod. The synthesis 

of the products have been carried out with varying molar amounts of MnCl2.4H2O to 

ligand. Initially attempts were made to prepare a mononuclear complex however, 
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some of the analysis indicated that a µ-oxo tetranuclear complex may be forming as 

outlined by McKee et al.36, 37
 synthesis was then carried out with excess MnCl2.4H2O 

in attempts to prepare a tetranuclear system. Suitable crystals did not form for X-ray 

crystallography to be performed. 

 

4.6.1 Saltren 

 

N
N

N

N

OH
OH

OH

1

2

3
4

5

6

7

 

 

Tris-(2-aminoethyl)-amine(0.298 g, 2.04 mmol) was mixed with water (1 ml) and 

stirred. Salicylaldehyde (0.732 g, 6.00 mmol) in methanol (5 ml) was added to the 

solution and stirring continued for 15 minutes. On addition of salicylaldehyde, a 

bright yellow precipitate was formed.
30

 The product was allowed to air dry 

overnight. Yield: 0.900 g, 1.96 mmol, 96 %. 

 

IR (KBr disc, cm
-1

) 3447 υ(OH), 3054, 2939 υ(CH2), 1892, 2816, 1634 υ(C=N), 1610, 

1581, 1498, 1458, 1430,1278, 1248, 1197, 1166, 1148, 1115, 1068, 1042, 1025, 944, 

925, 903, 877, 854, 774, 755, 638 

 

Anal. (%). Found  C = 70.1 H = 6.7 N = 12.4 

C27H30N4O3   C = 70.7 H = 6.6 N = 12.2 

 

NMR (CDCl3, ppm, 
1
H) 2.76 (t, 6H CH2

1
), 3.45 (t 6H CH2 

2
), 5.95 (d 3H CH

4
), 6.51 

(t 3H CH
5
), 6.87 (d 3H CH

7
), 7.19 (t 3H CH

6
), 7.72 (s 3H CH

3
), 13.74 (s, 3H OH) 
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4.6.2 [Mn(Saltren)](Cl)2.2H2O 

 

Saltren (0.439 g, 0.96 mmol) was dissolved in methanol (20 ml), MnCl2.4H2O (0.198 

g, 1.00 mmol) was separately dissolved into methanol (20 ml). The two solutions 

were added together with stirring. The initial orange solution turned green over 10 

minutes. The green solid was then collected on a frit, washed with methanol and 

dried in vacuo. Yield: 0.503 g, 0.811 mmol, 84 %. 

 

IR: (KBr disc, cm
-1

) 3374 υ(O-H), 3062, 2946, 2852, 1642 υ(C=N), 1610, 1599 υ(C=C), 

1546, 1534, 1487, 1470, 1446, 1400, 1297, 1279, 1200, 1150, 878, 757   

 

Anal. (%) Found   C = 52.3 H = 5.0 N = 9.6 

[Mn(Saltren)](Cl)2.2H2O  C = 52.4 H = 5.2 N = 9.1 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fragment 

Molecular weight 

(Calc) 

512 100 [Mn(Saltren)]-H
+
 512 
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4.6.3 [Mn4(O)2(Saltren)2](MnCl4)2 

 

Saltren (0.458 g, 1.00 mmol) was placed into methanol (20 ml). MnCl2.4H2O (0.396 

g, 2.00 mmol) was placed into methanol (20 ml). The two solutions were added 

together with stirring. The initial orange solution turned dark green over 10 minutes. 

The solvent was allowed to evaporate and the green solid was then collected via 

filtration, washed with ether and dried in vacuo. Yield: 0.591 g, 0.59 mmol, 59 %. 

 

IR: (KBr disc, cm
-1

) 3410 υ(O-H), 1636 υ(C=N), 1613, 1535, 1481, 1404, 1296, 1201, 

756 

 

Anal. (%) Found    C = 41.4 H = 4.4 N = 7.7 

[Mn4(O)2(Saltren)2](MnCl4)2   C = 41.5 H = 3.9 N = 7.2 

 

FAB 

M/z 

Rel. 

Abundance 

(%) 

Fragment 
Molecular 

weight (Calc) 

1584 1 [Mn4(O)2(Saltren)2](MnCl4)2+Na
+
 1585 

513 12 [Mn(Saltren)]
+
 513 

407 100 [Mn(Saltren)]
+
-(C7H6O) 407 

 

4.6.4 Reduced saltren 

 

NH
N

NH

NH

OH
OH

OH
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Saltren (0.458 g, 1.00 mmol) was placed into methanol (15 ml). Sodium tetraborate 

(0.200 g, 0.50 mmol) and then sodium borohydride (0.151 g, 4.00 mmol) was added 

slowly over 30 minutes. Stirring was continued at room temperature for 2 hours. The 

solvent was then evaporated under reduced pressure and ammonium chloride (1 g, in 

water 10 ml) was added to the residue. The resulting mixture was extracted with 

chloroform (3 x 15 ml) and the organic fractions combined and washed with water. 

This was then dried over magnesium sulphate, filtered and chloroform was removed 

under reduced pressure leaving a yellow oily residue, this was stored in vacuo 

overnight. Yield: 0.430 g, 92 %. 

 

IR (KBr disc, cm
-1

) 2845 υ(C-H), 2363, 1590 υ(C=C), 1458, 1258, 1152, 1104, 842, 755 

 

4.6.5 [Mn(RedSaltren)](Cl)2.2H2O 

 

N
N

N

N

O
O

O

Mn

H H
H

 

 

MnCl2.4H2O (0.078 g, 0.39 mmol) was dissolved in methanol (5 ml). Reduced 

saltren (0.201 g, 0.43 mmol) was dissolved in methanol (3 ml) to give a yellow 

solution. The saltren solution was gently heated and upon mixing the two solutions, 

the mixture turned dark green / black in colour. Gentle heating was continued for 15 

minutes and the solution was left to evaporate in air yielding a dark green solid. 

Yield: 0.240 g, 0.38 mmol, 91 %.  

 

IR (KBr disc, cm
-1

) 3060 υ(O-H), 1595, 1570 υ(C=C), 1479, 1457, 1279, 1260, 1151, 

1107, 1041, 877, 756, 619  
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Anal (%) Found    C = 52.3 H = 5.8 N = 8.7 

[Mn(RedSaltren)](Cl)2.2H2O   C = 51.8 H = 6.4 N = 9.0 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

517 100 [Mn(RedSaltren)]
+
 516 

461 47 (RedSaltren)
+
 461 

 

4.6.6 [Mn4(O)2(RedSaltren)2](MnCl4)2.H2O 

 

RedSaltren (0.284 g, 0.61 mmol) was placed into methanol (20 ml) MnCl2.4H2O 

(0.241 g, 1.22 mmol) was placed into methanol (20 ml). The two solutions were 

added together with stirring. The initial orange solution turned green over 10 

minutes. The solution was allowed to evaporate and the remaining green solid was 

then collected via filtration, washed with ether and dried in vacuo. Yield: 0.510 g, 

0.51 mmol, 84%. 

 

IR: (KBr disc, cm
-1

) υ(O-H) 3060 cm
-1

, υ(C=C) 1595 cm
-1

, 1479 cm
-1

, 1456 cm
-1

, 1259 

cm
-1

,876 cm
-1

, 756 cm
-1

  

 

Anal. (%) Found     C = 40.4 H = 4.7 N = 7.0 

[Mn4(O)2(RedSaltren)2](MnCl4)2.H2O C = 40.7 H = 4.7 N = 7.0 

 

FAB  

M/z 
Rel. Abundance 

(%) 
Fraction 

Molecular weight 

(Calc) 

1088 6 [Mn3(RedSaltren)2]-5H
+
 1088 

518 59 [Mn(RedSaltren)]-H
+
 518 

465 100 (RedSaltren)-H
+
 465 
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4.6.7 N-(2-bromoethyl)phthalimide 

 

N

O

O

Br

 

 

Potassium phthalimide (3.707 g, 20.00 mmol) and 1,2-dibromoethane (3.753 g, 19.98 

mmol) in anhydrous dimethylformamide (40 ml) was stirred at room temperature for 

47 h. The precipitated KBr was filtered off and the filtrate was concentrated using a 

rotary evaporator with a good vacuum. Cream coloured crystals formed on standing. 

The crystals were stored in a dessicator to aid drying. Yield: 4.500 g, 16.55 mmol, 83 

%. 

 

IR (KBr disc, cm
-1

) 1772, 1715 υ(C=O), 1466, 1431, 1397, 1325, 1230, 1189, 1170, 

1089, 1063, 974, 924, 881, 865, 804, 721, 602, 580, 531, 510, 481  

 

Anal. (%) Found   C = 43.9 H = 3.1 N = 5.1 

C10H8NO2Br.(H2O)   C = 44.1 H = 3.7 N = 5.2 

 

NMR (CDCl3, ppm, 
1
H) 3.55 (t, 2H, CH2Br), 4.05 (t, 2H, CH2N), 7.70 (m, 4H, CH 

Ar)  

 

4.6.8 2,2’-Diphthalimidoethylamine 

 

O

O

N

N
H

N

O

O
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Phthalic anhydride (7.422 g, 50.00 mmol) was melted in a beaker using an oil bath at 

170 
o
C. Diethylenetriamine (2.597 g, 25.19 mmol) was added drop wise over 15 

minutes with vigorous stirring to produce a brown glassy solid on cooling. This was 

crushed using a pestle and mortar to give a fine pale yellow coloured powder. Yield: 

8.234 g, 22.68 mmol, 90 %. 

 

IR (KBr disc, cm
-1

) 3461 υ(N-H), 3059, 2941 υ(CH2), 2834, 1773, 1708 υ (C=O), 1637, 

1560, 1467, 1432, 1396, 1189, 1086, 1038, 872, 793, 717, 605, 530  

 

Anal.(%) Found  C = 67.1 H = 5.6 N = 10.8 

C20H17N3O4   C = 67.5 H = 5.4 N = 10.7 

 

NMR (CDCl3, ppm, 
1
H) 3.03 (t, 4H, CH2NH) 3.85 (t, 4H, CH2N) 7.76 (m, 8H, 

CHAr) 

 

4.6.9 2,2’,3-Triphthalimidoethylpropylamine 

 

N

O O

O

O

N
N

N

O

O

1

2

1

3

2

 

 

2,2’-Diphthalimidoethylamine (0.726 g, 2.00 mmol) was melted in a beaker in an oil 

bath at 170 
o
C. N-(2-bromopropyl)phthalimide (0.536 g, 1.99 mmol) was added 

slowly over 10 minutes. On cooling, a dark brown glassy solid was formed. The 

aforementioned solid was ground, using a pestle and mortar, to give a finely divided, 

orange powder. Yield: 1.012 g, 1.61 mmol, 81 %. 
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IR (KBr disc, cm
-1

) 3463, 2945 υ(CH2), 2775, 2695, 1773, 1708 υ(C=O), 1612, 1467, 

1432, 1396, 1189, 1172, 1087, 1033, 1013, 872, 794, 719, 530  

 

Anal. (%) Found   C = 59.0 H = 3.9 N = 8.6 

C31H24N4O6(HBr)   C = 59.1 H = 4.0 N = 8.9 

 

NMR (CDCl3, ppm, 
1
H) 2.21 (q, 2H, CH2

3
), 3.37 (t, 6H, CH2

1
) 3.77 (t, 6H, CH2

2
) 

7.68 (m, 12H, CHAr) 

 

4.6.10  - BAEP.6HCl 

 

NH
3
+

NH+
NH

3
+

NH
3
+

.4Cl-

1

2

2

3

1

 

 

2,2’,3-Triphthalimidoethylpropylamine (0.552 g, 1 mmol) was mixed with 

hydrochloric acid (60 ml, 8 M). The mixture was heated under reflux for 19 hours. 

The solid phthalic acid which formed on cooling was removed by filtration and the 

solvent removed under reduced pressure leaving a white residue. The residue was 

dissolved in water (10 ml) and a white precipitate formed on addition of ethanol (150 

ml). The solution was stored in a fridge overnight, and the resulting white solid 

collected via filtration. Yield: 0.107g, 0.3 mmol, 28 %. 

 

IR: (KBr disc, cm
-1

) 2979 υ (N-H), 2362, 1687, 1585, 1497,1404, 1282, 1271, 1153, 

1140, 1071, 1005, 974, 908, 829, 797, 734, 674, 556 

 

Anal. (%) Found   C = 23.6 H = 7.0 N = 14.1 

BAEP.6HCl     C = 22.2 H = 6.9 N = 14.8 

 

NMR (D2O, ppm, 
1
H) 1.87 (q 2H CH2

3
), 2.81 (t 6H CH2

1
) 3.56 (t 6H CH2

2
) 
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4.6.11  - BAEP-Sal.6H2O 

 

OH

N
N

N

OHN

OH

(BAEP-Sal) 

 

BAEP.4HCl (0.155 g, 0.5 mmol) was placed into ethanol (20 ml). Salicylaldehyde 

(0.183 g, 1.5 mmol) was added followed with triethylamine (0.152 g, 1.5 mmol). The 

solution turned yellow and stirring continued for 30 mins. The solvent was then 

removed under reduced pressure. Yield: 0.143 g, 0.3 mmol, 61 %. 

 

IR(KBr disc, cm
-1

) 3447 υ (OH), 2976, 2940 υ(CH2), 2801, 2760, 2739, 2677, 2492, 

1636 υ(C=N), 1578, 1478, 1458, 1394,1279, 1189, 1173, 1150, 1117, 1072, 1038, 966, 

851, 806, 756, 638 

 

Anal. (%) Found    C = 58.2 H = 8.7 N = 10.7 

BAEP-Sal.6H2O     C = 57.9 H = 7.6 N = 9.7 

 

4.6.12  - [Mn(RedBAEP-Sal](Cl)2.4H2O 

 

OH

N
N

N

OHN

OH

H

H

H

(RedBAEP-Sal) 
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Reduction of the BAEP-Sal ligand was carried out as for the Saltren ligand 

previously described. The reduced ligand (0.109 g, 0.2 mmol) was placed into 

methanol (3ml) and the MnCl2.4H2O (0.040 g, 0.2 mmol) was dissolved in ethanol 

(15 ml) the two two solutions were mixed together and stirred with gentle heat for 15 

mins, during which time, the solution turned dark green. The solvent was left to 

evaporate yielding a green solid. Yield: 0.119 g, 0.17 mmol, 88 %. 

 

IR: (KBr disc, cm
-1

) 3107 υ(O-H), 1624, 1595 υ(C=C), 1477, 1457, 1262, 878, 758  

 

Anal. (%) Found     C = 49.4 H = 5.9 N = 8.4 

[Mn(RedBAEP-Sal)](Cl)2.4H2O   C = 49.7 H = 6.9 N = 8.3 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fragment 

Molecular weight 

(Calc) 

531 67 [Mn(RedBAEP-Sal)]
+
 531 

479 50 (RedBAEP-Sal)-H
+
 479 

460 100 (RedBAEP-Sal)-OH 460 

 

4.6.13  - 3,3’,2-Triphthalimidoproylethylamine.2H2O 

 

3,3’-Diphthalimidopropylamine (1.957 g, 5 mmol) as purchased, was melted and 

stirred in a beaker. 2-Bromoethylphthalimide (2.791 g, 5 mmol) was added and both 

reactants were melted together. Stirring was continued for one hour. A brown glassy 

solid formed on cooling which was crushed into a fine powder. Yield: 2.92 g, 5.0 

mmol, 86 %. 

 

IR: (KBr disc, cm
-1

) 3538, 3460 υ(O-H), 2943, 1770 υ(C=O), 1708, 1613, 1173, 1034, 

1022, 891, 721, 528 

 

Anal. (%) Found      C = 56.7 H = 4.3 N = 7.9 

3,3’2-Triphthalimidopropylethylamine.2H2O  C = 56.4 H = 4.9 N = 8.2 
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4.6.14  - ABAP.4HCl.H2O 

 

NH
2 N

NH
2

NH
2

(ABAP) 

 

3,3’,2-Triphthalimidoproylethylamine (1.694 g, 3 mmol) refluxed in hydrochloric 

acid (60 ml, 8 M) for 19 hours. The solid phthalic acid which formed on cooling was 

removed by filtration and the solvent was reduced to approximately 2 ml and a white 

precipitate formed on addition of ethanol (20 ml). The resulting white solid was 

collected via filtration, washed with ethanol and dried in vacuo. Yield: 0.597 g, 1.9 

mmol, 53 %. 

 

IR: (KBr disc, cm
-1

), 3426, 2951 υ(N-H), 2600, 2542, 1605, 1508, 1466, 1404, 1165, 

1134, 968, 930, 772 

 

Anal. (%) Found    C = 25.3 H = 7.4 N = 14.3 

ABAP.4HCl.H2O    C = 25.6 H = 7.8 N = 15.0 

 

4.6.15  - [Mn(ABAP-Sal)](ClO4).3H2O 

 

ABAP.4HCl (0.253 g, 0.5 mmol) was placed into methanol (20 ml) followed with 

salicylaldehyde (0.366 g, 3.0 mmol) and triethylamine (0.405 g, 4.0 mmol). The 

solution was refluxed for 10 mins. Mn(ClO4)2.6H2O (0.254 g, 1.0 mmol) was added 

and the solution refluxed for 2.5 h. On cooling, excess NaClO4 in methanol (10 ml) 

was added and the dark brown solid was collected via filtration, washed with ether 

and dried in vacuo. Yield: 0.092 g, 0.13 mol, 27 %. 
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IR: (KBr disc, cm
-1

) 3422 υ(O-H), 2928, 2857, 1618 υ(C=N), 1599, 1543, 1465, 1400, 

1292, 1207, 1150, 1121, 1088 υ(ClO4), 907, 814, 762, 637 

 

Anal. (%) Found    C = 51.4 H = 4.9 N = 8.3 

[Mn(ABAP-Sal)](ClO4).3H2O   C = 51.4 H = 5.7 N = 8.3 

 

FAB 

M/z 
Rel. Abundance 

(%) 
Fragment 

Molecular weight 

(Calc) 

539 47 [Mn(ABAP-Sal)]-2H
+
 539 

392 100 [Mn(3,3’- Sal)]-H
+
 393 

 

4.6.16  - [Mn4(O)2(ABAP-Sal)][MnCl4]2 

 

ABAP-Sal ligand (0.167 g, 0.34 mmol) was dissolved in ethanol (40 ml) and upon 

the addition of MnCl2.4H2O (0.336 g, 1.70 mmol) in ethanol (10 ml) a bright yellow 

precipitate formed. Stirring continued for 30 mins, during which time the solution 

and solid turned dark green. On filtering, The solution was allowed to evaporate to 

dryness at room temperature to yield a dark green solid. The solid removed from 

solution was washed with ether and gave the following analysis, Yield: 0.474 g, 0.30 

mmol, 87 %. 

 

IR: (KBr disc, cm
-1

) 3423 υ(O-H), 2982, 1653 υ(C=N), 1610, 1599, 1542, 1474, 1301, 

1204, 1152, 1126, 1030, 900, 814, 765 

 

Anal. (%) Found   C = 43.5 H = 4.8 N = 7.4 

[Mn4(O)2(ABAP-Sal)2][MnCl4]2 C = 43.0 H = 4.2 N = 6.9 
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FAB 

M/z 

Rel. 

Abundance 

(%) 

Fragment 
Molecular weight 

(Calc) 

1113 1 [Mn(ABAP-Sal)O]2-H
+
 1113 

1095 1 [Mn2(ABAP-Sal)2O]-3H
+
 1095 

539 100 [Mn(ABAP-Sal)]-2H
+
 539 

392 32 [Mn(3,3’- Sal)]-H
+
 393 
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Appendix 1 

Single Crystal X-ray Data Tables. 
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Table 23 - Crystal data and structure refinement for 

[Mn2(HL1)(Cl)2]2(ClO4)2.2DMF 

Identification code  LJP1/testsq 

Chemical formula  C54H72Cl6Mn4N14O14 

Formula weight  1573.72 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  Orthorhombic, Pbcn 

Unit cell parameters a = 14.7345(6) Å  = 90° 

 b = 22.6943(9) Å  = 90° 

 c = 21.3326(8) Å  = 90° 

Cell volume 7133.4(5) Å
3
 

Z 4 

Calculated density  1.465 g/cm
3
 

Absorption coefficient  0.984 mm
1

 

F(000) 3232 

Crystal colour and size orange, 0.54  0.18  0.17 mm
3
 

Reflections for cell refinement 9845 ( range 2.36 to 28.32°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 1.65 to 26.00° 

Index ranges h 18 to 18, k 27 to 27, l 26 to 26 

Completeness to  = 26.00° 100.0 %  

Intensity decay 0% 

Reflections collected 59801 

Independent reflections 7014 (Rint = 0.0334) 

Reflections with F2>2 5780 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.6187 and 0.8506 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0654, 2.1138 

Data / restraints / parameters 7014 / 46 / 449 

Final R indices [F2>2] R1 = 0.0375, wR2 = 0.1093 

R indices (all data) R1 = 0.0460, wR2 = 0.1142 

Goodness-of-fit on F2 1.128 

Largest and mean shift/su 0.476 and 0.028 

Largest diff. peak and hole   0.621 and 0.452 e Å
3 

 

Hydrogen atoms were inserted at calculated positions except H2o which was found and its position 

and temperature factor fixed. This hydrogen was formed on the second oxygen within the same 

macrocycle due to a two fold axis of the molecule. 

 

One perchlorate ion remains uncoordinated to the macrocycle with disorder modelled with 75% 

occupancy and 25% occupancy over the two positions 

 

The data were refined using the programme SQUEEZE
129

 due to disordered solvent. There are 4 

molecules per cell. SQUEEZE located 4 voids, two of which are of 191.8 Å
3
 and two of which 

are191.6 Å
3
 in the cell with 40 electrons each, which was assigned as 1 molecule of DMF per cell 

each with the formula C3H7NO. There also remained one ordered DMF molecule within the cell 
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Table 24 - Crystal data and structure refinement for 

[Mn2(HL1)(N3)2]2(ClO4)2.2DMF 

 

Identification code  ljp80 

Chemical formula  C60H80Cl2Mn4N28O16 

Formula weight  1740.18 

Temperature  296(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  monoclinic, P21/c 

Unit cell parameters a = 13.8095(6) Å      = 90° 

 b = 20.9281(9) Å     = 105.3810(10)° 

 c = 13.4256(6) Å      = 90° 

Cell volume 3741.1(3) Å3 

Z 2 

Calculated density  1.545 g/cm
3
 

Absorption coefficient  0.815 mm
1

 

F(000) 1796 

Crystal colour and size Orange, 0.52  0.34  0.29 mm
3
 

Reflections for cell refinement 9851 ( range 2.48 to 31.38°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 1.81 to 31.87° 

Index ranges h 19 to 20, k 29 to 31, l 19 to 19 

Completeness to  = 31.87° 91.3 %  

Intensity decay 0% 

Reflections collected 30101 

Independent reflections 11726 (Rint = 0.0204) 

Reflections with F2>2 9585 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.6766 and 0.7980 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0700, 1.5422 

Data / restraints / parameters 11726 / 0 / 507 

Final R indices [F2>2] R1 = 0.0399, wR2 = 0.1132 

R indices (all data) R1 = 0.0503, wR2 = 0.1205 

Goodness-of-fit on F2 1.031 

Largest and mean shift/su 0.004 and 0.000 

Largest diff. peak and hole 0.845 and 0.552 e Å
3

 
 

Hydrogen atoms were inserted at calculated positions except H1 which was found and its position and 
temperature factor fixed. This hydrogen was formed on the same oxygen of the second macrocycle 

due to the centrosymmetry of the molecule. 

 



 

 

237 

 

Table 25 - Crystal data and structure refinement for 

[Mn5(HL1)2(OAc)2(DMF)2](ClO4)4.4DMF 

 

 

Identification code  lj93 

Chemical formula  C70H104Cl4Mn5N18O30 

Formula weight  2094.21 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  triclinic, P1 

Unit cell parameters a = 10.7755(15) Å     = 90.871(2)° 

 b = 13.8331(19) Å     = 109.424(2)° 

 c = 16.136(2) Å          = 94.217(2)° 

Cell volume 2260.1(5) Å
3
 

Z 1 

Calculated density  1.539 g/cm
3
 

Absorption coefficient  0.885 mm
1

 

F(000) 1083 

Crystal colour and size Orange, 0.35  0.18  0.15 mm
3
 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 2.01 to 20.05° 

Index ranges h 10 to 10, k 13 to 13, l 15 to 15 

Completeness to  = 20.05° 99.5 %  

Intensity decay 0% 

Reflections collected 10777 

Independent reflections 4241 (Rint = 0.0326) 

Reflections with F2>2 3362 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.7469 and 0.8787 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F
2
 

Weighting parameters a, b 0.1263, 11.1395 

Data / restraints / parameters 4241 / 770 / 630 

Final R indices [F2>2] R1 = 0.0679, wR2 = 0.1821 

R indices (all data) R1 = 0.0839, wR2 = 0.1968 

Goodness-of-fit on F
2
 1.003 

Largest and mean shift/su 1.474 and 0.016 

Largest diff. peak and hole 1.104 and 0.536 e Å
3

 

 
All hydrogen atoms were inserted at calculated positions 
 

One perchlorate ion remains uncoordinated to the macrocycle with disorder modelled with 70% 

occupancy and 30% occupancy over the two positions 
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Table 26 - Crystal data and structure refinement for 

[Mn2(RedHL1)(Cl)2]2[MnCl4].4DMF.EtOH 

 

Identification code  ljp75sq 

Chemical formula  C25.50H39.50Cl4Mn2.50N6.50O2.50 

Formula weight  756.29 

Temperature  150(2) K 

 0.69420 Å 

Crystal system, space group  triclinic, P1 

Unit cell parameters a = 14.6329(13) Å      = 84.4870(10)° 

 b = 15.5155(13) Å      = 79.3940(10)° 

 c = 17.9810(16) Å      = 67.6880(10)° 

Cell volume 3710.6(6) Å
3
 

Z 4 

Calculated density  1.354 g/cm
3
 

Absorption coefficient  1.163 mm
1

 

F(000) 1554 

Crystal colour and size colourless, 0.25  0.18  0.10 mm
3
 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 1.39 to 25.00° 

Index ranges h 17 to 17, k 18 to 18, l 21 to 21 

Completeness to  = 25.00° 99.5 %  

Intensity decay 0% 

Reflections collected 30369 

Independent reflections 13965 (Rint = 0.0408) 

Reflections with F2>2 8794 

Absorption correction none 

Min. and max. transmission 0.7597 and 0.8926 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F
2
 

Weighting parameters a, b 0.1367, 0.0000 

Data / restraints / parameters 13965 / 1047 / 869 

Final R indices [F2>2] R1 = 0.0659, wR2 = 0.1984 

R indices (all data) R1 = 0.0973, wR2 = 0.2193 

Goodness-of-fit on F
2
 0.987 

Largest and mean shift/su 1.840 and 0.020 

Largest diff. peak and hole 0.903 and 0.604 e Å
3

 
 

Hydrogen atoms were inserted at calculated positions except H2o which was found and its position 

and temperature factor fixed. This hydrogen was formed on the same oxygen on the second  

macrocycle due to the centrosymmetry of the molecule. 

 

The data were refined using the programme SQUEEZE
129

 due to disordered solvent. SQUEEZE 

located 1void of 250 Å
3
 per cell with 27 electrons each, which was assigned as 1 molecule of EtOH 

per cell with the formula C2H5OH.  
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Table 27 - Crystal data and structure refinement for [Ba(H2L3)(ClO4)]2(ClO4)2. 

 

Identification code  lj227 

Chemical formula  C20H22BaCl2N6O10 

Formula weight  714.68 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  triclinic, P  

Unit cell parameters a = 8.4509(7) Å      = 79.7780(10)° 

 b = 8.7341(7) Å      = 88.7820(10)° 

 c = 17.7724(14) Å   = 83.0790(10)° 

Cell volume 1281.57(18) Å
3
 

Z 2 

Calculated density  1.852 g/cm
3
 

Absorption coefficient  1.825 mm
1

 

F(000) 708 

Crystal colour and size clear, 0.57  0.35  0.12 mm
3
 

Reflections for cell refinement 7639 ( range 2.39 to 31.32°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 2.33 to 31.67° 

Index ranges h 12 to 11, k 12 to 12, l 26 to 25 

Completeness to  = 31.67° 90.0 %  

Intensity decay 0% 

Reflections collected 15173 

Independent reflections 7785 (Rint = 0.0221) 

Reflections with F
2
>2 7094 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.4227 and 0.8108 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F
2
 

Weighting parameters a, b 0.0360, 2.9976 

Data / restraints / parameters 7785 / 10 / 405 

Final R indices [F
2
>2] R1 = 0.0374, wR2 = 0.0905 

R indices (all data) R1 = 0.0427, wR2 = 0.0929 

Goodness-of-fit on F
2
 1.127 

Largest and mean shift/su 0.081 and 0.005 

Largest diff. peak and hole 1.781 and 1.005 e Å
3 

 

All hydrogen atoms were inserted at calculated positions 
 

One perchlorate ion remains uncoordinated to the macrocycle with disorder modelled with 70% 

occupancy and 30% occupancy over the two positions 
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Table 28 - Crystal data and structure refinement for 

[Mn(L4)(NCS)2].MeOH.DMF 

 

Identification code  sora1 

Chemical formula  C24.50H30.50MnN8.50O3.50S2 

Formula weight  619.13 

Temperature  150(2) K 

 0.68840 Å 

Crystal system, space group  triclinic, P1 

Unit cell parameters a = 13.1104(16) Å     = 99.367(2)° 

 b = 14.9066(18) Å     = 97.5600(10)° 

 c = 14.9514(18) Å     = 101.8730(10)° 

Cell volume 2779.8(6) Å
3
 

Z 4 

Calculated density  1.479 g/cm
3
 

Absorption coefficient  0.671 mm
1

 

F(000) 1288 

Crystal colour and size orange, 0.52  0.19  0.18 mm
3
 

Reflections for cell refinement 4095 ( range 2.71 to 25.06°) 

Data collection method Bruker SMART 1K CCD diffractometer 

  rotation with narrow frames 

 range for data collection 1.36 to 30.75° 

Index ranges h 17 to 18, k 21 to 22, l 22 to 14 

Completeness to  = 30.75° 81.9 %  

Intensity decay 0% 

Reflections collected 21514 

Independent reflections 15633 (Rint = 0.0416) 

Reflections with F2>2 7215 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.7216 and 0.8887 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0609, 0.0000 

Data / restraints / parameters 15633 / 0 / 720 

Final R indices [F2>2] R1 = 0.0564, wR2 = 0.1193 

R indices (all data) R1 = 0.1486, wR2 = 0.1543 

Goodness-of-fit on F2 0.930 

Largest and mean shift/su 0.001 and 0.000 

Largest diff. peak and hole 0.849 and 0.598 e Å
3 

 

All hydrogen atoms were inserted at calculated positions 

 

 



 

 

241 

Table 29 - Crystal data and structure refinement for [Ba(L5)(ClO4)2(H2O)2] 

 

Identification code     reb1 

Empirical formula     C20H26BaCl2N6O10 

Formula weight     718.71 

Temperature      150(2) K 

Wavelength      0.71073 Å 

Crystal system     Monoclinic 

Space group      C2/c 

Unit cell dimensions    a = 14.5247(8) Å    = 90°. 

b = 12.0634(6) Å    = 104.1570(10)°. 

c = 15.8698(8) Å     = 90°. 

Volume     2696.2(2) Å
3
 

Z      4 

Density (calculated)    1.771 Mg/m
3
 

Absorption coefficient   1.735 mm
-1

 

F(000)      1432 

Crystal size     0.51 x 0.31 x 0.13 mm
3
 

Crystal description    colourless triangular prism 

Theta range for data collection  2.22 to 31.92°. 

Index ranges     -21<=h<=21, -17<=k<=17, -23<=l<=23 

Reflections collected    16000 

Independent reflections   4334 [R(int) = 0.0184] 

Completeness to theta =    26.00° 100.0 %  

Absorption correction    Semi-empirical from equivalents 

Max. and min. transmission   0.8059 and 0.4715 

Refinement method    Full-matrix least-squares on F
2
 

Data / restraints / parameters   4334 / 3 / 213 

Goodness-of-fit on F
2
    1.194 

Final R indices [I>2sigma(I)]   R1 = 0.0227, wR2 = 0.0565 

R indices (all data)    R1 = 0.0244, wR2 = 0.0572 

Largest diff. peak and hole   0.693 and -0.634 e.Å
-3 

 
All hydrogen atoms were inserted at calculated positions 
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Table 30 - Crystal data and structure refinement for [Mn2(L6)(NCS)4].2DMF 

 

Identification code  LJ238 - vicksq 

Chemical formula  C32H40Mn2N12O2S4 

Formula weight  862.88 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  triclinic, P1 

Unit cell parameters a = 8.8404(18) Å   = 72.539(3)° 

 b = 11.311(2) Å   = 83.003(3)° 

 c = 12.051(2) Å   = 67.261(3)° 

Cell volume 1060.1(4) Å
3
 

Z 1 

Calculated density  1.352 g/cm
3
 

Absorption coefficient  0.836 mm
1

 

F(000) 446 

Crystal colour and size Orange, 0.17  0.15  0.14 mm
3
 

Reflections for cell refinement 1806 ( range 2.50 to 23.02°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 1.77 to 15.00° 

Index ranges h 6 to 6, k 8 to 8, l 8 to 8 

Completeness to  = 15.00° 100.0 %  

Intensity decay 0% 

Reflections collected 2360 

Independent reflections 860 (Rint = 0.0240) 

Reflections with F2>2 758 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.8709 and 0.8919 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0405, 1.9282 

Data / restraints / parameters 860 / 0 / 237 

Final R indices [F2>2] R1 = 0.0320, wR2 = 0.0783 

R indices (all data) R1 = 0.0367, wR2 = 0.0807 

Goodness-of-fit on F2 1.120 

Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 0.162 and 0.193 e Å
3

 
 

The data were refined using the programme SQUEEZE
129

 due to disordered solvent. SQUEEZE 

located 1 void, of 111 Å
3
 with 40 electrons, which was assigned as 1 molecule of DMF with the 

formula C3H7NO. There also remained one ordered DMF molecule within the cell 
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Table 31 - Crystal data and structure refinement for [Pb(L8)(NCS)4] 

 

Identification code  rd6f 

Chemical formula  C30H34N10O4Pb2S4 

Formula weight  1141.29 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  orthorhombic, pbcn 

Unit cell parameters a = 10.0670(4) Å  = 90° 

 b = 13.7259(5) Å  = 90° 

 c = 26.6928(10) Å  = 90° 

Cell volume 3688.4(2) Å
3
 

Z 4 

Calculated density  2.055 g/cm
3
 

Absorption coefficient  9.394 mm
1

 

F(000) 2176 

Crystal colour and size yellow, 0.22  0.17  0.14 mm3 

Reflections for cell refinement 8489 ( range 2.51 to 29.77°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 2.51 to 31.78° 

Index ranges h 14 to 14, k 19 to 19, l 38 to 38 

Completeness to  = 31.78° 96.2 %  

Intensity decay 0% 

Reflections collected 42101 

Independent reflections 6055 (Rint = 0.0497) 

Reflections with F2>2 4443 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.2317 and 0.3530 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0300, 1.8848 

Data / restraints / parameters 6055 / 0 / 226 

Final R indices [F2>2] R1 = 0.0276, wR2 = 0.0581 

R indices (all data) R1 = 0.0483, wR2 = 0.0648 

Goodness-of-fit on F2 1.007 

Largest and mean shift/su 0.004 and 0.000 

Largest diff. peak and hole 1.436 and 0.992 e Å
3 

 
All hydrogen atoms were inserted at calculated positions 
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Table 32 - Crystal data and structure refinement for [Mn(L9)(OH2)2](ClO4)2 

 

Identification code  ljp55 

Chemical formula  C13H23Cl2MnN3O12 

Formula weight  539.18 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  monoclinic, C2/c 

Unit cell parameters a = 15.9542(7) Å     = 90° 

 b = 12.0846(6) Å     = 94.3920(10)° 

 c = 10.9334(5) Å     = 90° 

Cell volume 2101.77(17) Å
3
 

Z 4 

Calculated density  1.704 g/cm
3
 

Absorption coefficient  0.949 mm
1

 

F(000) 1108 

Crystal colour and size Yellow, 0.37  0.10  0.10 mm3 

Reflections for cell refinement 5682 ( range 2.56 to 31.28°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 2.12 to 31.87° 

Index ranges h 23 to 23, k 17 to 17, l 15 to 16 

Completeness to  = 31.87° 94.3 %  

Intensity decay 0% 

Reflections collected 12616 

Independent reflections 3406 (Rint = 0.0204) 

Reflections with F2>2 3006 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.7202 and 0.9110 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F
2
 

Weighting parameters a, b 0.0519, 2.1627 

Data / restraints / parameters 3406 / 0 / 155 

Final R indices [F2>2] R1 = 0.0343, wR2 = 0.0935 

R indices (all data) R1 = 0.0390, wR2 = 0.0966 

Goodness-of-fit on F
2
 1.059 

Largest and mean shift/su 0.005 and 0.000 

Largest diff. peak and hole 0.632 and 0.469 e Å
3

 

 
All hydrogen atoms were inserted at calculated positions 
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Table 33 - Crystal data and structure refinement for [Mn(L9)(Cl)2] 

 

Identification code  MnLJP7 sad C2/c 

Chemical formula  C13H17Cl2MnN3O2 

Formula weight  373.14 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  Monoclinic, I2/a 

Unit cell parameters a = 17.472 Å  = 90° 

 b = 9.811 Å  = 121.98° 

 c = 11.383 Å  = 90° 

Cell volume 1655.1 Å
3
 

Z 4 

Calculated density  1.497 g/cm
3
 

Absorption coefficient  1.126 mm
1

 

F(000) 764 

Crystal colour and size translucent, 0.40  0.38  0.32 mm
3
 

Reflections for cell refinement 4965 ( range 2.49 to 31.62°) 

Data collection method CCD area detector 

 phi and omega scans 

 range for data collection 2.49 to 31.98° 

Index ranges h 25 to 25, k 14 to 14, l 16 to 16 

Completeness to  = 31.98° 93.7 %  

Reflections collected 9800 

Independent reflections 2687 (Rint = 0.0208) 

Reflections with F2>2 2472 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.6615 and 0.7145 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0382, 1.6419 

Data / restraints / parameters 2687 / 0 / 98 

Final R indices [F2>2] R1 = 0.0273, wR2 = 0.0758 

R indices (all data) R1 = 0.0301, wR2 = 0.0773 

Goodness-of-fit on F
2
 1.076 

Largest and mean shift/su 0.097 and 0.002 

Largest diff. peak and hole 0.921 and 0.341 e Å
3

 

 
All hydrogen atoms were inserted at calculated positions 
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Table 34 - Crystal data and structure refinement for [Mn(L10)(OH2)2](ClO4)2 

 

Identification code  ljp71  ljp71b 

Chemical formula  C15H25Cl2MnN3O12 

Formula weight  565.22 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  monoclinic, C2/c 

Unit cell parameters a = 15.926 Å  = 90° 

 b = 13.540 Å  = 98.03° 

 c = 10.880 Å  = 90° 

Cell volume 2323.2 Å
3
 

Z 4 

Calculated density  1.616 g/cm
3
 

Absorption coefficient  0.863 mm
1

 

F(000) 1164 

Crystal colour and size Clear, 0.40  0.17  0.16 mm
3
 

Reflections for cell refinement 4810 ( range 2.58 to 29.72°) 

Data collection method CCD area detector 

 phi and omega scans 

 range for data collection 1.98 to 26.00° 

Index ranges h 19 to 19, k 16 to 16, l 13 to 13 

Completeness to  = 26.00° 100.0 %  

Intensity decay 0% 

Reflections collected 9876 

Independent reflections 2289 (Rint = 0.0236) 

Reflections with F2>2 2041 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.7240 and 0.8743 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0510, 2.9962 

Data / restraints / parameters 2289 / 0 / 156 

Final R indices [F2>2] R1 = 0.0320, wR2 = 0.0865 

R indices (all data) R1 = 0.0369, wR2 = 0.0902 

Goodness-of-fit on F
2
 1.057 

Largest and mean shift/su 0.120 and 0.003 

Largest diff. peak and hole 0.794 and 0.321 e Å
3

 

 
All hydrogen atoms were inserted at calculated positions 
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Table 35 - Crystal data and structure refinement for [Mn(RedL10)(OH2)2].2Cl 

 

Identification code  lj175  lj175a 

Chemical formula  C15H29Cl2MnN3O4 

Formula weight  441.25 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  monoclinic, P21/c 

Unit cell parameters a = 16.036(12) Å   = 90° 

 b = 12.838(9) Å     = 96.285(10)° 

 c = 9.743(7) Å       = 90° 

Cell volume 1994(2) Å
3
 

Z 4 

Calculated density  1.470 g/cm
3
 

Absorption coefficient  0.954 mm
1

 

F(000) 924 

Crystal colour and size Clear, 0.17  0.12  0.05 mm
3
 

Reflections for cell refinement 741 ( range 2.56 to 14.38°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 1.28 to 20.00° 

Index ranges h 15 to 15, k 12 to 12, l 9 to 9 

Completeness to  = 20.00° 99.9 %  

Intensity decay 0% 

Reflections collected 7899 

Independent reflections 1868 (Rint = 0.0805) 

Reflections with F2>2 1400 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.8546 and 0.9538 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0902, 3.1929 

Data / restraints / parameters 1868 / 0 / 244 

Final R indices [F2>2] R1 = 0.0599, wR2 = 0.1464 

R indices (all data) R1 = 0.0863, wR2 = 0.1670 

Goodness-of-fit on F
2
 1.101 

Largest and mean shift/su 0.097 and 0.000 

Largest diff. peak and hole 1.073 and 0.382 e Å
3

 

 
All hydrogen atoms were inserted at calculated positions 
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Table 36 - Crystal data and structure refinement for [Mn(L10)(NCS)2] 

 

Identification code  LJP77  vick 

Chemical formula  C18.50H24.5MnN5.5O2.5S2 

Formula weight  483.00 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  triclinic, P1 

Unit cell parameters a = 7.368(8) Å       = 86.952(12)° 

 b = 10.462(11) Å   = 82.181(12)° 

 c = 14.368(15) Å   = 81.586(13)° 

Cell volume 1085(2) Å
3
 

Z 2 

Calculated density  1.479 g/cm
3
 

Absorption coefficient  0.830 mm
1

 

F(000) 502 

Crystal colour and size Orange, 0.59  0.18  0.16 mm3 

Reflections for cell refinement 1951 ( range 0.00 to 0.00°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 1.43 to 26.00° 

Index ranges h 9 to 9, k 12 to 12, l 17 to 17 

Completeness to  = 26.00° 98.8 %  

Intensity decay 0% 

Reflections collected 8390 

Independent reflections 4207 (Rint = 0.0581) 

Reflections with F2>2 2772 

Absorption correction semi-empirical from equivalents 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0670, 0.0000 

Data / restraints / parameters 4207 / 42 / 290 

Final R indices [F2>2] R1 = 0.0509, wR2 = 0.1141 

R indices (all data) R1 = 0.0886, wR2 = 0.1290 

Goodness-of-fit on F
2
 0.961 

Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 0.477 and 0.641 e Å
3

 

 
All hydrogen atoms were inserted at calculated positions 
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Table 37 - Crystal data and structure refinement for [Mn(L11)(Cl)2] 

 

Identification code  mnljp15 

Chemical formula  C17H29Cl2MnN5 

Formula weight  429.29 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  monoclinic, C2/c 

Unit cell parameters a = 16.5279(15) Å    = 90° 

 b = 17.1546(16) Å    = 112.8150(10)° 

 c = 7.7470(7) Å        = 90° 

Cell volume 2024.7(3) Å
3
 

Z 4 

Calculated density  1.408 g/cm
3
 

Absorption coefficient  0.926 mm
1

 

F(000) 900 

Crystal colour and size yellow, 0.46  0.09  0.04 mm
3
 

Reflections for cell refinement 2638 ( range 2.37 to 29.25°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 1.79 to 30.52° 

Index ranges h 23 to 23, k 24 to 24, l 11 to 11 

Completeness to  = 30.52° 99.6 %  

Intensity decay 0% 

Reflections collected 11818 

Independent reflections 3083 (Rint = 0.0427) 

Reflections with F2>2 2212 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.6753 and 0.9639 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0478, 0.3793 

Data / restraints / parameters 3083 / 0 / 118 

Final R indices [F2>2] R1 = 0.0363, wR2 = 0.0843 

R indices (all data) R1 = 0.0612, wR2 = 0.0952 

Goodness-of-fit on F
2
 1.007 

Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 0.434 and 0.464 e Å
3

 

 
All hydrogen atoms were inserted at calculated positions 
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Table 38 - Crystal data and structure refinement for [Mn(L12)(OH2)(Cl)]ClO4 

 

Identification code  Sora4  vsad 

Chemical formula  C11H17Cl2MnN3O7 

Formula weight  429.12 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  triclinic, P1 

Unit cell parameters a = 6.886(5) Å      = 98.427(9)° 

 b = 10.010(7) Å    = 92.073(9)° 

 c = 12.507(8) Å    = 102.800(9)° 

Cell volume 829.5(10) Å
3
 

Z 2 

Calculated density  1.718 g/cm
3
 

Absorption coefficient  1.157 mm
1

 

F(000) 438 

Crystal colour and size Orange, 0.46  0.17  0.15 mm
3
 

Reflections for cell refinement 1108 ( range 2.88 to 18.69°) 

Data collection method Bruker APEX 2 CCD diffractometer 

 range for data collection 1.65 to 18.75° 

Index ranges h 6 to 6, k 9 to 9, l 11 to 11 

Completeness to  = 18.75° 99.1 %  

Reflections collected 2742 

Independent reflections 1269 (Rint = 0.0373) 

Reflections with F2>2 1027 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.6181 and 0.8456 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0947, 0.8878 

Data / restraints / parameters 1269 / 200 / 217 

Final R indices [F2>2] R1 = 0.0480, wR2 = 0.1284 

R indices (all data) R1 = 0.0623, wR2 = 0.1401 

Goodness-of-fit on F2 1.078 

Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 0.579 and 0.597 e Å
3

 

 
All hydrogen atoms were inserted at calculated positions 
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Table 39 - Crystal data and structure refinement for [Mn(L12)(OH2)2](ClO4)2 

Identification code  sora3 

Chemical formula  C11H19Cl2MnN3O12 

Formula weight  511.13 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  Monoclinic, C2/c 

Unit cell parameters a = 15.9263(8) Å       = 90° 

 b = 12.1372(6) Å       = 90.2870(10)° 

 c = 10.1134(5) Å       = 90° 

Cell volume 1954.90(17) Å
3
 

Z 4 

Calculated density  1.737 g/cm
3
 

Absorption coefficient  1.016 mm
1

 

F(000) 1044 

Crystal colour and size orange, 0.25  0.18  0.10 mm
3
 

Reflections for cell refinement 5333 ( range 2.56 to 30.88°) 

Data collection method CCD area detector 

 phi and omega scans 

 range for data collection 2.11 to 31.77° 

Index ranges h 23 to 22, k 17 to 17, l 15 to 14 

Completeness to  = 31.77° 94.0 %  

Reflections collected 11581 

Independent reflections 3130 (Rint = 0.0238) 

Reflections with F2>2 2771 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.7854 and 0.9053 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0560, 3.0764 

Data / restraints / parameters 3130 / 0 / 138 

Final R indices [F2>2] R1 = 0.0407, wR2 = 0.1078 

R indices (all data) R1 = 0.0460, wR2 = 0.1117 

Goodness-of-fit on F
2
 1.038 

Largest and mean shift/su 0.001 and 0.000 

Largest diff. peak and hole 0.707 and 0.691 e Å
3

 

 
All hydrogen atoms were inserted at calculated positions 
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Table 40 - Crystal data and structure refinement for [Mn(L13)(OH2)2](ClO4)2 

 

Identification code  Sora2  vsad 

Chemical formula  C13H21Cl2MnN3O12 

Formula weight  537.17 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  Monoclinic, P21/c 

Unit cell parameters a = 9.857(7) Å        = 90° 

 b = 16.864(11) Å    = 106.267(9)° 

 c = 13.626(9) Å      = 90° 

Cell volume 2174(2) Å
3
 

Z 4 

Calculated density  1.641 g/cm
3
 

Absorption coefficient  0.918 mm
1

 

F(000) 1100 

Crystal colour and size orange, 0.43  0.17  0.15 mm
3
 

Reflections for cell refinement 2792 ( range 2.42 to 20.55°) 

Data collection method CCD area detector 

 phi and omega scans 

 range for data collection 1.97 to 20.58° 

Index ranges h 9 to 9, k 16 to 16, l 13 to 13 

Completeness to  = 20.58° 99.8 %  

Intensity decay 0% 

Reflections collected 10364 

Independent reflections 2203 (Rint = 0.0615) 

Reflections with F2>2 1647 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.6937 and 0.8746 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.1051, 8.0987 

Data / restraints / parameters 2203 / 0 / 347 

Final R indices [F2>2] R1 = 0.0677, wR2 = 0.1767 

R indices (all data) R1 = 0.0908, wR2 = 0.1967 

Goodness-of-fit on F
2
 1.046 

Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 0.816 and 0.460 e Å
3 

 
All hydrogen atoms were inserted at calculated positions 

 

One perchlorate ion remains uncoordinated to the macrocycle with disorder modelled with 50% 

occupancy and 50% occupancy over the two positions 
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Table 41 - Crystal data and structure refinement for [Mn(L13)(NCS)2] 

Identification code  lj330n 

Chemical formula  C15H17MnN5O2S2 

Formula weight  418.40 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  monoclinic, P21/c 

Unit cell parameters a = 16.5321(19) Å  = 90° 

 b = 27.395(3) Å =102.129(2)° 

 c = 12.5836(14) Å  = 90° 

Cell volume 5571.9(11) Å
3
 

Z 12 

Calculated density  1.496 g/cm
3
 

Absorption coefficient  0.954 mm
1

 

F(000) 2580 

Crystal colour and size Orange, 0.21  0.08  0.07 mm3 

Reflections for cell refinement 3481 ( range 2.23 to 21.48°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 1.49 to 17.50° 

Index ranges h 13 to 13, k 23 to 23, l 10 to 10 

Completeness to  = 17.50° 99.9 %  

Intensity decay 0% 

Reflections collected 18855 

Independent reflections 3526 (Rint = 0.0636) 

Reflections with F2>2 2726 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.8248 and 0.9362 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F
2
 

Weighting parameters a, b 0.0297, 13.4307 

Data / restraints / parameters 3526 / 0 / 676 

Final R indices [F2>2] R1 = 0.0368, wR2 = 0.0794 

R indices (all data) R1 = 0.0561, wR2 = 0.0903 

Goodness-of-fit on F
2
 1.046 

Largest and mean shift/su 0.034 and 0.003 

Largest diff. peak and hole 0.555 and 0.207 e Å
3

 

 
All hydrogen atoms were inserted at calculated positions 
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Table 42 - Crystal data and structure refinement for [Mn(L15)(Cl)2].MeOH 

 

Identification code  lj330 

Chemical formula  C14H21Cl2MnN3O3 

Formula weight  405.18 

Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  triclinic, P1 

Unit cell parameters a = 10.2254(12) Å      = 112.504(2)° 

 b = 12.1091(15) Å      = 103.901(2)° 

 c = 15.3886(19) Å      = 92.031(2)° 

Cell volume 1691.4(4) Å
3
 

Z 4 

Calculated density  1.591 g/cm
3
 

Absorption coefficient  1.113 mm
1

 

F(000) 836 

Crystal colour and size Orange, 0.23  0.19  0.12 mm
3
 

Reflections for cell refinement 5406 ( range 2.57 to 26.41°) 

Data collection method Bruker APEX 2 CCD diffractometer 

  rotation with narrow frames 

 range for data collection 1.84 to 26.41° 

Index ranges h 12 to 12, k 15 to 15, l 19 to 19 

Completeness to  = 26.41° 99.2 %  

Intensity decay 0% 

Reflections collected 14887 

Independent reflections 6892 (Rint = 0.0268) 

Reflections with F2>2 5361 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.7839 and 0.8780 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0598, 0.4790 

Data / restraints / parameters 6892 / 0 / 417 

Final R indices [F2>2] R1 = 0.0394, wR2 = 0.1024 

R indices (all data) R1 = 0.0545, wR2 = 0.1109 

Goodness-of-fit on F
2
 1.049 

Largest and mean shift/su 0.004 and 0.000 

Largest diff. peak and hole 0.568 and 0.486 e Å
3

 

 

All hydrogen atoms were inserted at calculated positions 
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Appendix 2  

List of Publications and Poster Presentations. 
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Publications 

 

- R. Dennett, L. James and V. Mckee, Acta Cryst, 2007, E63, 1720. Title: 

Aqua[7,11:19,23-dinitrilo-1,5,13,17-tetraazacyclotetracosa-1(24),5,7,9,12,17,20,22-

octaene]bis(perchlorate-қ
2
O,O’)barium(II)monohydrate 

 

- L.James, G.E.M. Maguire, B.S.Martincigh, V.McKee and N. Ndlovu, Acta Cryst, 

2007, E63, o153. Title: 3-Phenyl,-1,5-di-2-pyridylpentane-1,5-dione 

 

Poster Presentations 

 

December 2007 - RSC UK Macrocycles and Supramolecular Chemistry Group 

Meeting, University of Manchester Biological Activity of seven coordinate Mn(II) 

 

March 2008 - RSC Dalton Discussion group, Warwick University – Title: Biological 

Activity of seven coordinate Mn(II) 

 

April 2009 - British Crystallographic Association Spring meeting, Loughborough 

University. Title: The design and synthesis of seven-coordinate Mn(II) complexes. 

 

June 2009 - Coordination Chemistry Discussion Group Meeting. Leeds University. 

Title: Effect of geometry on SOD and Catalase activity for seven-coordinate Mn(II) 

 

Professional development courses 

 

Nov 06 - Keeping Research Up-to-Date 

Dec 06 - Teaching Skills  

Dec 06 -Supervising Practical Activities 

Jan 07 - Reading for Research 

Jan 07 - Finding Research Information  

Feb 07 - Word: Large Documents 

Feb 07 - RefWorks - Advanced Techniques 

May 07 - Report Writing 



 

 

257 

 

References 

 

1  C. Harding, D. McDowell, J. Nelson, S. Raghunathan, C. Stevenson, M. G. 

B. Drew and P. C. Yates, J. Chem. Soc. Dalton Trans., 1990, , 2521. 

2  M. G. B. Drew, A. H. B. Othman, S. G. McFall, P. D. A. McIlroy and S. M. 

Nelson, J. Chem. Soc. Dalton Trans., 1977, 1173-1180. 

3  L. F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, Press 

Syndicate of the University of Cambridge, Cambridge, 1989. 

4  E. C. Constable, Coordination Chemistry of Macrocyclic compounds, Oxford 

University Press, New York, 1999. 

5  K. B. Yatsimirskii, Theoretical and Experimental Chemistry, 1980, 16, 28. 

6  F. P. Hinz and D. W. Margerum, Inorg. Chem., 1974, 13, 2941-2949. 

7  C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry, Pearson Education 

Limited, England, 2001. 

8  D. F. Shriver and P. W. Atkins, Inorganic Chemistry. 3rd edition, Oxford 

university press, oxford, 2001. 

9  G. Ferguson, R. McCrindle and M. Parvez, Acta Cryst, 1984, C40, 354-356. 

10  V. Alexander, Chem. Rev., 1995, 95, 273-342. 

11  N. E. Borisova, M. D. Reshetova and Y. A. Ustynyuk, Chem. Rev., 2007, 

107, 46-79. 

12  Z. L. Chu, W. Huang, L. Wang and S. H. Gou, Polyhedron, 2008, 27, 1079-

1092. 

13  S. M. Nelson, Pure & Appl. Chem., 1980, 52, 2461-2476. 

14  S. R. Collinson and D. E. Fenton, Coord. Chem. Rev., 1996, 148, 19-40. 

15  P. Guerriero, S. Tarnburini and P. A. Vigato, Coord. Chem. Rev., 1995, 139, 

17-243. 

16  W. Radecka-Paryzek, V. Patroniak and J. Lisowski, Coord. Chem. Rev., 

2005, 249, 2156-2175. 

17  D. H. Cook, D. E. Fenton, M. G. B. Drew, A. Rodgers, M. McCann and S. 

M. Nelson, J. Chem. Soc. Dalton Trans., 1979, , 414-419. 

18  S. Brooker and V. McKee, J. Chem. Soc. Dalton Trans., 1990, 2397-2401. 

19  M. G. B. Drew, A. Rodgers, M. McCann and S. M. Nelson, J. Chem. Soc. 

Chem. Commun., 1978, , 415. 

20  J. W. Steed and J. L. Atwood, Supramolecular Chemistry, John Wiley and 

Sons, UK, 2009. 

21  S. Brooker and V. McKee, J. Chem. Soc. Dalton Trans., 1990, , 3183-3188. 

22  M. G. B. Drew, J. Nelson, F. Esho, V. McKee and S. M. Nelson, J. Chem. 

Soc. , Dalton Trans., 1982, , 1837-1843. 

23  S. M. Nelson, C. V. Knox, M. McCann and M. G. B. Drew, J. Chem. Soc., 

Dalton Trans., 1981, 8, 1669-1677. 

24  J. E. Metcalfe, MSc, university of Canterbury, 1993. 

25  M. G. B. Drew, J. Nelson and S. M. Nelson, J. Chem. Soc. Dalton Trans., 

1981, 1678-1684. 

26  H. Adams, N. A. Bailey, D. E. Fenton, P. D. Hempstead and G. P. Westwood, 

J. Inclus. Phenom. Mol, 1991, 11, 63-69. 

27  Z. Pan, Q. Luo, C. Duan and M. Shen, Polyhedron, 2001, 20, 2945-2950. 



 

 

258 

28  H. Adams, N. A. Bailey, P. Bertrand, S. R. Collinson, D. E. Fenton and S. J. 

Kitchen, J. Chem. Soc. , Dalton Trans., 1996, 6, 1181-1183. 

29  J. Chakraborty, B. Samanta, G. Pilet and S. Mitra, Inorg. Chem. Commun., 

2007, 10, 40-44. 

30  A. G. Blackman, Polyhedron., 2005, 24, 1-39. 

31  N. J. Lundin, G. Hamilton and A. G. Blackman, Polyhedron., 2004/1/1, 23, 

97-102. 

32  A. E. Martell, R. D. Hancock and R. J. Motekaitis, Coord. Chem. Rev., 1994, 

133, 39-65. 

33  A. E. Martell and R. D. Hancock, in Coordination Chemistry, ed. G. B. 

Kauffman, American chemical society, Washington DC, 1994, p. 240-254. 

34  H. Keypour, S. Salehzadeh and R. V. Parish, Molecules, 2002, 7, 140-144. 

35  J. Costes, A. Dupuis, G. Commenges, S. Lagrave and J. Laurent, Inorg. 

Chim. Acta., 1999, 285, 49-54. 

36  C. Gedye, C. Harding, V. McKee, J. Nelson and J. Patterson, J. Chem. Soc. 

Chem. Commun., 1992, 392. 

37  M. G. B. Drew, C. J. Harding, V. McKee, G. G. Morgan and J. Nelson, J. 

Chem. Soc.,Chem. Commun., 1995, 1035-1038. 

38  N. A. Law, M. Tyler Claude and V. L. Pecoraro, in Advances in Inorganic 

Chemistry, ed. A. G. Sykes, Academic Press, 1998, p. 305. 

39  K. Aston, N. Rath, A. Naik, U. Slomczynska, O. F. Schall and D. P. Riley, 

Inorg. Chem., 2001, 40, 1779. 

40  K. Kahlos, The expression and possible role of manganese superoxide 

dismutase in malignant pleural mesothelioma, University of Oulu, Oulu 

University Library, 1999. (web access) 

41  A. Dees, A. Zahl, R. Puchta, N. J. R. V. E. Hommes, F. W. Heinemann and I. 

Ivanovic-Burmazovic, Inorg. Chem., 2007, 46, 2459-2470. 

42  M. Devereux, M. McCann, D. O'Shea, M. O'Connor, E. Kiely, V. McKee, D. 

Naughton, A. Fisher, A. Kellett, M. Walsh, D. Egan and C. Deegan, 

Bioinorg. Chem. Appl., 2006, 1. 

43  D. W. Christianson, Prog. Biophys. Molec. Biol., 1997, 67, 217. 

44  C. Muscoli, S. Cuzzocrea, D. P. Riley, J. L. Zweier, C. Thiemermann, Z. 

Wang and D. Salvemini, Br. J. Pharmacol., 2003, 140, 460. 

45  M. Kaneko, T. Takahashi, Y. Niinuma and Y. Nomura, Biol. Pharm. Bull., 

2004, 27, 1202-1206. 

46  E. G. Tzortzaki, M. Tsoumakidou, D. Makris and N. M. Siafakas, Clin. Chim. 

Acta., 2006, 364, 124-138. 

47  F. Fucassi, J. E. Lowe, K. D. Pavey, S. Shah, R. G. A. Faragher, M. H. L. 

Green, F. Paul, D. O'Hare and P. J. Cragg, J. Inorg. Biochem., 2007, 101, 

225. 

48  E. A. Lewis, H. H. Khodr, R. C. Hider, J. R. L. Smith and P. H. Walton, J. 

Chem. Soc. , Dalton Trans., 2004, 187-188. 

49  J. C. Vites and M. M. Lynam, Coord. Chem. Rev., 1995, 138, 1-25. 

50  J. W. Whittaker, Biochem. Soc. Trans., 2003, 31, 1318-1321. 

51  Z. J. Guo and P. J. Sadler, Angew. Chem. Int. Ed. Engl., 1999, 38, 1513-1531. 

52  I. Fridovich, Annu. Rev. Biochem., 1995, 64, 97-112. 

53  M. J. Horsburgh, S. J. Wharton, M. Karavolos and S. J. Foster, Trends 

Microbiol., 2002, 10, 496-501. 

54  R. Kachadourian, I. Batinic-Haberle and I. Fridovich, Inorg. Chem., 1999, 38, 

391-396. 



 

 

259 

55  D. P. Riley, W. J. Rivers and R. H. Weiss, Anal. Biochem., 1991, 196, 344-

349. 

56  G. F. Liu, M. Filipovic, F. W. Heinemann and I. Ivanovic-Burmazovic, 

Inorg. Chem., 2007, 46, 8825-8835. 

57  S. Cuzzocrea, D. P. Riley, A. P. Caputi and D. Salvemini, Pharmacol Rev., 

2001, 53, 135-159. 

58  P. Quint, R. Reutzel, R. Mikulski, R. McKenna and D. N. Silverman, Free 

Rad. Biol. Med., 2006, 40, 453-458. 

59  I. A. Abreu and D. E. Cabelli, Biochimica et Biophysica Acta (BBA) - 

Proteins & Proteomics., 2010, 1804, 263-274. 

60  M. Pick, J. Rabani, F. Yost and I. Fridovic, J. Am. Chem. Soc., 1974, 96, 

7329. 

61  C. Bull, E. C. Niederhoffer, T. Yoshida, J. A. Fee and F. Abanda, J. Am. 

Chem. Soc., 1991, 113, 4069. 

62  B. Douglas, D. H. McDaniel and J. J. Alexander, Concepts and models of 

inorganic chemistry, John Wiley and sons, Inc, Canada, 1983. 

63  D. P. Riley and R. H. Weiss, J. Am. Chem. Soc., 1994, 116, 387-388. 

64  D. P. Riley and O. F. Schall, Adv. Inorg. Chem, 2007, 59, 233-263. 

65  M. R. Filipovic, A. C. W. Koh, S. Arbault, V. Niketic, A. Debus, U. 

Schleicher, C. Bogdan, M. Guille, F. Lemaitre, C. Amatore and I. Ivanovic-

Burmazovic, Angewandte Chemie-International Edition, 2010, 49, 4228-

4232. 

66  D. P. Riley, P. J. Lennon, W. L. Neumann and R. H. Weiss, J. Am. Chem. 

Soc., 1997, 119, 6522-6528. 

67  A. Maroz, G. F. Kelso, R. A. J. Smith, D. C. Ware and R. F. Anderson, J 

Phys Chem A., 2008, 112, 4929-4935. 

68  D. Salvemini, C. Muscoli, D. P. Riley and S. Cuzzocrea, Pulm. Pharmacol. 

Ther., 2002, 15, 439-447. 

69  R. M. Roat-Malone, Bioinorganic Chemistry - A Short Course, John Wiley 

and sons, Inc., New Jersey, 2002. 

70  M. Devereux, D. O'Shea, M. O'Connor, H. Grehan, G. Connor, M. McCann, 

G. Rosair, F. Lyng, A. Kellett, M. Walsh, D. Egan and B. Thati, Polyhedron., 

2007, 26, 4073-4084. 

71  J. M. McCord and I. Fridovic, J. Biol. Chem., 1969, 244, 6049-&. 

72  S. Goldstein and G. Czapski, Free Radic. Res. Commun., 1991, 12-3, 5-10. 

73  S. Goldstein and G. Czapski, in Free Radicals: A practical approach, ed. N. 

A. punchard and F. J. Kelly, Oxford University Press, 1996, p. 241. 

74  N. Farrell, in , ed. nonymous , RSC, Great Britain, 1999, p. 79. 

75  D. P. Riley, Chem. Rev., 1999, 99, 2573-2587. 

76  Y. Kono and I. Fridovich, J. Biol. Chem., 1983, 258, 6015-6019. 

77  V. V. Barynin, M. M. Whittaker, S. V. Antonyuk, V. S. Lamzin, P. M. 

Harrison, P. J. Artymiuk and J. W. Whittaker, Structure, 2001, 9, 725-738. 

78  J. W. De Boer, W. R. Browne, B. L. Feringa and R. Hage, C. R. Chimie, 

2007, 10, 341. 

79  A. J. Wu, J. E. Penner-Hahn and V. L. Pecoraro, Chem. Rev., 2004, 104, 903-

938. 

80  S. McCann, M. McCann, M. T. Casey, M. Jackman, M. Devereux and V. 

McKee, Inorg. Chim. Acta, 1998, 279, 24-29. 

81  X. J. Jiang, H. Liu, B. Zheng and J. Y. Zhang, Dalton Transactions, 2009, 

8714-8723. 



 

 

260 

82  V. L. Pecoraro, M. J. Baldwin and A. Gelasco, Chem. Rev., 1994, 94, 807-

826. 

83  M. Devereux, M. McCann, M. T. Casey, M. Curran, G. Ferguson, C. Cardin, 

M. Convery and V. Quillet, J. Chem. Soc., Dalton Trans., 1995, 5, 771-776. 

84  J. Kaizer, T. Csay, P. Kovari, G. Speier and L. Parkanyi, J. Mol. Catal A-

Chem, 2008, 280, 203-209. 

85  M. Devereux, M. Curran, M. McCann, M. T. Casey and V. McKee, 

Polyhedron, 1996, 15, 2029-2033. 

86  Y. G. Abashkin and S. K. Burt, Inorg. Chem., 2005, 44, 1425-1432. 

87  H. B. Dunford, Coord. Chem. Rev., 2002, 233-234, 311-318. 

88  A. E. M. Boelrijk and G. C. Dismukes, Inorg. Chem., 2000, 39, 3020-3028. 

89  M. M. Whittaker, V. V. Barynin, S. V. Antonyuk and J. Whittaker, 

Biochemistry (N. Y. ), 1999, 38, 9126-9136. 

90  Y. Naruta, M. Sasayama and T. Sasaki, Angewandte Chemie-International 

Edition in English, 1994, 33, 1839-1841. 

91  H. Adams, N. A. Bailey, D. E. Fenton, R. J. Good, R. Moody and C. O. 

Rodriguez-Barbarin, J. Chem. Soc. , Dalton Trans., 1987, , 207. 

92  R. Dennett, L. James and V. McKee, Acta Cryst, -2007, -E63, -1720. 

93  S. Brooker and V. Mckee, J. Chem. Soc. Chem. Commun., 1989, 619-620. 

94  S. Brooker, V. McKee and T. Metcalfe, Inorg. Chim. Acta., 1996, 246, 171-

179. 

95  G. B. Deacon and R. J. Phillips, Coord. Chem. Rev., 1980, 33, 227-250. 

96  X. M. Chen and T. C. W. Mak, Inorg. Chim. Acta., 1991, 189, 3-5. 

97  T. N. Sorrell, Organic chemistry second edition, University Science Books, 

California, USA, 2006. 

98  A. I. Bruker, APEX2 software for CCD diffractometers, Madison, USA, 

1998. 

99  S. Brooker, V. McKee, W. B. Shepard and L. K. Pannell, J. Chem. Soc. 

Dalton Trans., 1987, 2555-2562. 

100  S. A. Brooker, Ph.D., University of Cantebury, 1989. 

101  S. Raghunathan, C. Stevenson, J. Nelson and V. McKee, Journal of the 

Chemical Society-Chemical Communications, 1989, 5-7. 

102  S. Brooker and V. McKee, Acta Cryst., 1993, C49, 441-445. 

103  A. M. Bond, Broadening Electrochemical Horizons - Principles and 

illustration of voltammetric and related techniques, Oxford Science 

Publications, Oxford UK, 2002. 

104  A. M. Bond, E. A. Mclennan, R. S. Stojanovic and F. G. Thomas, Anal. 

Chem., 1987, 59, 2853-2860. 

105  D. F. Shriver, P. W. Atkins and C. H. Langford, Inorganic Chemistry - 

Second edition, Oxford University Press, Walton Street, Oxford, UK, 1994. 

106  K. M. Rosso and M. Dupuis, Theoretical Chemistry Accounts, 2006, 116, 

124-136. 

107  S. Durot, C. Policar, F. Cisnetti, F. Lambert, J. P. Renault, G. Pelosi, G. 

Blain, H. Korri-Youssoufi and J. P. Mahy, Eur. J. Inorg. Chem., 2005, 17, 

3513-3523. 

108  F. Cisnetti, A. S. Lefevre, R. Guillot, F. Lambert, G. Blain, E. Anxolabehere-

Mallart and C. Policar, Eur. J. Inorg. Chem., 2007, 28, 4472-4480. 

109  I. Kani, C. Darak, O. Sahin and O. Buyukgungor, Polyhedron., 2008, 27, 

1238-1247. 



 

 

261 

110  D. Salvemini, Z. Q. Wang, J. L. Zweier, A. Samouilov, H. Macarthur, T. P. 

Misko, M. G. Currie, S. Cuzzocrea, J. A. Sikorski and D. P. Riley, Science., 

1999, 286, 304-306. 

111  V. Daier, D. Moreno, C. Duhayon, J. P. Tuchagues and S. Signorella, Eur. J. 

Inorg. Chem., 2010, 6, 965. 

112  D. Klugroth, Fridovic.i and J. Rabani, J. Am. Chem. Soc., 1973, 95, 2786-

2790. 

113  I. B. Afanas'ev, Superoxide ion: Chemistry and biological implications, CRC 

press, USA, 1989. 

114  R. H. Liu, S. Y. Fu, H. Y. Zhan and L. A. Lucia, Ind Eng Chem Res., 2009, 

48, 9331-9334. 

115  L. Dubois, J. Pecaut, M. F. Charlot, C. Baffert, M. N. Collomb, A. Deronzier 

and J. M. Latour, Chem-Eur. J., 2008, 14, 3013-3025. 

116  R. H. Garrett and C. M. Grisham, Biochemistry, Mary Finch, USA, 2010. 

117  M. Shank, V. Barynin and G. C. Dismukes, Biochemistry (N. Y. ), 1994, 33, 

15433-15436. 

118  J. Ricard and A. Cornishbowden, Eur. J.Biochem., 1987, 166, 255-272. 

119  C. Ciaccio, A. Coletta, G. De Saneti, S. Marini and M. Coletta, IUBMB Life, 

2008, 60, 112-123. 

120  S. A. Kuby, A study of enzymes, CRC press, Florida, 1991. 

121  M. Matés, Toxicology, 2000, 153, 83-104  

122  C. J. Weydert, T. A. Waugh, J. M. Ritchie, K. S. Iyer, J. L. Smith, L. Li, D. 

R. Spitz and L. W. Oberley, Free Radic. Biol. Med., 2006, 41, 226-237. 

123  C. J. Darby Weydert, B. B. Smith, L. Xu, K. C. Kregel, J. M. Ritchie, C. S. 

Davis and L. W. Oberley, Free Radic. Biol. Med., 2003, 34, 316-29. 

124  E. W. N. Lam, R. Zwacka, J. F. Engelhardt, B. L. Davidson, F. E. Domann, 

T. Yan and L. W. Oberley, Cancer Res., 1997, 57, 5550-5556. 

125  A. I. Bruker, SHELXTL user manual, Madison, USA, 2001. 

126  D. A. Fletcher, R. F. McMeeking and D. Parkin, Chem. Inf. Comput. Sci., 

1996, 36, 746. 

127  J. McCrea, V. McKee, T. Metcalfe, S. S. Tandon and J. Wikaira, Inorg. 

Chim. Acta., 2000, 297, 220-230. 

128  J. Nelson, B. P. Murphy, M. G. B. Drew, P. C. Yates and S. M. Nelson, J. 

Chem. Soc. Dalton Trans., 1988, 4, 1001-1010. 

129  P. Sluis and A. L. Spek, Acta Cryst., 1990, A46, 194. 

 


