
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Circular sequence comparison: algorithms and applicationsCircular sequence comparison: algorithms and applications

PLEASE CITE THE PUBLISHED VERSION

http://dx.doi.org/10.1186/s13015-016-0076-6

PUBLISHER

BioMed Central (© Grossi et al)

VERSION

VoR (Version of Record)

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International
(CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Grossi, Roberto, Costas S. Iliopoulos, Robert Mercas, Nadia Pisanti, Solon P. Pissis, Ahmad Retha, and
Fatima Vayani. 2019. “Circular Sequence Comparison: Algorithms and Applications”. figshare.
https://hdl.handle.net/2134/22155.

https://lboro.figshare.com/
http://dx.doi.org/10.1186/s13015-016-0076-6

Grossi et al. Algorithms Mol Biol (2016) 11:12
DOI 10.1186/s13015-016-0076-6

RESEARCH

Circular sequence comparison:
algorithms and applications
Roberto Grossi1,2, Costas S. Iliopoulos3, Robert Mercas3,4, Nadia Pisanti1,2, Solon P. Pissis3*, Ahmad Retha3
and Fatima Vayani3

Abstract

Background: Sequence comparison is a fundamental step in many important tasks in bioinformatics; from phy-
logenetic reconstruction to the reconstruction of genomes. Traditional algorithms for measuring approximation
in sequence comparison are based on the notions of distance or similarity, and are generally computed through
sequence alignment techniques. As circular molecular structure is a common phenomenon in nature, a caveat of the
adaptation of alignment techniques for circular sequence comparison is that they are computationally expensive,
requiring from super-quadratic to cubic time in the length of the sequences.

Results: In this paper, we introduce a new distance measure based on q-grams, and show how it can be applied
effectively and computed efficiently for circular sequence comparison. Experimental results, using real DNA, RNA, and
protein sequences as well as synthetic data, demonstrate orders-of-magnitude superiority of our approach in terms of
efficiency, while maintaining an accuracy very competitive to the state of the art.

© 2016 Grossi et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Biological motivation
Circular molecular structures are present, in abundance,
in all domains of life: bacteria, archaea, and eukaryotes;
and in viruses. They can be composed of either amino or
nucleic acids. The following is an overview of such occur-
rences, and exhaustive reviews can be found in [1] (pro-
teins) and [2] (DNA).

Double-stranded, circular chromosomes and plasmids
are found in most bacteria and archaea. Whole-genome
comparison is a very useful tool in classifying bacterial
strains, as well as inferring phylogenetic associations
between them. This is due to the dense structure of bac-
terial chromosomes, caused by the absence of introns,
and the organisation of genes into operons. The extended
benefit of aligning plasmids is the ability to identify
important genes, such as antibiotic resistance genes,
thereby enabling their study and exploitation by genetic
engineering techniques [3].

The most familiar examples of such structures in
eukaryotes are mitochondrial (MtDNA) and plastid
DNA. MtDNA is, in most cases, inherited solely from the
mother, and so is generally conserved. Human MtDNA is
double-stranded, with a length of 16,569 base pairs (bp),
consisting of just 37 genes encoding 13 proteins and 24
RNA molecules [4]. The absence of recombination in
these sequences allows them to be used as simple indi-
cators of phylogenetic evolution, and their high muta-
tion rate is a powerful discriminative feature [5, 6]. There
also exist smaller structures, called extrachromosomal
circular DNA, which are similar to plasmids in bacterial
cells. They are described as one of the characteristics of
genomic plasticity in eukaryotes [7] and may derive from
MtDNA [8].

It is common knowledge that many viral genomes are
circular. Viral genomes vary greatly in size and structure.
They can be made up of either RNA or DNA, and can
be single- or double-stranded. Multiple sequence align-
ment of viral genomes can be useful in the elucidation of
novel sites of interest [9], as well as the inference of evo-
lutionary relationships [10]. This is particularly impor-
tant in studying their pathogenicity, due to the rapid
rate of mutation of viruses. Viroids are plant pathogens

Open Access

Algorithms for
Molecular Biology

*Correspondence: solon.pissis@kcl.ac.uk
3 Department of Informatics, King’s College London, London, UK
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-016-0076-6&domain=pdf

Page 2 of 14Grossi et al. Algorithms Mol Biol (2016) 11:12

that comprise very small, single-stranded, circular RNA.
Their multiple sequence alignment could prove useful in
the analysis of their secondary structures and, therefore,
the mechanisms by which they infect host plant cells [11].

Naturally-occuring circular proteins are found in both
prokaryotes and eukaryotes [1]. Bacteriocins are very
small toxins produced by bacteria in order to compete
with closely-related bacterial strains. Many of these are
circular, including gassericin A, found in Lactobacillus
gasseri LA39 [12], and circularin A, found in Clostridium
beijerinckii [13]. An interesting phenomenon known to
occur naturally in linear protein structures is circular
permutation [14]. This can be exemplified by swaposins:
proteins highly-similar to saposins, resulting from circu-
larly permuted linear peptide sequences [15]. The ability
to align linear sequences from circular proteins can sig-
nificantly speed up and enhance their analyses, and could
also lead to the discovery of novel pairs of circularly per-
muted proteins.

Our problem
Conventional tools, designed for linear sequences, could
yield an incorrectly high genetic distance between closely
related circular sequences. Indeed, when sequencing
molecules, the position where a circular sequence starts
can be totally arbitrary. Due to this arbitrariness, a suit-
able rotation of one sequence would give much better
results for a pairwise alignment, and hence highlight a
similarity that any linear alignment would miss. A practi-
cal example of the benefit this can bring to sequence anal-
ysis is the following. Linearized human (NC_001807) and
chimpanzee (NC_001643) MtDNA sequences, obtained
from GenBank [16], do not start in the same region. Their
pairwise sequence alignment using EMBOSS Needle [17]
(default parameters) gives a similarity of 85.1 % and con-
sists of 1195 gaps. However, taking different rotations of
these sequences into account yields a much more signifi-
cant alignment with a similarity of 91 % and only 77 gaps.
This example motivates the design of efficient algorithms
that are specifically devoted to the comparison of circular
sequences [18–20].

In this paper, we consider the pairwise circular
sequence comparison problem. Under the edit distance
model, it consists in finding an optimal linear alignment
of two circular strings. This problem, for two strings x
and y of length m and n ≥ m, respectively, can be solved
under the edit distance model in time O(nm logm) [21].
Several other super-quadratic [22] and approximate
quadratic-time [23] algorithms exist. Trivially, for
molecular biology applications, the same problem can
be solved in time O(nm2), if extending the problem with
scoring matrices and affine gap penalty scores. A direct
application of pairwise circular sequence comparison is

progressive multiple circular sequence alignment [11, 24,
25]. Multiple circular sequence alignment has also been
considered in [26] under the Hamming distance model.

To the best of our knowledge, there is no fast (that is,
with sub-quadratic time complexity) and exact (or at least
very accurate) algorithm for circular sequence compari-
son under some realistic model (that is, allowing indels).
Taking into account edit distance rather than Hamming
distance is computationally challenging as the search
space for seeking similarity is wider. Algorithms that
speed up the process of string matching, by filtering out
candidate positions in which a particular string can never
occur, are known as filters. Filters that work for Ham-
ming distance do not work in general for edit distance
[27] as well. An exception to this are the q-gram filter-
ing techniques [28] that have successfully been used for
string matching under the edit distance model (e.g. [29–
31]), as well as for multiple local alignments, both under
the Hamming [32] and edit [31] distance models.

Our contribution
We present new efficient q-gram-based methods for pair-
wise circular sequence comparison. Specifically, our con-
tribution is threefold.

1. We introduce the β-blockwise q-gram distance
between two strings x and y, that is, a more power-
ful generalization of the q-gram distance introduced
as a string distance measure in [28]. Intuitively, and
similarly to [29–31], this generalization comprises
partitioning x and y in β blocks each, as evenly as pos-
sible, computing the q-gram distance between the
corresponding block pairs, and then summing up the
distances computed blockwise.

2. We present an algorithm based on the suffix
array [33] that finds the rotation of x such that the
β-blockwise q-gram distance between the rotated
x and y is minimal, in time and space O(βm+ n) ,
where m = |x| and n = |y|, thereby solving exactly
the circular sequence comparison problem under the
β-blockwise q-gram distance measure. We also pre-
sent a simple heuristic algorithm to solve an approxi-
mate version of the problem.

3. We present an experimental study, using real and
synthetic data, which demonstrates orders-of-mag-
nitude superiority of our approach, in terms of effi-
ciency, while maintaining an accuracy very com-
petitive to the optimal obtained after considering all
rotations of x against y using EMBOSS Needle.

The paper is organized as follows. "Definitions and prop-
erties" section gives some preliminary definitions, nota-
tion, and properties. "Algorithms" section describes two
algorithms, one is a heuristic approach and the other

Page 3 of 14Grossi et al. Algorithms Mol Biol (2016) 11:12

is an exact algorithm for circular sequence compari-
son under the β-blockwise q-gram distance measure.
"Implementation" section provides details of the imple-
mentation of the algorithms. "Experimental results" sec-
tion presents the experimental results of the performance
and accuracy of the algorithms. Finally, "Conclusions"
section gives some concluding remarks and future pro-
posals. A preliminary version describing a subset of the
results in this paper appeared in [34].

Definitions and properties
We begin with a few definitions, following [35]. We
think of a string x of length m as an array x[0 . .m− 1],
where every x[i], 0 ≤ i < m, is a letter drawn from some
fixed alphabet � of size |�| = O(1). We refer to any
string x ∈ �q as a q-gram. The empty string of length 0
is denoted by ε. A string x is a factor of a string y if there
exist two strings u and v, such that y = uxv. Let x be a
non-empty string and y be a string. We say that there is
an occurrence of x in y, or, simply, that x occurs in y, when
x is a factor of y. The Parikh vector associated with a
string w ∈ �∗ is denoted by P(w) and represents a vector
of size |�|, where each component denotes the number of
occurrences in w of the corresponding letter from �.

Consider the strings x, y, u, and v, such that y = uxv. If
u = ε, then x is a prefix of y. If v = ε, then x is a suffix of y.
We denote by SA the suffix array of y of length n, that is, an
integer array of size n storing the starting positions of all
lexicographically sorted suffixes of y, i.e. for all 1 ≤ r < n ,
we have y[SA[r − 1] . . n− 1] < y[SA[r] . . n− 1] [33].
Let lcp (r, s) denote the length of the longest common
prefix between y[SA[r] . . n− 1] and y[SA[s] . . n− 1], for
all positions r, s on y, and 0 if they do not have a com-
mon prefix. We denote by LCP the longest common pre-
fix array of y defined by LCP[r] = lcp(r − 1, r), for all
1 ≤ r < n, and LCP[0] = 0. The inverse iSA of the array
SA is defined by iSA[SA[r]] = r, for all 0 ≤ r < n. SA,
iSA, and LCP of y can be computed in O(n) time and
space [36].

A circular string of length m can be viewed as a tra-
ditional linear string which has the left- and right-most
letters wrapped around and glued together in some
way. Under this notion, the same circular string can
be seen as m different linear strings, which would all
be considered equivalent. Given a string x of length m,
we denote by xi = x[i . .m− 1]x[0 . . i − 1], 0 < i < m ,
the ith rotation of x and x0 = x. For instance, the string
x = x0 = abababbc has the following rotations:
x1 = bababbca, x2 = ababbcab, and so on.

We give some further definitions following [28]. The q-
gram profile of a string x is the vector Gq(x), where q > 0
and Gq(x)[v] denotes the total number of occurrences of

q-gram v ∈ �q in x. The q-gram distance between two
strings x and y is defined as

Note that Dq is a pseudo-metric as Dq(x, y) can be 0
even if x �= y. Dq has the following properties [28] for all
x, y, z ∈ �∗ of length at least q.

1. Positivity: Dq(x, y) ≥ 0

2. Symmetry: Dq(x, y) = Dq(y, x)

3. Triangular inequality: Dq(x, y) ≤ Dq(x, z)+ Dq(z, y)

4. |(|x| − |y|)| ≤ Dq(x, y) ≤ |x| + |y| − 2q − 2

5. Dq(x1x2, y1y2) ≤ Dq(x1, y1)+ Dq(x2, y2)+ 2(q − 1) ,
for x1, x2, y1, y2 ∈ �∗

6. Dq(h(x), h(y)) ≤ Dq(x, y), for a non-length-increas-
ing morphism h on �∗.

Example 1 Let x = GGAGTCTA, y = TTCTAGCG, and
q = 3. Table 1 shows the q-gram profiles of strings x and
y and the q-gram distance between them. Each row rep-
resents the frequency of a q-gram in the given string.
For succinctness of presentation, only those rows with
frequency greater than zero (in either string) are shown,
as well as rows representing AAA, CCC, GGG, and TTT as
points of reference.

For a given integer parameter β ≥ 1, we define a gen-
eralization of the q-gram distance in (1) by partitioning x
and y in β blocks as evenly as possible, and computing the
q-gram distance between each pair of blocks, one from x
and one from y. The rationale is to enforce locality in the
resulting overall distance. For the sake of presentation in
the rest of the paper, we assume that the lengths |x| = m
and |y| = n are both multiples of β, so that x and y are
conceptually partitioned into β blocks, each of size m/β
for x and n/β for y.

Definition 1 Given strings x of length m and y of length
n ≥ m and integers β ≥ 1 and q > 0, the β-blockwise q-
gram distance Dβ ,q(x, y) is defined as

Example 2 Following Example 1, let x = GGAGTCTA
and y = TTCTAGCG, q = 3, and β = 2. Further let
x1 = GGAG, x2 = TCTA and y1 = TTCT, y2 = AGCG be

(1)Dq(x, y) =
∑

v∈�q

∣

∣Gq(x)[v] − Gq(y)[v]
∣

∣.

(2)

Dβ ,q(x, y) =
β−1
∑

j=0

Dq

(

x

[

jm

β
. .
(j + 1)m

β
− 1

]

,

y

[

jn

β
. .
(j + 1)n

β
− 1

])

.

Page 4 of 14Grossi et al. Algorithms Mol Biol (2016) 11:12

the two blocks of x and y, respectively. Table 2 shows
the q-gram profiles of strings x1, x2, y1, and y2; and the
q-gram distance between x1 and y1 and the q-gram dis-
tance between x2 and y2.

Table 1 q-gram profiles of strings x and y and q-gram dis-
tance Dq(x, y) = 8 between them

(a) Gq(x)

 AAA 0

 AGC 0

 AGT 1

 CCC 0

 CTA 1

 GAG 1

 GCG 0

 GGA 1

 GGG 0

 GTC 1

 TAG 0

 TCT 1

 TTC 0

 TTT 0

(b) Gq(y)

 AAA 0

 AGC 1

 AGT 0

 CCC 0

 CTA 1

 GAG 0

 GCG 1

 GGA 0

 GGG 0

 GTC 0

 TAG 1

 TCT 1

 TTC 1

 TTT 0

(c) Dq(x , y)

 AAA 0

 AGC 1

 AGT 1

 CCC 0

 CTA 0

 GAG 1

 GCG 1

 GGA 1

 GGG 0

 GTC 1

 TAG 1

 TCT 0

 TTC 1

 TTT 0

Table 2 q-gram profiles of strings x1, x2, y1, and y2;
q-gram distance between x1 and y1; and q-gram distance
between x2 and y2, giving Dβ,q(x, y) = 8

(a) Gq(x1)

 AAA 0

 AGC 0

 AGT 0

 CCC 0

 CTA 0

 GAG 1

 GCG 0

 GGA 1

 GGG 0

 GTC 0

 TAG 0

 TCT 0

 TTC 0

 TTT 0

(b) Gq(y1)

 AAA 0

 AGC 0

 AGT 0

 CCC 0

 CTA 0

 GAG 0

 GCG 0

 GGA 0

 GGG 0

 GTC 0

 TAG 0

 TCT 1

 TTC 1

 TTT 0

(c) Dq(x1, y1)

 AAA 0

 AGC 0

 AGT 0

 CCC 0

 CTA 0

 GAG 1

 GCG 0

 GGA 1

 GGG 0

 GTC 0

 TAG 0

 TCT 1

 TTC 1

 TTT 0

(d) Gq(x2)

 AAA 0

 AGC 0

 AGT 0

Page 5 of 14Grossi et al. Algorithms Mol Biol (2016) 11:12

In this paper, we consider the following problem, where
we search for the ith rotation of x that minimizes its
blockwise distance from y as defined in (2). Ties are bro-
ken arbitrarily.

Circular Sequence Comparison (CSC)
Input: strings x and y of lengths m and n ≥ m, respec-

tively, and integers β ≥ 1 and q < m

Output: i such that Dβ ,q(x
i, y) is minimal

Algorithms
We use the following result to first give a naïve solution
to the CSC problem.

Lemma 1 [28] If we have space O(|�|q) available, then the
q-gram distance Dq(x, y) can be computed in time O(m+ n)
and extra space O(m+ n), where m = |x| and n = |y|.

We then apply Lemma 1 to each pair of blocks of x and
y separately.

Lemma 2 If we have space O(|�|q) available, then the
β-blockwise q-gram distance Dβ ,q(x, y) can be computed
in time O(m+ n) and extra space O(m+n

β
), where m = |x|

and n = |y|.

The naïve algorithm, denoted by nCSC, computes for
x′ = xx the values

for all 0 ≤ i < m; we report position i such that δi is mini-
mal. This requires the application of Lemma 2, m times.
Therefore, we obtain the following.

Lemma 3 If we have space O(|�|q) available, then algo-
rithm nCSC solves the CSC problem in time O(m(m+ n))
and extra space O(m+n

β
).

Algorithm hCSC: a Heuristic algorithm
Here we give a simple heuristic algorithm, denoted by
hCSC, to solve the CSC problem faster than nCSC, and
return an approximation of the best rotation.

Step 1: We split x′ = xx in 2β non-overlapping string
blocks of length m/β. We obtain strings x0, x1, . . . , x2β−1 ,
such that xi = x′[im

β
. . (i+1)m

β
− 1], for all 0 ≤ i < 2β .

We split y in β non-overlapping string blocks of length
n/β. We obtain strings y0, y1, . . . , yβ−1, such that
yi = y[in

β
. . (i+1)n

β
− 1], for all 0 ≤ i < β.

Step 2: For a given sequence xj , . . . , xj+β−1 of strings and
y, we compute the β-blockwise q-gram distance as follows

We compute δj, for all 0 ≤ j ≤ β. We choose jbest = j such
that δj is minimal, for all 0 ≤ j ≤ β. In other words, we have
found a window of length m starting at position jbest, such
that (jbest + 1) mod (m/β) = 0, consisting of β blocks of
length m/β each, that minimizes its β-blockwise q-gram
distance from y.

Step 3: To perform a refinement on the position of the
window, we consider all starting positions included in

δi = Dβ ,q(x
′[i . . i +m− 1], y),

δj = Dβ ,q

(

x′
[

jm

β
. .
jm

β
+m− 1

]

, y

)

=
β−1
∑

i=0

Dq(xj+i, yi).

Table 2 continued

 CCC 0

 CTA 1

 GAG 0

 GCG 0

 GGA 0

 GGG 0

 GTC 0

 TAG 0

 TCT 1

 TTC 0

 TTT 0

(e) Gq(y2)

 AAA 0

 AGC 1

 AGT 0

 CCC 0

 CTA 0

 GAG 0

 GCG 1

 GGA 0

 GGG 0

 GTC 0

 TAG 0

 TCT 0

 TTC 0

 TTT 0

(f) Dq(x2, y2)

 AAA 0

 AGC 1

 AGT 0

 CCC 0

 CTA 1

 GAG 0

 GCG 1

 GGA 0

 GGG 0

 GTC 0

 TAG 0

 TCT 1

 TTC 0

 TTT 0

Page 6 of 14Grossi et al. Algorithms Mol Biol (2016) 11:12

the two blocks starting at positions jbest and jbest −m/β .
This includes 2m/β − 1 starting positions in total—
we do not need to consider position jbest −m/β as this
was already considered by another window in Step 2.
Similarly to Step 2, we obtain the β-blockwise q-gram
distance δi between the window starting at position i
and y, for all jbest −m/β < i ≤ jbest +m/β − 1. We
report position ibest = i such that δi is minimal, for all
jbest −m/β < i ≤ jbest +m/β − 1.
Analysis Step 1 can be done trivially in time
O(m+ n). If we have space O(|�|q) available, then,
by Lemma 1, Dq(xj+i, yi) can be computed in time

O

(

m+n
β

)

. By Lemma 2, δj can be computed in time

O

(

β(m+n
β

)

)

= O(m+ n). Hence, Step 2 can be done

in time O(β(m+ n)). In Step 3, the blockwise q-gram
distance δi between a single window and y can be com-
puted in time O

(

β(m+n
β

)

)

= O(m+ n). There exist
2m/β − 1 such windows. Hence, Step 3 can be done in
time O

(

m(m+n)
β

)

. Overall, the algorithm requires time
O

(

β(m+ n)+ m(m+n)
β

)

 and space O(|�|q +m+ n).
For practical purposes, setting β = O(

√
m) and

q = O(log|�|m) gives an algorithm with time complexity
O(

√
m(m+ n)) and space complexity O(m+ n).

Algorithm saCSC: an exact suffix‑array‑based algorithm
The above heuristic hCSC does not guarantee to find the
exact value i, for which δi = Dβ ,q(x

i, y) is minimal. In par-
ticular, when we identify jbest in Step 2, that is, the j for
which δj is minimal, we take into account only the values
of j such that (j + 1) mod (m/β) = 0. Thus, Step 3 can-
not guarantee that ibest, the local minimum obtained by
shifting the window m/β positions to the right and left of
jbest, is minimal for all 0 ≤ i < m. In this section, we give
a fast and exact algorithm, denoted by saCSC, to find i
such that δi = Dβ ,q(x

i, y) is minimal, based on the suffix
array (see "Definitions and properties" section).

We partially follow the idea from [37]. This work investi-
gates the string matching problem in the setting of k-abelian
equivalences: two strings are considered k-abelian equiva-
lent for some positive integer k, if they have the same length
and share the same factors of length at most k, including

multiplicities. Note that if k is greater than or equal to the
string’s length, then the strings must be equal. A version of
this result, called extended k-abelian equivalence, focuses
only on the factors of length k. By setting k = q, it is quite
straightforward to notice the equivalence with q-grams.
Therefore, in order to avoid confusion we will refer to the
former notion from now on as q-abelian equivalence.

In [37], the authors propose a linear-time algorithm to
solve the string matching problem when looking at q-abe-
lian equivalent strings: given a string x of length m, a string
y of length n ≥ m, and a positive integer q < m, all factors
of y that are q-abelian equivalent to x can be found in time
and space O(m+ n). The idea of the algorithm in [37] con-
sists in constructing the suffix array of the string xy, and
ranking sets of identical q-length prefixes of suffixes in the
suffix array in the order of their appearance. Then it con-
structs new strings based on this ranking, and solves the
problem as in the jumbled matching case [38], i.e. identify-
ing all factors of y that have the same Parikh vector as x.

We first describe our algorithm for a single block
(β = 1) and then address the general case (β ≥ 1).
Basic algorithm for β = 1. We construct the suffix array
of the string xxy and assign a rank to the prefix with
length q of each suffix with length at least q, based on
its order in the suffix array. That is, the first i0 suffixes, of
length at least q, in the suffix array, all sharing the same
prefix of length q, will get rank 0; the next i1 suffixes,
of length at least q, sharing the same prefix of length q,
different from the previous one, will get rank 1, and so
on. Next, based on this ranking, we construct two new
strings x′ of length 2m− q + 1 and y′ of length n− q + 1 ,
such that x′[i] = j, if j is the rank of the q-length prefix
of the (i + 1)th suffix of xx in the suffix array of xxy (the
same goes for y). It is not difficult to see that the ranks
go up at most to value m+ n− q + 1. However, we can
reduce this value to m+ 2 by introducing two new ranks
ax and ay: we can conceptually replace by ax every letter
of x′ that does not occur in y′, and by ay every letter of y′
that does not occur in x′. Hence we can consider that the
new strings x′ and y′ are defined over an integer alphabet
of size at most min(n− q + 1,m)+ 2 ≤ m+ 2.

Example 3 Let x = GAGTCTA, y = TCTAGCG, and
q = 3. We denote xxy by z.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

z[i] G A G T C T A G A G T C T A T C T A G C G

SA[i] 6 17 1 8 13 19 4 15 11 20 0 7 18 2 9 5 16 12 3 14 10

LCP[i] 0 2 2 6 1 0 1 4 3 0 1 7 1 1 5 0 3 2 1 5 4

x′[i] ax ax ax 2 0 1 ax ax ax ax 2 0

y′[i] 2 0 1 ay ay

Page 7 of 14Grossi et al. Algorithms Mol Biol (2016) 11:12

 Here, x′[3] = y′[0] = 2 denotes that x[3 . . 5] =

y[0 . . 2] = TCT and x′[0] = ax denotes that x[0 . . 2] =
GAG does not occur in y.

We observe that when identifying the q-gram distance
between two blocks, we can apply the idea in [37], with
the only difference that we should also maintain a Parikh
vector that stores the differences between the number of
occurrences of q-grams (in fact the new letters given by
the ranks) in the current block of xx and y. Moreover,
at the time of the construction of y′, we also construct a
Parikh vector P(y′), storing for each letter of y′, the num-
ber of its occurrences in y′. Notice that |P(y′)| ≤ m+ 2.
Later on, when computing the q-gram distances, we can
construct another vector diff to store the letter differ-
ences between P(y′) and the Parikh vector covering the
m− q + 1 letters of x′ associated with a window of length
m on the string xx. This gives us the current Parikh dif-
ference and, in fact, represents the q-gram distance
between the two analyzed blocks, where |diff| ≤ m+ 2.
Apart from these, we only need another vector δ of size
m, which stores at each position i the actual q-gram dis-
tance δi between y and the window starting at position i
in xx, which is the ith rotation xi of x.

We use a sliding window of length m to maintain the
above information. When the window is shifted one
position to the right, we have to add to the difference-
vector diff the previous first element of the window, and
deduct from it the current last element of it. The distance
δi between y′ and the factor of x′ starting at position i is
thus updated using, in addition, the value of the q-gram
distance δi−1 as follows. If, after adding the previous first
element to the vector, we have a non-positive value at this
position, we update the distance by decreasing the pre-
vious value by 1; otherwise, we increase it by 1. If, after
deducting the current last element to the vector, we have
a non-negative value at this position, we update the dis-
tance by decreasing the previous value by 1; otherwise,
we increase it by 1. The distance will never be less than
the number of occurrences of ay. Furthermore, if the pre-
vious first element was ax, the new distance decreases
by 1, and for every newly added ax, it increases by 1. As
these operations require constant time, after going once
through x′ with y′, we obtain the list of distances δi from y
to each rotation xi in linear time.

We are now able to give a more formal description of
the steps to solve the CSC problem for β = 1, which fol-
low a dynamic programming scheme.

Step 1: Construct the SA, iSA, and LCP of xxy. Rank
the q-length prefixes of suffixes using LCP-array que-
ries. Construct x′ and y′, as well as P(y′), the Parikh
vector storing, for each letter of y′, the number of its

occurrences in y′; making proper use of letters ax and ay,
the ranks that do not occur in either y′ or x′, respectively.
Further, create diff = P(y′) and δ0 =

∑|P(y′)|−1
i=0 P(y′)[i].

Example 4 Following Example 3, let x = GAGTCTA,
y = TCTAGCG, q = 3, and z = xxy.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

z[i] G A G T C T A G A G T C T A T C T A G C G

x′[i] ax ax ax 2 0 1 ax ax ax ax 2 0

y′[i] 2 0 1 ay ay

The table below represents vector diff, right after the
execution of Step 1, which implies that δ0 = 5.

ax 0

ay 2

0 1

1 1

2 1

Step 2: Read the first m− q + 1 letters of x′, which con-
stitute our sliding window of length m on the string xx.
When reading letter x′[i], update diff by decreasing by 1
the value of the newly read letter, and update δ0, by either
increasing the current value of the distance when there
were read too many of the current letters, or decreasing
it, when more of these letters still occur in y′

Example 5 Following Example 4, the table below repre-
sents vector diff, right after the execution of Step 2, which
implies that δ0 = 6.

ax 3

ay 2

0 0

1 1

2 0

Step 3: Let i be the current position in x′ and repeat
this step, one position at a time. Shift the window to the
right, update the information for diff

and calculate δi+1, based on this information, sequentially
applying the two following rules

diff[x′[i]] = diff[x′[i]] − 1 and

δ0 =
{

δ0 − 1, if diff[x′[i]] ≥ 0

δ0 + 1, if diff[x′[i]] < 0.

diff[x′[i]] = diff[x′[i]] + 1 and

diff[x′[i +m]] = diff[x′[i +m]] − 1,

Page 8 of 14Grossi et al. Algorithms Mol Biol (2016) 11:12

Example 6 Following Example 5, the table below repre-
sents vector diff at iteration i′ = 3 of Step 3, which implies
that δ0 = 4. This is in fact the best rotation of x, that is,
x3 = TCTAGAG.

ax 2

ay 2

0 0

1 0

2 0

Correctness Steps 1 and 2 are trivially correct as at the
end of them we have that diff is the difference between
P(y′) and the vector corresponding to the window. These
operations follow directly from the definitions of SA and
LCP, and are followed by a simple traversal of the suffix
array in order to obtain the ranks and create the P(y′)
and diff vectors. Also, δ0, which was initially the num-
ber of letters in y′, is decreasing as long as the difference
between the vectors for a specific letter is non-negative
(thus, we still have more occurrences of that letter in y′
compared to the window), and increasing otherwise. In
Step 3, we update the difference vector by increasing
the value at position x′[i] and decreasing that of the new
letter x′[i +m] added to the difference. The q-gram dis-
tance at that position is based on the values of the newly
obtained difference vector, as well as the q-gram distance
at the previous position: if diff[x′[i]] ≤ 0, then obviously
there were more letters x′[i] in y′ than in the window,
thus we need to decrease, while, if diff[x′[i]] > 0, then
there were at least as many letters x′[i] in the window as
in y′, and taking one out increases the distance. The com-
plementary reasoning applies to the newly added letter
x′[i +m]. The value of δi never goes below the number of
occurrences of ay in y′ (it is equal to that, when all other
elements of diff are 0) and represents the q-gram distance
between y and xi, the corresponding window of length m
starting at position i in xx.

Analysis In Step 1, constructing SA, iSA, and LCP
of xxy can be done in time and extra space O(m+ n)
("Definitions and properties" section). Furthermore, the
construction of x′, y′, P(y′), diff, and δ0 is done with the
same time and space cost. In Step 2, updating diff and δ0
after reading each letter takes constant time, as we exe-
cute two operations, thus O(m) in total. Constant time is
required for each iteration in Step 3 to compute the value

δi+1 =
{

δi − 1, if diff[x′[i]] ≤ 0
δi + 1, if diff[x′[i]] > 0

δi+1 =
{

δi+1 − 1, if diff[x′[i +m]] ≥ 0
δi+1 + 1, if diff[x′[i +m]] < 0.

of δi, 1 ≤ i < m, and update diff, since a constant number
of operations are executed, thus O(m) in total. Hence, we
can solve the CSC problem for β = 1 in time and space
O(m+ n).
General algorithm for β ≥ 1. We can now generalize this
algorithm to solve the CSC problem for any β ≥ 1, which
gives algorithm saCSC. We maintain a Parikh vector for
each block, and apply the above basic algorithm for the jth
block in each string, computing their q-gram distance. If
we denote by Pj(y

′) and diffj, for all 0 ≤ j < β , the β Parikh
vectors of y′ and of the q-gram distances, respectively, as
well as by δi,j the q-gram distance between the jth block
of y and xi, then the updates will be given by the formulae
below. Hence, at each position i < m, we can update all of
the β Parikh vectors corresponding to the blocks, as pre-
viously described, in time O(β). As an example, see here
the modification of the previous Step 3, with the other two
steps being easily adapted in a similar fashion.

Step 3’: When shifting the window one position to the
right from position i, update the information for every
diffj, where 0 ≤ j < β, as follows

and calculate δi+1,j, based on this information, sequen-
tially applying the two following rules

Therefore, we obtain the following result.

Theorem 1 Algorithm saCSC solves the CSC problem
in O(βm+ n) time and space.

Implementation
We implemented algorithms nCSC, hCSC, and saCSC as
the program CSC. Given one of the three methods, two
sequences x and y in (Multi)FASTA format, the number
β of blocks, and the length q of the q-grams, CSC finds
the rotation of x (or an approximation of it) that mini-
mizes its β-blockwise q-gram distance from y. The imple-
mentation is distributed under the GNU General Public
License (GPL), and it is available freely at http://www.
github.com/solonas13/csc.

diffj

[

x′
[

i +
jm

β

]]

= diffj

[

x′
[

i +
jm

β

]]

+ 1

diffj

[

x′
[

i +
(j + 1)m

β

]]

= diffj

[

x′
[

i +
(j + 1)m

β

]]

− 1,

δi+1,j =

δi,j − 1, if diffj

�

x′[i + jm
β
]
�

≤ 0

δi,j + 1, if diffj

�

x′[i + jm
β
]
�

> 0

δi+1,j =

δi+1,j − 1, if diffj

�

x′[i + (j+1)m
β

]
�

≥ 0

δi+1,j + 1, if diffj

�

x′[i + (j+1)m
β

]
�

< 0.

http://www.github.com/solonas13/csc
http://www.github.com/solonas13/csc

Page 9 of 14Grossi et al. Algorithms Mol Biol (2016) 11:12

Example 7 Consider the following pair of strings obtained from saCSC

and the following pair of strings formed for L = 25.

The Needleman-Wunsch algorithm for all rotations of x′′ and string y′′ gives the following optimal alignment

which tells us that a refined rotation is in fact xi′, where i′ = i − 13

xi = GACACCCCCCACAGTTTATGTAGCTT…ACCCCGAACCAACCAAACCCCAAA

y = GTTTATGTAGCTTACCTCCCCAAAGC…CAAACCCCAAAGACACCCCACACA

x′′ = GACACCCCCCACAGTTTATGTAGCTT$$$$$$$$$$$$$$$$$$$$$$$$$ACCCCGAACCAACCAAACCCCAAA

y′′ = GTTTATGTAGCTTACCTCCCCAAAG$$$$$$$$$$$$$$$$$$$$$$$$$CAAACCCCAAAGACACCCCACACA

GTTTATGTAGCTT$$$$$$$$$$$$$$$$$$$$$$$$$ACCCCGAACCAACCAAACCCCAAAGACACCCCCCACA

GTTTATGTAGCTTACCTCCCCAAAG$$$$$$$$$$$$$$$$$$$$$$$$$CAAACCCCAAAGACACCCCACACA

xi
′
= GTTTATGTAGCTT…CAAACCCCAAAGACACCCCCCACA

y = GTTTATGTAGCTT…CAAACCCCAAAGACACCCCACACA

For comparison purposes, we implemented a naïve
algorithm that compares all rotations of x against y using
the Needleman-Wunsch algorithm [39] with substitution
matrices and affine gap penalty scores [40]; we denote
this implementation by cNW. We also implemented the
following heuristics. We first use the Smith-Waterman
local alignment algorithm [41] to search for the best local
alignment of x and y and then use a central match from
this local alignment to anchor the global alignment (see
also [11]); we denote this implementation by hSW.

Refining algorithm saCSC
The application of the β-blockwise q-gram distance via
algorithm saCSC suggests that an optimal or a close-
to-optimal rotation of x can be found when compared
to cNW. Due to the locality property offered by the newly
introduced distance notion, it is reasonable to assume
that the close-to-optimal rotation returned by saCSC
may be refined via some quick heuristics that take into
consideration the blocks at both ends.

Let xi be the close-to-optimal rotation of x returned by
saCSC. We introduce a new input parameter 0 < p ≤ β

3,
which defines the length L of the prefixes and suffixes of
xi and y to be considered in the refinement as follows:

L =
⌊

p×
m

β

⌋

.

We take p block(s) of the prefix of xi, concatenate it with a
string of equal length L comprised only of letter $, where
$ /∈ �, and concatenate that with p block(s) of the suffix
of xi to form a new string x′′ of length 3L. We do the same
with y to form a new string y′′.

The refinement algorithm works by taking all rota-
tions of x′′ and comparing their similarity to y′′. Each
rotation of x′′ is compared to y′′ excluding when a $ let-
ter is found at index 0 of the rotation of x′′. We measure
the similarity between the strings for which equal-
ity between letters are positively valued; inequalities,
insertions, and deletions are negatively valued; and
comparisons involving $ are neither positively nor neg-
atively valued. The goal of rotating x′′ serves to find the
rotation that maximizes the similarity to y′′ and, to this
end, we make use of the Needleman-Wunsch algorithm.
The rotation of x′′ which results in the maximum score
is chosen as the best rotation, and hence, the final rota-
tion xi′ of x is computed based on this rotation of x′′.
Ties are broken arbitrarily. We denote this new algo-
rithm, consisting of saCSC and the refinement stage,
by saCSCr.

The application of the Needleman-Wunsch algorithm
on strings of length 3L has a time complexity of O(L2).
Considering all rotations of x′′ results in a time complex-
ity of O(L3) for the refinement step. Overall, saCSCr
takes time O(βm+ n+ L3).

Page 10 of 14Grossi et al. Algorithms Mol Biol (2016) 11:12

Experimental results
The following experiments were conducted on a desktop
computer using one core of Intel® CoreTM i7-2600 CPU
at 3.4GHz and 12GB of RAM under 64-bit GNU/Linux.
All programs were compiled with gcc version 4.7.3. We
used both synthetic data and real data. All input datasets
referred to in this section are publicly maintained at the
same web-site. First, in "Accuracy"–"Time performance"
sections, we establish the quality (accuracy and perfor-
mance) of our methods. Then, in "Application to syn-
thetic data"–"Application to real data" sections, we show
applications of our methods.

Accuracy
We began with simulating three DNA sequence datasets
using INDELible [42], with each dataset consisting of 12
sequences (denoted by α), each of length approximately
2500 bp (denoted by γ). INDELible produces linear
sequences with substitutions, insertions, and deletions at
rates defined by the user. Three unique substitution rates
(denoted by θ) were set, per dataset, using the substitu-
tion model JC69 (Jukes-Cantor, 69): 5, 20, and 35 %. The
insertion and deletion rates were set, respectively, to 4
and 6 % (denoted by κ and ω), relative to substitution rate
of one, similar to those observed in MtDNA in primates
and mammals [25]. We refer to these datasets as Original.

To allow for comparison of the performance of the
algorithms in realigning randomly rotated sequences,
which should be similar to those obtained from sequenc-
ing circular DNA structures, such as MtDNA, one ran-
dom rotation was generated in each sequence in all
datasets, creating new datasets which will be referred to
as Random. Using the three Random datasets allowed
us to test the accuracy of hCSC and saCSC; notice that
nCSC and saCSC always return the same rotation. For
each Random dataset, an all-against-all sequence com-
parison was performed. That is, all 66 possible pairs of
sequences in each dataset were given as input to both
hCSC and saCSC. β was set to ⌈

√
m⌉ = 50 and q was

set to ⌈log|�|m⌉ = 6. The resultant re-rotated sequences
were aligned using EMBOSS Needle (default parameters)
and the similarity scores were compared to those of the
Original and Random datasets, which were input directly
to EMBOSS Needle (default parameters). The results can
be found in Fig. 1.

The results show that: (a) hCSC and saCSC yield sig-
nificantly improved similarity scores compared to those
obtained from giving Random datasets as input directly
to EMBOSS Needle; and (b) hCSC and saCSC yield
similarity scores that are identical or almost identical—
notice that the black (Original), green (hCSC), and blue
(nCSC/saCSC) points coincide—to those obtained from
giving Original datasets as input directly to EMBOSS

Needle. This implies that algorithms hCSC, nCSC, and
saCSC return the rotation maximizing the similarity
score for all pairwise comparisons.

Hence, we establish here that the introduced distance
measure coupled with the respective algorithms con-
sistently yield a very high accuracy, compared to the
standard measure [17, 39, 40], for both low and high sub-
stitution rates.

Time performance
We then compared the time performance of the algo-
rithms. Each algorithm was given a pair of randomly
generated sequences starting from m = n = 50 bp and
doubling 8 times to a length of m = n = 12, 800 bp. It
was expected that the slowest algorithm would be cNW
which runs in time O(nm2). Then it would be algorithm
nCSC which runs in time O(m(m+ n)), then algorithm
hCSC, which runs in time O

(

β(m+ n)+ m(m+n)
β

)

, and

lastly algorithm saCSC, which runs in time O(βm+ n).
Initially, β was set to ⌈

√
m⌉ and q was set to ⌈log|�|m⌉ .

The results in Fig. 2 demonstrate orders-of-magnitude
superiority of saCSC compared to cNW and nCSC, con-
firming our theoretical findings. Algorithm hCSC is
the second fastest. Although β was set to ⌈

√
m⌉, saCSC

clearly outperforms hCSC, due to the use of a highly
optimized implementation of the suffix-array construc-
tion [43], thus highlighting the importance of suitably
implemented data structures such as suffix arrays.

Since the time complexities of hCSC and saCSC
depend on β, we repeated the same experiment with these
two algorithms setting β to ⌈m/25⌉ and q to ⌈log|�|m⌉—

Original Random hCSC nCSC/saCSC

5%

0
25
50
75

100

20%

0
25
50
75

100

S
im

ila
rit

y
sc

or
e

(%
)

35%

0
25
50
75

100

Pairwise comparisons
Fig. 1 Accuracy. Accuracy comparison for substitution rates 5, 20,
and 35 %; the black, green, and blue points coincide implying that
algorithms hCSC, nCSC, and saCSC return the rotation maximizing
the similarity score for all pairwise comparisons

Page 11 of 14Grossi et al. Algorithms Mol Biol (2016) 11:12

notice that q does not affect the time efficiency of the
algorithms. The results in Fig. 2 show that hCSC and
saCSC are still the fastest, even though m = O(β), and
that saCSC is clearly the fastest of all. As expected for
m = O(β), we observe that hCSC and saCSC become
gradually slower as m grows.

More algorithms could have been included in the com-
parison but their (at least) quadratic time complexity [22,
23] prevents them from competing with saCSC.

Application to synthetic data
For evaluating the proposed methods for circular
sequence comparison in some relevant application, we
also implemented the following pipeline for distance-
based phylogenetic reconstruction of a dataset with N
circular sequences.

1. For each pair (x, y) of the N sequences, we use one
method for circular sequence comparison to com-
pute the best rotation xi.

2. A similarity score for (xi, y) is then computed using
EMBOSS Needle (default parameters) and stored in
cell [x, y] of an N × N similarity score matrix.

3. The similarity score matrix is transformed into a dis-
tance matrix by converting each score into a distance
relative to the maximum score in the similarity score
matrix.

4. Neighbour joining clustering is performed on the
distance matrix, using NINJA [44], to produce a phy-
logenetic tree.

Phylogenetic trees were constructed by NINJA [44], for
the aforementioned Random datasets, using output from
the following algorithms: cNW (EMBOSS default parame-
ters), hSW (see introduction of "Implementation" section,

EMBOSS default parameters), and saCSCr (β = 50,
q = 5, and p = 1). Notice that, output from cNW should
be the same as from EMBOSS Needle (default param-
eters) with the Original datasets as input. In terms of
accuracy, the Robinson-Foulds (RF) distance metric [45,
46] was used to compare the three resultant phyloge-
netic trees with the tree resulting from EMBOSS Nee-
dle (default parameters) on the Original and Random
datasets, denoted by NW(o) and NW(r), respectively.
RF distance can be defined as the number of operations
required to transform one tree in to another. If two iso-
morphic trees share the same labelling then they have an
RF distance of 0. The results displayed in Table 3 clearly
show that saCSCr and cNW produce the most accurate
results with these nine datasets. As also shown in [11],
hSW followed by EMBOSS Needle (default parameters)
can often result in sub-optimal global alignments.

In terms of time performance, the elapsed time
required for each method to process each dataset was
recorded and the results are displayed in Table 4. It is
clear, from the results presented heretofore, that saCSCr
outperforms all other algorithms by at least one order of
magnitude.

Application to real data
We have concluded thus far that using β = ⌈

√
m⌉ and

q = ⌈log|�|m⌉ results in a reasonable trade-off between
running time and accuracy. In the following section,
where necessary, we adopt these values and multiply or
divide them by a constant factor (factor of two), depend-
ing on the length of the input sequences.

DNA sequences
Pairwise sequence comparison. As the input data-
set, we used two real sequences from GenBank: human

6 8 10 12 14

5
10

15
20

25

log length (bp)

lo
g

tim
e

(m
s)

cNW
nCSC (β= m)
hCSC (β= m)
saCSC (β= m)
hCSC (β=m/25)
saCSC (β=m/25)

Fig. 2 Time performance. Elapsed-time comparison of algorithms
cNW, nCSC, hCSC, and saCSC

Table 3 RF distances between the tree obtained from the
NW(o) and those obtained from NW(r), cNW, hSW,
and saCSCr

The number of sequences in the dataset is denoted by α; γ denotes their
lengths; θ denotes the substitution rate; κ and ω denote the relative insertion
and deletion rates, respectively

Dataset < α, γ , θ , κ ,ω > NW(r) cNW hSW saCSCr

<12, 2500, 0.05, 0.06, 0.04> 16 0 0 0

<12, 2500, 0.20, 0.06, 0.04> 12 0 0 0

<12, 2500, 0.35, 0.06, 0.04> 4 0 0 0

<25, 2500, 0.05, 0.06, 0.04> 44 0 0 0

<25, 2500, 0.20, 0.06, 0.04> 24 0 0 0

<25, 2500, 0.35, 0.06, 0.04> 16 0 0 0

<50, 2500, 0.05, 0.06, 0.04> 86 0 6 0

<50, 2500, 0.20, 0.06, 0.04> 84 0 0 0

<50, 2500, 0.35, 0.06, 0.04> 56 0 0 0

Page 12 of 14Grossi et al. Algorithms Mol Biol (2016) 11:12

(NC_001807) and chimpanzee (NC_001643) MtDNA
sequences. The MtDNA genome size for human is
16,571 bp and for chimpanzee is 16,554 bp. Their pair-
wise sequence alignment using EMBOSS Needle (default
parameters) gives a similarity of 85.1%. We used cNW
(EMBOSS default parameters) to obtain the rotation
of NC_001807 that maximizes its similarity score with
NC_001643. This experiment took approximately 28 h
and the resultant rotation 578 of NC_001807 improved
the similarity score to 91%. This result was then com-
pared to those obtained from saCSC (equivalent to
saCSCr with p = 0) and saCSCr with varying param-
eters, displayed in Table 5.

The convergence of the results after the additional step
of refinement (see Table 5 in italics) demonstrates the
convenience and necessity of saCSCr.

For clarity of presentation hereafter, instead of using
β , we denote by ℓ the length of the block chosen in algo-
rithm saCSCr.

We repeated this experiment with the human and
gorilla (NC_011120) MtDNA sequences. The MtDNA
genome size for gorilla is 16,412 bp. Their pairwise
sequence alignment using EMBOSS Needle (default
parameters) gives a similarity of 83.5%. After using saC-
SCr to rotate sequence NC_001807 (ℓ = 50, q = 5, and
p = 1), EMBOSS Needle (default parameters) gave a sig-
nificantly improved similarity of 88.4 %.

Finally, note that the experiments which used saCSC
and saCSCr each took a fraction of a second to run.

Distance-based phylogenetic reconstruction Three
datasets of 16 primate, 12 mammalian and 19 mixed
mammalian and primate MtDNA sequences, of aver-
age length 16,500 bp, were obtained from GenBank. We
followed the same pipeline as described in "Application
to synthetic data" section. The RF distance between the
trees produced by cNW (EMBOSS default parameters),
and the trees produced by saCSCr (ℓ = ⌈

√
m⌉ = 129,

q = 5, and p = 1) followed by EMBOSS Needle (default
parameters), was 0.

RNA sequences
Eighteen viroid sequences were obtained from RefSeq, a
database of curated molecular biological sequences [47].
Their lengths and target hosts vary, ranging from 348 to
371 bp and infecting peppers and citrus fruits, respec-
tively. We followed the same pipeline as described in
"Application to synthetic data" section. The RF dis-
tance between the tree produced by cNW (EMBOSS
default parameters), and the tree produced by saCSCr
(ℓ = ⌈

√
m⌉ = 19, q = ⌈log|�|m⌉ = 5 , and p = 1) fol-

lowed by EMBOSS Needle (default parameters), was 0.

Protein sequences
Linear, circularly-permuted protein sequences Eight
sequences of proteins, of average length 950 amino acids,
belonging to β-glucosidase family [48] were obtained from
the UniProt protein database [49]. We followed the same
pipeline as described in "Application to synthetic data" sec-
tion. The RF distance between the tree produced by cNW
(EMBOSS default parameters), and the tree produced by
saCSCr (ℓ = ⌈

√
m⌉ = 31, q = ⌈log|�|m⌉ = 5, and p = 1)

followed by EMBOSS Needle (default parameters), was 0.
Naturally-occurring circular proteins Ten bacteri-

ocin protein sequences, of average length 20 amino acids,
were obtained from Cybase [50], a database of cyclical
protein sequences. We followed the same pipeline as
described in "Application to synthetic data" section. The
RF distance between the tree produced by cNW (EMBOSS
default parameters), and the tree produced by saCSCr
(ℓ = 2⌈

√
m⌉ = 10, q = 2⌈log|�|m⌉ = 6, and p = 1) fol-

lowed by EMBOSS Needle (default parameters), was 0.

Table 4 Elapsed-time comparison (in seconds) for algo-
rithms cNW, hSW, and saCSCr

The number of sequences in the dataset is denoted by α; γ denotes their
lengths; θ denotes the substitution rate; κ and ω denote the relative insertion
and deletion rates, respectively

Dataset < α, γ , θ , κ ,ω > cNW hSW saCSCr

<12, 2500, 0.05, 0.06, 0.04> 10,139.36 72.43 6.90

<12, 2500, 0.20, 0.06, 0.04> 9888.84 80.91 6.57

<12, 2500, 0.35, 0.06, 0.04> 10,052.33 80.16 6.28

<25, 2500, 0.05, 0.06, 0.04> 46,311.85 369.02 27.61

<25, 2500, 0.20, 0.06, 0.04> 46,230.07 375.41 28.92

<25, 2500, 0.35, 0.06, 0.04> 46,289.99 400.30 30.44

<50, 2500, 0.05, 0.06, 0.04> 122,165.95 1563.96 125.63

<50, 2500, 0.20, 0.06, 0.04> 121,810.69 1617.89 123.12

<50, 2500, 0.35, 0.06, 0.04> 120,679.32 1662.82 123.77

Table 5 Rotations of GenBank sequence NC_001807
obtained when compared to NC_001643 with varying
parameters of saCSCr

q β p Rotation

5 50 0 566

5 50 1 578

5
√
m 0 567

5
√
m 1 578

5 2
√
m 0 583

5 2
√
m 1 578

5
√
m
2

0 566

5
√
m
2

1 578

Page 13 of 14Grossi et al. Algorithms Mol Biol (2016) 11:12

Conclusions
In this paper, we introduced a new distance measure for
sequence comparison based on q-grams, and showed how
it can be applied effectively and computed efficiently for
circular sequence comparison. The most efficient algo-
rithm presented here, saCSC, solves our defined problem
CSC, exactly. Extensive experimental results, using both
real and synthetic data, show that it maintains an accuracy
very competitive to the optimal obtained after considering
all rotations of x against y naïvely using global alignments.
We also showed that algorithm saCSCr can bridge the
gap between the optimal solution and our approximation
via an additional refinement step. Finally, the presented
experimental study demonstrates orders-of-magnitude
superiority of our approach in terms of runtime efficiency.
Our immediate target is to implement algorithm saCSCr
in BEAR [24], a state-of-the-art tool for improving multi-
ple circular sequence alignment.

Authors’ contributions
RG, CSI, RM, NP, and SPP devised the algorithms. SPP, AR, and FV implemented
the algorithms. AR and FV conducted the experiments. All authors contrib-
uted equally in writing up the manuscript. All authors read and approved the
final manuscript.

Author details
1 Department of Informatics, University of Pisa, Pisa, Italy. 2 ERABLE team, INRA,
Paris, France. 3 Department of Informatics, King’s College London, London, UK.
4 Department of Computer Science, Kiel University, Kiel, Germany.

Acknowledgements
The publication costs for this article were funded by the Open Access funding
scheme of King’s College London. RG and NP have been partially supported
by the Italian Ministry of Education, Universities, and Research (MIUR) under
PRIN 2012C4E3KT national research project AMANDA—Algorithmics for
Massive and Networked Data, and by the University of Pisa under PRA 2015
project Computational Methods for Personalized Medicine. RM is supported
by the P.R.I.M.E. programme of DAAD co-funded by BMBF and the EU’s 7th
Framework Programme (#605728), and the Newton International Fellowship
co-funded by the Royal Society and the British Academy. FV is supported by
an EPSRC Grant (Doctoral Training Grant #EP/M506357/1).

Competing interests
The authors declare that they have no competing interests.

Received: 8 December 2015 Accepted: 25 April 2016

References
 1. Craik DJ, Allewell NM. Thematic minireview series on circular proteins. J

Biol Chem. 2012;287(32):26999–7000.
 2. Helinski DR, Clewell DB. Circular DNA. Annu Rev Biochem.

1971;40:899–942.
 3. Del Castillo CS, Hikima JI, Jang HB, Nho SW, Jung TS, Wongtavatchai J,

Kondo H, Hirono I, Takeyama H, Aoki T. Comparative sequence analysis of
a multidrug-resistant plasmid from Aeromonas hydrophila. Antimicrob
Agents Chemother. 2013;57:120–9.

 4. Taanman JW. The mitochondrial genome: structure, transcrip-
tion, translation and replication. Biochem Biophys Acta Bioenerg.
1999;1410(2):103–23.

 5. Goios A, Pereira L, Bogue M, Macaulay V, Amorim A. mtDNA phylogeny and
evolution of laboratory mouse strains. Genome Res. 2007;17(3):293–8.

 6. Wang Z, Wu M. Phylogenomic reconstruction indicates mitochondrial
ancestor was an energy parasite. PLoS One. 2014;10(9):e110685.

 7. Cohen S, Houben A, Segal D. Extrachromosomal circular DNA derived
from tandemly repeated genomic sequences in plants. Plant J.
2008;53(6):1027–34.

 8. Kuttler F, Mai S. Formation of non-random extrachromosomal elements
during development, differentiation and oncogenesis. Semin Cancer Biol.
2007;17:56–64.

 9. Brodie R, Smith AJ, Roper RL, Tcherepanov V, Upton C. Base-by-base:
single nucleotide-level analysis of whole viral genome alignments. BMC
Bioinform. 2004;5:96.

 10. Bray N, Pachter L. MAVID: constrained ancestral alignment of multiple
sequences. Genome Res. 2004;14(4):693–9.

 11. Mosig A, Hofacker IL, Stadler PF. Comparative analysis of cyclic sequences:
viroids and other small circular RNAs. GCB. 2006;83:93–102.

 12. Kawai Y, Saito T, Kitazawa H, Itoh T. Gassericin A; an uncommon cyclic
bacteriocin produced by Lactobacillus gasseri LA39 linked at N-and
C-terminal ends. Biosci Biotech Biochem. 1998;62(12):2438–40.

 13. Kemperman R, Kuipers A, Karsens H, Nauta A, Kuipers O, Kok J. Identifica-
tion and characterization of two novel clostridial bacteriocins, circularin A
and closticin 574. Appl Environ Microbiol. 2003;69(3):1589–97.

 14. Weiner J, Bornberg-Bauer E. Evolution of circular permutations in multid-
omain proteins. Mol Biol Evol. 2006;23(4):734–43.

 15. Ponting CP, Russell RB. Swaposins: circular permutations within genes
encoding saposin homologues. Trends Biochem Sci. 1995;20(5):179–80.

 16. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL.
GenBank. Nucleic Acids Res. 2000;28:15–8.

 17. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology
open software suite. Trends Genet. 2000;16(6):276–7.

 18. Barton C, Iliopoulos CS, Pissis SP. Fast algorithms for approximate circular
string matching. Algorithms Mol Biol. 2014;9:1–10.

 19. Barton C, Iliopoulos CS, Pissis SP. Language and automata theory and
applications—9th international conference, LATA 2015, Proceedings.
In: Dediu AH, Formenti E, Martin-Vide C, Truthe B, editors. Average-case
optimal approximate circular string matching, vol. 8977, Lecture notes in
computer science. Berlin: Springer; 2015. p. 85–96.

 20. Athar T, Barton C, Bland W, Gao J, Iliopoulos CS, Liu C, Pissis SP. Fast circular
dictionary-matching algorithm. Math Struct Comput Sci. 2015;First-
View:1–14. doi:10.1017/S0960129515000134.

 21. Maes M. On a cyclic string-to-string correction problem. IPL.
1990;35(2):73–8.

 22. Marzal A, Barrachina S. Speeding up the computation of the edit distance
for cyclic strings. ICPR. 2000;2:891–4.

 23. Bunke H, Buhler U. Applications of approximate string matching to 2D
shape recognition. Pattern Recognit. 1993;26(12):1797–812.

 24. Barton C, Iliopoulos CS, Kundu R, Pissis SP, Retha A, Vayani F. Proceedings
of lecture notes in computer science. In: Bampis E, editor. Accurate and
efficient methods to improve multiple circular sequence alignment. In
experimental algorithms—14th international symposium, SEA, vol. 9125,
Berlin: Springer; 2015. p. 247–58.

 25. Fernandes F, Pereira L, Freitas AT. CSA: an efficient algorithm to improve
circular DNA multiple alignment. BMC Bioinform. 2009;10:1–13.

 26. Lee T, Na JC, Park H, Park K, Sim JS. Finding consensus and optimal align-
ment of circular strings. Theor Comput Sci. 2013;468:92–101.

 27. Pisanti N, Giraud M, Peterlongo P. Filters and seeds approaches for fast
homology searches in large datasets. In: Elloumi M, Zomaya AY, editors.
Algorithms in computational molecular biology. Hoboken: Wiley; 2010. p.
299–320.

 28. Ukkonen E. Approximate string-matching with q-grams and maximal
matches. Theor Comput Sci. 1992;92:191–211.

 29. Burkhardt S, Crauser A, Ferragina P, Lenhof HP, Rivals E, Vingron M. q-gram
based database searching using a suffix array (QUASAR). In: RECOMB ’99
proceedings of the third annual international conference on Computa-
tional molecular biology. New York, NY: ACM; 1999. p. 77–83.

 30. Rasmussen K, Stoye J, Myers E. Efficient q-gram filters for finding all
epsilon-matches over a given length. J Comput Biol. 2006;13(2):296–308.

 31. Peterlongo P, Sacomoto GA, do Lago AP, Pisanti N, Sagot MF. Lossless
filter for multiple repeats with bounded edit distance. Algorithm Mol Biol.
2009;4:3. doi:10.1186/1748-7188-4-3.

 32. Peterlongo P, Pisanti N, Boyer F, do Lago AP, Sagot MF. Lossless filter for
multiple repetitions with hamming distance. JDA. 2008;6(3):497–509.

http://dx.doi.org/10.1017/S0960129515000134
http://dx.doi.org/10.1186/1748-7188-4-3

Page 14 of 14Grossi et al. Algorithms Mol Biol (2016) 11:12

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

 33. Manber U, Myers EW. Suffix arrays: a new method for on-line string
searches. SIAM J Comput. 1993;22(5):935–48.

 34. Grossi R, Iliopoulos CS, Mercas R, Pisanti N, Pissis SP, Retha A, Vayani F.
Circular sequence comparison with q-grams. In: Pop M, Touzet H, editors.
Algorithms in bioinformatics—15th international workshop, WABI 2015,
Atlanta, GA, USA, September 10–12, 2015, Proceedings, vol. 9289, Lecture
notes in computer science. Berlin: Springer; 2015. p. 203–16.

 35. Crochemore M, Hancart C, Lecroq T. Algorithms on strings. New York:
Cambridge University Press; 2007.

 36. Fischer J. Inducing the LCP-Array. In: Dehne F, Iacono J, Sack J-R, editors.
12th WADS, Volume 6844 of LNCS. 2011. p. 374–85.

 37. Ehlers T, Manea F, Mercaş R, Nowotka D. k-Abelian pattern matching. In:
Shur AM, Volkov MV, editors. 18th DLT, Volume 8633 of LNCS. 2014.
p. 178–90.

 38. Burcsi P, Cicalese F, Fici G, Lipták Z. Algorithms for jumbled pattern match-
ing in strings. Int J Found Comput Sci. 2012;23(2):357–74.

 39. Needleman SB, Wunsch CD. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol Biol.
1970;48(3):443–53.

 40. Gotoh O. An improved algorithm for matching biological sequences. J
Mol Biol. 1982;162(3):705–8.

 41. Smith TF, Waterman MS. Identification of common molecular subse-
quences. J Mol Biol. 1981;147:195–7.

 42. Fletcher W, Yang Z. INDELible: a flexible simulator of biological sequence
evolution. Mol Biol Evol. 2009;26(8):1879–88.

 43. Gog S, Beller T, Moffat A, Petri M. From theory to practice: plug and play
with succinct data structures. In: Gudmundsson J, Katajainen J, editors.
13th international symposium on experimental algorithms, (SEA 2014).
2014. p. 326–37.

 44. Wheeler TJ. Large-scale neighbor-joining with NINJA. In: Salzberg S, War-
now TJ, editors. Algorithms in bioinformatics, Springer; 2009. p. 375–89.

 45. Robinson D, Foulds LR. Comparison of phylogenetic trees. Math Biosci.
1981;53:131–47.

 46. Sukumaran J, Holder MT. DendroPy: a python library for phylogenetic
computing. Bioinformatics. 2010;26(12):1569–71.

 47. Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a
curated non-redundant sequence database of genomes, transcripts and
proteins. Nucleic Acids Res. 2007;35(suppl 1):D61–5.

 48. Rojas A, Romeu A. A sequence analysis of the β-glucosidase sub-family B.
FEBS Lett. 1996;378:93–7.

 49. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids
Res. 2015;43(Database issue):D204–12. doi:10.1093/nar/gku989.

 50. Wang CK, Kaas Q, Chiche L, Craik DJ. CyBase: a database of cyclic protein
sequences and structures, with applications in protein discovery and
engineering. Nucleic Acids Res. 2008;36(suppl 1):D206–10.

http://dx.doi.org/10.1093/nar/gku989

	Circular sequence comparison: algorithms and applications
	Abstract
	Background:
	Results:

	Background
	Biological motivation
	Our problem
	Our contribution

	Definitions and properties
	Algorithms
	Algorithm hCSC: a Heuristic algorithm
	Algorithm saCSC: an exact suffix-array-based algorithm

	Implementation
	Refining algorithm saCSC

	Experimental results
	Accuracy
	Time performance
	Application to synthetic data
	Application to real data
	DNA sequences
	RNA sequences
	Protein sequences

	Conclusions
	Authors’ contributions
	References

