
April 1, 2018 9:10 WSPC/INSTRUCTION FILE Duplication-reduction

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

On the Prefix–Suffix Duplication Reduction∗
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Loughborough University, Department of Computer Science, UK
R.G.Mercas@Lboro.ac.uk

Daniel Reidenbach§

Loughborough University, Department of Computer Science, UK
D.Reidenbach@Lboro.ac.uk

Received (Day Month Year)

Accepted (Day Month Year)
Communicated by (xxxxxxxxxx)

This work answers some questions proposed by Bottoni, Labella, and Mitrana (Theoret-

ical Computer Science 682, 2017) regarding the prefix–suffix reduction on words. The

operation is defined as a reduction by one half of every square that is present as either a
prefix or a suffix of a word, leading thus to a finite set of words associated to the starting

one. The iterated case considers consecutive applications of the operations, on all the

resulting words. We show that the classes of linear and context-free language are closed
under iterated bounded prefix–suffix square reduction, and that for a given word we can

determine in O(n2 logn) time all of its primitive prefix–suffix square roots.

1. Introduction

Repetitions constitute one of the building blocks of combinatorics on words and

stringology. They are represented as consecutive occurrences of the same factor,

and their presence is widely recognised in different aspects of life, ranging from

biology to mathematics, music to engineering. Furthermore, their study is also the

stepping stone in the area of combinatorics on words, being firstly investigated by

Thue at the beginning of the previous century [17, 18].
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The duplication, or copy, operation on words and languages was introduced and

investigated independently in a series of papers [9, 2, 5, 14, 19]. The operation con-

siders duplicating any of the factors of a word, and is easily extendable to languages,

by considering all words in the given language. To this end, closure properties were

studied for languages equipped with such an operation in the case of one appli-

cation of the operation, the iterative case, and in certain bounded settings (see

also [13, 11]).

An operation complementary to the above, namely duplication reduction was

also introduced and studied already more than ten years ago [12].

Recently, in [10], the authors introduced a new similar operation that extends

words to the left and to the right by doubling either a prefix or a suffix of them. As

one can easily see, this operation is a restriction of the above, where the operation

is allowed only at the ends of words. The bounded case of this operation constitutes

a topic of investigation of [6]. A similar operation is that defined in [7] where the

authors investigate the algorithmical and combinatorial aspects of the prefix–suffix

duplication operation, when a part of the extended second half already exists (that

is xyxw is extended to yxyxw, while wxyx is extended to wxyxy).

Following the previous pattern, an investigation of the operation dual to the

prefix–suffix duplication is initiated in [1]. The investigation in [1] is strongly related

to the algorithmical investigation presented in [8], where the authors consider all

square-free factors of a word. Our present work has in mind this latter operation of

prefix–suffix square reduction and tries to answer some of the questions that were

proposed in [1].

Our work is structured as follows. After some preliminary notation and defi-

nitions presented in the following section, Section 3 looks at the closure of linear

and context-free languages under the bounded iterated reduction of prefixes and

suffixes of words. Section 4 provides a O(n2 log n) time algorithm that identifies all

primitive prefix-suffix square roots (irreducible factors under this operation) of a

given word. We end with a concluding section where we propose a new conjecture

regarding the prefix–suffix reduction roots.

2. Preliminaries

We assume the reader to be familiar with general aspects of formal languages and

complexity theory (for more details see, e.g., [15, 16]). Next we present some of the

most important notion that we will use throughout this work. An alphabet is a finite

and nonempty set of symbols. The cardinality of a set V is denoted by |V |. A word

w over an alphabet V represents any finite sequence of symbols from V . The empty

word associated to any alphabet V is denoted by ε. The set of all finite words over

V is denoted by V ∗, while by V + we denote the set of all non-empty finite words.

For a positive integer `, we define by V ≤` the set of all words of length at most `,

and by V ` the set of all words of length precisely `. A language L is a set of words

over V , i.e., L ⊆ V ∗.
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For a word w we denote by |w| its length, that is the number of all (not

necessarily distinct) symbols in w. By alph(w) we denote the set of symbols

from w, i.e., the minimal alphabet necessary in order to obtain w. By extension,

alph(L) =
⋃
x∈L

alph(x). The concatenation between two words w and v is denoted

by wv and represents the extension of the word w by the word v. For all words

w, x, v, y, with w = xvy, we call v a factor of w. Whenever x is empty v is a prefix

(v≤pref w) of w, and when y is empty v is a suffix (y≤suff w) of w. For any integers

i, j with 0 < i ≤ j ≤ |w|, by w[i..j] we denote the factor of w starting at position

i and ending at position j. As a convention, whenever i > j, w[i..j] = ε, and, for

i = j, w[i..j] = w[i] is a letter. A word w is called a repetition if there exist a word

v and an integer i such that w = vi, that is w is represented by i concatenations of

v. If w = vi is true only for i = 1, then w is called primitive.

For a word w over an alphabet V , in [1], the following operations are defined:

• prefix square reduction: @|(w) = {uv | w = uuv, for u ∈ V + and v ∈ V ∗}
• suffix square reduction: |A(w) = {vu | w = vuu, for u ∈ V + and v ∈ V ∗}
• prefix–suffix square reduction: @|A(w) = @|(w) ∪ |A(w)

We can easily extend the above operation to languages @|A(L) =
⋃
w∈L
@|A(w), as

well as define an iterated version of it:

@|A0
(w) = {w},

@|Ak+1
(w) = @|A(@|Ak(w)), for any k ≥ 0

@|A∗(w) =
⋃
k≥0

@|Ak(w).

Furthermore, for a fixed positive integer p, one can define the bounded versions

of the operation:

• p-prefix square reduction: p@|(w) = {uv | w=uuv, for u ∈ V ≤p and v ∈ V ∗}
• p-suffix square reduction: |Ap(w) = {vu | w=vuu, for u ∈ V ≤p and v ∈ V ∗}
• p-prefix–suffix square reduction: @|Ap(w) = p@|(w) ∪ |Ap(w)

These operations are naturally extended to languages similarly to the unbounded

case. Furthermore, the iterated version of the bounded prefix–suffix square reduction

is defined similarly to the unbounded case. As in the case of the unbounded square

reductions defined above, each form of bounded square reduction is actually the

inverse of the corresponding form of bounded duplication introduced in [6].

To this end, for a word w, we denote by @|
√
w = {u | u ∈ @|∗(w) and @|(u) = ∅}

the primitive prefix square roots for the word w. In other words, this represents

all words that are obtained from w by consecutive prefix reductions, such that

they themselves are irreducible, i.e., they cannot be further reduced. Moreover, we

denote by |A
√
w and @|A

√
w the corresponding primitive suffix square roots and the

primitive prefix–suffix square roots of w, respectively. The same notion, can easily
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be extended to languages, @|A
√
L =

⋃
w∈L

@|A
√
w (or should be necessary to the bounded

cases, but these do not make the object of this investigation).

3. Roots and bounded iteration

One of the first questions proposed by the authors in [1] regards the regularity of

the set of primitive unbounded prefix–suffix square roots of a regular language. In

particular, the authors conjecture that the set of primitive unbounded prefix–suffix

square roots of a regular language is still regular if and only if it is finite.

We show that the primitive unbounded prefix–suffix square roots of regular

languages can determine finite, infinite regular or non-regular languages.

Let Q@|A be the language of all prefix–suffix square-free words over a given al-

phabet V .

Now take, for instance, the infinite regular language L = ab+a. It is clear that
@|A
√
L = L, because all words in L are primitive w.r.t. prefix–suffix square reduction

(L ∩ Q@|A = L); thus the statement “the set of primitive unbounded prefix–suffix

square roots of a regular language is still regular if and only if it is finite” does not

hold.

Next consider the language LL. In this language, the only words which are not

prefix–suffix square-free are the ones of the form (abna)2, for n ≥ 1. This means

that @|A
√
LL = {abmaabna | m,n ≥ 1 and m 6= n} ∪ ab+a, which can be shown not

to be regular by a simple application of the pumping lemma to

ab+aab+a \ @|A
√
LL = {abnaabna | n ≥ 1}.

The above can be summarised by the following statement.

Proposition 1. There exist regular languages whose set of primitive prefix–suffix

square roots is not regular. Furthermore, there exist infinite regular languages whose

set of primitive prefix–suffix square roots is regular and infinite.

The regularity of the prefix–suffix square reduction of a regular language was

shown in [1] by explicitly constructing an NFA for the reduced language. For a

slightly more bird’s-eye view, however, we can explain it through means of language

operations without going into the details of the automata construction. To simplify

the argument, we only consider prefix square reduction here.

Let us assume that the starting regular language is given by the DFA A =

(Q,Σ, δ, q0, F ) where δ is the transition function extended to words in the usual

way, i.e., δ(p, ε) = p and δ(p, wa) = δ(δ(p, w), a), for all p ∈ Q, w ∈ Σ∗ and a ∈ Σ.

Now consider the languages Lp,q which contain the words taking A from state p to

state q, i.e., Lp,q = {w | δ(p, w) = q}. Then, the language

SqPrefq =
⋃
p∈Q

(Lq0,p ∩ Lp,q)
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consists of all square prefixes which take A to state q; so we get that the square

prefix reduction of L(A) is

@| (L(A)) =
⋃

q∈Q,f∈F

(
SqPrefq · Lq,f

)
,

which is a finite union of concatenations of regular languages, hence regular.

This observation might help in characterising the iterated unbounded prefix–

suffix square reduction of regular languages, but, unfortunately, in this paper we

are unable to establish any stronger results on the unbounded case. Instead, we shall

continue with some insights into the less complex iterated bounded reductions.

For a word of the form uuv = xyy we say that the square prefix uu overlaps with

the square suffix yy, if |u| > |x| or |y| > |v|. In the former case reducing the prefix

uu results in the word uv, which is shorter than yy, so the subsequent reduction

of the suffix yy is not possible, whereas in the latter case, reducing the suffix yy

first makes the subsequent reduction of the prefix uu impossible. In the case of

bounded reduction, long enough words avoid the problems of overlapping squares.

Let w′ ∈ @|A2
p(w) and |w′| ≥ 2p, such that w = uw′y, for u, y ∈ Σ≤p \ {λ}, that is

we obtained w′ from w by reducing the p-bounded square prefix uu and p-bounded

square suffix yy. Because of the length lower bound on w′, we have w′ = uzy, for

some possibly empty word z, hence w = uuzyy, meaning that the square prefix uu

does not overlap with the square suffix yy in w.

Theorem 2. The classes of context-free languages and linear languages are closed

under iterated bounded prefix–suffix square reduction.

Proof. As each context-free language can be accepted by a PDA which reads

a letter from the tape in each step, suppose we are given such a PDA A =

(Q,Σ,Γ, δ, q0, F ). The proof goes by constructing a PDA B = (Q′,Σ,Γ, δ′, q0, F
′)

which guesses and simulates A on the square prefixes that have been reduced, un-

til it decides that no more prefixes should be reduced; then it reads w and finally

guesses and reads the reduced suffixes, one by one.

The simulation is very similar to the regular case, but for the following technical

detail: the simulation of prefix–suffix reduction in finite automata was done by

reading the whole guessed prefix or suffix at once and transitioning to the state

obtained, whereas here we read the letters of the guessed prefixes and suffixes one

at a time.

In what follows, p is the length bound for reduced prefixes and suffixes, as in

the definition of @|Ap. To avoid treating the complicated cases, we restrict ourselves

to recognizing the words of @|A∗p(L(A)) which can be obtained from a word in

L(A) without reducing overlapping prefix and suffix squares. This includes all words

of length at least 2p of the language @|A∗p(L(A)) per the explanation before the

theorem, so

@|A∗p(L(A)) \ Σ<2p ⊆ L(B) ⊆ @|A∗p(L(A)).
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Further,@|A∗p(L(A)) is (linear) context-free if and only if L(B) is (linear) context-free

if and only if @|A∗p(L(A))\Σ<2p is (linear) context-free, since the differences between

any two of the three languages are finite and it is well known that subtracting a finite

language from a (linear) context-free one, maintains the (linear) context-freeness of

the result.

In order to simplify the argument for linear context-free languages we make the

following claim. The newly constructed PDA pushes and pops symbols from the

stack exactly when the original would, therefore if A is a one-turn PDA, then the

new one will be, too. This means that if the starting language is linear, the iterated

reduction will be so, as well.

The state set of B is Q′ = Q∪
(
Q× (Σ≤p · {@|, $, |A} · Σ≤p)

)
, where @|, $, |A /∈ Σ.

To improve legibility we dispense here with the (state, push) ∈ δ(state, read, pop)
notation and write instead the compact form

state, read, pop −→ state, push.

The transitions δ′ are of the following types (for all q ∈ Q):

(1) Guess the first prefix x to reduce.

∀x ∈ Σ≤p:

q0, λ, λ −→
(
q0

x@|

)
, λ

(2) Guess the factor y following x, such that x is reducible (prefix of y).

∀x, y ∈ Σ≤p with x ≤pref y:(
q

x@|

)
, λ, λ −→

(
q

x@| y

)
, λ)

(3) Read the letters of the prefix being reduced and simulate the transitions of

A on the letters read.

∀q′ ∈ Q, a ∈ Σ, b ∈ Γ, c ∈ Γ∗, x ∈ Σ≤p−1 and y ∈ Σ≤p such that

(q′, c) ∈ δ(q, a, b): (
q

ax@| y

)
, λ, b −→

(
q′

x@| y

)
, c

(4) Guess the next prefix to reduce.

∀x ∈ Σ+, y, z ∈ Σ∗ such that x ≤pref yz and |xy| ≤ p, 1 ≤ |yz| ≤ p:(
q

@|xy

)
, λ, λ −→

(
q

x@| yz

)
, λ

(5) Finish guessing prefixes.

∀x ∈ Σ≤p: (
q

@|x

)
, λ, λ −→

(
q

$x

)
, λ
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(6) Read the letters of the last reduced prefix and match them to the starting

portion of our input as to check if the reduction can happen.

∀q′ ∈ Q, a ∈ Σ, b ∈ Γ, c ∈ Γ∗ and y ∈ Σ∗ such that ay ∈ Σ≤p and

(q′, c) ∈ δ(q, a, b): (
q

$ay

)
, a, b −→

(
q′

$y

)
, c

(7) Read the letters of the input which are not part of the reduced square

prefixes or suffixes.

∀a ∈ Σ, b ∈ Γ and c ∈ Γ∗ such that (q′, c) ∈ δ(q, a, b):(
q

$

)
, a, b −→

(
q′

$

)
, c

We proceed similarly for guessing and reading the suffixes, so we add the fol-

lowing transitions (for all q ∈ Q):

(8) Read and remember the suffix x of length p of the input word, by adding

more letters as long as the factor read is shorter than p.

∀x ∈ Σ≤p−1, a ∈ Σ: (
q

x$

)
, a, λ −→

(
q

xa$

)
, λ

(9) Transition to guessing new suffix mode.

∀x, y ∈ Σ≤p with y ≤suff x:(
q

x$

)
, λ, λ −→

(
q

x |A y

)
, λ

(10) Read the letters of the guessed suffixes and simulate A on them, while al-

ways remembering the last p letters read.

∀q′ ∈ Q, a ∈ Σ, b ∈ Γ, c ∈ Γ∗, x ∈ Σ≤p−1 and y ∈ Σ≤p such that

(q′, c) ∈ δ(q, a, b):

(
q

ax |A y

)
, λ, b −→

(
q′

x |A y

)
, c

(11) Guess another reduced suffix.

∀x, y ∈ Σ≤p with |xy| = p and z ≤suff xy:(
q

x |A y

)
, λ, λ −→

(
q

xy |A z

)
, λ

(12) Stop guessing suffixes.

∀x, y ∈ Σ≤p: (
q

x |A y

)
, λ, λ −→

(
q

xy

)
, λ
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(13) Finish simulating A on the remaining letters of the last guessed suffix.

∀q′ ∈ Q, a ∈ Σ, x ∈ Σ≤p−1, b ∈ Γ, c ∈ Γ∗ such that (q′, c) ∈ δ(q, a, b):

(
q

ax

)
, λ, b −→

(
q′

x

)
, c

The set of final states is F ′ = {
(
q
λ

)
| q ∈ F}. If we reached the final state

and we read the whole input w, it means that the word w′ that we guessed was

in L(A), and w can be obtained from w′ by p-bounded prefix-suffix reductions, so

w ∈ @|A∗p(L(A)).

As mentioned earlier, if A is one-turn, then B is one-turn, too: the only push-

down operations are in transitions 3, 6, 7, 10 and 13 and in all cases they mimic a

pushdown operation of A.

As the simulation is rather technical, we illustrate the working of B on an input

umwz which was obtained through iterated bounded prefix–suffix square reduction

from a word u1 · · ·umumwzv1 · · · vn ∈ L(A), where |z| = p and all ui, vj ∈ Σ≤p,

and ui ≤pref ui+1 · · ·w and vj ≤suff zv1 · · · vj−1:

• by transitions type 1, we enter prefix reduction mode (@|); we guess u1 and

put it on the “tape” simulated in the second component of the states: that

is u1@|;
• by type 2, we guess a prefix y of u2 · · · such that u1 ≤pref y and put it on

the simulated tape after the left-reduction symbol: that is u1@| y;

• whenever we have ax@|ui · · · on the simulated tape, by type 3 we simulate

the state transition and pushdown operations of A on reading a, and erase

a: that is x@|ui · · · ;
• when all letters of ui have been read (@|ui+1 · · · ), by type 4 we guess ui+1,

put it on the left side of @| and guess a factor which follows it, so that ui+1

is reducible: that is ui+1@|ui+2 · · · ;
• after reading the letters of the first copy of um, we have @|um on the

simulated tape. By type 5, we enter a new operating mode @| → $ and we

match the letters on the simulated tape against the letters of um on the

actual tape, by type 6, while simulating the state transitions and pushdown

operations of A;

• after we finished reading um, we read w from the tape and simulate A on

it by type 7;

• by type 8, we read and put z on the simulated tape: that is z$;

• by type 9, we change to suffix guessing mode ($ → |A) and we guess v1:

that is z |A v1;

• we keep guessing vi and simulating A on their letters by types 10 − 13,

similarly to the prefix case. �
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4. Algorithms

In this section we study an algorithmic problem concerning the primitive prefix–

suffix square roots of a word. In particular, we investigate the problem when we

are given a word w and we need to find all of its primitive prefix–suffix square

roots. Easier versions of this problem, such as investigating the complexity of de-

ciding whether a word has a unique primitive prefix–suffix square root, as well as

finding its shortest and/or longest primitive prefix–suffix square root, otherwise,

were suggested in [1] (these results can be derived in a straightforward fashion from

our solution). The authors suggested, upon raising these problems, that employing

the results and techniques from [8] should lead to a solution, aiming this way for

O(n2 log n) time solutions.

To this end, we mention that a remark from Example 1 in [8] shows that the

number of square-free factors in a word can be quadratic with respect to the length

of a word. In spite of the fact that this result does not mean that the number of

primitive prefix–suffix square roots of a given word is quadratic with respect to the

word length, it gives us a good starting point for the investigation. In this section

we confirm the intuition of the authors from [1] by providing a simple O(n2 log n)

dynamic programming solution to the problem of finding all primitive prefix–suffix

square roots of a word (these results can also be deduced in a not too difficult of a

manner following the approach from [10]).

The following combinatorial results are well known (see, e. g., [4]). We note that,

the notion of primitivity of words mostly used in this section is the classical one of

words that are not expressible as several concatenations of the same factor.

Lemma 3 ([3]) Let u1, u2, and u3 be primitive words, with |u1| < |u2| < |u3| and

u2
i prefixes (suffixes) of a word w, for every i with 1 ≤ i ≤ 3. Then 2|u1| < |u3| and,

as a consequence, |{u|u primitive, u2 prefix (respectively, suffix) of w}| ≤ 2 log |w|.

Assume that w ∈ Σ∗ is of length n. For each i with 1 ≤ i ≤ n we define the set

Pi = {u | u is a primitive word such that u2 is a prefix of w[i..n]}.

Lemma 3 shows that |Pi| ≤ 2 log n for every i with 1 ≤ i ≤ n. Generally, we can

represent the elements of Pi in various efficient manners. For our purpose, for each

u ∈ Pi it is enough to store its length. For valid i, k we shall use Pi[k] to denote

both the kth primitive word whose square starts at position i, as well as its length.

Lemma 4 ([3]) Let w ∈ Σ∗ be a word of length n. We can compute in O(n log n)

time all the sets Pi associated to w, where i ∈ {1, 2, . . . , n}.

Note that in [3] there are examples of words of length n for which
∑
i≤n |Pi| ∈

Θ(n log n). On the same page, we denote by Si the set corresponding to suffixes.

Before stating the main result of this section, we make the observation that, for

any primitive prefix–suffix square root w′ of w, there exists another (non-primitive)

prefix–suffix square root w′′ of w, such that w′′ ∈ @|A∗(w) and w′ ∈ @|A(w′′) (w′ is

obtained in a single step reduction from w′′).
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Given a word w of length n, we can compute in O(n2 log n) time all the primitive

prefix–suffix square roots of w.

Proof. Following Lemma 4, in O(n log n) time we can find all sets Pi and Si cor-

responding to every position i in w, where 1 ≤ i ≤ n. We recall that by an element

k in any of the sets Pi and Si we refer to both the length of a primitive word that

is a square starting at position i, respectively ending at position j, as well as the

primitive word itself.

Next, we construct an n × n matrix R, where for every position [i, j] in the

matrix, where 0 ≤ i, j < n, we mark if w[i..j] is a primitive root, a (non-primitive)

root, or it is not reachable, i.e., w[i..j] /∈ @|A∗(w). To put this formally, we have:

R[i, j] =


1, w[i..j]∈@|A∗(w), Pi[1]> j−i

2 or Pi=∅, and Sj [1]> j−i
2 or Sj=∅;

0, w[i..j]∈@|A∗(w) and Pi[1] or Sj [1] ≤ j−i
2 ;

−1, w[i..j] /∈@|A∗(w).

In particular, for every pair of positions we check (dynamically) if there exists a

prefix–suffix square reduction from the initial word that renders the corresponding

factor. If, furthermore, no prefix–suffix square reduction can be performed on this

factor, we conclude that the factor represents a primitive prefix–suffix square root

of the word, hence marking it by 1. For any pair [i, j] we can obviously disconsider

the factor corresponding to it when R[i, j] = −1, as no prefix–suffix reduction can

derive it from the original word. Next, we present our algorithm:

Algorithm 6. Find prefix-suffix roots

1: initialise all position of R with −1;

2: R[0, n− 1] = 0;

3: for i := 0 to n− 1 do

4: for j := n− 1 downto i do

5: if R[i, j] == 0 then

6: if (Pi == ∅ or Pi[1] > j−i
2 ) and (Sj == ∅ or Sj [1] > j−i

2 ) then

7: R[i, j] = 1

8: else

9: for k ∈ Pi do

10: if i+ 2k ≤ j + 1 then

11: R[i+ k, j] = max(R[i+ k, j], 0)

12: for k ∈ Sj do

13: if j − 2k ≥ i− 1 then

14: R[i, j − k] = max(R[i, j − k], 0)

15: return R

Since the sizes of the sets Pi and Sj are in O(log n), the complexity of the

algorithm is straightforward. In particular, for none of the O(n2) pairs [i, j] are we

updating more than O(log n) positions in R.

When looking at its correctness, we see that by considering all possible reduc-
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tions in lines 9–14 of our Algorithm, we ensure also that the cases when one has to

interlap prefix and suffix reductions, all possibilities are considered. Our algorithm

correctly assigns value 1 to every pair of position [i, j] whenever the factor w[i, j] can

be obtained from w by iterated prefix–suffix reductions, and, moreover, the factor

does not have any square prefixes or suffixes, of a length shorter than its, that allow

further reductions, i.e., making it therefore a primitive prefix–suffix square root of

the word (lines 6–7 of the Algorithm). �

As a direct consequence of Theorem 5 the following result is straightforward.

Corollary 7. We can decide in O(n2 log n) time whether a given word of length

n has a unique primitive prefix–suffix square root, a unique shortest or a unique

longest primitive prefix–suffix square root. Moreover, in the same time complexity

we can compute the set of all shortest or longest primitive prefix–suffix square roots

of a word.

5. Concluding remarks

We conclude this paper with a few more words about the set of prefix–suffix square

roots @|A
√
L of a given regular language L. As in the remark after Proposition 1, we

restrict the argument to prefix square reduction, as to keep things simple.

Let the set of all words irreducible by p-bounded prefix square reduction over

an alphabet Σ be Qp. This language is regular for any p, as one can easily hard-

code checking prefixes of constant bounded length into a finite automaton; hence

so is its complement Qp = Σ∗ \Qp. Furthermore, @| p
√
L, the set of p-bounded prefix

square roots of L is regular, as well, because it is equal to @|∗p(L) ∩ Qp. Hence, if
@|
√
L = @| p

√
L, for some p, then @|

√
L is regular.

Consider now the inverse implication. Suppose @|
√
L is regular. Then, L′ =

@| p
√
L \ @|

√
L is regular, too, and it consists only of prefix reducible words, as for

any irreducible word w ∈ @| p
√
L, naturally w ∈ @|

√
L. All words in L′ have a square

prefix but do not have a p-bounded square prefix. If L′ is finite, then @|
√
L = @| q

√
L

for some q > p. If L′ is infinite (and we know it is regular), then perhaps one can

use a pumping argument to arrive at a contradiction. Therefore, we conjecture that
@|
√
L is regular if and only if there exists some p such that @|

√
L = @| p

√
L. For a given

p and and a given L this condition is decidable, because one can construct a DFA

accepting @| p
√
L and check if it accepts any word with a square prefix (using the

argument given after Proposition 1). If the conjecture is true, then finding an upper

bound on p depending on L would mean the question of regularity of the set of

primitive prefix square roots of a regular language is decidable.
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