
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Computing the linear complexity for sequences with characteristic polynomialComputing the linear complexity for sequences with characteristic polynomial
f^vf^v

PLEASE CITE THE PUBLISHED VERSION

http://dx.doi.org/10.1007/s12095-013-0080-3

PUBLISHER

© Springer

VERSION

AM (Accepted Manuscript)

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Salagean, A.M., Alex J. Burrage, and Raphael C.-W. Phan. 2019. “Computing the Linear Complexity for
Sequences with Characteristic Polynomial F^v”. figshare. https://hdl.handle.net/2134/12396.

https://lboro.figshare.com/
http://dx.doi.org/10.1007/s12095-013-0080-3


 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



Noname manuscript No.
(will be inserted by the editor)

Computing the Linear Complexity for Sequences with
Characteristic Polynomial fv

Ana Sălăgean · Alex J. Burrage · Raphael

C.-W. Phan

the date of receipt and acceptance should be inserted later

Abstract We present several generalisations of the Games-Chan algorithm. For
a fixed monic irreducible polynomial f we consider the sequences s that have as
a characteristic polynomial a power of f . We propose an algorithm for computing
the linear complexity of s given a full (not necessarily minimal) period of s. We
give versions of the algorithm for fields of characteristic 2 and for arbitrary finite
characteristic p, the latter generalising an algorithm of Ding et al. We also propose
an algorithm which computes the linear complexity given only a finite portion
of s (of length greater than or equal to the linear complexity), generalising an
algorithm of Meidl. All our algorithms have linear computational complexity. The
proposed algorithms can be further generalised to sequences for which it is known
a priori that the irreducible factors of the minimal polynomial belong to a given
small set of polynomials.

Keywords Linear Complexity · Games-Chan Algorithm · Linear recurrent
sequences

1 Introduction

The linear complexity of a sequence and the minimum linear recurrence relation
(equivalently minimum linear feedback shift register(LFSR)) are important pa-
rameters for many applications, including cryptography.

Synchronous stream ciphers typically encrypt by xor-ing the plaintext with
a pseudorandom keystream sequence generated from the key and initialisation
vector. Known plaintext attacks can recover portions of this keystream sequence,
and if the recovered portion consists of a number of successive terms equal to

A preliminary version of this paper was presented at the IEEE International Symposium on
Information Theory, St. Petersburg, Russia, August 2011 [1]

Department of Computer Science, Loughborough University, UK, E-mail:
A.M.Salagean@lboro.ac.uk · Qualcomm UK, E-mail: aburrage@qti.qualcomm.com · Fac-
ulty of Engineering, Multimedia University, Malaysia, E-mail: raphael@mmu.edu.my. This
work was done while Alex J. Burrage and Raphael C.-W. Phan were with Loughborough
University.



twice the linear complexity of the sequence, the whole keystream can be recovered
efficiently (e.g. using the Berlekamp-Massey algorithm), effectively breaking the
cipher. It is therefore essential to ensure that the keystream is a sequence with
high linear complexity.

The well-known Berlekamp-Massey algorithm computes the linear complexity
of a sequence in quadratic time. For certain classes of sequences more efficient
algorithms exist. The Games-Chan algorithm [3] takes linear time and works for
binary sequences with period of the form 2n. It exploits the fact that in this case
the minimal polynomial is a factor of x2n − 1 = (x − 1)2

n

hence it is a power of
x− 1 and one only needs to determine which power. In Algorithm 1 we generalise
the Games-Chan algorithm to the case when it is known a priori that the minimal
polynomial is a power of a certain fixed irreducible polynomial f (so the Games-
Chan algorithm would be the case f = x− 1).

The Games-Chan algorithm has been generalised to fields of arbitrary charac-
teristic by Ding et al. in [2] and we will similarly give Algorithm 2 which is the
generalisation of Algorithm 1 to arbitrary characteristic. (Our algorithm reduces
to the one of Ding et al. in [2] when f = x− 1.)

The algorithms of Games-Chan and and Ding et al., as well as our first two
generalisations mentioned above assume that a whole (not necessarily minimal)
period of the sequence is known. By contrast, Berlekamp-Massey algorithm only
requires knowledge of a finite portion of consecutive terms of the sequence, of
length equal to twice the linear complexity. The latter situation fits in with the
cryptanalysis scenario mentioned earlier, where an attacker obtains a finite portion
of the sequence and tries to determine the whole sequence. We will give therefore
further generalisations of the algorithms of Games-Chan and and Ding et al. which
will not require knowledge of the whole period.

It was noted by Sălăgean in [7] and by Meidl in [6] that it is actually not
necessary to have a whole period of the sequence in order to determine its linear
complexity using the Games-Chan algorithm. It suffices to have a number of terms
greater or equal to the linear complexity, provided we still know that the sequence
admits as a characteristic polynomial a power of x− 1 or more generally of some
fixed irreducible polynomial f . For finite sequences which have a characteristic
polynomial of the form fv Meidl gives two algorithms in [6]: one for f = x − 1
and arbitrary v, the other for arbitrary f and v being a power of 2. We generalise
his approach as Algorithm 4, which works for arbitrary f and arbitrary v. At first
sight it would seem tempting to take this generalisation further, to k-error linear
complexity, as in [6, Section 4]. However, we do not feel that such work would be
worthwhile, as the definition used for the k-error complexity in [6] is a restricted
one, (it computes the minimum linear complexity of all sequences z at Hamming
distance k from s with the additional condition that z admits as a characteristic
polynomial a power of f) and is not equivalent to the generally used definition
(except for f = x− 1). A further explanation is contained in Remark 4.

All the algorithms mentioned so far have linear time complexity, like the
Games-Chan algorithm, if we assume the irreducible polynomial is fixed.

We further generalise our algorithms to determine the minimal polynomial
when all its irreducible factors are known a priori (Algorithm 5). This algorithm
is efficient only if the number of irreducible factors is small and/or their weight is
low.



For all the algorithms and their proofs we found it convenient to use the action
of a polynomial on a sequence (Definition 3), a notion that has been used in
different guises in several papers. We felt the proofs were shorter and simpler this
way compared to the original proofs of many of the algorithms we generalised.

All the Games-Chan type algorithms, including those discussed here, derive
their high efficiency from the fact that the minimal polynomial is a (possibly high)
power of an irreducible polynomial (or of a small number of irreducible polynomi-
als). We examine now where such sequences could arise in practice. Stream ciphers
often use LFSR (Linear Feedback Shift Registers) and NFSR (Non-linear Feed-
back Shift Registers) as building blocks, and the period of the resulting sequence
is derived from the period of these components. Recall that a sequence produced
by an LFSR with n registers has period 2n − 1 or a factor thereof, which means
its minimal polynomial (being a factor of x2n−1 − 1) will only have distinct irre-
ducible factors. On the other hand, a sequence produced by an NFSR has period
2n (in which case it is called a de Bruijn sequence) or less, with no obvious divisi-
bility relations between the possible periods (see [4, Section 3.1]). So the minimal
polynomial of an NFSR sequence can have multiple factors, in fact the de Bruijn
sequences have minimal polynomial (x − 1)r for some r. Hence, algorithms like
the ones in this paper would be relevant to some of the sequences obtained from
NFSRs (or a combination of LFSRs and NFSRs) rather than LFSRs. Several of
the recent stream cipher proposals (e.g. Grain, Trivium) contain NFSRs.

Algorithms like the ones in this paper, which determine the minimal polyno-
mial when a characteristic polynomial is known, could also be potentially used in
cryptography in the following scenario: it may be known from the theoretical anal-
ysis that the keystream has a particular characteristic polynomial, but this might
not always be minimal, depending on the initial terms, which in turn depend of
depending on the key and initialisation vector (IV) used. We would then want to
detect the situations where the key/IV produce a sequence with a significantly
lower linear complexity than expected.

2 Preliminaries

The linear complexity of a sequence is defined as usual:

Definition 1 Given an infinite sequence s = s0, s1, . . . (or a finite sequence s =
s0, s1, . . . , sm−1 ) with elements in a field K we say that s is a linear recurrent se-

quence if it satisfies a homogeneous linear recurrence relation, i.e. there are constants
c0, c1, . . . , cL−1 ∈ K such that

sj + cL−1sj−1 + . . . + c1sj−L+1 + c0sj−L = 0

for all j = L, L+1, . . . (or for all j = L, L+1, . . . m− 1, respectively). We associate
to it a characteristic polynomial g(x) = xL + cL−1xL−1 + . . . + c1x + c0. If L is
minimal for the given sequence, we call L the linear complexity of s and we call
g(x) a minimal polynomial.

For infinite sequences the minimal polynomial is unique and any other charac-
teristic polynomial is a multiple of the minimal polynomial.

Throughout this paper we work in a field K of finite characteristic p. We denote
by s = s0, s1, . . . an infinite sequence over K and by s′ a finite sequence consisting



of successive terms of s. The infinite sequence s will be assumed to be periodic
with period N , i.e. si = si+N for all i ≥ 0. We do not assume N is the minimum
period. The finite or infinite sequence consisting only of zeroes will be denoted by
0 (the length of the sequence will be clear from the context). A monic irreducible
polynomial f ∈ K[x], different from 1 and x is fixed throughout. For a polynomial
g we denote by wt(g) the weight of g, i.e. the number of non-zero coefficients of g

(by analogy with the Hamming weight of vectors).
For convenience we will introduce the following notation:

Definition 2 Let g be a monic polynomial in K[x]. We define M(g) to be the set
of all infinite sequences over K with a characteristic polynomial equal to g. We
also define M(g∞) = ∪∞i=0M(gi).

The following definition is a commonly used notion:

Definition 3 Let g =
∑n

i=0 aix
i be a polynomial.

For an infinite sequence s we define the action of g on s, denoted gs, to be the
infinite sequence t = t0, t1, . . . defined by ti =

∑n
j=0 ajsi+j .

For a finite sequence s′ = (s0, s1, . . . , sm−1) with m > n we define the action
of g on s′, denoted gs′, to be the finite sequence t′ = (t0, t1, . . . , tm−n−1) defined
by ti =

∑n
j=0 ajsi+j . (One could extend the definition to m ≤ n but this situation

will not occur in this paper).

Using the terminology of actions, the following results concerning characteristic
polynomials are immediate:

Lemma 1 Let g ∈ K[x] be monic and let s be an infinite sequence. Then:

(i) g is a characteristic polynomial of s iff gs = 0. Moreover, g is the minimal polyno-

mial of s iff g is a polynomial of minimal degree for which gs = 0.

(ii) Let h ∈ K[x] be monic. If g is the minimal polynomial of s then g/ gcd(g, h) is the

minimal polynomial of hs.

(iii) If s is periodic and N is a period of s then N is also a period of gs.

Proof Parts (i) and (iii) are clear. For (ii) let gcd(g, h) = g2 and g = g1g2. Write
h as g2h′ and denote the minimal polynomial of hs by g3. We will prove that
g1 = g3. From (i) we know gs = g1g2s = 0 and g3hs = g3g2h′s = 0. Since the
minimal polynomial of a sequence divides any other characteristic polynomial,
g1g2|g3g2h′. Since h′ and g1 are coprime we have g1|g3. On the other hand, gs = 0

implies gh′s = g1g2h′s = g1hs = 0 and since g3 is the minimal polynomial of hs,
we have g3|g1, which combined with g1|g3 proved previously results in g3 = g1. ut

Based on the well-known exponentiation rule (sometimes known as “Fresh-
man’s dream”): (a + b)p = ap + bp for all a, b ∈ K, we have:

Lemma 2 Let g be a polynomial over a field K of finite characteristic p. Then wt(gpw

) =
wt(g) for any w ≥ 0.

Recall that the order of a polynomial g (with x - g), denoted ord(g) is the
smallest integer m such that g is a factor of xm − 1. The minimal period of a
periodic sequence is the same as the order of its minimal polynomial. The order of
an irreducible polynomial f is pdeg(f) − 1 or a factor thereof; hence ord(f) is not
divisible by p. The order of a power of an irreducible polynomial can be derived
as follows:



Theorem 1 ([5, Theorem 3.8]) Let f be irreducible over K[x] and let r be a positive

integer. Then ord(fr) = pt ord(f) where t is the smallest integer with pt ≥ r.

3 Linear Complexity of Infinite Sequences which have a Characteristic

Polynomial equal to a Power of an Irreducible Polynomial

We assume that we are given an infinite sequence s of (not necessarily minimal)
period N and that we know that the sequence admits as a characteristic polynomial
a power of a fixed monic irreducible polynomial f , i.e. s ∈ M(f∞). Our goal is
to determine the minimal polynomial of s, which will obviously be of the form fr

for some integer r. A naive algorithm could compute f is for increasing values of
i (by repeatedly replacing s by fs) until the zero sequence is obtained. Such an
algorithm would have complexity O(rN) if f is considered fixed, or O(wt(f)rN) if
f is an input parameter. The more efficient method described here finds an upper
bound for r and then does a p-ary search for the value of r. (We will see that this
is indeed more efficient, see Theorem 3.)

An upper bound on the value of r can be obtained by looking at the period N

and using Theorem 1:

Lemma 3 Let s ∈M(f∞) and let N be a (not necessarily minimal) period of s. Write

N as N = pwN ′ with p - N ′. Then s ∈ M(fpw

), ord(f)|N ′ and pw ord(f) is also a

period of s.

Proof Let fr be the minimal polynomial of s and let w′ be the smallest integer
with pw′ ≥ r. The minimal period of s is ord(fr), which by Theorem 1 equals

pw′ ord(f). Any other period of s, for example N = pwN ′ is a multiple thereof.
Since neither ord(f) nor N ′ are divisible by p, this means w′ ≤ w and ord(f)|N ′.
Hence r ≤ pw′ ≤ pw so s ∈M(fpw

) and pw ord(f) is a period of s. ut

Once we have an upper bound for r we can find the exact value of r by a p-ary
search. We actually find the largest exponent i for which f is 6= 0, i.e. r − 1. To
obtain r, a correction of +1 is added at the end. One can view the p-ary search
equivalently as determining the digits of the base p representation of r− 1. When
testing whether f is 6= 0 for different values of i, the values of i which are powers
of p are preferred for efficiency reasons, see Lemma 2.

Lemma 4 Let s ∈M(f∞), s 6= 0 and let N = pwN ′ with p - N ′ be a (not necessarily

minimal) period of s (which by Lemma 3 means s ∈ M(fpw

)). Let fr be the minimal

polynomial of s. If w = 0 then r = 1. For w ≥ 1, let r−1 = rw−1pw−1 + rw−2pw−2 +
. . . + r1p + r0 with ri ∈ {0, 1, . . . , p− 1} be the representation of r− 1 in base p. Then

we have: rw−1 is the largest integer i ≥ 0 for which f ipw−1
s 6= 0.

Moreover, putting t = frw−1pw−1
s we have t ∈ M(fpw−1

), t has minimal polynomial

fr−rw−1pw−1
and period N/p.

Proof It is easy to see that rw−1pw−1 ≤ r−1 < (rw−1+1)pw−1, hence rw−1pw−1 <

r ≤ (rw−1 + 1)pw−1. So frw−1pw−1
is not a characteristic polynomial of s, whereas

f (rw−1+1)pw−1
is. By Lemma 1(i), this means frw−1pw−1

s 6= 0 and f (rw−1+1)pw−1
s =

0.



The last equality also means that fpw−1
t = 0, i.e. t ∈M(fpw−1

). By Theorem 1,
pw−1 ord(f) is a period of t. By Lemma 3, we know ord(f)|N ′. Hence pw−1N ′ =
N/p is also a period of t. ut

From Lemmas 3 and 4 we have:

Corollary 1 With the notations of Lemma 4: rw−1 = 0 iff fpw−1
s = 0 iff s ∈

M(fpw−1
) iff s has period N/p.

Based on the Lemmas and Corollary above we present the following two al-
gorithms LinCompChar2 and LinComp given as Algorithms 1 and 2. The first is
for p = 2 and the second for arbitrary p (including p = 2). We formulated the
algorithm for p = 2 separately due to the importance of characteristic 2 and simi-
larity with Games-Chan algorithm, as well as the fact that the code is somewhat
simplified by the existence of only 2 cases at each step, corresponding to a 0/1
digit in the binary representation of r − 1, so the test in Corollary 1 is sufficient
for determining the digit.

Note that throughout the algorithms the current value of the infinite sequence
s is implicitly stored as being the finite sequence s′ = (s0, s2, . . . , sN−1) of length
N , repeated periodically. When computing the action of a polynomial say g =∑n

i=0 aix
i on the infinite s thus stored, the result will be an infinite sequence t of

period N stored as the finite sequence t′ = (t0, t2, . . . , tN−1) consisting of the first
N terms of t, computed from s′ as ti =

∑n
j=0 ajs(i+j) mod N .

Algorithm 1: LinCompChar2(s′, N, f)

Input : f ∈ K[x] an irreducible polynomial over a field K of characteristic 2;
s′ = (s0, . . . , sN−1) a finite sequence over K consisting of the first N terms of
an infinite sequence s of (not necessarily minimal) period N such that
s ∈M(f∞).

Output: The minimal polynomial of the sequence s
begin1

C = 0;2

if s′ = 0 then3

return(fC);4

end5

w = the largest integer for which 2w divides N ;6

Optionally, if ord(f) precomputed, set N = 2w ord(f) and s′ = (s0, s1, . . . , sN−1);7

while w ≥ 1 do8

t′ = f2w−1
s′ (as action on an infinite sequence);9

if t′ 6= 0 then10

s′ = t′;11

C = C + 2w−1;12

end13

s′ = (s0, s1, . . . , sN/2−1);14

w = w − 1;15

N = N/2;16

end17

C = C + 1;18

return(fC);19

end20



Algorithm 2: LinComp(s′, N, f)

Input : f ∈ K[x] an irreducible polynomial over a field K of characteristic p;
s′ = (s0, . . . , sN−1) a finite sequence over K consisting of the first N terms of
an infinite sequence s of (not necessarily minimal) period N such that
s ∈M(f∞).

Output: The minimal polynomial of the sequence s
begin1

C = 0;2

if s′ = 0 then3

return(fC);4

end5

w = the largest integer for which pw divides N ;6

Optionally, if ord(f) precomputed, set N = pw ord(f) and s′ = (s0, s1, . . . , sN−1);7

while w ≥ 1 do8

t′ = fpw−1
s′ (as action on an infinite sequence);9

while t′ 6= 0 do10

s′ = t′;11

C = C + pw−1;12

t′ = fpw−1
s′ (as action on an infinite sequence);13

end14

s′ = (s0, s1, . . . , sN/p−1);15

w = w − 1;16

N = N/p;17

end18

C = C + 1;19

return(fC);20

end21

Theorem 2 Algorithms LinCompChar2 and LinComp (Algorithms 1 and 2) are cor-

rect and terminate.

Proof Let r be such that fr is the minimal polynomial of the input sequence, i.e.
the expected output of the algorithm. For the correctness of both algorithms we
can prove the following invariants. At the start and at the end of each run of the
outer while loop, s′ is a finite sequence of length N , and s′ 6= 0. If we denote by
s the infinite sequence of period N obtained by repeating s′, we have s ∈M(fpw

)
and the minimal polynomial of s is fr−C .

We outline the proofs for these invariants. The fact that s′ is a finite sequence
of length N is immediate. The fact that s′ 6= 0 is obviously true before the while
loop, due to the first if statement, line 3. If s′ is non-zero at the start of the outer
while loop it will stay non-zero throughout, as each new value of s′ is always set
to either the first N/p elements of s′ (and by Corollary 1, s′ consists in this case
of p repeating identical sequences, which are therefore non-zero) or to a non-zero
value of t′.

The fact that s ∈ M(fpw

) and the minimal polynomial of s is fr−C holds
before the outer while loop due to Lemma 3 and is then maintained due to to
Lemma 4.

Finally, upon exiting the outer while loop, we have that w = 0 so s ∈ M(f).
Since s′ 6= 0, this means f is the minimal polynomial of s. On the other hand we
saw that the minimal polynomial of s is fr−C , therefore 1 = r − C at this point,
so C + 1 is correctly returned as r.



The termination follows from the fact that the value of w is decreased by one
at each run of the while loop. Additionally, for characteristic p, the inner while
loop will run at most p− 1 times, as we know that at the beginning of each run of
the outer while loop we have s ∈M(fpw

) hence fpw

s = 0. ut

Theorem 3 The complexity of Algorithms LinCompChar2 and LinComp (Algorithms 1

and 2) is O(N) if we consider f to be fixed, or O(wt(f)N) if f is an input parameter.

Proof It suffices to show the second result. Let N0 be the initial value of N , w0 be
the initial value computed for w and let N ′ = N0/pw0 . The (outer) while loop will
run w0 times, as shown in the proof of Theorem 2.

In the binary case, the complexity of each individual loop is dominated by the

calculation of t′ = f2w−1
s′, a finite sequence representing the first 2wN ′ terms of an

infinite sequence of period 2wN ′. The number of summands for each term is fixed
by Lemma 2 as wt(f). So the number of arithmetic operations is 2wN ′(wt(f) −
1). For characteristic p each run of the outer while loop consists of at most p

computations of t′ = fpw−1
s′, each taking (wt(f)− 1)pwN ′ steps.

In total we have
∑w0

w=1 2wN ′(wt(f)−1) = 2(2w0−1)N ′(wt(f)−1) < 2N0 wt(f)

for the binary case and (wt(f) − 1)N ′∑w0
w=1 pw+1 = (wt(f) − 1)p2N ′ pw0−1

p−1 <

p2

p−1 wt(f)N0 for arbitrary p. ut

Alternative algorithms can be obtained for LinCompChar2 and LinComp (Al-
gorithms 1 and 2) by using the last equivalence of Corollary 1. Namely, we can
check immediately at the start of the outer while loop whether the current value of
s′ consists of p repeating copies of the same sequence. If this is the case we do not
compute t′ but skip to the instructions for updating the values of s′, w and N at
the end of the loop. The algorithms thus modified would have the same worst-case
complexity but will behave slightly better for the case when r − 1 has many 0’s
in its representation in base p. Since each digit has a 1/p chance of being 0, the
savings will be more significant in characteristic 2. We present an alternative to
Algorithm 1 as Algorithm 3.

Algorithm 3: LinCompAlternative(s′, N, f)

Comment: Same as algorithm LinCompChar2 except that lines 8-17 are replaced by
while w ≥ 1 do8

if (s0, s1, . . . , sN/2−1) 6= (sN/2, sN/2+1, . . . , sN−1) then9

s′ = f2w−1
s′ (as action on an infinite sequence);10

C = C + 2w−1;11

end12

s′ = (s0, s1, . . . , sN/2−1);13

w = w − 1;14

N = N/2;15

end16

Remark 1 For f = x − 1, Algorithm 1 reduces to the Games-Chan algorithm,
[3]. Firstly, ord(f) = 1, so we can put N = 2w in line 7. Secondly, computing

t′ = (x − 1)2
w−1

s′ = (x2w−1 − 1)s′ for a sequence of period 2w means t′ is the



component-wise subtraction of the two halves of s′ (i.e. t′ is L(s)−R(s) if L(s) and
R(s) denote the left and right half of s, as in the notation used in the Games-Chan
algorithm). Therefore checking whether t′ = 0 will in this case mean checking
whether the two halves of s′ are identical. Algorithm 3 will also become virtually
the same as Algorithm 1 and the same as Games-Chan algorithm in this situation.
Similarly, for f = x− 1 Algorithm 2 reduces to the algorithm of Ding et al. [2].

Note that in the Games-Chan algorithm the final instruction C = C +1 is done
conditionally, only if s′ 6= 0. If one deals at the start of the algorithm with the
case of an all-zero input sequence (as we do), it is no longer necessary to check at
the end if s′ 6= 0, as this will always be the case (see the proof of Theorem 2).

Example 1 Let K = GF(2) and f = x3 + x + 1. The sequence s ∈ M(f∞) has
period N = 28 and its first 28 terms are s′ = 0000000 0101100 0010111 0111011.
The running of Algorithm 1 is described in Table 1.

Table 1 Example run for Algorithm 1

s′ w t = 0? C
0000000 0101100 2 No 2
0010111 0111011
0010111 0010111 1 Yes 2

0010111 0
C = C + 1 3

return(f3)

4 Linear Complexity of Finite Sequences which have a Characteristic

Polynomial equal to a Power of an Irreducible Polynomial

It was noticed by Sălăgean in [7] and by Meidl in [6] that we actually do not need
to have the whole period of the infinite sequence in the Games-Chan algorithm in
order to compute the linear complexity. In this section we generalise the idea of
Meidl, [6, Sections 2 and 3], by using the initial terms of a sequence, and knowledge
of a characteristic polynomial to treat it as an infinite sequence.

For a fixed polynomial g, an individual infinite sequence s with characteristic
polynomial g is uniquely defined (within the class of all sequences with charac-
teristic polynomial g) by its initial deg(g) terms. Can we decide if s admits a
characteristic polynomial of lower degree just by examining these initial deg(g)
terms?

Lemma 5 Let s be an infinite sequence with characteristic polynomial g = g1g2 with

g1, g2 monic. Then:

s has characteristic polynomial g1 iff the finite sequence s′ = (s0, . . . , sdeg(g)−1) has

characteristic polynomial g1.

Proof The direct implication is obvious. Conversely, assume s′ has characteristic
polynomial g1 i.e. g1s′ = (0, . . . , 0), a finite sequence of deg(g)− deg(g1) = deg(g2)
terms. Note this sequence also coincides with the first deg(g2) terms of the infinite
sequence g1s. By Lemma 1(i), gs = g2g1s = 0, so g1s has characteristic polynomial



g2. But then g1s = 0 as its first deg(g2) terms are all zero and its linear complexity
is at most deg(g2). ut

Consequently, if we are given s′ as being the first v deg(f) terms of a sequence
s ∈M(fv) we can check whether s admits some characteristic polynomial of lower

degree, i.e. fv′ with v′ < v by checking whether fv′s′ = 0. Again, a p-ary search
will make it more efficient.

The algorithm LinCompFinite is given as Algorithm 4 and is similar to the
Algorithm 2 in the previous section. Note that throughout the algorithm, the
length of the current value of s′ is v deg(f) for the current value of v.

Algorithm 4: LinCompFinite(s′, v, f)

Input : A finite sequence s′ consisting of the first v deg(f) elements of an infinite
sequence s ∈M(fv) where f ∈ K[x] is a fixed irreducible polynomial over a
field K of characteristic p.

Output: The minimal polynomial of the sequence s
begin1

C = 0;2

if s′ = 0 then3

return(fC);4

end5

w = the smallest integer such that v ≤ pw;6

while w ≥ 1 do7

t′ = fpw−1
s′ (as action on a finite sequence);8

if t′ 6= 0 then9

s′ = t′;10

C = C + pw−1;11

v = v − pw−1;12

w = the smallest integer such that v ≤ pw;13

else14

v = pw−1;15

w = w − 1;16

s′ = (s0, s1, . . . , sv deg(f)−1);17

end18

end19

C = C + 1;20

return(fC);21

end22

Theorem 4 Algorithm 4 is correct and terminates.

Proof Let s(0) be the original value of the infinite input sequence s and let r be
such that fr is its minimal polynomial. For the correctness, we will show that
throughout the algorithm s′ consists of the first v deg(f) terms of fCs(0) and
pw ≥ v ≥ r−C ≥ 1, with w minimal such that pw ≥ v. Therefore s′ in conjunction
with the characteristic polynomial fv correctly defines the infinite sequence fCs(0).
All these statements are obviously true before the while loop begins. We will
assume they are true at the start of a run of the loop and show they are true at
the end of the loop.

If the t′ 6= 0 branch of the if is taken, then vnew = vold − pwold−1 ≥ r −
Cold − pwold−1 = r−Cnew, where the old and new indices refer to the value at the



Table 2 Example run for Algorithm 4

s′ w v t = 0? C
010100001011010110 3 6 Yes 0

010100001011 2 4 No 2
001111 1 2 No 3

101 0 1
C = C + 1 4

return(f4)

beginning and at the end of the loop. In addition, r −Cnew ≥ 1: if we assume the
contrary, i.e. r ≤ Cnew, then fCnew would be a characteristic polynomial for s(0),
so fCnews(0) = 0. But then s′new, consisting of the first terms of fCnews(0), would
equal 0. On the other hand s′new = t′ 6= 0, contradiction.

If the else branch of the if is taken, we know fpwold−1
s′old = 0. By Lemma 5, this

means fColds(0) has characteristic polynomial fpwold−1
= fvnew , so vnew deg(f) of

its initial terms are sufficient to determine the sequence. Moreover, since fr−Cold

is the minimal polynomial of fC
olds(0) we have pwold−1 ≥ r − Cold. Hence vnew =

pwold−1 ≥ r − Cold = r − Cnew.
Finally, upon exiting the while loop we have w = 0 and since 1 = pw ≥ v ≥

r − C ≥ 1, it follows that r − C = 1, so C + 1 is correctly returned as r.
To show termination, note that v decreases throughout the algorithm. ut

Theorem 5 Algorithm 4 run on a sequence of length m has complexity O(m) for a

fixed f , or O(mwt(f)) if f is an input parameter.

Proof We can see that each run of the while loop takes v deg(f)(wt(f) − 1) steps
for the current value of v, which is upper bounded by pw. In each run of the loop,
the value of w is decreased or stays the same, but can only stay the same for at
most p successive runs of the while loop. So if w0 is the initial value of w, we

have at most
∑w0

w=1 pw+1 deg(f)(wt(f) − 1) = p2

p−1 (pw0 − 1) deg(f)(wt(f) − 1) ≤
p3

p−1v deg(f)wt(f) steps. ut

Example 2 Let K = GF (2) and f = x3 + x + 1. The finite sequence s′ = 010100-
001011010110 consists of the first 6 deg(f) = 18 terms of a sequence s ∈ M(f6).
The running of Algorithm 4 is described in the Table 2.

Remark 2 Berlekamp-Massey algorithm has quadratic complexity. When we con-
sider f fixed, Algorithm 4 has linear complexity, so it is clearly more efficient.
Let us compare the two algorithms when f is an input parameter. Assume the
minimal polynomial of s will turn out to be fr. Assume both algorithms are
run on a finite sequence s of length m, so we need that the length m satisfies
m ≥ v deg(f) for Algorithm 4 (where v is some upper bound on r known apri-
ori) and m ≥ 2r deg(f) for the Berlekamp-Massey algorithm. The computational
complexity will be O(m(wt(f)− 1)) for Algorithm 4 (see proof of Theorem 5) and
O(mdeg(fr)) for the Berlekamp-Massey algorithm. (A finer bound for the latter
would be O(m(z − 1)) where z is an upper bound on the weight of the minimal
polynomial as well as the weights of all the intermediate minimal polynomials of
the sequence. We have z− 1 ≤ deg(fr), and in the worst case equality is attained,
for example in characteristic 2, for f = x + 1 and r = 2n − 1 one can check that



wt((x+1)2
n−1)−1 = deg((x+1)2

n−1).) Since wt(f)−1 ≤ deg(f) ≤ deg(fr), Algo-
rithm 4 is in general more efficient than Berlekamp-Massey. However, we must note
that this comes at the cost of requiring the a priori knowledge of a characteristic
polynomial of s.

Remark 3 For f = x − 1, p = 2 and arbitrary v, our Algorithm 4 reduces to
Algorithm 1 of [6]. For f = x2 + x + 1 and v being a power of 2, it reduces to
Algorithm 2 in [6] (which, as remarked at the end on Section 3 of [6] could be
generalised to arbitrary f and v a power of 2).

Let us examine the relation between the algorithms in this section (where a fi-
nite portion of the sequence is known) and the ones in the previous section (where
a whole period of the sequence is known, i.e. the whole infinite sequence is known).
We could easily transform one problem into the other, namely, if we have a finite
sequence we can generate the whole period using the given characteristic poly-
nomial fv (note that this process can take a number of steps exponential in the
length of the original input finite sequence, see discussion further on). Conversely
given an infinite sequence of period N we could restrict to the initial pw deg(f)
terms (with w maximal such that pw|N), as fpw

is guaranteed by Lemma 3 to be a
characteristic polynomial of f . We compare now the complexities of the two types
of algorithm. Algorithms 1, 2 and 3 of the previous section are O(N wt(f)), and if
ord(f) is known, it is O(pw ord(f)wt(f)) (as N can be replaced by pw ord(f), see
line 7 in the algorithms). On the other hand, Algorithm 4 of this section has com-
plexity O(v deg(f)wt(f)), so if we know no better bound than v = pw for the expo-
nent of f (as is the case in the previous section), this becomes O(pw deg(f)wt(f)).
Since deg(f) ≤ ord(f) ≤ pdeg(f) − 1 with both lower and upper bounds attained
for particular values of f , it means that the algorithms of the previous section
are no better, and potentially exponentially slower than the ones in this section
(to clarify, all are linear in the size of the input, but the size of the input can
be exponentially higher if we use the full period rather than the initial v deg(f)
terms). So the algorithms of the previous section should be avoided in favour of
the one in this section. We did nevertheless present the former as they are direct
generalisations of the Games-Chan algorithm.

Remark 4 Since the algorithm developed here is a generalization of the ones given
by Meidl in [6], it may seem natural to go further and adapt these algorithms into
ones capable of determining the k-error linear complexity, as a generalization of
the work carried out in [6], Section 4. However, we do not believe that such work
would be worthwhile for the following reason:

In [7] the following definition is given for the k-error complexity of a finite
sequence, z, of length t with respect to a set A of infinite sequences:

ck(z, A) = min{c(s)|s ∈ A,wt((s0, s1, . . . , sn−1)− z) ≤ k}

where c(t) is the complexity of the infinite sequence s. This definition is used in
[7] with the set A being the set of all sequences with period a power of 2. This
is because, if it is known that the initial finite sequence was part of an infinite
sequence s whose period N was a power of 2, introducing errors to this infinite
sequence will not affect this property (because the error sequence will have the
same period as s, i.e. a power of two and hence adding them to the sequence will
again result in a sequence with period a power of two), and so ck(z, A) = ck(z,SN )



where SN is the set of all binary sequences o period N . However, this is not always
the case, and specifically, it is not the case in the way the definition is used in [6]
Section 4.

In [6] Section 4, the same general definition is used, although now the set A is
defined to be M((x2 + x + 1)2

v

). However, s ∈ M((x2 + x + 1)2
v

) does not imply
(s + e) ∈ M((x2 + x + 1)2

v

), for all sequences e of the same period N as s. Hence
in this case ck(s,M((x2 + x + 1)2

v

)) 6= ck(s,SN ). Therefore while the algorithm
presented in [6] Section 4 does calculate ck(s,M((x2 + x +1)2

v

)), this is not equal
to the k-error linear complexity (in the classical sense) of the input sequence s.
Therefore we do not feel it is worthwhile adapting the algorithm presented in this
paper to the k-error linear complexity problem, as it would suffer from the same
restriction.

5 Linear Complexity of Infinite Sequences which have a Characteristic

Polynomial equal to a Product of Known Irreducible Factors

With a simple adjustment to the algorithms in Section 4, we can greatly increase
their scope, so that they can be applied to any sequence provided each of the
irreducible factors of a characteristic polynomial are known.

As a consequence of Lemma 1(ii) we have:

Corollary 2 Assume that the minimal polynomial of a sequence s is of the form

fr1
1 fr2

2 . . . frk

k , with fi distinct irreducible polynomials. Let vi ≥ ri for i = 2, . . . , k.

Then fr1
1 is a minimal polynomial of the sequence fv2

2 . . . fvk

k s.

Therefore, if we know each of the irreducible factors of a characteristic polyno-
mial of a sequence and we have an upper bound on the powers of each irreducible
polynomial, we can use Corollary 2 and Algorithm 4 to successively determine the
powers of each irreducible polynomial in the minimal polynomial. The resulting
algorithm LinCompSet is presented as Algorithm 5.

Algorithm 5: LinCompSet(s′, m, {(f1, v1), . . . , (fk, vk)},)
Input : s′ a finite sequence consisting of the first m terms of an infinite sequence

s ∈M(fv1
1 . . . f

vk
k ), where {f1, . . . , fk} is a given set of distinct irreducible

polynomials, vi are positive integers and m ≥ ∑k
i=1 pdlogp vie deg(fi).

Output: The minimal polynomial of s
begin1

g = 1;2

for i = 1, 2, . . . , k do3

wi = dlogp vie4

end5

for i = 1, 2, . . . , k do6

t′ = the first vi deg(fi) terms of
∏

j 6=i fp
wj

j s′ (as action on finite sequences);7

g = g ∗ LinCompFinite(t′, vi, fi);8

end9

return(g);10

end11



Theorem 6 For a sequence of length m, and a fixed set {f1, . . . , fk}, Algorithm 5 has

complexity O(m). For a general set of k elements {f1, . . . , fk}, the algorithm will have

complexity O((km
∑k

i=1 wt(fi))).

Proof In each of the k runs of the outer for loop, the computation of t′ takes
m((

∑k
j=1(wt(fj)− 1))− (wt(fi)− 1)) operations if we do a straightforward imple-

mentation. One can obtain a more efficient implementation by reusing intermediate
results from the computation of t′ for different values of i, but none of the versions
we considered achieved an improved O complexity class. LinCompFinite has com-

plexity O(vi wt(fi) deg(fi)), more precisely at most p2

p−1 (pwi−1) deg(fi)(wt(fi)−1)

steps (see the proof of Theorem 3). Since m ≥ pwi deg(fi), this gives a total of at

most m p2

p−1

∑k
j=1(wt(fj)− 1) i.e. O(m

∑k
i=1 wt(fi)) for each of the k loops. ut

Note that Algorithm 5 is therefore efficient only if {f1, . . . , fk} has a small
cardinality k and the total weight of its elements is small.

In the algorithm we assumed that the irreducible polynomials f1, . . . , fk as well
as the bounds v1, . . . , vk are known apriori. If this is not the case, but we do know
that s has period N , we can write N = pwN ′ with p - N ′ and we know that the

minimal polynomial of s is a factor of (xN ′ −1)pw

, i.e. all the irreducible factors of

the minimal polynomial are factors of xN ′ − 1 and have multiplicity at most pw.
Therefore we can put {f1, . . . , fk} = {f ∈ K[x]|f irreducible factor of xN ′ −1} and
vi = pw for all i. Consequently we would need m = N . In this case, the algorithm
is efficient when N ′ is a relatively small constant, or when xN ′ − 1 has only a few
factors, and their weight is small. Here is such an example:

Example 3 Consider a binary sequence s′ of length m and {f1, f2, f3} = {x+1, x3+
x2 + 1, x3 + x + 1}. Assume we are also given values for vi. (Alternatively, assume
we know s′ is part of a sequence of period N = 2w ∗ 7, so we can put vi = 2w

and {f1, f2, f3} = {x + 1, x3 + x2 + 1, x3 + x + 1}, as x7 − 1 = (x + 1)(x3 + x2 +
1)(x3 + x + 1).) The number of operations in Algorithm 5 will be about 16m (see
proof of Theorem 6), whereas Berlekamp-Massey’s algorithm would need deg(g)m
operations, where g is the minimal polynomial of s. So in this example, and for
large enough degree of g, Algorithm 5 is more efficient.

In the worst case Algorithm 5 becomes less efficient than Berlekamp-Massey’s
algorithm. The number of operations in Algorithm 5 is at least k2m. We examine
cases where k is large. For the particular case when N ′ = 2n − 1 is a (Mersenne)

prime and m = N = pwN ′ with w a small constant, we have k = N ′−1
n + 1 (the

factors of x2n−1−1 are in this case x−1 and the ϕ(2n−1)/n = (2n−2)/n primitive
polynomials of degree n as in [5, Theorem 3.5]). Since in this case k ≈ N

log N , the

complexity of the algorithm becomes in the worst case Ω(N3/ log2 N) i.e. more
than quadratic.

6 Conclusion

We proposed algorithms for computing the linear complexity and minimal polyno-
mial for sequences which admit as a characteristic polynomial a power of a fixed
irreducible polynomial f . They work for any field of finite characteristic and we



do not necessarily need the whole period of the sequence. For f = x− 1 our algo-
rithms reduce to the algorithms of Games-Chan [3], Ding et al. [2] and Meidl [6].
We can also apply our algorithms to the case where the characteristic polynomial
is a product of powers of a small number of known irreducible polynomials. All our
algorithms have linear computational complexity (when assuming the irreducible
polynomials are fixed).

References

1. A. J. Burrage, A. Sălăgean and R. C.-W. Phan, “Linear Complexity for Sequences with
Characteristic Polynomial fv”, Proceedings of IEEE International Symposium on Infor-
mation Theory (ISIT), pp.688-692, St. Petersburg, Russia, 2011.

2. C. Ding, G. Xiao and W. Shan, The Stability Theory of Stream Ciphers. Springer Verlag,
1991.

3. R. Games and A. Chan, “A fast algorithm for determining the complexity of a binary
sequence with period 2n”, IEEE Trans. Information Theory, vol. 29, pp. 144–146, 1983.

4. S. W. Golomb. Shift Register Sequences. Aegean Park Press, 1982.
5. R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications. Cam-

bridge university Press, 1994.
6. W. Meidl, “How to determine linear complexity and k-error linear complexity in some

classes of linear recurring sequences”, Cryptography and Communications, vol. 1, pp. 117–
133, 2009.

7. A. Sălăgean, “On the computation of the linear complexity and the k-error linear complexity
of binary sequences with period a power of two”, IEEE Trans. Information Theory, vol. 51,
pp. 1145–1150, 2005.


