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Abstract

New derivative bounds for the rational quadratic Bézier paths are obtained, both
for particular weight vectors and for classes of equivalent parametrisations. A com-
prehensive analysis of our bounds against existing bounds is made.

Key words: Derivative bounds, Quadratic Bézier paths, Rational parametrisation,
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1 Introduction

Let V = {(v0, v1, v2) : vi ∈ R
d} and Ω = {(w0, w1, w2) : wi ∈ R

+}, where d is
a natural number and R

+ = {x ∈ R : x > 0}. The rational quadratic Bézier
path with vertices v ∈ V and weights w ∈ Ω may be written as σ[v, w] where

σ[v, w](t) =
w0(1− t)2v0 + 2w1t(1− t)v1 + w2t

2v2
w0(1− t)2 + 2w1t(1− t) + w2t2

for t ∈ [0, 1]. In terms of derivative bounds, most previous work, and that of
this paper, is concerned with uniform bounds on σ′[v, w] of the tensor product
form

|σ′[v, w](t)| ≤ 2∆τ (v)Φ(w), (1)

for all (v, w) ∈ V × Ω and t ∈ [0, 1]. Here, ∆1(v) = max0≤j≤1 |vj − vj+1|,
∆2(v) = max0≤i,j≤2 |vi − vj| and τ ∈ {1, 2}. A fundamental problem is to
obtain such bounds with the weight function Φ : Ω → R

+ as small as possible.
We shall refer to (1) as a pointwise bound.
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For a given pair (v, w) ∈ V ×Ω it is natural to determine the invariant bound
2∆τ (v)Φ̃(w), associated with the pointwise bound 2∆τ (v)Φ(w), where

Φ̃(w) = min{Φ(w̃) : w̃ ∼ w}.

Here, w̃ ∼ w if there exists λ ∈ R
+ such that

w̃ = diag(1, λ, λ2)w = (w0, λw1, λ
2w2). (2)

It is well-known that the paths σ[v, w] and σ[v, w̃] parametrise the same curve
if w̃ ∼ w. Writing

I(w) =
w1

(w0w2)1/2

we have I(w̃) = I(w) whenever w̃ ∼ w, and I therefore parametrises the space
of equivalence classes.

The purpose of this paper is to obtain new pointwise and invariant bounds for
quadratic Bézier paths. Importantly, we also compare our bounds with existing
bounds in a comprehensive way, clarifying the merits of each approach that
has been taken, with a view to new developments in higher degree cases.

Derivative bounds for the rational Bézier paths were first obtained in Floater
(1992); this work inspired a number of recent papers in which improvements on
the bounds were sought (see Wang et al (1997) for corresponding results for the
rectangular Bézier surface patches). Improved bounds for Bézier paths were
obtained by Hermann (1999), for the important quadratic and cubic cases and
when τ = 1. Hermann’s approach is to employ a Möbius transformation, to
normalise the path form, and capitalise on the induced symmetry to efficiently
analyse the maximum value of the derivative of the normalised form using
elementary calculus. Several authors have made use of an alternative, more
algebraic, approach of degree-elevation and convexity, possibly combined with
the de Casteljau algorithm. Such an approach was used in Selimovic (2005) for
paths of arbitrary degree and τ ∈ {1, 2}. Selimovic’s bounds were improved
upon by Zhang and Ma (2006), for degree less than seven when τ = 1, and
for arbitrary degree when τ = 2.

In certain cases, we provide definitive comparisons of pointwise bounds. In
particular, we shall prove that the pointwise bounds obtained by Zhang and
Ma, for the quadratic case and τ ∈ {1, 2}, are improved upon by our bounds
obtained by degree-elevating to the quartic case (the lowest possible degree).
We also show that Hermann’s pointwise bound is superior to the bound given
by Zhang and Ma in the quadratic case when τ = 1. See the forthcoming
Theorems 4.1 and 4.3. In most cases, however, it is not possible to find a simple
characterisation of the weight space where one pointwise bound is superior to
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another – but in several such cases, we provide a definitive comparison of
the associated invariant bounds. To summarise in an over-simplified manner,
we shall see that the invariant bounds obtained from Hermann’s approach
are not easy to lower using the algebraic arguments mentioned above; see
Theorems 4.2 and 4.4 for some precise statements. In order to be in a position
to make such comparisons, we follow the approach of Hermann to obtain a
new pointwise bound for the quadratic case when τ = 2 (see Theorem 2.1).
It is also necessary to provide a theorem which establishes the full scope of
the degree-elevation and convexity approach; in Section 3, we prove such a
general theorem which confirms that bounds obtained from degree-elevating
and convexity improve as the degree increases, as one would expect. This
general result is applied in the quadratic case; furthermore, we obtain the
associated invariant bounds when the degree is elevated to four and five, albeit
for “small” values of the invariant I in the latter case; see Theorem 3.3. This
is a pertinent case to consider because all existing bounds analysed in this
paper are “sharp” for “large” values of the invariant I. In Section 4 we make
this precise and moreover conclude that the invariant bounds arising from
Hermann’s approach are essentially sharp as the invariant I approaches zero;
these observations are also novel.

2 Bounds from Hermann’s approach

A direct computation yields

1
2
σ′[v, w](t) =

w0w1(1− t)2(v1 − v0) + w0w2t(1− t)(v2 − v0) + w1w2t
2(v2 − v1)

(w0(1− t)2 + 2w1t(1− t) + w2t2)2
.

(3)
For µ ∈ R

+ let Mµ : [0, 1] → [0, 1] denote the Möbius transformation

Mµ(t) = (µ+ (1− µ)t)−1t.

Then σ[v, w](Mµ(t)) = σ[v, w̃](t) where w̃ = (w0, µ
−1w1, µ

−2w2) ∼ w. Choos-
ing µ = (w2/w0)

1/2 and homogeneity has the effect of normalising the weight
w 7→ (1, I(w), 1). Using (3) and the triangle inequality we find that

|σ′[v, w̃](t)|
2∆τ (v)

≤ I(w)(1− t)2 + (3− τ)t(1− t) + I(w)t2

((1− t)2 + 2I(w)t(1− t) + t2)2
. (4)

The effect of this symmetrisation of the weight is that one may now easily
compute exactly the maximum value over [0, 1] of the rational function on the
right-hand side of (4). Indeed, we may immediately restrict our attention to
t ∈ [0, 1

2
] by invariance under t 7→ 1− t, and furthermore

I(w)(1− t)2 + (3− τ)t(1− t) + I(w)t2

((1− t)2 + 2I(w)t(1− t) + t2)2
=

I(w)(1− 2s) + (3− τ)s

(1− 2s+ 2I(w)s)2
,
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where s = t(1 − t) ∈ [0, 1
4
]. It is precisely this reduction in the degree of the

variable that permits a straightforward exact computation of the maximum
value. Elementary considerations using calculus show that

max
s∈[0,1/4]

∣∣∣∣∣
I(w)(1− 2s) + (3− τ)s

(1− 2s+ 2I(w)s)2

∣∣∣∣∣ = Hτ (I(w)), (5)

where H1(I) = max{I, 2(1 + I)−1} and

H2(I) =






(1 + 2I)(1 + I)−2 for I ∈ (0, C0)

1
8
(1− 2I)2(I− 1)−1(1− 2I2)−1 for I ∈ [C0, C1]

I for I ∈ (C1,∞).

Here, C0 = 1
12
(1 +

√
73), C1 = 1

4
(1 +

√
5) and note that 0 < C0 < C1 < 1.

Setting

Θτ (w) = Hτ (I(w))max{(w2

w0
)
1

2 , (w0

w2
)
1

2},
via the chain rule, we have shown the following, due to Hermann (1999) when
τ = 1 using the above, and a new pointwise bound when τ = 2.

Theorem 2.1. For each (v, w) ∈ V × Ω, τ ∈ {1, 2} and t ∈ [0, 1],

|σ′[v, w](t)| ≤ 2∆τ (v)Θτ (w).

It is clear from (5) that Θ2(w) ≤ Θ1(w) for each w ∈ Ω. Thus, our new
bound in Theorem 2.1 for τ = 2 is a strict improvement on what one obtains
from the τ = 1 bound obtained by Hermann combined with the triviality
∆1(v) ≤ ∆2(v). An obvious advantage of the above approach, where a Möbius
mapping is used to transform an arbitrary w ∈ Ω into a weight vector whose
components are functions of the invariant I(w), is that the corresponding
invariant bound is trivial to compute. In the case of the pointwise bounds in
Theorem 2.1, we have Θ̃τ (w) = Hτ (I(w)) since, trivially,

min
λ∈R+

max{λ(w2

w0
)
1

2 , λ−1(w0

w2
)
1

2} = 1

which is attained at λ = (w0/w2)
1/2. As we shall see in the sequel, the invariant

bounds Θ̃1 and Θ̃2 are not easy to lower. 1

1 Of course, there is the potential cost of estimating the maximum value of a prod-
uct of functions by the product of the maximum values of each function. This
provides scope for improvement for “small” values of I(w).
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3 New bounds from degree elevation and convexity

If n ∈ N and αj, βj ∈ R
+ for each 0 ≤ j ≤ n, then we have the following

convexity inequality ∑n
j=0 αj

∑n
j=0 βj

≤ max
0≤j≤n

αj

βj

, (6)

which has been used by a number of authors in obtaining certain pointwise
bounds. We use (6) in our subsequent theorem, which verifies the expected fact
that the bounds obtained by degree-elevation improve as the degree increases.
Although the focus of the current paper is the quadratic case, we state our
result in general since we have not been able to find this in the literature. We
use the notation B

(n)
j (t) = (1− t)n−jtj and adopt the convention that

(
n
j

)
= 0

for j < 0 and j > n.

Theorem 3.1. Suppose a0, . . . , aℓ, b0, . . . , bm ∈ R
+, where ℓ,m ∈ N. Then,

for each n ∈ N with n ≥ max{ℓ,m},
∑ℓ

j=0 ajB
(ℓ)
j (t)

∑m
j=0 bjB

(m)
j (t)

=

∑n
j=0 α

(n)
j B

(n)
j (t)

∑n
j=0 β

(n)
j B

(n)
j (t)

≤ max
0≤j≤n

{
α
(n)
j

β
(n)
j

}
, (7)

where, for each 0 ≤ j ≤ n, α
(n)
j =

∑ℓ
k=0

(
n−ℓ
j−k

)
ak and β

(n)
j =

∑m
k=0

(
n−m
j−k

)
bk.

Furthermore, the sequence (Φn)n≥max{ℓ,m} given by Φn = max0≤j≤n{α(n)
j /β

(n)
j }

is non-increasing and hence convergent.

Proof. The formulae for α
(n)
j and β

(n)
j are well-known and the bound in (7) fol-

lows from (6). To see that (Φn) is non-increasing, first note that α
(n+1)
0 /β

(n+1)
0 =

α
(n)
0 /β

(n)
0 and α

(n+1)
n+1 /β

(n+1)
n+1 = α(n)

n /β(n)
n . Now fix 1 ≤ j ≤ n. Then

α
(n+1)
j =

ℓ∑

k=0

(
n + 1− ℓ

j − k

)
ak =

ℓ∑

k=0

(
n− ℓ

j − k

)
ak +

ℓ∑

k=0

(
n− ℓ

j − k − 1

)
ak

and similarly

β
(n+1)
j =

m∑

k=0

(
n−m

j − k

)
bk +

m∑

k=0

(
n−m

j − k − 1

)
bk.

Using (6) it follows that

α
(n+1)
j

β
(n+1)
j

≤ max

{∑ℓ
k=0

(
n−ℓ
j−k

)
ak

∑m
k=0

(
n−m
j−k

)
bk
,

∑ℓ
k=0

(
n−ℓ

j−k−1

)
ak

∑m
k=0

(
n−m
j−k−1

)
bk

}
= max

{
α
(n)
j

β
(n)
j

,
α
(n)
j−1

β
(n)
j−1

}
≤ Φn.

Taking a maximum over j, it follows that Φn+1 ≤ Φn as claimed.
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Using (3), the triangle inequality and Theorem 3.1 we obtain new pointwise
bounds. In particular, with (ℓ,m) = (2, 4), and the inputs

(a0, a1, a2) = (w0w1, (3− τ)w0w2, w1w2) (8)

and
(b0, b1, b2, b3, b4) = (w2

0, 4w0w1, 4w
2
1 + 2w0w2, 4w1w2, w

2
2),

we obtain the following decreasing sequences of pointwise bounds.

Theorem 3.2. For each (v, w) ∈ V × Ω, τ ∈ {1, 2}, t ∈ [0, 1] and n ≥ 4,

|σ′[v, w](t)| ≤ 2∆τ (v)Φτ,n(w),

where Φτ,n(w) is equal to

max
0≤j≤n

(
n−2
j

)
w0w1 + (3− τ)

(
n−2
j−1

)
w0w2 +

(
n−2
j−2

)
w1w2

(
n−4
j

)
w2

0 + 4
(
n−4
j−1

)
w0w1 + 2

(
n−4
j−2

)
(2w2

1 + w0w2) + 4
(
n−4
j−3

)
w1w2 +

(
n−4
j−4

)
w2

2

and satisfies Φτ,n+1(w) ≤ Φτ,n(w).

The decreasing sequences of bounds, of Theorems 3.1 and 3.2, provide a means
of investigating the limits of the degree-elevation approach to the determina-
tion of bounds. However, for reasons that will become clear, we consider the
cases n ∈ {4, 5} separately and derive the corresponding invariant bounds (for
“small” values of the invariant I(w) only in the latter case) which are new.

Theorem 3.3. For each w ∈ Ω, τ ∈ {1, 2},

Φ̃τ,4(w) = max

{
I(w),

3− τ + 2I(w)

4I(w)
,
3− τ + I(w)

1 + 2I(w)2

}

and, for I(w)2 < 1
6
(5− 3τ +

√
9τ 2 − 48τ + 70),

Φ̃τ,5(w) = max

{
I(w),

3− τ + 3I(w)

1 + 4I(w)
,

3(3− τ) + 4I(w)

2 + 4I(w) + 4I(w)2

}
.

Proof. For n ∈ {4, 5}, 0 ≤ j ≤ n, x0, x1 ∈ R
+ and λ ∈ R

+, let φτ,n,j(x0, x1, λ)
be given by

(
n−2
j

)
1

λx1
+ (3− τ)

(
n−2
j−1

)
+
(
n−2
j−2

)
λx0

(
n−4
j

)
1

λ2x0x1
+ 4

(
n−4
j−1

)
1

λx1
+ 2

(
n−4
j−2

)
(2x0

x1
+ 1) + 4

(
n−4
j−3

)
λx0 +

(
n−4
j−4

)
λ2x0x1

. (9)

Since Φτ,n(w̃) = max0≤j≤n φτ,n,j(
w1

w0
, w2

w1
, λ), where w̃ = (w0, λw1, λ

2w2), we
wish to calculate

min
λ∈R+

max
0≤j≤n

φτ,n,j(x0, x1, λ). (10)
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Note that we have the following useful symmetry property

φτ,n,j(x0, x1, λ) = φτ,n,n−j(
1
x1
, 1
x0
, 1
λ
). (11)

Moreover, when λ = (x0x1)
−1/2 we have φτ,n,j(x0, x1, λ) = φτ,n,n−j(x0, x1, λ).

It is easy to prove that for any x0, x1 ∈ R
+, φτ,n,j(x0, x1, ·) is increasing for

j ∈ {0, 1}, or equivalently using (11), φτ,n,j(x0, x1, ·) is decreasing for j ∈
{n, n− 1}. Therefore, if j ∈ {0, 1} then

max{φτ,n,j(x0, x1, λ), φτ,n,n−j(x0, x1, λ)}

is decreasing for λ ∈ (0, (x0x1)
−1/2) and increasing for λ ∈ ((x0x1)

−1/2,∞).
When n = 4, the remaining function φτ,4,2(x0, x1, λ) is also decreasing for λ ∈
(0, (x0x1)

−1/2) and increasing for λ ∈ ((x0x1)
−1/2,∞). The claimed expression

for Φ̃τ,4 follows. When n = 5, the restriction x0

x1
< 1

6
(5−3τ+

√
9τ 2 − 48τ + 70)

implies φτ,5,2(x0, x1, ·) is increasing, and consequently φτ,5,3(x0, x1, ·) is decreas-
ing. The claimed formula for Φ̃τ,5 now follows as above for n = 4.

The proof above demonstrates that for n ∈ {4, 5} the quantity in (10) is
attained at λ = (x0x1)

−1/2. However for n ≥ 6 this is not necessarily the case
because of the following.

Proposition 3.4. Suppose w ∈ Ω, τ ∈ {1, 2} and n is an even integer greater

than or equal to 6. Then there exists a neighbourhood Nτ,n of zero such that

whenever I(w) ∈ Nτ,n the mapping λ 7→ Φτ,n(w0, λw1, λ
2w2) is not minimised

at λ = (w2/w0)
1/2.

We do not give a full proof of Proposition 3.4 here and simply indicate why it
is true. Firstly, as in the above, let φτ,n,j(x0, x1, λ) be given by the expression in
(9). A direct argument using calculus shows that φτ,n,n/2(x0, x1, λ) has a global
maximum, as function of λ, which is uniquely attained at λ = (x0x1)

−1/2,
provided that n ≥ 6 and x0/x1 is sufficiently small. Now for each j, with
x0 = w1/w0 and x1 = w2/w1, we have that φτ,n,j(x0, x1,

1
(x0x1)1/2

) is equal to

(
n−2
j

)
I(w) + (3− τ)

(
n−2
j−1

)
+
(
n−2
j−2

)
I(w)

(
n−4
j

)
+ 4

(
n−4
j−1

)
I(w) + 2

(
n−4
j−2

)
(2I(w)2 + 1) + 4

(
n−4
j−3

)
I(w) +

(
n−4
j−4

) .

If I(w) ∈ Nτ,n is sufficiently small, by continuity and since

max
0≤j≤n

[(
n− 4

j

)
+ 2

(
n− 4

j − 2

)
+

(
n− 4

j − 4

)]−1(
n− 2

j − 1

)
.

is uniquely attained at j = n/2, it follows that φτ,n,j(x0, x1,
1

(x0x1)1/2
) is uniquely

7



maximised when j = n/2. Since

Φτ,n(w0, λw1, λ
2w2) = max

0≤j≤n
φτ,n,j(x0, x1, λ)

it follows, again by continuity, that this cannot be minimised when λ =
(x0x1)

−1/2, as claimed.

We remark that when the invariant I(w) is “large” (i.e. the complementary
case to Proposition 3.4), all of the invariant bounds considered in this paper
cannot be improved as we demonstrate at the end of the subsequent section.

4 A comparison and evaluation of bounds

We begin with τ = 1 and note that, for each (v, w) ∈ V × Ω and t ∈ [0, 1],
the bound |σ′[v, w](t)| ≤ 2∆1(v)Λ1(w) was proved in Zhang and Ma (2006),
where 2 Λ1(w) = max{w0

w1
, w1

w2
, w1

w0
, w2

w1
}. The following theorem shows that the

pointwise bounds Θ1 (due to Hermann) and Φ1,4 (of Theorem 3.2) are superior
to Λ1.

Theorem 4.1. If w ∈ Ω then Θ1(w) ≤ Λ1(w) and Φ1,4(w) ≤ Λ1(w).

Before offering some remarks and proof of this, we also note the following
comparison of the invariant bounds determined by Θ1,Φ1,4, Φ1,5 and Λ1.

Theorem 4.2. If w ∈ Ω then Λ̃1(w) = max{I(w), I(w)−1}, and

Θ̃1(w) ≤ Φ̃1,4(w) ≤ Λ̃1(w).

If, in addition I(w)2 < 1
6
(2 +

√
31), then we have

Θ̃1(w) ≤ Φ̃1,5(w) ≤ Φ̃1,4(w) ≤ Λ̃1(w).

Given Theorem 4.1 it is natural to compare Θ1 and Φ1,4 (and, of course,
Φ1,n for n ≥ 5 in light of Theorem 3.2). We note that it is possible to find
weights w ∈ Ω for which Φ1,4(w) < Θ1(w), however, a full characterisation
of such weights is not easy to describe. We also remark that Theorem 4.2
highlights that the invariant bounds are significantly easier to compare. As
I(w) approaches zero, notice that the invariant bounds Λ̃1(w) and Φ̃1,4(w)
blow-up to infinity. Elevating the degree once more removes this singularity
from the invariant bound – as is evident from the expression for Φ̃1,5(w) in
Theorem 3.3.
2 The commonly used notation in the literature for Λ1(w) is max{ω, ω−1}, where
ω = maxi

wi
wi+1

; this notation is misleading because the two quantities are different.
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Proof of Theorem 4.1. Observe that

Λ1(w) = max{I(w), I(w)−1}max{(w2

w0
)
1

2 , (w0

w2
)
1

2},

and since 2(1 + I)−1 ≤ I
−1 for I ∈ (0, 1], it follows that Θ1(w) ≤ Λ1(w). To

see that Φ1,4(w) ≤ Λ1(w), note that

Φ1,4(w) = max

{
w1

w0

,
w1

w2

,
1

2

(
1 +

w2

w1

)
,
1

2

(
1 +

w0

w1

)
,
w0w1 + 4w0w2 + w1w2

4w2
1 + 2w0w2

}

and so it clearly suffices to check that

w0w1 + 4w0w2 + w1w2

4w2
1 + 2w0w2

≤ max

{
w0

w1

,
w1

w2

,
w1

w0

,
w2

w1

}
.

Equivalently, by setting x0 = w1/w0 and x1 = w2/w1, we show that

1

x1
+ 4 + x0 ≤ 2

(
2
x0

x1
+ 1

)
max

{
x0, x1,

1

x0
,
1

x1

}
(12)

for all x0, x1 ∈ R
+. Note that (12) is obvious when x0 ≥ x1. When 1 ≤ x0 ≤ x1

we have

1

x1
+ 4 + x0 ≤ 5 + x0 ≤ 4x0 + 2x1 = 2

(
2
x0

x1
+ 1

)
max

{
x0, x1,

1

x0
,
1

x1

}

and using the symmetry (x0, x1) 7→ (1/x1, 1/x0) it follows that (12) holds
for x0 ≤ x1 ≤ 1 as well. For the remaining case x0 ≤ 1 ≤ x1, first assume
x1 ≤ 1/x0. Since x0 + 1/x0 ≥ 2 it follows that

1

x1
+ 4 + x0 ≤

1

x1
+

(
3

x1
+

2

x0

)
= 2

(
2
x0

x1
+ 1

)
max

{
x0, x1,

1

x0
,
1

x1

}
.

Similarly, when x1 ≥ 1/x0 we use x1 + 1/x1 ≥ 2 to obtain

1

x1

+ 4 + x0 ≤ (3x0 + 2x1) + x0 = 2

(
2
x0

x1

+ 1

)
max

{
x0, x1,

1

x0

,
1

x1

}
,

which completes our proof of (12).

Proof of Theorem 4.2. It is straightforward to check that

min
λ∈R+

max{λx0, λx1, (λx0)
−1, (λx1)

−1} = max{(x0

x1
)
1

2 , (x1

x0
)
1

2}

which is attained when λ = (x0x1)
−1/2. Consequently we obtain the claimed

formula for Λ̃1(w) by taking x0 = w1/w0 and x1 = w2/w1. By Theorems 3.2
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and 4.1, it remains to show that Θ̃1(w) ≤ Φ̃1,5(w) whenever I(w) < 1; that is,

2

1 + I
≤ max

{
2 + 3I

1 + 4I
,

3 + 2I

1 + 2I+ 2I2

}

whenever I < 1. This follows because the quadratic I 7→ 2I2−I−1 is negative
for I ∈ (0, 1).

We conclude this section with some comparisons regarding the case τ = 2.
The best pointwise bounds appear to be due to Zhang and Ma (2006), who
followed a number of authors in using the de Casteljau algorithm for rational
Bézier curves, due to Farin (1983). In the quadratic case, the bound in Zhang
and Ma (2006) follows from

|σ′[v, w](t)| ≤ 2∆2(v)
(w0(1− t) + w1t)(w1(1− t) + w2t)

(w0(1− t)2 + 2w1t(1− t) + w2t2)2
. (13)

In particular, considering separately the cases

w1(1−t)+w2t ≥ w0(1−t)+w1t and w1(1−t)+w2t ≤ w0(1−t)+w1t (14)

and using Theorem 3.1, one obtains |σ′[v, w](t)| ≤ 2∆2(v)Λ2(w), which is due
to Zhang and Ma (2006). Here, Λ2(w) = max{w1

w0
, w1

w2
, 1
2
(1+ w2

w1
), 1

2
(1+ w0

w1
)}. We

note that a better bound is easily obtained by slightly modifying the above
argument. In particular, bypassing considerations like (14), and using Theorem
3.1 on the right-hand side of (13) already improves the result in Zhang and
Ma (2006). However, this may be bettered still; from this approach, the input
coefficient vector for the numerator would be

(w0w1, w0w2 + w2
1, w1w2)

which has first and third components equal, and second component greater

than, the respective components of the input in (8) which led to Theorem 3.2
(the denominators are, of course, the same). We conclude that the approach
based on the de Casteljau algorithm in Zhang and Ma (2006) does not appear
to yield better results than Theorem 3.2. In particular, we have shown the
following.

Theorem 4.3. For each w ∈ Ω, Φ2,4(w) ≤ Λ2(w).

We remark that Λ2(w) (and hence Φ2,n(w) for each n ≥ 4) beats the bound
Θ2(w), of Theorem 2.1, for weights w in a non-trivial, but difficult to describe,
subset of Ω. At the level of the invariant bounds, the picture is clearer and we
have the following analogue of Theorem 4.2.
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Theorem 4.4. Let w ∈ Ω. Then Λ̃2(w) = max{I(w), 1
2
(1 + I(w)−1)} and

Θ̃2(w) ≤ Φ̃2,4(w) ≤ Λ̃2(w).

If, in addition I(w)2 < 1
6
(
√
10− 1), then we have

Θ̃2(w) ≤ Φ̃2,5(w) ≤ Φ̃2,4(w) ≤ Λ̃2(w).

Proof. One can compute Λ̃2 in a similar way that we computed Λ̃1 in the proof
of Theorem 4.2; we omit the details. Next, straightforward considerations yield
Θ̃2(w) = Φ̃2,4(w) = I(w) whenever I(w) ∈ [C1,∞). For I(w) ∈ (0, C0], we have
Θ̃2(w) ≤ Φ̃2,4(w) since (2I+ 1)(1 + I)−2 ≤ 1

2
+ 1

4
I
−1 for all I ∈ (0, 1). Finally,

for I ∈ (C0, C1) we have
1
8
(2I−1)2(1− I)−1(2I2−1)−1 ≤ 1

2
+ 1

4
I
−1 because the

quartic I 7→ −8I4 + 12I2 − 3I− 2 is positive on (C0, C1). Therefore Θ̃2(w) ≤
Φ̃2,4(w) whenever I(w) ∈ (C0, C1), and consequently for all weights. It remains
to show that whenever I(w)2 < 1

6
(
√
10 − 1) we have Θ̃2(w) ≤ Φ̃2,5(w). One

can easily check that for such weights w,

Θ̃2(w) =
1 + 2I(w)

(1 + I(w))2
and Φ̃2,5(w) =

3 + 4I(w)

2 + 4I(w) + 4I(w)2

in which case the desired inequality holds because the cubic I 7→ 4I3+I
2−2I−1

is negative for I > 0 with I
2 < 1

6
(
√
10− 1)).

We note that invariant bounds have also been obtained in Zheng (2005) which
correspond to the uniform pointwise bounds |σ′[v, w](t)| ≤ 2∆τ (v)Υτ(w),
where Υτ (w) = (maxiwi/minj wj)

3−τ , obtained by Floater (1992). Zheng
proved that Υ̃τ (w) = max{I(w)3−τ , I(w)τ−3}. These invariant bounds are out-
performed by the Zhang and Ma bounds, Λ̃τ (w), τ ∈ {1, 2}, and hence by all
other invariant bounds of their respective type considered in this paper. Zheng
(2005) also considered the invariant bounds from the general degree bounds
obtained in Floater (1992), however, except for the quadratic case, Zheng
does not provide an explicit formula for these invariant bounds. We point out
that in Bez and Bez (2012/2) we establish certain invariant bounds which are
explicit and improve upon Zheng’s bounds in the general degree case.

We conclude this section by providing certain sharpness considerations in the
case τ = 1. Analogous conclusions are possible when τ = 2; we leave the
details to the reader. Observe that we always have |σ′[v, w](0)| = 2w1

w0
|v1 − v0|

and |σ′[v, w](1)| = 2w1

w2
|v2 − v1|, so if |v1 − v0| = |v2 − v1| then

max
t∈[0,1]

|σ′[v, w](t)| ≥ 2∆1(v)
w1

min{w0, w2}
. (15)
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When I(w) ≥ 1 each of the upper bounds Θ1(w), Φ1,n(w), Λ1(w) coincides
with w1

min{w0,w2}
, which shows sharpness in this pointwise sense. Moreover,

w1

min{w0,w2}
≥ I(w) and therefore, by (15), for weights with I(w) ≥ 1, the

invariant bounds Θ̃1(w), Φ̃1,n(w), Λ̃1(w) coinciding with I(w), are sharp. Im-
portantly, the invariant bound Θ̃1(w) is also sharp at I(w) = 0; to show this
we require the following lemma.

Lemma 4.5. We have mina∈(0,∞)maxt∈[0,1] φ(a, t) = 1, where

φ(a, t) = at(1− t)((1− t)2 + at2)−2.

Proof. Use ∂jφ to denote the jth partial derivative of φ for j ∈ {1, 2}. For each
a > 0 there exists a unique point t(a) ∈ (0, 1) such that ∂2φ(a, t(a)) = 0. Note
that t(1) = 1

2
, a 7→ t(a) is decreasing and maxt∈[0,1] φ(a, t) = φ(a, t(a)). Thus,

it suffices to prove that mina∈(0,∞) φ(a, t(a)) = φ(1, t(1)). This follows from
the mean value theorem and the fact that ∂1φ(a, t(a)) is positive for a > 1
and negative for a < 1.

At I(w) = 0 we 3 have w = (w0, 0, w2). If v is such that v1 − v0 and v2 − v1
are parallel unit vectors, then ∆1(v) = 1 and the invariant bound Θ̃1(w) gives
minw̃∼w maxt∈[0,1] |σ′[v, w](t)| ≤ 4. Writing a = w2/w0 we have from (3) that

|σ′[v, w](t)| = 2at(1− t)

((1− t)2 + at2)2
|v2 − v0| =

4at(1− t)

((1− t)2 + at2)2
,

and from Lemma 4.5 it follows that minw̃∼w maxt∈[0,1] |σ′[v.w](t)| = 4, which

occurs at w̃ = (1, 0, 1). Hence Θ̃1(w) is sharp at I(w) = 0.

5 Conclusions

In this paper, we have established clear and comprehensive comparisons of
both pointwise and invariant bounds for quadratic rational Bézier paths. A
new bound Θ2 is derived, following the approach in Hermann (1999); more-
over, we demonstrated that the invariant bounds Θ̃1 and Θ̃2 are currently the
best known and are difficult to beat using the approach of degree raising and
convexity. This is because after the initial normalisation of the weights, the
arguments leading to the bounds Θ1 and Θ2 cannot possibly be improved.
However, in the cubic case, after an initial normalisation of the weights, the
argument in Hermann (1999) is less tight. Indeed, in significant regions of the

3 Strictly speaking, the weight vector (w0, 0, w2) does not belong to the weight
space Ω under analysis in this paper; however, for such sharpness considerations in
the limiting case of the invariant, it makes sense to allow such weights.
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invariant space, we have shown that the associated invariant bound arising
from

max

{
w0

w1
,
w1

w2
,
w2

w3
,
w1

w0
,
w2

w1
,
w3

w2

}

(which comes from a degree elevation and convexity argument) is smaller than
that obtained from Hermann’s cubic bound (see Bez and Bez (2012/1)). This
highlights the potential for obtaining further improvements on the invariant
bounds for rational Bézier paths of degree 3 and above using degree elevation
and convexity; progress in this direction has already been made in Bez and
Bez (2012/2).
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