
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

An improved representation for evolving programs

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Springer Science+Business Media

VERSION

AM (Accepted Manuscript)

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Withall, Mark S., Chris J. Hinde, and R.G. Stone. 2019. “An Improved Representation for Evolving Programs”.
figshare. https://hdl.handle.net/2134/4292.

https://lboro.figshare.com/

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

An Improved Representation For Evolving Programs

M.S. Withall (m.s.withall@lboro.ac.uk), C.J. Hinde
(c.j.hinde@lboro.ac.uk) and R.G. Stone
(r.g.stone@lboro.ac.uk)
Department of Computer Science, Loughborough University, Loughborough,
Leics. LE11 3TU, England

Abstract. A representation has been developed that addresses some of the issues
with other Genetic Program representations while maintaining their advantages.
This combines the easy reproduction of the linear representation with the inherita-
ble characteristics of the tree representation by using fixed-length blocks of genes
representing single program statements. This means that each block of genes will
always map to the same statement in the parent and child unless it is mutated,
irrespective of changes to the surrounding blocks. This method is compared to the
variable length gene blocks used by other representations with a clear improvement
in the similarity between parent and child. In addition, a set of list evaluation and
manipulation functions was evolved as an application of the new Genetic Program
components. These functions have the common feature that they all need to be 100%
correct to be useful. Traditional Genetic Programming problems have mainly been
optimization or approximation problems. The list results are good but do highlight
the problem of scalability in that more complex functions lead to a dramatic increase
in the required evolution time.

Keywords: Genetic Algorithms, Genetic Programming, Representation

1. Introduction

The paper is organised into two major divisions, an introduction and
history with a discussion of the requirements of a representation for
Genetic Programming and the contribution to Genetic Programming
that the representation gives.

1.1. Overall Goals of the paper

In order to set the paper into context there are some overall require-
ments that are necessary for a Genetic Programming system. The
descriptions of the various representations that are in use may be seen
in this context, and should make the aim of the paper clearer. The
requirements presented in Section 2 refine these aims and make them
more specific. The overall requirements are as follows:

Operator independence — The representation of the phenome should
be independent of the genetic operators. This would have the

c© 2008 Kluwer Academic Publishers. Printed in the Netherlands.

NewRepwhole.tex; 31/07/2008; 15:43; p.1

2

benefit of allowing other problem solving paradigms, simulated
annealing, Monte Carlo, etc. to be applied to the genome regardless
of the structure of the phenome.

Minimal search space — The representation should be interpreted
in such a way that it maps closely onto the search space. This
reduces the search space represented by the genome. If the repre-
sentation is optimally coded then every genome would represent a
valid phenome. If the representation is such that not all genomes
convert to a valid phenome then the nearest valid phenome must
be selected and this requires a repair stage.

Inheritable characteristics — The representation should maintain
visible inheritance of phenome characteristics from parent to child.
If this was a characteristic that made the parent successful then
it would be passed on to a child. An optimally coded tree, say
using Huffman codes, would be radically changed if one bit near
the start of the tree were changed.

1.2. Brief History

One of the earliest known pieces of research on using evolution to create
computer programs was that of Friedberg et al [10, 11]. Although the
word ‘evolution’ does not appear in either paper the intent to simulate
evolution was plainly in the minds of the researchers [7]. Friedberg et al
adopted the task of generating a set of machine language instructions
that could perform relatively simple calculations (in this case adding
the numbers in two data locations). The work of Fogel, Owens and
Walsh [8], which evolved finite state machines, and the work of Hol-
land [18] and others on learning classifier systems could also be classed
as Genetic Programming.

Possibly the first work that explicitly used Genetic Algorithms to
generate programs was that of Cramer [6] in 1985. This was closely
followed by the work of Fujiki et al [12, 13], who used the method to
solve the prisoner’s dilemma, and the work of Hinklin [17]. All of the
above used a tree representation for their programs.

The work that popularised the area (which become known as ‘Ge-
netic Programming’) was that of John Koza, initially with his 1989
paper [24] and more so with his three epic works [25, 26, 27]. This
work also used the tree representation with the target programming
language lisp (the same as Fujiki et al).

Since the work of Koza, a vast amount of research has been done on
the area of Genetic Programming. Banzhaf et al describe three types

NewRepwhole.tex; 31/07/2008; 15:43; p.2

3

of representation: tree, linear and graph [3]; although other approaches
such as Kantschik’s linear-tree [20] and linear-graph structures [21],
also exist. Some of the main systems that have been developed are
looked at in more detail in the following sections.

1.3. Tree Representation

Most of the early work on Genetic Programming was done using a tree
representation and the method is still widely used today.

The tree representation is close to the phenome and as such is ef-
ficient to convert to the program form. However, the crossover and
mutation operators are more specialised than the crossover and mu-
tation operators used in the linear representation, (Section 1.4). If
the choice of crossover point is random between the nodes then the
crossover points will be at the lower level of the tree as there are many
more nodes at the leaf nodes unless the choice points are biased. In
an n-ary tree it would be possible to explore the tree from the root
and make an n+1 way decision whether to explore the one of the n
branches, or choose as a crossover point. The weights chosen control
the behaviour. Crossover in the linear representation described in Sec-
tion 1.4 is independent of the phenome representation in contrast to
crossover in the tree representation.

One of the first attempts that explicitly used Genetic Algorithms to
evolve programs was by Cramer [6]. Cramer demonstrated an adaptive
system for generating short sequential computer functions (in his paper
two-input, single-output multiplication functions were evolved). The
initial representation for the programs was a list of integers, which
were then decoded to produce a well-formed program. The advantage
of this approach was that any list (of sufficient length and with the
relevant constraint on the size of the integers) could be used to gen-
erate a well-formed program. The problems were that infinite loops
can be generated by the auxiliary statements and, more seriously, the
semantic-positioning of an integer-list element is extremely sensitive to
change. This illustrates the repair problem introduced in Section 1.1.

To address these problem, a modified version was created, which
had a tree-like structure. However, to avoid the problems of ‘catas-
trophic minor changes’ the mutation and crossover operators had to be
constrained. In this case, the mutation operator can only change leaf
statements or non-leaf statements that only have arguments that are
leaf operators. For the crossover, subtrees are swapped between two
parents.

Cramer also cited the work of Smith [39], which pointed out that a
major problem is that of ‘hand-crafting’ the fitness evaluation function

NewRepwhole.tex; 31/07/2008; 15:43; p.3

4

to give partial credit to functions that exhibit behaviour similar to that
desired, without actually performing the desired task.

Koza first introduced his method of Genetic Programming in 1989 [24].
This work was then developed [25, 26, 27].

For Koza’s Genetic Programming, the programs are represented as
parse trees. The language LISP was used, as a subroutine in LISP (or
s-expression) is essentially a parse tree expressed in a linear fashion.
For Genetic Programming, the user defines all the functions, variables
and constants which can be nodes in the parse tree.

Due to the complex nature of the structure of the genomes (LISP
s-expressions), the genomes cannot be easily generated randomly for
the initial population. The individuals in the initial population must
be carefully constructed to preserve syntactic correctness. In addition,
the genetic operators used cannot be the simple versions of crossover
and mutation used in the linear form described in Section 1.4. Instead,
mutation is accomplished by picking a random node in the tree and
replacing the subtree with a randomly generated (but syntactically
valid) subtree. The crossover operator exchanges subtrees from two
parent individuals; see above for comments about the random nature
of crossover point selection.

Montana [28] was one of the first people to look at the problem of
function and variable typing in Genetic Programming (although it had
been mentioned by Koza [25]). The approach built directly on top of
the approach which Koza used. Another approach was presented by
Perkis [35] using multiple stacks, one for each type. The use of strong
typing in GP becomes essential when the target language is e.g. C or
pascal, as type mismatches would cause the programs to fail to compile;
see Sections 1.1 and 2.

The method presented by Montana also introduced handling of run-
time errors, whereas the method used by Koza forced all functions to
return valid values e.g. the protected divide function returned 1 when
dividing by zero, rather than an error.

One of the first people to use a context-free grammar as the basis
of their representation was Whigham [43], who used the tree structure.
One of the main advantages of using the context-free grammar is that it
allows the method to be applied to any contemporary programming lan-
guage [15]. The grammar also allows variable typing to be incorporated
easily.

Whigham also used the idea of ‘bias’ (structuring the grammar in
such a way as to improve the chances of creating good programs).
This is equivalent to including extra knowledge about the problem
e.g. if it is known that the program should start with an if statement.
Rather than manually adjusting the grammar, Whigham modified the

NewRepwhole.tex; 31/07/2008; 15:43; p.4

5

grammar during the evolution based on analysis of fit individuals. Each
generation some new individuals were created from the updated gram-
mar and incorporated into the population. In addition, Whigham used
weighted production rules to make selection of good rules more likely.
This weighting was calculated as the new production rules were created.

Angeline et al. [1] made a significant contribution to scalability using
tree representations in their work on induction of subroutines using a
Graph representation. Essentially they removed branches of the evolv-
ing trees and stored them for use as single nodes. They take this further
as indiscriminate compression could have undesirable side effects and
incorporate an expansion operator. They state that the complementary
nature of the compression and expansion operators implements a form
of iterative refinement. The random selection of a subtree for compres-
sion provides no guarantee that the selected subtree will be an above
average schema. It is more likely that it will be either a portion of a
useful schema or simply of no import at all. By periodically replacing a
copy of the compressed subtree back into the population, they provide
the chance to capture a better version of the schema at a later time.

1.4. Linear Representation

The linear representation is closer to the Genetic Algorithm as de-
scribed in Holland [18]. Separate crossover points in the parents allow
variable length chromosomes. There are two consequences of extending
the chromosome: the first is that programs of arbitrary length may be
produced and the second is that it precludes uniform crossover [40]
and other variants. Uniform crossover is reported to be very efficient.
Wineberg and Oppacher [44] use a fixed length genome but pad the
genome with introns. Introns are genes that have no effect and in effect
are just padding. They may arise as a result of mutations and errors
but as they have no effect on the phenome they can be removed and
as such are padding. Introns are argued to be beneficial to the search
process [45], so although introns do not code for any aspect of the
phenome they affect the evolutionary process. Recent work on introns
indicates that the presence of introns can prematurely stabilise the
evolution [19]. Both methods generally suffer from the problem that
the context of a gene changes its effect on the overall phenome.

Perhaps the best example of a linear representation that combines
the advantages of the linear representation with the advantages of
minimal translation is that of Nordin [30], which directly manipulates
machine code by casting a binary string onto a function. This binary
string is the genome and so this mechanism maps the genome directly
onto the phenome and also avoids any compilation steps in the system.

NewRepwhole.tex; 31/07/2008; 15:43; p.5

6

This representation is both a linear genome and also maps directly onto
the phenome. The search space that Nordin’s system works within is
very large and there is almost no opportunity to apply a hierarchical
design strategy to it.

In 1993, Banzhaf [2] introduced a method of Genetic Programming
based on traditional Genetic Algorithms. The method introduced mech-
anisms like transcription, editing and repairing and was applied to the
problem of the prediction of sequences of integer numbers. This is one of
the first methods to go back to using a linear genome, since Cramer [6]
rejected the idea in favour of a tree representation.

Banzhaf starts out with a population of binary strings which are
subsequently interpreted as programs by using a table specifying which
binary code corresponds to which element from the set of functions
and terminals available. The generated program can not necessarily be
guaranteed to be a working program. After the binary strings have been
translated into the programming language, the resulting code segments
are checked to see if they are syntactically correct and any errors are
repaired.

The work is extended by Keller and Banzhaf [23]. Here they borrow
heavily from molecular biology and only use the mutation operator for
genetic manipulation. They also show that their method can map to
an arbitrary context-free language.

Perkis [35] presented yet another approach to the evolution of pro-
grams that does not require specialist genetic operators. In this ap-
proach the genome is a sequence of functions and terminals. Each
element in the sequence is evaluated in turn. If the element is a function
it takes the necessary number of arguments off a stack and puts its
output back onto the stack. If there are not enough values on the stack
then the function is ignored. If the element is a terminal it is pushed
onto the stack. As there are no syntactical constraints on the sequences,
they can be treated in the same way as a traditional binary string for
a Genetic Algorithm.

One limitation of the method presented is that it has no mechanism
for branching. In addition, it would be difficult to generate a program
in a specific target language using this method.

Paterson and Livesey [33] continue on from the work of Banzhaf,
by introducing a method that converts a linear genome (in this case a
string of integers) into a program. Unlike Banzhaf, however, there is
no need for a repair stage as the list of integers maps directly onto a
BNF definition of the language subset by recursively replacing all non-
terminals with the production rule that corresponds to the next integer
in the genome. Like Koza and others, Paterson and Livesey initially
use LISP as their target language but in later work they use C [34],

NewRepwhole.tex; 31/07/2008; 15:43; p.6

7

showing the advantage of the method being language independent. One
disadvantage of mapping the list of integers to the BNF is that there is
no guarantee that a complete program will be generated. There may be
unresolved non-terminals when the string of integers runs out. Other
methods must then be used to fill in the missing data. One interesting
experiment conducted by Paterson and Livesey was to compare two
grammars that represent the same language subset. This highlights the
difficulty of specifying the language subset in the most appropriate way
for the problem.

Ryan, Collins, and O’Neill [37] present a method that is similar to
Paterson and Livesey, but with a much simpler mapping between the
genome and phenome. Ryan, Collins and O’Neill still use the BNF
representation, although they use a binary string instead of a list of
integers.

The major disadvantage of their method is from the point of view
of inheritance of characteristics. When a gene is passed on to a child
individual there is a very high chance that the gene will not represent
the same value. One change early in the genome can change the entire
path through the grammar and hence the child individual will have
very little resemblance to its parent.

Despite this drawback, Grammatical Evolution has been applied to
a variety of different problems by the original authors [32, 31, 38]. In
addition, the method is developing a following around the world [16, 22].

Other work on linear and grammar-based representations for Ge-
netic Programming has been done by Freeman [9] and Ross [36].

1.5. Graph Representation

The graph representation, see Figure 1, is a natural development of
the tree representation. Parse trees are hierarchical so using graphs is
more general and is able to be applied to a wide variety of problems.
Graph representation follows the trail of bringing the genome closer to
the Phenome. A classic system is PADO, Parallel Algorithm Discovery
and Orchestration [41].

Niehaus and Banzhaf [29] describe a directed graph based Genetic
Programming representation called GGP. They have an abstraction
mechanism which addresses scalability by using subfunctions.

1.6. Summary of Contents

The following sections describe the representation for evolving pro-
grams, which addresses the weaknesses of the tree and linear represen-
tations in detail while keeping their benefits. Graph representations are
included in the comments about trees as the conclusions are similar.

NewRepwhole.tex; 31/07/2008; 15:43; p.7

8

STOP

START

START

Figure 1. The representation of a program and a subprogram in the PADO system.
Each node consists of: Number, Action, Branch, Arc1, Arc2, Branch Constant

2. Requirements for a New Representation

This section takes the requirements for a Genetic Programming rep-
resentation introduced in Section 1.1. These requirements are largely
based on more detailed analysis of those representations.

Quick Translation — In the case where the genome and phenome
are separate, every newly created individual in a population needs
to be translated into an executable form for fitness evaluation.
Therefore, the mapping of the genome to the phenome needs to
be efficient. For example, if there were 500 individuals in a gen-
eration and the Genetic Program was run for 50 generations, the
translation of the genome to phenome would occur 25000 times.
This can be a significant proportion of the running time of the

NewRepwhole.tex; 31/07/2008; 15:43; p.8

9

Genetic Program. Even if caching is used to avoid evaluating du-
plicate genomes [5] the work involved is significant. In the work by
Koza [25] and others who use languages such as lisp, this is not
a problem as the genes are stored directly as program fragments.
In the work of Banzhaf [3] there is the additional complication of
the repair of badly structured individuals, which can be costly in
terms of run time.

Simple Genetic Manipulation — To create a new individual from
one or more parent individuals it is necessary to use some form of
genetic manipulation. This usually takes the form of combining the
genes of two or more parent individuals and/or performing some
kind of random mutation on the new individual. As this process
occurs for all, or most, newly created individuals the representation
needs to allow it to be simple and efficient.

Inheritable Characteristics — One of the main reasons why Ge-
netic Algorithms work is the principal of inheritance. This allows
successful characteristics in individuals to be propagated through
multiple generations. Therefore, it is important that the individu-
als being evolved are represented in such a way that when a set of
genes is passed on to the offspring of the individual, characteristics
of the parents are preserved. If the genome and phenome are to be
separated, there needs to be a fairly direct relationship between
the two in order for phenotypical characteristics to be inheritable.
Koza [25] has this property because the genome and phenome
are the same and, therefore, the child phenomes are constructed
directly from parts of the parent phenomes. For representations
such as Grammatical Evolution [37], there is not a direct mapping
between the parent and child phenomes and, therefore, crucial
characteristics from the parents can be lost when the child is
generated (see Section 4).

Minimal Solution Space — In general, the smaller the solution space,
the faster the Genetic Program will be able to find a solution to
the given problem. Alternatively, the larger the percentage of all
possible genomes that correspond to good solutions the faster the
Genetic Program will find one. However, the solution space should
not unduly restrict the range of possible solutions to the problem.
The size of the solution space may be controlled by restricting
the language subset available. This may be part of the use of the
representation rather than the representation itself. For example,
in Grammatical Evolution [37] the solution space is dependent on
the bnf grammar given to the system by the user. An additional

NewRepwhole.tex; 31/07/2008; 15:43; p.9

10

factor that can have an effect is the shape of the solution space.
If, for example, there are many local minima (or maxima) then it
may be a more difficult space to search for the Genetic Program.

Maintain Syntactic Correctness — The solution space is also re-
stricted by only allowing syntactically correct programs (phenomes)
to be generated. This rules out a large number of programs that
are badly formed. Representations, such as Koza’s [25], use genetic
operators which maintain syntactic correctness. In this the genetic
operators need to be suitable chosen based on the target language.

Limit Execution Errors — As well as errors in the syntax of the
programs, other errors that occur at run-time can cause problems
during the fitness evaluation. Montana [28] had problems with his
system, in that very few of the initially generated population of
programs were correctly typed. It therefore took a long time to
find initial viable programs before they could be improved to solve
the task set. These problems need to be avoided where possible.
In addition, problems such as infinite loops can disrupt the fitness
evaluation process and are especially difficult to deal with when
the programs are being tested in their natural environment rather
than with limited runtime or through emulation.

Consistent Genome to Phenome Mapping — In cases where the
genome and phenome are separate, it is essential that a given
genome always maps to the same phenome, in order to result in a
deterministic and robust fitness evaluation. Paterson and Livesey [33]
suggested that one possible approach in their representation, when
the genome ran out of genes in the mapping process, was to ran-
domly generate the rest of the phenome. This approach is not very
good from the perspective of inheritable characteristics.

To summarise, a representation is required that has a separate genome
and phenome, where the genome is a simple representation for ge-
netic operators, which has no special constraints and the phenome is
a program in the target language. Every genome should only map to
syntactically correct programs in a concise language subset and where
possible the language subset should be restricted to avoid problems
such as infinite loops. Most importantly, the mapping between the
genome and phenome must be simple and fairly direct, so that the
characteristics in the child phenome can be inherited from the parent
phenome during the genetic manipulation.

NewRepwhole.tex; 31/07/2008; 15:43; p.10

11

3. Description of Representation

The representation satisfies the requirements given above. Primarily the
description focuses on the Genome, which is simple, and the phenome
which is derived as a result of the translation process.

3.1. Genome

The genome for the Genetic Program is stored as a simple string (or list)
of integers. The integers used in all the examples in this paper are 8-bit
(ranging between 0 and 255) but any size of integer is acceptable as long
as it satisfies the requirements of the mapping process (see Section 3.3).
Representing the individuals as a string of integers simplifies the process
of genetic manipulation, crossover and mutation.

3.2. Phenome

The phenome, to which the genome maps, is a program written in a
subset of some language, in the case of the examples in this paper,
Perl [42]. There are various reasons for using the Perl language. Perl is
an interpreted language, meaning that it is not necessary to compile the
programs that are evolved for fitness evaluation. Perl is also capable of
executing program statements that are generated during the running of
a program, which means that the evolved programs don’t have to run
externally to the ga. One final feature of Perl, that is an advantage in
gp, is that it has a good error handling and recovery, so if an evolved
program does not work properly it won’t affect the rest of the gp.

The subset of the language chosen for a particular problem can
easily be designed with certain semantic constraints, such as avoiding
infinite loops. For example, only including restricted ‘for’ loops, where
the counter variable can not change within the body of the loop.

3.3. Mapping from Genome to Phenome

The mapping between the genome and the phenome ensures that all
genomes map to a syntactically correct program in the required lan-
guage.

The mapping starts by dividing the genome into fixed-length blocks
of genes, each of which represents one program statement. The length
of the gene blocks is dependent on the statement type that requires
the most information. Each block is interpreted independently of the
others. So, two identical gene blocks in different places in the sequence
will be interpreted the same way. It can easily be seen that if all of the
blocks are the same size, and they are interpreted independently, then

NewRepwhole.tex; 31/07/2008; 15:43; p.11

12

Comparisons

2513 3 86

Genome

%4 %3

While

For

If

Add

Statements

x

y

z

Variables

If y < x

if(y<x){...}

Program

==

!=

>

<

%4 %3

x

y

z

Variables

Figure 2. Example mapping from individual gene block to program statement

when a block is inherited by a child individual it will be in the same
place and therefore be interpreted the same way (assuming fixed-length
genomes). This ensures the inheritance of phenotypical characteristics
even though a separated genome and phenome is being used. In addi-
tion, this method of translating the genome to the phenome ensures
that a complete program will be generated without running out of
genes, as would be the case in the work of Paterson and Livesey [33]
or Ryan et al [37].

The first gene in each block represents the type of statement. The
statement type is decided by taking the modulo of the gene value and
the number of different program statements. For example, if there are
four statement types and the gene value is 23 then 23 ≡ 3(mod 4), so
the fourth statement (index number 3) would be chosen.

Each statement type uses the remaining genes in different ways.
For example, an ‘Addition’ statement would require one variable to
assign the result to and two variables to add together. Any remaining
genes in the block are redundant. Figure 2 shows an example of the
mapping from a gene block to a program statement. Table I shows
an example genome in blocks of 4 values and Table II shows a list of
possible statements, the use of the remaining genes and the form in
which the statement is presented in the target language. Note that the
indices associated with the genes in the genome are taken modulo the

NewRepwhole.tex; 31/07/2008; 15:43; p.12

13

size of the list to which they refer. For example, the first value 28 is
associated with the statement type; there are 5 statement types and so
28 refers to statement type 3, a ‘For’ statement.

3.4. Extensions

In addition to the basic mapping, there are a few useful additions to
be able to evolve reasonable programs. The first is the need for an
ability to provide nested structures, such as looping and branching,
without losing the inheritance features of the current mapping. Here it
is achieved by having a statement type e.g. a ‘For’ statement, which
has a corresponding ‘End’ statement. All statements in between these
two statements are then nested within the loop or branch. Although
a mutation to the statement type, of the loop or branch statement,
would change the structure of the subsequent code, the meaning of
the individual statements will still be preserved. Any remaining nested
structures that haven’t been terminated when the end of the genome
is reached can then be automatically terminated.

An additional feature that can be used, is to distinguish between
variables that are read-only and read/write, so that any variables that
should not be changed cannot be assigned new values. In practice, two
sets of variables are stored, one is all of the variables that can be read
and the other is all variables that can be assigned new values (therefore
read/write variables appear in both sets). For example, this may include
loop counters that should only be changed by the loop statement, or
parameters passed to a function e.g. a list of integers to be summed.
If the list were changed during the execution then the sum might not
be accurate for the given list. As well as separating variables by access
permissions, it is also possible to separate by type. For example, a list
of integers and a list of floats can be kept separate and the statements
designed to preserve type correctness.

One final extension that is worth mentioning is the use of a counter
to limit the running time of the code. This only needs to be incremented
each iteration of a loop and can be used to terminate execution of
excessively long programs. For the examples presented here, the Perl
‘eval’ function is used to execute the evolved programs and this sets a
variable with an error message when there is an unnatural termination
of the execution. This can be used to detect errors and also for limiting
the execution time of a program.

3.5. Wrapper

It will usually be convenient to add some header and footer code to
the evolved code for the purposes of declaring variables, receiving data

NewRepwhole.tex; 31/07/2008; 15:43; p.13

14

Table I. Example Genome

28 34 64 124

127 130 33 83

201 5 41 50

201 9 69 73

Table II. Statement type, type of additional genes, and form of statement

Index Statement Additional Genes Format

0 Assign variable,variable G1 = G2;

1 Multiply variable,variable,variable G1 = G2 * G3;

2 If variable,comparison,variable if(G1 G2 G3){

3 For variable,variable for G1 (0..G2){

4 End }

passed to the evolved code and returning data after the code has been
executed. This could be included as part of the evolution process but
would make the problem much harder without real benefit, for example
see Listing 1. This extra code is used in the experiments to allow the
use of the Perl ‘eval’ function to test the evolved programs.

3.6. Example

As an example of the mapping from the genome to the phenome using
the above method, a function to calculate the factorial of a number is
presented.

Table I shows the genome (the list of integers). This genome is
converted using the statements listed in Table II and the additional
genes are translated using Table III. As can be seen from Table II,
the most additional genes required by a statement is three. Therefore,
the length of each gene block will be four (to include the choice of
statement).

Table III. List of variables and comparison operators

Index Variable

0 $n
1 $fact
2 $count
3 $zero

Index Comparison

0 ==
1 !=
2 >
3 <

NewRepwhole.tex; 31/07/2008; 15:43; p.14

15

Table IV. Conversion of Genome to Phenome

Genes Index Statement Code

28,34,64,124 3,2,0,x For for $count (0..$n){

127,130,33,83 2,2,1,3 If if($count != $zero){

201,5,41,50 1,1,1,2 Multiply $fact = $fact * $count;

94,231,0,13 4,x,x,x End }

Listing 1: The entire phenome, including header and footer

Header
my $n = $ARGV[0] ;
my $ f a c t = 1 ;
my $count = 0 ;
my $zero = 0 ;

Evolved Code
f o r $count (0 . . $n){
i f ($n != $zero){
$ f a c t = $ f a c t ∗ $count ;

}
}

Footer
re turn $ f a c t ;

The first block of genes starts with the value 28. This represents
the statement type being used. In this case there are five types of
statements, so 28 ≡ 3(mod 5) means that the statement is a ‘For’
(index 3). The ‘For’ statement requires the use of two more genes to
choose from the ‘variable’ list. The ‘variable’ list has four elements,
therefore, 34 ≡ 2(mod 4) and 64 ≡ 0(mod 4) give the variables $count
and $n. All together this gives the loop header for $count (0..$n){.
The gene 124 is redundant. The rest of the gene blocks are decoded in
the same way (see Table IV).

Finally, any missing closing braces are automatically added, along
with the wrapper (header and footer) code, to create the complete
phenome. This is shown in Listing 1.

NewRepwhole.tex; 31/07/2008; 15:43; p.15

16

Table V. List of statements for padding test

Index Statement Additional Genes Format

0 Print variable print G1;

1 For variable,variable for G1 (0..G2)

2 Add variable,variable,variable G1 = G2 + G3;

Table VI. List of variables for padding test

Index Variable

0 $x

1 $y

2 $z

4. Comparison of Padded and Unpadded Representations

This section compares the fixed-length gene blocks (padded with re-
dundant genes) with variable-length gene blocks (unpadded – as used
in e.g. Grammatical Evolution [37]), to examine the preservation of
characteristics after mutation and crossover with another individual.
The simple set of statements listed in Table V and the set of variables
listed in Table VI are used to map the genomes to the phenomes with
the method presented in Section 3.3.

The first experiment is to compare how the padded version of an
individual changes under mutation in comparison with an unpadded
individual. Figure 3a shows an example individual with fixed-length
gene blocks representing the statements and Figure 4a shows the same
individual without the redundant genes. The ‘G’ represents an unused
gene in the padded genome, although these genes may be used after
mutation or crossover and are shown in the phenomes as ‘G’ when used.
The mapping for the unpadded individual’s genome to phenome just
uses the relevant number of genes for each statement and starts the
next statement immediately afterwards.

Figure 3b shows the first individual (Figure 3a) after a mutation
of the first gene (from 0 to 2). It can be seen that only the first
statement of the phenome has changed and the rest is identical to
the pre-mutation version. In contrast, Figure 4b shows the unpadded
individual (Figure 4a) after the same mutation. The phenome of the in-
dividual is now completely different, very little has been preserved from
the original individual. This would not be good from the perspective
of the evolution as good characteristics, which caused the individual to

NewRepwhole.tex; 31/07/2008; 15:43; p.16

17

0 2 G G 1 0 1 G 2 2 1 0

pr in t $z ;
f o r $x (0 . . $y) {
$z = $y + $x ;

}

(a)

2 2 G G 1 0 1 G 2 2 1 0

$z = G + G;
f o r $x (0 . . $y) {
$z = $y + $x ;

}

(b)

Figure 3. (a) Parent 1 (Padded), (b) Parent 1 (Padded) Mutated

0 2 1 0 1 2 2 1 0

p r i n t $z ;
f o r $x (0 . . $y) {
$z = $y + $x ;

}

(a)

2 2 1 0 1 2 2 1 0 G

$z = $y + $x ;
f o r $z (0 . . $z) {
f o r $y (0 . .G) {
}

}

(b)

Figure 4. (a) Parent 1 (Unpadded), (b) Parent 2 (Unpadded) Mutated

be selected for reproduction, are lost whereas with the padded version
most the characteristics are preserved.

This problem would be expected to be even more pronounced when
using crossover, as there is much more change when the individuals are
combined. Figures 5a and 5b show the padded and unpadded versions
of a second individual, which both map to the same phenome. When

NewRepwhole.tex; 31/07/2008; 15:43; p.17

18

1 2 0 G 2 1 1 2 0 1 G G

fo r $z (0 . . $x) {
$y = $y + $z ;
p r i n t $y ;

}

(a)

1 2 0 2 1 1 2 0 1

f o r $z (0 . . $x) {
$y = $y + $z ;
p r i n t $y ;

}

(b)

Figure 5. (a) Parent 2 (Padded), (b) Parent 2 (Unpadded)

0 2 G G 1 0 1 G 2 2 1 0 Parent 1 (Padded)

1 2 0 G 2 1 1 2 0 1 G G Parent 2 (Padded)

0 2 G G 1 1 1 2 2 1 1 G Child (Padded)

pr in t $z ;
f o r $y (0 . . $y) {
$y = $y + $x ;

}

Figure 6. Crossover Parent 1 and Parent 2 (Padded)

the padded versions of Parent 1 (Figure 3a) and Parent 2 (Figure 5a)
are combined using crossover (taking alternate genes starting with the
first individual in this case) the individual in Figure 6 is created. This
individual looks quite similar to the first parent, as the main statement
type gene is always taken from this individual (in this example) because
the gene-length is even. When the unpadded individuals (Figures 4a
and 5b) are combined in the same way as the padded individuals, Fig-
ure 7 is produced. Apart from maintaining the first statement type of
the first individual, it is completely different to either parent. The final
gene ‘G’ in Figure 7 represents an extra gene required. The alternative
is to not use any gene block with insufficient genes, however, this is not
an issue with the padded versions.

NewRepwhole.tex; 31/07/2008; 15:43; p.18

19

0 2 1 0 1 2 2 1 0 Parent 1 (Unpadded)

1 2 0 2 1 1 2 0 1 Parent 2 (Unpadded)

0 2 1 2 1 1 2 0 0 G Child (Unpadded)

pr in t $z ;
f o r $z (0 . . $y){
f o r $z (0 . . $x){
pr in t G;

}
}

Figure 7. Crossover Parent1 and Parent2 (Unpadded)

In conclusion, the small examples shown suggest that inheritable
characteristics are much more likely to be preserved when using fixed-
length gene blocks to represent individual statements. However, mu-
tation and crossover can still give variation to the child individuals
without losing similarity to the parents.

5. Experimental Setup

In this section, the previously presented representation is applied to the
evolution of a series of list evaluation and manipulation functions. The
particular functions being evolved have some interesting features, which
set them apart from traditional gp problems. Firstly, the functions
need to achieve a 100% fitness level to be useful. This moves away
from the traditional gp optimization problems, where the idea is to
improve upon current results and just requires search of the solution
space for adequately fit individuals. Secondly, these functions are com-
monly used as part of larger programs, so can be used as components
to create larger programs after they have been evolved (for example
see [46]). Yu [47] also used two simple list functions for testing; finding
the nth element of a list and applying a predefined function to a list.
More complex programs have been evolved by Genetic Algorithms e.g
Groß’ chess playing program [14], however, this lacked to 100% fitness
requirement.

The following functions were evolved:

Sumlist — find the sum of a list of integers.

NewRepwhole.tex; 31/07/2008; 15:43; p.19

20

Avelist — find the average of a list of integers.

Listmax — find the largest value in a list of integers.

Listmin — find the smallest value in a list of integers.

Reverse — reverse the ordering of a list of integers.

Sort — sort a list of integers into ascending order.

This set of problems starts with two functions that return numerical
results (that do not necessarily appear in the input lists), the second
two functions return elements of the input lists and the final two return
new lists. This may be thought of as a series of problems of apparent
increasing difficulty.

5.1. The Underlying Genetic Algorithm

The following is a description of the simple Genetic Algorithm which
is used for all of the experiments. The algorithm is kept simple to keep
the focus on the effects of the representation and the fitness functions.

Algorithm 1 The simple Genetic Algorithm used for all experiments

P = Initialise Population
F = Test Fitness(P)
for generations = 1 to MAXGEN do

P = Reproduce(P, F)
F = Test Fitness(P)

end for

The simple Genetic Algorithm used is given in Algorithm 1. The
genomes are represented as fixed length integer strings, as this is the
easiest representation to work with in terms of the genome/phenome
mapping and the genetic manipulation. The representation does not,
however, preclude the use of variable length genomes. In the repro-
duction function, simple fitness proportionate parent selection is used
to select two parents, these two parents are combined using uniform
crossover and then there is a probability that each gene will be mu-
tated in the resulting individual. The best individual from the previous
generation is copied into the newly created population.

In the experiments, a relatively small population of 7 and a relatively
high mutation rate of 10% are used. These values are much smaller than
are traditionally used, more like an Evolution Strategy than a Genetic
Algorithm, however, they appear to produce high fitness individuals
quickly.

NewRepwhole.tex; 31/07/2008; 15:43; p.20

21

The GA is run for a maximum of 50, 000 generations with 50 differ-
ent random seeds for each problem. In addition, the execution time of
each individual is limited by keeping count of the number of iterations
of loops. If the counter reaches 1000 the program is terminated with
an error and receives a minimal fitness value.

Finally, the experiments were run on a 3.4GHz Xeon (1MB cache)
PC with 3GB of RAM, running the Ubuntu Server GNU/Linux (Dap-
per) 6.06 operating system. The programs were written in Perl 5.8.7,
as was the evolved code.

5.2. Fitness Testing

One way a fitness function for Genetic Programming can be constructed
is to use a set of sample inputs for a problem and compare the resultant
outputs from the evolved function with the expected outputs. The
fitness function can also be some ‘hand-crafted’ evaluation function,
in which case it is difficult to guarantee that all features of the prob-
lem have been covered, especially for larger problems. While the first
method may be suitable for some simple situations, it is unlikely to
generate an accurate fitness score, on more complex problems, without
a very large number of test inputs. Cramer [6] mentions that a major
problem in evolving programs is one of ‘hand-crafting’ the evaluation
function to give partial credit to a function that does not work but
exhibits some of the relevant behaviour. In [24], for example, Koza
hand-crafts his fitness functions based on the natural terminology of
the problem but gives little justification of his choices. In these exper-
iments fitness evaluation functions based on the formal specification
of the problems are used in conjunction with input/output pairs. This
removes the need to write ad hoc functions to test fitness and replaces
it with a disciplined alternative. See, for example, the Listmax problem
(specified in Figure 10). Using fitness measured by counting the number
of correct solutions from given test inputs a fitness of zero would be
given for a function returning the second highest value in the list,
whereas the fitness function created from the formal specification would
return quite a high fitness value.

Figures 8 to 13 and Listings 2 to 7 give the formal specifications and
conversion into code for the experiments. For example, the specification
of sumlist (Figure 8) simply says “the output value s is equal to the sum
of the list L”. The notation (+x|x : Z, L1, L2 : Z

∗|L = L1
y〈x〉yL2),

used in the specification, simply means “take each element x in the
list L and add it to the other elements in the list”. The notation used
is described in more detail in [4]. The conversion to code is shown in
Listing 2. One adjustment to the natural conversion of giving one fitness

NewRepwhole.tex; 31/07/2008; 15:43; p.21

22

sumlist : Z
∗ → Z

pre-sumlist(L) , #L 6= 0

post-sumlist(L, s) , s = (+x|x : Z, L1, L2 : Z
∗|L = L1

y〈x〉yL2)

Figure 8. Specification of sumlist

Listing 2: The fitness function for sumlist (without header)

f o r each my $x (@L){
$t += $x ;

}
$ f i t n e s s += abs ($s−$t) ;

point for each correct element of the specification, is to use the absolute
difference between the expected and actual results. This adjustment is
due to this particular specification only having one test and therefore
a very limited hill to climb. However, with the change the hill becomes
much bigger and less steep. Initial tests showed that the avelist function
found great difficulty evolving without the change. The use of absolute
differences in values was not used in the remaining four problems, as
there were more tests.

5.3. Language Subset

Tables VII, VIII and IX give the list of statements and the meaning of
additional genes for the sumlist and avelist experiments. For the avelist
experiment, the variable $sum is replaced by the variable $ave. The set
of statements used is fairly constrained. The statements differentiate
between variables that are read-only and those that can be assigned
new values. Variables, such as list counters, that are automatically
updated are considered read-only, so that they, for example, cannot
be changed within the loop body. One final interesting feature is the
list index (Index 3 of the read-only variables, rvars in Table IX), which
is constrained to only be able to reference elements within the list by

avelist : Z
∗ → R

pre-avelist(L) , #L 6= 0

post-avelist(L, s) , s = (+x|x : Z, L1, L2 : Z
∗|L = L1

y〈x〉yL2)/#L

Figure 9. Specification of avelist

NewRepwhole.tex; 31/07/2008; 15:43; p.22

23

Listing 3: The fitness function for avelist (without header)

f o r each my $x (@L){
$t += $x ;

}
$ f i t n e s s += abs ($s−($t /($#L+1))) ;

listmax : Z
∗ → Z

pre-listmax(L) , #L 6= 0

post-listmax(L, m) , m in L ∧ (∀z : Z)(z in L ⇒ z ≤ m)

where (x in L) , (∃L1, L2 : Z
∗)(L = L1

y〈x〉yL2)

Figure 10. Specification of listmax

Listing 4: The fitness function for listmax (without header)

f o r each my $z (@L){
i f ($z <= $m){ $ f i t n e s s ++;}

}

listmin : Z
∗ → Z

pre-listmin(L) , #L 6= 0

post-listmin(L, m) , m in L ∧ (∀z : Z)(z in L ⇒ z ≥ m)

where (x in L) , (∃L1, L2 : Z
∗)(L = L1

y〈x〉yL2)

Figure 11. Specification of listmin

Listing 5: The fitness function for listmin (without header)

f o r each my $z (@L){
$ f i t n e s s++ i f ($z >= $m) ;

}

Listing 6: The fitness function for reverse (without header)

f o r (my $n=0; $n<s c a l a r (@L) ; $n++){
i f ($L [$n] == $N [$#L−$n]) { $ f i t n e s s ++;}

}

NewRepwhole.tex; 31/07/2008; 15:43; p.23

24

reverse : Z
∗ → Z

∗

pre-reverse(L) , True

post-reverse(L, N) , #L = #N

∧(∀n : P)(n < #L ⇒

(∃x : Z, L1, L2, N1, N2 : Z
∗)(L = L1

y〈x〉yL2

∧N = N1
y〈x〉yN2

∧#L1 = #N2

∧#L1 = n))

Figure 12. Specification of reverse

sort : Z
∗ → Z

∗

pre-sort(L) , True

post-sort(L, N) , bag of(N) = bag of(L) ∧ ascending(N)

where bag of(〈〉) ◭◮ ∅

bag of(〈x〉) ◭◮ {|x|}

bag of(L1
yL2) ◭◮ bag of(L1)

⊎
bag of(L2)

ascending(N) , (∀x, y : Z)(x before y in N ⇒ x ≤ y)

and

x before y in N , (∃N1, N2, N3 : Z
∗)(N = N1

y〈x〉yN2
y〈y〉yN3)

Figure 13. Specification of sort

taking the modulus of the size of the list. This seemed to be a fairly
logical way of constraining the list index.

Table X and XI show the list of statements and meaning of addi-
tional genes for the listmax and listmin problems. As the functions
only return a value from the list of integers no arithmetic statements
are included in the statement list. As with sumlist and avelist the list

Listing 7: The fitness function for sort (without header)

i f ($#N > 0){
f o r my $x (0 . . $#N−1){
$ f i t n e s s++ i f ($N [$x] <= $N [($x +1)]) ;

}
}

NewRepwhole.tex; 31/07/2008; 15:43; p.24

25

Table VII. List of statements used for sumlist

Index Statement Additional Genes Form

0 Null

1 Assign wvars,rvars G1 = G2;

2 Add wvars,rvars,rvars G1 = G2 + G3;

3 Subtract wvars,rvars,rvars G1 = G2 - G3;

4 Multiply wvars,rvars,rvars G1 = G2 * G3;

5 Divide wvars,rvars,rvars G1 = G2 / G3 if(G3 != 0);

6 If rvars,cmp,rvars if(G1 G2 G3){

7 For rvars,lsize for G1 (0..G2){

8 End }

Table VIII. List of statements used for avelist

Index Statement Additional Genes Form

0 Null

1 Assign wvars,rvars G1 = G2;

2 Add wvars,rvars,rvars G1 = G2 + G3;

3 Divide wvars,rvars,rvars G1 = G2 / G3 if(G3 != 0);

4 For rvars,lsize for G1 (0..G2){

5 End }

Table IX. Additional Genes for sumlist and avelist

Index wvars rvars lsize cmp

0 $sum $sum $#list ==

1 $size !=

2 $tmp >

3 $list[$tmp%($#list+1)] <

4 >=

5 <=

NewRepwhole.tex; 31/07/2008; 15:43; p.25

26

Table X. List of statements used for listmax and listmin

Index Statement Additional Genes Form

0 Null

1 Assign wvars,rvars G1 = G2;

2 If rvars,cmp,rvars if(G1 G2 G3){

3 For rvars,lsize for G1 (0..G2){

4 End }

Table XI. Additional Genes for listmax and listmin

Index wvars rvars lsize cmp

0 $max $max $#list ==

1 $tmp1 !=

2 $tmp2 >

3 $list[$tmp1%($#list+1)] <

4 $list[$tmp2%($#list+1)] >=

5 <=

indexes are constrained to only index valid list elements. For listmin
the variable $max is replaced with $min.

Tables XII and XIII give the list of statements used and the meaning
of additional genes for the reverse problem. It is interesting to note the
provision of list indexing of the form L[#L-n]. This is a logical choice
based on the interpretation of the specification.

Tables XIV and XV give the list of statements used and the meaning
of additional genes for the sort problem. The list of statements now
has the additional statement type the ‘Double’ loop (Index 4). This is a
standard structure used when comparing elements in a list. In addition,
it also demonstrates how larger building blocks can be used to evolve
programs (other possible building blocks for this problem could include
the ‘Swap’ function, commonly used in sort algorithms).

5.4. Test Inputs

The list of test inputs used for fitness testing with sumlist, avelist,
reverse and sort is given in Listing 8. The test set includes a variety of
different length lists and a variety of orderings of the elements with the

NewRepwhole.tex; 31/07/2008; 15:43; p.26

27

Table XII. List of statements used for reverse

Index Statement Additional Genes Form

0 Null

1 Assign wvars,rvars G1 = G2;

2 Add wvars,rvars,rvars G1 = G2 + G3;

3 Subtract wvars,rvars,rvars G1 = G2 - G3;

4 Multiply wvars,rvars,rvars G1 = G2 * G3;

5 Divide wvars,rvars,rvars G1 = G2 / G3 if(G3 != 0);

6 If rvars,cmp,rvars if(G1 G2 G3){

7 For rvars,lsize for G1 (0..G2){

8 End }

Table XIII. Additional Genes for reverse

Index wvars rvars lsize cmp

0 $out[$tmp1] $tmp1 $#in ==

1 $out[$#in - $tmp1] $tmp2 !=

2 $out[$tmp2] $in[$tmp1] >

3 $out[$#in - $tmp2] $in[$#in - $tmp1] <

4 $in[$tmp2] >=

5 $in[$#in - $tmp2] <=

6 $out[$tmp1]

7 $out[$#in - $tmp1]

8 $out[$tmp2]

9 $out[$#in - $tmp2]

Table XIV. List of statements used for sort

Index Statement Additional Genes Form

0 Null

1 Assign wvars,rvars G1 = G2;

2 If rvars,cmp,rvars if(G1 G2 G3){

3 For counter,lsize for G1 (0..G2){

4 Double counter,lsize,counter for G1 (0..G2){ for G3 (G1+1..G2){

5 End }

NewRepwhole.tex; 31/07/2008; 15:43; p.27

28

Table XV. Additional Genes for sort

Index wvars rvars counter lsize cmp

0 $in[$tmp1] $in[$tmp1] $tmp1 $#in ==

1 $in[$tmp2] $in[$tmp2] $tmp2 !=

2 $tmp3 $tmp1 >

3 $tmp4 $tmp2 <

4 $tmp3 >=

5 $tmp4 <=

Listing 8: Set of test input lists for sumlist, avelist, reverse and sort

[4 ,3 ,2 ,1] ,
[1 ,2 ,55 ,3] ,
[1 ,999 ,2 ,3] ,
[71 ,1 ,2 ,3] ,
[1 ,2 ,33] ,
[100 ,88 ,211] ,
[100 ,1 ,2] ,
[13 ,7] ,
[5 ,55] ,
[10]

lists i.e. the largest and smallest elements are not always in the same
locations.

The set of test inputs for listmax and listmin is given in Listing 9.
The test set includes lists of varying lengths with both positive and neg-
ative integers. The number of tests used can affect the performance of
the GP from both the perspective of overall time to evaluate fitness and
the number of generations required to evolve a fully fit solution. The
results, in this case, show that the number of test cases was sufficient.

Listing 9: Set of test input lists for listmax and listmin

[1 ,4 ,2 ,32 ,345] ,
[−42,−34,−12,−235] ,
[46 ,0 ,2 ,23] ,
[54 ,13 ,1 ,24 ,235 ,35] ,
[12 ,245 ,6]

NewRepwhole.tex; 31/07/2008; 15:43; p.28

29

Listing 10: Set of verification input lists for all tests

[−52 ,15] ,
[−36 ,59 ,49 ,−3] ,
[29] ,
[24 ,−1 ,60 ,−72 ,−63] ,
[−43 ,54 ,−11 ,−16 ,56] ,
[45 ,17 ,82 ,58 ,28 ,84 ,21 ,67 , −98] ,
[13 ,−52 ,47 ,−34] ,
[32 ,16 ,−64 ,−11 ,−53 ,−32 ,45 ,61 ,−36] ,
[76 ,20 ,−44 ,8] ,
[14 ,−88 ,−20 ,51]

Finally, Listing 10 shows the list of verification inputs used to check
solutions that have achieved maximum performance with the test in-
puts.

6. Results

This section presents the results of the experiments to evolve the various
list evaluation and manipulation functions. For consistency the first run
(seed 0) is always used as the example solution. All examples are shown
with their wrapper code included. Table XVI presents a summary of
the results for the fifty runs of each experiment. Table XVII shows the
number of runs that gained 100% fitness on the verification test set.

For sumlist, all the runs evolve a fully fit individual within a very
small number of generations (and a very short time). Even though all
the results are achieved very quickly, there is still some considerable
variation in the values. This is the expected result due to the non-
deterministic nature of GA and GP. Only two of the evolved solutions
failed to achieve 100% fitness on the verification set.

Listing 11 shows an example individual evolved. Taking into account
that the first two lines of code are redundant, as is the nested ‘If’
statement and its contents, the resultant program is the same as might
be written by a ‘real’ programmer and will, therefore, find the sum of
any input list.

For avelist, the results are typically slightly slower than those of the
sumlist function (although the mean runtime is significantly larger due
to two of the runs failing to find an optimal solution). All the other
runs produced a fully fit individual in a fast time and few generations.

NewRepwhole.tex; 31/07/2008; 15:43; p.29

30

Table XVI. Results summary from 50 runs of each experiment

Mean S.D. Median Min Max

Sumlist Runtime (s) 1.35 1.09 1.04 0.07 5.55

Generations 121.08 96.04 94.5 6 493

Avelist Runtime (s) 63.06 131.55 9 0.45 639.17

Generations 5198.64 10355.44 816.5 43 50000

Listmax Runtime (s) 0.87 0.66 0.63 0.1 4

Generations 129.12 95.68 94 16 576

Listmin Runtime (s) 2.23 2.91 1.29 0.13 17.34

Generations 334 430.59 199 19 2552

Reverse Runtime (s) 1.84 1.6 1.4 0.14 8.81

Generations 116.76 102.45 91.5 9 570

Sort Runtime (s) 361 270.27 298.03 30.96 947.1

Generations 19137.74 14282.48 16002.5 1661 50000

Table XVII. Number with 100% verification score (out of 50)

Sumlist Avelist Listmax Listmin Reverse Sort

48 48 28 47 44 22

Listing 12 shows an example of a generated fully fit individual.
The first three lines of code are redundant to the functionality of the
program and the remaining code is as would be expected (assuming a
valid input to the function) if the function was ‘hand-coded’.

For listmax, all runs produce a fully fit individual in a very short
time. The performance is similar to that of sumlist and avelist. 28 out
of the 50 runs resulted in a solution that achieved a 100% score on the
verification set.

Listing 13 gives an example fully fit individual evolved by the GP.
This particular example works with the test input set and other similar
lists but not in the general case. For example, the list [-1,3,2,1]

returns the value 1. However, some of the functions evolved do return
the correct value in the general case (this was determined by inspection
of the functions).

For listmin, the number of generations and running times are slightly
higher than the listmax experiment but not significantly. 47 of the runs
achieved a 100% score on the verification set.

An example fully fit program evolved is given in Listing 14. As
with listmax, this example does not completely solve the problem but

NewRepwhole.tex; 31/07/2008; 15:43; p.30

31

Listing 11: Example solution for sumlist, Seed 0

Header
my @ l i s t = @{ $ t e s t [$t] } ;
my $sum = 0 ;
my $ s i z e = $#l i s t +1;
my $tmp = 0 ;

Evolved Code
$sum = $ s i z e ;
$sum = $tmp ;
f o r $tmp (0 . . $#l i s t){

$sum = $sum + $ l i s t [$tmp%($#l i s t +1)] ;
i f ($ l i s t [$tmp%($#l i s t +1)] <

$ l i s t [$tmp%($#l i s t +1)]){
f o r $tmp (0 . . $#l i s t){
}

}
}

Footer
re turn $sum ;

Listing 12: Example solution for avelist, Seed 0

Header
my @ l i s t = @{ $ t e s t [$t] } ;
my $ave = 0 ;
my $ s i z e = $#l i s t +1;
my $tmp = 0 ;

Evolved Code
$ave = $tmp + $ave ;
f o r $tmp (0 . . $#l i s t){
}
f o r $tmp (0 . . $#l i s t){

$ave = $ l i s t [$tmp%($#l i s t +1)] + $ave ;
}
$ave = $ave / $ s i z e i f ($ s i z e != 0) ;

Footer
re turn $ave ;

NewRepwhole.tex; 31/07/2008; 15:43; p.31

32

Listing 13: Example solution for listmax, Seed 0

Header
my @ l i s t = @{ $ t e s t [$t] } ;
my $max = 0 ;
my $tmp1 = 0 ;
my $tmp2 = 0 ;

Evolved Code
f o r $tmp2 (0 . . $#l i s t){

i f ($ l i s t [$tmp1%($#l i s t +1)] <=
$ l i s t [$tmp2%($#l i s t +1)]){

$max = $ l i s t [$tmp2%($#l i s t +1)] ;
i f ($tmp2 >= $max){

i f ($ l i s t [$tmp1%($#l i s t +1)] == $max){
$max = $ l i s t [$tmp2%($#l i s t +1)] ;
f o r $tmp1 (0 . . $#l i s t){
}

}
}

}
}

Footer
re turn $max ;

does work with all of the test inputs. Some of the solutions not only
satisfy the test data but can be manually proven to conform to the
specification.

For reverse, the runs all evolve fully fit individuals very quickly
(both in terms of time and generations). This, slightly unexpected,
performance is most likely due to the inclusion of the L[#L-n] variables,
which would appear to make the problem much easier. 44 of the runs
produced a program that achieved a 100% score on the verification set.

Listing 15 gives an example individual evolved. When the redundant
parts are removed the function appears similar to the expected general
solution, with the inclusion of a few additional statements that do not
affect the functionality.

For the sort experiment, it is clear that this problem is much harder
for the GP to solve. The times and number of generations required to
evolve a fully fit individual are considerably higher than the previous
experiments. However, all of the runs still produce a fully fit individual

NewRepwhole.tex; 31/07/2008; 15:43; p.32

33

Listing 14: Example solution for listmin, Seed 0

Header
my @ l i s t = @{ $ t e s t [$t] } ;
my $min = 0 ;
my $tmp1 = 0 ;
my $tmp2 = 0 ;

Evolved Code
f o r $tmp2 (0 . . $#l i s t){

i f ($tmp2 != $ l i s t [$tmp1%($#l i s t +1)]){
$min = $ l i s t [$tmp1%($#l i s t +1)] ;
f o r $tmp2 (0 . . $#l i s t){

i f ($min > $ l i s t [$tmp2%($#l i s t +1)]){
$min = $ l i s t [$tmp2%($#l i s t +1)] ;

}
}

}
}

Footer
re turn $min ;

within the number of generations allowed. The increased difficulty is
possibly due to there being a small number of correct solutions in the
set of all possible genomes. In addition, there could be local minima
around the optimal solutions, which would make it difficult for the GP

to produce perfect individuals quickly. Only 22 of the runs produced a
100% fitness score on the verification set.

Listing 16 shows an example solution from the sort experiment.
This is nearly the same as a ‘bubble’ sort, however, the inclusion of
the two additional ‘If’ statements in the body of the ‘Double’ loop
means that the function will not work in all cases. Some of the runs did
evolve solutions that work in the general case. All of the solutions are
variations on the ‘bubble’ sort. This is most likely due to the constraints
of the language subset used. However, it is interesting to note that not
all of the solutions took advantage of the ‘Double’ statement.

6.1. Summary of results

To summarise, a set of list evaluation and manipulation functions were
evolved, with the interesting feature that they needed to be completely

NewRepwhole.tex; 31/07/2008; 15:43; p.33

34

Listing 15: Example solution for reverse, Seed 0. All of the list indices
are taken modulo the size of the list, however this code is not shown
for clarity

Header
my @in = @{ $ t e s t [$t] } ;
my @out = () ;
my $tmp1 = 0 ;
my $tmp2 = 0 ;

Evolved Code
$out [($#in − $tmp2)] = $out [($#in − $tmp2)] ;
f o r $tmp1 (0 . . $#in){

i f ($ in [($#in − $tmp2)] < $in [$tmp1]) {
}
$out [$tmp1] = $tmp2 + $in [($#in − $tmp1)] ;
i f ($ in [$tmp2] <= $in [$tmp2]) {

$out [$tmp1] = $out [($#in − $tmp1)] /
$ in [$tmp2] i f ($ in [$tmp2] != 0) ;

$out [$tmp1] = $in [($#in − $tmp1)] ;
}

}

Footer
re turn @out ;

correct to be useful. The experiment showed that it was possible to
evolve these functions, with this constraint, in a reasonably short amount
of time. The sort function, however, showed that as the complexity
of the problem rises, the time to solve the problem also rises quite
sharply. This suggests that more complex problems would be nearly
impossible to evolve as one block of code. There are two approaches
to combating this problem. Either the larger functions can be evolved
from smaller blocks of code and calls to previously evolved functions or
the problem can be broken down into a series of smaller problems that
can be evolved, possibly in parallel. This is addressed in Section7.

7. Addressing Scalability

One approach to scalability is to define the requirements for the func-
tion in a hierarchical way, so that the function can be evolved from

NewRepwhole.tex; 31/07/2008; 15:43; p.34

35

Listing 16: Example solution for sort, Seed 0. All of the list indices are
taken modulo the size of the list, however this is not shown in the code
for clarity

Header
my @in = @{ $ t e s t [$t] } ;
my $tmp1 = 0 ;
my $tmp2 = 0 ;
my $tmp3 = 0 ;
my $tmp4 = 0 ;

Evolved Code
f o r $tmp2 (0 . . $#in){

f o r $tmp1 ($tmp2+1. . $#in){
i f ($ in [$tmp2] > $in [$tmp1]) {

i f ($ in [$tmp1] != $tmp2){
$tmp3 = $in [$tmp1] ;

}
i f ($tmp3 <= $in [$tmp2]) {

$in [$tmp1] = $in [$tmp2] ;
}
$in [$tmp2] = $tmp3 ;

}
}

}

Footer
re turn @in ;

sub-functions. This is relatively easy to do with a formal specification
of the function. For example, the post-condition for avelist might look
like

post-avelist(L, s) , s = sumlist(L)/#L

and the sumlist function would be added to the language subset avail-
able. In addition, compound statements can be used such as the ‘Dou-
ble’ statement in the previous experiments.

7.1. Sort with ‘Swap’ Function

As an example of using functions and compound statements to improve
the performance of the evolution process, the sort example from the
previous experiments, is extended. The GP was already using the com-

NewRepwhole.tex; 31/07/2008; 15:43; p.35

36

Table XVIII. Results summary from 50 runs of sort with swap experiment

Mean S.D. Median Min Max

Sort (with swap) Runtime 6.9 5.4 5.95 0.22 25.26

Generations 334.74 258.36 296 11 1270

Listing 17: Example of the sort function using ‘Swap’, Seed 1

i f ($ i n l i s t [$tmp2] >= $tmp3){
f o r $tmp2 (0 . . $#i n l i s t){

f o r $tmp1 ($tmp2+1. . $#i n l i s t){
i f ($ i n l i s t [$tmp2] > $ i n l i s t [$tmp1]) {

swap ($ i n l i s t [$tmp1] , $ i n l i s t [$tmp2]) ;
}

}
}

}

pound ‘Double’ statement. To the previously used set of statements is
added the function ‘Swap’, which is common to many sort functions,
and swaps two elements of a list. The rest of the language subset and
test input is left unchanged (see Tables XIV, XV and Listing 8). The
fitness function also remains unchanged (see Listing 7).

Table XVIII shows a summary of the results of the 50 runs of the
experiment. It can be clearly seen that the introduction of the ‘Swap’
function had a dramatic impact on the performance of the GP. From
an average number of generations of 19138, and an average time of
361s in the original experiment, the average number of generations is
now just 335 and the average time is just 7s. This is an improvement
of roughly two orders of magnitude. In addition, 24 out of 50 passed
verification.

Listing 17 shows an example function generated. Apart from the
surrounding ‘If’ statement, the code is the expected ‘bubble’ sort using
the ‘Swap’ function to exchange elements of the list.

8. Discussion and Conclusions

A representation for programs, along with a mapping between the
genome and phenome, has been presented. The representation has the
benefits of explicitly inheritable characteristics, easy mapping between
the genome and phenome, support for arbitrary genetic operators, and

NewRepwhole.tex; 31/07/2008; 15:43; p.36

37

the ability to represent programs in any language. This representation
was shown to have better inheritance characteristics between individ-
uals than systems such as Grammatical Evolution [37]. In addition, all
genomes map to a complete program without reusing genes or randomly
extending the genome.

A series of functions was evolved that were more traditional pro-
gramming problems than traditional GP problems. The functions had
the need for a 100% fitness value over the given set of test inputs to be
considered useful, although even when this condition is met it is difficult
to guarantee that the function matches the specification for all inputs.
However, this problem is not unique to the evolution of functions, when
humans write computer programs the same problem exists. Previous
researchers (e.g. Koza [24]) have applied GPs to problems where the
solutions have a better/worse classification (such as ‘Traveling Sales-
man’) rather a right/wrong classification. The experiments presented
in this paper have shown that GPs can be applied to a wider selection
of programming problems.

A method of dealing with scalability issues was briefly introduced,
which evolved larger functions from more abstract code segments such
as compound statements and function calls. This showed a dramatic
improvement from the previously presented version of the experiment.

One of the biggest problems highlighted by the experiments is that
an individual gaining a 100% fitness value isn’t always correct in the
general case. This is due to the test input set not being exhaustive (if
it were, the time to fitness test an individual would be impractical).
In addition to the dramatic improvement in the time to evolve the
sort program from basic building blocks the addition of the compound
statement as a basic element resulted in a significant increase in the
number of solutions that could be validated.

References

1. Angeline, P. J. and J. B. Pollack: 1992, ‘The evolutionary induction of subrou-
tines’. In: J. Kruschke (ed.): Proceedings of the Fourteenth Annual Conference
of the Cognitive Science Society. Lawrence Erlbaum, Hillsdale, NJ, USA.

2. Banzhaf, W.: 1993, ‘Genetic Programming for Pedestrians’. In: S. Forrest
(ed.): Proceedings of the 5th International Conference on Genetic Algorithms,
ICGA-93. Morgan Kaufmann, University of Illinois at Urbana-Champaign, p.
628.

3. Banzhaf, W., P. Nordin, R. Keller, and F. Francone: 1998, Genetic Program-
ming — An Introduction; On the Automatic Evolution of Computer Programs
and its Applications. Morgan Kaufmann.

4. Cooke, D.: 1998, Constructing Correct Software: the basics. London, UK:
Springer-Verlag.

NewRepwhole.tex; 31/07/2008; 15:43; p.37

38

5. Cooper, J. and C. Hinde: 2003, ‘Improving genetic algorithms’ efficiency using
intelligent fitness functions’. In: P. Chung, C. Hinde, and M. Ali (eds.): 16th
International Conference on Industrial and Engineering Applications of Arti-
ficial Intelligence and Expert Systems, IEA/AIE ’03, Loughborough, UK, June
23-26, 2003, Proceedings. Springer, Berlin, pp. 636–644.

6. Cramer, N.: 1985, ‘A Representation for the Adaptive Generation of Simple
Sequential Programs’. In: J. Grefenstette (ed.): Proceedings of the First In-
ternational Conference on Genetic Algorithms. Lawrence Erlbaum Associates,
Inc., Mahwah, NJ, USA, pp. 183–187.

7. Fogel, D.: 1998, The Fossil Record. IEEE Press.
8. Fogel, L., A. Owens, and M. Walsh: 1966, Artificial Intelligence Through

Simulated Evolution. John Wiley & Sons, Inc.
9. Freeman, J. J.: 1998, ‘A linear representation for GP using context free gram-

mars’. In: J. Koza, W. Banzhaf, K. Chellapilla, K. Deb, D. Fogel, M. Garzon, D.
Goldberg, H. Iba, and R. Riolo (eds.): Genetic Programming 1998: Proceedings
of the third annual conference. Morgan Kaufmann, San Francisco, CA, pp.
72–77.

10. Friedberg, R.: 1958, ‘A Learning Machine: Part I.’. IBM J. Research and
Development 2(1), 2–13.

11. Friedberg, R., D. B., and T. North: 1959, ‘A Learning Machine: Part II.’. IBM
J. Research and Development 3(3), 282–287.

12. Fujiki, C.: 1986, ‘An Evaluation of Holland’s Genetic Operators Applied to a
Program Generator’. Master’s thesis, University of Idaho, Moscow, ID.

13. Fujiki, C. and J. Dickinson: 1987, ‘Using the Genetic Algorithm to Generate
LISP Source Code to Solve the Prisoner’s Dilemma’. In: J. Grefenstette (ed.):
Genetic Algorithms and their Applications: Proc. of the 2nd Intern. Conf. on
Genetic Algorithms. Lawrence Erlbaum, pp. 236–240.

14. Gross, R., K. Albrecht, W. Kantschik, and W. Banzhaf: 2002, ‘Evolving
Chess Playing Programs’. In: W. B. Langdon, E. Cantú-Paz, K. Mathias,
R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J.
Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and
N. Jonoska (eds.): GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference. Morgan Kaufmann, pp. 740–747.

15. Harrison, M.: 1978, Introduction to Formal Language Theory. London, UK:
Addison Wesley.

16. Hemberg, M., U. M. O’Reilly, and P. Nordin: 2001, ‘GENR8: A Design Tool for
Surface Generation’. In: H. Beyer, E. Cantu-Paz, D. Goldberg, S. Parmee, and
D. Whitley (eds.): Late Breaking Papers, GECCO 2001. Morgan Kaufmann.

17. Hinklin, J.: 1986, ‘Application of the Genetic Algorithm to Automatic Program
Generation’. Master’s thesis, University of Idaho, Moscow, ID.

18. Holland, J.: 1975, Adaption in Natural and Artificial Systems. The University
of Michigan Press.

19. Jones, S. and C. Hinde: 2007, ‘Preservation of schemata using introns’.
In: G.M.Coghill (ed.): Proceedings of the 2007 workshop on Computational
Intelligence. University of Aberdeen, London, England.

20. Kantschik, W. and W. Banzhaf: 2001, ‘Linear-Tree GP and its comparison
with other GP structures’. In: J. F. Miller, M. Tomassini, P. L. Lanzi, C.
Ryan, A. G. B. Tettamanzi, and W. B. Langdon (eds.): Genetic Programming,
Proceedings of EuroGP’2001, Vol. 2038 of LNCS. Springer-Verlag, Berlin, pp.
302–312.

NewRepwhole.tex; 31/07/2008; 15:43; p.38

39

21. Kantschik, W. and W. Banzhaf: 2002, ‘Linear-Graph GP - A new GP Struc-
ture’. In: J. F. Miller, M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B. Tettamanzi,
and W. B. Langdon (eds.): Genetic Programming, Proceedings of EuroGP’2002,
Vol. 2278 of LNCS. Springer-Verlag, Berlin, pp. 83–92.

22. Keijzer, M. and M. Cattolico: 2002, ‘An example of the use of context-sensitive
constraints in the ALP system’. In: Grammatical Evolution Workshop, GECCO
2002. Morgan Kaufmann, San Francisco, CA 94104, USA.

23. Keller, R. E. and W. Banzhaf: 1996, ‘Genetic Programming using Genotype-
Phenotype Mapping from Linear Genomes into Linear Phenotypes’. In: Genetic
Programming. The MIT Press, Cambridge, MA:.

24. Koza, J.: 1989, ‘Hierarchical Genetic Algorithms Operating on Populations of
Computer Programs’. In: N. Srindharan (ed.): Proc. of the 11th Intern. Joint
Conf. on Artificial Intelligence. Morgan Kaufmann, San Francisco, CA 94104,
USA, pp. 768–774.

25. Koza, J.: 1992, Genetic Programming: On the Programming of Computers by
means of Natural Selection. MIT Press.

26. Koza, J.: 1994, Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press.

27. Koza, J., D. Andre, F. Bennett, and M. Keane: 1999, Genetic Programming
3: Darwinian Invention and Problem Solving. San Francisco, CA 94104, USA:
Morgan Kaufmann.

28. Montana, D.: 1995, ‘Strongly Typed Genetic Programming’. Evolutionary
Computation 3(2), 199–230.

29. Niehaus, J. and W. Banzhaf: 2001, ‘Adaption of Operator Probabilities in
Genetic Programming’. In: J. F. Miller, M. Tomassini, P. L. Lanzi, C. Ryan,
A. G. B. Tettamanzi, and W. B. Langdon (eds.): Genetic Programming, Pro-
ceedings of EuroGP’2001, Vol. 2038 of LNCS. Springer-Verlag, Berlin, pp.
325–336.

30. Nordin, J. P.: 1995, ‘A Compiling Genetic Programming System that Directly
Manipulates the Machine code’. In: J. K. Kinnear (ed.): Proceedings of the
Sixth International Conference of Genetic Algorithms. MIT Press, Cambridge.

31. O’Neill, M., T. Brabazon, C. Ryan, and J. J. Collins: 2001, ‘Developing a
Market Timing System using Grammatical Evolution’. In: H. Beyer, E. Cantu-
Paz, D. Goldberg, S. Parmee, and D. Whitley (eds.): Proceedings of GECCO
2001. Morgan Kaufmann, San Francisco, CA 94104, USA.

32. O’Neill, M. and C. Ryan: 1999, ‘Evolving Multi-line Compilable C Programs’.
In: R. Poli, P. Nordin, W. B. Langdon, and FogartyT.C. (eds.): Genetic Pro-
gramming, Proceedings of EuroGP’99, Vol. 1598 of LNCS. Springer-Verlag,
Berlin, pp. 83–92.

33. Paterson, N. and M. Livesey: 1996, ‘Distinguishing Genotype and Phenotype
in Genetic Programming’. In: J. Koza, D. Goldberg, D. Fogel, and R. Riolo
(eds.): Late-breaking Papers, Genetic Programming 1996: Proceedings of the
First Annual Conference. MIT Press, Cambridge, MA:.

34. Paterson, N. and M. Livesey: 1997, ‘Evolving caching algorithms in C by
genetic programming’. In: Genetic Programming 1997. Morgan Kaufmann,
San Francisco, CA 94104, USA, pp. 262–267.

35. Perkis, T.: 1994, ‘Stack-based Genetic Programming’. In: IEEE World
Congress on Computational Intelligence. IEEE Press, pp. 148–153.

36. Ross, B.: 1999, ‘Logic-based Genetic Programming with Definite Clause
Translation Grammars’. Technical Report CS-99-92, Brock University.

NewRepwhole.tex; 31/07/2008; 15:43; p.39

40

37. Ryan, C., J. Collins, and M. O’Neill: 1998a, ‘Grammatical Evolution: Evolving
Programs for an Arbitrary Language’. In: W. Banzhaf, R. Poli, M. Schoenauer,
and T. Fogarty (eds.): EuroGP ’98. Springer, Berlin, pp. 83–95.

38. Ryan, C., J. Collins, and M. O’Neill: 1998b, ‘Grammatical Evolution: Solving
Trigonometric Identities’. In: Proceedings of Mendel ’98: 4th International Con-
ference on Genetic Algorithms, Optimization Problems, Fuzzy Logic, Neural
Networks and Rough Sets. Technical University of Brno, Brno, Czech Republic,
pp. 111–119.

39. Smith, S.: 1983, ‘Flexible Learning of Problem Solving Heuristics Through
Adaptive Search’. In: A. Bundy (ed.): IJCAI. William Kaufmann, Los Altos,
CA:, pp. 422–425.

40. Syswerda, G.: 1989, ‘Uniform Crossover in Genetic Algorithms’. In: J. Schaffer
(ed.): Proceedings of Third International Conference on Genetic Algorithms.
Morgan Kaufmann, San Francisco, CA, USA, pp. 2–9.

41. Teller, A. and M. Veloso: 1995, ‘PADO: Learning tree structured algorithms for
orchestration into an object recognition system’. Technical Report CMU–CS–
95, Department of Computer Science, Carnegie Mellon University, Pittsburgh,
PA.

42. Wall, L., T. Christiansen, and R. Schwartz: 1996, Programming Perl. O’Reilly
& Associates Inc., second edition.

43. Whigham, P.: 1995, ‘Grammatically-based Genetic Programming’. In: J. Rosca
(ed.): Proceedings of the Workshop on Genetic Programming: From Theory to
Real-World Applications. National Resource Laboratory for the Study of Brain
and Behavior, pp. 33–41.

44. Wineberg, M. and F. Oppacher: 1994, ‘A representation scheme to perform
program induction in a canonical genetic algorithm’. In: Y. Davidor, H.-P.
Schwefel, and M. Schwefel (eds.): Parallel problem solving from nature III, Vol.
866 of Lecture Notes in Computer Science. Springer, Berlin, pp. 86–96.

45. Wineberg, M. and F. Oppacher: 1996, ‘The benefits of computing with Introns’.
In: J. Koza, D. Goldberg, D. Fogel, and R. Riolo (eds.): Genetic programming
1996: Proceedings of the First Annual Conference. The MIT Press, Cambridge,
MA:, pp. 410–415.

46. Withall, M., C. Hinde, and R. Stone: 2004, ‘Evolving the user interface’. In:
M. Withall and C. Hinde (eds.): Proceedings of the 2004 UK Workshop on
Computational Intelligence. Loughborough University, Loughborough, pp. 86–
96.

47. Yu, T.: 2001, ‘Polymorphism and Genetic Programming’. In: J. F. Miller,
M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B. Tettamanzi, and W. B. Lang-
don (eds.): Genetic Programming, Proceedings of EuroGP’2001, Vol. 2038.
Springer-Verlag, Berlin, pp. 218–233.

NewRepwhole.tex; 31/07/2008; 15:43; p.40

