On the index of Simon’s congruence for piecewise testability
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Abstract

Simon’s congruence, denoted ~,,, relates words having the same subwords of length up to n. We show that, over a

k-letter alphabet, the number of words modulo ~,, is in
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1. Introduction

Piecewise testable languages, introduced by Imre Simon
in the 1970s, are a family of star-free regular languages
that are definable by the presence and absence of given
(scattered) subwords [1, 12, 13]. Formally, a language L C
A* is n-piecewise testable if x € L and x ~,, y imply y € L,

where x ~, y 4 2 and y have the same subwords of length
at most n (see next section for all definitions missing in this
introduction). Piecewise testable languages are important
because they are the languages defined by B formulae,
a simple fragment of first-order logic that is prominent in
database queries [4]. They also occur in learning theory [3],
computational linguistics [6], etc.

It is easy to see that ~,, is a congruence with finite index
and Sakarovitch and Simon raised the question of how to
better characterize or evaluate this number [2, p. 110]. Let
us write Ci(n) for the number of ~,, classes over k letters,
i.e.,, when |A| = k. It is clear that Ci(n) > k™ since two
words x,y € AS™ (i.e., of length at most n) are related by
~y, only if they are equal. In fact, this reasoning gives

|
Ck(n)Zk"—i—k‘"_l—l—---—i—k-i-l:ﬁ (1)
(assuming k # 1). On the other hand, any congruence
class in ~,, is completely characterized by a set of subwords
in AS™, hence

n+1

Cr(n) <2751 | (2)

Estimating the size of Cj(n) has applications in descriptive
complexity, for example for estimating the number of n-
piecewise testable languages (over a given alphabet), or for
bounding the size of canonical automata for n-piecewise
testable languages |7, 18, 19].

IPartially supported by Tata Consultancy Services.
2Supported by ANR grant 11-BS02-001-01.
3Supported by DFG grant DI 435/5-2.

Unfortunately the above bounds, summarized as k™ <
Ci(n) < 28" leave a large (“exponential”) gap and it is
not clear towards which side is the actual value leaningE
Eq. () gives a lower bound that is obviously very naive
since it only counts the simplest classes. On the other
hand, Eq. () too makes wide simplifications since not ev-
ery subset of AS™ corresponds to a congruence class. For
example, if aa and bb are subwords of some x then neces-
sarily = also has ab or ba among its length 2 subwords.

Since the question of estimating Cx(n) was raised in [2]
(and to the best of our knowledge) no progress has been
made on the question, until Katai-Urban et al. proved the
following bounds:

Theorem 1.1 (Katai-Urban et al. [10]). For all k >
1

7

if n is even,

kn
3 log k <log Ci(n) < 3"k"log k

k
— < log Ci(n) < 3"k"

if nis odd.
T if n is o

The proof is based on two reductions, one showing
Chre(n +2) > C2(n) for proving lower bounds, and
one showing Cy(n + 2) < (k + 1)?*C*~(n) for proving
upper bounds. For fixed n, Theorem [[.1] allows to esti-
mate the asymptotic value of log Cj(n) as a function of k:
it is in © (k™) or O (k™ log k) depending on the parity of n.
However, these bounds do not say how, for fixed k, Ci(n)
grows as a function of n, which is a more natural question
in settings where the alphabet is fixed, and where n comes
from, e.g., the number of variables in a BY; formula. In
particular, the lower bound is useless for n > k since in
this case k"/3"° < 1.

4Comparing the bounds from Egs. (M) and @) with actual values
does not bring much light here since the magnitude of Cj(n) makes
it hard to compute beyond some very small values of k£ and n, see

Table [B1l
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Our contribution. In this article, we provide the following
bounds:

Theorem 1.2. For all k,n > 1,

n\ k-1 n
(E) log, (E) < logy Ck(n)
k-1
2k — 3
k (71—;71) log, nlog, k.

Thus, for fixed k, log Cx(n) is in ©(n*~!log n). Compared
with Theorem [[L1] our bounds are much tighter for fixed
k (and much wider for fixed n).

The proof of Theorem relies on two new reductions
that allows us to relate Ck(n) with Cj_1 instead of relat-
ing it with Cx(n —2) as in [10]. The article is organized as
follows. Section [ recalls the necessary notations and def-
initions; the lower bound is proved in Section [3 while the
upper bound is proved in Section @l An appendix lists the
exact values of Ci(n) for small n and k that we managed
to compute.

2. Basics

We consider words z,y,w, ... over a finite k-letter al-
phabet Ay = {ai,...,ar} sometimes written more simply
A ={a,b,...}. The empty word is denoted €, concatena-
tion is denoted multiplicatively. Given a word x € A* and
a letter a € A, we write |z| and |z|, for, respectively, the
length of x, and the number of occurrences of a in z.

We write z < y to denote that a word x is a subsequence
of y, also called a (scattered) subword. Formally, x < y iff
x = x1---x¢ and there are words yo,¥y1,-..,ye such that
Yy = YoT1y1 - - Teye. It is well-known that < is a partial
ordering and a monoid precongruence.

For any n € N, we write z ~, y when z and y

have the same subwords of length < n. For example

z % abach ~y Y 4 paaacbb since both words have

{€,a,b, c,aa, ab,ac,ba,bb,bc,cb} as subwords of length
< 2. However z 3 y since = = aba % y. Note that
~g 2D~ D~ D - and that ¢ ~g y holds trivially. It is
well-known (and easy to see) that each ~,, is a congruence
since the subwords of some xy are the concatenations of a
subword of x and a subword of y. Simon defined a piece-
wise testable language as any L C A* that is closed by ~,,
for some n [1]. These are exactly the languages definable
by BX1(<,a,b,...) formulae |4], i.e., by Boolean combina-
tions of existential first-order formulae with monadic pred-
icates of the form a(), stating that the i-th letter of a word
is a. For example, L = A*aA*bA* = {x € A* | ab < z} is
definable with the following 3; formula:

Fi:Fji<jnai) Ab(g).

The index of ~y,. Since there are only finitely many words
of length < n, the congruence ~,, partitions Aj in finitely
many classes, and we write Cx(n) for the number of such
classes, i.e., the cardinal of A} /~,,.

The following is easy to see:

Ciln)=n+1, Cp0)=1, Cp(1)=2%. (3)
Indeed, for words over a single letter a, x ~, y iff 2| =
ly| < nor |z] > n < |y|, hence the first equality. The
second equality restates that ~g is trivial, as noted above.
For the third equality, one notes that x ~ y if, and only
if, the same set of letters is occurring in x and y, and that

there are 2¥ such sets of occurring letters.

3. Lower bound

The first half of Theorem is proved by first es-
tablishing a combinatorial inequality on the Cj(n)’s
(Proposition B3) and then using it to derive Proposi-

tion [3.4]
Consider two words z,y € A* and a letter a € A.

Lemma 3.1. If x ~,, y, then min(|z|,,n) = min(|y|,,n).

PROOF (SKETCH). If |z, = p < n then a? < x % aP*l.
From z ~,, y we deduce a? < y %# a?™!, hence |y|, = p. O

Fix now k > 2, let A = Ay = {a1,...,ar} and assume
T ~n oy If |x|ak = p < n, then z is some zoarx:1 - apTp
with @; € A} _| for i =0,...,p. By Lemma B.1] y too is
some yoary: - - - axYp with y; € A7_,.

Lemma 3.2. z; ~,_p y; foralli=0,...,p.

def
PROOF. Suppose w < ; and |w| < n —p. Let w' =

ajwal . Clearly v’ < z and thus w' < y since & ~;, y

and |w'| <n. Now v’ = ajwal " < y entails w < y;.
With a symmetric reasoning we show that every sub-

word of y; having length < n — p is a subword of x; and

we conclude ; ~yn—p Y- O
Proposition 3.3. Fork >2,Cx(n) >3 CPH(n—p).

ProoOF. For words & = xo9arZ1 ...Tp—1arTp With exactly
p < n occurrences of ax, we have Ck_1(n — p) possi-
ble choices of ~,_, equivalence classes for each z; (i =
0,...,p). By Lemma [3.2] all such choices will result in £,
words, hence there are exactly C,’c’f} (n—p) classes of words
with p < n occurrences of a;. By Lemma[31] these classes
are disjoint for different values of p, hence we can add the
C}fi (n—p)’s. There remain words with p > n occurrences
of aj, accounting for at least 1, i.e., C]?fll (0), additional
class. O

Proposition 3.4. For all k,n > 0:

togy i) > ()" 1oy (7). (4)



PrOOF. Eq. @) holds trivially when log,(%) < 0. Hence
there only remains to consider the cases where n > k.
We reason by induction on k. For k = 1, Eq. (@) gives
logy C1(n) =logg(n+1) > loggn = (%)O log, (2). For the
inductive case, Proposition B3 yields Cy.y1(n) > Cﬁ“(n—
p) for all p € {0,...,n}. For p = {kLHJ this yields

logy Ciy1(n) > (p + 1) logy Cr(n — p)

>(p+1) <¥)k110g2 ("kp>

by ind. hyp., noting that n —p > 0,

>_n _n killo _n
“k+1\k+1 82\ %k +1

since 72 > 5 > 1

3

(N e (L
“\kr1) k1

as desired. O

+
—

4. Upper bound

The second half of Theorem [[L2 is again by establishing
a combinatorial inequality on the Cj(n)’s (Proposi-
tion [£3) and then using it to derive Proposition 4

Fix £k > 0 and consider words in A}. We say that a
word x is rich if all the k letters of A occur in it, and
that it is poor otherwise. For ¢ > 0, we further say that
x is f-rich if it can be written as a concatenation of ¢ rich
factors (by extension “z is O-rich” means that z is poor).
The richness of x is the largest ¢ € N such that z is £-rich.
Note that Va € Ay : |z|, > £ does not imply that z is
{-rich. We shall use the following easy result:

Lemma 4.1. If 1 and x2 are respectively £1-rich and {2-
rich, then y ~, y' implies T1YxTa ~¢, fnte, T1Y T2

PrOOF. A subword u of x1yxs can be decomposed as u =
u1vus where uy is the largest prefix of u that is a subword
of x and ws is the largest suffix of the remaining ul_lu
that is a subword of zo. Thus v < y since u < x1yza.
Now, since 1 is ¢1-rich, |ui| > ¢ (unless u is too short),
and similarly |ug| > ¢ (unless ...). Finally |v| < n when
|u| < €1 +n+ s, and then v 5 ¢’ since y ~,, ¢/, entailing
u < x1y'x2. A symmetrical reasoning shows that subwords
of w1y'ws of length < ¢1 + n + {5 are subwords of z1yzs
and we are done. 0

The rich factorization of x € Aj is the decomposition
T = 2101 - Tymapy obtained in the following way: if x
is poor, we let m = 0 and y = x; otherwise «x is rich, we
let z1a1 (with a; € Ag) be the shortest prefix of x that is
rich, write z = z1a12’ and let x2as . .. 2,,a,,y be the rich
factorization of the remaining suffix 2’. By construction

m is the richness of z. E.g., assuming k = 3, the following
is a rich factorization with m = 2:

T x1 To Yy

— — ~ =
bbaaabbccccaabbbaa = bbaaabb- c:-‘cccaa:b- bbaa
Note that, by definition, z1, ...,z and y are poor.

Lemma 4.2. Consider two words x,z’ of richness m and

with rich factorizations * = z1a1...Tmamy and ' =
xiay ...z any’ . Suppose that y ~, y' and that x; ~nq1
af foralli=1,...,m. Then & ~pim 2.

PROOF. By repeatedly using Lemma [LT] one shows

112202 .. . TmAmlY ~n4+m ZL'/laliL'QGJQ e Imamy
~aam Thairhas .. Tymamy
! / !
~Np+m 1A1T202 ... T, AmY
~ptm Thaixhas ...z amy’
using the fact that each factor z;a; is rich. O
Proposition 4.3. For alln >0 and k > 2,
n—1
Cr(n) <14+ > K™ (n—m+1)Cror(n—m).
m=0
Furthermore, for k =2,
2n—1 Tl2n 1
Co(n) <2 nm=2—" 5
<23 " )

Proor. Consider two words x, 2’ and their rich factor-
ization z = z101 ... Tmamy and &’ = zid} ... 2ya}y’. By
Lemma they belong to the same ~,, class if £ = m,
Y ~p—m ¥, and a; = a) and z; ~p_pmy1 2} for all
1=1,...,m. Now for every fixed m, there are at most k™
choices for the a;’s, C}* ; (n—m+1) non-equivalent choices
for the x;’s, kCj_1(n —m) choices for y and a letter that
is missing in it. We only need to consider m varying up
to n — 1 since all words of richness > n are ~,-equivalent,
accounting for one additional possible ~,, class.

For the second inequality, assume that k = 2 and Ay =
{a,b}. A word z € A} can be decomposed as a sequence
of m non-empty blocks of the same letter, of the form,
e.g., r = albfa’3pf ... alm (this example assumes that
starts and ends with a, hence m is odd). If two words like
z = al1balbl ... alm and 2/ = a‘ib%alsbli - - alm have
the same first letter a, the same alternation depth m, and
have min(¢;, n) = min(¢},n) for all i = 1,...,m, then they
are ~p-equivalent. For a given m > 0, there are 2 possi-
bilities for choosing the first letter and n™ non-equivalent
choices for the ¢;’s. Finally, all words with alternation
depths m > 2n are ~,-equivalent, hence we can restrict
our attention to 1 < m < 2n — 1. The extra summand
2nY in Eq. (B) accounts for the single class with m > 2n
and the single class with m = 0. 0



Proposition 4.4. For all k,n > 1:

n42k—3

Ci(n) < 2875

)k71 log, nlog, k

PROOF. By induction on k. For k = 2, Eq. (B) yields:

n2n+1

Cz(n) <2 1 <Py

since n > 2,
_ n2n+2 — 22(n+1)10g2 n

2k(%kf3>k71 log, nlog, k )

For the inductive case, Proposition 3] yields:

n—1
Cra1(n) <1+ Y (k+1)"C (n — m + 1)Cr(n — m)
=0
=1+ (k+1)Cy(n)

n—1
+ 3 (k+ )™ FICR (n = m + 1)Cr(n — m)
m=1

n—1
< (k+1)"Cr(n) + Y (k+1)"C (n —m+ 1)
m=1
since Ci(q) < Cr(q+ 1),

n+4+2k—3

< (k+1>n2k( = )killogznlogzk

n—1
mA1)(2=mE2E=2) "1 00 log, Kk
+ Z (k + 1)n2k( +1)( = ) 083 22
m=1
by ind. hyp.,
n—1

<(k+1)" Z ok(m+1)(2=52E=2)" " 10g, nlog, k-

m=0

k—1
Since (m + 1) (w%—?) < (%k—l)k for all m €

k—1 =
{0,...,n — 1} —see[Appendix A}, we may proceed with:
no! 2k—1\k
Cry1(n) < (k+1)" Z ok (2= )  log, nlogy k

m=0
n42k—1

n(k + 1)nek(*%

— 9logy ntn logz(k—i-l)—i-k(%k*l)k log, nlog, k

)k log, nlog, k

< 2<log2 n+n+k(%’€*1)k log, n) log, (k+1)

< k1) (253E=2)  log, nlog, (k+1)

since logan +n < (%’H)klogQ n (see below). This is
the desired bound.

To see that logon +n < (%’H)k log, n, we use
n+42k—1\" n k e n\J
(25=) > (5+) —;(j)'(z)

This completes the proof. O

By combining the two bounds in Propositions B4
and 4] we obtain Theorem [[2] implying that log Ck(n)
is in ©(n*~1log n) for fixed alphabet size k.

5. Conclusion

We proved that, over a fixed k-letter alphabet, Ck(n)
is in 20" "1og n) " This shows that Cy(n) is not doubly
exponential in n as Eq. (2)) and Theorem [Tl would allow.
It also is not simply exponential, bounded by a term of the
form 2/(F)'"" where the exponent ¢ does not depend on k.

We are still far from having a precise understanding of
how C%(n) behaves and there are obvious directions for
improving Theorem For example, its bounds are not
monotonic in k (while the bounds in Theorem [IT] are not
monotonic in n) and it only partially uses the combinato-
rial inequalities given by Propositions and [£3]
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Appendix A. Additional proofs

k—1
—m+42k—2 2k—1\k
We prove that (m + 1) (%) < (nf2k=l)
for all m = 0,...,n — 1, an inequality that was used to
establish Proposition .4

For k > 0 and z,y € R, let
dof (7 +2k—1\F
Fk(m):e(T) )

_ k
Gra(y) & (y+ DF(x —y+1) = (y + 1)(xkk y+ 20"

Let us check that kam(’fTﬂf) = Fiy1(z) for any k > 0 and
x> 0:

k
k+x k+x 1 k+x
= 1) — — 2
G’””(kﬂ) (k+1+ )kk (w ol k)

Cw+2%+1 1 (kzz+2k2+k>k

k+1 kF kE+1
k

_ — 2%k + 1

k+1 Kk (k:+1) (x+2k+1)

k+1

rx+2k+1
Y - .
(Z2) —Ra@. @

We now claim that Gy 4 (y) < Fjy1(z) for all y € [0, z].
For n,k > 2, the claim entails Gx_1 ,(m) < Fy(m), i.e.

k—1
(m+1) (%ﬁkﬂ) < (%’H)k,form:(),...,n—l

as announced.

PROOF (OF THE CLAIM). Let max def ’,j*Tf We prove
that Grz(y) < Ggz(Ymax) and conclude using Eq. (t):
G, is well-defined and differentiable over R, its deriva-
tive is

(z —y +2k)" — (y + Dk(z —y +2k)*!

;c,m(y): Lk
v k=1
= %((%—M%) —(y+ k)
r— k—1
= (y;r—]fk)(:chk—y(knLl)) .

Thus G}, ,(y) is 0 for y = Ymax, is strictly positive for
0 < ¥y < Ymax, and strictly negative for ymax < y < x.
Hence, over [0, z], Gj , reaches its maximum at Ymax. [

Appendix B. First values for Ci(n)

We computed the first values of Cj(n) by a brute-force
method that listed all minimal representatives of ~,, equiv-
alence classes over a k-letter alphabet. Here x is minimal
if © ~, y implies (Jz| < |y| or (Jz| = |y| and = <iex ¥)).
Every equivalence class has a unique minimal representa-
tive. Note that if a concatenation zz’ is minimal then
both z and z’ are. Therefore, when listing the minimal

representatives in order of increasing length, it is possible
to stop when, for some length ¢, one finds no minimal rep-
resentatives. In that case we know that there cannot exist
minimal representatives of length > ¢.

The cells left blank in the table were not computed for
lack of memory.



=1 k=2 k=3 k=4 k=5 k=6 k=17 k=38 k
n=0 1 1 1 1 1 1 1 1| 1
n=1 2 4 8 16 32 64 128 256 || 2%
n=2 3 16 152 2326 52132 | 1602420 | 64529264 | > 173107
n=3 4 68 5312 | 1395588 | 1031153002 | > 23107
n=4 5 312 334202 | > 73-107
n= 6 1560 | 38450477
n==6 7 8528 | > 39107
n="1 8 50 864
n= 9 329 248
n=9 10 2298 592
n=10 11 | 17203264
n=11 12 | 137289920

et | H

Table B.1: Computed values for C(n)
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