i1 M Loughborough
 University

This item was submitted to Loughborough's Research Repository by the author.
ltems in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Compact routing messages in self-healing trees
PLEASE CITE THE PUBLISHED VERSION
http://dx.doi.org/10.1016/j.tcs.2016.11.022

PUBLISHER

© Elsevier

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE
CC BY-NC-ND 4.0

REPOSITORY RECORD

Castaneda, Armando, Danny Dolev, and Amitabh Trehan. 2016. “Compact Routing Messages in Self-healing
Trees”. Loughborough University. https://hdl.handle.net/2134/24632.

https://lboro.figshare.com/
http://dx.doi.org/10.1016/j.tcs.2016.11.022

Accepted Manuscript ——

eoretical

Compact routing messages in self-healing trees omputer Science
Algorithms, automata, complexity
and games.

Armando Castafieda, Danny Dolev, Amitabh Trehan {

PIL: S0304-3975(16)30681-8

DOIL: http://dx.doi.org/10.1016/j.tcs.2016.11.022

Reference: TCS 10987

To appear in: Theoretical Computer Science

Received date: 7 May 2016
Revised date: 15 November 2016
Accepted date: 16 November 2016

Please cite this article in press as: A. Castafieda et al., Compact routing messages in self-healing trees, Theoret. Comput. Sci. (2016),
http://dx.doi.org/10.1016/j.tcs.2016.11.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.tcs.2016.11.022

Highlights

e First self-healing compact routing algorithm for low memory nodes.
e Introduces CompactFT: a compact (O(polylog n) local memory) version of ForgivingTree [PODC2008].
e Introduces CompactFTZ: self-healing compact routing scheme delivering messages despite node failures in a distributed network.

Compact Routing Messages in Self-Healing Trees

Armando Castaneda®!, Danny Dolev®2, Amitabh Trehan®3:*

“Instituto de Matemdticas, UNAM, Mézico
bThe Hebrew University of Jerusalem, Israel.

¢School of Electronics, Electrical Engineering and Computer Science, Queen’s University
Belfast, UK

Abstract

Existing compact routing schemes, e.g., Thorup and Zwick [SPAA 2001] and
Chechik [PODC 2013] often have no means to tolerate failures, once the system
has been set up and started. This paper presents, to our knowledge, the first
self-healing compact routing scheme. Besides, our schemes are developed for low
memory nodes and are compact schemes, meaning they require only O(log2 n)
bits memory.

We introduce two algorithms of independent interest: The first is CompactF'T,
a novel compact version of the self-healing algorithm Forgiving Tree of Hayes
et al. [PODC 2008] that uses only O(logn) bits local memory. The second al-
gorithm (CompactF'TZ) combines CompactFT with Thorup-Zwick’s tree-based
compact routing scheme [SPAA 2001] to produce a compact self-healing routing
scheme. In the self-healing model, the adversary deletes nodes one at a time
and the affected nodes self-heal locally by adding few edges. We introduce the
bounded-memory self-healing model, where the memory each node need to use
for the self-healing algorithm is bounded. CompactFT recovers from each attack
in only O(1) time and A messages, with only +3 degree increase and O(log A)
graph diameter increase, over any sequence of deletions (A is the initial maxi-

*Corresponding author
Email addresses: armando.castaneda@im.unam.mx (Armando Castafieda),
danny.dolev@mail.huji.ac.il (Danny Dolev), amitabh.trehaan@gmail.com (Amitabh
Trehan)

ISupported partially by PAPIIT-UNAM IA101015. This research was partially done while
the first author was at the Department of Computer Science of the Technion, supported by
an Aly Kaufman post-doctoral fellowship.

2Danny Dolev is Incumbent of the Berthold Badler Chair in Computer Science, The Rachel
and Selim Benin School of Computer Science and Engineering Edmond J. Safra Campus. This
work was supported by the HUJI Cyber Security Research Center in conjunction with the
Israel National Cyber Bureau in the Prime Minister’s Office, and by The Israeli Centers of
Research Excellence (I-CORE) program, (Center No. 4/11).

3Research partly done as an I-CORE fellow supported by The Israeli Centers of Research
Excellence (I-CORE) program, (Center No. 4/11). This project has also received funding
from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 671603 (AllScale).

Preprint submitted to Theoretical Computer Science November 15, 2016

20

25

30

mum degree).

Additionally, CompactFTZ guarantees delivery of a packet sent from sender
s as long as the receiver ¢ has not been deleted, with only an additional O(ylog A)
latency, where y is the number of nodes that have been deleted on the path be-
tween s and t. If ¢ has been deleted, s gets informed and the packet is removed
from the network. CompactFTZ uses only O(logn) bits memory for local fields
(such as routing tables) and O(log® n) bits for the routing labels, thus requiring
O(log® n) bits overall.

Keywords: Self-Healing fault-tolerant P2P algorithm, Distributed message
passing algorithm, Compact Thorup-Zwick routing, Low memory Compact
algorithm, Compact Forgiving Tree, Internet of Things

1. Introduction

Routing protocols have been the focus of intensive research over the years.
Efficient and robust routing is critical in current networks, and will be even more
so in future networks. Routing is based on information carried by the traveling
packets and data structures that are maintained at intermediate nodes. The
efficiency parameters change from time to time, as the network use develops
and new bottlenecks are identified. It is clear that the size of the network
makes the use of centralized decisions very difficult, and we are close to giving
up on maintaining long distance routing decisions. We are a few years before
a full-scale deployment of the Internet of Things (IOT), which will introduce
billions of very weak devices that need to have routing capabilities. The size of
the network and the dynamic structure that will evolve will force focusing on
local decisions, pushing for the use of protocols that do not require maintaining
huge routing tables.

Santoro and Khatib [1], Peleg and Upfal [2], and Cowen [3] pioneered the
concept of compact routing that requires only a minimal storage at each node.
Moreover, the use of such routing protocols imposes only a constant factor
increase in the length of the routing. Several papers followed up with some
improvements on the schemes (cf. Thorup and Zwick [4], Fraigniaud and
Gavoille [5], and Chechik [6]). These efficient routing schemes remain stable
as long as there are no changes to the network.

The scale and mobility of future networks such as IOT will necessarily lead
to continuous changes to the network and regular (possibly isolated) failures
of components/devices. Thus, maintaining connectivity and ensuring a smooth
running of already running protocols will be important. This is where the self-
healing capabilities of the network will be important for efficient, responsive
repair of the network without hindering regular operation.

The target of the current paper is to introduce an efficient compact scheme
that combines small local memory and packet headers with the ability to update
the local data structures stored at each node in a response to a change of the

35

40

45

50

55

60

65

70

75

network. Throughout this paper, when we say compact, we imply schemes
that use o(n) local memory per node and packet headers of size o(n), where
n is the number of nodes in the network. Our new scheme has similar cost as
previous compact routing schemes. In this work, we will focus on node failures.
In general, node failures may be considered more challenging to handle than
edge/link failures, and are analysed less often.

Our algorithms work in the bounded memory self-healing model (Section 2).
We assume that the network is initially a connected graph over n nodes. All
nodes are involved in a preprocessing stage in which the nodes identify edges
to be included in building a spanning tree over the network and construct their
local data structures. After the preprocessing is complete, the adversary re-
peatedly attacks the network. The adversary knows the network topology and
the algorithms and has the ability to delete arbitrary nodes from the network.
To enforce a bound on the rate of changes, it is assumed the adversary is con-
strained in that it deletes one node at a time, and between two consecutive
deletions, nodes in the neighbourhood of the deleted node can exchange mes-
sages with their immediate neighbours and can also request for additional edges
to be added between themselves. The adversary can attack only after the sys-
tem has self-healed itself from the previous attack. Thus, the self-healing process
should be efficient enough so that the system recovers quickly after any possible
attack.

Our self-healing algorithm CompactFT ensures recovery from each attack in
only a constant time and A messages, while, over any sequence of deletions, tak-
ing only a constant additive degree increase (of 3) and keeping the diameter as
O(Dlog A), where D is the diameter of the initial graph and A is the maximum
degree of the initial spanning tree built on the graph. Moreover, CompactFT
needs only O(logn) local memory. Theorem 4.1 states the results formally.

CompactFTZ, our compact routing algorithm, is based on the compact rout-
ing scheme on trees by Thorup and Zwick [4], and ensures routing between any
pair of existing nodes in our self-healing tree without loss of any message packet
whose target is still connected. Moreover, the source will be informed if the
receiver is lost, and if both the sender and receiver have been lost, the message
will be discarded from the system within at most twice of the routing time. Our
algorithm guarantees that after any sequence of deletions, a packet from s to ¢
is routed through a path of length O(d(s,t)log A) where d(s,t) is the distance
between s and ¢t and A is the maximum degree of any node, in the initial tree.
Though CompactFTZ uses only O(logn) local memory, the routing labels (and,
hence, the messages) are of O(log” n) size, so nodes may need O(log® n) memory
to locally process the messages. Theorem 6.2 states the results formally.

In CompactFTZ, we use a slight variant of Thorup and Zwick. This vari-
ant is for no particular reason but to exemplify that our construction to obtain
CompactFTZ is not tailor-made for a particular routing protocol but for any di-
rect compact routing protocol for trees based on a DFS labeling (as Thorup and
Zwick is). A routing protocol is direct if the header of a packet is not modified
during the routing. Instead of using a concrete protocol, we could have consid-

80

85

90

95

100

105

ered an abstract compact routing protocol for trees and derive our construction,
however, we use a concrete example to make the exposition concise. The same
approach applies to the compact routing algorithm for trees of Fraigniaud and
Gavoille [5], or any DFS-based interval routing for trees (see for example [1]),
although the latter does not necessarily achieve compactness.

1.1. Related Work

Algorithm Over Complete Run Per Healing Phase
Local Diameter Degree Parallel Msg # Msges
Memory | (Orig: D) (Orig: d) | Repair Time Size
Forg. Tree [7] O(n) Dlog AT d+3 0(1) O(logn) O(1)
CompactFT O(logn) Dlog Af d+3 O(1) O(logn) 0(0)F

T A: Highest degree of network.
¥ 5: Highest degree of a node involved in repair (at most A).

Table 1: Comparing CompactFT with Forgiving Tree

CompactFT uses ideas from the Forgiving Tree [7] (FT, in short) in order
to improve compact routing. The main improvement of CompactFT is that no
node uses more than O(logn) local memory and thus, CompactFT is compact.
CompactFT achieves the same bounds and healing invariants as FT, however,
taking slightly more messages (at most O(A) messages as opposed to O(1) in
FT) in certain rounds. Table 1 compares between the algorithms.

Several papers have studied the routing problem in arbitrary networks (e.g.
[8, 9, 3, 6]) and with the help of geographic information (e.g. [10, 11, 12]),
but without failures. These papers are interested in the trade-off between the
size of the routing tables and the stretch of the scheme: the worst case ratio
between the length of the path obtained by the routing scheme and the length
of the shortest path between the source and the destination. Here we are mainly
interested in preserving compactness under the presence of failures.

An interesting line of research deals with labelling schemes. [13] presents
labelling schemes for weighted dynamic trees where node weights can change. In
a labelling scheme, each node has a label and from every two labels, the distance
between the corresponding nodes can be easily computed. However, they do
not deal with node deletions nor do they claim to deal with routing. In [14],
Korman, et al., present a compact distributed labelling scheme in the dynamic
tree model: (1) the network is a tree, (2) nodes are deleted/added one at a time,
(3) the root is never deleted and (4) only leaves can be added/deleted. The fault-
tolerant labelling scheme is obtained by modifying any static scheme. Using the
previous, they get fault-tolerant (in the same model) compact versions of the
compact tree routing schemes of [5, 15, 4]. These schemes have a multiplicative
overhead factor of Q(logn) on the label sizes of the static schemes. In [16],
Korman improves the results in [14], presenting a labelling scheme in the same
model that allows computing any function on pairs of vertices with smaller
labels, at the cost, in some cases, of communication. Our work differs from the

110

115

120

125

130

135

140

145

150

previous papers in the sense that though we use a spanning tree of the network,
our network can be arbitrary and any node can be deleted by the adversary.

There have been numerous papers that discuss strategies for adding addi-
tional capacity and rerouting in anticipation of failures [17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27]. In each of these solutions, the network is fixed and either
redundant information is precomputed or routing tables are updated when a
failure is detected. In contrast, our algorithm runs in a dynamic setting where
edges are added to the network as node failures occur, maintaining connectiv-
ity and preserving compactness at all time. Our bounded memory self-healing
model builds upon the model introduced in [7, 28]. A variety of self-healing
topology maintenance algorithms have been devised in the self-healing mod-
els [29, 30, 31, 32, 33, 34]. One of the central techniques used in these topo-
logical self-healing algorithms is the concept of a reconstruction structure (also
used in this paper and described in Section 3). In previous work, reconstruction
structures have been balanced binary search trees (BBST) as in the present
paper and [7], half-full trees (a special kind of bbst) in [31], random r-regular
expanders as in [30], or p-cycle deterministic expanders in [29].

Our paper moves in the direction of self-healing computation/routing along
with topology, which is attempted in other papers, e.g., [35] (though in a dif-
ferent model). Finally, dynamic network topology and fault tolerance are core
concerns of distributed computing [36, 37] and various models, e.g., [38], and
topology maintenance and self-* algorithms abound [39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50].

2. Model of Computation

This section describes our model, which can be seen as a combination of
the self-healing (Section 2.1) and the routing models (Section 2.2). Though the
models are described independently, the final model should be seen as a union
of both the models.

2.1. Compact Self-Healing Model

Let G = G be an arbitrary connected graph on n nodes, which represent
processors in a distributed network. Each node has a unique and private ID. The
edges of Gy represent direct communication lines between nodes: if there is an
edge between v and v in Gy, there is a bidirectional communication line between
w and v. The port numbers of each processor v are labeled 0, ...,deg(v) — 1.
Initially, each node only knows the number of neighbors it has in Gy as it knows
the number of ports it is connected to, however, it does not know the ID of
its neighbors. Namely, for each port, it knows it has a neighbor at the other
extreme of that communication line but it does not know the ID of that node.
Moreover, each node is unaware of the structure of the rest of Gy.

In the model, any algorithm proceeds in a sequence of phases where each
phase begins with a powerful, omniscient (aware of all information including

155

160

165

Model 2.1 The memory-bound Self-healing Delete and Repair Model.

for t := 1 to n do
Adversary deletes a node v; from Gy_1, forming H,.
All neighbors of v; are informed of the deletion. Other nodes may be
unaware of the deletion unless explicitly informed by another node.
Recovery phase:
Nodes of H; may communicate (asynchronously and concurrently) with
their immediate neighbors. These messages are never lost or corrupted,
and may contain the names of other vertices.
During this phase, each node may insert edges joining it to any other node
as desired. Nodes may also drop edges from previous phases if no longer
required.
The resulting graph at the end of this phase is G¢. Nodes are not explicitly
informed when the healing phase ends.

end for

Success metrics: Minimize the following “complexity” measures:

1. Graph properties/Invariants:
(a) Degree increase: max;., max,(deg(v, Gy) — deg(v, Gy))
(b) Diameter stretch: max;., Dia(G;)/Dia(Gy)
2. Communication per node: The maximum number of bits sent by a
single node in a single recovery phase
3. Recovery time: The maximum total time for a recovery phase; the
number of (synchronous or asynchronous) rounds required for a recovery
phase.
4. Local Memory: The amount of memory a single node needs to run
the algorithm.

the algorithm and node’s private data) adversary deleting a node (i.e. crash-
ing a process) and the network reacting in a distributed manner by individ-
ual nodes (processors) communicating and adding edges (connections) between
themselves. This is described in Model 2.1.

Communication between nodes is by sending messages. Messages are not
lost. The network is phasewise asynchronous, i.e., each message is delivered
in some finite but arbitrary time but all messages of a phase are received and
processed before the next phase begins, i.e., before the next deletion occurs. For
ease of description, we shall initially describe our algorithms in a synchronous
manner. Each synchronous round consists of nodes processing messages received
in previous rounds, generating and sending messages to their neighbours, which
are received without loss by the end of the round. It is assumed that the
adversary knows the algorithm.

We allow a certain amount of preprocessing to be done before the first dele-
tion occurs. This is, for instance, used by the nodes to gather topological infor-
mation about Gy, and to setup the data structures for the self-healing routing

170

175

180

185

190

195

200

205

algorithm. Nodes are aware of the end of the preprocessing. For this work, we
do not assume any constraints on the resources for preprocessing and do not
count the cost of it towards our algorithm performance. It seems reasonable to
assume that the devices and network using these algorithms will have access to
more computing resources initially when they are being deployed. This can en-
able the preprocessing to be done quickly or even centrally and externally. Thus,
this allows us to concentrate on the ‘complexity’ of self-healing, as follows.

With reference to Model 2.1, the objective is to minimize the following “com-
plexity” measures (once the preprocessing stage is over):

e Degree increase: max;., max,(deg(v, G;) — deg(v,Gy)). This corre-
sponds to the additional load a node needs to take due to self-healing.

e Diameter stretch: max;.,, Dia(G¢)/Dia(Gp). This measure corresponds
to the increase in latency the self-healing algorithm will enforce upon the
network. Note that it may be simple to contain the increase in node
degrees or a distance bound but challenging to do both simultaneously.
For instance, imagine connecting all the neighbors of deleted node as a
clique.

e Communication per node: The maximum number of bits sent by a
single node in a single recovery phase.

e Recovery time: The number of (synchronous or asynchronous) rounds
required for a recovery phase.

e Local Memory: The amount of memory a single node needs to run the
algorithm. As stated, we would like this to be o(n) (to be able to claim our
algorithms to be compact). In fact, we claim the algorithms we introduce
in this paper to need O(log”n) local memory.

Notice that, in our model, the adversary is restricted to act (and begins a new
phase) only after the algorithm finishes the repair. This makes it incumbent for
the self-healing algorithm to finish the repair in a reasonable time to be useful
in a realistic setting. An alternate and almost similar model would be to state a
parameter, say 7, and state that we consider only algorithms which have repair
time at most 7. In either case, we are looking for algorithms which minimise
the self-healing repair time while fulfilling the other requirements.

We assume that port numbers are reusable, meaning that, in a healing phase,
if there is no live node attached to a port #port of a live node v, then v is free
to create a new edge with another live node and to assign to this edge the port
number #port.

2.2. Compact Routing Model

As in the compact self-healing model, the routing algorithm is allowed a pre-
processing phase, e.g., to run a distributed DFS on the graph. Each message
has a label that may contain the node ID and other information derived from
the preprocessing phase. Every node stores some local information, i.e. routing
tables, for routing. The preprocessing is not allowed to change the original port
assignment at any node (however, node deletions may force the self-healing

210

215

220

225

230

235

240

245

250

algorithm to do a simple ports’ reassignment). We are interested in minimizing
the sizes of the label and the local information at each node. As is standard in
routing models, we assume a centralised entity that has the labels of all nodes
and if node v would like to send a message to another node w, it obtains the label
of w from this global entity. Thus, locally, each node of the routing algorithm
only stores its routing tables.

3. The Algorithms: High Level

As stated, CompactFT (Algorithm 4.1) is an adaptation of FT [7] for low

memory.

CompactFTZ (Algorithm 6.2) then conducts reliable routing over

CompactFT. At a high level, the following happens:

e Preprocessing: A BFS spanning tree Ty of graph Gy is derived followed
by DFS traversal and labelling and a careful setup of CompactFT and
CompactFTZ fields (Tables 2 and 4). For CompactFT, every node sets
up and distributes a will (Section 4), which is the blueprint of edges and
virtual (helper) nodes to be constructed in case of the deletion of that node.

e After each deletion, the repair maintains the spanning tree of helper (vir-
tual) and real (original) nodes, i.e., the i*" deletion (say, of node v;) and
subsequent repair yields tree T;. The helper nodes are simulated by the
real nodes and only a real node can be deleted. The two main cases are as
follows:

(i)

non-leaf deletion, i.e., v; is not a leaf in T;_1 (Section 4.1): The neigh-
bours of v; ‘execute’ v;’s will, leading v; to be replaced by a recon-
struction tree (RT(v;)). As mentioned, reconstruction structures are
a central technique behind topological self-healing and are introduced
in FT [7], and described in more detail in [31], Section 3. RT(v;), in the
present algorithm as in CompactFT, is a balanced binary search tree
(BBST) with an additional node (Figure 1). The children of v; (which
are real nodes) form the leaves. The helper nodes form the internal
nodes of the tree and are simulated by v;’s neighbours. The labelling
of the internal nodes (which is the ID of the leaf node simulating them)
is done so that the entire tree forms a BBST. The ‘rightmost’ node
among the leaves is a special node called the heir of v and contributes
another internal node. As the name suggests, the heir is responsible
for taking over v’s simulations (if any) when v is deleted (Section 4).

leaf deletion, i.e., v; is a leaf in T;—1 (Section 4.2): This case is more
complicated in the low memory setting, since a node (in particular,
v;’s parent p) cannot store the list of its children nor recompute its
will. If p was dead, v;’s siblings essentially deletes a redundant helper
node while maintaining the structure. If p is alive, no new edges are
made, but p orchestrates a distributed update of its will while being

255

260

265

270

275

280

abc € g h

Figure 1: Deleted node v replaced by Reconstruction Tree (RT(v)). Nodes in oval are virtual
helper nodes. The circles are regular helper nodes and the rectangle is an ‘heir’ helper node.
The ‘Will’ of v is RT(v), i.e., the structure that replaces the deleted v.

oblivious of the identity of its children. Thus, when p is eventually
deleted, the right structure gets put in place.

e Routing: Independent of the self-healing, a node s may send a message to
node r (along with s’s own label) using the CompactFTZ protocol. The
label on the message (for) along with the local routing fields at a real node
tells what is the next node, say w, on the path. If, however, w had been
deleted earlier, there could be a helper node on that port, which is part of
RT(w). Now, the message would be routed using the fact that the RT(w)
is a BBST and would make it to the right node at the end of RT(w) (either
a leaf node or the root, which are real nodes). The message eventually
reaches r, but if r is dead, the message is ‘returned to sender’ using s’s
label.

4. CompactFT: Detailed Description

CompactFT maintains connectivity in an initially connected network with
only a total constant degree increase per node and O(log A) factor diameter
increase over any sequence of attacks, while using only O(logn) local memory
(where n is the number of nodes originally in the network). The formal theorem
statement is given in Theorem 4.1.

As stated, in CompactFT, a deleted node v is replaced by a RT(v) formed
by (virtual) helper nodes simulated by its children (siblings in case of a leaf
deletion) (Figure 1). This healing is carried out by a mechanism of wills:

Will Mechanism: A will(v) is the set of actions, i.e., the subgraph to be
constructed on the deletion of node v. When v is a non-leaf node, this is
essentially the encoding of the structure of RT(v) and is distributed among v’s
children. Each part of a node’s will stored in another node is called a willportion.
We denote willportion(v,w) to be the part of will(v) that involves w, i.e., the
relevant subgraph, and is stored by node w. When v is a leaf node, however,
will(v) differs in not being an RT(v) and is stored with siblings of v. For clarity,
we call this kind of will a leafwill, the willportions as leafwillportions and a

285

290

295

300

leaf node’s heir as leafheir. The will of a node is distributed among the node’s
neighbours such that the union of those willportions makes the whole will. Note
that a willportion (or leafwillportion) is of only constant size (in number of node
IDs). Figure 2 shows the will of a node v and the corresponding willportions.

Current fields Fields having information about a node’s cur-
rent neighbors

parent (v) Parent of v

parentport (v) Port at which parent(v) is attached

numchildren (v) Number of children of v

maxportnumber (v) Maximum port number used by v

heir(v), <heir(v)> The heir of v and its port

Helper fields Fields for a helper node v may be simulating.
(Empty if none)

hparent (v) Parent of the helper node v simulates

hchildren(v) Children of helper node v simulates.

Reconstruction fields / | Fields used by v to reconstruct its connections
willportion/leafwillportion, when its neighbor is deleted.

nextparent (v) Node which will be next parent(v)
nexthparent (v) Node which will be next hparent(v)
nexthchildren(v) Node(s) that will be next hchildren(v)
Flags Boolean fields telling node’s status.
hashelper (v) True if v is simulating a helper node

Table 2: The fields maintained by a node v for Compact FT. Each reference to a sibling is
tagged with the port number at which it is attached to parent (not shown above for clarity),
e.g., nextparent(v) is nextparent(v), <nextparent(v)>.

The fields used by a node for executing CompactFT are given in Table 2.
Unlike FT, a node cannot have either the list of its children or its own RT (since
these can be as large as (n)). Rather, a node v will store the number of its chil-
dren (numchildren(v)), highest port number in use (mazportnumber) and will
store every node reference in the form (nodel D, port), e.g., in willportion(p,v),
a reference to a node x will be stored as (x, <z>), where <x> is the port of p
at which z is connected.

Algorithm 4.1 gives a high level overview of CompactFT. The detailed
algorithms are presented in Section 5. Also, Table 3 describes some of the special
messages used by CompactFT. The algorithm begins with a preprocessing phase
(Algorithm 4.1 line 1) in which a rooted BFS spanning tree of the network
from an arbitrary node is computed. CompactFT will then maintain this tree
in a self-healing manner. Each node sets up the CompactFT data structures
including its will. We do not count the resources involved in the preprocessing
but note that at the end of that phase all the CompactF'T data structures are
contained within the O(logn) memory of a node. As stated, the basic operation
is to replace a (non-leaf) node by a RT. A leaf deletion, however, leads to
a reduction in the number of nodes in the system and the structure is then

10

305

310

Message Description
BrLeafLost (<z>) Node v broadcasts, informing that
the leaf node at v’s port <> has been deleted.
BrNodeReplace Node v broadcasts, asking receivers to replace
((x,<x>), (h, <z>)) (in their willportion) at v’s port <x>, node
with node h.
PtWillConnection Node v asks receivers (in their v.willportion)
((y, <y>), (z,<z>)) to make an edge between node y and node z.
PtNewLeafWill ((y,<y>), | Node v informs node z that it is the new
(z,<z>), W(y)) leafheir(y) and gives it W (y) (= leafwill(y)).

Table 3: Messages used by CompactF'T (sent by a node v).

i i
‘ R

\% b’ RT(v
SN B
a b c d

(6
N
abcd

ab b’ a p C,
nextparent=a’ nextvarent=c’
nexthparent=b’ K nexthparent=p
a \ nexthchildren=a, b d nexthchildren= b

ab b’

Figure 2: A node v and its neighbourhood. v’s will RT(v) and the willportions for its children,
a and d are shown. Note that d is the heir of v.

maintained by a combination of a ‘short circuiting’ operation and a helper node
reassignment (this is also encoded in the leaf node’s leafwill and is discussed
later). An essential invariant of CompactFT is that a real node simulates at
most one helper node and since each helper node is a node of a binary tree, the
degree increase of any node is restricted to at most 3. Similarly, since RTs are
balanced binary trees, distances and, hence, the diameter of the CompactFT,
blows up by at most a log A factor, where A is largest degree in the original
graph (ref: Theorem 4.1). In the following description, we sometimes refer to a
node v as real(v) if it is real, or helper(v) if it is a helper node, or by just v if it
is obvious from the context.

11

Algorithm 4.1 CompactFT(Graph G): High level view

1:

10:
11:

12:
13:
14:
15:

16:

17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

Preprocessing and INIT: A rooted BFS spanning tree T'(V, E’) of G(V, E)
is computed. For every node v, its will (non-leaf or leaf as appropriate)
is computed. Every node x in a Will is labeled as (z, <x>), where x is
2’s ID and <z> is «’s parent’s port number at which z is connected (if it
exists). Each node only has a willportion and/or leafwillportions (O(logn)
sized portion of parent’s or sibling’s Will, respectively).
while true do
if a vertex x is deleted then
if was not a leaf (i.e., had any children) then // Fix non leaf deletion.
a’s children execute x’s Will using =’s willportions they have; heir(x)
takes over x’s Will/duties.
All affected Wills (i.e. neighbours of = and of helper(x)) are updated
by simple update of relevant willportions.
else // Fix leaf deletion.
Let node p (if it exists) be node a’s parent // If p does not exist, x
was the only node in the network, so nothing to do
if p is real/alive then // Update Wills by simulating the deletion of
p and x
if « was p’s only child then
p computes its leafheir and leafwill and forwards it. // p has
become a leaf
else
p informs all children about x’s deletion.
p’s children update p’s willportions using x’s leafwillportions.
Children issue wupdates to p’s willportions and other
leafwillportions via p.
p forwards updates via broadcast or point-to-point messages, as
required.
p’s neighbours receiving these messages update their data struc-
tures.
end if
else // p had already been deleted earlier.
Let y be x’s leafheir.
y executes x’s will.
Affected nodes update their and their neighbour’s willportions.
end if
end if
if x was node z’s leafheir then
z sets a new neighbour as leafheir following a simple rule.
end if
end if

29: end while

12

315

320

325

330

335

340

345

350

4.1. Deletion of a Non-Leaf Node:

Assume that a node z is deleted. If z was not a leaf node (Algorithm 4.1
lines 5 - 6), it’s neighbours simply execute z’s will. One of z’s children (by
default the rightmost child) is a special child called the heir (say, h) and it
takes over any virtual node (i.e., helper(x)) that may have been simulating,
otherwise it is the one that connects the rest of the RT to the parent of z (say,
p). This past action may lead to changes in the Wills of other live nodes. In
particular, p will have to tell its children to replace x by h in p’s will. Due to the
limited memory, p does not know the identity of x. However, when h contacts
p, it will inform p that = has been deleted and p will broadcast a message
BrNodeReplace((z, < x >), (h, < x >)) asking all neighbours to replace = by h
in their willportions at the same port (Table 3).

4.2. Deletion of a Leaf Node:

If the deleted node x was, in fact, a leaf node, the situation is more involved.
There are two cases to consider: whether the parent p of x is a helper node (im-
plying the original parent had been deleted earlier) or a real node. The second
case, though trivial in FT (with O(n) memory) is challenging in CompactFT.
Before we discuss the cases, we introduce the ‘short-circuiting’ operation used
during leaf deletion:

bypass(x): (from [7]) Precondition: |hchildren(x)| = 1, i.e., the helper node
has a single child.
Operation: Delete helper(x), i.e., parent of helper(x) and child of helper(x)
remove their edges with helper(z) and make a new edge between them-
selves.
hparent(x) < EMPTY; hchildren(x) < EMPTY.

1. Parent p of x is a helper node
If p is a helper node, this implies that the original parent of (in G) had
been deleted at some stage and = has exactly one helper node in one of
the RTs in the tree above. Since = has been deleted, p has only one child

now and Bypass(p) can now be executed. There are two further cases:

(a) helper(z) is parent of x (Figure 3(a)): In this case, the only thing
that needs to be done is Bypass(x), since this bypasses the deleted
nodes and restores connectivity. However, the issue is that helper(x)
has already been deleted, so how is Bypass(x) to be executed? For
this, we use the mechanism of a leafwill. Assume helper(x) had two
children, = and y. When x sets up its leafwill (which consists only
of Bypass(z)), it designates y as its leafheir and sends its leafwill. In
Figure 3(a), the leafheir of node v is w and the leafwill(v) consists of

the operation Bypass(v).
(b) helper(z) is not the parent of x (Figure 3(b)): Let p be the parent of
the deleted node x. Since p now has only one child left, it will have
to be short-circuited by Bypass(p). However, the node helper(x) has

13

355

360

365

370

375

(a) helper(v) is the parent of v.

© © O
vV y zZ

(b) helper(w) is not the parent of w.

Figure 3: Deletion of a leaf node whose parent is a helper node: two cases.

also been lost. Therefore, if we don’t fix that, we will disconnect the
neighbours of helper(x). However, since p has been bypassed, real(p)
is not simulating a helper node anymore and, thus, real(p) will take
over the slot of helper(x) by making edges between its ex-neighbours.
In this case, x simply designates p as its leafheir and leaves leafwill(x)
(which is of only O(logn) size) with p. In Figure 3(b), node w is
deleted, its parent and leafheir is helper(v) and, thus, when w is
deleted, following leafwill(w), Bypass(v) is executed and v takes over
helper(w).
The only situation left to be discussed is when x was a leafheir of another
node. In this case, the algorithm follows the rules apparent from the cases
before. Let v be the node that had x as its leafheir. Assume that after
healing, p is the parent of real(v) and assume for now that p is a helper
node (the real node case is discussed later). Then, if p is helper(v), v makes
the other child of p (i.e., v’s sibling) as v’s leafheir, otherwise v sets p as
its leafheir and hands its will over to the leafheir.

. Parent p of x is a real node

This case is trivial in FT as all that p needs to do is remove x from the
list of its children (children(p) in FT), recompute its will and distribute
it to all its children. However, in CompactFT, p cannot store the list of
its children and thus, update its will. Therefore, we have to find a way

14

for the Will to be updated in a distributed manner while still taking only
a constant number of rounds. This is accomplished by using the facts
that the willportions are already distributed pieces of p’s will and each
leaf deletion affects only a constant number of other nodes allowing us to

380 update the willportions. Notice that since p is real, nodes cannot really
execute x’s will as in case 1. However, will(p) is essentially the blueprint
of RT(p). Hence, what p and its neighbours do is execute will(x) on
will(p): this has the effect of updating will(x) to its correct state and
when ultimately p is deleted, the right structure is in place.

385 This ‘simulation’ is done in the following manner: p detects the failure
of and informs all its neighbours by a BrLeafLost(<z>) message (Ta-
ble 3). The node that is leafheir(z), say v, will now simulate execution
of leafwill(x). As discussed in case 1, a leafwill has two parts: a Bypass
operation and a possible helper node takeover by another node. Suppose

300 the Bypass operation is supposed to make an edge between nodes a and
b. Node v simulates this by having node p send to its ports <a> and
a PtWillConnection((a, <a>), (b,)) message. This has the effect of
node a and b making the appropriate edge in their willportion(p). Simi-
larly, for the node take over of helper(x), v asks p to send PtWillConnection

305 messages to establish edges (in willportions) between the node taking over
and the previous neighbours of helper(x) in will(p).

Another case is when = was the leafheir of another node, say w. Since
leafheir(x) has already done the healing, the willportions are now updated
and it is easy for w to find another leafheir. This is straightforward as per

400 our previous discussion. The new leafheir will either be real(w)’s parent
or (if parent(w) = helper(w)) parent(w)’s other child. Notice this infor-
mation is already present in willportion(p, w). The new leafwill(w) is also
straightforward to calculate. As stated earlier, every leafwill has a Bypass
and/or a node takeover operation. All the nodes involved are neighbours

405 of w in willportion(p, w). Therefore, this information is also available with
w enabling it to reconstruct its new leafwill, which it then sends to the
new leafheir via p using the PtNewLeafWill() message (Table 3).

Finally, there is a special case: = was the only child of (real) parent p.
There is also the possibility of node x being the only child of its parent

410 p in which case p will become a leaf itself on x’s deletion. Node p can
only be a real node (a helper node cannot have one child) and since x does
not have any sibling, 2 will not have any leafheir or leafwill (rather, these
fields will be set to NULL). Thus, when x will be deleted, there will be
no new edges added. However, p will detect that it has become a leaf

a15 node and using p’s parent’s willportion, it will designate a new leafheir,
compute a new leafwill (as discussed previously) and send it to its leafheir
by messages (if p’s parent is real) or directly.

Theorem 4.1 summarises the properties of CompactFT. The detailed algo-
rithms (pseudocodes) and proofs are deferred to Section 5.

20 Theorem 4.1. The CompactFT has the following properties:

15

425

430

435

440

1. CompactFT increases degree of any vertex by only 3.

2. CompactFT always has diameter O(DlogA), where D is the diameter
and A the mazimum degree of the initial graph.

3. Each node in CompactFT uses only O(logn) local memory for the algo-
rithm.

4. The latency per deletion is O(1) and the number of messages sent per
node per deletion is O(A); each message contains O(1) node IDs and thus
O(logn) bits.

5. Compact Forgiving Trees - Detailed Algorithms and Proofs
In this section we give the detailed pseudocodes for CompactFT (Algo-

rithm 5.1 to Algorithm 5.4) and proofs for the main theorem (Theorem 4.1)
and of the required lemmas.

Algorithm 5.1 CompactFT(Graph G): Main function

1. Preprocessing and INIT: A rooted BFS spanning tree T'(V, E’) of G(V, E)
is computed. For every node v, its will (non-leaf or leaf as appropriate) is
computed. Every node x in a will is labeled as (x, <x>) where x is a’s ID
and <x> is x’s port number at which z is connected to its parent (if any).
Each node only has a willportion and/or leafwillportions (constant sized (in
number of node I Ds) portion of parent’s will or sibling’s will respectively).
The neighbours (parent and children) of v are attached at numchildren(v)
ports from port 0 to port maxportnumber(v)
while true do
if a vertex x is deleted then
if numchildren(z) > 0 then
FIXNONLEAFDELETION (z)
else
FIXLEAFDELETION(x)
end if
end if
end while

-
=

Lemma 5.1. In CompactFT, a real node simulates at most one helper node at
a time.

Proof. This follows from the construction of the algorithm. If deleted node z
was a non-leaf node, it is substituted by RT(x) (Figure 1). RT(x) is like a
balanced binary tree such that the leaves are the real children of = and each
internal node is a virtual helper node. Also, there are exactly the same number
of internal nodes as leaf nodes and each leaf node simulates exactly one helper
node. This is the only time in the algorithm that a helper node is created. At
other times, such as during leaf deletion or as a heir, a node may simulate a

16

445

450

455

460

Algorithm 5.2 FIXNONLEAFDELETION(z): Self-healing on deletion of inter-
nal node

1: while true do

2: for every child v of x (if exists) do

3: Execute the will of z using the O(logn) sized willportion(d,v). // i.e.,
make the connections given by willportion(x,v)

4: end for

5. for parent p of o (if it exists) do

6: p will be contacted by heir of z, say h to open a new connection to h
at port of deleted node, port <z>.
p will be informed by h that the ID of the deleted node was d

: Send BrNodeReplace((x, <x>), (h, <z>)) message to every neighbour.
9: end for
10: if node v receives message BrNodeReplace((z, <x>), (h, <z>)) from par-

ent p then
11: v replaces every occurrence of node x with node h in its willportion(x, v).
12: end if

13: end while

different node but this only happens if the node relinquishes its previous helper
node. Thus, a real node simulates at most one helper node at any time. O

Lemma 5.2. The CompactFT increases the degree of any vertexr by at most 3.

Proof. Since the degree of any node in a binary tree is at most 3, this lemma
follows from Lemma 5.1. O

Lemma 5.3. The CompactET s diameter is bounded by O(D log A), where D
is the diameter and A the highest degree of a node in the original graph (G).

Proof. This also follows from the construction of the algorithm. The initial
spanning tree Tj is a BFS spanning tree of Gy; thus, the diameter of T, may
be at most 2 times that of Gg. Consider the deletion of a non-leaf node x of
degree d. x is replaced by RT(z) (Figure 1). Since RT(z) is a balanced binary
tree (with an additional node), the largest distance in this tree is logd. Two
RTs never merge, thus, this RT cannot grow. A leaf deletion can only reduce
the number of nodes in a RT, thus, reducing distances. Consider a path which
defined the diameter D in Gy. In the worst case, every non-leaf node on this
path was deleted and replaced by a RT. Thus, this path can be of length at
most O(Dlog A) where A is the maximum possible value of d. O

Lemma 5.4. In CompactFT, a node may be leatheir for at most two leaf nodes.
Proof. For contradiction, consider a node y that is leafheir(u), leafheir(v) and

leafheir(w) for three leaf nodes u, v and w all of whose parent is node p. From
the construction of the algorithm, v’s leafheir can either be the parent of real(v)

17

465

470

475

Algorithm 5.3 FIXLEAFDELETION(z): Self-healing on deletion of leaf node

1: Let p = parent(x)

2: if p is a real node then // p has not been deleted yet

3: p broadcasts BrLeafLost(<xz>) // p does not know ID of d, only the port
number <d>

4: if node v receives a BrLeafLost(<z>) message then

5: v.UPDATELEAFWILLPORTION(p, <a>)// Use <a>’s leafwill to update
p’s will by updating willportions using broadcast(Br* messages) and/or
point-to-point(Pt+ messages)

6: end if

7: else // The real parent of = was already deleted earlier

8 if node v is <x>’s leafheir then // Note: nodes v and d were neighbours

9: Execute <a>’s leafwill // A leafwill has a Bypass and/or a node
takeover action

10: end if

11: if node z was <v>’s leafheir then // Note: nodes v and d were neigh-

bours
12: if parent(v) = helper(v) then // v’s helper node is real v’s parent
13: v designates the other child (i.e., not v) of parent(v) as <v>’s leafheir
// Each node in the RThas two children.

14: else

15: v designates parent(v) as new leafheir

16: end if

17: v sends leafwill(v) to leafheir(v)

18: end if

19: end if

or a child of helper(v) in RT(p). If node y is real, it cannot have a child in
RT(p), therefore it can be leafheir for only one of u, v or w (by the first rule).
However, if y is a helper node, the following case may apply: y is the parent of
both real(u) and real(v) and child of helper(w) (wlog). However, since the RT is
a balanced binary search tree ordered on the I Ds of the leaf children (the real
nodes), one of y’s children (the left child) must be real(y). Therefore, helper(y)
can be leafheir for either v or v, and w. O

Lemma 5.5. CompactFT requires only O(logn) memory per node.

Proof. Here, we analyse the memory requirements of a real node v in CompactFT.
As mentioned before, v does not store the list of its neighbours or its RT (these
can be of Q(n) size). However, v uses the O(logn) sized fields numchildren
and maxportnumber to keep track of the number of children it presently has
and the maximum port number it uses. CompactFT uses the property that the
initial port assignment does not change. If v is a non-leaf node, it does not store
any piece of will(v) that is distributed among v’s children. If v is a leaf node,
it has only a O(logn) sized will (leafwill(v)), which it stores with its leafheir

18

480

485

490

Algorithm 5.4 UpPDATELEAFWILLPORTION(p, <x>): Node v updates leaf
wills by ‘simulation’. The identity of any node a is available as (a, <a>) in the
wills.

1. if Node v is #’s leafheir then // Simulate execution of s leafwill

2: Let 2/ be the parent of helper(x) in will(p)

3: if helper(v) is parent of real(x) in will(p) then // Case 1: helper(x) was
not the parent of real(x) in will(p)

4: for will(p) do

5: Let w be other child (i.e., not z) of v.

6: Let u be the parent of helper(v).

7: Let I be the left child of helper(x)

8: Let 7’ be the right child of helper(z) // NULL if = was an heir.

9: end for

10: p.PtWillConnection((real(w), <w>), (u, <u>)) // Simulate
Bypass(<z>)

11: p.PtWillConnection((helper(v), <v>), (¢/, <a’>)) // v sends messages
through parent p

12: p.PtWillConnection((helper(v), <v>), (I', <I'>))

13: p.PtWillConnection((helper(v), <v>), (r', <r'>))

14: else

15: p.PtWillConnection((helper(v), <v>), (', <z'>)) // Case 2: helper(x)
was the parent of real(z); Only Bypass(z) required.

16: end if

17: else if node x was <v>’s leafheir then
18: if parent(v) = helper(v) in will(p) then

19: v designates the other child (i.e., not v) of parent(v) as <v>’s leafheir.
20: else

21: v designates parent(v) as new leafheir

22 end if

23: p.PtNewLeafWill((v, <v>), (leafheir(v), <leafheir(v)>), leafwill(v)) // v
sends leafwill(v) to leafheir(v).
24: end if

(though v can also store the leafwill(v)). Let p be the parent of v. If p is real,
node v will store willportion(p,v), i.e., the portion of will(p) (i.e., RT(p)) in
which v is involved. From Lemma 5.1, there can only be two occurrences of v
(one as real and one as helper). Since RT(p) is a binary tree, helper(v) can have
at most 3 neighbours and real(v) at most 1 (as real nodes are leaves in a RT).
Therefore, the total number of IDs in leafwillportion(p,v) cannot exceed 6 and
its size is O(logn). By the same logic, if v hosts a helper node, by Lemma 5.1,
it only requires O(logn) memory. v may also have leafwills for its siblings. By
Lemma 5.4, real(v) and helper(v) may store at most 2 of these wills each; this
takes only O(logn) storage. Every node in a will is identified by both its 1D
and port number. However, this only doubles the memory requirement. Finally,
all the messages exchanged (Table 3) are of O(logn) size. O

19

495

500

505

510

515

520

525

Theorem 4.1: The CompactFT has the following properties:

1. CompactFT increases the degree of any vertex by only 3.

2. CompactFT always has diameter bounded by O(Dlog A), where D is the
diameter and A the maximum degree of the initial graph.

3. Each node in CompactFT uses only O(logn) local memory for the algo-
rithm.

4. The latency per deletion is O(1) and the number of messages sent per

node per deletion is O(A); each message contains O(1) node IDs and thus
O(logn) bits.

Proof. Part 1 follows from Lemma 5.2 and Part 2 from Lemma 5.3. Part 3
follows from Lemma 5.5. Part 4 follows from the construction of the algorithm.
Since the virtual helper nodes have degree at most 3, healing one deletion results
in at most O(1) changes to the edges in each affected reconstruction tree. As
argued in Lemma 5.5, both the memory and any messages thus constructed
are O(logn) bits. Any message is required to be sent only O(1) hops away.
Moreover, all changes can be made in parallel. Only the broadcast messages,
Brx messages, are broadcasted by a real node to all its neighbours and thus
O(A) messages (sent in parallel) may be used. O

6. A Compact Self Healing Routing Scheme

In this section we present CompactFTZ, a fault tolerant, self-healing routing
scheme. First, we present a variant of the compact routing scheme on trees of
Thorup and Zwick [4] (which we refer to as TZ in what follows), and then we
make this algorithm fault tolerant in the self-healing model using CompactFT
(Section 4).

The variant of Thorup and Zwick we use in our construction is for no partic-
ular reason but to show that the construction is not tailor-made for a particular
routing protocol but for any direct compact routing tree protocol based on a
DFS labelling. Recall that a routing protocol is direct if the header of a packet
is not modified during the routing.

6.1. Compact Routing on Trees

We present a variant of TZ that mainly differs in the order of DFS labelling
of nodes. The local fields of each node are changed accordingly.

Let T be a tree rooted at a node r. Consider a constant b > 2. The weight
sy of a node v is the number of its descendants, including v. A child u of v
is heavy if s, > s,/b, and light otherwise. Hence, v has at most b — 1 heavy
children. By definition, r is heavy. The light routing index £, of v is the number
of light nodes on the path from r to v, including v if it is light. We label a heavy
node as tzheavy and a light node as tzlight.

20

530

535

540

545

550

555

v DFS number (post-order)

dy smallest descendent of v

(in the original scheme, this is f,, the largest
descendant of v)

Cy smallest descendent of first tzlight child of v,
if it exists; otherwise v + 1

(in the original scheme, this is h,, the first
tzheavy child of v)

H,: array with b+ 1 elements

H,[0] number of tzheavy children of v
H,[1,...,H,[0]] tzheavy children of v

P,: array with b+ 1 elements

P,[0] port number of the edge from v to its parent.
Py[1,...,H,[0]] port numbers from v to its tzheavy children
4 light routing index of v

Table 4: Local fields of a node v: Locally, each node v stores the above information

We first enumerate the nodes of T in DFS post-order manner, with the
tzheavy nodes traversed before the tzlight nodes. For each node v, we let v
itself denote this number. This numbering gives the IDs of nodes (in the original
scheme, the nodes are labelled in a pre-order manner and the light nodes are
visited first). For ease of description, by abuse of notation, in the description
and algorithm, we refer interchangeably to both the node itself and its ID as v.

Note that each node has an ID that is larger than the ID of any of its
descendants. Moreover, given a node and two of its children v and v with
u < v, the IDs in the subtree rooted at u are strictly smaller than the IDs in the
subtree rooted at v. With such a labelling, routing can be easily performed: if
a node u receives a message for a node v, it checks if v belongs to the interval of
IDs of its descendants; if so, it forwards the message to its appropriate children,
otherwise it forwards the message to its parent. Using the notion of tzlight and
tzheavy nodes, one can achieve a compact scheme. The local fields for a node
are given in Table 4. Note that each node v locally stores O(blogn) bits. The
label L(v) of v is defined as follows: an array with the port numbers reaching
the light nodes in the path from r to v. The definition of tzlight nodes implies
that the size of L(v) is O(log”n), hence the size of the header (v, L(v)) of a
packet to v is O(log2 n). The scheme TZ is described in Algorithm 6.1.

Note that here we describe the scheme for the static case where the tree
does not change over time. In Section 6.2 we show that it can be adapted
to the dynamic self-healing model by initially setting up the data structure in
exactly the same way as the static case during preprocessing. The classification
of tzheavy and tzlight nodes are irrelevant when the deletions start happening
(and actually might not be true anymore in the current virtual tree) as they
were useful only in the initial setting up to compute compact routing tables and
labels.

21

560

565

Algorithm 6.1 The TZ scheme. Code for node v for a message sent to node
w.

operation TZ,(w, L(w)):
1: if v = w then
2: The message reached its destination
3: else if w ¢ [d,,v] then
4: Forward to the parent through port P,[0]
5: else if w € [¢,,v] then
6: Forward to a tzlight node through port L(w)[l,]
7: else
8: Let i be the index s.t. H,[i] is the smallest tzheavy child of v greater than
or equal to w
9: Forward to a heavy node through port P,][i]
10: end if

end operation

Figure 4: The left side shows the tree before any deletion with the path a message from 8 to
1 will follow. The right side shows the tree obtained after deleting 7. The nodes enclosed in
the rectangle are virtual helper nodes replacing 7. To route a message from 8 to 1, virtual
nodes perform binary search, while real nodes follow TZ.

6.2. The CompactFTZ scheme

CompactFTZ (Algorithm 6.2) is a fault tolerant adaptation of TZ that runs
in CompactF'T. The initialization phase performed during preprocessing sets up
the data structures for CompactFTZ in the following order: A BFS spanning
tree of the network is constructed rooted at an arbitrary node, then a DFS
labelling and TZ setup is done as in Section 6.1, followed by CompactFT data
structures setup using the previously generated DFS numbers as node IDs. The
underlying layer is aware of the node IDs, DF'S number IDs and node labels to
be used for sending messages (as in TZ).

Recall that, in our model, if there is no edge between u and v, and port
numbers x and y of u and v, respectively, are not in use, then u or v can request
an edge (u,v) attached to these ports. In what follows, we assume that in

22

570

575

580

585

590

Algorithm 6.2 The CompactFTZ scheme. Code for node v for a message sent
to node w.

Preprocessing: Construct a BFS spanning tree of the network from
an arbitrary node. Do a DFS labelling and TZ setup followed by
CompactFT data structures setup using TZ DFS numbers as node
IDs.

1: v runs CompactFT at all times.

2: if v is a real node then

3: Invoke TZ,(w, L(w))

4: else // v is a virtual helper node (= helper(v))
5 if v = w then

6 The message has reached its destination

7. else if w ¢ [d,,v] then
8
9

Forward to the parent of helper(v) in the current virtual tree.
else if w < v then

10: Forward to the left child of helper(v) in the current virtual tree.
11: else

12: Forward to the right child of helper(v) in the current virtual tree.
13: end if

14: end if

CompactF'T, when a child = of p is deleted and a child w of x creates an edge
(p,w), such an edge will reuse the port of p used by (p,v) and any available
port of w. As we shall see, this will make that the local TZ protocol running in
p is oblivious to the deletion of x.

Every node runs CompactFT at all times. For routing, a real node just fol-
lows TZ (Algorithm 6.2, Line 3), while a virtual node first checks if the packet
reached its destination (Line 5), and if not, it performs a binary search over the
current virtual tree (Lines 7 to 12). As mentioned earlier, though we use the
notion of tzlight and tzheavy nodes in the initial setup and use it to compute
routing tables and labels, we do not maintain this notion as the algorithm pro-
gresses but just use the initially assigned labels throughout. Further, following
CompactFT, if a node x is deleted, it is replaced by RT(x). If a packet traverses
RT(x), the virtual nodes ignore the tzheavy/tzlight classification and just use
the IDs to perform binary search.

Figure 4 illustrates CompactFTZ in action. In the figure, node 8 sends a
packet for node 1. If there is no deletion in the tree, the packet will simply
follow the path via the root 9, node 7, node 3 to node 1. Recall that each node
checks if the packet destination falls in the intervals of one of its tzheavy nodes,
otherwise, it uses its light routing index to pick the correct port to forward
the message to in the label of the destination node carried in the message.
However, if node 7 is deleted by the adversary, using CompactF T, the children
of 7 construct RT(7) (recall this is also done in a compact manner). Since node
9 has helper node helper(6) at the port where it had node 7 earlier, the packet

23

595

600

605

610

615

620

625

630

gets forwarded to node helper(6). Since 1 is less than 6, the packet traverses the
left side of RT(7) and eventually reaches node 3. Node 3 applies the TZ routing
rules as before and the packet reaches node 1.

In what follows we use the following notation: Let T; be the CompactFTZ
tree after ¢ deletions. For a vertex v, let Ti(v) denote the subtree of T} rooted
at v. The set with the children of v in T} is denoted by childrens(v), while
parenty(v) is the parent of v in T;. The set of IDs in T;(v) is denoted by
ID(T;(v)). If v has two children, left;(v) and right;(v) denote the left and
right children of v, and L(v) and R;(v) denote the left and right subtree of v.
Given two nodes u and v, we write u < ID(T}(v)) if ID(u) is smaller than any
ID in ID(7T3(v)), and similarly, we write ID(T3(u)) < ID(T:(v)) if every ID in
ID(T}(u)) is smaller than any ID in ID(T}(v)). The definitions naturally extends
to >, < and >.

Lemma 6.1, which is the key for proving the correctness CompactFTZ in
Theorem 6.2, basically shows that, after any sequence of deletions and subse-
quent self-healing phases, real nodes maintain the TZ properties and the helper
nodes (i.e., the RTs) the BST properties, allowing routing to work properly.

Lemma 6.1. At every time t, the CompactETZ tree Ty satisfies the following
two statements:

1. For every real node v € Ty, for every ¢ € children,(v), v > ID(T;(c)), and
for every c,d € children,(v) with ¢ < d, ID(Ty(c)) < ID(T}(d)).
2. For every virtual node helper(v) € Ty, v > ID(L:(v)) and v < ID(R:(v)).

Proof. We proceed by induction on ¢t. For t = 0, Ty satisfies property (1) because
the properties of the initial DFS labelling, while property (2) is satisfied since
there are no virtual nodes in T.

Suppose that T} satisfies (1) and (2). Let v € T} the node deleted to ob-
tain Ty11. We show that Tyq satisfies (1) and (2), we only need to check the
nodes that are affected when getting 7;11. We identify two cases:

1. v is not a leaf in T;. Let cq,...,c; be the children of v in T; in ascend-
ing order. Each ¢; might be real or virtual, and if it is virtual then it is
denoted ¢ and is simulated by a real node real(c;). Let RT(v) be the
reconstruction tree obtained from the children of v, as explained in Sec-
tion 4. By construction, we have that (virtual) ¢, the child of v with the
largest ID, is the root of RT(v) and it has no right subtree. Moreover,

¢l is the left child of ¢/,. We now see what happens in T;y;. We first

analyze the case of the parent of v and then the case of the children.

If z = parent;(v) is a real node, then z and ¢, create an edge between

them, and hence RT'(v) is a subtree of z in Ty, (see Figures 5 top-left

and top-right where the node 9 is deleted). By induction hypothesis, the
lemma holds for v in T; and RT(v) contains only the children of v, hence
the lemma still holds for z in Tiy1. Now, if 2’ = parent;(v) is a virtual
node, then it must be that there is a virtual node v" in T} that is an ancestor

24

635

640

645

650

655

660

665

670

675

of v (this happens because at some point the parent of v in T = Ty was
deleted, hence v created a virtual node v'; see Figure 5 bottom-left where
the parent of 8 is virtual). For now, suppose ¢, is a real node (below
we deal with the other case). In Ti1, ¢, replaces v/, and 2z’ and ¢,_,
create an edge between them, hence in the end left;1(c,) = left:(v'),
rights11(c,) = right;(v') and 2’ = parent;11(cl,_;) (see Figure 5 bottom-
right where 7’ replaces 8’). In other words, the root ¢, of RT'(v) takes over
v’ and the left subtree of ¢/, in RT(v) (whose root is ¢,,_,) is connected
to z’. We argue that the lemma holds for ¢/, and 2’ in T;y;. The case
of 2’ is simple: by induction hypothesis, the lemma holds for 2z’ and v in
Ty, and RT'(v) is made of the children of v in T;. The case of ¢, is a bit
more tricky. First, since the lemma holds for v" in T}, then it must be
that v € Ly(v) and ¢; < ID(R¢(v")). Also, we have that v < ¢/, hence
¢, > ID(Lyy1(cy)) and ¢, < ID(Ryt1(c})).

Now, let’s see what happens with a child ¢;. If ¢; is a real node, then
virtual ¢; (which belongs to RT(v)) is an ancestor of ¢; in Ty41. The
lemma holds for ¢; because the subtrees of ¢; in T; and T;41 are the same.
Similarly, the lemma holds for ¢, because RT'(v) is a binary search tree
and the lemma holds for each child of v in T}, by induction hypothesis.
Consider now the case ¢; is a virtual node, hence denoted cj. In this case,
in Ty, (real) ¢; is a descendant of ¢,. We have that ¢, appears in RT(v)
two times, and both of them as virtual nodes, one as a leaf and the other
as an internal node (see Figure 5 top-right where 11 is deleted to get the
tree at the bottom-left; 8 is virtual, is a child of 11 and appears two times
as virtual node in RT'(11)). Let ¢; denote the virtual leaf (this node also
belongs to T;) and ¢/ denote the internal virtual node. So, by replacing v
with RT'(v), it would not be true any more that every real node simulates
at most one virtual nodes, since ¢; would be simulating ¢ and ¢;. To solve
this situation, u’ = left;(c;) replaces ¢, and ¢ replaces ¢ (in this case ¢}
always has only one child in T}, v/, which is left). In other words, in R(v),
¢; is moved up to the position of ¢ and ' is moved up to the position
of ¢, (see Figure 5 bottom-left). Thus, L1 (v') = L(v') and Ryyq(u') =
R;(u'). The lemma holds for v because it was moved up one step and the
lemma holds for it in T}, by induction hypothesis. To prove that the lemma
holds for ¢}, let us consider RT'(v) and ¢}, ¢/ in it. By construction, we
have that ¢, > ID(L(c/, RT(v))) and ¢, < ID(R(c/, RT(v))). Also, since
the lemma holds for each child of v in T}, for each child ¢; # ¢ of v in T}, if
¢; < ¢}, it must be that ¢ > ID(T}(c;)), otherwise ¢, < ID(T}(c;)). These
two observations imply that ¢ > ID(Liy1(c;)) and ¢ < ID(Ryy1(ch)).
This completes the case.

. v is aleaf in T;. First consider the subcase when the parent;(v) is a real

node. We have that Ty, is 73 minus the leaf v, hence the lemma holds
for T;41, by induction hypothesis.

Now, if «' = parent,(v) is a virtual node then in T}, there is a virtual
node v’, which is an ancestor of v (this happens because at some point
the parent of v in Ty = T was deleted, hence v created a virtual node).

25

680

Replace 9

Figure 5: A sequence of deletions. The up-left side shows the tree before any deletion. The
up-right shows the tree after the deletion of node 9, which is replaced with a binary tree
with its children; after this deletion the reconstruction tree of 11 is shown in the figure. The
bottom-left depicts the tree obtained after deleting 11; note 8’ simulates 9 before the deletion
but 8 participates in the simulation of 10’ after the deletion. Finally, the bottom-right shows
the tree after the deletion of 8; observe that 7’, the largest child of 8, took the place of 8, i.e.
its responsibility in the simulation of 11.

In T}, there is a descending path from v’ to v, that passes through virtual
nodes until reaches v. Let us denote this path P = v/, u}, ... u},v, for
some = > 0. We have the following three subcases.

If x = 0, then v’ is the parent of v, and actually left;(v') = v, by the
induction hypothesis. Thus, v" and v are just removed, and R;(v") replaces
v’ in Ty41, namely, parent:(v’) is connected the root of R:(v'). Tt is easy

26

685

690

695

700

705

710

715

720

725

to check that the lemma holds for T34 ;.

If x = 1 then u] replaces v’ and Ly (u}) = Li(u)) and Ryyq(u)) = Re(v').
Namely, v and v’ are removed and u) is moved up one step. Again, it is
not hard to see that the lemma holds for T}, 1.

The last subcase is @ > 1. In Tyq, ul, replaces v/ and Ryqq(ul_,) =
Li(ul). Clearly, the lemma holds for u/,_; because u),_; < ID(L¢(ul,)), by
induction hypothesis. To prove that the lemma holds for u/,, we observe
the following about the path P = v’ u),...,ul,v, z > 1 (e.g., the path
from 7 to 7 in Figure 5 bottom-right). The lemma holds for T}, hence v €
Ly(v"), which implies that u} = leftv’), and actually uj < v" = v, for each
v;. Also observe that the induction hypothesis implies that v € Ry(u;), for
each wu}. Therefore, we have that u/ > ID(T;(u})), 1 < i < z — 1, which
implies that u/, > ID(Ly+q(ul,)). Also, since ul, € Ly(v'), it must be that
ul, < ID(R¢(v")), hence u, < ID(Ryt1(ul,)). The induction step follows.

O

Theorem 6.2. For each Ty, for each two real nodes u,w € Ty, CompactFTZ
successfully delivers a message from u to w through a path in T; of size at most
0(u, w) +y(log A — 1), where 6(u,w) is the distance between u and w in Ty and
y < t is the number of non-leaf nodes deleted to get T;.

Proof. The claim holds for ¢t = 0 since CompactFTZ is correct before deletions
(as TZ is correct). For ¢t > 0, suppose a message M from u to w in T}, reaches
a real node z (possibly z = wu). Note that z is oblivious to the ¢-th node
deletion, namely, it does not change its routing tables in the healing-process,
hence it makes the same decision as in T;_1. Let #portnumber be the port
through which x sends M in T3, and let v be the vertex that is connected to x
through port #portnumber in T;_;. Lemma 6.1 (1) implies that if w is ancestor
(descendant) of - in T;_1, then it is ancestor (descendant) of in T;. Moreover,
the path in T; from x to w passes through port #portnumber. If v is not the
t-th vertex deleted, then, v is in T}, and it gets M from z, which implies that
M gets closer to w. Otherwise, v is the t-th vertex deleted. In this case, in T3,
a virtual node 3’ is connected to x through port #portnumber, thus, y' gets M
from 2. By Lemma 6.1 (2), ¢’ necessarily sends M to a virtual or real node that
is closer to w. Thus, we conclude that M reaches w.

For the length of the path, note that after ¢ deletions, from which y are
non-leafs, at most y nodes in the path from u to w in Ty are replaced in T} with
y binary trees of depth O(log A) each of them. Then, the length of the path
from u to w in T} is at most 6(u, w) + y(log A) — y = 0(u, w) + y(log A — 1), in
case the path has to pass through all these trees from the root to a leaf, or vice
versa. O

Lemma 6.3 states the memory usage of CompactFTZ leading to the final
correctness theorem (Theorem 6.4).

27

730

735

740

745

750

755

760

765

Lemma 6.3. CompactFTZ uses only O(log2 n) memory per node to route a
packet.

Proof. First, CompactFT uses only O(logn) local memory (Theorem 4.1). The
local fields of a node for routing have at most a constant number (O(b)) fields
which are node references (logn) size, thus, using O(logn) memory. The label
of anode (which is the ‘address’ on a packet) is, however, of O(log® n) size (since
there can be O(logn) light nodes on a source-target path) and therefore, a node
needs O(log? n) bits to process such a packet. O

Ignoring congestion issues, Lemma 6.3 implies that a node can store and
route up to = packets using O(z log? n) local memory.

Theorem 6.4. CompactF'TZ is a self-healing compact routing scheme.

Proof. The theorem follows directly from Lemma 6.3 andTheorems 4.1 and 6.2.
O

7. Reporting Non-delivery (deleted receivers and sources)

Contrary to what happens in static schemes such as Thorup-Zwick [4], we
now have the issue that a node might want to send a packet to a node that has
been deleted in G}, hence we need a mechanism to report that a packet could
not be delivered. To achieve that, the header of a packet now is defined as
follows: when a node s wants to send a packet to ¢, it sends it with the header
((t, L(t) - (s, L(s)). When running CompactFTZ, each node considers only the
first pair.

When a node v receives a message M with a header containing two pairs,
it proceeds as follows to detect an error, i.e., a non-deliverable. The following
conditions suggest to v that the receiver ¢ has been deleted and the packet is
non-deliverable:

1. If v is a leaf (real node) and v # t: This is a dead-end since the packet
cannot traverse further. This implies that ¢ must have been in the subtree
of v, but the subtree of v is now empty.

2. If v 1s a mon-leaf node but there is no node at the port it should forward
to: Similar to above, it indicates that v’s subtree involving ¢ is empty.

3. If u sent the packet to v but according to the routing rules, v should send
the packet back to w: This happens when v is a helper node which is part
of RT(t) or RT(x) where x was not on the s — ¢ path in Ty. Node v will
receive the message either on the way up (towards the root) or on the way
down (from the root). In either case, if v is part of RT(¢), due to the DF'S
numbering, it would have to return M to u. Another possibility is that
due to a number of deletions RT(¢) has disappeared, but then 2 would
either be an ascendent (if M is on the way up) or = would be a descendent
of t (if M is on the way down). Either way, the DFS numbering would
indicate to v that it has to return the message to .

28

770

775

780

785

790

795

800

805

If a target deletion has been detected due to the above rules, v removes the
first pair of the header and sends back M to the node it got M from (with the
header now only having (s, L(s)). When a node v receives a message M with a
header containing only one pair, it proceeds as before and applies the same rules
discussed previously. This time, a non-delivery condition, however, implies that
the source has been removed too, and, therefore M can be discarded from the
system. This ensures that ‘zombie’ or undeliverable messages do not clog the
System.

8. About stretch

The stretch of a routing scheme A, denoted A(A,G), is the minimum A
such that r(s,t) < Adist(s,t) for every pair of nodes s, t, where dist(s,t) is the
distance between s and ¢ in the graph G and r(s,t) is the length of the path in
G the scheme uses for routing a message from s to t.

The stretch A(CompactFTZ,Ty) is 1: for any pair of nodes, TZ routes a
message through the unique path in the tree between them. Similarly, the
stretch A\(CompactFTZ,T;) is 1: each node that is deleted is replaced with a
binary tree structure R, and the nodes in it perform a binary search, hence a
message passing through R follows the shortest path from the root to a leaf, or
vice versa.

The stretch of CompactFTZ is different when we consider GG;. First note that
the stretch A\(CompactFTZ, G) might be of order ©(n) since a spanning tree of
a graph may blow up the distances by that much. Since A(CompactFTZ, Ty) =
1, it follows that dr(u, w) < A(CompactFTZ, Gy) - é¢(u, w), where dr(u, w) is
the distance between u and w in Ty and dg(u,w) is the distance between u
and w in Gy. Theorem 6.2 states that, for routing a message from u to w,
CompactFTZ uses a path in T} of size at most or(u, w) + y(log A — 1), where
y < t is the number of non-leaf nodes deleted to get T;. The y(log A—1) additive
factor in the expression is because each deleted non-leaf node is replaced with
a binary tree, whose height is O(log A). In the worst case, that happens for all
y binary trees for a given message, which implies that A(CompactFTZ, G;) <
y(log A — 1) - A(CompactFTZ, Gy) (since CompactFTZ only uses the tree for
routing).

9. Extensions and Conclusion

This paper presented, to our knowledge, the first compact self-healing al-
gorithm and also the first self-healing compact routing scheme. We have not
considered the memory costs involved in the preprocessing, but we believe that
it should be possible to set up the data structures in a distributed compact
manner: this needs to be investigated. The current paper focuses only on node
deletions, Can we devise a self-healing compact routing scheme working in a
fully dynamic scenario with both (node and edge) insertions and deletions?
The challenges reside in dealing with the expanding the out-degree efficiently.

29

810

815

820

825

830

835

840

The current paper allows adding additional links to nearby nodes in an

overlay manner. What should the model be of losing links without losing nodes?
How will it affect the algorithms appearing in this paper?

References

[1]

2]

N. Santoro, R. Khatib, Labelling and implicit routing in networks, The
computer journal 28 (1) (1985) 5-8.

D. Peleg, E. Upfal, A tradeoff between space and efficiency for routing ta-
bles (extended abstract), in: J. Simon (Ed.), Proceedings of the 20th An-
nual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,
Ilinois, USA, ACM, 1988, pp. 43-52.

L. Cowen, Compact routing with minimum stretch, J. Algorithms 38 (1)
(2001) 170-183.
URL http://dx.doi.org/10.1006/jagm.2000.1134

M. Thorup, U. Zwick, Compact routing schemes, in: SPAA, 2001, pp. 1-10.
URL http://doi.acm.org/10.1145/378580.378581

P. Fraigniaud, C. Gavoille, Routing in trees, in: Automata, Languages and
Programming, 28th International Colloquium, ICALP 2001, Proceedings,
2001, pp. 757-772.

S. Chechik, Compact routing schemes with improved stretch, in: ACM
Symposium on Principles of Distributed Computing, PODC ’13, 2013, pp.
33-41.

URL http://doi.acm.org/10.1145/2484239.2484268

T. Hayes, N. Rustagi, J. Saia, A. Trehan, The forgiving tree: a self-healing
distributed data structure, in: PODC ’08: Proceedings of the twenty-
seventh ACM symposium on Principles of distributed computing, ACM,
New York, NY, USA, 2008, pp. 203—212.

B. Awerbuch, A. Bar-Noy, N. Linial, D. Peleg, Improved routing strategies
with succinct tables, J. Algorithms 11 (3) (1990) 307-341.
URL http://dx.doi.org/10.1016/0196-6774(90)90017-9

B. Awerbuch, O. Goldreich, D. Peleg, R. Vainish, A trade-off between
information and communication in broadcast protocols, J. ACM 37 (2)
(1990) 238 256.

URL http://doi.acm.org/10.1145/77600.77618

P. Bose, P. Morin, I. Stojmenovic, J. Urrutia, Routing with guaranteed
delivery in ad hoc wireless networks, Wireless Networks 7 (6) (2001) 609
616.

URL http://dx.doi.org/10.1023/A:1012319418150

30

845

850

855

860

865

870

875

880

[11]

[23]

M. Fraser, E. Kranakis, J. Urrutia, Memory requirements for local geomet-
ric routing and traversal in digraphs, in: Proceedings of the 20th Annual
Canadian Conference on Computational Geometry, Montréal, Canada, Au-
gust 13-15, 2008, 2008.

E. Kranakis, H. Singh, J. Urrutia, Compass routing on geometric networks,
in: Proceedings of the 11th Canadian Conference on Computational Ge-
ometry, UBC, Vancouver, British Columbia, Canada, August 15-18, 1999,
1999.

URL http://www.cccg.ca/proceedings/1999/c46.pdf

A. Korman, D. Peleg, Labeling schemes for weighted dynamic trees, Inf.
Comput. 205 (12) (2007) 1721-1740.

A. Korman, D. Peleg, Y. Rodeh, Labeling schemes for dynamic tree net-
works, Theory Comput. Syst. 37 (1) (2004) 49-75.

P. Fraigniaud, C. Gavoille, A space lower bound for routing in trees, in:
H. Alt, A. Ferreira (Eds.), STACS 2002, Proceedings, Vol. 2285 of Lecture
Notes in Computer Science, Springer, 2002, pp. 65-75.

A. Korman, General compact labeling schemes for dynamic trees, Dis-
tributed Computing 20 (3) (2007) 179-193.

S. Chechik, Fault-tolerant compact routing schemes for general graphs, Inf.
Comput. 222 (2013) 36-44.
URL http://dx.doi.org/10.1016/j.ic.2012.10.009

S. Chechik, M. Langberg, D. Peleg, L. Roditty, f-sensitivity distance oracles
and routing schemes, Algorithmica 63 (4) (2012) 861-882.
URL http://dx.doi.org/10.1007/s00453-011-9543-0

B. Courcelle, A. Twigg, Compact forbidden-set routing, in: STACS 2007,
Proceedings, 2007, pp. 37-48.

R. D. Doverspike, B. Wilson, Comparison of capacity efficiency of dcs net-
work restoration routing techniques., J. Network Syst. Manage. 2 (2).

X. Feng, C. Han, A fault-tolerant routing scheme in dynamic networks, J.
Comput. Sci. Technol. 16 (4) (2001) 371-380.
URL http://dx.doi.org/10.1007/BF02948985

T. Frisanco, Optimal spare capacity design for various protection switching
methods in ATM networks, in: Communications, 1997 IEEE International
Conference on, Vol. 1, 1997, pp. 293-298.

URL http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=
13277&arnumber=605267&count=107&index=57

R. R. Iraschko, M. H. MacGregor, W. D. Grover, Optimal capacity place-
ment for path restoration in STM or ATM mesh-survivable networks,
IEEE/ACM Trans. Netw. 6 (3) (1998) 325-336.

31

885

890

895

900

905

910

915

920

[24]

[25]

[32]

K. Murakami, H. S. Kim, Comparative study on restoration schemes of
survivable ATM networks, in: INFOCOM, 1997, pp. 345-352.
URL citeseer.ist.psu.edu/murakami97comparative.html

B. van Caenegem, N. Wauters, P. Demeester, Spare capacity assignment
for different restoration strategies in mesh survivable networks, in: Com-
munications, 1997. ICC 97 Montreal, "Towards the Knowledge Millennium’.
1997 IEEE International Conference on, Vol. 1, 1997, pp. 288-292.

URL http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=
13277&arnumber=605255&count=107&index=56

J. Vounckx, G. Deconinck, R. Lauwereins, J. A. Peperstracte, Fault-
tolerant compact routing based on reduced structural information in
wormhole-switching based networks, in: Structural Information and Com-
munication Complexity, 1st International Colloquium, STROCCO 1994,
Proceedings, 1994, pp. 125-148.

Y. Xiong, L. G. Mason, Restoration strategies and spare capacity require-
ments in self-healing ATM networks, IEEE/ACM Trans. Netw. 7 (1) (1999)
98-110.

A. Trehan, Self-healing using virtual structures, CoRR abs/1202.2466.

G. Pandurangan, P. Robinson, A. Trehan, Dex: Self-healing expanders, in:
Proceedings of the 2014 TEEE 28th International Parallel and Distributed
Processing Symposium, IPDPS 14, IEEE Computer Society, Washington,
DC, USA, 2014, pp. 702-711.

URL http://dx.doi.org/10.1109/IPDPS.2014.78

G. Pandurangan, A. Trehan, Xheal: a localized self-healing algorithm using
expanders, Distributed Computing 27 (1) (2014) 39-54.
URL http://dx.doi.org/10.1007/s00446-013-0192-1

T. P. Hayes, J. Saia, A. Trehan, The forgiving graph: a distributed data
structure for low stretch under adversarial attack, Distributed Computing
(2012) 1-18.

URL http://dx.doi.org/10.1007/s00446-012-0160-1

A. Trehan, Algorithms for self-healing networks, Dissertation, University
of New Mexico (2010).

URL http://proquest.umi.com/pqdlink?did=2085415901&Fmt=2&
clientId=11910&RQT=309&VName=PQD

A. D. Sarma, A. Trehan, Edge-preserving self-healing: keeping network
backbones densely connected, in: Workshop on Network Science for Com-
munication Networks (NetSciCom 2012), IEEE InfoComm, 2012, iEEE
Xplore.

32

925

930

935

940

945

950

955

[34]

J. Saia, A. Trehan, Picking up the pieces: Self-healing in reconfigurable
networks, in: IPDPS. 22nd IEEE International Symposium on Parallel
and Distributed Processing., IEEE, 2008, pp. 1-12.

URL http://arxiv.org/pdf/0801.3710

G. Saad, J. Saia, Self-healing computation, in: P. Felber, V. K. Garg (Eds.),
Stabilization, Safety, and Security of Distributed Systems, SSS 2014, Pro-
ceedings, Vol. 8756 of Lecture Notes in Computer Science, Springer, 2014,
pp. 195-210.

H. Attiya, J. Welch, Distributed Computing: Fundamentals, Simulations
and Advanced Topics, John Wiley & Sons, 2004.

N. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, San Ma-
teo, CA, 1996.

F. Kuhn, N. Lynch, R. Oshman, Distributed computation in dynamic net-
works, in: Proceedings of the 42nd ACM symposium on Theory of com-
puting, STOC ’10, ACM, New York, NY, USA, 2010, pp. 513-522.

URL http://doi.acm.org/10.1145/1806689.1806760

A. Berns, S. Ghosh, Dissecting self-* properties, Self-Adaptive and Self-
Organizing Systems, International Conference on 0 (2009) 10-19.

E. W. Dijkstra, Self-stabilizing systems in spite of distributed control, Com-
mun. ACM 17 (11) (1974) 643-644.
URL http://dx.doi.org/10.1145/361179.361202

S. Dolev, Self-stabilization, MIT Press, Cambridge, MA, USA, 2000.

A. Korman, S. Kutten, T. Masuzawa, Fast and compact self stabilizing
verification, computation, and fault detection of an MST, in: PODC, 2011,
pp. 311-320.

F. Kuhn, S. Schmid, R. Wattenhofer, A Self-Repairing Peer-to-Peer System
Resilient to Dynamic Adversarial Churn, in: 4th International Workshop
on Peer-To-Peer Systems (IPTPS), Cornell University, Ithaca, New York,
USA, Springer LNCS 3640, 2005.

D. Ghosh, R. Sharman, H. Raghav Rao, S. Upadhyaya, Self-healing systems
- survey and synthesis, Decis. Support Syst. 42 (4) (2007) 2164-2185.

J. Beauquier, J. Burman, S. Kutten, A self-stabilizing transformer for pop-
ulation protocols with covering, Theor. Comput. Sci. 412 (33) (2011) 4247—
4259.

M. Elkin, A near-optimal distributed fully dynamic algorithm for maintain-
ing sparse spanners, in: I. Gupta, R. Wattenhofer (Eds.), PODC, ACM,
2007, pp. 185-194.

33

960

965

970

[47]

[48]

[49]

S. Baswana, S. Sen, A simple linear time algorithm for computing a (2k-
1)-spanner of o(n1+1/k) size in weighted graphs, in: ICALP, 2003, pp.
384-296.

S. Kutten, A. Porat, Maintenance of a spanning tree in dynamic networks,
in: P. Jayanti (Ed.), Distributed Computing, Vol. 1693 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 1999, pp. 846-846.

URL http://dx.doi.org/10.1007/3-540-48169-9_{24}

Z. Collin, S. Dolev, Self-stabilizing depth-first search, Information Pro-
cessing Letters 49 (6) (1994) 297 — 301.

URL http://www.sciencedirect.com/science/article/pii/
0020019094901031

S. Kutten, C. Trehan, Principles of Distributed Systems: 18th Interna-
tional Conference, OPODIS 2014, Cortina d’Ampezzo, Italy, December
16-19, 2014. Proceedings, Springer International Publishing, Cham, 2014,
Ch. Fast and Compact Distributed Verification and Self-stabilization of a
DFS Tree, pp. 323-338.

34

