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On the density of Lyndon roots in factors
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December 24, 2015

1 Introduction

The concept of a run coined by Iliopoulos et al. [11] when analysing repetitions
in Fibonacci words, has been introduced to represent in a succinct manner all
occurrences of repetitions in a word. It is known that there are only O(n)
many of them in a word of length n from Kolpakov and Kucherov [12] who
proved it in a non-constructive manner. The first explicit bound was later on
provided by Rytter [15]. Several improvements on the upper bound can be found
in [16, 4, 14, 5, 8]. Kolpakov and Kucherov conjectured that this number is in
fact smaller than n, which has been proved by Bannai et al. [1, 2]. Recently,
Holub [10] and Fischer et al. [9] gave a tighter upper bound reaching 22n/23.

In this note we provide a proof of the result, slightly different than the short
and elegant proof in [2]. Then we provide a relation between the border-free
root conjugates of a square and the critical positions [13, Chapter 8] occurring
in it. Finally, counting runs extends naturally to the question of their highest
density, that is, to the question of the type of factors in which there is a large
accumulation of runs. This is treated in the last section.

0 1 2 3 4 5 6 7 8 9 10 11 12

a b a a b a b b a b a b b

Figure 1: Dotted lines show the 8 runs in abaababbababb. For example, [7 . . 11]
is the run of period 2 and length 5 associated with factor babab.

Formally, a run in a word w is an interval [i . . j] of positions, 0 ≤ i < j < |w|,
for which both the associated factor w[i . . j] is periodic (i.e. its smallest period
p satisfies p ≤ (j − i + 1)/2), and the periodicity cannot be extended to the
right nor to the left: w[i− 1 . . j] and w[i . . j+1] have larger periods when these
words are defined (see Figure 1).
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2 Fewer runs than length

We consider an ordering < on the word alphabet and the corresponding lexico-
graphic ordering denoted < as well. We also consider the lexicographic ordering
<̃, called the reverse ordering, inferred by the inverse alphabet ordering <−1.
The main element in the proof of the theorem is to assign to each run its greatest
suffix according to one of the two orderings.

0 1 2 3 4 5 6 7 8 9 10 11 12

a b a a b a b b a b a b b

Figure 2: Plain lines show the 8 greatest proper suffixes assigned to runs of
abaababbababb from Figure 1 in the proof of the theorem. Note that no two
suffixes start at the same position.

Theorem 1 The number of runs in a word of length n is less than n.

Proof. Let w be a word of length n. Let [i . . j] (0 ≤ i < j < n) be a run of
smallest period p in w. If j + 1 < n and w[j + 1] > w[j − p + 1] we assign to
the run the position k for which w[k . . j] is the greatest proper suffix of w[i . . j].
Else, k is the position of the greatest proper suffix of w[i . . j] according to <̃.

Note that if k > i then k > 0, and that w[k . . j] contains a full period of
the run factor, i.e. j − k + 1 ≥ p. Also note that w[k . . k + p − 1] is a greatest
conjugate of the period root w[i . . i+p−1] according to one of the two orderings.
Therefore, it is border-free, known property of Lyndon words.

We claim that each position k > 0 on w is the starting position of at most
one greatest proper suffix of a run factor. Let us consider two distinct runs [i . . j]
and [̄i . . j̄] of respective periods p and q, and which are called respectively the
p-run and the q-run. Assume p 6= q since the runs cannot be distinct and have
the same period. For the sake of contradiction, we assume that their greatest
suffixes share the same starting position k.

First case, j = j̄, which implies w[k . . j] = w[k . . j̄]. Assume for example
that p < q. Then, w[k . . k + q − 1] has period p and thus is not border-free,
which is a contradiction.

Second case, assume without loss of generality that j < j̄ and that both
suffixes are the greatest in their runs according to the same ordering, say <. Let
d = w[j+1], the letter following the p-run. By definition we have w[j−p+1] < d
and then w[i . . j − p+ 1] < w[i . . j − p]d. But since w[i + p . . j]d is a factor of
the q-run this contradicts the maximality of w[k . . j̄ − 1].

Third case, j 6= j̄ and the suffixes are greatest according to different order-
ings. Assume without loss of generality that p < q and the suffix of the p-run
factor is greatest according to <. Since q > 1 we have both w[k + q − 1]>̃w[k]
and w[k + q − 1] = w[k − 1], then w[k − 1] < w[k]. We cannot have p > 1
because this implies w[k − 1] > w[k]. And we cannot have either p = 1 because
this implies w[k − 1] = w[k]. Therefore we get again a contradiction.

2



This ends the proof of the claim and shows that the number of runs is no
more than the number n− 1 of potential values for k, as stated.

3 Lyndon roots

The proof of Theorem 1 by Bannai et al. [2] relies on the notion of a Lyndon root.
Recall that, for a fixed ordering on the alphabet, a Lyndon word is a primitive
word that is not larger than any of its conjugates (rotations). Equivalently, it is
smaller than all its proper suffixes. The root of a run [i . . j] of period p in w is
the factor w[i . . i+ p− 1]. Henceforth, the Lyndon root of a run is the Lyndon
conjugate of its root. Therefore, since a run has length at least twice as long
as its root, the first occurrence of its Lyndon root is followed by its first letter.
This notion of Lyndon root is the basis of the proof of the 0.5n upper bound
on the number of cubic runs given in [6]. Recall that a run is said to be cubic
if its length is at least three times larger than its period.

Lyndon roots considered in [2] are defined according to the two orderings
< and <̃. However, these Lyndon roots can be defined as smallest or greatest
conjugates of the run root according to only one ordering.

The proof of Theorem 1 is inspired by the proof in [2] but does not use
explicitly the notion of Lyndon roots. The link between the two proofs is as
follows: when the suffix w[k . . j] is greatest according to < in the run factor,
then its prefix of period length, w[k . . k + p − 1], is a Lyndon word according
to <̃. As a consequence, the assignment of positions to runs is almost the same
whatever greatest suffixes or Lyndon roots are considered.

The use of Lyndon roots leaves more flexibility to assign positions to runs.
Indeed, a run factor may contain several occurrences of the run Lyndon root.
Furthermore, any two consecutive occurrences of this root do not overlap and
are adjacent. The multiplicity of these occurrences can be transposed to greatest
suffixes by considering their borders. Doing so, what is essential in the proof
of Theorem 1 is that the suffixes and borders so defined are at least as long as
the period of the run. Consequently, consecutive such marked positions can be
assigned to the same run. As a consequence, since every cubic run is associated
to at least two positions, this yields the following corollaries.

Corollary 2 If a word of length n contains c cubic runs, it contains less than
n− c runs.

Corollary 3 A word of length n contains less than 0.5n cubic runs.

The last statement is proved in [6] employing the notion of Critical position,
which is discussed in the next section.

4 Critical positions

The consideration of the two above orderings appears in the simple proof of the
Critical Factorisation Theorem [7] (for another proof see [13, Chapter 8]).
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Let us recall that the local period at position |u| in uv is the length of the
shortest non-empty word z for which z2 is a repetition centred at position |u|.
Equivalently, in simpler words, z is the shortest non-empty word that satisfies
both conditions: either z is a suffix of u or u is a suffix of z, and either z is
a prefix of v or v is a prefix of z. Note that vu satisfies the conditions but is
not necessarily the shortest word to do it. The Critical Factorisation Theorem
states that a word x of period p admits a factorisation x = uv whose local period
at position |u| is p. Such a factorisation uv of x is called a critical factorisation
and the position |u| on x a critical position.

When considering the starting positions of greatest suffixes defined above
according to < and to <̃, the shorter of the two is known to provide a critical
position following [7]. Thus, it does not come as a surprise to us that the simple
proof of Theorem 1 relies on alphabet orderings. Nevertheless, as the initial
question does not involve any ordering on the alphabet, we could expect a proof
using, for example, only the notion of critical positions. The next lemma may
be a step on this way.

v u v u
y y

v q
p u

z z

Figure 3: If uv is a border-free factor of (vu)2, then at least one of its local period
words y or z have length |uv|. Otherwise, the common part in the dash-box has
length equal to the sum of its periods p and q generating a contradiction.

Lemma 4 Let x2 = (vu)2 be a square whose root conjugate uv is border-free.
Then, at least |v| or |vuv| are critical positions on x2.

Proof. Let y be the local period word at position |v| on x2. Since uv is border-
free, v is a proper suffix of y. Similarly, for the local period word z at position
|vuv|, the border-freeness of uv implies that u is a proper prefix of z. The
situation is displayed in Figure 3.

For the sake of contradiction we assume the conclusion does not hold, i.e.,
both y and z are shorter than uv (note that they cannot be longer than uv).

Let |p| be the induced period of pu and |q| the induced period of vq. The
overlap between the two words p and q admits period lengths |p| and |q| and
has length |pu| − (|uv| − |vq|) = |p| + |q|. Thus, by the Periodicity Lemma, p
and q are powers of the same word r. But then r is a nonempty prefix of u and
a suffix of v contradicting the border-freeness of uv.

Example. Consider the square baba of period 2. The occurrence of its border-
free factor ab induces the two critical positions 1 and 3. On the contrary, the
first occurrence of its border-free factor ba induces only one critical position,
namely 2, while the local period at 0 has length 1 < 2.
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In the square abaaba of period 3, the occurrence of the border-free factor
aab produces the critical position 2. However, its position 5 is not critical since
the local period 2 is smaller than the whole period of the square.

5 Lyndon roots density

In this section we consider a generalisation of the problem of counting the max-
imal number of runs in a word. In particular, we are interested in the following
problem concerning first occurrences of Lyndon roots within a run factor. Let us
call the interval corresponding to the first such occurrence the Lroot associated
with the run. Then, we are dealing with the following conjecture:

Conjecture 1 ([3]) For any two positions i and j on a word x, 0 ≤ i ≤ j < |x|,
the maximal number of run Lroots included in the interval [i . . j] is not more
than the interval length j − i+ 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a b a b a a b a b b a b a b b

Figure 4: Lines show the 6 run Lroots inside the interval [4 . . 9] corresponding
to the factor aababb.

Let us consider the word x = (ab)ka(ab)kb(ab)kb and the interval of posi-
tions [2k . . 4k + 1] corresponding to the factor a(ab)kb. The number of Lroots
corresponding to this interval is exactly the length 2(k+1) of the interval. Fig-
ure 4 shows the situation when k = 2. This example gives a lower bound on the
maximal number of Lroots contained in an interval of positions.

Proposition 5 The number of Lroots contained in an interval of positions on
a word, can be as large as the length of the interval.

In addition to the conjecture, we believe that factors associated with intervals
of length at least 4 containing the maximal number of Lroots are of the form
a(ab)+b for two different letters a and b. It can be checked that the maximal
number of Lroots is respectively 1 and 3 for intervals of lengths 1 and 3 with
factors a and aab, but is only 1 for intervals of length 2. All these factors are
Lyndon words for the ordering a < b. This is due to the fact that such factors
contain overlapping Lyndon roots making the whole factor a Lyndon word itself.

Remark 6 In order to obtain an upper bound on the number of Lroots inside an
interval of positions, it is enough to restrict ourselves to counting the maximal
number of Lroots within an interval corresponding to some Lyndon word.

Indeed, each Lroot corresponds to a Lyndon word. Since we want an interval
that contains the maximal such number, all the positions of this interval are
covered by some Lyndon word. However, since the overlap between every two
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Lyndon words produces a Lyndon word, and since every word can be expressed
as a concatenation of Lyndon words, our claim follows.

We show that the number of Lroots inside an interval corresponding to a
Lyndon word is bounded by 1.5 times the length of the interval. For this we
make use of the result from [2] stating that each position of a word is the starting
position of at most one specific root associated with the run. The root is chosen
according to some order defined by the letter following the run. We denote such
a root relative to the order as the Oroot of the run. Formally:

Definition 1 Let r be a run of period pr of the word w and let rL be the Lroot
associated with r. If r ends at the last position of w, or if the letter at the
position following r is smaller than the letter pr positions before it, then the
Oroot is the interval corresponding to the first occurrence of a Lyndon root that
is not a prefix of r. Otherwise, the Oroot is the interval corresponding to the
length pr prefix of the greatest proper suffix of the run factor r.

Observe that since a run is at least as long as twice its minimal period, this
ensures the existence of both its Lroot as well as its Oroot. To see that the Oroot
is never a prefix of the run factor it is associated with, observe from its above
definition that in the second case this is actually the interval corresponding to
the length pr prefix of the maximal proper suffix of the run, which is different
from the run itself (being proper).

Henceforth we fix an interval [i . . j] with its corresponding Lyndon word w
of length ℓ. Furthermore, we denote by rL = [iL . . jL] the Lroot of the run
r = [ir . . jr] and by rO = [iO . . jO] its Oroot. For r, we denote by pr the
(smallest) period of the run. Please note that |rL| = |rO| = pr, while both must
start and end within the run r.

We make the following remarks based on the already known properties of
Lroots and Oroots.

Remark 7 The Lroot and the Oroot associated with a run r start within the
first pr and pr + 1, respectively, positions of the run, and both have length pr.

As a direct consequence of the definition of the Oroot we have the following:

Remark 8 If the Oroot of a run r is a Lyndon word, then the Oroot and the
corresponding Lroot represent the same factor and, either iO = iL, or the run
r starts at position iL and iL + pr = iO.

In conclusion we have the following:

Remark 9 To bound the number of Lroots inside the interval [i . . j] correspond-
ing to the word w, it is enough to consider all runs starting within the interval
corresponding to a factor wpw, where |wp| < |w|.

For the rest of this work let us fix the factor preceding a Lyndon word w
as wp, while the one following it by ws, such that the interval corresponding to
wpwws is the shortest interval that contains all runs with their Lroots in [i . . j].
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Now we start looking at the relative positions of the Oroot and Lroot corre-
sponding to the same run.

rL

wp w ws

rO

iO iLi i+ ℓ

Figure 5: rO starts before the Lyndon word w

Lemma 10 Fix an Lroot occurring within an interval w = [i . . i + ℓ − 1] of a
word. If the Oroot corresponding to the same run starts outside w, then either:

1. the Lroot ends at position i+ℓ−1, and the Oroot starts at position i+ℓ, or

2. the Lroot starts at position i, and the Oroot starts before position i.

Proof. Following Remark 6, without loss of generality assume that wp starts
at position 0 and has length i, while w = [i . . i + ℓ − 1] is a Lyndon word. As
stated in the hypothesis, i ≤ iL and |rL| ≤ ℓ.

First let us assume that iO ≥ i + ℓ, hence the Oroot starts after the end of
the Lyndon word w. The result follows immediately from Remark 8.

For the second statement, consider Figure 5 where iO < i ≤ iL. Assume
towards a contradiction that i < iL. Since iO < i and rL corresponds to an
interval on w, it must be that the corresponding run starts before or on position
iO and it ends after or on position i + ℓ − 1. However, since w is a Lyndon
word, it must be that for any word x such that yx is a suffix of w, where y is
the factor corresponding to rL, we have w < yx. But in this case, unless y is a
prefix of w, we get a contradiction with the fact that rL is a Lyndon root. In
the former case, however, we get a contradiction with the definition of rL since
i < iL (rL is the interval corresponding to the first occurrence of a Lyndon root
of the run), and the conclusion follows in this case as well.

As a consequence of the above lemma, the number of Lroots is bounded by 2ℓ.
This is because the Oroots all start inside an interval of length |wp|+|w|+1 ≤ 2ℓ,
and no two share the same starting position [2]. In the following we reduce this
bound to 1.5ℓ. The next lemma shows that the situation in Lemma 10.1 is met
by at most one Oroot.

Lemma 11 For any word and any interval [i . . j] on it, there exists at most
one run that has its Oroot starting after position j while its Lroot corresponds
to an interval inside [i . . j].

Proof. According to Lemma 10.1, it must be the case that iO = j + 1, while
iL = j − pr + 1, for any appropriate run r. However, having more than one
Oroot starting at position j + 1 with the factor corresponding to its Lroot as
a suffix of the Lyndon word, would then imply that the larger of Lroots that
corresponds to a Lyndon word is bordered, which is a contradiction.

Now we are dealing with Oroots corresponding to Lemma 10.2.
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Proposition 12 For a given word, any interval of length ℓ of positions on the
word contains at most 3ℓ/2 Lroots.

Proof. Let us denote once more our interval by w = [i . . i + ℓ − 1] and the
interval preceding it by wp. We know from the definition that an Lroot is the
first Lyndon root of a run, and therefore the letter ending every Lroot must be
greater than its first letter, while the one on the position right after the end of
the Lroot must be the same as the first letter of the Lroot.

Since for any Oroot starting in the interval associated with wp, the Lroot
corresponding to it in w starts at position i, we note that these can be bounded
by the number of length two factors in w that have the letter on the first position
larger than the letter on position i, while the second one identical. If the second
letter of such a factor is smaller than the letter on position i, than this situation
would make it impossible for a Lroot to start on position i and end before this
position (this is because an Lroot is the first Lyndon root occurrence of a run).

Since this number is obviously bounded by ℓ

2
, while the whole length of

wp is bounded by ℓ − 1, (by considering the symmetric situation) we conclude
that there are less than ℓ−1

2
runs that start in wp such that their corresponding

Oroots start before position i, while their Lroots start at position i (the Lroots
correspond to prefixes of w). Hence, combining this with the fact that within w
we have at most ℓOroots starting there, see [2], and since according to Lemma 11
there is at most one Oroot starting after position j that has the Lroot in w, we
get an upper bound for our problem.

The bound given in the above proposition is not really tight. On this point
let us complete the conjecture:

Conjecture 2 For a given word, any interval of length ℓ > 0 of positions on
the word contains at most ℓ Lroots, and the maximum number is obtained only

when the factor corresponding to the interval is of the form a(ab)
ℓ−2

2 b, where
ℓ > 3, and the letters a and b satisfy a < b.

We end this article with a few more observations regarding the results
from [2], when we restrict ourselves to binary words. First we recall a prop-
erty of Oroots:

Lemma 13 (Bannai et al. [2]) If two different Oroots obtained considering
the same order overlap, then their overlap is the shortest of the Oroots.

We observe that we can consider Oroots to be obtained according to a cer-
tain order based on the letter that these Oroots start with (thus all Oroots
starting with a are obtained according to the lexicographical order, while the
ones starting with b are obtained according to the inverse lexicographical one).

Proposition 14 For a given binary word, any interval of length ℓ of positions
on the word contains at most ℓ−1

2
Oroots obtained according to the same order.

8



Proof. Without loss of generality we fix an order; let us say lexicographical.
Observe first, that for a word to correspond to an Oroot, whenever they are
not binary, they must start with a letter a and end with a b (as previously
mentioned). Furthermore, it must be the case that this interval is preceded by
a b and followed by an a, as otherwise it does not correspond to a Lyndon root
(there exists another rotation that has an extra a in its longest unary prefix).

Finally, observe that considering their relative position, following Lemma 13,
two such Oroots are either included one in the other, or they are disjoint.

Now, considering two words corresponding to two Oroots, let us say u and v
with u a factor of v, we note that, since their lengths are different, following the
initial conditions, they must differ by a length of at least 2, whenever u is not
unary (each starts between a b and an a, and ends between an a and a b). For
the unary case, note that every block of consecutive a’s must be in-between two
occurrences of b. Furthermore, we cannot have two unary words corresponding
to Oroots overlapping each other. Thus if the position of the second a is an
Oroot in the word ba

ℓ
b, for ℓ > 0, it is impossible to have a length less than 3

for any word starting with the first a whose interval corresponds to an Oroot.
Given that for any two distinct adjoining Oroots both their lengths and the

number of Oroots they contain add up, the result follows in this case as well.
In order to get the −1, we observe that for any word of length at least 3,

for the interval it determines to have the maximum number of Oroots of the
same order, according to the previous facts, would imply the word to have the
form (ab)+. However, now, the Oroots would correspond to words that are just
powers of one another, contradicting their property of being Lyndon words.

Furthermore, denoting by |w|u the number of all (possibly overlapping) oc-
currences of u in w, as consequence of the above we have the following:

Corollary 15 Every length ℓ interval associated with a factor w of a binary
word completely contains at most min{|w|ab, |w|ba} Oroots that correspond to
non-unary factors and are obtained according to the same order.

Corollary 16 The number of Oroots associated with unary runs within every
factor of a binary word is at most one extra than the number of unary maximal
blocks within the factor (by a maximal block we refer to a unary factor that
cannot be extended either to the left or to the right without losing its periodicity).
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