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Abstract 

Background: Sequence comparison is a fundamental step in many important tasks in bioinformatics; from phy-
logenetic reconstruction to the reconstruction of genomes. Traditional algorithms for measuring approximation 
in sequence comparison are based on the notions of distance or similarity, and are generally computed through 
sequence alignment techniques. As circular molecular structure is a common phenomenon in nature, a caveat of the 
adaptation of alignment techniques for circular sequence comparison is that they are computationally expensive, 
requiring from super-quadratic to cubic time in the length of the sequences.

Results: In this paper, we introduce a new distance measure based on q-grams, and show how it can be applied 
effectively and computed efficiently for circular sequence comparison. Experimental results, using real DNA, RNA, and 
protein sequences as well as synthetic data, demonstrate orders-of-magnitude superiority of our approach in terms of 
efficiency, while maintaining an accuracy very competitive to the state of the art.

© 2016 Grossi et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Biological motivation
Circular molecular structures are present, in abundance, 
in all domains of life: bacteria, archaea, and eukaryotes; 
and in viruses. They can be composed of either amino or 
nucleic acids. The following is an overview of such occur-
rences, and exhaustive reviews can be found in [1] (pro-
teins) and [2] (DNA).

Double-stranded, circular chromosomes and plasmids 
are found in most bacteria and archaea. Whole-genome 
comparison is a very useful tool in classifying bacterial 
strains, as well as inferring phylogenetic associations 
between them. This is due to the dense structure of bac-
terial chromosomes, caused by the absence of introns, 
and the organisation of genes into operons. The extended 
benefit of aligning plasmids is the ability to identify 
important genes, such as antibiotic resistance genes, 
thereby enabling their study and exploitation by genetic 
engineering techniques [3].

The most familiar examples of such structures in 
eukaryotes are mitochondrial (MtDNA) and plastid 
DNA. MtDNA is, in most cases, inherited solely from the 
mother, and so is generally conserved. Human MtDNA is 
double-stranded, with a length of 16,569 base pairs (bp), 
consisting of just 37 genes encoding 13 proteins and 24 
RNA molecules  [4]. The absence of recombination in 
these sequences allows them to be used as simple indi-
cators of phylogenetic evolution, and their high muta-
tion rate is a powerful discriminative feature [5, 6]. There 
also exist smaller structures, called extrachromosomal 
circular DNA, which are similar to plasmids in bacterial 
cells. They are described as one of the characteristics of 
genomic plasticity in eukaryotes [7] and may derive from 
MtDNA [8].

It is common knowledge that many viral genomes are 
circular. Viral genomes vary greatly in size and structure. 
They can be made up of either RNA or DNA, and can 
be single- or double-stranded. Multiple sequence align-
ment of viral genomes can be useful in the elucidation of 
novel sites of interest [9], as well as the inference of evo-
lutionary relationships  [10]. This is particularly impor-
tant in studying their pathogenicity, due to the rapid 
rate of mutation of viruses. Viroids are plant pathogens 
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that comprise very small, single-stranded, circular RNA. 
Their multiple sequence alignment could prove useful in 
the analysis of their secondary structures and, therefore, 
the mechanisms by which they infect host plant cells [11].

Naturally-occuring circular proteins are found in both 
prokaryotes and eukaryotes  [1]. Bacteriocins are very 
small toxins produced by bacteria in order to compete 
with closely-related bacterial strains. Many of these are 
circular, including gassericin A, found in Lactobacillus 
gasseri LA39 [12], and circularin A, found in Clostridium 
beijerinckii  [13]. An interesting phenomenon known to 
occur naturally in linear protein structures is circular 
permutation [14]. This can be exemplified by swaposins: 
proteins highly-similar to saposins, resulting from circu-
larly permuted linear peptide sequences [15]. The ability 
to align linear sequences from circular proteins can sig-
nificantly speed up and enhance their analyses, and could 
also lead to the discovery of novel pairs of circularly per-
muted proteins.

Our problem
Conventional tools, designed for linear sequences, could 
yield an incorrectly high genetic distance between closely 
related circular sequences. Indeed, when sequencing 
molecules, the position where a circular sequence starts 
can be totally arbitrary. Due to this arbitrariness, a suit-
able rotation of one sequence would give much better 
results for a pairwise alignment, and hence highlight a 
similarity that any linear alignment would miss. A practi-
cal example of the benefit this can bring to sequence anal-
ysis is the following. Linearized human (NC_001807) and 
chimpanzee (NC_001643) MtDNA sequences, obtained 
from GenBank [16], do not start in the same region. Their 
pairwise sequence alignment using EMBOSS Needle [17] 
(default parameters) gives a similarity of 85.1 % and con-
sists of 1195 gaps. However, taking different rotations of 
these sequences into account yields a much more signifi-
cant alignment with a similarity of 91 % and only 77 gaps. 
This example motivates the design of efficient algorithms 
that are specifically devoted to the comparison of circular 
sequences [18–20].

In this paper, we consider the pairwise circular 
sequence comparison problem. Under the edit distance 
model, it consists in finding an optimal linear alignment 
of two circular strings. This problem, for two strings x 
and y of length m and n ≥ m, respectively, can be solved 
under the edit distance model in time O(nm logm) [21]. 
Several other super-quadratic  [22] and approximate 
quadratic-time  [23] algorithms exist. Trivially, for 
molecular biology applications, the same problem can 
be solved in time O(nm2), if extending the problem with 
scoring matrices and affine gap penalty scores. A direct 
application of pairwise circular sequence comparison is 

progressive multiple circular sequence alignment [11, 24, 
25]. Multiple circular sequence alignment has also been 
considered in [26] under the Hamming distance model.

To the best of our knowledge, there is no fast (that is, 
with sub-quadratic time complexity) and exact (or at least 
very accurate) algorithm for circular sequence compari-
son under some realistic model (that is, allowing indels). 
Taking into account edit distance rather than Hamming 
distance is computationally challenging as the search 
space for seeking similarity is wider. Algorithms that 
speed up the process of string matching, by filtering out 
candidate positions in which a particular string can never 
occur, are known as filters. Filters that work for Ham-
ming distance do not work in general for edit distance 
[27] as well. An exception to this are the q-gram filter-
ing techniques  [28] that have successfully been used for 
string matching under the edit distance model (e.g. [29–
31]), as well as for multiple local alignments, both under 
the Hamming [32] and edit [31] distance models.

Our contribution
We present new efficient q-gram-based methods for pair-
wise circular sequence comparison. Specifically, our con-
tribution is threefold.

1. We introduce the β-blockwise q-gram distance 
between two strings x and y, that is, a more power-
ful generalization of the q-gram distance introduced 
as a string distance measure in  [28]. Intuitively, and 
similarly to  [29–31], this generalization comprises 
partitioning x and y in β blocks each, as evenly as pos-
sible, computing the q-gram distance between the 
corresponding block pairs, and then summing up the 
distances computed blockwise.

2. We present an algorithm based on the suffix 
array  [33] that finds the rotation of x such that the 
β-blockwise q-gram distance between the rotated 
x and y is minimal, in time and space O(βm+ n) , 
where m = |x| and n = |y|, thereby solving exactly 
the circular sequence comparison problem under the 
β-blockwise q-gram distance measure. We also pre-
sent a simple heuristic algorithm to solve an approxi-
mate version of the problem.

3. We present an experimental study, using real and 
synthetic data, which demonstrates orders-of-mag-
nitude superiority of our approach, in terms of effi-
ciency, while maintaining an accuracy very com-
petitive to the optimal obtained after considering all 
rotations of x against y using EMBOSS Needle.

The paper is organized as follows. "Definitions and prop-
erties" section  gives some preliminary definitions, nota-
tion, and properties. "Algorithms" section  describes two 
algorithms, one is a heuristic approach and the other 
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is an exact algorithm for circular sequence compari-
son under the β-blockwise q-gram distance measure. 
"Implementation" section  provides details of the imple-
mentation of the algorithms. "Experimental results" sec-
tion presents the experimental results of the performance 
and accuracy of the algorithms. Finally, "Conclusions" 
section  gives some concluding remarks and future pro-
posals. A preliminary version describing a subset of the 
results in this paper appeared in [34].

Definitions and properties
We begin with a few definitions, following  [35]. We 
think of a string x of length m as an array x[0 . .m− 1], 
where every x[i], 0 ≤ i < m, is a letter drawn from some 
fixed alphabet � of size |�| = O(1). We refer to any 
string x ∈ �q as a q-gram. The empty string of length 0 
is denoted by ε. A string x is a factor of a string y if there 
exist two strings u and v, such that y = uxv. Let x be a 
non-empty string and y be a string. We say that there is 
an occurrence of x in y, or, simply, that x occurs in y, when 
x is a factor of y. The Parikh vector associated with a 
string w ∈ �∗ is denoted by P(w) and represents a vector 
of size |�|, where each component denotes the number of 
occurrences in w of the corresponding letter from �.

Consider the strings x, y, u, and v, such that y = uxv. If 
u = ε, then x is a prefix of y. If v = ε, then x is a suffix of y. 
We denote by SA the suffix array of y of length n, that is, an 
integer array of size n storing the starting positions of all 
lexicographically sorted suffixes of y, i.e. for all 1 ≤ r < n , 
we have y[SA[r − 1] . . n− 1] < y[SA[r] . . n− 1]  [33]. 
Let lcp (r, s) denote the length of the longest common 
prefix between y[SA[r] . . n− 1] and y[SA[s] . . n− 1], for 
all positions r, s on y, and 0 if they do not have a com-
mon prefix. We denote by LCP the longest common pre-
fix array of y defined by LCP[r] = lcp(r − 1, r), for all 
1 ≤ r < n, and LCP[0] = 0. The inverse iSA of the array 
SA is defined by iSA[SA[r]] = r, for all 0 ≤ r < n. SA, 
iSA, and LCP of y can be computed in O(n) time and 
space [36].

A circular string of length m can be viewed as a tra-
ditional linear string which has the left- and right-most 
letters wrapped around and glued together in some 
way. Under this notion, the same circular string can 
be seen as m different linear strings, which would all 
be considered equivalent. Given a string x of length m, 
we denote by xi = x[i . .m− 1]x[0 . . i − 1], 0 < i < m , 
the ith rotation of x and x0 = x. For instance, the string 
x = x0 = abababbc has the following rotations: 
x1 = bababbca, x2 = ababbcab, and so on.

We give some further definitions following [28]. The q-
gram profile of a string x is the vector Gq(x), where q > 0 
and Gq(x)[v] denotes the total number of occurrences of 

q-gram v ∈ �q in x. The q-gram distance between two 
strings x and y is defined as

Note that Dq is a pseudo-metric as Dq(x, y) can be 0 
even if x �= y. Dq has the following properties [28] for all 
x, y, z ∈ �∗ of length at least q.

1. Positivity: Dq(x, y) ≥ 0

2. Symmetry: Dq(x, y) = Dq(y, x)

3. Triangular inequality: Dq(x, y) ≤ Dq(x, z)+ Dq(z, y)

4. |(|x| − |y|)| ≤ Dq(x, y) ≤ |x| + |y| − 2q − 2

5. Dq(x1x2, y1y2) ≤ Dq(x1, y1)+ Dq(x2, y2)+ 2(q − 1) , 
for x1, x2, y1, y2 ∈ �∗

6. Dq(h(x), h(y)) ≤ Dq(x, y), for a non-length-increas-
ing morphism h on �∗.

Example 1 Let x = GGAGTCTA, y = TTCTAGCG, and 
q = 3. Table 1 shows the q-gram profiles of strings x and 
y and the q-gram distance between them. Each row rep-
resents the frequency of a q-gram in the given string. 
For succinctness of presentation, only those rows with 
frequency greater than zero (in either string) are shown, 
as well as rows representing AAA, CCC, GGG, and TTT as 
points of reference.

For a given integer parameter β ≥ 1, we define a gen-
eralization of the q-gram distance in (1) by partitioning x 
and y in β blocks as evenly as possible, and computing the 
q-gram distance between each pair of blocks, one from x 
and one from y. The rationale is to enforce locality in the 
resulting overall distance. For the sake of presentation in 
the rest of the paper, we assume that the lengths |x| = m 
and |y| = n are both multiples of β, so that x and y are 
conceptually partitioned into β blocks, each of size m/β 
for x and n/β for y.

Definition 1 Given strings x of length m and y of length 
n ≥ m and integers β ≥ 1 and q > 0, the β-blockwise q-
gram distance Dβ ,q(x, y) is defined as

Example 2 Following Example 1, let x = GGAGTCTA 
and y = TTCTAGCG, q = 3, and β = 2. Further let 
x1 = GGAG, x2 = TCTA and y1 = TTCT, y2 = AGCG be 

(1)Dq(x, y) =
∑

v∈�q

∣

∣Gq(x)[v] − Gq(y)[v]
∣

∣.

(2)

Dβ ,q(x, y) =
β−1
∑

j=0

Dq

(

x

[

jm

β
. .
(j + 1)m

β
− 1

]

,

y

[

jn

β
. .
(j + 1)n

β
− 1

])

.
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the two blocks of x and y, respectively. Table  2 shows 
the q-gram profiles of strings x1, x2, y1, and y2; and the 
q-gram distance between x1 and y1 and the q-gram dis-
tance between x2 and y2.

Table 1 q-gram profiles of strings x and y and q-gram dis-
tance Dq(x, y) = 8 between them

(a) Gq(x)

 AAA 0

 AGC 0

 AGT 1

 CCC 0

 CTA 1

 GAG 1

 GCG 0

 GGA 1

 GGG 0

 GTC 1

 TAG 0

 TCT 1

 TTC 0

 TTT 0

(b) Gq(y)

 AAA 0

 AGC 1

 AGT 0

 CCC 0

 CTA 1

 GAG 0

 GCG 1

 GGA 0

 GGG 0

 GTC 0

 TAG 1

 TCT 1

 TTC 1

 TTT 0

(c) Dq(x , y)

 AAA 0

 AGC 1

 AGT 1

 CCC 0

 CTA 0

 GAG 1

 GCG 1

 GGA 1

 GGG 0

 GTC 1

 TAG 1

 TCT 0

 TTC 1

 TTT 0

Table 2 q-gram profiles of  strings x1, x2, y1, and  y2; 
q-gram distance between  x1 and  y1; and q-gram distance 
between x2 and y2, giving Dβ,q(x, y) = 8

(a) Gq(x1)

 AAA 0

 AGC 0

 AGT 0

 CCC 0

 CTA 0

 GAG 1

 GCG 0

 GGA 1

 GGG 0

 GTC 0

 TAG 0

 TCT 0

 TTC 0

 TTT 0

(b) Gq(y1)

 AAA 0

 AGC 0

 AGT 0

 CCC 0

 CTA 0

 GAG 0

 GCG 0

 GGA 0

 GGG 0

 GTC 0

 TAG 0

 TCT 1

 TTC 1

 TTT 0

(c) Dq(x1, y1)

 AAA 0

 AGC 0

 AGT 0

 CCC 0

 CTA 0

 GAG 1

 GCG 0

 GGA 1

 GGG 0

 GTC 0

 TAG 0

 TCT 1

 TTC 1

 TTT 0

(d) Gq(x2)

 AAA 0

 AGC 0

 AGT 0
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In this paper, we consider the following problem, where 
we search for the ith rotation of x that minimizes its 
blockwise distance from y as defined in (2). Ties are bro-
ken arbitrarily.

Circular Sequence Comparison (CSC)
Input: strings x and y of lengths m and n ≥ m, respec-

tively, and integers β ≥ 1 and q < m

Output: i such that Dβ ,q(x
i, y) is minimal

Algorithms
We use the following result to first give a naïve solution 
to the CSC problem.

Lemma 1 [28] If we have space O(|�|q) available, then the 
q-gram distance Dq(x, y) can be computed in time O(m+ n) 
and extra space O(m+ n), where m = |x| and n = |y|.

We then apply Lemma 1 to each pair of blocks of x and 
y separately.

Lemma 2 If we have space O(|�|q) available, then the  
β-blockwise q-gram distance Dβ ,q(x, y) can be computed 
in time O(m+ n) and extra space O(m+n

β
), where m = |x| 

and n = |y|.

The naïve algorithm, denoted by nCSC, computes for 
x′ = xx the values

for all 0 ≤ i < m; we report position i such that δi is mini-
mal. This requires the application of Lemma 2, m times. 
Therefore, we obtain the following.

Lemma 3 If we have space O(|�|q) available, then algo-
rithm nCSC solves the CSC problem in time O(m(m+ n)) 
and extra space O(m+n

β
).

Algorithm hCSC: a Heuristic algorithm
Here we give a simple heuristic algorithm, denoted by 
hCSC, to solve the CSC problem faster than nCSC, and 
return an approximation of the best rotation.

Step 1: We split x′ = xx in 2β non-overlapping string 
blocks of length m/β. We obtain strings x0, x1, . . . , x2β−1 , 
such that xi = x′[ im

β
. . (i+1)m

β
− 1], for all 0 ≤ i < 2β . 

We split y in β non-overlapping string blocks of length 
n/β. We obtain strings y0, y1, . . . , yβ−1, such that 
yi = y[ in

β
. . (i+1)n

β
− 1], for all 0 ≤ i < β.

Step 2: For a given sequence xj , . . . , xj+β−1 of strings and 
y, we compute the β-blockwise q-gram distance as follows

We compute δj, for all 0 ≤ j ≤ β. We choose jbest = j such 
that δj is minimal, for all 0 ≤ j ≤ β. In other words, we have 
found a window of length m starting at position jbest, such 
that (jbest + 1) mod (m/β) = 0, consisting of β blocks of 
length m/β each, that minimizes its β-blockwise q-gram 
distance from y.

Step 3: To perform a refinement on the position of the 
window, we consider all starting positions included in 

δi = Dβ ,q(x
′[i . . i +m− 1], y),

δj = Dβ ,q

(

x′
[

jm

β
. .
jm

β
+m− 1

]

, y

)

=
β−1
∑

i=0

Dq(xj+i, yi).

Table 2 continued

 CCC 0

 CTA 1

 GAG 0

 GCG 0

 GGA 0

 GGG 0

 GTC 0

 TAG 0

 TCT 1

 TTC 0

 TTT 0

(e) Gq(y2)

 AAA 0

 AGC 1

 AGT 0

 CCC 0

 CTA 0

 GAG 0

 GCG 1

 GGA 0

 GGG 0

 GTC 0

 TAG 0

 TCT 0

 TTC 0

 TTT 0

(f ) Dq(x2, y2)

 AAA 0

 AGC 1

 AGT 0

 CCC 0

 CTA 1

 GAG 0

 GCG 1

 GGA 0

 GGG 0

 GTC 0

 TAG 0

 TCT 1

 TTC 0

 TTT 0
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the two blocks starting at positions jbest and jbest −m/β . 
This includes 2m/β − 1 starting positions in total—
we do not need to consider position jbest −m/β as this 
was already considered by another window in Step 2. 
Similarly to Step 2, we obtain the β-blockwise q-gram 
distance δi between the window starting at position i 
and y, for all jbest −m/β < i ≤ jbest +m/β − 1. We 
report position ibest = i such that δi is minimal, for all 
jbest −m/β < i ≤ jbest +m/β − 1.
Analysis Step 1 can be done trivially in time 
O(m+ n). If we have space O(|�|q) available, then, 
by Lemma  1, Dq(xj+i, yi) can be computed in time 

O

(

m+n
β

)

. By Lemma  2, δj can be computed in time 

O

(

β(m+n
β

)

)

= O(m+ n). Hence, Step 2 can be done 

in time O(β(m+ n)). In Step 3, the blockwise q-gram 
distance δi between a single window and y can be com-
puted in time O

(

β(m+n
β

)

)

= O(m+ n). There exist 
2m/β − 1 such windows. Hence, Step 3 can be done in 
time O

(

m(m+n)
β

)

. Overall, the algorithm requires time 
O

(

β(m+ n)+ m(m+n)
β

)

 and space O(|�|q +m+ n).
For practical purposes, setting β = O(

√
m) and 

q = O(log|�|m) gives an algorithm with time complexity 
O(

√
m(m+ n)) and space complexity O(m+ n).

Algorithm saCSC: an exact suffix‑array‑based algorithm
The above heuristic hCSC does not guarantee to find the 
exact value i, for which δi = Dβ ,q(x

i, y) is minimal. In par-
ticular, when we identify jbest in Step 2, that is, the j for 
which δj is minimal, we take into account only the values 
of j such that (j + 1) mod (m/β) = 0. Thus, Step 3 can-
not guarantee that ibest, the local minimum obtained by 
shifting the window m/β positions to the right and left of 
jbest, is minimal for all 0 ≤ i < m. In this section, we give 
a fast and exact algorithm, denoted by saCSC, to find i 
such that δi = Dβ ,q(x

i, y) is minimal, based on the suffix 
array (see "Definitions and properties" section).

We partially follow the idea from [37]. This work investi-
gates the string matching problem in the setting of k-abelian 
equivalences: two strings are considered k-abelian equiva-
lent for some positive integer k, if they have the same length 
and share the same factors of length at most k, including 

multiplicities. Note that if k is greater than or equal to the 
string’s length, then the strings must be equal. A version of 
this result, called extended k-abelian equivalence, focuses 
only on the factors of length k. By setting k = q, it is quite 
straightforward to notice the equivalence with q-grams. 
Therefore, in order to avoid confusion we will refer to the 
former notion from now on as q-abelian equivalence.

In  [37], the authors propose a linear-time algorithm to 
solve the string matching problem when looking at q-abe-
lian equivalent strings: given a string x of length m, a string 
y of length n ≥ m, and a positive integer q < m, all factors 
of y that are q-abelian equivalent to x can be found in time 
and space O(m+ n). The idea of the algorithm in [37] con-
sists in constructing the suffix array of the string xy, and 
ranking sets of identical q-length prefixes of suffixes in the 
suffix array in the order of their appearance. Then it con-
structs new strings based on this ranking, and solves the 
problem as in the jumbled matching case [38], i.e. identify-
ing all factors of y that have the same Parikh vector as x.

We first describe our algorithm for a single block 
(β = 1) and then address the general case (β ≥ 1).
Basic algorithm for β = 1. We construct the suffix array 
of the string xxy and assign a rank to the prefix with 
length q of each suffix with length at least q, based on 
its order in the suffix array. That is, the first i0 suffixes, of 
length at least q, in the suffix array, all sharing the same 
prefix of length q, will get rank 0; the next i1 suffixes, 
of length at least q, sharing the same prefix of length q, 
different from the previous one, will get rank 1, and so 
on. Next, based on this ranking, we construct two new 
strings x′ of length 2m− q + 1 and y′ of length n− q + 1 , 
such that x′[i] = j, if j is the rank of the q-length prefix 
of the (i + 1)th suffix of xx in the suffix array of xxy (the 
same goes for y). It is not difficult to see that the ranks 
go up at most to value m+ n− q + 1. However, we can 
reduce this value to m+ 2 by introducing two new ranks 
ax and ay: we can conceptually replace by ax every letter 
of x′ that does not occur in y′, and by ay every letter of y′ 
that does not occur in x′. Hence we can consider that the 
new strings x′ and y′ are defined over an integer alphabet 
of size at most min(n− q + 1,m)+ 2 ≤ m+ 2.

Example 3 Let x = GAGTCTA, y = TCTAGCG, and 
q = 3. We denote xxy by z. 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

z[i] G A G T C T A G A G T C T A T C T A G C G

SA[i] 6 17 1 8 13 19 4 15 11 20 0 7 18 2 9 5 16 12 3 14 10

LCP[i] 0 2 2 6 1 0 1 4 3 0 1 7 1 1 5 0 3 2 1 5 4

x′[i] ax ax ax 2 0 1 ax ax ax ax 2 0

y′[i] 2 0 1 ay ay
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 Here, x′[3] = y′[0] = 2 denotes that x[3 . . 5] =

y[0 . . 2] = TCT and x′[0] = ax denotes that x[0 . . 2] = 
GAG does not occur in y.

We observe that when identifying the q-gram distance 
between two blocks, we can apply the idea in  [37], with 
the only difference that we should also maintain a Parikh 
vector that stores the differences between the number of 
occurrences of q-grams (in fact the new letters given by 
the ranks) in the current block of xx and y. Moreover, 
at the time of the construction of y′, we also construct a 
Parikh vector P(y′), storing for each letter of y′, the num-
ber of its occurrences in y′. Notice that |P(y′)| ≤ m+ 2. 
Later on, when computing the q-gram distances, we can 
construct another vector diff to store the letter differ-
ences between P(y′) and the Parikh vector covering the 
m− q + 1 letters of x′ associated with a window of length 
m on the string xx. This gives us the current Parikh dif-
ference and, in fact, represents the q-gram distance 
between the two analyzed blocks, where |diff| ≤ m+ 2. 
Apart from these, we only need another vector δ of size 
m, which stores at each position i the actual q-gram dis-
tance δi between y and the window starting at position i 
in xx, which is the ith rotation xi of x.

We use a sliding window of length m to maintain the 
above information. When the window is shifted one 
position to the right, we have to add to the difference-
vector diff the previous first element of the window, and 
deduct from it the current last element of it. The distance 
δi between y′ and the factor of x′ starting at position i is 
thus updated using, in addition, the value of the q-gram 
distance δi−1 as follows. If, after adding the previous first 
element to the vector, we have a non-positive value at this 
position, we update the distance by decreasing the pre-
vious value by 1; otherwise, we increase it by 1. If, after 
deducting the current last element to the vector, we have 
a non-negative value at this position, we update the dis-
tance by decreasing the previous value by 1; otherwise, 
we increase it by 1. The distance will never be less than 
the number of occurrences of ay. Furthermore, if the pre-
vious first element was ax, the new distance decreases 
by 1, and for every newly added ax, it increases by 1. As 
these operations require constant time, after going once 
through x′ with y′, we obtain the list of distances δi from y 
to each rotation xi in linear time.

We are now able to give a more formal description of 
the steps to solve the CSC problem for β = 1, which fol-
low a dynamic programming scheme.

Step 1: Construct the SA, iSA, and LCP of xxy. Rank 
the q-length prefixes of suffixes using LCP-array que-
ries. Construct x′ and y′, as well as P(y′), the Parikh 
vector storing, for each letter of y′, the number of its 

occurrences in y′; making proper use of letters ax and ay, 
the ranks that do not occur in either y′ or x′, respectively. 
Further, create diff = P(y′) and δ0 =

∑|P(y′)|−1
i=0 P(y′)[i].

Example 4 Following Example  3, let x = GAGTCTA, 
y = TCTAGCG, q = 3, and z = xxy. 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

z[i] G A G T C T A G A G T C T A T C T A G C G

x′[i] ax ax ax 2 0 1 ax ax ax ax 2 0

y′[i] 2 0 1 ay ay

The table below represents vector diff, right after the 
execution of Step 1, which implies that δ0 = 5. 

ax 0

ay 2

0 1

1 1

2 1

Step 2: Read the first m− q + 1 letters of x′, which con-
stitute our sliding window of length m on the string xx. 
When reading letter x′[i], update diff by decreasing by 1 
the value of the newly read letter, and update δ0, by either 
increasing the current value of the distance when there 
were read too many of the current letters, or decreasing 
it, when more of these letters still occur in y′

Example 5 Following Example 4, the table below repre-
sents vector diff, right after the execution of Step 2, which 
implies that δ0 = 6. 

ax 3

ay 2

0 0

1 1

2 0

Step 3: Let i be the current position in x′ and repeat 
this step, one position at a time. Shift the window to the 
right, update the information for diff

and calculate δi+1, based on this information, sequentially 
applying the two following rules

diff[x′[i]] = diff[x′[i]] − 1 and

δ0 =
{

δ0 − 1, if diff[x′[i]] ≥ 0

δ0 + 1, if diff[x′[i]] < 0.

diff[x′[i]] = diff[x′[i]] + 1 and

diff[x′[i +m]] = diff[x′[i +m]] − 1,
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Example 6 Following Example 5, the table below repre-
sents vector diff at iteration i′ = 3 of Step 3, which implies 
that δ0 = 4. This is in fact the best rotation of x, that is, 
x3 = TCTAGAG. 

ax 2

ay 2

0 0

1 0

2 0

Correctness Steps 1 and 2 are trivially correct as at the 
end of them we have that diff is the difference between 
P(y′) and the vector corresponding to the window. These 
operations follow directly from the definitions of SA and 
LCP, and are followed by a simple traversal of the suffix 
array in order to obtain the ranks and create the P(y′) 
and diff vectors. Also, δ0, which was initially the num-
ber of letters in y′, is decreasing as long as the difference 
between the vectors for a specific letter is non-negative 
(thus, we still have more occurrences of that letter in y′ 
compared to the window), and increasing otherwise. In 
Step 3, we update the difference vector by increasing 
the value at position x′[i] and decreasing that of the new 
letter x′[i +m] added to the difference. The q-gram dis-
tance at that position is based on the values of the newly 
obtained difference vector, as well as the q-gram distance 
at the previous position: if diff[x′[i]] ≤ 0, then obviously 
there were more letters x′[i] in y′ than in the window, 
thus we need to decrease, while, if diff[x′[i]] > 0, then 
there were at least as many letters x′[i] in the window as 
in y′, and taking one out increases the distance. The com-
plementary reasoning applies to the newly added letter 
x′[i +m]. The value of δi never goes below the number of 
occurrences of ay in y′ (it is equal to that, when all other 
elements of diff are 0) and represents the q-gram distance 
between y and xi, the corresponding window of length m 
starting at position i in xx.

Analysis In Step  1, constructing SA, iSA, and LCP 
of xxy can be done in time and extra space O(m+ n) 
("Definitions and properties" section). Furthermore, the 
construction of x′, y′, P(y′), diff, and δ0 is done with the 
same time and space cost. In Step 2, updating diff and δ0 
after reading each letter takes constant time, as we exe-
cute two operations, thus O(m) in total. Constant time is 
required for each iteration in Step 3 to compute the value 

δi+1 =
{

δi − 1, if diff[x′[i]] ≤ 0
δi + 1, if diff[x′[i]] > 0

δi+1 =
{

δi+1 − 1, if diff[x′[i +m]] ≥ 0
δi+1 + 1, if diff[x′[i +m]] < 0.

of δi, 1 ≤ i < m, and update diff, since a constant number 
of operations are executed, thus O(m) in total. Hence, we 
can solve the CSC problem for β = 1 in time and space 
O(m+ n).
General algorithm for β ≥ 1. We can now generalize this 
algorithm to solve the CSC problem for any β ≥ 1, which 
gives algorithm saCSC. We maintain a Parikh vector for 
each block, and apply the above basic algorithm for the jth 
block in each string, computing their q-gram distance. If 
we denote by Pj(y

′) and diffj, for all 0 ≤ j < β , the β Parikh 
vectors of y′ and of the q-gram distances, respectively, as 
well as by δi,j the q-gram distance between the jth block 
of y and xi, then the updates will be given by the formulae 
below. Hence, at each position i < m, we can update all of 
the β Parikh vectors corresponding to the blocks, as pre-
viously described, in time O(β). As an example, see here 
the modification of the previous Step 3, with the other two 
steps being easily adapted in a similar fashion.

Step 3’: When shifting the window one position to the 
right from position  i, update the information for every 
diffj, where 0 ≤ j < β, as follows

and calculate δi+1,j, based on this information, sequen-
tially applying the two following rules

Therefore, we obtain the following result.

Theorem  1 Algorithm saCSC solves the CSC problem 
in O(βm+ n) time and space.

Implementation
We implemented algorithms nCSC, hCSC, and saCSC as 
the program CSC. Given one of the three methods, two 
sequences x and y in (Multi)FASTA format, the number 
β of blocks, and the length q of the q-grams, CSC finds 
the rotation of x (or an approximation of it) that mini-
mizes its β-blockwise q-gram distance from y. The imple-
mentation is distributed under the GNU General Public 
License (GPL), and it is available freely at http://www.
github.com/solonas13/csc.

diffj

[

x′
[

i +
jm

β

]]

= diffj

[

x′
[

i +
jm

β

]]

+ 1

diffj

[

x′
[

i +
(j + 1)m

β

]]

= diffj

[

x′
[

i +
(j + 1)m

β

]]

− 1,

δi+1,j =







δi,j − 1, if diffj

�

x′[i + jm
β
]
�

≤ 0

δi,j + 1, if diffj

�

x′[i + jm
β
]
�

> 0

δi+1,j =







δi+1,j − 1, if diffj

�

x′[i + (j+1)m
β

]
�

≥ 0

δi+1,j + 1, if diffj

�

x′[i + (j+1)m
β

]
�

< 0.

http://www.github.com/solonas13/csc
http://www.github.com/solonas13/csc
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Example 7 Consider the following pair of strings obtained from saCSC

and the following pair of strings formed for L = 25.

The Needleman-Wunsch algorithm for all rotations of x′′ and string y′′ gives the following optimal alignment

which tells us that a refined rotation is in fact xi′, where i′ = i − 13

xi = GACACCCCCCACAGTTTATGTAGCTT…ACCCCGAACCAACCAAACCCCAAA

y = GTTTATGTAGCTTACCTCCCCAAAGC…CAAACCCCAAAGACACCCCACACA

x′′ = GACACCCCCCACAGTTTATGTAGCTT$$$$$$$$$$$$$$$$$$$$$$$$$ACCCCGAACCAACCAAACCCCAAA

y′′ = GTTTATGTAGCTTACCTCCCCAAAG$$$$$$$$$$$$$$$$$$$$$$$$$CAAACCCCAAAGACACCCCACACA

GTTTATGTAGCTT$$$$$$$$$$$$$$$$$$$$$$$$$ACCCCGAACCAACCAAACCCCAAAGACACCCCCCACA

GTTTATGTAGCTTACCTCCCCAAAG$$$$$$$$$$$$$$$$$$$$$$$$$CAAACCCCAAAGACACCCCACACA

xi
′
= GTTTATGTAGCTT…CAAACCCCAAAGACACCCCCCACA

y = GTTTATGTAGCTT…CAAACCCCAAAGACACCCCACACA

For comparison purposes, we implemented a naïve 
algorithm that compares all rotations of x against y using 
the Needleman-Wunsch algorithm [39] with substitution 
matrices and affine gap penalty scores  [40]; we denote 
this implementation by cNW. We also implemented the 
following heuristics. We first use the Smith-Waterman 
local alignment algorithm [41] to search for the best local 
alignment of x and y and then use a central match from 
this local alignment to anchor the global alignment (see 
also [11]); we denote this implementation by hSW.

Refining algorithm saCSC
The application of the β-blockwise q-gram distance via 
algorithm saCSC suggests that an optimal or a close-
to-optimal rotation of x can be found when compared 
to cNW. Due to the locality property offered by the newly 
introduced distance notion, it is reasonable to assume 
that the close-to-optimal rotation returned by saCSC 
may be refined via some quick heuristics that take into 
consideration the blocks at both ends.

Let xi be the close-to-optimal rotation of x returned by 
saCSC. We introduce a new input parameter 0 < p ≤ β

3, 
which defines the length L of the prefixes and suffixes of 
xi and y to be considered in the refinement as follows:

L =
⌊

p×
m

β

⌋

.

We take p block(s) of the prefix of xi, concatenate it with a 
string of equal length L comprised only of letter $, where 
$ /∈ �, and concatenate that with p block(s) of the suffix 
of xi to form a new string x′′ of length 3L. We do the same 
with y to form a new string y′′.

The refinement algorithm works by taking all rota-
tions of x′′ and comparing their similarity to y′′. Each 
rotation of x′′ is compared to y′′ excluding when a $ let-
ter is found at index 0 of the rotation of x′′. We measure 
the similarity between the strings for which equal-
ity between letters are positively valued; inequalities, 
insertions, and deletions are negatively valued; and 
comparisons involving $ are neither positively nor neg-
atively valued. The goal of rotating x′′ serves to find the 
rotation that maximizes the similarity to y′′ and, to this 
end, we make use of the Needleman-Wunsch algorithm. 
The rotation of x′′ which results in the maximum score 
is chosen as the best rotation, and hence, the final rota-
tion xi′ of x is computed based on this rotation of x′′.  
Ties are broken arbitrarily. We denote this new algo-
rithm, consisting of saCSC and the refinement stage, 
by saCSCr.

The application of the Needleman-Wunsch algorithm 
on strings of length 3L has a time complexity of O(L2). 
Considering all rotations of x′′ results in a time complex-
ity of O(L3) for the refinement step. Overall, saCSCr 
takes time O(βm+ n+ L3).
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Experimental results
The following experiments were conducted on a desktop 
computer using one core of Intel® CoreTM i7-2600 CPU 
at 3.4GHz and 12GB of RAM under 64-bit GNU/Linux. 
All programs were compiled with gcc version 4.7.3. We 
used both synthetic data and real data. All input datasets 
referred to in this section are publicly maintained at the 
same web-site. First, in "Accuracy"–"Time performance" 
sections, we establish the quality (accuracy and perfor-
mance) of our methods. Then, in "Application to syn-
thetic data"–"Application to real data" sections, we show 
applications of our methods.

Accuracy
We began with simulating three DNA sequence datasets 
using INDELible [42], with each dataset consisting of 12 
sequences (denoted by α), each of length approximately 
2500  bp (denoted by γ). INDELible produces linear 
sequences with substitutions, insertions, and deletions at 
rates defined by the user. Three unique substitution rates 
(denoted by θ) were set, per dataset, using the substitu-
tion model JC69 (Jukes-Cantor, 69): 5, 20, and 35 %. The 
insertion and deletion rates were set, respectively, to 4 
and 6 % (denoted by κ and ω), relative to substitution rate 
of one, similar to those observed in MtDNA in primates 
and mammals [25]. We refer to these datasets as Original.

To allow for comparison of the performance of the 
algorithms in realigning randomly rotated sequences, 
which should be similar to those obtained from sequenc-
ing circular DNA structures, such as MtDNA, one ran-
dom rotation was generated in each sequence in all 
datasets, creating new datasets which will be referred to 
as Random. Using the three Random datasets allowed 
us to test the accuracy of hCSC and saCSC; notice that 
nCSC and saCSC always return the same rotation. For 
each Random dataset, an all-against-all sequence com-
parison was performed. That is, all 66 possible pairs of 
sequences in each dataset were given as input to both 
hCSC and saCSC. β was set to ⌈

√
m⌉ = 50 and q was 

set to ⌈log|�|m⌉ = 6. The resultant re-rotated sequences 
were aligned using EMBOSS Needle (default parameters) 
and the similarity scores were compared to those of the 
Original and Random datasets, which were input directly 
to EMBOSS Needle (default parameters). The results can 
be found in Fig. 1.

The results show that: (a) hCSC and saCSC yield sig-
nificantly improved similarity scores compared to those 
obtained from giving Random datasets as input directly 
to EMBOSS Needle; and (b) hCSC and saCSC yield 
similarity scores that are identical or almost identical—
notice that the black (Original), green (hCSC), and blue 
(nCSC/saCSC) points coincide—to those obtained from 
giving Original datasets as input directly to EMBOSS 

Needle. This implies that algorithms hCSC, nCSC, and 
saCSC return the rotation maximizing the similarity 
score for all pairwise comparisons.

Hence, we establish here that the introduced distance 
measure coupled with the respective algorithms con-
sistently yield a very high accuracy, compared to the 
standard measure [17, 39, 40], for both low and high sub-
stitution rates.

Time performance
We then compared the time performance of the algo-
rithms. Each algorithm was given a pair of randomly 
generated sequences starting from m = n = 50 bp and 
doubling 8 times to a length of m = n = 12, 800  bp. It 
was expected that the slowest algorithm would be cNW 
which runs in time O(nm2). Then it would be algorithm 
nCSC which runs in time O(m(m+ n)), then algorithm 
hCSC, which runs in time O

(

β(m+ n)+ m(m+n)
β

)

, and 

lastly algorithm saCSC, which runs in time O(βm+ n).
Initially, β was set to ⌈

√
m⌉ and q was set to ⌈log|�|m⌉ . 

The results in Fig.  2 demonstrate orders-of-magnitude 
superiority of saCSC compared to cNW and nCSC, con-
firming our theoretical findings. Algorithm hCSC is 
the second fastest. Although β was set to ⌈

√
m⌉, saCSC 

clearly outperforms hCSC, due to the use of a highly 
optimized implementation of the suffix-array construc-
tion  [43], thus highlighting the importance of suitably 
implemented data structures such as suffix arrays.

Since the time complexities of hCSC and saCSC 
depend on β, we repeated the same experiment with these 
two algorithms setting β to ⌈m/25⌉ and q to ⌈log|�|m⌉— 

Original Random hCSC nCSC/saCSC
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Fig. 1 Accuracy. Accuracy comparison for substitution rates 5, 20, 
and 35 %; the black, green, and blue points coincide implying that 
algorithms hCSC, nCSC, and saCSC return the rotation maximizing 
the similarity score for all pairwise comparisons
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notice that q does not affect the time efficiency of the 
algorithms. The results in Fig.  2 show that hCSC and 
saCSC are still the fastest, even though m = O(β), and 
that saCSC is clearly the fastest of all. As expected for 
m = O(β), we observe that hCSC and saCSC become 
gradually slower as m grows.

More algorithms could have been included in the com-
parison but their (at least) quadratic time complexity [22, 
23] prevents them from competing with saCSC.

Application to synthetic data
For evaluating the proposed methods for circular 
sequence comparison in some relevant application, we 
also implemented the following pipeline for distance-
based phylogenetic reconstruction of a dataset with N 
circular sequences.

1. For each pair (x, y) of the N sequences, we use one 
method for circular sequence comparison to com-
pute the best rotation xi.

2. A similarity score for (xi, y) is then computed using 
EMBOSS Needle (default parameters) and stored in 
cell [x, y] of an N × N  similarity score matrix.

3. The similarity score matrix is transformed into a dis-
tance matrix by converting each score into a distance 
relative to the maximum score in the similarity score 
matrix.

4. Neighbour joining clustering is performed on the 
distance matrix, using NINJA [44], to produce a phy-
logenetic tree.

Phylogenetic trees were constructed by NINJA  [44], for 
the aforementioned Random datasets, using output from 
the following algorithms: cNW (EMBOSS default parame-
ters), hSW (see introduction of "Implementation" section, 

EMBOSS default parameters), and saCSCr (β = 50,  
q = 5, and p = 1). Notice that, output from cNW should 
be the same as from EMBOSS Needle (default param-
eters) with the Original datasets as input. In terms of 
accuracy, the Robinson-Foulds (RF) distance metric  [45, 
46] was used to compare the three resultant phyloge-
netic trees with the tree resulting from EMBOSS Nee-
dle (default parameters) on the Original and Random 
datasets, denoted by NW(o) and NW(r), respectively. 
RF distance can be defined as the number of operations 
required to transform one tree in to another. If two iso-
morphic trees share the same labelling then they have an 
RF distance of 0. The results displayed in Table 3 clearly 
show that saCSCr and cNW produce the most accurate 
results with these nine datasets. As also shown in  [11], 
hSW followed by EMBOSS Needle (default parameters) 
can often result in sub-optimal global alignments.

In terms of time performance, the elapsed time 
required for each method to process each dataset was 
recorded and the results are displayed in Table  4. It is 
clear, from the results presented heretofore, that saCSCr 
outperforms all other algorithms by at least one order of 
magnitude.

Application to real data
We have concluded thus far that using β = ⌈

√
m⌉ and 

q = ⌈log|�|m⌉ results in a reasonable trade-off between 
running time and accuracy. In the following section, 
where necessary, we adopt these values and multiply or 
divide them by a constant factor (factor of two), depend-
ing on the length of the input sequences.

DNA sequences
Pairwise sequence comparison. As the input data-
set, we used two real sequences from GenBank: human 
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Fig. 2 Time performance. Elapsed-time comparison of algorithms 
cNW, nCSC, hCSC, and saCSC

Table 3 RF distances between  the tree obtained from  the 
NW(o) and  those obtained from  NW(r), cNW, hSW, 
and saCSCr

The number of sequences in the dataset is denoted by α; γ denotes their 
lengths; θ denotes the substitution rate; κ and ω denote the relative insertion 
and deletion rates, respectively

Dataset < α, γ , θ , κ ,ω > NW(r) cNW hSW saCSCr

<12, 2500, 0.05, 0.06, 0.04> 16 0 0 0

<12, 2500, 0.20, 0.06, 0.04> 12 0 0 0

<12, 2500, 0.35, 0.06, 0.04> 4 0 0 0

<25, 2500, 0.05, 0.06, 0.04> 44 0 0 0

<25, 2500, 0.20, 0.06, 0.04> 24 0 0 0

<25, 2500, 0.35, 0.06, 0.04> 16 0 0 0

<50, 2500, 0.05, 0.06, 0.04> 86 0 6 0

<50, 2500, 0.20, 0.06, 0.04> 84 0 0 0

<50, 2500, 0.35, 0.06, 0.04> 56 0 0 0



Page 12 of 14Grossi et al. Algorithms Mol Biol  (2016) 11:12 

(NC_001807) and chimpanzee (NC_001643) MtDNA 
sequences. The MtDNA genome size for human is 
16,571  bp and for chimpanzee is 16,554  bp. Their pair-
wise sequence alignment using EMBOSS Needle (default 
parameters) gives a similarity of 85.1%. We used cNW 
(EMBOSS default parameters) to obtain the rotation 
of NC_001807 that maximizes its similarity score with 
NC_001643. This experiment took approximately 28  h 
and the resultant rotation 578 of NC_001807 improved 
the similarity score to 91%. This result was then com-
pared to those obtained from saCSC (equivalent to 
saCSCr with p = 0) and saCSCr with varying param-
eters, displayed in Table 5.

The convergence of the results after the additional step 
of refinement (see Table  5 in italics) demonstrates the 
convenience and necessity of saCSCr.

For clarity of presentation hereafter, instead of using 
β , we denote by ℓ the length of the block chosen in algo-
rithm saCSCr.

We repeated this experiment with the human and 
gorilla (NC_011120) MtDNA sequences. The MtDNA 
genome size for gorilla is 16,412 bp. Their pairwise 
sequence alignment using EMBOSS Needle (default 
parameters) gives a similarity of 83.5%. After using saC-
SCr to rotate sequence NC_001807 (ℓ = 50, q = 5, and 
p = 1), EMBOSS Needle (default parameters) gave a sig-
nificantly improved similarity of 88.4 %.

Finally, note that the experiments which used saCSC 
and saCSCr each took a fraction of a second to run.

Distance-based phylogenetic reconstruction Three 
datasets of 16 primate, 12 mammalian and 19 mixed 
mammalian and primate MtDNA sequences, of aver-
age length 16,500 bp, were obtained from GenBank. We 
followed the same pipeline as described in "Application 
to synthetic data" section. The RF distance between the 
trees produced by cNW (EMBOSS default parameters), 
and the trees produced by saCSCr (ℓ = ⌈

√
m⌉ = 129, 

q = 5, and p = 1) followed by EMBOSS Needle (default 
parameters), was 0.

RNA sequences
Eighteen viroid sequences were obtained from RefSeq, a 
database of curated molecular biological sequences [47]. 
Their lengths and target hosts vary, ranging from 348 to 
371 bp and infecting peppers and citrus fruits, respec-
tively. We followed the same pipeline as described in 
"Application to synthetic data" section. The RF dis-
tance between the tree produced by cNW (EMBOSS 
default parameters), and the tree produced by saCSCr 
(ℓ = ⌈

√
m⌉ = 19, q = ⌈log|�|m⌉ = 5 , and p = 1) fol-

lowed by EMBOSS Needle (default parameters), was 0.

Protein sequences
Linear, circularly-permuted protein sequences Eight 
sequences of proteins, of average length 950 amino acids, 
belonging to β-glucosidase family [48] were obtained from 
the UniProt protein database [49]. We followed the same 
pipeline as described in "Application to synthetic data" sec-
tion. The RF distance between the tree produced by cNW 
(EMBOSS default parameters), and the tree produced by 
saCSCr (ℓ = ⌈

√
m⌉ = 31, q = ⌈log|�|m⌉ = 5, and p = 1)  

followed by EMBOSS Needle (default parameters), was 0.
Naturally-occurring circular proteins Ten bacteri-

ocin protein sequences, of average length 20 amino acids, 
were obtained from Cybase  [50], a database of cyclical 
protein sequences. We followed the same pipeline as 
described in "Application to synthetic data" section. The 
RF distance between the tree produced by cNW (EMBOSS 
default parameters), and the tree produced by saCSCr 
(ℓ = 2⌈

√
m⌉ = 10, q = 2⌈log|�|m⌉ = 6, and p = 1) fol-

lowed by EMBOSS Needle (default parameters), was 0.

Table 4 Elapsed-time comparison (in seconds) for  algo-
rithms cNW, hSW, and saCSCr

The number of sequences in the dataset is denoted by α; γ denotes their 
lengths; θ denotes the substitution rate; κ and ω denote the relative insertion 
and deletion rates, respectively

Dataset < α, γ , θ , κ ,ω > cNW hSW saCSCr

<12, 2500, 0.05, 0.06, 0.04> 10,139.36 72.43 6.90

<12, 2500, 0.20, 0.06, 0.04> 9888.84 80.91 6.57

<12, 2500, 0.35, 0.06, 0.04> 10,052.33 80.16 6.28

<25, 2500, 0.05, 0.06, 0.04> 46,311.85 369.02 27.61

<25, 2500, 0.20, 0.06, 0.04> 46,230.07 375.41 28.92

<25, 2500, 0.35, 0.06, 0.04> 46,289.99 400.30 30.44

<50, 2500, 0.05, 0.06, 0.04> 122,165.95 1563.96 125.63

<50, 2500, 0.20, 0.06, 0.04> 121,810.69 1617.89 123.12

<50, 2500, 0.35, 0.06, 0.04> 120,679.32 1662.82 123.77

Table 5 Rotations of  GenBank sequence NC_001807 
obtained when  compared to  NC_001643 with  varying 
parameters of saCSCr

q β p Rotation

5 50 0 566

5 50 1 578

5
√
m 0 567

5
√
m 1 578

5 2
√
m 0 583

5 2
√
m 1 578

5
√
m
2

0 566

5
√
m
2

1 578
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Conclusions
In this paper, we introduced a new distance measure for 
sequence comparison based on q-grams, and showed how 
it can be applied effectively and computed efficiently for 
circular sequence comparison. The most efficient algo-
rithm presented here, saCSC, solves our defined problem 
CSC, exactly. Extensive experimental results, using both 
real and synthetic data, show that it maintains an accuracy 
very competitive to the optimal obtained after considering 
all rotations of x against y naïvely using global alignments. 
We also showed that algorithm saCSCr can bridge the 
gap between the optimal solution and our approximation 
via an additional refinement step. Finally, the presented 
experimental study demonstrates orders-of-magnitude 
superiority of our approach in terms of runtime efficiency. 
Our immediate target is to implement algorithm saCSCr 
in BEAR [24], a state-of-the-art tool for improving multi-
ple circular sequence alignment.
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