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Restricted Ambiguity of Erasing MorphismsI

Daniel Reidenbacha, Johannes C. Schneiderb,∗

aDepartment of Computer Science, Loughborough University, Loughborough, LE11 3TU, United Kingdom
bFachbereich Informatik, Technische Universität Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany

Abstract

A morphism h is called ambiguous for a string s if there is another morphism that maps s to the same image as h; oth-
erwise, it is called unambiguous. In this paper, we examine some fundamental problems on the ambiguity of erasing
morphisms. We provide a detailed analysis of so-called ambiguity partitions, and our main result uses this concept to
characterise those strings that have a morphism of strongly restricted ambiguity. Furthermore, we demonstrate that
there are strings for which the set of unambiguous morphisms, depending on the size of the target alphabet of these
morphisms, is empty, finite or infinite. Finally, we show that the problem of the existence of unambiguous erasing
morphisms is equivalent to some basic decision problems for nonerasing multi-pattern languages.
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1. Introduction

The research on the ambiguity of morphisms is based on the following, elementary questions: Given a string1 s
and a morphism h, do there exist morphisms g with g(s) = h(s), but g(x) , h(x) for a symbol x in s? If so, what
properties do these morphisms g have? For example, let s := AABBCC, and let the morphism h : {A, B, C}∗ → {a, b}∗

be given by h(A) := h(C) := a and h(B) := b. Then it can be easily verified that there is no morphism g satisfying
g(s) = aabbaa = h(s) and g(x) , h(x) for an x ∈ {A, B, C}. Therefore, we call h unambiguous for s. On the other
hand, if we consider the morphism h′ : {A, B, C}∗ → {a, b}∗, defined by h′(A) := h′(B) := h′(C) := (ab)10, then there
are various other morphisms g that map s to h′(s) = (ab)60. Hence, h′ is ambiguous for s. Furthermore, for every n
with 0 ≤ n ≤ 30 and for every symbol x ∈ {A, B, C}, there exists at least one morphism g satisfying g(s) = h′(s) and
g(x) = (ab)n. Thus, the ambiguity of h′ for s is largely unrestricted. In the present paper, we wish to investigate this
phenomenon, and we shall mainly focus on the question of whether, for any string, there exists a morphism with a
restricted ambiguity. To this end, we distinguish between two types of restrictions: maximally restricted ambiguity
(i. e., unambiguity) and so-called moderate ambiguity, a sophisticated yet natural concept to be introduced below.

The existence of unambiguous and moderately ambiguous nonerasing morphisms has already been intensively
studied (see, e. g., Freydenberger et al. [1], Reidenbach [9]), and characteristic criteria have been provided. These
criteria reveal that the existence of such morphisms is alphabet-independent, i. e., for any string s over some alphabet
A and for any alphabets Σ,Σ′ with at least two letters each, s has an unambiguous or moderately ambiguous nonerasing
morphism h : A∗ → Σ∗ if and only if there is a morphism h′ : A∗ → Σ′∗ with the equivalent property. In the present
work, we study the ambiguity of all morphisms, including erasing morphisms, which map a symbol in s to the empty
string. As pointed out by Schneider [14], here the existence of an unambiguous erasing morphism does not only
depend on the structure of the string, but also on the size of the target alphabet of the morphism, which turns the
search for characteristic conditions into a rather intricate problem.

IA preliminary version [12] of this paper was presented at the conference DLT 2010.
∗Corresponding Author.
Email addresses: D.Reidenbach@lboro.ac.uk (Daniel Reidenbach), jschneider@informatik.uni-kl.de (Johannes C. Schneider)

1In recent literature, the term “word” is normally used for what we call a “string”. We use this dated terminology since we wish to restrict the
term “word” to strings over a particular alphabet (see Section 2).
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The examination of the ambiguity of morphisms is not only of intrinsic interest, but, due to the simplicity of the
concept, also shows various connections to other topics in theoretical computer science and discrete mathematics.
This primarily holds for those approaches where several morphisms are applied to one finite string, including pattern
languages (see, e. g., Mateescu and Salomaa [8]) as well as equality sets (and, thus, the Post Correspondence Problem,
cf. Harju and Karhumäki [2]). Particularly well understood are the relations to pattern languages, where several
prominent problems have been solved using insights into the ambiguity of morphisms (see, e. g., Reidenbach [10]).
Moreover, there are further connections of the ambiguity of morphisms to various concepts that involve morphisms
such as fixed points of morphisms, avoidable patterns and word equations.

Our work is organised as follows: After giving some definitions and basic results, we provide a detailed analysis
of ambiguity partitions (as introduced by Schneider [14]), which are a vital concept when investigating the ambiguity
of erasing morphisms. In Section 4, we introduce and study moderate ambiguity, i. e., an important type of strongly
restricted ambiguity. We characterise those strings for which there exist moderately ambiguous erasing morphisms,
and this is the main result of our paper. In Section 5, we deal with unambiguous morphisms, and we study the number
of such morphisms for certain strings. Finally, in Section 6, we reveal that the existence of unambiguous erasing
morphisms can be characterised using basic decision problems for so-called nonerasing multi-pattern languages. This
insight might be a worthwhile starting point for future research.

2. Definitions and Basic Notes

In the present section we give some basic definitions and results. For notations not explained explicitly, we refer
the reader to Rozenberg and Salomaa [13].

Let N := {1, 2, . . .} be the set of natural numbers. The power set of a set S is denoted by P(S ). An alphabet A is
an enumerable set of symbols. A string (overA) is a finite sequence of symbols taken fromA. By |X| we denote the
cardinality of a set X or the length of a string X. The empty string ε is the unique sequence of symbols of length 0. For
the concatenation of strings s, t we write s · t (or st for short). The string that results from the n-fold concatenation of
a string s is denoted by sn. The notationA∗ refers to the set of all strings overA, i. e., more precisely, the free monoid
generated by A; furthermore, A+ := A∗ \ {ε}. The number of occurrences of a symbol x ∈ A in a string s ∈ A∗ is
written as |s|x. With regard to arbitrary strings s, t ∈ A∗, we write s = t . . . if there exists an u ∈ A∗ such that s = tu,
we write s = . . . t if there exists an u ∈ A∗ such that s = ut, and, finally, s = . . . t . . . if there exist u, v ∈ A∗ such that
s = utv. We call t a prefix, suffix and factor of s, respectively. In contrast to this notation, if we omit some parts of a
canonically given string, then we henceforth use the symbol [. . .]; e. g., s = . . . a b [. . .] f means that s ends with the
string a b c d e f .

We often use N as an infinite alphabet of symbols. In order to distinguish between a string over N and a string
over a (possibly finite) alphabet Σ, we call the former a pattern and the latter a word. Given a pattern α ∈ N∗, we call
symbols occurring in α variables and denote the set of variables in α with var(α). Hence, var(α) ⊆ N. We use the
symbol · to separate the variables in a pattern, so that, for instance, 1 · 1 · 2 is not confused with 11 · 2.

Given arbitrary alphabetsA,B, a morphism is a mapping h : A∗ → B∗ that is compatible with the concatenation,
i. e., for all v,w ∈ A∗, h(vw) = h(v)h(w). Hence, h is fully defined for all v ∈ A∗ as soon as it is defined for all symbols
inA. We call h erasing if and only if h(a) = ε for an a ∈ A; otherwise, h is called nonerasing. If we call a morphism
h (non)erasing with a certain input string s in mind, we only demand h to be (non)erasing for the symbols occurring
in s.

A pattern α ∈ N+ is called a fixed point (of a morphism h) if h(α) = α. A morphism h : N∗ → N∗ is said to be
nontrivial if h(x) , x for an x ∈ N. Let V ⊆ N. We call h : N∗ → N∗ nontrivial for V if h(x) , x for an x ∈ V . The
morphism πV : N∗ → N∗ is given by πV (x) := x if x ∈ V and πV (x) := ε if x < V .

For any alphabet Σ, for any morphism σ : N∗ → Σ∗ and for any pattern α ∈ N+ with σ(α) , ε, we call σ
unambiguous (for α) if and only if there is no morphism τ : N∗ → Σ∗ satisfying τ(α) = σ(α) and, for some x ∈ var(α),
τ(x) , σ(x). If σ is not unambiguous for α, it is called ambiguous (for α). We extend this definition to any word
w ∈ Σ∗ in the natural way, i. e., w is said to be unambiguous (for α) if there is an unambiguous morphism σ : N∗ → Σ∗

with σ(α) = w, and w is called ambiguous (for α) if there is an ambiguous morphism σ : N∗ → Σ∗ satisfying
σ(α) = w. Furthermore, with regard to the E-pattern language of α to be introduced in the subsequent paragraph, we
say that a word w ∈ LE,Σ(α) is (un-)ambiguous if w is (un-)ambiguous for α.
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Basically, the set of all images of a pattern α ∈ N+ under morphisms σ : N∗ → Σ∗, where Σ is an arbitrary
alphabet of so-called terminal-symbols, is called the pattern language (generated by α). Formally, two main types of
pattern languages of α are considered: its E-pattern language LE,Σ(α) := {σ(α) | σ : N∗ → Σ∗ is a morphism} and
its NE-pattern language LNE,Σ(α) := {σ(α) | σ : N∗ → Σ∗ is a nonerasing morphism}. Note that, in literature, pattern
languages as defined above are usually called terminal-free, since, in a more general understanding of the concept,
a pattern may additionally contain terminal symbols. The morphisms σ : (N ∪ Σ)∗ → Σ∗ applied to such a pattern
α ∈ (N ∪ Σ)+ when generating its pattern language must then be terminal-preserving, i. e., for any a ∈ Σ, σ(a) = a
must be satisfied.

The following result characterises the inclusion of erasing pattern languages.

Theorem 1 (Jiang et al. [6]). Let α, β ∈ N+, and let Σ be an alphabet with |Σ| ≥ 2. Then LE,Σ(α) ⊆ LE,Σ(β) if and only
if there exists a morphism h : N∗ → N∗ satisfying h(β) = α.

We conclude the definitions in this section with a partition of the set of all patterns subject to the following
criterion:

Definition 1. Let α ∈ N+. We call α prolix if and only if there exists a factorisation α = β0 γ1 β1 γ2 β2 . . . γn βn with
n ≥ 1, βi ∈ N∗, 0 ≤ i ≤ n, and γi ∈ N+, 1 ≤ i ≤ n, such that

1. for every i ∈ {1, 2, . . . , n}, |γi| ≥ 2,
2. for every i ∈ {0, 1, . . . , n}, for every j ∈ {1, 2, . . . , n}, var(βi) ∩ var(γ j) = ∅,
3. for every i ∈ {1, 2, . . . , n}, there exists an yi ∈ var(γi) such that yi occurs exactly once in γi and, for every

i′ ∈ {1, 2, . . . , n}, if yi ∈ γi′ then γi = γi′ .

We call α ∈ N+ succinct if and only if it is not prolix.

A succinct pattern is the shortest generator of its respective E-pattern language, i. e., for any Σ, |Σ| ≥ 2, and any
succinct pattern α, there is no pattern β with |β| < |α| and LE,Σ(β) = LE,Σ(α). Furthermore, the set of prolix patterns
exactly corresponds to the class of finite fixed points of nontrivial morphisms:

Theorem 2 (Head [3]). A pattern α ∈ N+ is prolix if and only if it is a fixed point of a nontrivial morphism h : N∗ →
N∗.

Hence, for every prolix pattern α, there exists a morphism h : N∗ → N∗ satisfying h(α) = α and h(x) , x for
an x ∈ var(α). Note that set of succinct patterns is also equivalent to the set of morphically primitive words (as
introduced by Reidenbach and Schneider [11]).

Regarding the unambiguity of nonerasing morphisms, the classification of patterns into succinct and prolix pat-
terns is vital:

Theorem 3 (Freydenberger, Reidenbach, and Schneider [1]). Let α ∈ N+, let Σ be an alphabet, |Σ| ≥ 2. There
exists an unambiguous nonerasing morphism σ : N∗ → Σ∗ for α if and only if α is succinct.

According to this result, for any prolix pattern α, every nonerasing morphism is ambiguous. In contrast to this neg-
ative insight, there are prolix patterns that have unambiguous erasing morphisms (as pointed out by Schneider [14]).
However, this is not a universal property of prolix patterns; thus, certain prolix patterns do not have any unambiguous
morphism at all. This phenomenon is the main topic of our paper.

3. Ambiguity Partitions

Previous results show that ambiguity partitions as introduced by Schneider [14] are a crucial notion when inves-
tigating the ambiguity of erasing morphisms, and the main result of our paper, given in Section 4, further illustrates
their importance. In the present section, we therefore study some fundamental properties of this concept.

Definition 2. We inductively define an ambiguity partition (for any α ∈ N+):

(i) (∅, var(α)) is an ambiguity partition for α.
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(ii) If (E,N) is an ambiguity partition for α and there exists a morphism h : N∗ → N∗ that is nontrivial for N
and satisfies h(α) = πN(α), then (E′,N′) is an ambiguity partition with E′ := E ∪ {x ∈ N | h(x) = ε},
N′ := {x ∈ N | h(x) , ε}.

We illustrate this definition by the following example.

Example 1. We define two example patterns as follows:

α1 := 1 · 2 · 1 · 2 · 3 · 3 · 3 · 3,
α2 := 1 · 2 · 1 · 2 · 3 · 3 · 3.

Note that α1 and α2 only differ in the number of occurences of variable 3.
We first consider α1. By Definition 2, point (i), (E,N) := (∅, {1, 2, 3}) is an ambiguity partition for α1. The

morphism h : N∗ → N∗, defined by h(1) := ε, h(2) := 1 · 2, h(3) := 3, satisfies h(α1) = α1 = πN(α1). Note that h is
nontrivial for N. Thus, according to Definition 2, point (ii), (E′,N′) := ({1}, {2, 3}) is an ambiguity partition for α1,
too. Furthermore, the nontrivial morphism h : N∗ → N∗, defined by h(1) := 1 · 2, h(2) := ε, h(3) := 3, also satisfies
h(α1) = α1 = πN(α1). Thus, according to Definition 2, point (ii), (E′,N′) := ({2}, {1, 3}) is an ambiguity partition for
α1 as well. We continue with the ambiguity partition (E,N) := ({1}, {2, 3}) and define the morphism h : N∗ → N∗
by h(1) := 2, h(2) := ε, h(3) := 3. Hence, h is nontrivial for N and satisfies h(α1) = 2 · 2 · 3 · 3 · 3 · 3 = πN(α1).
Thus, we can again apply Definition 2, point (ii) and get another ambiguity partition (E′,N′) := ({1, 2}, {3}) for α1.
Let (E,N) := (E′,N′). Finally, the morphism h : N∗ → N∗, defined by h(1) := ε, h(2) := 3 · 3, h(3) := ε, is nontrivial
for N and satisfies h(α1) = 3 · 3 · 3 · 3 = πN(α1). Consequently, (E′,N′) := ({1, 2, 3}, ∅) = (var(α1), ∅) is an ambiguity
partition for α1, too.

Concerning α2, we can use a similar reasoning to show that all (E,N) ∈ A := {(∅, {1, 2, 3}), ({1}, {2, 3}), ({2}, {1, 3}), ({1, 2}, {3})}
are ambiguity partitions for α2. Furthermore, for any (E,N) ∈ A, there is no morphism that satisfies h(3) = ε and
point (ii) of Definition 2. Hence, the ambiguity partitions in A are the only ambiguity partitions for α2.

According to [14], Definition 2 permits a number of fundamental insights into the ambiguity of erasing morphisms to
be established. They directly or indirectly result from the following, slightly technical fact:

Theorem 4 (Schneider [14]). Let Σ be an alphabet. Let α ∈ N+ and let (E,N) be an ambiguity partition for α. Then
every morphism σ : N∗ → Σ∗ satisfying σ(x) , ε for an x ∈ E is ambiguous for α.

Consequently, for any pattern α, an ambiguity partition (E,N) for α gives us valuable information on the set S of
variables in α which must be erased by unambiguous morphisms, since S ⊇ E. Thus, the larger the set E becomes,
the more information we get. Therefore, we name ambiguity partitions with a set E of maximal size in the following
definition:

Definition 3. Let α ∈ N+. An ambiguity partition (E,N) for α is called maximal if and only if every ambiguity
partition (E′,N′) for α satisfies |E′| ≤ |E| and |N′| ≥ |N |.

This definition supports some of our proofs, and we can use it to express vital statements on the (non-)existence
of morphisms with a restricted ambiguity. In Example 1, ({1, 2, 3}, ∅) is a maximal ambiguity partition for α1 and
({1, 2, }, {3}) is a maximal ambiguity partition for α2.

From Definition 2, it is not obvious whether or not a maximal ambiguity partition for a pattern α is unique. In
order to answer this question, the following technical lemma is useful:

Lemma 1. Let α ∈ N+ and (E1,N1), (E2,N2) be ambiguity partitions for an α. Then (E1∪E2,N1∩N2) is an ambiguity
partition for α.

P. To begin with, we note that, since (E1,N1) and (E2,N2) are partitions of var(α), N1 ∩ N2 = var(α) \ (E1 ∪ E2)
and, thus, (E1 ∪ E2,N1 ∩ N2) is a partition of var(α), too.

If (E2,N2) = (∅, var(α)), the statement is obviously true. Hence, let (E2,N2) , (∅, var(α)). Then, according to
condition (ii) of Definition 2, there exist ambiguity partitions (E(0),N(0)) := (∅, var(α)), (E(1),N(1)), (E(2),N(2)), . . . ,
(E(m),N(m)) := (E2,N2), m ∈ N and, for every k ∈ {0, 1, . . . ,m}, a morphism h(k) : N∗ → N∗ satisfying

4



(1) h(k) is nontrivial for N(k),
(2) h(k)(α) = πN(k) (α),
(3) E(k+1) = E(k) ∪ {x ∈ N(k) | h(k)(x) = ε}, and
(4) N(k+1) = {x ∈ N(k) | h(k)(x) , ε}.

We now give a procedure that, starting with (E1,N1), successively constructs ambiguity partitions (E′,N′) with grow-
ing sets E′ ⊇ E1 until E′ = E1 ∪ E2.

E′ := E1, N′ := N1.
while (E′ , E1 ∪ E2) do

Let k be maximal with E(k) ⊆ E′ and E(k+1) * E′. (?)
Let h := πN′ ◦ h(k).
E′new := E′ ∪ {x ∈ N′ | h(x) = ε}.
N′new := {x ∈ N′ | h(x) , ε}.
E′ := E′new, N′ := N′new.

od

We show the following:

(a) Every (E′,N′) constructed by the algorithm is an ambiguity partition for α.
(b) The algorithm terminates.

ad (a). For (E′,N′) = (E1,N1), the statement trivially holds. Hence, we show that, in every while loop, (E′new,N
′
new)

is an ambiguity partition for α. Since E(k) ⊆ E′ and E(k+1) * E′, there is an x ∈ E(k+1) \ E′ with h(k)(x) = ε (cf.
point (3)). Furthermore, x < E′ implies x ∈ N′. Thus, h is nontrivial for N′ since h(x) = πN′ (h(k)(x)) = ε , x.
Moreover, h(α) = πN′ (h(k)(α)) = πN′ (πN(k) (α)) = πN′ (α) since h(k)(α) = πN(k) (α) (cf. point (2)) and N′ ⊆ N(k) (due to
E(k) ⊆ E′). Thus, (E′new,N

′
new) is an ambiguity partition for α according to condition (ii) of Definition 2.

ad (b). At first, we show that {x ∈ N′ | h(x) = ε} = E(k+1) \ E′. If x ∈ N′ and h(x) = πN′ (h(k)(x)) = ε, then
h(k)(x) = ε. Due to N′ ⊆ N(k), this implies x ∈ E(k+1) (cf. point (3)). Hence, {x ∈ N′ | h(x) = ε} ⊆ E(k+1) \ E′. Now let
x ∈ E(k+1) \ E′.

Since E(k) ⊆ E′, x ∈ E(k+1) \E(k) and, thus, h(k)(x) = ε (cf. point (3)). Hence, h(x) = πN′ (h(k)(x)) = ε. Furthermore,
x < E′ directly implies x ∈ N′. This shows {x ∈ N′ | h(x) = ε} ⊇ E(k+1) \ E′, which proves the equality of both of the
sets.

Consequently, E′ is only extended by variables in some E(k+1) ⊆ E2, which implies E′ ⊆ E1 ∪ E2 for every E′.
Moreover, (?) makes sure that all variables from E2 \ E1 are added to some E′ such that, finally, E′ = E1 ∪ E2 and the
while loop ends.

The statements (a) and (b) imply that there exists an algorithm that constructs the ambiguity partition (E′,N′) =

(E1 ∪ E2,N1 ∩ N2), which proves the lemma. �

From Lemma 1, we can conclude that, for any pattern, there is exactly one maximal ambiguity partition:

Theorem 5. Let α ∈ N+ and (E,N) be a maximal ambiguity partition for α. Then (E,N) is unique.

P. Assume to the contrary that there exists a maximal ambiguity partition (E′,N′) for α such that E′ , E. Then,
according to Lemma 1, (E ∪ E′,N ∩ N′) is an ambiguity partition for α, but |E ∪ E′| > |E|. Consequently, (E,N) is
not maximal, which contradicts the assumption. �

Evidently, the uniqueness of the maximal ambiguity partition (E,N) of a pattern α is a nontrivial property only if
E , var(α). On the other hand, if (var(α), ∅) is the maximal ambiguity partition of α, then Theorem 4 directly implies
that the following statement on the existence of unambiguous morphisms holds true:

Corollary 1 (Schneider [14]). Let Σ be an alphabet, and let α ∈ N+. If (var(α), ∅) is an ambiguity partition for α,
then every morphism σ : N∗ → Σ∗ is ambiguous for α.
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Referring to Example 1, it is obvious that Corollary 1 can be applied to α1, but not to α2.
Corollary 1, in the case of arbitrary alphabets Σ, uses ambiguity partitions (var(α), ∅) to establish a sufficient

criterion on the nonexistence of unambiguous morphisms. However, in general, this criterion is not characteristic:

Example 2. Let
α := 1 · 4 · 5 · 2 · 4 · 6 · 3 · 5 · 6 · 3 · 5 · 6 · 2 · 4 · 6 · 1 · 4 · 5.

With a little effort (cf. the proof of Theorem 5.1 in [14], where the above pattern α is called α2), we can show that
(var(α), ∅) is not an ambiguity partition for α. Hence, Corollary 1 does not apply to α. However, if we consider the
morphism h : N∗ → N∗, defined by h(1) := 1 · 4 · 5, h(2) := 2 · 4 · 6, h(3) := 3 · 5 · 6, h(4 · 5 · 6) := ε, then point (ii) of
Definition 2 implies that (E′,N′) := ({4, 5, 6}, {1, 2, 3}) is an ambiguity partition for α.

We now wish to demonstrate that no morphism σ : N∗ → {a, b}∗ is unambiguous for α. We assume to the contrary
that there exists an unambiguous morphismσ : N∗ → {a, b}∗. Then, according to Theorem 4, σ(4) = σ(5) = σ(6) = ε.
If σ(x) = ε for an x ∈ {1, 2, 3}, σ is ambiguous. For instance, if x = 1, then the morphism τ : N∗ → {a, b}∗, defined
by τ(1) := σ(2), τ(2) := ε, τ(3) := σ(3), τ(4 · 5 · 6) := ε, contradicts σ being unambiguous for α. The cases x = 2
and x = 3 are analogous. Thus, σ is nonerasing for the variables 1, 2, 3. Since the target alphabet {a, b} of σ consists
of 2 letters and σ maps 3 variables onto a nonempty word, σ(1) and σ(2), σ(1) and σ(3) or σ(2) and σ(3) must
end with the same letter c ∈ {a, b}. Assume σ(1) = w1c and σ(2) = w2c with w1,w2 ∈ {a, b}

∗ (the other cases are
analogous), then τ, defined by τ(1) := w1, τ(2) := w2, τ(4) := c, τ(3) := σ(3), τ(y) := ε for all other variables y,
satisfies τ(α) = σ(α) and, thus, contradicts σ being unambiguous.

Consequently, no morphism σ : N∗ → {a, b}∗ is unambiguous for α.
Note that α also demonstrates that the ambiguity of erasing morphisms strongly depends on the size of the target

alphabet since the morphism σ : N∗ → {a, b, c}∗, defined by σ(1) := a, σ(2) := b, σ(3) := c and σ(y) := ε for all
other variables y, is unambiguous for α. Example patterns α with this property do not only exist for target alphabet
sizes 2 and 3, but for any pair of finite target alphabets (see Theorem 5.1 in [14]).

Nevertheless, for infinite target alphabets, a result even stronger than Corollary 1 is known:

Theorem 6 (Schneider [14]). Let Σ be an infinite alphabet, and let α ∈ N+. Then (var(α), ∅) is an ambiguity partition
for α if and only if every morphism σ : N∗ → Σ∗ is ambiguous for α.

Thus, when investigating the existence of unambiguous erasing morphisms, the question of whether or not (var(α), ∅)
is an ambiguity partition for α leads to an important (and sometimes even characteristic) partition of N+. Therefore,
we now introduce a new terminology reflecting this question:

Definition 4. Let α ∈ N+. We call α morphically erasable if and only if (var(α), ∅) is an ambiguity partition for α.
Otherwise, α is called morphically unerasable.

The pattern α1 from Example 1 is morphically erasable, whereas α2 is morphically unerasable.
Referring to Definition 4, Corollary 1 demonstrates that, for finite alphabets Σ, the search for patterns with unam-

biguous morphisms can be narrowed down to the morphically unerasable ones. Therefore, and since our main result
in Section 4 again is based on this property, we now give a nontrivial characterisation of such patterns. To this end, we
use a condition that is based on the inclusion of E-pattern languages, which is a well-investigated problem (see Jiang
et al. [6]).

Condition 1. A pattern α ∈ N+ satisfies Condition 1 if and only if there exists a set N ⊆ var(α) such that, for every
M ⊆ var(α) with M + N and for any alphabet Σ with |Σ| ≥ 2, LE,Σ(πM(α)) + LE,Σ(πN(α)).

Lemma 2. A pattern α ∈ N+ satisfies Condition 1 if and only if α is morphically unerasable.

P. We first show the if direction of Lemma 2. If α is unerasable, then there exists an ambiguity partition (E,N)
for α such that

(i) N , ∅ and

(ii) there is no morphism h with h(α) = πN(α) and h(x) , x for an x ∈ N.
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Note that (ii) is true since otherwise there would – due to (i) – exist a y ∈ N with h(y) = ε, and therefore, by definition,
E′ := E ∪ {x ∈ N | h(x) = ε} and N′ := {x ∈ N | h(x) , ε} would form an ambiguity partition for α. Furthermore, the
ambiguity partition (E′,N′) would satisfy E′ ⊃ E and N′ ⊂ N. Thus, if there was no ambiguity partition (E,N) with
properties (i) and (ii), then eventually (var(α), ∅) would be an ambiguity partition for α.

We now demonstrate that, for every M ⊆ var(α) with M + N and for any alphabet Σ with |Σ| ≥ 2, LE,Σ(πM(α)) +
LE,Σ(πN(α)), i. e., α satisfies Condition 1. To this end, assume to the contrary that there exists an M′ ⊆ var(α) with

(a) M′ + N and

(b) LE,Σ(πM′ (α)) ⊇ LE,Σ(πN(α)).

Due to Theorem 1, (b) implies that there is a morphism g with g(πM′ (α)) = πN(α). We now define a morphism
h : N∗ → N∗ as follows: for every x ∈ N, let

h(x) :=

g(x) , x ∈ M′,
ε , else.

Thus, h(πM′ (α)) = πN(α). Furthermore, due to (a), there is an x ∈ N with h(x) = ε. However, this directly implies
that h(α) = πN(α) and h(x) , x for an x ∈ N. This contradicts property (ii) of (E,N). Thus, the set M′ does not exist,
which means that Condition 1 is satisfied.

We proceed with the only if direction. If α satisfies Condition 1, then there exists a set N ⊆ var(α) such that,
for every M ⊆ var(α) with M + N and for an arbitrary alphabet Σ with |Σ| ≥ 2, LE,Σ(πM(α)) + LE,Σ(πN(α)). Due
to Theorem 1, this means that, for every M ⊆ var(α) with M + N, there is no morphism g with g(πM(α)) = πN(α).
Thus, if a morphism h satisfies h(α) = πN(α), then h is trivial for N. Hence, for every N′ ⊇ N and for every morphism
h′ with h′(α) = πN′ (α), h′ is also trivial for N. This statement directly implies that (var(α), ∅) is not an ambiguity
partition for α, since any procedure for finding the ambiguity partition (var(α), ∅) starts from the ambiguity partition
(∅, var(α)) and needs to eventually reach an intermediate stage where there is a morphism h′, a set N′ ⊇ N and an
x ∈ N such that h′(α) = πN′ (α) and h′(x) = ε. This concludes the proof of the only if direction. �

Summarising the above statements, we can note the following sufficient condition on the nonexistence of unambiguous
erasing morphisms, that is equivalent to Corollary 1:

Theorem 7. Let Σ be an alphabet. If an α ∈ N+ does not satisfy Condition 1, then every morphism σ : N∗ → Σ∗ with
σ(α) , ε is ambiguous for α.

P. Directly from Corollary 1 and Lemma 2. �

The original motivation for investigating the ambiguity of morphisms is derived from inductive inference of E-pattern
languages – i. e., the problem of computing a pattern from the words in its pattern languages –, which strongly depends
on the inclusion relation between E-pattern languages. In this context, certain morphisms with a restricted ambiguity
are known to generate words that contain reliable and algorithmically usable information about their generating pattern
(cf. Reidenbach [10]) and, thus, are a vital input to any inference procedure. Theorem 7 further illustrates this close
connection between the two topics.

The techniques used in [10] are based on the notion of an ambiguity of specific nonerasing morphisms that is
restricted in a particular manner. We now introduce and study an equivalent concept for erasing morphisms.

4. Moderate Ambiguity

Theorem 6 shows that, in case of an infinite alphabet Σ, the property of a pattern α being morphically unerasable
is characteristic for the existence of a morphism σ : N∗ → Σ∗ that is unambiguous for α. However, concerning finite
target alphabets Σ, there are morphically unerasable patterns for which there exists no unambiguous morphism (see
Example 2). Although we are, hence, not able to achieve unambiguity for every morphically unerasable pattern, we
shall demonstrate below that a certain restricted ambiguity is possible, which can be interpreted as unambiguity of
a morphism with regard to particular factors of σ(α). As briefly mentioned above, a similar property of nonerasing
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morphisms is used for many fundamental results on inductive inference of E-pattern languages, and an extensive
analysis of this phenomenon is provided by Reidenbach [9].

In accordance with [9], we call the said type of ambiguity moderate ambiguity. Intuitively, it can be understood as
follows: A morphism σ : N∗ → Σ∗ is called moderately ambiguous for a pattern α if, for every variable position j of
a variable x in α with σ(x) , ε, there exists a certain factor w j of σ(α) at a certain position (between the l jth and r jth
letter in σ(α)) such that every morphism τ : N∗ → Σ∗ with τ(α) = σ(α) maps the variable x at position j to a word
which covers at least the factor w j at this particular position. We illustrate this type of ambiguity in the following
example:

Example 3. Let Σ := {a, b} and

α := 1 · 2 · 1 · 1 · 2 · 1 · 1 · 3 · 1 · 3
= i1 · i2 · i3 · i4 · i5 · i6 · i7 · i8 · i9 · i10

Let σ : N∗ → Σ∗ be a morphism defined by σ(1) := ε, σ(2) := aba, σ(3) := abb. The morphism σ is ambiguous for
α since τ : N∗ → Σ∗, defined by τ(1) := a, τ(2) := b, τ(3) := bb, satisfies τ(α) = σ(α). Hence, the situation looks as
follows:

σ(α) =

σ(2)

a b a

τ(1) τ(2) τ(1)

σ(2)

a b a

τ(1) τ(2) τ(1)

σ(3)

a bb

τ(1) τ(3)

σ(3)

a bb

τ(1) τ(3)

= τ(α)

However, we call σ moderately ambiguous since all morphisms τ′ with τ′(α) = σ(α) map every variable ik with
σ(ik) , ε to a certain factor wk of σ(ik) at a particular position. In this example, we have w2 = w5 = b and
w8 = w10 = bb. We can verify that the only morphisms τ′ with τ′(α) = σ(α) are σ itself and τ, and, as explained
above, these two morphisms satisfy σ(ik) = . . .wk . . . = τ(ik) for k = 2, 5, 8, 10.

We now formalise moderate ambiguity. As explained above, we consider this a very natural way of slightly relaxing
the requirement of unambiguity, and the relevance of this concept has been demonstrated in the context of inductive
inference of pattern languages. Nevertheless, our definition is quite involved, since we do not only postulate that, for
a given pattern α and for every x ∈ var(α), there exists a string wx such that, for every morphism τ with τ(α) = σ(α),
τ(x) contains wx as a factor (which could be called factor-preserving ambiguity), but we also demand that these factors
are located at fixed positions for all τ. This means that we need to identify and mark the positions of the factors.

Definition 5. Let Σ be an alphabet, let α = i1 · i2 · [. . .] · in with n, i1, i2, . . . , in ∈ N, and let σ : N∗ → Σ∗ be a morphism
satisfying σ(α) , ε. Then σ is called moderately ambiguous (for α) provided that there exist l2, l3, . . . , ln, r1, r2, . . . ,
rn−1 ∈ N ∪ {0} such that, for every morphism τ : N∗ → Σ∗ with τ(α) = σ(α),

(i) if σ(i1) , ε then r1 ≥ 1,
(ii) if σ(in) , ε then ln ≤ |σ(α)|,

(iii) for every k ∈ {2, 3, . . . , n − 1} with σ(ik) , ε, lk ≤ rk,
(iv) for every k with 1 ≤ k ≤ n − 1, |τ(i1 · i2 · [. . .] · ik)| < lk+1, and
(v) for every k with 1 ≤ k ≤ n − 1, |τ(i1 · i2 · [. . .] · ik)| ≥ rk.

We call σ strongly ambiguous (for α) if and only if it is not moderately ambiguous (for α).

In the definition, for any pattern α and any moderately ambiguous morphism σ for α, a pair (lk, rk) for some ik ∈ var(α)
with σ(ik) , ε “marks” the factor wk from position lk to rk in σ(α). This factor must be covered by the image of ik
under every morphism τ with τ(α) = σ(α) – this is guaranteed by the conditions (iv) and (v). Considering Example 3,
we choose the following markers li, rk: Let r1 := 0, (l2, r2) := (2, 2), (l5, r5) := (5, 5), (l8, r8) := (8, 9), l10 := 11 and
finally (lk, rk) := (|σ(α)| + 1, 0) for k ∈ {1, 3, 4, 6, 7, 9} since, for these k, σ(ik) = ε, and, thus, no factor has to be
marked. It can be verified that these values of l j, 2 ≤ j ≤ n, and rk, 1 ≤ k ≤ n − 1 meet the requirements (i)–(v) of
Definition 5.

The following lemma is useful when studying moderate ambiguity since, in certain cases, it circumvents a check
of the minutiae of Definition 5.
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Lemma 3. Let Σ be an alphabet, α ∈ N+ and σ : N∗ → Σ∗ be a morphism. If there exists a morphism τ : N∗ → Σ∗

such that τ(α) = σ(α), but τ(x) = ε , σ(x) for an x ∈ var(α), then σ is not moderately ambiguous for α.

P. Let α = i1 · i2 · [. . .] · in with n, i1, i2, . . . , in ∈ N, and let k be minimal such that x = ik. Assume to the contrary
that σ is moderately ambiguous for α. Let l2, l3, . . . , ln, r1, r2, . . . , rn−1 ∈ N as defined in Definition 5.

Case 1: k = 1. Then r1 ≥ 1 since σ(i1) , ε, but |τ(i1)| = |ε| = 0 < r1. This contradicts condition (v) of Definition 5.
Case 2: k = n. Then ln ≤ |σ(α)| due to σ(in) , ε. But since τ(in) = ε, τ(α) = τ(i1 · i2 · [. . .] · in−1) and, thus,

|τ(i1 · i2 · [. . .] · in−1)| = |τ(α)| = |σ(α)| ≥ ln. This contradicts condition (iv) of Definition 5.
Case 3: 1 < k < n. Thus, τ must satisfy |τ(i1 · i2 · [. . .] · ik−1)| < lk and |τ(i1 · i2 · [. . .] · ik)| ≥ rk. However, since

τ(i1 · i2 · [. . .] · ik−1) = τ(i1 · i2 · [. . .] · ik), it follows that lk > rk, which contradicts σ being moderately ambiguous. �

As suggested by the definitions and further substantiated by Example 3, for any given morphism, the requirement of
being moderately ambiguous is less strict than that of being unambiguous:

Proposition 1. Let Σ be an alphabet, let σ : N∗ → Σ∗ be a morphism, and let α ∈ N+. If σ is unambiguous for α,
then σ is moderately ambiguous for α. In general, the converse does not hold.

P. We begin with the first statement in Proposition 1. Let α = i1 · i2 · [. . .] · in with n, i1, i2, . . . , in ∈ N, and let
σ : N∗ → Σ∗ be a morphism that is unambiguous for α. We define rk := |σ(i1·i2·[. . .]·ik)| and lk+1 := |σ(i1·i2·[. . .]·ik)|+1
for every 1 ≤ k ≤ n − 1. Since σ is unambiguous and, thus, every morphism τ with τ(α) = σ(α) for every x ∈ var(α)
necessarily satisfies τ(x) = σ(x), the correctness of conditions (i)–(v) of Definition 5 can be verified easily.

Regarding the second statement in Proposition 1, Example 3 gives a morphism σ and a pattern α such that σ is
moderately ambiguous, but not unambiguous for α. �

This directly implies that if there exists no moderately ambiguous morphism for a pattern α, then there exists no
unambiguous morphism for α and, thus, every morphism is strongly ambiguous for α.

With these new terms of ambiguity, we can give a stronger version of Theorem 4:

Theorem 8. Let Σ be an alphabet. Let α ∈ N+ and let (E,N) be an ambiguity partition for α. Then every morphism
σ : N∗ → Σ∗ satisfying σ(x) , ε for an x ∈ E is strongly ambiguous for α.

P. We prove Theorem 8 by induction.
For (E,N) = (∅, var(α)), the statement is obviously true.
Now, let (E′,N′) be an ambiguity partition derived from an ambiguity partition (E,N) using condition (ii) of

Definition 2. Then there exists a nontrivial morphism h : N∗ → N∗ satisfying (?) h(α) = πN(α). Furthermore,
E′ = E ∪ {x ∈ N | h(x) = ε} and N′ = {x ∈ N | h(x) , ε}. Consider a morphism σ : N∗ → Σ∗ satisfying σ(x) , ε
for an x ∈ E′. If x ∈ E, it follows by induction that σ is strongly ambiguous. Now assume that (??)σ(x) = ε for
all x ∈ E and σ(n) , ε for an n ∈ N with h(n) = ε and, thus, n ∈ E′. Let τ : N∗ → Σ∗ be the morphism defined by
τ(x) = σ(h(x)) for all x ∈ var(α). Due to (?) and (??), τ(α) = σ(h(α)) = σ(πN(α)) = σ(α), but τ(n) = ε , σ(n).
With the help of Lemma 3, we can conclude that σ is strongly ambiguous for α. �

The main result of our paper characterises those patterns that have a moderately ambiguous morphism. More
precisely, it states that moderate ambiguity can be achieved if and only if the pattern is morphically unerasable:

Theorem 9. Let Σ be an alphabet, |Σ| ≥ 2, let α ∈ N+. There exists a morphism σ : N∗ → Σ∗ that is moderately
ambiguous for α if and only if α is morphically unerasable.

P. We show the only if direction by contraposition: Let α be morphically erasable. Hence, there is an ambiguity
partition (var(α), ∅) for α. Then it follows from Theorem 8 that no morphism is moderately ambiguous for α.

We continue with the if direction. Let α be morphically unerasable. Hence, for the maximal ambiguity partition
(E,N) for α, it is N , ∅. Furthermore, let α = i1 · i2 · [. . .] · in with n, i1, i2, . . . , in ∈ N, and let σ : N∗ → {a, b}∗ be a
morphism defined by

σ(i) :=
{
ab(i−1)(2n+1)+1aab(i−1)(2n+1)+2a[. . .]abi(2n+1)a, if i ∈ N,
ε, else,
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for every i ∈ N. Hence, every σ(i), i ∈ N, consists of exactly 2n + 1 segments of the form ab+a. Note that, for
variables in N, σ is similar to the morphism τk,a,b as introduced by Jiang et. al. [6].

The idea now is to show that, for all k with ik ∈ N, the factor a a b(ik−1)(2n+1)+n+1 a a, which comprises the middle
segment of σ(ik), is always contained in the image of ik under any morphism τ with τ(α) = σ(α). Thus, we first give
l2, l3, . . . , ln, r1, r2, . . . , rn−1 ∈ N ∪ {0} as required by Definition 5, according to the factors a a b(ik−1)(2n+1)+n+1 a a in
σ(α). To this end, for all k ∈ {1, 2, . . . , n} with ik ∈ N, let vk,wk ∈ {a, b}

∗ such that σ(ik) = vk a a b
(ik−1)(2n+1)+n+1 a awk.

We define, for every k ∈ {2, 3, . . . , n},

lk :=

|σ(i1 · i2 · [. . .] · ik−1) vk a|, if ik ∈ N
|σ(α)| + 1, else,

and, for every m ∈ {1, 2, . . . , n − 1},

rm :=

|σ(i1 · i2 · [. . .] · im−1) vm a a b
(im−1)(2n+1)+n+1 a a|, if im ∈ N

0, else.

It can be verified with little effort that the lk, rm satisfy points (i)–(iii) of Definition 5. In the following, we verify
points (iv) and (v). To this purpose, we introduce a new notion and prove some claims.

Auxiliary Definition. Let τ : N∗ → {a, b}∗ be a morphism with τ(α) = σ(α). Then a segment abxa, x ∈ N, is called
preserved by τ at position j if and only if, for τ(α) = u1 ab

xa u2 and |u1| = j − 1, there exists an l, 0 ≤ l ≤ n − 1, such
that

• |τ(i1 · i2 · [. . .] · il)| ≤ |u1| and

• |τ(i1 · i2 · [. . .] · il · il+1)| ≥ |u1ab
xa|;

otherwise, it is called split by τ at position j.
A segment abxa is called preserved by τ if and only if it is preserved by τ at all its positions in σ(α); otherwise, it is
called split by τ.

Claim 1. For every morphism τ : N∗ → {a, b}∗ with τ(α) = σ(α) and every k ∈ {1, 2, . . . , n}, there exist at least n + 2
different segments abxa, x ∈ I := {(ik − 1)(2n + 1) + 1, (ik − 1)(2n + 1) + 2, . . . , ik(2n + 1)}, that are preserved by τ.

Proof (Claim 1). Let τ be a morphism with τ(α) = σ(α) and let k ∈ {1, 2, . . . , n}. Let l := |α|ik . Thus, there exist
exactly l(2n + 1) positions p1, p2, . . . , pl(2n+1) ∈ N in σ(α) where segments of the form abxa, x ∈ I, begin. Since
there are n variables in α, at most at n − 1 positions such a segment abxa can be split by τ. Thus, there are at least
l(2n+1)− (n−1) positions in α where a segment abxa with x ∈ I is preserved by τ. It is a simple combinatorial insight
that if there are l(2n + 1) coloured balls of which exactly l balls have the same colour, one can choose at maximum
(l−1)(2n+1) balls without having all l balls of one colour. Every ball more than (l−1)(2n+1) gives another complete
set of equally coloured balls. We can transfer these considerations to our setting by identifying balls with positions of
segments having the same colour if they mark the same segment. We have at least l(2n + 1)− (n− 1) positions in σ(α)
where a segment abxa with x ∈ I is preserved by τ, and l(2n + 1) − (n − 1) = (l − 1)(2n + 1) + (n + 2). Consequently,
there are n + 2 segments abxa with x ∈ I that are preserved by τ, since they are preserved at each of their l positions.
q.e.d.(Claim 1).

Claim 2. If there exists a morphism τ : N∗ → {a, b}∗ with τ(α) = σ(α) that does not satisfy (iv) or (v) (cf. Definition 5),
then there exist j1, j2 ∈ var(α), j1 , j2, with σ( j2) = . . . ab( j1−1)(2n+1)+sa . . . for an s ∈ {1, 2, . . . , 2n + 1}. Furthermore,
the segment ab( j1−1)(2n+1)+sa is preserved by τ.

Proof (Claim 2). If (iv) is not satisfied, then there exists a k ∈ {1, 2, . . . , n− 1} with |τ(i1 · i2 · [. . .] · ik)| ≥ lk+1. It follows
from the definition of lk+1 that ik+1 ∈ N. Hence, τ(i1 · i2 · [. . .] · ik) = σ(i1 · i2 · [. . .] · ik) vk+1 a . . . with

vk+1 = ab(ik+1−1)(2n+1)+1aab(ik+1−1)(2n+1)+2a[. . .]ab(ik+1−1)(2n+1)+n.

From Claim 1, we know that n+2 segments abxa with x ∈ {(ik+1−1)(2n+1)+1, (ik+1−1)(2n+1)+2, . . . , ik+1(2n+1)}
are preserved by τ and, hence, also at least one segment ab(ik+1−1)(2n+1)+sa . . . for an s ∈ {1, 2, . . . , n}. Thus, there is a
j ∈ {i1, i2, . . . , ik} with τ( j) = . . . ab(ik+1−1)(2n+1)+sa . . . . If we assume j = ik+1, then
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• τ(ik+1) = . . . ab(ik+1−1)(2n+1)+sa . . . ab(ik+1−1)(2n+1)+sa . . . or

• τ(ik+1) = . . . ab(ik+1−1)(2n+1)+sa . . . and τ( j′) = . . . ab(ik+1−1)(2n+1)+sa . . . for a j′ , ik+1,

because the number of occurrences of j in i1 · i2 · [. . .] · ik is strictly smaller than the number of occurrences of
ab(ik+1−1)(2n+1)+sa in τ(i1 · i2 · [. . .] · ik). However, then the number of occurrences of ab(ik+1−1)(2n+1)+sa in τ(α) is greater
than the number of occurrences of ab(ik+1−1)(2n+1)+sa in σ(α), which contradicts τ(α) = σ(α). Thus, j , ik+1.

If (v) is not satisfied, then there exists a k ∈ {1, 2, . . . , n − 1} with |τ(i1 · i2 · [. . .] · ik)| < rk. It follows from the
definition of rk that ik ∈ N. Hence, τ(ik+1 · ik+2 · [. . .] · in) = . . . awk σ(ik+1 · ik+2 · [. . .] · in) with

wk = b(ik−1)(2n+1)+1aab(ik−1)(2n+1)+2a[. . .]ab(ik−1)(2n+1)+na.

Using an analogous reasoning to the one given in the case of (iv) not being satisfied, we can conclude that there is
a j ∈ {i1, i2, . . . , ik} with j , ik and τ( j) = . . . ab(ik−1)(2n+1)+sa . . . for an s ∈ {n + 2, n + 3, . . . , 2n + 1} and a segment
ab(ik−1)(2n+1)+sa which is preserved by τ. This proves the claim. q.e.d.(Claim 2).

Claim 3. If there exist a morphism τ : N∗ → {a, b}∗ with τ(α) = σ(α) and j1, j2 ∈ var(α), j1 , j2, with τ( j2) =

. . . ab( j1−1)(2n+1)+sa . . . for an s ∈ {1, 2, . . . , 2n + 1} and a segment ab( j1−1)(2n+1)+sa that is preserved by τ, then the
ambiguity partition (E,N) is not maximal.

Proof (Claim 3). For i = j2, let xi := ( j1 − 1)(2n + 1) + s, and for i ∈ N \ { j2}, we choose an xi ∈ {(i − 1)(2n + 1) +

1, (i − 1)(2n + 1) + 2, . . . , i(2n + 1)} such that the segment abxia is preserved by τ. These xi exist due to Claim 1.
Moreover, we define a morphism h : N∗ → N∗ for every y ∈ var(α) as follows:

h(y) :=


t1 · t2 · . . . tk, if τ(y) = w0 ab

xt1aw1 ab
xt2aw2 . . . ab

xtk wk, k ∈ N,
satisfying wi ∈ {a, b}

∗ and wi , . . . ab
x ja . . .

for all i ∈ {0, 1, . . . , k} and all j ∈ N,
ε, else.

If there exists a j2 with τ( j2) = . . . ab( j1−1)(2n+1)+sa . . ., then h, by definition, is nontrivial for N. Furthermore, h(α) =

πN(α) since, for every i ∈ N, there exists exactly one corresponding xi. However, according to condition (ii) of
Definition 2, (E′,N′) as defined when applying the above morphism h to (E,N), is an ambiguity partition satisfying
|E′| > |E| and |N′| < |N |. This contradicts the assumption of (E,N) being maximal (cf. Definition 3). q.e.d.(Claim 3).

Since Claims 2 and 3 imply that any violation of (iv) or (v) of Definition 5 would lead to a contradiction, σ is
moderately ambiguous for α. �

In addition to the facts that Theorem 9 provides an algorithmically verifiable characteristic condition on a vital problem
regarding the existence of morphisms with a restricted ambiguity and, furthermore, implies the equivalent result for
the weaker requirement of factor-preserving ambiguity, we consider two other aspects of it quite remarkable. Firstly,
it confirms that ambiguity partitions are indeed a crucial tool when investigating the ambiguity of erasing morphisms,
since they cannot only be used to give sufficient criteria on the subject (cf. Corollary 1) and characteristic criteria for
special cases (cf. Theorem 6), but are also capable of expressing a key phenomenon in this field of study.

Secondly, it establishes a quite remarkable and counter-intuitive difference between the ambiguity of erasing and
nonerasing morphisms. As demonstrated by Freydenberger et al. [1], the existence of a moderately ambiguous non-
erasing morphism σ for a pattern implies the existence of an unambiguous nonerasing morphism σ′. More technically,
it can be shown that σ can be turned into σ′ by applying some minor yet sophisticated changes that depend on the
structure of the pattern in question (see Reidenbach [9] for a detailed discussion of this topic). It is also important to
note that the morphisms σ and σ′ both use a binary target alphabet; hence, the existence of such morphisms – which
characterises the succinct patterns, cf. Theorem 3 – exclusively depends on the pattern and not on the size of Σ (pro-
vided that Σ contains at least two letters). In contrast to these observations, Theorem 9 demonstrates that the existence
of moderately ambiguous erasing morphisms does not imply the existence of unambiguous erasing morphisms:

Corollary 2. Let Σ be an alphabet. There exists an α ∈ N+ and a morphism σ : N∗ → Σ∗ such that σ is moderately
ambiguous for α, but no morphism is unambiguous for α.
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P. Directly from Schneider [14] (Theorem 5.1) and Theorem 9 since the example pattern in the proof of Theo-
rem 5.1 in [14] is morphically unerasable. For the case |Σ| = 2, Example 2 can be consulted. �

Hence, the main result of our paper also shows that the technical concepts used by Freydenberger et al. [1] to turn a
moderately ambiguous morphism into an unambiguous one necessarily fail for erasing morphisms. Since this insight
is rather unexpected, it is also surprising that Theorem 9 is alphabet-independent, whereas any characterisation of the
set of those patterns that have an unambiguous erasing morphism must incorporate the size of Σ (as demonstrated by
Example 2 and to be further addressed by Section 5).

We wish to conclude this section with an insight into the complexity of the problem of deciding on the existence
of moderately ambiguous morphisms:

Corollary 3. Let Σ be an alphabet, |Σ| ≥ 2. The problem of deciding, for any given α ∈ N+, on whether there is an
erasing morphism σ : N∗ → Σ∗ that is moderately ambiguous for α, is NP-complete.

P. Corollary 3 directly follows from Theorems 4.1 and 4.3 by Schneider [14] and Theorem 9. �

This nicely contrasts with the recent result by Holub [4], which implies that there is a polynomial-time procedure
deciding on the existence of unambiguous nonerasing morphisms.

As briefly mentioned above, we now study another fundamental property of those patterns that can be used to
prove Corollary 2.

5. Patterns with Finitely Many Unambiguous Morphisms

Once the existence of morphisms with a restricted ambiguity has been established for a given pattern, it is a natural
problem to investigate the number of such morphisms. Since the existence of one moderately ambiguous morphism
for a given pattern immediately implies an infinite number of such morphisms (the morphism used to prove Theorem 9
can easily be generalised), we now study the above-mentioned topic with regard to a maximal restriction of ambiguity,
i. e. unambiguity. To this end, we introduce the following notation:

Definition 6. Let Σ be an alphabet and α ∈ N+. Then UNAMBΣ(α) is the set of all σ(α), where σ : N∗ → Σ∗ is a
morphism that is unambiguous for α, and UNAMBNE,Σ(α) is the set of all σ(α), where σ : N∗ → Σ∗ is a morphism
that is nonerasing and unambiguous for α.

We wish to point out that the sets UNAMBΣ(α) and UNAMBNE,Σ(α) do not consist of morphisms, but of morphic
images. This makes sure that all unambiguous morphisms indirectly collected by these sets necessarily differ on
variables that are contained in var(α).

We first consider the case of nonerasing morphisms.

Theorem 10. Let α ∈ N+. Then either, for all alphabets Σ with |Σ| ≥ 2, UNAMBNE,Σ(α) is empty or, for all alphabets
Σ with |Σ| ≥ 2, UNAMBNE,Σ(α) is infinite.

P. Theorem 10 by Freydenberger et al. [1] states that UNAMBNE,Σ(α) = ∅ for prolix patterns α. For any succinct
pattern α, Definition 21 in [1] introduces a morphism σsu

α : N∗ → {a, b}∗ by, for every k ∈ N,

σsu
α (k) :=


ab3ka ab3k+1a ab3k+2a , ∀ i : k , min L∼i ∧ ∀ i′ : k , min R∼i′ ,
ba3kb ab3k+1a ab3k+2a , ∀ i : k , min L∼i ∧ ∃ i′ : k = min R∼i′ ,
ab3ka ab3k+1a ba3k+2b , ∃ i : k = min L∼i ∧ ∀ i′ : k , min R∼i′ ,
ba3kb ab3k+1a ba3k+2b , ∃ i : k = min L∼i ∧ ∃ i′ : k = min R∼i′ ,

where the L∼i and R∼i′ are equivalence classes over var(α) and depend on the structure of α. This morphism is unam-
biguous for α (cf. Theorem 16 in [1]). However, the proof for Theorem 16 in [1] does not make use of the actual
values 3k, 3k + 1 and 3k + 2, but it is only required that, for every k, these three values are unique. Hence, we can
modify σsu

α in infinitely many ways by substituting 3nk for 3k, 3nk + 1 for 3k + 1, 3nk + 2 for 3k + 2, where n ∈ N is
arbitrarily chosen. The resulting morphism is then still unambiguous for α. �
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If we study the equivalent question for the ambiguity of erasing morphisms, we can observe a novel phenomenon
that establishes a further difference to the case of nonerasing morphisms. More precisely, for certain patterns α, the
cardinality of UNAMBΣ(α) can be finite, and this essentially depends on the size of Σ:

Theorem 11. Let k ∈ N. Let Σk,Σk+1,Σk+2 be alphabets with k, k + 1, k + 2 letters, respectively. There exists an
αk ∈ N+ such that

(i) |UNAMBΣk (αk)| = 0,
(ii) |UNAMBΣk+1 (αk)| = m for an m ∈ N, and

(iii) UNAMBΣk+2 (αk) is an infinite set.

P. We define αk as follows:
αk := β1β2 . . . βk+1βk+1βk . . . β1

with
βi :=

∏
( j,m)∈

{1,2,...,k+1}×{le,ri}\{(i,le)}

x{(i,le),( j,m)} · i ·
∏
( j,m)∈

{1,2,...,k+1}×{le,ri}\{(i,ri)}

x{(i,ri),( j,m)},
2

where, for all indices S , the xS are distinct variables taken from N \ {1, 2, . . . , k + 1}.
For instance,

α2 = x{(1,le),(1,ri)} · x{(1,le),(2,le)} · x{(1,le),(2,ri)} · x{(1,le),(3,le)} · x{(1,le),(3,ri)} · 1 ·
x{(1,ri),(1,le)} · x{(1,ri),(2,le)} · x{(1,ri),(2,ri)} · x{(1,ri),(3,le)} · x{(1,ri),(3,ri)} ·

x{(2,le),(1,le)} · x{(2,le),(1,ri)} · x{(2,le),(2,ri)} · x{(2,le),(3,le)} · x{(2,le),(3,ri)} · 2 ·
x{(2,ri),(1,le)} · x{(2,ri),(1,ri)} · x{(2,ri),(2,le)} · x{(2,ri),(3,le)} · x{(2,ri),(3,ri)} ·

x{(3,le),(1,le)} · x{(3,le),(1,ri)} · x{(3,le),(2,le)} · x{(3,le),(2,ri)} · x{(3,le),(3,ri)} · 3 ·
x{(3,ri),(1,le)} · x{(3,ri),(1,ri)} · x{(3,ri),(2,le)} · x{(3,ri),(2,ri)} · x{(3,ri),(3,le)} ·

x{(3,le),(1,le)} · x{(3,le),(1,ri)} · x{(3,le),(2,le)} · x{(3,le),(2,ri)} · x{(3,le),(3,ri)} · 3 ·
x{(3,ri),(1,le)} · x{(3,ri),(1,ri)} · x{(3,ri),(2,le)} · x{(3,ri),(2,ri)} · x{(3,ri),(3,le)} ·

x{(2,le),(1,le)} · x{(2,le),(1,ri)} · x{(2,le),(2,ri)} · x{(2,le),(3,le)} · x{(2,le),(3,ri)} · 2 ·
x{(2,ri),(1,le)} · x{(2,ri),(1,ri)} · x{(2,ri),(2,le)} · x{(2,ri),(3,le)} · x{(2,ri),(3,ri)} ·

x{(1,le),(1,ri)} · x{(1,le),(2,le)} · x{(1,le),(2,ri)} · x{(1,le),(3,le)} · x{(1,le),(3,ri)} · 1 ·
x{(1,ri),(1,le)} · x{(1,ri),(2,le)} · x{(1,ri),(2,ri)} · x{(1,ri),(3,le)} · x{(1,ri),(3,ri)}.

Note that, e. g., x{(1,le),(2,ri)} = x{(2,ri),(1,le)} since {(1, le), (2, ri)} = {(2, ri), (1, le)}. Hence, |var(α2)| = 18. With

x{(1,le),(1,ri)} := 4, x{(1,le),(2,le)} := 5, x{(1,le),(2,ri)} := 6,
x{(1,le),(3,le)} := 7, x{(1,le),(3,ri)} := 8, x{(1,ri),(2,le)} := 9,
x{(1,ri),(2,ri)} := 10, x{(1,ri),(3,le)} := 11, x{(1,ri),(3,ri)} := 12,
x{(2,le),(2,ri)} := 13, x{(2,le),(3,le)} := 14, x{(2,le),(3,ri)} := 15,
x{(2,ri),(3,le)} := 16, x{(2,ri),(3,ri)} := 17, x{(3,le),(3,ri)} := 18,

α2 looks as follows:

α2 = 4 · 5 · 6 · 7 · 8 · 1 · 4 · 9 · 10 · 11 · 12 · 5 · 9 · 13 · 14 · 15 · 2 · 6 · 10 · 13 · 16 · 17 ·
7 · 11 · 14 · 16 · 18 · 3 · 8 · 12 · 15 · 17 · 18 · 7 · 11 · 14 · 16 · 18 · 3 · 8 · 12 · 15 · 17 · 18 ·
5 · 9 · 13 · 14 · 15 · 2 · 6 · 10 · 13 · 16 · 17 · 4 · 5 · 6 · 7 · 8 · 1 · 4 · 9 · 10 · 11 · 12.

2Note that the order of the pairs ( j,m) ∈ {1, 2, . . . , k + 1} × {le, ri} \ {(i, le)} can be arbitrarily chosen when composing βi. The same holds for the
order of the pairs ( j,m) ∈ {1, 2, . . . , k + 1} × {le, ri} \ {(i, ri)}.
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This example may be consulted for a better understanding of the proof although the subsequent argumentation deals
with the general pattern αk.

Now, let N := {1, 2, . . . , k + 1} and E := var(αk) \ N. The morphism h : N∗ → N∗, defined by h(i) := βi for every
i ∈ N, h(i); = ε for every i ∈ E, is nontrivial and satisfies h(αk) = αk. Thus, according to Definition 2, (E,N) is an
ambiguity partition for αk.

ad (i). W. l. o. g., let Σk := {1, 2, . . . , k}. Assume to the contrary that there exists an unambiguous morphism
σ : N∗ → Σ∗k for αk. Then, according to Theorem 8, σ(e) = ε for every e ∈ E. Thus, one of the following cases must
occur:

Case 1: For every n ∈ N, σ(n) , ε. Since N contains k + 1 variables, but Σk consists of k letters only, there must be
i, j ∈ N, i , j, and a y ∈ Σk such that σ(i) = ywi and σ( j) = yw j with wi,w j ∈ Σ∗k. But then the morphism τ : N∗ → Σ∗k,
defined by τ(x{(i,le),( j,le)}) := y, τ(i) := wi, τ( j) := w j, τ(n) := σ(n) for every n ∈ N \ {i, j} and τ(e) := ε for every
e ∈ E \ {x{(i,le),( j,le)}}, satisfies τ(αk) = σ(αk) and, thus, contradicts σ being unambiguous for αk.

Case 2: There exists an n ∈ N with σ(n) = ε. If n = 1, then the morphism τ : N∗ → Σ∗k, defined by τ(1) = σ(2),
τ(2) = ε, τ(n′) = σ(n′) for all n′ ∈ N \ {1, 2}, τ(e) := ε for all e ∈ E, satisfies τ(αk) = σ(αk) and, thus, contradicts
σ being unambiguous for αk. If n > 1, then the morphism τ : N∗ → Σ∗k, defined by τ(n) := σ(n − 1), τ(n − 1) = ε,
τ(n′) := σ(n′) for all n′ ∈ N \ {n − 1, n}, τ(e) := ε for all e ∈ E, satisfies τ(αk) = σ(αk) and, thus, contradicts σ being
unambiguous for αk.

Thus, there is no unambiguous morphism σ : N∗ → Σ∗k for αk.

ad (ii). W. l. o. g., let Σk+1 := {1, 2, . . . , k + 1}. Then πN(αk) ∈ UNAMBΣk+1 (αk), since every e ∈ E occurs four
times in αk, whereas every n ∈ N occurs only two times, and since πN(αk) is succinct and, thus, the only morphism
satisfying h(πN(αk)) = πN(αk) is the trivial one (cf. Theorem 2). Now, let σ : N∗ → Σ∗k+1 be a morphism. If σ(e) , ε
for an e ∈ E, σ is ambiguous for αk (cf. Theorem 8). Hence, let σ(e) = ε for every e ∈ E. Assume that |σ(n)| > 1
for some n ∈ N. Then, for every i ∈ N \ {n}, there exist ai ∈ Σk+1 and wi ∈ Σ∗k+1 such that σ(i) = aiwi, and there exist
ale, ari ∈ Σk+1, wn ∈ Σ∗k+1 such that σ(n) = alewnari. Since ale, ari and the ai, i ∈ N \ {n}, stand for k + 2 letters, but
|Σk+1| = k + 1, one of the following cases must occur:

Case 1: ale = ari. Then, the morphism τ : N∗ → Σ∗, defined by τ(x{(n,le),(n,ri)}) := ale, τ(n) := wn and τ(i) := σ(i)
for all i ∈ var(αk) \ {n, x{(n,le),(n,ri)}}, contradicts σ being unambiguous for αk, since τ(αk) = σ(αk), but τ(n) , σ(n).

Case 2: ale = a j for some j ∈ N \ {n}. Then, the morphism τ : N∗ → Σ∗, defined by τ(x{(n,le),( j,le)}) := ale,
τ(n) := wnari, τ( j) := w j and τ(i) := σ(i) for all i ∈ var(αk) \ {n, j, x{(n,le),( j,le)}}, contradicts σ being unambiguous for
αk, since τ(αk) = σ(αk), but τ( j) , σ( j).

Case 3: ari = a j for some j ∈ N \ {n}. Then, the morphism τ : N∗ → Σ∗, defined by τ(x{(n,ri),( j,le)}) := ari,
τ(n) := alewn, τ( j) := w j and τ(i) := σ(i) for all i ∈ var(αk) \ {n, j, x{(n,ri),( j,le)}}, contradicts σ being unambiguous for
αk, since τ(αk) = σ(αk), but τ( j) , σ( j).

Case 4: a j = am for some j,m ∈ N \ {n}, j , m. Then, the morphism τ : N∗ → Σ∗, defined by τ(x{( j,le),(m,le)}) := a j,
τ( j) := w j, τ(m) := wm and τ(i) := σ(i) for all i ∈ var(αk) \ { j,m, x{( j,le),(m,le)}}, contradicts σ being unambiguous for
αk, since τ(αk) = σ(αk), but τ( j) , σ( j).

Consequently, only morphisms σ : N∗ → Σ∗k+1 with σ(e) = ε and for every e ∈ E and σ(n) ∈ Σk+1 for every
n ∈ N can be unambiguous for αk. Since there are only finitely many σ(α) for such morphisms σ and since πN(αk) ∈
UNAMBΣk+1 (αk), (ii) follows.

ad (iii): W. l. o. g., let Σk+2 := {1, 2, . . . , k+2}. For every n, let σn : N∗ → Σ∗k+2 be a morphism defined by σn(i) := i,
1 ≤ i ≤ k, and σn(k + 1) := (k + 1) · kn · (k + 2). For instance, σ3(α2) = 1 · 2 · 3 · 2 · 2 · 2 · 4 · 3 · 2 · 2 · 2 · 4 · 2 · 1.

We show that, for every n ∈ N, σn(αk) ∈ UNAMBΣk+2 (αk). This implies (iii). Let n ∈ N. Assume to the contrary
that there exists a morphism τ : N∗ → Σ∗k+2 with τ(αk) = σn(αk) and τ( j) , σn( j) for a j ∈ var(αk).

Claim 1. For every i ∈ {1, 2, . . . , k − 1}, τ(i) = σn(i). (Since αk = 1 . . . 2 . . . [. . .]k − 1 . . . k − 1 . . . k − 2 . . . [. . .]1.)

Claim 2. For every e ∈ E and n ∈ N \ {k}, τ(e) , . . . n . . . . (Since every e ∈ E occurs four times in αk, but n occurs
only two times in σn(αk).)

Due to Claim 1, τ(βkβk+1βk+1βk) = σn(βkβk+1βk+1βk) = k · (k + 1) · kn · (k + 2) · (k + 1) · kn · (k + 2) · k must be
satisfied. Because of Claim 2, for every e ∈ E and m ∈ {k + 1, k + 2}, τ(e) , . . .m . . . . Therefore, it can be verified
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by straightforward considerations on the structure of α that τ(k) or τ(k + 1) must equal σn(k + 1). In both cases, all
occurrences of k except for two are covered by τ(π{1,2,...,k}(α)) or τ(π{1,2,...,k−1,k+1}(α)). Thus, only τ(k) = σn(k) and
τ(k + 1) = σn(k + 1) is possible, since every e ∈ E occurs four times in αk, which implies τ(e) , k. This contradicts
σn being ambiguous for αk, and therefore σn(αk) ∈ UNAMBΣk+2 (αk). �

6. Connections to NE-pattern Languages

In this final main section of our paper we wish to study a topic that, after the particularly strong result in Theo-
rem 9, remains as the most fundamental open problem on erasing morphisms with a restricted ambiguity, namely a
characterisation of those patterns that have an unambiguous erasing morphism. As a matter of fact, the main result of
the present section can be understood as such a characterisation, but the immediate usefulness of the result is limited.
Nevertheless, our examinations reveal some enlightening and rather counter-intuitive insights that might be useful for
further investigations.

While the existence of a relation between the ambiguity of erasing morphisms and certain properties of E-pattern
languages (as, e. g., demonstrated by Condition 1 and Theorem 7) is by no means surprising, our characterisation
shall demonstrate likewise deep connections between the main subject of our paper and vital properties of NE-pattern
languages. It reads as follows:

Theorem 12. Let Σ be an alphabet, and let α ∈ N+. For any partition (U,V) of P(var(α)) \ {∅}, let

Lα,U,V :=
⋃
u∈U

LNE,Σ(πu(α)) ∩
⋃
v∈V

LNE,Σ(πv(α)).

There is no unambiguous word in LE,Σ(α) \ {ε} if and only if there is no unambiguous word in LE,Σ(α) \ ({ε} ∪ Lα,U,V ).

P. It is sufficient to show that every word in Lα,U,V is ambiguous for α. Hence, for any u ∈ U, let w be any word in
LNE,Σ(πu(α)). Thus, there is a nonerasing morphism σ : N∗ → Σ∗ with σ(πu(α)) = w. If, for a v ∈ V , w ∈ LNE,Σ(πv(α)),
then there additionally is a nonerasing morphism τ : N∗ → Σ∗ with τ(πv(α)) = w. We define a morphism σ′ : N∗ → Σ∗

by, for every x ∈ N,

σ′(x) :=

σ(x) , x ∈ var(πu(α)),
ε , else,

and a morphism τ′ : N∗ → Σ∗ by, again for every x ∈ N,

τ′(x) :=

τ(x) , x ∈ var(πv(α)),
ε , else.

Then σ′(α) = σ(πu(α)) = w = τ(πv(α)) = τ′(α). Furthermore, because of the fact that (U,V) is a partition of
P(var(α)) \ {∅}, it directly follows that u , v and, thus, {x ∈ var(α) | σ′(x) , ε} , {x ∈ var(α) | τ′(x) , ε}.
Consequently, w is ambiguous for α. Since w, u and v were arbitrarily chosen, this directly implies that every word
w ∈ Lα,U,V is ambiguous for α. �

It is a noteworthy property of Theorem 12 that it covers the ambiguity of both erasing and nonerasing morphisms and,
hence, allows a unified view on both topics. However, for the latter case, Theorem 3 already gives a definite answer,
indirectly stating that, for every succinct pattern α, there is no partition (U,V) ofP(var(α))\{∅} such that every word in
LE,Σ(α) \ ({ε} ∪ Lα,U,V ) is ambiguous for α. Thus, we can completely concentrate on prolix patterns when investigating
applicability and consequences of Theorem 12.

From a practical point of view, Theorem 12 is not too helpful yet, as it merely reduces the number of words that
need to be examined with regard to their ambiguity. Thus, it cannot be seen as an applicable characterisation of those
patterns that have an unambiguous erasing morphism. On the other hand, it constitutes a promising starting point
for further research on that topic, asking how U and V have to be be chosen such that Lα,U,V has maximal size and
what a maximal Lα,U,V looks like for a given α. In this regard, it is worth mentioning that example patterns α and sets
U,V ⊆ P(var(α)) \ {∅} can be given where Lα,U,V is a nonempty subset of LE,Σ(α) or even equals LE,Σ(α) \ {ε}.
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Since, for any pattern α, LE,Σ(α) is equivalent to a finite union of NE-pattern languages (see Theorem 2.1 by Jiang
et al. [5]), Theorem 12 shows that the existence of unambiguous erasing morphisms strongly depends on equivalence
and inclusion of certain finite unions of NE-pattern languages (or nonerasing multi-pattern languages, as they are
called by Kari et al. [7]). This is not only a rather counter-intuitive insight, but it also gives an idea of how difficult
the problem of the existence of unambiguous erasing morphisms might be. More precisely, even the decidability of
the inclusion problem for ordinary terminal-free NE-pattern languages is open and includes some prominent open
problems on pattern avoidability (cf. [5]). The inclusion of terminal-free NE-pattern languages is also known to
depend on the size of the target alphabet, which fits very well with what is known for the subject of our paper (see,
e. g., Theorem 11).

The following sufficient condition illustrates how Theorem 12 can be used to find criteria on the nonexistence of
unambiguous erasing morphisms:

Corollary 4. Let Σ be an alphabet, and let α ∈ N+. If there exists a partition (U,V) of P(var(α)) \ {∅} with

LE,Σ(α) \ {ε} =
⋃
u∈U

LNE,Σ(πu(α)) =
⋃
v∈V

LNE,Σ(πv(α)),

then there is no unambiguous word in LE,Σ(α) \ {ε}.

P. Directly from Theorem 12. �

We finally wish to mention that Theorem 12 and Corollary 4 do not need to be based on a partition (U,V) of
P(var(α)) \ {∅}. Alternatively, they could refer to arbitrary disjoint subsets U and V of P(var(α)) \ {∅}.

7. Conclusion and Open Problems

Concerning the ambiguity of erasing morphisms, the partition of patterns into morphically unerasable and erasable
patterns (introduced and studied in Section 3) has similar importance as the partition into succinct and prolix patterns
regarding the ambiguity of nonerasing morphisms: Both partitions characterise a vital property of strings, namely
the (non)existence of moderately ambiguous morphisms (cf. Theorem 9 and Reidenbach [9]). While, in the case of
nonerasing morphisms, this restricted ambiguity can additionally be turned into unambiguity, this does not hold for
erasing morphisms since their ambiguity essentially depends on the size of the target alphabet (cf. Corollary 2 and,
featuring a rather unexpected insight, Theorem 11).

A characterisation of those patterns that have an unambiguous erasing morphism is the main remaining open
problem on the subject of the present paper, and even its mere decidability is still unresolved. Due to the insights
summarised above, it seems evident that any solution to it requires concepts that significantly differ from the tech-
niques used regarding moderate ambiguity. Section 6 reveals fundamental and quite surprising connections between
the ambiguity of erasing morphisms and decision problems for nonerasing multi-pattern languages. An examination
of these topics might be a helpful starting point for future studies.
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