
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



DEEP: A Provenance-Aware Executable
Document System

Huanjia Yang1, Danius T. Michaelides1, Chris Charlton2, William J. Browne3,
and Luc Moreau1

1 Electronics and Computer Science, University of Southampton, UK
{hy2,dtm,L.Moreau}@ecs.soton.ac.uk

2 Graduate School of Education, University of Bristol, UK
c.charlton@bristol.ac.uk

3 School of Veterinary Science, University of Bristol, UK
william.browne@bristol.ac.uk

Abstract. The concept of executable documents is attracting growing
interest from both academics and publishers since it is a promising tech-
nology for the the dissemination of scientific results. Provenance is a
kind of metadata that provides a rich description of the derivation his-
tory of data products starting from their original sources. It has been
used in many different e-Science domains and has shown great poten-
tial in enabling reproducibility of scientific results. However, while both
executable documents and provenance are aimed at enhancing the dis-
semination of scientific results, little has been done to explore the inte-
gration of both techniques. In this paper, we introduce the design and
development of Deep, an executable document environment that gener-
ates scientific results dynamically and interactively, and also records the
provenance for these results in the document. In this system, provenance
is exposed to users via an interface that provides them with an alterna-
tive way of navigating the executable document. In addition, we make
use of the provenance to offer a document rollback facility to users and
help to manage the system’s dynamic resources.

1 Introduction

e-Science aims to make available complex computation and analysis to users
via tools that are easy to use and understand. In the context of quantitative
social science, we observe that cutting edge methodological developments are
beyond the reach of some social scientists that might benefit from new and com-
plex analysis tools. The e-Stat project brings together statisticians, social and
computer scientists in a collaboration funded by the UK’s Economic and So-
cial Research Council to build an environment for social scientists that provides
learning pathways to bring these cutting edge developments into their working
practices.

We also observe that traditional paper-based documents come short of meet-
ing the goals of disseminating complex scientific research and that executable



documents may provide a possible solution. In the e-Stat project, we have devel-
oped Deep(Documents with Embedded Execution and Provenance), a system
that combines document presentation with a computational back-end, thereby
combining the narrative and expository advantages of conventional documents
with the interactive and experimental advantages of computational methods,
allowing researchers to share research findings and techniques and also docu-
ment their research process. Our document reading interface allows users to
explore beyond the document content and examine the dynamically generated
content in detail. This facility allows readers to get a deep understanding of the
computation that a Deep document encapsulates, providing a valuable learn-
ing pathway. Deep is part of the statistical modelling package called Stat-JR[1]
developed during the course of the e-Stat project.

It is vital for Deep to keep track of the computational processes that occur
and the dynamic content that they generate. This information is essential to un-
derstand artifacts created in context and is required in order that results can be
validated, reproduced and reused. This matches the principle of data provenance
models, which represent the information that can help determine the nature and
derivation history of a data product[2]. In Deep, we integrate provenance gen-
eration based on a specialization of the PROV Data Model (PROV-DM)[3]. The
contributions of this work are threefold: firstly, we have designed a provenance
data model to describe the internal behaviour and the resource organization of
our executable document system; secondly, the information expressed according
to this data model is used to provide users with novel resource and document nav-
igation experience; thirdly, provenance information is also used to drive certain
system functions, such as performing execution status checking and document
rollback.

The remainder of this paper is organized as follows: we survey some related
work in Section 2 before extracting the requirements and presenting some basic
system design principles for the e-Stat executable document system in Section
3. We discuss our integration of provenance in the internal data model of Deep
in Section 4. In Section 5, we introduce the system functions that allow render-
ing and navigation of provenance information. The provenance-driven system
functions are presented in Section 6. Finally we conclude our work in Section 7
before discussing our future work.

2 Related work

Academic papers have always been the primary approach by which research re-
sults are disseminated within the science community. Their shortcomings, how-
ever, are also well recognized as not being able to provide sufficient support for
verification, reproducibility and reuse of the research results that they describe.
With the rapid developments of e-Science, the possibility of making interac-
tive digital publications with more comprehensive information embedded within
them has attracted interest from both academics and science publishers [4]. Bech-
hofer et al. [5] proposed the notion of Research Object (RO), which is defined



as an aggregation of essential resources and information relating to experiments
and investigations that helps other people to reproduce and reuse research re-
sults. One of the key motivations of such RO notion is its potential in supporting
“rich publication”. Researchers and publishers who are interested in such notion
gathered together in the Beyond the PDF [6] workshop, in which a variety of
models, publishing tools, and impact metrics were introduced. However, most
of them focus on the annotation, linked data and bundling models for static
resources, with no concrete design or development for executable document. In
their work on verifiable computational scientific research, Gavish and Donoho[7]
introduce the notion of identifying computational results via a URL and also
establishing public repository services to archive all published results. The au-
thors argue that proper usage of this notion and service structure will simplify
the practice of reproducible research and executable papers, but no solution is
explicitly given to develop this claim further. The Author-Review-Execute En-
vironment[8] has a similar notion of linked results, but it locates the results
archive on authors’ own machines. This requires that each author maintains a
server and installs the service to expose the data and the execution resources,
which raises issues of security and adoption. The SHARE environment[9] shows
more progress by providing the execution services directly on its server. How-
ever, it still has not achieved an integrated interface for both the paper reading
and the executions. Instead, for accessing the original data and executions, users
have to use a separate view that just leads to a remote virtual machine with the
required execution environment. The Collage system[10] joins the static content
in the documents with interactive/dynamic components that enable the readers
and reviewers to access original data contained within to validate the results
by re-executing the software that generated them, and to get the document dy-
namically updated with the latest results. Compared to other existing systems,
Collage provides a unified, dynamic and interactive document reading interface
for an improved reading experience. However, it lacks the flexibility of supporting
multiple executions in one document and the ability of navigating the resource
structure.

Provenance is well understood in the context of art or digital libraries, where
it refers to the documented history of an art work or a digital object respec-
tively[11]. Provenance has also shown great potential in the e-Science domain,
as it provides a data product’s derivation history, which is crucial information for
validating and reproducing the results[2]. It allows users to understand, verify
and even reuse the data, and thus helps achieve a better level of research repro-
ducibility. For the past decade, much work has been done to advocate provenance
in workflow applications in various scientific domains[12], where provenance has
shown some of its promising features in leveraging effective dissemination of re-
search results. However, little has been done to integrate provenance into the
field of executable documents. The authors in [13] propose a provenance based
infrastructure to support the executable document’s life cycle, while in [14] the
authors attempt to create paper publications with provenance embedded in them
to describe appropriate data and results. However, in both these papers, the pro-



posed designs depend strongly on a specific workflow system for executions and
content reading.

Some systems hide the complexities of running workflows from the user by
providing easy to use front-ends configured for the the application in mind.
VisMashup [15] allows the creation of custom visualization applications using
VisTrails as the underlying dataflow system. Web applications are a popular
delivery platform such as in the Digital Synthesis Framework[16].

3 Deep requirements and design

The requirements for Deep documents and the Deep system, based on the
project scenarios are as follows:

Interactive: Deep documents should provide a compelling, interactive and
immersive environment. They should be reactive to user input and authors must
be able to write content that can be tailored to the reader’s inputs.

Interface with significant computation: Deep should integrate with exe-
cution back-ends to perform non-trivial computation. Such integration should
be seamless and maintain the document metaphor.

Exploratory: Deep and documents written for the system should allow the
reader to explore the material assembled within the document and should sup-
port them in understanding the relationships between elements of the document.

Complete access: the user should be able to view all static and dynamic
resources used and generated the Deep document and not just those those the
author chose to show in the main body of the document. Such material would
help improve the user’s understanding, and provide a valuable resource as their
capability improves.

Dynamic to static: Deep documents have a variety of uses and we identify a
spectrum of content from dynamic to static. A fully dynamic document would
consist of only dynamic or computational resources - such as an electronic note-
book. A static document, on the other hand, requires no computational backend
as all possible dynamic resources would be contained in the Deep document.
An academic paper would be an example of such a static document. Provenance
included in the document describes the relationships between any contained
dynamic resources and the author would decide what dynamic resources are
included.

3.1 Deep System Design and Overview

The major components of Deep are shown in Figure 1. A Web Browser(1) acts
as the front-end providing a familiar interface to users with a strong linking



and navigation metaphor. HTML is the chosen format for the visual content in
Deep, since we did not want to have to invent a new document and rendering
language. In addition, by using a widely known and used format, authors should
find it easier to write content (because there is a wealth of material available
about writing HTML and they can use a wide range of HTML editing tools).

A significant design decision in the system is the relationship between the
visual content and the execution environment. We consider a Deep document
to consist of a collection of resources of different types and uses (for example
static HTML content, a dataset to be used in some computation, a graph that
was created by an execution). This resource-centric approach informs the design
of the interface between Deep and the execution engine. The action of the
user reading a Deep document establishes relevant resources which are made
available to the execution engine, which, in turn, may create new resources. An
“execution environment” provides the container to which resources are made
available in the system. Resources have their own unique identifiers but are
also “bound” into the environment with simple names (“binding names”). The
unique identifiers are used by the system whereas binding names are used by
the authors to anchor dynamic resources into their document as the resources
become available.

The Deep Server component (4 in Figure 1) maintains the execution en-
vironments and generates notifications when resources are created, removed or
bound into the execution environments. These notifications trigger activities in
the browser front-end for rendering and user interaction, and in the execution en-
gines(9) via the engine API(3) . The Deep Server uses the Resource Management
component(5) for storage of Deep document files(8), provenance generation(6)
and an RDF store(7) for metadata storage and querying. An HTTP server(2) ex-
poses the Deep Server to the Web Browser and the front-end written in HTML
and Javascript.

Fig. 1. Deep system structure

Figure 2 shows the browser based reading interface showing an example Deep
document from the e-Stat project. The interface consists of navigational ele-



Fig. 2. Screenshot of the reader interface displaying a Deep document



ments: the menubar at the top, the page number lists top and bottom and the
contents list top to the left. The main body of the document shows a number
of paragraphs of static content with dynamic content (in boxes with curved cor-
ners) placed at certain points between them. The first piece of dynamic content
consists of an input widget in which the user can select the explanatory vari-
ables for the statistical model. The remaining items of dynamic content (some
mathematical notation and a table) have been generated as a result of the user
input. At any time, the user is free to return to the input widget and make a
different selection, and so triggering a new computation, the generation of new
resources and causing the document to update.

There are a range of visual behaviours available to enable the document to
react to the presence of dynamic resources. In this example, when the user first
begins reading, the content below the input box is hidden and is only revealed af-
ter the computation and the dynamic resources are generated. Other behaviours
include hiding content, behaviours that are conditional on expressions and ex-
tracting specific fragments from resources.

Since the Deep reading front-end is a browser, all dynamic resources must
have HTML renderings but they may have other representations such as XML
and CSV to enable exporting of resources and also to facilitate more complex
interface widgets. Alternative rendering front-ends could be implemented by sup-
porting appropriate representations of these dynamic resources and translating
of the static content.

3.2 Deep document structure and Reading

Deep documents are structured in two manners: content is grouped into pages
for presentation; and pages are grouped into “activity regions” for execution
purposes. Activity regions have resources associated with them and these re-
sources are only active when the reader is reading a page in that region. This
structure allows authors to have a degree of control over when execution occurs
and also means that Deep documents can have many executions without the
system having to instantiate all resources at once.

When a user reads a Deep document, the system creates a number of struc-
tures to maintain state. A “reading process” is a top level container that de-
scribes the action of reading a document. Within a reading process, the action
of reading an activity region is described by an “activity”. An activity can con-
tain one or more “executions”. Executions are typically triggered by user input.
Multiple inputs by the user result in multiple executions. The representation of
these structures and the mapping to common provenance terms is discussed in
the following section.



4 Provenance data model for an executable document
system

On the basis of the requirements and the Deep document file structure discussed
in the previous section, we present a provenance data model to describe the
system’s behaviour and resource organization.

Our model is based on PROV [3], a standardization of a number of prove-
nance vocabularies[17]. As shown in Figure 3, the internal provenance data model
consists of two components: the definition component and the runtime compo-
nent. The definition component consists of information defined by the author
in the Deep document file, which is loaded and stored in Deep’s RDF store
when the file is imported. The information is the Deep document’s descriptive
metadata, which provides the basic information for the document as well as the
organization structure of the static content and resources contained within it.
More specifically, it describes the activity regions contained in the document and
the resources associated with each of them. All the resource files contained in
the Deep document, as well as the file itself and the activity regions contained,
are considered as PROV entities, and are represented as ellipses in Figure 3. One
thing to note is that an activity region is linked to each of its resources via a re-
source binding, which is a ternary relation that also specifies a “binding name”.
This allows an actual resource to be bound with multiple activity regions, but
with different names in each of them to avoid confusion. It also provides a sim-
ple way for Deep document authors to notate the resources and to place the
dynamic content in the document’s HTML content.

Fig. 3. Structure of data defined in Deep document files and provenance recorded
during reading



The runtime component contains the provenance information recorded au-
tomatically during Deep document reading. For this information, three activ-
ity types are defined in an ebook namespace: ReadingProcess, Activity and
EbookExecution. They are subtypes of prov:Activity and represent the read-
ing of an Deep document, the notion of being in an activity region and a specific
execution respectively. The relations isReadingOf and isActivityOf associate
them with appropriate static structures. The PROV wasStartedByActivity re-
lation expresses that the ReadingProcess initiates an Activity when the reader
enters an activity region and also that an Activity initiates an EbookExecution
as a result of the execution engine having appropriate resources. All types of re-
source consumed by the EbookExecution processes are subtype of prov:Entity,
including ebook:Resource, which is the resource file already defined in the
definition component, and ebook:Input, which is the collection of parame-
ters given by the user during reading. They are all linked to the corresponding
EbookExecution processes with the PROV Usage relation. The ternary relation
is used so that the “binding name” that the resource used in the execution can be
specified. The results generated by EbookExecution are of type ebook:Output,
a subtype of prov:Entity, and are linked to the corresponding EbookExecution
processes with the PROV relation wasGeneratedBy.

Using this model, the system can construct a provenance graph for each
reading process created by the user. It is a directed graph that grows as the
user’s reading activity proceeds. As we use a semantic web backend with an
RDF store to persist and query data, such provenance graph is recorded with
terms from the PROV ontology [18].

Fig. 4. Deep document reading activities and the construction of provenance graph

The construction of the provenance graph with respect to the general system
activities involved in reading a Deep document is shown in Figure 4. The asser-



tions of the provenance record are caused by a few key events during reading.
Those events include starting a new reading process, entering an activity re-
gion, triggering an execution and the generation of an execution result. The first
three events are user-triggered events, which cause assertion of prov:Activity
records with corresponding subtypes and prov:wasStartedByActivity records
where appropriate. In the case of triggering an execution, the EbookExecution
instances are also linked to each static resource it consumed with a used relation.

The last event, however, is triggered internally when a result is obtained
from the execution engine. The system creates an ebook:Output instance for
the result with a corresponding subtype depending on its nature. For example,
an execution may consume statistical template, dataset and input files to gen-
erate results in the form of figures, tables, code and LaTeX based equations
etc. They are represented in the provenance graph with a URI and an attribute
that points to their file location. Moreover, they are directly connected to the
instance of the ebook:EbookExecution process that generated them by the re-
lation prov:wasGeneratedBy.

With the provenance data model and its implementation, the system is able
to perform automated recording of the provenance graph that describes the
complete system activity and dynamic resource organization within an Deep
document. In the following two sections, we show that by properly presenting or
extracting the required information from the provenance recorded, the system
can enable additional functionality and provide the users with a better reading
experience.

5 Presenting and navigating provenance information -
exposing provenance to support users

Provenance information recorded in existing provenance-aware systems is usually
linked to the corresponding resource, so that it can be used by itself or other
applications. Whilst this information is traditionally consumed by machines,
we also consider it useful in certain circumstances to expose the provenance to
human users.

In Deep, dynamic resources are generated at many stages in the user’s read-
ing process. Although an author may write about these dynamic resources in the
body of an document, the user may still need additional information regarding
these resources and the executions that generated them for the following reasons:

– A reader may want to see an overview of the dynamic resources and the
resources used to generate them, either because the document does not go
into enough detail or because a clearer view will help in understanding the
relationships between the various resources;

– The Deep document allows the reader to try out different inputs for the
same execution. As they do so, corresponding dynamic resources embedded
in the Deep document content are updated with the new results. However,
the reader may want to access old results in order to make comparisons;



– Executions triggered by the reading process may generate more outputs than
those that the Deep document author has chosen to show directly in the
document. The reader might be interested in these additional resources.

In order to expose this additional information, we have introduced the “re-
source view” into the reading interface. It is accessible from the menu bar at
the top of the reading interface or by clicking on the “About” link next to each
dynamic resource embedded in the document content. The resource view, shown
in Figure 5, consists of a resource tree view and an information panel, which
contains four tabs displaying the content, information, provenance and export
links of a selected resource.

Fig. 5. The resource tree (left) and the provenance tab (right)

The resource tree shows the resources used in the current reading process
in two categories: ‘Static’ and ‘Runs’. The ‘static’ resources are included in the
Deep document to support the executions. In the context of the statistical appli-
cation these may include statistical model templates (which construct statistical
models), datasets and pre-defined input sets. The ‘Runs’ category lists execu-
tions that have been carried out in the current activity region of the document.
Each of the executions can be further extended to show a sub-tree of all the
resources used and generated allowing the user to gain a deeper understanding
of the dynamic nature of the document. These executions could be those trig-
gered by the author and subsequently included in the Deep document or they
could be executions instigated by the reader. The distinction between the two
is not clear in the resource tree interface (except via the time labels) and needs
improving.

In the information panel, the Content tab displays the actual content of the
resource, whilst the Information tab shows additional metadata associated with
it. The Provenance tab shows the provenance of a resource including its rela-
tionship with the reading process, executions and other resources. The Export



tab allows the user to extract resources from the Deep document in appropriate
formats. The resource view is designed to let the user navigate around the re-
sources in the usual hypertext manner by clicking on links in both the resource
tree and the information and provenance tabs.

The resource view is fully driven by the provenance graph of the current
reading process. This graph is obtained from a provenance service in the backend
server by making an HTTP GET request on the provenance URL of a reading
process. When a provenance request is received, the provenance service traverses
the named-graph for the reading process, and builds the provenance graph using
Provpy, a Python-based binding for PROV-DM [3] that we have developed.
The library serializes the provenance graph into PROV-JSON[19]. On the client
side, we have developed a simple JavaScript library “provjs” to parse and query
PROV-JSON graphs and the web application uses it to build the resource tree
and the information and provenance tabs.

6 Provenance-aware interactive reading - using
provenance to drive system functionality

Many existing provenance-aware systems focus on the ability of automatically
recording and sharing of provenance information (provenance is often just recorded,
and made available as raw data). In Deep, we take this a step further by not
only exposing provenance information, but also by using it to drive some sys-
tem functionality: the Deep document execution status checking and document
rollback.

6.1 Deep document execution status checking

The document execution status checking is used by Deep to determine whether
a specific computation needs to be performed. By avoiding unnecessary com-
putation, and instead drawing on previously calculated results, Deep is more
responsive to user interaction. The presence of these reusable results arises from
two situations. Firstly, they may be stored in the Deep document file because the
author determined that they were important (for example in a static document
where all the possible dynamic resources have be pre-calculated). Secondly, as a
user reads and interacts with a Deep document dynamic resources are created.
If the user returns to a configuration of inputs that has been explored before,
the dynamic resources generated previously can be reused.

Given the resource-centric design of Deep and execution environment, the
query to determine whether a previous execution can be reused is simply stated
as: given the current set of inputs, is there an existing execution that has exactly
the same set of inputs with exactly the same mapping to bound names. Figure
6 shows the SPARQL query that we generate to determine suitable executions
where we have an prov:Used for each input and the variables cur act region
and input1 to inputN are passed in as parameters to the query. This query
is executed on the named-graph for the current reading process and if there is



a matching execution, the system finds all the outputs for that execution and
reinstates those resources. Essentially, the combination of resource storage and
our provenance information allow us to perform a form of memorization where
the focus is on the needs of the document and is agnostic to the execution engine.
This caching, however, is similar to caching that occurs in some workflow systems
such as the VisTrails Cache Manager[20] in the VisTrails system. Execution
status checking is not a frequently triggered activity, so, although performance
of the SPARQL queries has not been observed to be critical, the technique of
finding existing executions by querying using a signature of inputs could be
applied here should the provenance graphs become large (i.e. large numbers of
executions or executions with large numbers of inputs).

SELECT ?exec WHERE { ?exec rdf:type ebook:EbookExecution.

?exec prov:wasStartedByActivity ?activity.

?activity ebook:isActivityOf ?cur_act_region.

?exec prov:used ?input1.

?exec prov:used ?input2.

...

?exec prov:used ?inputN. }

Fig. 6. The SPARQL query used to check for an existing execution

6.2 Deep document rollback

The other system function driven by provenance is document rollback. During
the reading of a Deep document, the user can return to parameter input areas
in the document and give different responses. This will trigger new executions
and cause the document content to update with different results. Although the
resource view allows the inspection of individual results from any execution,
the user may prefer to see them in the context of the Deep document content
and therefore wish to revisit a previous execution by returning the state of the
document to that point in time. This is performed purely from the point of
view of the document and document reading infrastructure and is not reliant on
support from the execution engine.

We expose this document rollback facility by allowing the user to click on ex-
ecutions in the resource tree shown in Figure 5. In response, Deep must reinstate
all resources that were generated by the relevant execution. These resources are
found by querying the provenance record with a SPARQL query and rebinding
them into the execution environment.

These two facilities of Deep rely on the recording of provenance and the use
of RDF and SPARQL to represent and query it.



7 Conclusion and Future work

Executable documents have become a promising e-Science technology that aims
to increase comprehension and reproducibility in the dissemination of scientific
results. Data provenance has also shown its potential to enable reproducibility of
research results by providing a uniform description of their derivation history. In
an attempt to bring together these two technologies, Deep integrates provenance
in an executable document system. This paper reported three main contributions
in terms of provenance study. Firstly, we have integrated provenance with the
system’s internal data structure by using a specialization of the PROV data
model to describe the behaviour and resource organization of the system. By
recording this provenance for all the dynamic results generated during reading,
Deep is able to provide their full derivation history. Secondly, in terms of the
usage of provenance, we have shown that, in our interface, provenance can be
exposed to and navigated by Deep users. This provides the users with a different
level of understanding of the resource structure, as well as new ways to navigate
the document. Thirdly, we have designed two of Deep’s features, the execution
status checking and the document rollback, to be based fully on provenance.
This demonstrates that data provenance is not just information to be shown to
the reader, but can also be used to drive the system functionality.

Deep provides a framework that could be applicable to a broad range of
scientific domains. With the integration of provenance in our Deep documents,
we can tackle issues of verification and reproducibility and our future work will
aim to improve Deep’s infrastructure and functionality to support this. Such
work could be twofold: firstly, we aim to make provenance exportable and trans-
ferable within the Deep document files. This means that a user could generate
their results in the form of an document and disseminate it to other readers. The
provenance carried with the document will help the reader to understand, ex-
amine and even reproduce results for the purposes of validating or reusing them.
Secondly, our use of a unified representation of provenance, means that we could
integrate with other provenance-aware software and provide the user with more
detailed provenance, allowing reproducibility and validation at various levels. In
terms of modelling and implementation, both of those two points may lead to
the notion of provenance accounts being introduced into our system. This would
allow us to bundle provenance generated by different users so that Deep docu-
ments can be distributed multiple times to support collaborative work, and, to
bundle provenance from different components, including third party software,
for better information granularity.

Acknowledgments

This researched was conducted as part of the E-Stat project, funded by the ESRC
(RES-149-25-1084) under the Digital Social Research programme. We wish to
thank Richard Parker and our other colleagues at the Centre for Multilevel
Modelling for their input into the design of our system.



References

1. The eStat Project: Stat-JR. http://www.bristol.ac.uk/cmm/research/estat/
2. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.

SIGMOD Rec. 34(3) (September 2005) 31–36
3. Moreau, L., Missier, P.: The PROV Data Model and Abstract Syntax Notation.

http://www.w3.org/TR/prov-dm/ Retrieved 28th March 2012.
4. de Waard, A.: The Future of the Journal? Integrating research data with scientific

discourse. Nature Precedings (713)
5. Bechhofer, S., Buchan, I., Roure, D.D., Missier, P., Ainsworth, J., Bhagat, J.,

Couch, P., Cruickshank, D., Delderfield, M., Dunlop, I., Gamble, M., Michaelides,
D., Owen, S., Newman, D., Sufi, S., Goble, C.: Why linked data is not enough for
scientists. Future Generation Computer Systems (2011)

6. Bourne, P., de Waard, A.: Beyond the PDF Workshop.
http://sites.google.com/site/beyondthepdf (2011)

7. Gavish, M., Donoho, D.: A Universal Identifier for Computational Results. Pro-
cedia Computer Science 4 (January 2011) 637–647

8. Müller, W., Rojas, I., Eberhart, A., Haase, P., Schmidt, M.: A-R-E: The Author-
Review-Execute Environment. Procedia Computer Science 4(0) (2011) 627–636

9. Gorp, P.V., Mazanek, S.: SHARE: a web portal for creating and sharing executable
research papers. Procedia Computer Science 4(0) (2011) 589–597

10. Nowakowski, P., Ciepiela, E., Hareżlak, D., Kocot, J., Kasztelnik, M., Bartyński,
T., Meizner, J., Dyk, G., Malawski, M.: The Collage Authoring Environment.
Procedia Computer Science 4 (January 2011) 608–617

11. PREMIS Working Group: Data dictionary for preservation metadata. Technical
report (2005)

12. Moreau, L.: The Foundations for Provenance on the Web. Found. Trends Web Sci.
2(2–3) (February 2010) 99–241

13. Koop, D., Santos, E., Mates, P., Vo, H.T., Bonnet, P., Bauer, B., Surer, B., Troyer,
M., Williams, D.N., Tohline, J.E., Freire, J., Silva, C.T.: A Provenance-Based
Infrastructure to Support the Life Cycle of Executable Papers. Procedia Computer
Science 4(0) (2011) 648–657

14. Bauer, B., Gukelberger, J., Surer, B., Troyer, M.: Publishing provenance-rich sci-
entific papers. Procs TAPP11 Theory and Practice of Provenance (2011)

15. Santos, E., Lins, L.D., Ahrens, J.P., Freire, J., Silva, C.T.: VisMashup: Streamlin-
ing the Creation of Custom Visualization Applications. IEEE Trans. Vis. Comput.
Graph. 15(6) (2009) 1539–1546

16. Myers, J., Marini, L., Kooper, R., McLaren, T., McGrath, R.E., Futrelle, J., Bajcsy,
P., Collier, A., Liu, Y., Hampton, S.: A Digital Synthesis Framework for Virtual
Observatories, Edinburgh, UK (2008)

17. Sahoo, S., Groth, P., Hartig, O., Miles, S., Coppens, S., Myers, J., Gil, Y., Moreau,
L., Zhao, J., Panzer, M., Garijo, D.: Provenance Vocabulary Mappings. Technical
report, W3C Provenance Incubator Group (August 2010)

18. Sahoo, S., McGuinness, D.: The PROV Ontology: Model and Formal Semantics.
http://www.w3.org/TR/prov-o/

19. Huynh, T., Jewell, M., Keshavarz, A., Michaelides, D., Moreau, L., Yang, H.: The
PROV-JSON Serialization. http://users.ecs.soton.ac.uk/tdh/json/

20. Bavoil, L., Callahan, S., Crossno, P., Freire, J., Scheidegger, C., Silva, C., Vo, H.:
Vistrails: enabling interactive multiple-view visualizations. In: Visualization, 2005.
VIS 05. IEEE. (oct. 2005) 135 – 142


