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Unambiguous 1-Uniform Morphisms I

Hossein Nevisi∗, Daniel Reidenbach∗

Department of Computer Science, Loughborough University, Loughborough, LE11 3TU,
United Kingdom

Abstract

A morphism σ is unambiguous with respect to a word α if there is no other
morphism τ that maps α to the same image as σ. In the present paper we
study the question of whether, for any given word, there exists an unam-
biguous 1-uniform morphism, i. e., a morphism that maps every letter in the
word to an image of length 1.
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1. Introduction

If, for a morphism σ : ∆∗ → Σ∗ (where ∆ and Σ are arbitrary alphabets)
and a word α ∈ ∆∗, there exists another morphism τ mapping α to σ(α),
then σ is called ambiguous with respect to α; if such a τ does not exist, then
σ is unambiguous. For example, the morphism σ0 : {A,B,C}∗ → {a, b}∗ –
given by σ0(A) := a, σ0(B) := a, σ0(C) := b – is ambiguous with respect to
the word α0 := ABCACB, since the morphism τ0 – defined by τ0(A) := ε
(i. e., τ0 maps A to the empty word), τ0(B) := a, τ0(C) := ab – satisfies
τ0(α0) = σ0(α0) and, for a symbol X occuring in α, τ0(X) 6= σ0(X):

σ0(α0) =

σ0(A)︷ ︸︸ ︷
a

σ0(B)︷ ︸︸ ︷
a

σ0(C)︷ ︸︸ ︷
b

σ0(A)︷ ︸︸ ︷
a

σ0(C)︷ ︸︸ ︷
b

σ0(B)︷ ︸︸ ︷
a = τ0(α0) .︸ ︷︷ ︸

τ0(B)

︸ ︷︷ ︸
τ0(C)

︸ ︷︷ ︸
τ0(C)

︸ ︷︷ ︸
τ0(B)
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In contrast to this, e. g., the morphism σ1 : {A,B,C}∗ → {a, b}∗ – given by
σ1(A) := a, σ1(B) := ab, σ1(C) := b – is unambiguous with respect to α0, as
can be verified with moderate effort.

The potential ambiguity of morphisms is relevant to various concepts in
the combinatorial theory of morphisms, such as pattern languages (see, e. g.,
Mateescu and Salomaa [10]), equality sets (see, e. g., Harju and Karhumä-
ki [7]) and word equations (see, e. g., Choffrut [3]). This relation is best
understood for inductive inference of pattern languages, where it has been
shown that a preimage can be computed from some of its morphic images
if these images have been generated by morphisms with a restricted ambi-
guity (see, e. g., Reidenbach [12]). Hence, intuitively speaking, unambiguous
morphisms have a desirable, namely structure-preserving, property in such
a context, and therefore previous literature on the ambiguity of morphisms
mainly studies the question of the existence of unambiguous morphisms for
arbitary words. In the initial paper, Freydenberger, Reidenbach and Schnei-
der [6] show that there exists an unambiguous nonerasing morphism with
respect to a word α if and only if α is not a fixed point of a nontrivial mor-
phism, i. e., there is no morphism φ satisfying φ(α) = α and, for a symbol x
in α, φ(x) 6= x. Freydenberger and Reidenbach [5] study those sets of words
with respect to which so-called segmented morphisms are unambiguous, and
these results lead to a refinement of the techniques used in [6]. Schneider [15]
and Reidenbach and Schneider [14] investigate the existence of unambiguous
erasing morphisms – i. e., morphisms that may map symbols to the empty
word. Finally, Freydenberger, Nevisi and Reidenbach [4] study a definition
of unambiguity that is completely restricted to nonerasing morphisms1, and
they provide a characterisation of those words with respect to which there
exist unambiguous morphisms σ : ∆+ → Σ+ in such a context (this charac-
terisation does not hold for binary target alphabets Σ, though).

In the present paper, we study the existence of unambiguous 1-uniform
morphisms for arbitrary words, i. e., just as our initial example σ0, these mor-

1Note that [6, 5] also deal with unambiguous nonerasing morphisms, but they use a
stronger notion of unambiguity that is based on arbitrary monoid morphisms. Hence,
they call a morphism σ unambiguous only if there is no other – erasing or nonerasing –
morphism τ satisfying τ(α) = σ(α). In contrast to this, and in contrast to the present
paper, [4] disregards erasing morphisms τ . Consequently, in the definition of unambiguity
studied by [4], our initial example σ0 is considered (“weakly”) unambiguous with respect
to α0, since all morphisms τ with τ(α0) = σ0(α0) are erasing morphisms.
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phisms map every symbol in the preimage to an image of length 1. In order
to obtain unrestricted results, we wish to consider words over an unbounded
alphabet ∆ as morphic preimages. Therefore, we assume ∆ := N; in accor-
dance with the existing literature in the field, we call any word α ∈ N∗ a
pattern, and we call any symbol x ∈ N occurring in α a variable. Thus, more
formally, we wish to investigate the following problem:

Problem 1. Let α ∈ N∗ be a pattern, and let Σ be an alphabet. Does there
exist a 1-uniform morphism σ : N∗ → Σ∗ that is unambiguous with respect to
α, i. e., there is no morphism τ : N∗ → Σ∗ satisfying τ(α) = σ(α) and, for a
variable x occurring in α, τ(x) 6= σ(x)?

There are two main reasons why we study this question: Firstly, any
insight into the existence of unambiguous 1-uniform morphisms improves
the construction by Freydenberger et al. [6], which provides comprehensive
results on the existence of unambiguous nonerasing morphisms, but is based
on morphisms that are often much more involved than required. This can
be illustrated using our above example pattern α0 (now interpreted as α0 :=
1 · 2 · 3 · 1 · 3 · 2 in order to fit with the definition of patterns as words
over N). Here, the unambiguous morphism σ1 – which is not 1-uniform,
but still very simple – produces a morphic image of length 8, whereas the
unambiguous morphism for α0 defined in [6] leads to a morphic image of
length 162. This substantial complexity of known unambiguous morphisms
has a severe effect on the runtime of certain inductive inference procedures for
pattern languages, which, as mentioned above, are necessarily based on such
morphisms. Thus, any insight into the existence of uncomplex unambiguous
morphisms is not only of intrinsic interest and helps to clarify to which extent
the complexity of morphisms contributes to their unambiguity, but is also
important from a more applied point of view. Secondly, as shown by σ0(α0),
the images under 1-uniform morphisms have a structure that is very close
to that of their preimages. More precisely, the only difference between the
pre-image and the image under a 1-uniform morphism is that some letters
that are different in the pre-image might be identical in the image. Thus,
a 1-uniform morphism can be interpreted as a morphic simplification of a
word, and its potential ambiguity is a very basic phenomenon that – as to
be demonstrated by some of the results and techniques in this paper – is
related to a number of well-known concepts and problems in combinatorics
on words.
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2. Definitions and Preliminary Results

For the definitions of patterns, variables, 1-uniform morphisms, ambigu-
ous and unambiguous morphisms, and fixed points of nontrivial morphisms,
Section 1 can be consulted.

Let A be an alphabet, i. e., an enumerable set of symbols. A word (over
A) is a a finite sequence of symbols taken from A. We write ε for the empty
word, i. e., the word of length 0. The set A∗ is the set of all words over A,
and A+ := A∗ \ {ε}. For the concatenation of two words w1, w2, we write
w1 · w2 or simply w1w2. The notion |x| stands for the size of a set x or
the length of a word x. For any word w ∈ A∗, the notation |w|x stands for
the number of occurrences of the letter x in w. The symbol [. . .] is used to
omit some canonically defined parts of a given word, e. g., α = 1 · 2 · [. . .] · 5
stands for α = 1 · 2 · 3 · 4 · 5. We call a word v ∈ A∗ a factor of a word
w ∈ A∗ if, for some u1, u2 ∈ A∗, w = u1vu2; moreover, if v is a factor of w
then we say that w contains v and denote this by v v w or w = · · · v · · · .
If v 6= w, then we say that v is a proper factor of w and denote this by
v < w. If u1 = ε, then v is a prefix of w, and if u2 = ε, then v is a suffix
of w. For every letter x in w, Lx := {y ∈ A | w = · · · y · x · · · } ∪ L′x and
Rx := {y ∈ A | w = · · ·x · y · · · } ∪ R′x, where L′x = {ε} if w = x · · · and
L′x = ∅ if w 6= x · · · , and R′x = {ε} if w = · · · x and R′x = ∅ if w 6= · · · x. We
refer to the sets Lx and Rx as neighbourhood sets.

For alphabets A,B, a mapping h : A∗ → B∗ is a morphism if h is compat-
ible with the concatenation, i. e., for all v, w ∈ A∗, h(v) · h(w) = h(vw). We
call B the target alphabet of h. The morphism h is said to be nonerasing if,
for every x ∈ A, h(x) 6= ε. A morphism is called a renaming if it is injective
and 1-uniform. We additionally call any word v a renaming of a word w if
there is a morphism h that is a renaming and satisfies h(w) = v.

With regard to an arbitrary pattern α ∈ N∗, var(α) denotes the set of
all variables occurring in α. We say that α is in canonical form if α is
lexicographically minimal among all its renamings (where the lexicographic
order is derived from the usual order on N, i. e., 1 < 2 < 3 < . . .).

The question of whether a pattern α is a fixed point of a nontrivial mor-
phism (which can be decided in polynomial time, see Holub [8]) is equivalent
to a number of other concepts in combinatorics on words. More precisely, α
is a fixed point of a nontrivial morphism iff α is prolix iff α is morphically
imprimitive iff there exist a certain characteristic factorisation of α; these
equivalences are explained by Reidenbach and Schneider [13] in more detail.
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Results on unambiguous morphisms have been stated using any of these con-
cepts. In the present paper, our presentation shall focus on the notion of
fixed points. Therefore, we can now paraphrase a simple yet fundamental in-
sight by Freydenberger et al. [6] – which implies that an answer to Problem 1
is trivial for those patterns that are fixed points of nontrivial morphisms –
as follows:

Theorem 1 (Freydenberger et al. [6]). Let α ∈ N∗ be a fixed point of a
nontrivial morphism, and let Σ be any alphabet. Then every nonerasing
morphism σ : N∗ → Σ∗ is ambiguous with respect to α.

Hence, we can safely restrict our subsequent considerations to those patterns
that are not fixed points.

3. Fixed Target Alphabets

In the the present section, we describe a number of conditions on the exis-
tence of unambiguous 1-uniform morphisms σ : N∗ → Σ∗ with a fixed target
alphabet Σ, i. e., the size of Σ does not depend on the number of variables
occurring in α. While the main result by Freydenberger et al. [6] demon-
strates that the set of patterns with an unambiguous nonerasing morphisms
is independent of the size of Σ (provided that |Σ| ≥ 2), our initial example
α0 and all patterns αm := 1 · 1 · 2 · 2 · [. . .] ·m ·m with m ≥ 4 do not have an
unambiguous 1-uniform morphism σ : N∗ → Σ∗ for binary alphabets Σ. In
contrast to this, such morphisms can be given for ternary (and, thus, larger)
alphabets:

Theorem 2. Let m ∈ N, m ≥ 4, let Σ be an alphabet, and let αm :=
1 · 1 · 2 · 2 · [. . .] ·m ·m. There exists a 1-uniform morphism σ : N∗ → Σ∗ that
is unambiguous with respect to αm if and only if |Σ| ≥ 3.

Proof. Since squares cannot be avoided over unary and binary alphabets, it
can be shown with very limited effort that there is no unambiguous 1-uniform
morphism σ : N∗ → Σ∗ with respect to any αm if Σ does not contain at least
three letters.

According to Thue [16], there exists an infinite square-free word over a
ternary alphabet. Let this word be w. Thus,

w = abcacbabcbacabcacbaca · · · .
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We define the word w′ by repeating every letter of w twice. Consequently,

w′ = aabbccaaccbbaabbccbbaaccaabbccaaccbbaaccaa · · · .

We now define a 1-uniform morphism σ : N∗ → {a, b, c}∗ such that σ(αm) is
a prefix of w′. Since w is square-free, the only square factors of w′ are aa, bb
and cc. Hence, it can be easily verified that σ is unambiguous with respect
to αm.

Thus – and just as for the equivalent problem on unambiguous erasing
morphisms (see Schneider [15]) – any characteristic condition on the exis-
tence of unambiguous 1-uniform morphisms needs to incorporate the size
of Σ, which suggests that such criteria might be involved. This is further
strengthened by the following result, which establishes an analogous phe-
nomenon for the transition from |Σ| = 3 to |Σ| ≥ 4:

Theorem 3. There exists an α ∈ N+ such that

• every 1-uniform morphism σ : N∗ → {a, b, c}∗ is ambiguous with respect
to α and

• there is a 1-uniform morphism σ : N∗ → {a, b, c, d}∗ that is unambigu-
ous with respect to α.

Proof. Let α := 1 · 22 · 32 · 42 · 52 · 62 · 1 · 22 · 32 · 42 · 52 · 62 · 22. We begin
with the first statement of Theorem 3: Assume to the contrary that there is
a 1-uniform morphism σ : N∗ → {a, b, c}∗ that is unambiguous with respect
to α. If σ(3 ·4 ·5 ·6) contains at most two different symbols, then there exists
a morphism τ with τ(α) = σ(α) and τ(x) = ε for an x ∈ {3, 4, 5, 6} (since
σ(3 · 4 · 5 · 6) then necessarily contains a square), which is a contradiction.

Hence, σ(3 ·4 ·5 ·6) must be a word over {a, b, c}. This implies that there
is an x ∈ {3, 4, 5, 6} satisfying σ(x) = σ(2). We now consider the morphism
τ : N∗ → {a, b, c}∗ given by

τ(i) :=


σ(1 · 22 · [. . .] · (x− 1)2), i = 1,

σ(i), i = 2 or x+ 1 ≤ i ≤ 6,

ε, 3 ≤ i ≤ x.

Hence, τ(α) = σ(α) and τ(x) = ε 6= σ(x). Thus, σ is ambiguous with respect
to α, which is a contradiction.
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Regarding the second statement of Theorem 3, we define a morphism
σa,b,c,d : N∗ → {a, b, c, d}∗ by

σa,b,c,d(i) :=


a, i ∈ {1, 4, 6},
b, i = 2,

c, i = 3,

d, i = 5.

An exhaustive search demonstrates that there is no morphism τ : N∗ →
{a, b, c, d}∗ with τ(α) = σa,b,c,d(α) and τ(x) 6= σa,b,c,d(x) for an x ∈ var(α).
Thus, σa,b,c,d is unambiguous with respect to α.

Due to Theorems 2 and 3 and, thus, the expected intricacy of character-
istic conditions on the existence of unambiguous 1-uniform morphisms, our
further results in this section are restricted to sufficient conditions.

Our first criterion is based on (un)avoidable patterns and is, thus, related
to the above-mentioned property of the patterns αm:

Theorem 4. Let n ∈ N, β := r1 · r2 · [. . .] · rdn/2e and α := 1r1 · 2r1 · 3r2 · 4r2 ·
[. . .] · n(rdn/2e) with ri ≥ 2 for every i, 1 ≤ i ≤ dn/2e. If β is square-free, then
there exists a 1-uniform morphism σ : N∗ → {a, b}∗ that is unambiguous with
respect to α.

Proof. For any n ∈ N, let A := {1, 2, 3, . . . , n}. For every q ∈ A, we define
the 1-uniform morphism σ by σ(q) := a if q is odd and σ(q) := b if q is even.
Thus, σ(α) = ar1br1 · ar2br2 · [. . .] ·x(rdn/2e) with x ∈ {a, b}. We claim that σ is
unambiguous with respect to α if β is square-free. Assume to the contrary
that σ is ambiguous. Consequently, there is a morphism τ : A∗ → {a, b}∗
with τ(α) = σ(α) and, for an i ∈ A, τ(i) 6= σ(i). Without loss of generality,
we assume that for any i′ < i, τ(i′) = σ(i′). Thus, we can define u ∈ {a, b}∗
such that σ(α) = u · τ(i) · · · · . Let B := {r1, r2, . . . , rdn/2e} and assume that
y is the maximum number in B.

Claim. σ(α) does not contain any factor v2 such that v ∈ {apbp|p ∈ B}+.

Proof (Claim). Since β is square-free, every subpattern of it is square-free.
So, by considering the structure of σ(α), this implies that σ(α) does not
contain any factor v2 such that v ∈ {apbp|p ∈ B}+.

Let, τ(i) = aj · bk · v · al · bm, v ∈ {apbp|p ∈ B}∗, 0 ≤ j ≤ y, 0 ≤ k ≤ y,
0 ≤ l ≤ y and 0 ≤ m ≤ y. Furthermore, since ri ≥ 2, τ(i)2 is a factor of
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τ(α). Hence,
τ(α) = u · (ajbkvalbm)2 · · · ,

u 6= · · · a if j 6= 0 and, u 6= · · · b if j = 0. We now consider the following
cases:

1. j 6= k, j 6= 0 and k 6= 0.

(a) v 6= ε. So, τ(α) = u · ajbkv · · · . However, the factor u · ajbkv does
not occur in σ(α), because j 6= k.

(b) v = ε.
i. l = m = 0. Hence, τ(α) = u · ajbkajbk · · · . However, due

to j 6= k, σ(α) does not have the factor u · ajbkaj, and this
contradicts the assumption τ(α) = σ(α).

ii. l = 0 and m 6= 0. We have τ(α) = u · ajbkbmajbkbm · · · ;
in other words, τ(α) contains the factor u · ajbk+majbk+m.
Let v′ = ajbk+m. Since τ(α) = σ(α), j = (k + m) and
v′ ∈ {apbp|p ∈ B}. So, τ(α) contains the factor v′v′ which
contradicts the Claim.

iii. l 6= 0. So, τ(α) = u · ajbkalbmajbkalbm · · · . However, the
factor u ·ajbkal does not occur in σ(α), because j 6= k. Hence,
τ(α) 6= σ(α) and this again contradicts the assumption.

2. j = k 6= 0.
(a) l 6= m, l 6= 0 and m 6= 0. Thus, τ(α) = u ·ajbjvalbm ·ajbjvalbm · · · .

This means that τ(α) contains the factor bjv · albm · aj. Due to
l 6= m, this factor does not occur in σ(α), and this contradicts the
assumption σ(α) = τ(α).

(b) l = m = 0. Hence, τ(α) = u · ajbjv · ajbjv · · · . Let v′ = ajbjv.
Thus, v′v′ is a factor of τ(α) which implies that v′ ∈ {apbp|p ∈
B}+. However, this contradicts the above mentioned Claim.

(c) l = m 6= 0 and l 6= 1. We can conclude that τ(α) = u · ajbjvalbl ·
ajbjvalbl · · · . We can infer from the factor bjv · albl · aj that
albl ∈ {apbp|p ∈ B}. Let v′ = ajbjvalbl. So, v′v′ is a factor of τ(α)
while v′ ∈ {apbp|p ∈ B}+, which again contradicts the mentioned
Claim.

(d) l = m = 1. So, τ(α) contains the factor bjva1b1 · aj which does
not occur in σ(α).

(e) l 6= 0 and m = 0. Hence, τ(α) = u · ajbjv · al+jbj · val · · · .
However, this contradicts the assumption σ(α) = τ(α), because
of (l + j) 6= j.
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(f) l = 0 and m 6= 0. This means that τ(α) has the factor u ·ajbjvbm ·
aj.

i. v = ε. So, u·ajbj+m ·aj is a factor of τ(α), and this contradicts
σ(α) = τ(α) due to j 6= (j +m).

ii. v 6= ε. Thus, we have the factor bj · vbm ·aj in τ(α). However,
the number of repetitions of the last b in v plus m is larger
than the repetitions of its previous a, and such a factor does
not occur in σ(α).

3. j 6= 0 and k = 0.
(a) v 6= ε. So, ajvalbm · aj is a factor of τ(α). However, the number

of repetitions of the first a in v plus j is larger than the number
of the subsequent b, and this contradicts the structure of σ(α).

(b) v = ε. This implies τ(α) = u · aj+lbm · aj+lbm · · · .
i. m 6= 0. Since τ(α) = σ(α), we can infer from the factor
u · aj+lbm · aj+l that j + l = m and as a result aj+lbm ∈
{apbp|p ∈ B}. Let v′ = aj+lbm. So, v′v′ is a factor of τ(α);
however, this again contradicts the mentioned Claim.

ii. m = 0. We can conclude that (aj+l)ri is a factor of τ(α).
However, σ(α) does not contain this factor, because we know
that after ri occurrences of a in σ(α), we have b or ε.

4. j = 0 and k 6= 0.
(a) l 6= 0. Hence, τ(α) = u · bkvalbm · bkvalbm · · · and, consequently,

τ(α) contains the factor bkvalbm+kval. Because of τ(α) = σ(α),
we can conclude that l = (m+ k) and albm+k ∈ {apbp|p ∈ B} and
also τ(α) = u · (bkvalbm+kvalbm) · (bk) · · · · . Let v′ = valbm+k.
So, v′v′ is a factor of τ(α) while v′ ∈ {apbp|p ∈ B}+. This again
contradicts the mentioned Claim.

(b) l = 0. So, τ(α) = u · bkvbm · bkvbm · · · .
i. v 6= ε. As a result, bk ·vbk+m ·vbm is a factor of τ(α). However,

the number of repetitions of the last b in v plus k+m is larger
than the repetitions of its previous a, and such a factor does
not occur in σ(α).

ii. v = ε. We can conclude that (bk+m)ri is a factor of τ(α).
However, σ(α) does not contain this factor, because we know
that after ri occurrences of b in σ(α), we have a or ε.

5. τ(i) = ε. Due to τ(α) = σ(α), there exists an i′ > i with |τ(i′)| > 1.
So, we can consider τ(i′) = aj · bk · v · al · bm, which leads to the above
cases.
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Consequently, in all cases, assuming the existence of a morphism τ with
τ(α) = σ(α) and, for an i ∈ var(α), τ(i) 6= σ(i) leads to a contradiction.
Thus, σ is unambiguous with respect to α.

Our second criterion again holds for binary (and, thus, all larger) alpha-
bets Σ. It features a rather restricted class of patterns, which, however, are
minimal with regard to their length.

Theorem 5. Let n ∈ N, n ≥ 2. If n is even, then let

α := 1 · 2 · [. . .] · n · (n/2 + 1) · 1 · (n/2 + 2) · 2 · [. . .] · n · n/2,

and if n is odd, then let

α := 1 · 1 · 2 · 3 · [. . .] · n · (dn/2e+ 1) · 2 · (dn/2e+ 2) · 3 · [. . .] · n · dn/2e.

Then α is a shortest pattern with | var(α)| = n that is not a fixed point of a
nontrivial morphism, and there exists a 1-uniform morphism σ : N∗ → {a, b}∗
that is unambiguous with respect to α.

Proof. We first briefly explain why any pattern α′ with | var(α′)| = n and
|α′| < |α| must be a fixed point of a nontrivial morphism: If | var(α′)| = n
and |α′| < |α|, then α′ must contain at least one variable z with just a single
occurrence, because all variables in α have exactly two occurrences. We can
then define a morphism φ : N∗ → N∗ by φ(z) := α′ and φ(z′) := ε for all
z′ ∈ var(α′) \ {z′}. Since n ≥ 2, φ is nontrivial, and obviously φ(α′) = α′.
Hence, α′ is a fixed point of φ. At the end of this proof, we shall show that
α is not a fixed point of a nontrivial morphism, which will then complete the
proof of the first statement of the theorem.

We now consider the second statement of the theorem. We define the
morphism σ by

σ(x) :=

{
a, if 1 ≤ x ≤ dn/2e,
b, else .

Assume to the contrary that σ is ambiguous with respect to α. Consequently,
there exists a morphism τ : N∗ → {a, b}∗ satisfying τ(α) = σ(α) and, for
some q ∈ var(α), τ(q) 6= σ(q).
Let n be even. So,

α := 1 · 2 · [. . .] · n · (n/2 + 1) · 1 · (n/2 + 2) · 2 · [. . .] · n · n/2.
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As a result,
σ(α) = an/2 · bn/2 · (ba)n/2.

Assume that α = β1β2 with

β1 = 1 · 2 · [. . .] · n

and,
β2 = (n/2 + 1) · 1 · (n/2 + 2) · 2 · [. . .] · n · n/2.

Due to the structure of α and |τ(α)| = |σ(α)|, it is easily verified that
|τ(β1)| = |σ(β1)| and, hence, τ(β1) = σ(β1). Besides, τ(β1) = σ(β1) im-
plies that τ(β2) = σ(β2). Since σ is a 1-uniform morphism, there exists a
q ∈ var(α) such that |τ(q)| ≥ 2. Due to τ(β1) = σ(β1), we have one of the
following cases:

1. ak v τ(q) with k ≥ 2. Since q has an occurrence in β2 and ak 6v σ(β),
τ(β) 6= σ(β), and as a result, τ(α) 6= σ(α), which is a contradiction.

2. bk v τ(q) with k ≥ 2. Using the same reasoning as above, this leads to
a contradiction.

3. τ(q) = ab. We consider the following cases:

• q < n/2. Then, due to τ(β1) = σ(β1), there exists a q′ < q
satisfying τ(q′) = ak with k ≥ 2, which according to Case 1 leads
to a contradiction.

• q = n/2. Due to the facts that n/2 is the last variable occurring in
α and ba should be a suffix of τ(α), this leads to a contradiction.

• q = n/2 + 1. Since τ(β2) = σ(β2), ba should be a prefix of τ(β2).
However, the variable n/2 + 1 is the first variable of β2. Conse-
quently, this contradicts τ(α) = σ(α).

• q > n/2 + 1. Then, due to τ(β1) = σ(β1), there exists a q′ > q
satisfying τ(q′) = bk with k ≥ 2, which according to Case 2 leads
to a contradiction.

Hence, all above cases contradict the assumption of τ(α) = σ(α).
However, if n is odd,

α := 1 · 1 · 2 · 3 · [. . .] · n · (dn/2e+ 1) · 2 · (dn/2e+ 2) · 3 · [. . .] · n · dn/2e.

Thus,
σ(α) = aa · abn/2c · bbn/2c · (ba)bn/2c.
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Due to the structure of α and τ(α) = σ(α), it is easily verified that τ(1) =
σ(1) = a. This implies that an analogous reasoning to the case when n
is even can also be used for the case that n is odd. Consequently, we can
conclude that σ is unambiguous with respect to α.

What remains to explain is why α is not a fixed point of a nontrivial
morphism. Since σ is nonerasing and, as shown above, unambiguous with
respect to α, this directly follows from the contraposition of Theorem 1.

The following examples illustrates Theorem 5 and its proof: For n := 6,
α := 1·2·3·4·5·6·4·1·5·2·6·3, and the 1-uniform morphism σ : N∗ → {a, b}∗
with σ(1) := σ(2) := σ(3) := a and σ(4) := σ(5) := σ(6) := b is unambiguous
with respect to α. For n := 5, α := 1 · 1 · 2 · 3 · 4 · 5 · 4 · 2 · 5 · 3, and the
respective unambiguous morphism is given by σ(1) := σ(2) := σ(3) := a and
σ(4) := σ(5) := b.

From Theorem 5 we can conclude that patterns α with unambiguous 1-
uniform morphisms using a binary target alphabet exist for every cardinality
of var(α) and that corresponding examples can be given where every variable
occurs just twice.

4. Variable Target Alphabets

In order to continue our examination of Problem 1, we now relax one
of the requirements of Section 3: We no longer investigate criteria on the
existence of unambiguous 1-uniform morphisms for a fixed target alphabet
Σ, but we permit Σ to depend on the number of variables in the pattern α
in question. Regarding this question, we conjecture the following statement
to be true:

Conjecture 1. Let α be a pattern with | var(α)| ≥ 4. There exists an alphabet
Σ satisfying |Σ| < | var(α)| and a 1-uniform morphism σ : N∗ → Σ∗ that is
unambiguous with respect to α if and only if α is not a fixed point of a
nontrivial morphism.

This conjecture would be trivially true if we allowed Σ to satisfy |Σ| ≥
| var(α)|. That explains why we exclusively study the case where the number
of letters in the target alphabet is smaller than the number of variables in the
pattern. From Theorem 2, it directly follows that an analogous conjecture
would not be true if we considered fixed binary target alphabets (as is done in
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Section 3), since none of the patterns αm is a fixed point of a nontrivial mor-
phism – this can be easily verified using tools discussed by Reidenbach and
Schneider [13] and Holub [8]. Hence, characteristic criteria must necessarily
look different in such a context. It can also be effortlessly understood that
Conjecture 1 would be incorrect if we dropped the condition that α needs
to contain at least 4 distinct variables, since not only σ0, but all 1-uniform
morphisms σ : N∗ → Σ∗ with |Σ| ≤ 2 are ambiguous with respect to our
example pattern α0 = 1 · 2 · 3 · 1 · 3 · 2 discussed in Section 1.

Technically, many of our subsequent technical considerations are based
on the following generic morphisms:

Definition 1. Let Σ be an infinite alphabet, and let ρ : N∗ → Σ∗ be a
renaming. For any i, j ∈ N with i 6= j and for every x ∈ N, let the morphism
σi,j be given by

σi,j(x) :=

{
ρ(i), if x = j ,

ρ(x), if x 6= j .

Thus, σi,j maps exactly two variables to the same image, and therefore, for
any pattern α with at least two different variables, σi,j(α) is a word over
| var(α)| − 1 distinct letters. Using this definition, we can now state a more
specific version of Conjecture 1:

Conjecture 2. Let α be a pattern with | var(α)| ≥ 4. There exist i, j ∈
var(α), i 6= j, such that σi,j is unambiguous with respect to α if and only if
α is not a fixed point of a nontrivial morphism.

Before we study Conjectures 1 and 2 in more detail, we establish that
they are equivalent. To this end, we need the following concept:

Definition 2. Let α ∈ N∗ and let i, j, i 6= j, be arbitrary variables of α.
Let the morphism ψi,j : N∗ → N∗ be given by ψi,j(j) := i and ψi,j(x) = x,
x ∈ N \ {j}. We then define the pattern αi,j by αi,j := ψi,j(α).

For example, let α := 1 · 2 · 3 · 3 · 1 · 4 · 2 · 4. If we consider i := 2 and
j := 4, then αi,j = 1 · 2 · 3 · 3 · 1 · 2 · 2 · 2.

Using Definition 2, we can now address the relation between Conjectures 1
and 2:

Proposition 1. Let α be a pattern with | var(α)| ≥ 4. There exists an
alphabet Σ satisfying |Σ| < | var(α)| and a 1-uniform morphism σ : N∗ → Σ∗

that is unambiguous with respect to α if and only if there exist i, j ∈ var(α),
i 6= j, such that σi,j is unambiguous with respect to α.
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Proof. Since the size of the target alphabet of σi,j equals | var(α)| − 1, the if
direction is trivially true.

We now prove the only if direction. So, we assume that there exists a
1-uniform morphism σ : N∗ → Σ∗, |Σ| < | var(α)|, that is unambiguous with
respect to α. This means that there does not exist any morphism τ : N∗ → Σ∗

satisfying τ(α) = σ(α) and, for a variable q occurring in α, τ(q) 6= σ(q). Let
V := {v ∈ var(α) | |σ(α)|σ(v) 6= |α|v}. If |V | = 2, then the only if direction
holds immediately. Otherwise, we choose two arbitrary variables i, j from V
satisfying σ(i) = σ(j). We define a morphism φ : Σ∗ → N∗ by

φ(x) :=

{
i, if x = σi,j(i),

σ−1i,j (x), else.

The morphism φ exists due to the definition of σi,j, and we can directly
conclude the correctness of the following statement:

Claim 1. φ ◦ σi,j(α) = αi,j.

We consider the morphism ψi,j : N∗ → N∗, given by

ψi,j(x) :=

{
i, if x = j,

x, else.

Since, by Definition 2, αi,j equals ψi,j(α), we can prove the following vital
fact:

Claim 2. σ(α) = σ(αi,j).

Proof (Claim 2). Due to our choice of i and j, we know that σ(i) = σ(j)
is satisfied. Furthermore, ψi,j(i) = ψi,j(j) = i, and therefore σ(ψi,j(i)) =
σ(ψi,j(j)) = σ(i) = σ(j). Hence, and since the definition of ψi,j directly
implies σ(x) = σ(ψi,j(x)) for every x ∈ var(α)\{i, j}, we can conclude σ(α) =
σ(ψi,j(α)). Since ψi,j(α) = αi,j, this proves σ(α) = σ(αi,j). 2(Claim 2)

We now assume to the contrary that σi,j(α) is ambiguous. Hence, there
is a morphism τi,j : N∗ → Σ∗ satisfying τi,j(α) = σi,j(α) and, for a variable
q occurring in α, τi,j(q) 6= σi,j(q). Since σi,j is 1-uniform, this implies that
there exists a variable q′ ∈ var(α) with τi,j(q

′) = ε.
The following diagram illustrates all morphisms, patterns and words in-

troduced so far:
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σi,j(α)

α

αi,j

σ(α)

-

-

??

6
HHH

HHH
HHH

HHH
HHHjφ

σ

τi,j σi,j ψi,j σ

We now define the morphism τ : var(α)∗ → Σ∗ by

τ := σ ◦ φ ◦ τi,j.

Since we assume that τi,j(α) equals σi,j(α), Claims 1 and 2 facilitate the
following reasoning:

τ(α) = σ ◦ φ ◦ τi,j(α)

= σ ◦ φ ◦ σi,j(α)

= σ(αi,j)

= σ(α).

Consequently, τ(α) = σ(α). As stated above, there exists a variable q′ ∈
var(α) that satisfies τi,j(q

′) = ε, and therefore τ(q′) = σ ◦ φ ◦ τi,j(q′) = ε. On
the other hand, σ is 1-uniform, and therefore σ(q′) 6= ε. Hence, the existence
of τ implies that σ is ambiguous with respect to α, and this is a contradiction
to the initial assumption of our proof for the only if direction. Thus, σi,j is
unambiguous with respect to α.

Thus, our two conjectures are equivalent:

Corollary 1. Conjecture 1 is true if and only if Conjecture 2 is true.

Proof. Directly from Proposition 1.

As a side note, we consider it worth mentioning that Conjecture 2 shows
connections to another conjecture from the literature. In order to state the
latter, we define, for any i ∈ N, the morphism δi : N∗ → N∗ by δi(i) := ε
and, for every j ∈ N \ {i}, δi(j) := j.
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Conjecture 3 (Billaud [1], Levé and Richomme [9]). Let α be a pattern with
| var(α)| ≥ 3. If, for every i ∈ var(α), δi(α) is a fixed point of a nontrivial
morphism, then α is a fixed point of a nontrivial morphism.

In general, the correctness of Conjecture 3 has not been established yet. The
problem is intensively studied by Levé and Richomme [9], where it is shown
to be correct for certain subclasses of N∗.

Due to Theorem 1, the only if directions of Conjectures 1 and 2 hold true
immediately. In the remainder of this section, we shall therefore exclusively
study those patterns that are not fixed points. Our corresponding results
yield large classes of such patterns that have an unambiguous 1-uniform
morphism, but we have to leave the overall correctness of our conjectures
open.

Conjecture 2 suggests that the examination of the existence of unambigu-
ous 1-uniform morphisms for a pattern α may be reduced to finding suitable
variables i and j such that σi,j is unambiguous with respect to α. In this
regard, one particular choice can be ruled out immediately:

Proposition 2. Let α be a pattern, and let i, j ∈ var(α), i 6= j. If σi,j(α) is
a fixed point of a nontrivial morphism, then σi,j is ambiguous with respect to
α.

Proof. If σi,j(α) is a fixed point of a nontrivial morphism, then, by definition,
there is a morphism φ satisfying φ(σi,j(α)) = σi,j(α) and, for a letter a
in σi,j(α), φ(a) 6= a. This implies that there must be a letter in α that
is mapped by φ to the empty word; without loss of generality, we simply
assume φ(a) := ε. If we now define τ := φ ◦ σi,j, then τ(α) = σi,j(α) and
τ(x) = ε 6= σi,j(x), where x is a variable in α satisfying σi,j(x) = a. Thus,
σi,j is ambiguous with respect to α.

For example, if we consider the pattern α1 := 1 · 2 · 3 · 4 · 1 · 4 · 3 · 2 (which
is not a fixed point) and define Σ := {a, b, c}, then σ2,4(α1) equals abcbabcb
(or any renaming thereof), which is a fixed point of the morphism φ given by
φ(a) := abcb and φ(b) := φ(c) := ε. Thus, σ2,4 is ambiguous with respect to
α1. However, Proposition 2 does not provide a characteristic condition on the
ambiguity of σi,j, since σ2,3(α1) = abbcacbb is not a fixed point, but still σ2,3
is ambiguous with respect to α1. Furthermore, while the ambiguity of σ2,3
results from the fact that α1 contains the factors 2·3 and 3·2, and is therefore
easy to comprehend, there are more difficult examples of morphisms σi,j that
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are ambiguous although they do not lead to a morphic image that is a fixed
point. This is illustrated by the example α2 := 1·2·3·3·4·4·1·2·3·3·4·4·2. Here,
σ2,4(α1) = abccbbabccbbb again is not a fixed point, but σ2,4 is nevertheless
ambiguous with respect to α2, since the morphism τ given by τ(1) := abccb,
τ(2) := b and τ(3) := τ(4) := ε satisfies τ(α2) = σ2,4(α2). We therefore
conclude that it seems not to be a straightforward task to find amendments
that could turn Proposition 2 into a characteristic condition.

We now show that Conjecture 2 is correct for several types of patterns.
To this end, we need the following simple sufficient condition on a pattern
being a fixed point:

Lemma 1. Let α ∈ N+. If there exists a variable i ∈ var(α) such that

1. ε 6∈ Li and, for every k ∈ Li, Rk = {i}, or

2. ε 6∈ Ri and, for every k ∈ Ri, Lk = {i},

then α is a fixed point of a nontrivial morphism.

Proof. Assume that Condition 1 of the lemma is satisfied. So, without loss
of generality, let

α := α1 · l1 · i1 · α2 · l2 · i2 · α3 · [. . .] · αn · ln · in · αn+1

where i1, i2, . . . , in are all occurrences of the variable i in α and, for every j,
1 ≤ j ≤ n, αj ∈ N∗, αn+1 ∈ N∗ and lj ∈ N. Also, Condition 1 implies that,
for every j, 1 ≤ j ≤ n and for every j′, 1 ≤ j′ ≤ n + 1, lj 6= i, lj 6v αj′ . We
define the morphism φ : N+ → N∗ by:

φ(x) :=


lji, if x = lj, 1 ≤ j ≤ n,

ε, if x = i,

x, else.

Hence, φ(α) = α which means that α is a fixed point of a nontrivial morphism
φ. Using an analogous reasoning as above, we can show that the lemma also
holds true when Condition 2 is satisfied.

Using this lemma, we can now establish a class of patterns for which
Conjecture 2 holds true. All variables in these patterns have the same number
of occurrences, and for one pair of variables they do not contain any factors
as discussed above with respect our example σ2,3:
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Theorem 6. Let m ∈ N, m ≥ 2. Let α ∈ N+ be a pattern that is not a fixed
point of a nontrivial morphism and satisfies, for every x ∈ var(α), |α|x = m.
If there are i, j ∈ var(α), i 6= j, such that

• there is no k ∈ var(α) with {i, j} ⊆ Lk or {i, j} ⊆ Rk, and

• α 6= α1 · i · j · α2 · j · i · α3, α1, α2, α3 ∈ N∗,

then σi,j is unambiguous with respect to α.

Proof. Assume to the contrary that σi,j is ambiguous. So, there exists a
morphism τ : N+ → Σ∗ such that τ(α) = σi,j(α) and, for some x ∈ var(α),
τ(x) 6= σi,j(x). Since σi,j is a 1-uniform morphism, there exists a k ∈ var(α)
with |τ(k)| ≥ 2. Let uv v τ(k), u, v ∈ Σ. Due to the fact that k occurs m
times in α, σi,j(α) = τ(α) = w1 · uv · w2 · uv · [. . .] · wm · uv · wm+1 with, for
every q, 1 ≤ q ≤ m+ 1, wq ∈ Σ∗. We now consider the following cases:

• σi,j(i) 6= u and σi,j(i) 6= v. This implies that there exist the variables
x1, x2 ∈ var(α), x1, x2 6= i and x1, x2 6= j, such that α = α1 · x1x2 · α2 ·
x1x2 · [. . .] · αm · x1x2 · αm+1, for every q, 1 ≤ q ≤ m+ 1, αq ∈ N∗, and
σi,j(x1) = u and σi,j(x2) = v. Due to |α|x1 = |α|x2 = m, x1, x2 6v αq, for
every q, 1 ≤ q ≤ m+ 1. This implies that Rx1 = {x2} and Lx2 = {x1}.
Then, according to Lemma 1, α is a fixed point of a nontrivial morphism
which is a contradiction to the assumption of the theorem.

• σi,j(i) = σi,j(j) = u, and u 6= v. So, we assume that α = α1 · x1x′ ·
α2 · x2x′ · [. . .] · αm · xmx′ · αm+1 with, x′ ∈ var(α) and, for every q,
1 ≤ q ≤ m+ 1, xq ∈ var(α), αq ∈ N∗, and σi,j(xq) = u and σi,j(x

′) = v.
Additionally, since σi,j(x

′) = v and u 6= v, we can conclude that x′ 6= i
and x′ 6= j. We now consider the following cases:

1. For every q, 1 ≤ q ≤ m, xq = i. This implies, using the same
reasoning as above, that α is a fixed point of a nontrivial morphism
which is a contradiction.

2. There exists q, q′, 1 ≤ q, q′ ≤ m and q 6= q′, such that xq = i and
xq′ = j. This means that {i, j} ⊆ Lx2 , which contradicts the first
condition of the theorem.

• σi,j(i) = v, and u 6= v. The reasoning is analogous to that in the
previous case.
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• σi,j(i) = σi,j(j) = u and v = u. Hence, we may assume that α =
α1 ·x1x′1 ·α2 ·x2x′2 ·[. . .]·αm ·xmx′m ·αm+1 with, for every q, 1 ≤ q ≤ m+1,
αq ∈ N∗, xq, x′q ∈ var(α) and σi,j(xq) = σi,j(x

′
q) = u. Due to the

conditions of the theorem, the factors i · i · j, i · j · j, j · i · i and
j · j · i could not be the factors of α. Moreover, it can be observed
that u · u · u 6v τ(k); otherwise, since τ(α) = σi,j(α), then |α|i > m or
αj > m. This implies that i · j · i and j · i · j are not the factors of α.
We now consider the following cases:

1. For every q, 1 ≤ q ≤ m, xq = i and x′q = j. As a result, Ri = {j}
and Lj = {i}. According to Lemma 1, α is a fixed point of a
nontrivial morphism.

2. For every q, 1 ≤ q ≤ m, xq = j and x′q = i. As a result, Rj = {i}
and Li = {j}. Referring to Lemma 1, α is a fixed point of a
nontrivial morphism.

3. There exists a q, q′, 1 ≤ q, q′ ≤ m and q 6= q′, such that xq ·x′q = i·j
and xq′ · x′q′ = j · i. This case contradicts the second condition of
the theorem.

4. There exists a q, q′, 1 ≤ q, q′ ≤ m and q 6= q′, such that xq ·x′q = i·j
and, xq′ · x′q′ = i · i or xq′ · x′q′ = j · j. This means that {i, j} ⊆ Ri

or {i, j} ⊆ Lj which is a contradiction to the first condition of the
theorem.

5. There exists a q, q′, 1 ≤ q, q′ ≤ m and q 6= q′, such that xq ·x′q = j ·i
and, xq′ ·x′q′ = i·i or xq′ ·x′q′ = j ·j. This implies that {i, j} ⊆ Li or
{i, j} ⊆ Rj which contradicts the first condition of the theorem.

6. There exist q, q′, 1 ≤ q, q′ ≤ m, q′ 6= q, such that xq · x′q = i · i
and xq′ · x′q′ = j · j. Since uu v τ(k) and due to the conditions of
the theorem, it results from τ(α) = σi,j(α) that k 6= i and k 6= j,
in other words, τ(i) 6= uu and τ(j) 6= uu; otherwise, |τ(α)|u >
|σi,j(α)|u. Moreover, we may observe that if σi,j(k) v τ(k), then
this implies that there exists an x ∈ var(α)\{i, j}, with {i, j} ⊆ Lx
or {i, j} ⊆ Rx, which is a contradiction. Thus, σi,j(k) 6v τ(k).
Since τ(α) = σi,j(α), there should be a k′ ∈ var(α), k′ 6= k, i, j,
such that σi,j(k) v τ(k′), which means that |τ(k′)| ≥ 2 or we
can extend the reasoning over the other variables. Consequently,
since τ(α) = σ(α), this argumentation implies the existence of a
k′′ ∈ var(α), k′′ 6= k, i, j, such that |τ(k′′)| ≥ 2, which, according
to the above cases, leads to a contradiction.
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Hence, in all cases, our assumption leads to a contradiction, and this proves
the theorem.

We wish to point out that Theorem 6 does not only demonstrate the
correctness of Conjecture 2 for the given class of patterns, but additionally
provides an efficient way of finding an unambiguous morphism σi,j. For
example, we can immediately conclude from it that σ1,4 is unambiguous with
respect to our above example pattern α1. Furthermore, the theorem also
holds for patterns with less than four different variables.

We now consider those patterns that are not a fixed point and, moreover,
contain all of their variables exactly twice (note that some of these “shortest”
patterns that are not fixed points are also studied in Theorem 5). We wish
to demonstrate that Theorem 6 implies the existence of an unambiguous σi,j
for every such pattern. This insight is based on the following lemma:

Lemma 2. Let α ∈ N+ be a pattern with | var(α)| > 6 and, for every x ∈
var(α), |α|x = 2. Then there exist i, j ∈ var(α), i 6= j, such that

• there is no k ∈ var(α) with {i, j} ⊆ Lk or {i, j} ⊆ Rk, and

• α 6= α1 · i · j · α2 · j · i · α3, α1, α2, α3 ∈ N∗.

Proof. Let n := | var(α)|. Since every variable occurs exactly twice in α,
it directly follows that, for every x ∈ var(α), |Rx| ≤ 2 and |Lx| ≤ 2. By
omitting the neighbourhood sets containing ε, we have at most 2n − 2 sets
of size 2. Besides, it can be verified with little effort that α contains at most
n−1 different factors i·j, i, j ∈ var(α), i 6= j, such that α = α1 ·i·j ·α2 ·j ·i·α3,
α1, α2, α3 ∈ N∗ (e. g., for n := 4, α := 1 · 2 · 3 · 4 · 4 · 3 · 2 · 1 has 3 different
factors i · j, i, j ∈ var(α), i 6= j, satisfying the mentioned condition). Assume
to the contrary that, for every i, j ∈ var(α), i 6= j, one of the following cases
is satisfied:

• there exists k ∈ var(α) with {i, j} ⊆ Lk or {i, j} ⊆ Rk, or

• α = α1 · i · j · α2 · j · i · α3, α1, α2, α3 ∈ N∗.

As mentioned above, the maximum number of pairs that are covered by the
first case is 2n − 2, and for the second case it is n − 1. On the other hand,
since | var(α)| = n, there exist

(
n
2

)
different pairs of variables. However, for

n > 6, we have (
n

2

)
> (2n− 2) + (n− 1),
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which contradicts the assumption.

Hence, whenever a pattern α is not a fixed point, the conditions of Theo-
rem 6 are automatically satisfied if α contains at least seven distinct variables
and all of its variables occur exactly twice. Using a less elegant reasoning
than the one on Lemma 2, we can extend this insight to all such patterns
over at least four distinct variables. This yields the following result:

Theorem 7. Let α ∈ N+ be a pattern with | var(α)| > 3 and, for every
x ∈ var(α), |α|x = 2. If α is not a fixed point of a nontrivial morphism, then
there exist i, j ∈ var(α), i 6= j, such that σi,j is unambiguous with respect to
α.

Proof. Let n := | var(α)|. For n > 6, it directly follows from Theorem 6 and
Lemma 2 that Theorem 7 is satisfied. Hence, we consider the following cases:

• | var(α)| = 4. The only patterns that do not satisfy the conditions of
Theorem 6 are:

α1 := 1 · 2 · 3 · 4 · 4 · 1 · 3 · 2, α2 := 1 · 2 · 3 · 4 · 4 · 2 · 1 · 3,
α3 := 1 · 2 · 3 · 4 · 2 · 1 · 4 · 3, α4 := 1 · 2 · 3 · 3 · 4 · 4 · 2 · 1,
α5 := 1 · 2 · 3 · 3 · 4 · 1 · 4 · 2, α6 := 1 · 2 · 3 · 3 · 1 · 4 · 2 · 4,
α7 := 1 · 2 · 3 · 3 · 4 · 2 · 1 · 4, α8 := 1 · 2 · 3 · 2 · 4 · 4 · 1 · 3,
α9 := 1 · 2 · 1 · 3 · 4 · 4 · 2 · 3, α10 := 1 · 2 · 3 · 1 · 4 · 4 · 3 · 2.

It can be verified with little effort that

– σ3,4 is unambiguous with respect to α1, α2, α5, α9 and α10,

– σ2,3 is unambiguous with respect to α3, α6 and α7,

– σ1,4 is unambiguous with respect to α4, α8.

• | var(α)| ∈ {5, 6}. Assume to the contrary that for every i, j ∈ var(α),
i 6= j, σi,j is ambiguous with respect to α. This implies that the
conditions of Theorem 6 are not satisfied. Consequently, for every
i, j ∈ var(α), one of the following cases is satisfied:

– there is a k ∈ var(α) with {i, j} ⊆ Lk or {i, j} ⊆ Rk, or

– α = · · · i · j · · · j · i · · · .
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It directly follows from the proof of Lemma 2 that, if var(α) = n, then
the maximum number of pairs of variables satisfying the first case is
2n − 2. On the other hand, the number of different pairs i, j which
should satisfy the above cases is

(
n
2

)
, consequently, there exist(

n

2

)
− (2n− 2) n ≥ 5

pairs which should satisfy the second case. So, for n = 5, since(
5

2

)
− (2 ∗ 5− 2) = 2,

there exist at least two different pairs of i, j satisfying α = · · · i · j · · · j ·
i · · · . For n = 6, that amount increases to 5, due to:(

6

2

)
− (2 ∗ 6− 2) = 5.

By investigating the all patterns α with var(α) = 5 which are containing
2 different pairs of i, j, we can conclude that there exist i, j ∈ var(α),
i 6= j, such that σi,j is unambiguous with respect to α. Moreover, the
only pattern α with | var(α)| = 6 that is not a fixed point of a nontrivial
morphism and contains 5 different pairs of i, j is α = 1 · 2 · 3 · 4 · 5 ·
6 · 6 · 5 · 4 · 3 · 2 · 1, with respect to which there exists an unambiguous
1-uniform morphisms σ1,6.

Hence, in both cases, the results contradict the assumption.

Theorem 7 does not only directly prove the correctness of Conjecture 2
for all patterns that contain all their variables exactly twice, but it also allows
a large set of patterns to be constructed for which the conjecture holds true
as well. This construction is specified as follows:

Theorem 8. Let α := α1 ·β ·α2 and γ := α1 ·α2 be patterns with α1, α2, β ∈
N∗, such that

• γ and β are not a fixed point of a nontrivial morphism,

• | var(γ)| > 3 and, for every x ∈ var(γ), |γ|x = 2, or | var(β)| > 3 and,
for every x ∈ var(β), |β|x = 2, and
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• var(γ) ∩ var(β) = ∅.

Then there exist i, j ∈ var(α), i 6= j, such that σi,j is unambiguous with
respect to α.

Proof. Assume that | var(γ)| > 3 and, for every x ∈ var(γ), |γ|x = 2. So,
since γ satisfies the conditions of Theorem 7, there exist i, j ∈ var(γ), i 6= j,
such that σi,j with target alphabet Σ1 is unambiguous with respect to γ.
Also, due to β not being a fixed point of a nontrivial morphism, there is
an unambiguous 1-uniform morphism σ : N∗ → Σ∗2, |Σ2| = | var(β)|, with
respect to β. Let Σ1 ∩ Σ2 := ∅.

We now assume to the contrary that σi,j with target alphabet Σ1 ∪ Σ2

is ambiguous with respect to α. This implies that there is a morphism τ :
N∗ → Σ∗ satisfying τ(α) = σi,j(α) and, for some q ∈ var(α), τ(q) 6= σ(q).

Claim 1. There does not exist an x ∈ var(α) satisfying |τ(x)| ≥ 2 and
v1v2 v τ(x), v1 ∈ Σ1 and v2 ∈ Σ2, or v1 ∈ Σ2 and v2 ∈ Σ1.

Proof of Claim 1. Assume to the contrary that there is an x ∈ var(α) such
that |τ(x)| ≥ 2 and v1v2 v τ(x), v1 ∈ Σ1 and v2 ∈ Σ2, or v1 ∈ Σ2 and
v2 ∈ Σ1. Since x occurs at least twice in α, τ(α) = · · · · v1v2 · · · · · v1v2 · · · · .
However, because of α := α1 · β ·α2 and var(γ)∩ var(β) = ∅, this contradicts
σi,j(α) = τ(α). (Claim 1)

Claim 2. There exists an x ∈ var(β) such that τ(x) ∈ Σ+
1 .

Proof of Claim 2. Assume to the contrary that, for every x ∈ var(β),
τ(x) /∈ Σ+

1 . Due to Claim 1, it results from τ(α) = σi,j(α) and σi,j be-
ing unambiguous with respect to γ and β that there exist some x′ ∈ var(γ)
such that τ(x′) ∈ Σ+

2 . Let A ⊆ var(γ) be the set of all variables x′ with
τ(x′) ∈ Σ+

2 . We can now define a morphism σ′ : N∗ → Σ∗1 such that, for every
k ∈ var(γ) \A, σ′(k) = τ(k) and, for every x′ ∈ A, σ′(x′) = ε. Consequently,
due to the fact that there is no k ∈ var(γ) with τ(k) ∈ (Σ1∪Σ2)

∗ \ (Σ∗1∪Σ∗2),
σ′(γ) = σi,j(α), which means that σi,j is ambiguous with respect to γ. This
is a contradiction. (Claim 2)

Claim 3. There exists an x ∈ var(γ) satisfying τ(x) ∈ Σ+
2 .

Proof of Claim 3. Assume to the contrary that, for every x ∈ var(γ), τ(x) /∈
Σ+

2 . Because of Claim 1, τ(α) = σi,j(α) and σi,j being unambiguous with
respect to γ and β imply that there exists a nonempty set A ⊆ var(β)
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such that, for every x′ ∈ A, τ(x′) ∈ Σ+
1 . We can now define a morphism

σ′ : N∗ → Σ∗2 such that, for every k ∈ var(β) \ {x′}, σ′(k) = τ(k) and,
for every x′ ∈ A, σ′(x′) = ε. Consequently, due to the fact that there is no
k ∈ var(β) with τ(k) ∈ (Σ1∪Σ2)

∗\(Σ∗1∪Σ∗2), σ
′(β) = σ(β), which contradicts

σ being unambiguous with respect to β. (Claim 3)

Claim 4. If |τ(q)| ≥ 2, q ∈ var(γ), and τ(q) ∈ Σ+
1 , then σi,j(i) v τ(q).

Proof of Claim 4. Assume to the contrary that σi,j(i) 6v τ(q). Let v1v2 v
τ(q), v1, v2 ∈ Σ1 \ {σi,j(i)}. Due to |γ|q = 2, τ(α) = · · · · v1v2 · · · · · v1v2 · · · · .
Since Σ1 ∩ Σ2 := ∅ and τ(α) = σi,j(α), we can conclude that γ = · · · · x1x2 ·
· · · · x1x2 · · · · , x1, x2 ∈ var(γ) \ {i, j}. Because of |γ|x1 = 2 and |γ|x2 = 2,
Lemma 1 implies that γ is a fixed point of a nontrivial morphism, which
contradicts the assumption. (Claim 4)

According to Claims 1, 2 and 3, there exists an x ∈ var(γ) such that
τ(x) ∈ Σ+

2 , and there exists an x′ ∈ var(β) with τ(x′) ∈ Σ+
1 . The two

occurrences of x are both in α1 or both in α2; otherwise, there does not
exist an x′ ∈ var(β) such that τ(x′) ∈ Σ+

1 . Without loss of generality, we
assume that both occurrences of x are in α1, and we also assume that x is the
leftmost variable in α1 satisfying τ(x) ∈ Σ+

2 and x′ is the leftmost variable
in β with τ(x′) ∈ Σ+

1 . Let x1 be the first occurrence of x, and let x2 be the
second occurrence of x. So, α1 = α11 · x1 · α12 · x2 · α13 , α11 , α12 , α13 ∈ N∗.
Consequently, τ(α11) = σi,j(α1).

σi,j(α) =

α =
α11 x1 α12 x2 α13 x′ α2

α1︷ ︸︸ ︷ β︷ ︸︸ ︷

σi,j(α11 )︷ ︸︸ ︷
σi,j(α1)︷ ︸︸ ︷

σi,j(β)︷ ︸︸ ︷ σi,j(α2)︷ ︸︸ ︷︸ ︷︷ ︸
τ(α11 )

︸︷︷︸
τ(x1)

︸︷︷︸
τ(x′)

Before we proceed with our proof, we define two notations. If, for variables
q, q′ in α1 (q and q′ have a same position or q′ occurs to the left of q in α1)
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σi,j(q) v τ(q′) and τ(q′) in τ(α11) is located at the position of σi,j(q) in
σi,j(α1), then we write σi,j(q) ↓ τ(q′). This is illustrated by the following
diagram (where we assume that the occurrence of q′ is to the left of the
occurrence of q):

σi,j(α1) = τ(α11) =

α1 =

...

...

...

...
q′ q

σi,j(q)︷︸︸︷
︸ ︷︷ ︸

τ(q′)

If the position of τ(q′) in τ(α11) is located to the right of the position of
σi,j(q) in σi,j(α1), then we write σi,j(q) 7→ τ(q′). We again give a diagram
(assuming that the occurrence of q′ is to the left of the occurrence of q) that
illustrates the setting where we use this notation:

σi,j(α1) = τ(α11) =

α1 =

...

...

...

...
q′ q

σi,j(q)︷︸︸︷
︸ ︷︷ ︸

τ(q′)

We return to our proof and recollect that α1 = α11 · x1 · α12 · x2 · α13 ,
x1 = x2 = x, and τ(α11) = σi,j(α1). This implies that we have to consider
the following cases:

Case 1. x = i or x = j

Due to τ(α11) = σi,j(α1), one of the following cases holds true:

Case 1.1. There exists a variable q ∈ var(α11) to the left of x1 satisfying
|τ(q)|σi,j(i) ≥ 2 and σi,j(i) ↓ τ(q).
Assume that σi,j(q) ↓ τ(q).
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σi,j(α1) =

α1 =
q x1 α12 x2 α13

σi,j(q)︷︸︸︷ σi,j(i)︷︸︸︷ σi,j(i)︷︸︸︷
︸ ︷︷ ︸

vτ(q)

α11︷ ︸︸ ︷

︸ ︷︷ ︸
τ(α11 )

Let A be a set of those variables k ∈ var(γ) \ {q} satisfying σi,j(k) v τ(q).
We define a morphism σ′ : N∗ → Σ∗1 such that, for every k′ ∈ var(γ),

σ′(k′) :=


ε, if k′ ∈ A,
τ(q), if k′ = q,

σi,j(k
′), else.

Due to the facts that, for all k, k′ ∈ var(γ), k 6= k′, |γ|k = 2, and if k 6= i and
k′ 6= j, then σi,j(k) 6= σi,j(k

′), it can be verified that σ′(γ) = σi,j(γ), which is
a contradiction to σi,j being unambiguous with respect to γ.
If σi,j(q) 7→ τ(q), then, due to τ(α11) = σi,j(α1), there exists a variable
q′ ∈ var(α11) to the left of q satisfying |τ(q′)| ≥ 2.

σi,j(α1) =

α1 =
q′ q x1 α12 x2 α13

σi,j(q)︷︸︸︷ σi,j(i)︷︸︸︷ σi,j(i)︷︸︸︷
︸ ︷︷ ︸

vτ(q)

α11︷ ︸︸ ︷

︸ ︷︷ ︸
τ(α11 )

26



According to Claim 4, σi,j(i) v τ(q′). Besides, |γ|q′ = 2. On the other hand,
|γ|q = 2 and we assume |τ(q)|σi,j(i) ≥ 2 in the present case. Consequently,
|τ(α)|σi,j(i) > 4, which contradicts τ(α) = σi,j(α).

Case 1.2. There exist variables q, q′ ∈ var(α11) to the left of x1 satisfying
σi,j(i) ↓ τ(q) and σi,j(i) ↓ τ(q′).

σi,j(α1) =

α1 =
q′ q x1 α12 x2 α13

σi,j(q
′)︷︸︸︷ σi,j(q)︷︸︸︷ σi,j(i)︷︸︸︷ σi,j(i)︷︸︸︷

︸︷︷︸
vτ(q′)

︸︷︷︸
vτ(q)

α11︷ ︸︸ ︷

︸ ︷︷ ︸
τ(α11 )

Therefore, due to τ(α11) = σi,j(α1) and τ(x) ∈ Σ+
2 , we can conclude that

σi,j(q) 7→ τ(q). If σi,j(q
′) ↓ τ(q′), then σi,j(q) ↓ τ(q′). This implies that

σi,j(q
′) ·w · σi,j(q) ·w′ · σi,j(i) v τ(q′), w,w′ ∈ Σ∗1. Due to |γ|q′ = 2, it can be

verified that γ = γ1 · q′ · γ2 · q · γ3 · q′ · γ2 · q · γ4 with γ1, γ2, γ3, γ4 ∈ N∗ and
σi,j(γ2) = w. Without loss of generality, we assume that x = i. This implies
that q 6= i, q′ 6= i and i /∈ var(γ2). Also, for every k ∈ var(γ), |γ|k = 2.
Consequently, ({q, q′} ∪ var(γ2)) ∩ (var(γ1) ∪ var(γ3) ∪ var(γ4)) = ∅. So, the
structure of γ satisfies Lemma 1, which implies that γ is a fixed point of a
nontrivial morphism. This is a contradiction. As a result, σi,j(q

′) 7→ τ(q′);
in addition, as mentioned, σi,j(q) 7→ τ(q). Therefore, and again because
of τ(α11) = σi,j(α1), there exists a variable q′′ ∈ var(α11) to the left of q′

satisfying |τ(q′′)| ≥ 2. According to Claim 4, σi,j(i) = σi,j(j) v τ(q′′).
Without loss of generality, assume that x = i. Hence, it results from σi,j(j) v
τ(q′′), |τ(q′′)| ≥ 2 and |γ|q′′ = 2 that there is a factor k · j v γ or j · k v γ,
k ∈ var(α1), k 6= i and k 6= j, which occurring twice in γ. Consequently, we
can assume γ = γ1 · k · j · γ2 · k · j · γ3 or γ = γ1 · j · k · γ2 · j · k · γ3 where
γ1, γ2, γ3 ∈ N∗ and k, j /∈ var(γ1γ2γ3). According to Lemma 1, this implies
that γ is a fixed point of a nontrivial morphism, which is a contradiction.

Case 2. x 6= i and x 6= j.
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Since τ(α11) = σi,j(α1), one of the following cases holds true:

Case 2.1. There exists a variable q ∈ var(α11) to the left of x1 satisfying
|τ(q)|σi,j(x) = 2. Since |γ|q = 2, |τ(α)|σi,j(x) > 2, which contradicts τ(α) =
σi,j(α).

Case 2.2. There exist variables q, q′ ∈ var(α11), q 6= q′, to the left of x1
satisfying σi,j(x) ↓ τ(q) and σi,j(x) ↓ τ(q′). It results from |γ|q = 2 and
|γ|′q = 2 that |τ(α)|σi,j(x) > 2, which is a contradiction to τ(α) = σi,j(α).

Case 2.3. There exists a variable q1 ∈ var(α11), with two occurrences named
q11 and q12 , to the left of x1 satisfying |τ(q1)|σi,j(x) = 1, σi,j(x1) ↓ τ(q11)
and σi,j(x2) ↓ τ(q12). Due to τ(α11) = σi,j(α1), τ(x) ∈ Σ+

2 and the two
occurrences of q1 being to the left of x1, we can conclude that σi,j(q1) 7→ τ(q1).

σi,j(α1) =

α1 =
q11 q12 x1 α12 x2 α13

σi,j(q1)︷︸︸︷ σi,j(q1)︷︸︸︷
︸︷︷︸
6vτ(q1)

︸︷︷︸
6vτ(q1)

σi,j(x)︷︸︸︷ σi,j(x)︷︸︸︷
︸︷︷︸
vτ(q1)

︸︷︷︸
vτ(q1)

α11︷ ︸︸ ︷

︸ ︷︷ ︸
τ(α11 )

We first demonstrate that the overall condition of Case 2 does not only hold
for x, but also for q1:

Claim 5. q1 6= i and q1 6= j.

Proof of Claim 5. Assume to the contrary that q1 = i or q1 = j. Without
loss of generality let q1 := i. Thus, q11 = q12 = i. On the other hand,
as mentioned, σi,j(q1) 7→ τ(q1). Thus, again because of τ(α11) = σi,j(α1),
there exists a variable k ∈ var(α11) to the left of q11 satisfying |τ(k)| ≥ 2.
According to Claim 4, σi,j(j) v τ(k). This implies that due to |γ|k = 2 there
is a factor k′ · j v γ or j · k′ v γ, k′ ∈ var(α1), k

′ 6= i and k′ 6= j, which
occurs twice in γ. Consequently, we can assume γ = γ1 · k′ · j · γ2 · k′ · j · γ3
or γ = γ1 · j · k′ · γ2 · j · k′ · γ3, where γ1, γ2, γ3 ∈ N∗ and k′, j /∈ var(γ1γ2γ3).
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According to Lemma 1, this implies that γ is a fixed point of a nontrivial
morphism, which is a contradiction.
If we assume to the contrary that q1 = j, then the same reasoning as above
leads to a contradiction. (Claim 5)

The following statement shall be the core argument of our reasoning on
Case 2.3.

Claim 6. There exists a variable to the left of q11 in α11 satisfying the condi-
tion of Case 2.3.

Proof of Claim 6. According to Claim 5, q1 6= i and q1 6= j. Besides, as
mentioned in Case 2.3, σi,j(q1) 7→ τ(q1). Consequently, applying Case 2 leads
to the existence of a variable q2 to the left of q11 satisfying σi,j(q1) ↓ τ(q2).
However, a same reasoning as in Cases 2.1, 2.2 (considering q1 instead of
x) leads to a contradiction. As a result, q2 must satisfy the condition of
Case 2.3. (Claim 6)

Therefore, according to Claim 6 and Case 2.3, there exists a q2 ∈ α11 with
two occurrences named q21 and q22 , to the left of q11 with |τ(q2)|σ(i,j)(q1) = 1
and σi,j(q2) 7→ τ(q2). Furthermore, due to a same reasoning as in Claim 5,
q2 6= i and q2 6= j. Hence, we can again apply Claim 6. Consequently,
this reasoning finally leads to a contradiction based on Case 2.1 or 2.2 since
the length of α1 is finite, which means that, by a continued application of
Claim 6, there is a qn ∈ var(α11) not satisfying Case 2.3.

Now, assume the case that | var(β)| > 3 and, for every x ∈ var(β), |β|x = 2.
It can be verified that this case satisfies Claims 1, 2 and 3. Consequently,
using an analogous reasoning as previous case leads to a contradiction again.

Hence, there is no morphism τ satisfying τ(α) = σi,j(α) and τ(x) 6= σi,j(x),
for an x ∈ var(α), and this implies that σi,j is unambiguous with respect to
α.

In order to illustrate the above statement, we consider the following ex-
ample. Let

α := 1 · 2 · 1 · 3 · 2 · 3 · 2 · 4 · 5 · 6 · 7 · 5 · 7 · 8 · 6 · 8 · 4 · 2 · 9 · 3 · 9 · 2.
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We now define

α1 := 1 · 2 · 1 · 3 · 2 · 3 · 2 · 4,
α2 := 4 · 2 · 9 · 3 · 9 · 2,
β := 5 · 6 · 7 · 5 · 7 · 8 · 6 · 8,

which implies α = α1 · β · α2. Referring to, e. g., Holub [8] or Reidenbach
and Schneider [13], it can be effortlessly verified that both β and γ = α1 · α2

are not a fixed point of a nontrivial morphism. Furthermore, β contains four
different variables, and every x ∈ var(β) satisfies |β|x = 2. Therefore, we
can apply Theorem 8, which says that there are i, j ∈ var(α) such that σi,j
is unambiguous with respect to α; from the proofs of Theorems 6, 7 and 8,
we can conclude that, for example, i := 5 and j := 7 are a suitable choice for
the definition of σi,j.

In the remainder of this section, we shall not directly address the mor-
phism σi,j any longer. Hence, we focus on Conjecture 1, and we use an ap-
proach that differs quite significantly from those above: We consider words
that cannot be morphic images of a pattern under any ambiguous 1-uniform
morphism, and we construct suitable morphic preimages from these words.
This method yields another major set of patterns for which Conjecture 1 is
satisfied.

Our corresponding technique is based on the well-known concept of de
Bruijn sequences. Since de Bruijn sequences are cyclic, which does not fit
with our subject, we introduce a non-cyclic variant:

Definition 3. A non-cyclic De Bruijn sequence (of order n) is a word over
a given alphabet Σ (of size k) for which all possible words of length n in Σ∗

appear exactly once as factors of this sequence. We denote the set of all non-
cyclic De Bruijn sequences of order n by B′(k, n). A w ∈ B′(k, n) is said
to be in canonical form if it is lexicographically minimal (with regard to any
fixed order on Σ) among all its renamings in B′(k, n).

For example, the word w0 := aabacbbcca is a non-cyclic de Bruijn sequence
in B′(3, 2) if we assume Σ := {a, b, c}. Furthermore, w0 is in canonical form
if we assume Σ to be ordered alphabetically. The introduction of a canonical
form is needed at the end of this section, where we shall provide a lower
bound on the number of patterns with unambiguous 1-uniform morphisms
that can be derived from de Bruijn sequences.
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It can now be easily understood that a non-cyclic de Bruijn sequence
cannot be a morphic image of any pattern under ambiguous 1-uniform mor-
phisms:

Theorem 9. Let Σ be an alphabet, and let α ∈ N+ be a pattern satisfying,
for every x ∈ var(α), |α|x ≥ 2. Let σ : N∗ → Σ∗ be a 1-uniform morphism
such that, for every u1u2 v σ(α), u1, u2 ∈ Σ, the factor u1u2 occurs in σ(α)
exactly once. Then σ is unambiguous with respect to α.

Proof. Assume to the contrary that σ is ambiguous with respect to α. Con-
sequently, there exists a morphism τ : N∗ → Σ∗ satisfying τ(α) = σ(α) and,
for some q ∈ var(α), τ(q) 6= σ(q). Since σ is a 1-uniform morphism, there
exists a q ∈ var(α) satisfying |τ(q)| ≥ 2. Hence, let v1v2 v τ(q), v1, v2 ∈ Σ.
Due to |α|q ≥ 2, this implies that τ(α) = · · · · v1v2 · · · · · v1v2 · · · · . How-
ever, this contradicts the condition of the theorem stating that, for every
u1u2 v σ(α), u1, u2 ∈ Σ, the factor u1u2 occurs in σ(α) exactly once. So, σ
is unambiguous with respect to α.

This insight implies that if a pattern can be mapped by a 1-uniform
morphism to a de Bruijn sequence and has at least two occurrences of each
of its variables, then this pattern necessarily is not a fixed point. Thus, for
such patterns, Conjecture 1 holds true:

Corollary 2. Let Σ be an alphabet, and let α ∈ N+ be a pattern satisfying,
for every x ∈ var(α), |α|x ≥ 2. Let σ : N∗ → Σ∗ be a 1-uniform morphism
such that, for every u1u2 v σ(α), u1, u2 ∈ Σ, the factor u1u2 occurs in σ(α)
exactly once. Then α is not a fixed point of a nontrivial morphism.

Proof. According to Theorem 9, σ is unambiguous with respect to α. Since
σ, by definition, is nonerasing, the corollary directly follows from Theorem 1.

We now show how we can construct patterns that satisfy the conditions
of Theorem 9 and Corollary 2:

Definition 4. Let Σ := {a1, a2, . . . , ak}. Let B′(k, 2) be the set of non-cyclic
de Bruijn sequences of order 2 over Σ. Then ΠDB(k) ⊆ N∗ is the set of
all patterns that can be constructed as follows: For every w ∈ B′(k, 2) and
every letter aj in w, all nj occurrences of aj are replaced by bnj/2c different
variables from a set Nj := {xj1 , xj2 , . . . , xjbnj/2c

} ⊆ N, such that the following

conditions are satisfied:
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• for every x ∈ Nj, |α|x > 1,

• for all i, i′, 1 ≤ i, i′ ≤ k, with i 6= i′, Ni ∩Ni′ = ∅, and

• for all i, 1 ≤ i ≤ k, the variables in Ni are assigned to occurrences of
ai in a way such that the resulting pattern is in canonical form.

For instance, with regard to our above example word w0 = aabacbbcca ∈
B′(3, 2), Definition 4 says that, e. g., the pattern 1 · 1 · 2 · 3 · 4 · 2 · 2 · 4 · 4 · 3
is contained in ΠDB(3).

From this construction, it directly follows that Conjecture 1 holds true
for every pattern in ΠDB(k):

Theorem 10. Let Σ := {a1, a2, . . . , ak}, k ≥ 3. Then, for every α ∈ ΠDB(k),

• var(α) contains at least k + 1 elements, and

• there exists a 1-uniform morphism σ : N∗ → Σ∗ that is unambiguous
with respect to α.

Proof. We begin this proof with the first statement of the theorem: It is
obvious that there are k2 different words of length 2 over Σ. The shortest
word that contains k2 factors of length 2 has length k2 +1, which means that
this is the length of any word w ∈ B′(k, 2). Thus, there must be at least one
letter in w that has at least d(k2+1)/ke occurrences. Since we assume k ≥ 3,
this means that this letter has at least 4 occurrences. From Definition 4 it
then follows that this letter is replaced by at least two different variables when
a pattern α ∈ ΠDB(k) is generated from w. Since all other letters in w must
be replaced by at least one variable, this shows that | var(α)| ≥ k + 1. Note
that from the proof of Theorem 11 it can be derived that, more precisely,
| var(α)| = (k − 1)bk/2c+ b(k + 1)/2c.

Concerning the second statement, we define σ by, for every j, 1 ≤ j ≤ k,
and for every x ∈ Nj, σ(x) := aj. Thus, σ is 1-uniform, and σ(α) ∈ B′(k, 2).
This implies that, for every u1u2 v σ(α), u1, u2 ∈ Σ, the factor u1u2 occurs in
σ(α) exactly once. Consequently, according to Theorem 9, σ is unambiguous
with respect to α.

We conclude this paper with a statement on the cardinality of ΠDB(k),
demonstrating that the use of de Bruijn sequences indeed leads to a rich
class of patterns α with unambiguous 1-uniform morphisms, and that these
morphisms, in general, can even have a target alphabet of size much less than
var(α)− 1 (as featured by Theorem 10):
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Theorem 11. Let k ∈ N. Then |ΠDB(k)| ≥ k!(k−1), and, for every α ∈
ΠDB(k),

| var(α)| = (k − 1)bk/2c+ b(k + 1)/2c .

Proof. Let B(k, n) be the set of all distinct De Bruijn sequences of order
n over alphabet Σ, and let B′(k, n) be the set of all distinct non-cyclic De
Bruijn sequences over Σ.
Claim 1. Every element of B′(k, n) has length kn + n − 1, and |B′(k, n)| =
k!k

n−1
.

Proof (Claim 1). According to [2],

• every element of B(k, n) has length kn, and

• |B(k, n)| = k!k
n−1
/kn.

Let w ∈ B(k, n). Therefore, |w| = kn. Assume that w = a1a2[. . .]am,
m = kn. Since all words of length n over alphabet Σ appear exactly once in
the cyclic sequence w, this implies that, for every v,

v ∈ {am−(n−2)am−(n−3)[. . .]ama1, am−(n−3)am−(n−4)[. . .]ama1a2, [. . .],
ama1a2[. . .]an−1},

v 6v w. Consequently, by defining w′ := a1a2[. . .]ama1a2 · · · an−1, w′ satisfies
Definition 3, and as a result, w′ ∈ B′(k, n). Thus, |w′| = |w| + (n − 1), and
this implies that, for every w′ ∈ B′(k, n),

|w′| = kn + (n− 1)

Besides, since w is a cyclic sequence, all words in

W := {a1a2[. . .]akn , a2a3[. . .]akna1, . . . , akna1a2, . . . , akn−1}

are equivalent, and they are counted as one sequence of B(k, n). Con-
sequently, to find the number of distinct non-cyclic De Bruijn sequences
B′(k, n), it is sufficient to multiply |W | = kn to the number of distinct De
Bruijn sequences B(k, n). Thus,

|B′(k, n)| = kn
k!k

n−1

kn
= k!k

n−1

.

Now, let B′′(k, n) be the set of non-cyclic De Bruijn sequences in canonical
form of order n.
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Claim 2. |B′′(k, n)| = k!(k
n−1−1)

Proof (Claim 2). Let Σ := {a1, a2, . . . , ak} and let w ∈ B′(k, n). According
to Definition 3, w is in canonical form if it is lexicographically minimal with
regard to Σ, a1 < a2 < . . . < ak. However, by renaming w, it can be verified
that there exist k! − 1 other sequences in B′(k, n); in other words, we can
consider w as a representative of k! elements of B′(k, n). So, it directly
follows from Claim 1 that the number of non-cyclic De Bruijn sequences in
canonical form of order n over Σ is

k!k
n−1

k!
= k!(k

n−1−1).

Consequently, according to Definition 4,

|ΠDB(k)| ≥ k!(k−1).

We continue to prove the second part of Theorem 11 by the following claim:
Claim 3. Let Σ := {a1, a2, . . . , ak}. Let B′′(k, 2) be the set of non-cyclic
De Bruijn sequences in canonical form of order 2 over Σ. Then, for every
w ∈ B′′(k, 2), |w|a1 = k + 1 and, for every j, 2 ≤ j ≤ k, |w|aj = k.

Proof (Claim 3). Let ai, i 6= 1, be an arbitrary element of Σ. According to
Definition 3, for every w ∈ B′′(k, 2), aia1, aia2, . . . , aiai, aiai+1, . . . , aiak v w.
Hence, without loss of generality regarding to order of letters in Σ , we can
assume one of the following cases to be satisfied:

• w = w1aia1 · w2aia2 · [. . .] · wiaiai · wi+1aiai+1 · [. . .] · wkaiak · wk+1, or

• w = w1aia1 · w2aia2 · [. . .] · wiaiaiai+1 · wi+1aiai+2 · [. . .] · wk−1aiak · wk,

where, for every j, 1 ≤ j ≤ k + 1, wj ∈ Σ∗ and ai 6v wj. Since i 6= 1 and w
is in canonical form, then w1 6= ε.
In the first case, ai occurs k+1 times. Since w1 6= ε and every word of length
2 over Σ appears exactly once in w, |Lai | = k + 1, ε /∈ Lai . Consequently,
we can conclude that there exist a sequence uai, u ∈ Σ, occurring more than
once in w. This contradict the fact that w ∈ B′′(k, 2). Thus, in accordance
with the second case, |w|ai = k. As a result, for every j, 2 ≤ j ≤ k, |w|aj = k.
Hence, for every w ∈ B′′(k, 2), |w| − |w|a1 = (k − 1)k. On the other hand,
Claim 1 implies that, for every w ∈ B′′(k, 2), |w| = k2 + 1. This means that

|w|a1 = (k2 + 1)− ((k − 1)k) = k + 1.
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Consequently, according to Definition 4, for every α ∈ ΠDB(k), k + 1 oc-
currences of a1 are replaced by b(k + 1)/2c different variables from N1 and,
for every j, 2 ≤ j ≤ k, k occurrences of aj are replaced by bk/2c different
variables from Nj. Therefore,

| var(α)| = (k − 1)bk/2c+ b(k + 1)/2c ,

and this proves the theorem.

5. Conclusions

In the present paper we have investigated the question of whether, for
a given pattern in N∗, there exists an unambiguous 1-uniform morphism
σ : N∗ → Σ∗. To this end, we have considered two different settings: in
Section 3 we have assumed Σ to be fixed, i. e., |Σ| does not depend on the
number of variables in the pattern, and in Section 4 we have allowed Σ to be
arbitrarily chosen, subject to the number of different variables in the pattern
α in question (provided that |Σ| < | var(α)|). Our results in Section 3 have
revealed that, for fixed alphabets Σ, the task of characterising those patterns
that have unambiguous 1-uniform morphisms might be quite involved, as the
sets of these patterns differ for |Σ| = 2, |Σ| = 3 and |Σ| = 4. With regard to
variable alphabets Σ, we have given two equivalent conjectures in Section 4,
which say that such morphisms exist if and only if the pattern is not a fixed
point of a nontrivial morphism. Our corresponding results have established
major sets of patterns for which these conjectures hold true.
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[7] T. Harju and J. Karhumäki. Morphisms. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, volume 1, chapter 7,
pages 439–510. Springer, 1997.

[8] S. Holub. Polynomial-time algorithm for fixed points of nontrivial mor-
phisms. Discrete Mathematics, 309:5069–5076, 2009.
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