
An Approach to Compute User Similarity for GPS
Applications

Pramit Mazumdar1a, Bidyut Kr. Patraa, Russell Lockb, Korra Sathya Babua

aNational Institute of Technology Rourkela, Odisha, India
bLoughborough University, Leicestershire, United Kingdom

Abstract

The proliferation of GPS enabled devices has led people to share locations both
consciously and unconsciously. Large spatio-temporal data comprising of shared
locations and whereabouts are now being routinely collected for analysis. As
user movements are generally driven by their interests, so mining these mobility
patterns can reveal commonalities between a pair of users. In this paper, we
present a framework for mining the published trajectories to identify patterns
in user mobility. In this framework, we extract the locations where a user stays
for a period of time popularly known as the stay points. These stay points
help to identify the interests of a user. The statistics of pattern and check-in
distributions over the GPS data are used to formulate similarity measures for
finding K -nearest neighbors of an active user. In this work, we categorize the
neighbors into three groups namely strongly similar, closely similar and weakly
similar. We introduce three similarity measures to determine them, one for each
of the categories. We perform experiments on a real-world GPS log data to find
the similarity scores between a pair of users and subsequently find the effective
K -neighbors. Experimental results show that our proposed metric outperforms
existing metrics in literature.

Keywords:
GPS data, User Similarity, Semantic Location, Trajectory Pattern Mining

1. Introduction

The Twenty-First century is witnessing a meteoric rise in user generated content,
supporting a myriad of different interests through both specialists and general
online social networks. Popular social networks such as Facebook, Twitter,
Whatsapp, etc. are commonly being used as communication and sharing plat-
forms. In addition to this, the advancement of mobile technology has provided
handheld devices with powerful and precise GPS functionality to log exact user
positions either on user’s request or increasingly without their conscious deci-
sion. This has changed the way people share their check-in locations along with

1Corresponding author

Preprint submitted to Knowledge Based Systems September 16, 2016



Table 1: Sample trajectory data of five users recorded over a given week. Here any entry
L72 denotes that user-2 has checked-in at location-7. The symbol ‘→’ depicts the sequence of
locations visited.

Days Recorded Trajectory
Monday L11 → L21 → L31;L72 → L82;L43 → L53;L14 → L24 → L34;L15 → L25 → L35

Tuesday L41;L72 → L82;L13 → L23 → L33;L44 → L54 → L64;L45

Wednesday L11 → L21 → L31;L72;L13 → L23 → L33;L44;L15 → L25 → L35

Thursday L51 → L61;L12 → L22;L54 → L64

Friday L41;L72 → L82 → L92;L43;L14 → L24 → L34;L45

Saturday L51 → L61;L12 → L22;L73 → L83 → L93;L55 → L65

Sunday L51 → L61;L12 → L22;L73 → L83;L55 → L65

their real time experiences.
Irrespective of the way check-ins are performed in social networks, a user’s

movement can also be identified from the GPS logs of their handheld device and
other navigation systems. For the remainder of this paper, the term ‘check-in’
is exclusively used to represent a user’s precise location of presence at a defined
timestamp. These check-ins bridge the gap between the real world and the on-
line world. The locations recorded over a period of time for any user is usually
termed as his/her historical trajectory. Check-in locations can be categorized
into a number of pre-defined classes or categories such as Restaurant, Stadium,
Hospital, etc. The category of locations visited by users have been used by
researchers to reveal their interests and behavior [1, 2, 3]. The mining of his-
torical data can also be used to provide customized services including location
prediction [4], location recommendations [5], identifying hidden social links [6],
friend recommendations [7], community detection [8], etc. For all of the above
services, finding neighbors of a user who exhibit common interests and behavior
is an important step. Two users are said to be neighbors if they have common
mobility profiles. While analyzing user mobility, instead of using physical loca-
tions, their corresponding categories are used to identify actual user’s interests.
This helps to trace the movement of users who are geographically apart, but
share similar interests. Similarity metrics available in literature only consider
the maximum length of common patterns along with their frequency of occur-
rences [9, 10, 11]. However, existing similarity metrics fail to compute effective
neighbors in a few scenarios as depicted in Table 1.

The example in Table 1 shows the trajectory information of five users (u1,
u2, u3, u4 and u5) over a week in a city. For instance on Thursday, u1, u2 and u4

visit locations 〈L5 → L6〉, 〈L1 → L2〉 and 〈L5 → L6〉 in sequence, respectively.
From the available data many common patterns of movement can be identi-
fied. The goal is to find the nearest neighbor of u1 on the basis of the mobility
patterns. Initially the common mobility patterns between users are gathered.
The user pair (u1, u2) has only 〈L1 → L2〉 as the common mobility pattern.
Similarly, (u1, u3) has two, (u1, u4) has three and (u1, u5) has three common
mobility patterns. It is observed that users with a higher number of common
patterns always have similar (common) interests and are thus closer to each

2



other. Thus, neither u2 or u3 can be identified as the nearest neighbor to u1.
The patterns 〈L1 → L2 → L3〉, 〈L4〉 and 〈L5 → L6〉 are common to u1, u4 and
u5. Existing works [9, 10, 11] consider the frequency for each of these common
patterns. We argue that the number of days on which check-ins are performed
is an important criteria for similarity analysis. We further explore the example
to identify the distribution of check-ins by the users. In the given example, the
pattern 〈L1 → L2 → L3〉 has been followed by u1 and u5 on {Monday, Wednes-
day} and by u4 on {Monday, Friday}. The pattern 〈L4〉 has been followed by u1

and u5 on {Tuesday, Friday}, and by u4 on {Tuesday, Wednesday}. Lastly, the
pattern 〈L5 → L6〉 has been followed by u1 on {Thursday, Saturday, Sunday},
u4 on {Tuesday, Thursday} and by u5 on {Saturday, Sunday}. Thus, we deter-
mine that the pair (u1, u4) has common mobility patterns only on three days
namely, Monday, Tuesday and Thursday. Whereas, pair (u1, u5) has common
mobility patterns on all days of the week except on Thursday. Therefore, u5

can be considered as the nearest neighbor of u1. Thus, for GPS applications
with spatio-temporal data, the count of common mobility patterns and their
frequencies are not sufficient to compute the similarity between users.

In this work, we extract stay points (locations) where users have stayed for
a period of time. A stay point consists of the latitude/longitude information
and the time of visit. Next, each of these physical locations are classified into
effective location categories. From the obtained sequence of categories, we per-
form sequential pattern mining to gather the most frequently occurring check-in
patterns for each user. Using the obtained patterns and the every day distribu-
tion of check-ins, we formalize three similarity metrics to categorize neighbors
into three groups. Common mobility patterns and their frequency of occur-
rence have been used to compute the similarity score. Our first measure, which
is intended to find the weakly similar category of neighbors considers these two
parameters, however, it computes the score in a different way. In the second
intuition for finding similar neighbors, we add the knowledge of how frequently
the users are travelling. Our final intuition for finding the strongly similar cat-
egory of neighbors deals with the category of locations visited by the users on
each day in a week.

The contributions are summarized as follow.

1. A Stay Point Extraction (SPE) algorithm is proposed to select locations
where a user stays for a period of time. The proposed SPE overcomes the
drawbacks of using threshold by introducing one more term ‘significance
score’.

2. Existing approaches using the raw trajectory data fail to identify a user’s
interest in visiting them. Thus, we use nearest neighbor approach to
identify the category of a stay point.

3. A seminal sequential pattern mining algorithm [27] is exploited to find the
frequent mobility patterns of a user.

3



4. Three similarity measures have been proposed highlighting their need in
different scenarios. The length of common patterns along with their fre-
quency of occurrence are considered in the Relative Importance-based Sim-
ilarity (RIS) metric. We extend this RIS measure by estimating the
distribution of patterns over the number of days on which check-ins are
recorded. We term this as a common Pattern Distribution-based Similar-
ity (PDS) metric. Finally, we propose the Check-in Distribution-based
Similarity (CDS) metric. It considers the distribution of visited locations
on the particular days of a week, on which the common patterns are iden-
tified. As it adds more granular facts, including the check-in distributions
along with the RIS measure, hence we treat this CDS based measure as
the most effective and accurate. Further, we group the neighbors into
three categories namely strongly similar, closely similar and weakly simi-
lar on the basis of the three proposed similarity metrics. These categories
are utilized to rank the K -nearest neighbors.

5. Experiments were performed on a real-world Geolife dataset to evaluate
the proposed framework. We compare the proposed metrics with other
similarity metrics in literature. Results show that our metrics outperform
the existing measures.

The rest of the paper is organized as follows. In Section 2, we survey related
works on modeling user behavior and also the different approaches for finding
nearest neighbors. Motivation for our current research, along with the problem
of finding stay points are discussed in Section 3. The proposed framework
for finding nearest neighbors, along with algorithms and their explanations are
described in Section 4. In Section 5, the performance of the proposed framework
is evaluated using a GPS trajectory dataset. The evaluation approach along
with the obtained results and their detailed discussions are also provided in this
section. Finally, we conclude our work in Section 6.

2. Related Work

The task of finding nearest neighbors has two parts, modeling the behavior
of users and then proposing a metric to compare their pairwise similarity. In
this section we explore recent works which model user behavior from visited
locations, and subsequently highlight the existing similarity measures along with
their limitations.

2.1. Modeling User Behavior

There have been numerous efforts to model the behavior of users from their
location histories either recorded from GPS trajectories or shared through so-
cial networks. User behavior analysis is performed in three phases [1, 2, 12].
First, the semantics of each visited location is revealed. Second, they predict the
path of future movement and finally analyze the user’s activities. These works
consider the visited locations independently, instead of the patterns within it.

4



Identifying patterns from existing trajectories can provide a better understand-
ing of mobility behavior. Giannotti et al. [13] propose sequential pattern mining
algorithms for mining trajectories of moving objects. Frequently occurring se-
quential patterns have been analyzed in [9, 10, 14, 15]. However, the short and
frequent movements of users identify more important behaviors. Existing works
in [16, 17, 18] consider routine patterns of movement for analyzing user mobility.

Zheng et al. [19] propose a personalized friend and location recommender
system for the Geographical Information Systems (GIS). In their HGSM frame-
work, to model the recorded GPS points of user mobility they introduce the
concept of stay point. A stay point is any location within a trajectory which
represents a region or a geographical area where a user has potentially stayed
for a period of time. After identifying these stay points, they are clustered using
the standard density based clustering approach. Each such clusters is named
as a stay region or stay location. For each user the framework develops a per-
sonal hierarchical graph. Each level of this hierarchical graph consists of stay
regions. The common stay regions are identified to analyze user mobility. How-
ever, it considers each stay region independently, instead of considering them as
a sequence.

Lv et al. [20] propose a three phase method to model user behavior and
then compute similarity. Firstly, the locations in a trajectory are grouped into
a confined region. Each of these regions is termed as a stay region. Every
stay region consists of more than one check-ins. However, the approach does
not consider the distance travelled during stay region formation. Selection of a
stay region also depends upon the speed at which a user is moving. Hence, the
distance along with time can be used as the constraints for identifying a stay
region. Mobility of a user is mostly driven by their interests. Thus, analysis of
frequent patterns can lead to effective similarity computation. Moreover, the
above mentioned approaches do not consider the semantics of visited locations.
We explore the existing similarity computation techniques next.

2.2. Finding Nearest Neighbors

Many approaches have been proposed in literature to measure user similarity
[9, 10, 11, 19, 21, 22, 23]. These measures are generally based upon different
factors of user behavior. Some of these aspects are the set of common locations
visited, the patterns in user movements and frequency with which these patterns
occur.

Li et al. [22] propose a hierarchical graph-based similarity measurement
model, which clusters the visited locations of a user into a hierarchical graph.
They measure similarity as the maximum common length of a path traversed
sequentially. However, the geographic distance between locations and the se-
mantics of popular locations are not considered. Xiao et al. [23] estimate the
similarity score between a pair of users from their GPS trajectories. The tra-
jectories are first modeled using the semantics of the visited locations. Sub-
sequently, the similarity score is computed using the common maximal travel
sequences obtained from the published trajectories. Zheng et al. [19] propose

5



a new sequence mining algorithm for finding frequent sequential patterns from
GPS trajectories. The series of locations visited by a user is represented using a
hierarchical graph structure, which is further used in estimating the similarity
score between a pair of users. During similarity computation more emphasis
is given to the maximum length sequences and common locations travelled by
users.

Ying et al. [9] propose Maximal Semantic Trajectory Pattern (MSTP) sim-
ilarity which computes similarity between a pair of users on the basis of fre-
quently occurring check-in patterns. It first identifies the maximal patterns
from a trajectory. Similarity between these maximal patterns is computed on
the basis of the longest common sequence. Next, the participation ratio of the
longest common part to the sequential pattern is computed. The participation
ratio is computed as the function of the number of sequential patterns having
the longest common sequence in it and the total number of sequential patterns
obtained. Similarity between two sequential patterns is finally obtained from
the average participation ratio of their longest common parts. Similarity be-
tween the common patterns is then weighted by either their support count or
the TFIDF weight. Here support is the count of the number of times a pattern
occurred in each sequence with respect to the total number of sequences. A sim-
ilarity metric generally produces a maximum score between two identical users.
However, the MSTP metric fails to produce maximum similarity between two
identical users [10].

Chen et al. [10] argue that users’ similarity computation based on the weighted
average of pattern similarity fails to identify the nearest neighbor. While com-
puting the similarity score between a pair of users (u1, u2) with respect to u1,
they consider only the most similar maximal pattern out of all the maximal se-
quence patterns of u2. They introduce a concept of relative similarity between
two users. The relative similarity is computed using the length of the longest
common sequences between two users and the support of these patterns to the
users. The similarity score between two users u1 and u2 is computed in three
steps. Firstly, the relative similarity of (u1,u2) with respect to u1 is computed.
Second, the relative similarity between (u1,u2) with respect to u2 is computed.
Finally, the average of the two relative similarity values are used as the final
similarity score. Thus, the proposed similarity metric produces a maximum
similarity score between two identical users. However, two users can never be
considered as identical if they have similar patterns with fairly distinguishing
frequencies. While computing similarity between two users, this measure fails
to consider the difference between the support values of the common patterns.
Therefore, if two users have a similar mobility pattern with different frequency
of visits, still this measure identifies them as identical with maximum similar-
ity score. In the rest of the paper, we term this metric as MTP (Maximal
Trajectory Pattern).

The problem stated above is addressed by Chen et al. in [11]. They propose
a Check-in Pattern based Similarity (CPS ) measure for computing similarity
between a pair of users. It first identifies the common patterns between trajec-
tories. Subsequently, it finds the relative importance of the common patterns to

6



Figure 1: Sample trajectory data of a user u1. It consists of 12 check-ins at different locations
on the same day. The check-ins are depicted with circles, along with the location names.

a user. To estimate the distance between the support values of their common
patterns, a standard similarity metric Bray-Curtis similarity [24] is used. Both
the relative importance and frequency of occurrence of common patterns are
used to finally compute the similarity score between two users. The relative
similarity computation techniques used in [10] and [11] treat the user similarity
score as symmetric. However, similarity score between a pair of users may not
be symmetric always. In addition to that, these measures fail to consider the
distribution of check-ins recorded on each day on which a common pattern is
obtained.

The existing user mobility modeling techniques and metrics for nearest
neighbor identification fail in many scenarios. Detailed descriptions of these
practical scenarios are depicted in the following section.

3. Motivation and Problem Statement

Trajectories obtained from GPS devices consist of locations where a user visits
and stays for a period of time, as well as places through which a user passes by.
Moreover, users passing by common or renowned POI often shares them with
friends for fun. Identifying the locations where a user has visited and stayed for
a specific period of time is therefore an important step for trajectory modeling.

Many researchers in recent years have successfully used the concept of stay
point identification from trajectory data. Figure 1 shows a sample trajectory
data of a user u1. The existing stay point identification technique applied on
the trajectory data of u1 is shown in Figure 2. Although the technique shortens
a trajectory, it does face some critical issues as well. Below we discuss promi-
nent scenarios that are not addressed by the existing stay point identification
technique in [10, 11, 20], subsequently we mention how the proposed approach
provides solution to these limitations.

1. Suppose every day a user drives λD distance from his office to reach an
indoor stadium before returning home. The distance from the stadium to
home is σD. Let us consider the distance threshold selected for defining a

7



Figure 2: The existing stay point identification technique applied on the trajectory of u1

(Figure 1) is shown here. It first marks all the stay regions. Here, we represent the stay
regions as dotted circles. The two stay regions have {L2, L3, L4, L5} and {L8, L9} as the set
of locations, respectively. Subsequently, the stay point for each stay region is identified by
computing the centroid location in it. In this example, the locations R1 and R2 are the two
stay points for stay regions 1 and 2, respectively. We use a dark circle in each stay region
to represent the stay point in it. Thus, the trajectory can be reduced to a sequence of stay
points visited, i.e. R1 → R2. Further, the category for each of the identified stay points are
found. In this example, the user follows the sequence, HIGH STREET → MUSEUM.

stay region is δD, where λD > σD > δD. The existing approach creates
a stay region if it contains more than one locations in it and the distance
from the first location of the stay region to all other locations within it is
less than the threshold δD. Therefore, the indoor stadium can never be
a member of any stay region according to the existing approach. Thus,
the indoor stadium is not considered during the stay point identification
process. However, visiting the indoor stadium is a routine activity, and
also very important in terms of his/her behavior analysis. In our approach
of stay region formation, the significance of a location to a user is taken
into consideration. This allows our approach to select a frequently visited
location (potential stay point) to be in a stay region even though it fails
to meet the thresholds.

2. The stay point in a stay region is computed by taking the mean of its
member location’s co-ordinates. We argue that the centroid of a region
does not identify how important the member location is to a user. In this
work, the location with the highest significance score with respect to a
user and having the shortest distance from a location category is selected
as the stay point in a stay region.

3. The existing stay point identification technique considers only a user’s pre-
cise location where they actually reside. Incidentally, every check-in does
not belong to the commonly known Point of Interests (POI) set. Thus,
correlating the categories in POIs of a city to these stay points can lead
to some unknown locations. Analyzing a trajectory with such unknown
categories does not help in modeling user mobility. In the proposed work,

8



a score for each location in a stay region is computed for determining the
stay point. This reduces the chance of getting unknown locations.

The task of semantic location identification from the stay points is a critical
process, as this finally reveals behavior and interest of a user. Researchers have
used various techniques to acquire the category or semantic information for
each location in a trajectory. Ying et al. [9] uses the MIT reality mining mobile
phone dataset which has user annotated cell names. These cell names are used
as semantic trajectories. Xiao et al. [25] creates a database with 6,828,951 POIs
of 13 different categories which includes restaurant, museum, etc. Lv et al. [20]
develops a website using the Google Maps API, where users can manually record
their trajectory and also name the category of location for the referred places.
Ma et al. [26] in their approach for finding user similarity utilize the Nokia
Ovi Store for mapping the raw trajectories to semantic locations. However,
geographical position of the retrieved category and the point from which the
query is made, is not always the same geographical location. This distance has
been exploited in this work.

Similarity between a pair of users depends upon many factors, including the
mobility patterns, frequency of common behaviors, similar interests, etc. Next,
we point out the limitations of the existing similarity measures and subsequently
mention how they are addressed in this work.

1. Similarity measure in [9] fails to ensure a maximum similarity score for
two identical users. The proposed similarity measures RIS, PDS and
CDS ensure a maximum similarity score for two identical users.

2. Similarity measure in [9] does not consider the support of the common
sequential patterns. The proposed RIS measure considers the length of
all the common frequent patterns along with the support of them. The
PDS and CDS measure is weighted by the RIS measure, and hence the
similarity score obtained from them is also influenced by the support value
of the common frequent patterns.

3. Similarity measures in [10, 11] do not consider the day on which the com-
mon pattern is identified. However, it is noteworthy that users’ movement
during weekends tend to be different compared to a weekday. Therefore,
the day on which a frequent pattern is identified is an important criteria
for similarity score computation. The proposed CDS measure considers
the day on which a common frequent pattern is observed between two con-
cerned users. Users are believed to be closer to each other if they follow
similar movement of patterns on a particular day.

4. Existing similarity measures [9, 10, 11] consider similarity between two
users as symmetric. Similarity depends upon behavior of an individual
and commonality between a pair of users. The proposed similarity mea-
sures RIS, PDS and CDS are not symmetric as these two factors are
incorporated.

9



Figure 3: Framework for finding nearest neighbors of an active user u1.

4. Proposed Framework

The framework for finding nearest neighbors of an active user is depicted in Fig-
ure 3. The proposed framework has two major phases, modeling user trajectory
and identifying top-K nearest neighbors.

4.1. Modeling User Trajectory

In this phase, we model the raw trajectory data into a sequence of predefined
categories. We divide this phase into two modules, stay point extraction and
semantic location identification. In the first module, the stay points of each user
are identified from its trajectory. Subsequently, the location category of these
stay points are identified in the second module.

4.1.1. Stay Point Extraction

The standard approach towards extracting stay points is to first identify the
stay regions and then select the stay points from it. For extracting the stay
regions one can use the density based clustering approach [19]. However, for
behavior analysis generally each cluster is confined by a fixed distance and a
time constraint. Therefore, it is necessary to identify how a user moves across
the clusters. Using a density based clustering approach it is difficult to find
the time when a user moves into a cluster and leaves a cluster. Hence, in this
work we propose an algorithm that uses distance and time thresholds to identify

10



geographic regions where a user stays for a period of time. The thresholds thus
help to identify movement of a user across regions.

User mobility is generally driven by either routine activities or interests.
Staying at home or at a workplace can be identified as routine activities which
a user follows in sequence. In addition to it, the remainder of the places visited
are mostly influenced by their interests. Therefore, we consider identifying the
locations where a user has actually stayed from the available trajectory. For
the sake of readability, we mention a few popularly known terms used to model
user mobility.

Definition 1 (Trajectory). A Trajectory is a spatio-temporal information of se-
quential check-ins performed by a user. It can be represented as, T = 〈T1, T2, ..., Tn〉,
where each check-in Ti = (li, ti), 1 ≤ i ≤ n is a doublet having location l and
time t details.

The trajectory of a user consists of granular locations where a user checks-
in. Behavior analysis considering all these individual locations would be costly
and time consuming. Thus, we need to find more generalized locations that can
effectively reduce the number of candidate locations, as well keep the underlying
interest of users intact. Therefore, the sequential check-ins in a trajectory are
grouped into a confined geographical area termed as a stay region. We reproduce
the definition of stay region as stated in [25].

Definition 2 (Stay Region). A Stay Region (sr) is the geographical cluster
where a user stays for a period of δT bounded by a distance of δD. It may
consist of a series of locations, sr = 〈li, li+1, ......, lj〉 where distance(li, lz) ≤
δD, ∀i < z ≤ j and time(li, lj) ≥ δT . Here, time(li, lj) is the time taken by a
user to move from location li to lj .

Once the stay regions are identified, we need to find the representative points
for each of these regions. By the term representative point, we aim to choose a
location from each stay region that has more chance of getting visited whenever
the user moves within the stay region. This allows us to identify and work with
the significant locations for a user. We thus introduce the term significance
score for locations to depict their importance to a user.

Definition 3 (Significance Score). The significance score of any location l de-
notes the importance of the location to a user u1. It is computed from the
frequency of visiting l in a stay region to the fraction of trajectories of u1 con-
taining the location l. It can be denoted as:

Sig(l) =
|l|

|sr|
∗
|Tl|

|T |
(1)

Here, |l| is the number of times u1 has visited location l (l ∈ sr), and |sr| is
the number of locations in the stay region. The total number of trajectories is
|T | and the trajectories with location l is represented as |Tl|. The significance
score of any location l is thus computed from two parameters. The location

11



frequency is weighted by the ratio of trajectories having the location l in them
to the total number of trajectories. Due to this, the effective significance score
of the most relevant location to a user is maximised. This significance score is
finally used as an important parameter to find the stay points. We approach
the problem of finding a stay point in a different way. First, the locations which
do not fall within any stay region are not directly discarded. If these individual
locations are found to be significant with respect to a user then they are con-
sidered as a stay point. Secondly, for identifying a stay point from a stay region
having multiple locations we compute a Score. The Score of each location in a

stay region is computed as
Sig(l)

D(l)
. Here, l is a location in a stay region sr and

Sig(l) is the significance score of l to an active user. The term D(l) denotes
the distance between the location l and the nearest POI category. The location
with maximum Score is selected as the stay point.

The process of extracting stay points from a trajectory is further illustrated
with an example using Figure 4 and Figure 5. Let us consider, trajectory T
of an active user u1 consists of 12 locations (L1 to L12) along with their time
of check-in. Initially, we set L1 as a member of the first stay region. We keep
on adding locations sequentially to L1 till they satisfy the distance and time
thresholds (δD and δT ). We observe that the distance between L1 and L2 ex-
ceeds δD and the time taken by u1 to move from L1 to L2 is also less than the
time threshold δT . Thus, {L1} forms the first stay region for user u1. Next,
we consider location L2 as our second stay region and start adding locations
to it till the thresholds are satisfied. The second stay region is formed with
locations {L2, L3, L4, L5}. Similarly, we cluster the rest check-ins into effective
stay regions. Stay regions 3 to 8 consists of {L6}, {L7}, {L8, L9}, {L10}, {L11}
and {L12} set of locations, respectively. This is the first step in identifying stay
regions, and the procedure is clearly depicted in Figure 4. Next, we identify the
representative points or the stay points for each stay region in T. For selecting
stay points we consider significance or importance of a location to a user and its
geographic distance from the nearest POI category. The significance score for
each location in a stay region is computed using Equation (1). Locations that
do not satisfy the significance score threshold are removed from respective stay
regions. Therefore, a stay region found from the first step may get discarded if
none of the member locations satisfy the acceptable significance score. Figure 5
depicts such a situation where the stay regions 1, 3, 6 and 8 of Figure 4 are not
considered for further analysis. Thus, from the trajectory of u1 only four stay
regions are obtained. Therefore, the obtained sequence of movement for the
user can be depicted as L3 → L7 → L8 → L11. Next, we discuss the technique
employed for finding categories of the stay points.

4.1.2. Semantic Location Identification

The stay points extracted from a trajectory are a collection of raw physical
locations. Incidentally, finding similarity between users using these raw stay

12



Figure 4: Our proposed stay point identification technique is applied over the trajectory of
u1 (Figure 1). The first step of forming the stay regions are shown in this figure. The
stay regions marked with dotted circles are bounded by two thresholds δD and δT for the
geographic distance and time of travel, respectively.

Figure 5: Continuing with the same example in Figure 4, the stay regions which do not
have any location which satisfies the acceptable significance score are discarded. For each
stay region, the stay points are identified from their significance score and distance from the
retrieved location category. The stay points are highlighted with dark circles, one for each
stay region.

points may not be sufficient to identify the intention or interest of users. Let
us consider two users u1 and u2, moving around two different cities, Leicester
and London. From their trajectory details, it is found that both of them visited
a Book Store followed by a Restaurant. However, the physical location of the
stay points namely, Book Store and Restaurant are geographically spread apart
by a large distance. Thus, similarity measures which consider only the raw
stay points do not identify u1 and u2 as neighbors. However, it is evident that
even though the physical locations of their check-ins are different, they still
share common interests of visiting Book Store and Restaurant. Therefore, in
our proposed framework we first find the categories of stay points and then use
these categories for similarity computation.

We use the Foursquare API to find categories of the stay points. The API

13



ALGORITHM 1: Stay Point Extraction (SPE) algorithm

Input: T : Trajectory of a user u
Result: Stay Points: Series of categories visited by u
Data:

DT, TT, ST is the Distance, Time and Significance Score Threshold;
ls indicates first location of a temporary Stay Region;
le indicates last location of a temporary Stay Region

1 ls = le = First location in T ;
2 Start a temporary Stay Region with ls;
3 for each location l in T except the first location do

4 if dist(ls, l) ≤ DT then

5 Add l to the temporary Stay Region;
6 le = l;

7 else

8 if time(ls, le) ≥ TT then
9 A permanent Stay Region is formed with all locations from ls to le in series;

10 else
11 Permanent Stay Regions are formed for each location ls to le in series;

12 end

13 ls = le = l;
14 Start a new temporary Stay Region with ls;

15 end

16 end

17 for each Stay Region do

18 Compute Sig for each location in current Stay Region;
19 Remove locations from current Stay Region having Sig ≤ ST ;
20 if any location exists in current Stay Region then

21 Compute Score of each location in current Stay Region;
22 catg = Category of the location with maximum Score;
23 Add catg to Stay Points;

24 else

25 Continue with the next Stay Region;
26 end

27 end

28 return Stay Points

stores the experiences shared by its users throughout the world starting from
the locations visited, ratings and tips given to a POI, etc. From May 2014, the
check-ins have been exclusively published from the Swarm platform. It has a
predefined set of categories of the locations that can be explored using the two
endpoints called Venue Search and Venue Explore. Venue Explore is used to
provide details of a location or a defined region. For any physical location, the
Venue Explore method in Foursquare API returns a collection of probable cat-
egories. The API provides the category based on their proximity to the query
location. Our aim is to find a specific category to a given physical location.
In this regard, we apply the nearest neighbor approach for finding category.

14



Details of stay point extraction from a trajectory is depicted in ALGORITHM
1. In the current example (Figure 5), L3, L7, L8 and L11 are the represen-
tative points for each of the four stay regions (represented with dark circles).
Therefore, the obtained sequence of movement for the user can be represented
as, RESTAURANT → HOSPITAL → MUSEUM → STADIUM . It may
be noted here that, this approach selects a visited location and not any arbi-
trary location like the previous approaches (Figure 2). Our approach towards
identifying stay points from trajectories address all the problems mentioned in
Section 3. The trajectories of users are thus reduced and converted from raw
physical locations into meaningful categories. Further, we analyze these seman-
tic trajectories to identify the nearest neighbors.

4.2. Identifying Nearest Neighbors

In this phase, we use the modeled trajectories of each user to identify their neigh-
bors. We divide this phase into four modules, sequential pattern extraction,
matching common patterns, similarity measurement and ranking the neighbors.
In the first module, frequently occurring sequential patterns are extracted. The
common patterns among them are selected on the basis of certain conditions
depicted in the second module. We propose three similarity measures to cat-
egorize the neighbors into three groups in the third module. Finally, the last
module ranks the top-K nearest neighbors by combining members from each
group.

4.2.1. Sequential Pattern Extraction

We apply a sequential pattern mining technique as it can effectively identify
the statistically relevant patterns in user movements. First we present a sample
user trajectory data and describe how it is converted to a sequence database for
input to a sequence mining algorithm. Table 2 contains the trajectory of a user
u1. From the dataset (Table 2), we first find the day on which the check-ins
were recorded and mark them as separate weeks along with the days. LocId is
the unique name given to each location visited by u1. Table 3 shows the Week,
Day and LocId details from the existing dataset in Table 2. Table 4 shows the
sequence database for user u1 generated from Table 3. This sequence database
is presented as input to a sequential pattern mining algorithm for identifying
the frequently occurring movement patterns for a user.

We adopt the basic terms in sequence mining like the item, itemset and
sequence into our problem as follows.

Definition 4 (Locationset). The set of all items in sequential pattern mining is
coined as Locationset in this work. It is the set of locations visited by all users.
It is represented as L = {l1, l2, ..., ln}.

Definition 5 (Event). The Itemset in sequential pattern mining is coined as
Event in this work. An event is a subset of Locationset which contains the set of
locations visited by a user on a day in a particular week. An event E is denoted
by (x1x2 ... xm) where, xk ∈ L, 1 ≤ k ≤ m.

15



Table 2: Trajectory dataset of a user u1.

Date Time Latitude Longitude
03.05.2016 10:12:45 39.98468 116.3185
07.05.2016 14:25:50 39.98461 116.318
08.05.2016 07:23:15 39.98468 116.3185
10.05.2016 13:37:23 39.98461 116.318
14.05.2016 21:07:10 39.98456 116.3175
17.05.2016 16:25:08 39.98456 116.3175
21.05.2016 19:48:17 39.98452 116.3162
24.05.2016 09:11:39 39.98457 116.3156

Table 3: Processed trajectory dataset of user u1.

Date Time Week Day Latitude Longitude LocId
03.05.2016 10:12:45 1 Tuesday 39.98468 116.3185 1
07.05.2016 14:25:50 1 Saturday 39.98461 116.318 2
08.05.2016 07:23:15 1 Sunday 39.98468 116.3185 1
10.05.2016 13:37:23 2 Tuesday 39.98461 116.318 2
14.05.2016 21:07:10 2 Saturday 39.98456 116.3175 3
17.05.2016 16:25:08 3 Tuesday 39.98456 116.3175 3
21.05.2016 19:48:17 3 Saturday 39.98452 116.3162 4
24.05.2016 09:11:39 4 Tuesday 39.98457 116.3156 5

Definition 6 (Sequence). It is an ordered list of events. It is denoted as
〈s1s2 ... sg〉 where, sj is an event and sj ⊆ L, 1 ≤ j ≤ g. A sequence in
this work represents the mobility data of a user on a particular day of every
week spanning over the entire trajectory.

Table 5 shows the mapping between the terms used in this work and the
terms used in sequence mining [27]. A sequence database for a user consists
of at most 7 tuples or sequences. Each tuple represents the sequence followed
by the user on a particular day over all the weeks spanning over its entire
trajectory. For example, a user visits (L1, L2) on Monday of week-1 and then
L3 on Monday of week-2. Therefore, the user has recorded two events (L1, L2)
and (L3). The sequence for Monday is represented as 〈 (L1, L2) L3 〉. Similarly,
separate sequences are generated for other days in which check-ins are recorded.
Therefore, a sequence database can have at most 7 tuples or sequences.

Definition 7 (Support). The Support of a pattern is the number of sequences
in the sequence database containing the pattern.

Next we briefly review the available sequence mining algorithms. The GSP
[28] algorithm creates a large number of candidate sets and also involves multiple
database scans as it is an Apriori based approach. It is therefore very inefficient
for mining large datasets. In SPADE [29], although the number of database
scans are reduced, the generation of a large number of candidate itemsets makes

16



Table 4: Sequence database of user u1. In each sequence we use the LocId instead of the
actual latitude and longitude.

Day Sequence-Id Sequence
Tuesday 1 〈 1 2 3 5 〉
Saturday 2 〈 2 3 4 〉
Sunday 3 〈 1 〉

Table 5: We represent the mapping of the terms used in sequence mining with the terms used
in this work.

Pei et al. [27] Our Work Representation
Items Locationset L = {l1, l2, ..., ln}
Itemset Event E = (x1x2 ... xm), xk ∈ L, 1 ≤ k ≤ m
Sequence Sequence S = 〈s1s2 ... sg〉, sj is an Event, sj ⊆ L, 1 ≤ j ≤ g

it inappropriate for large datasets. FreeSpan [30] and PrefixSpan [27] both are
based on candidate itemset projection technique. FreeSpan recursively projects
the frequent items into smaller datasets. This partitions both the data and the
frequent patterns. However, for projecting a pattern in FreeSpan, it needs to
be kept in the dataset, and hence it becomes costly. PrefixSpan only deals with
the prefix sub-sequences and projects their corresponding postfix sub-sequences.
This reduces both execution time as well as the number of generated candidate
itemsets. Therefore, in this work we use the standard PrefixSpan algorithm to
find the frequently occurring patterns in user mobility.

4.2.2. Matching Common Patterns Between Users

Once the frequently occurring sequential patterns are obtained, the next task is
to select common patterns that are effective for similarity computation. Unlike
the existing techniques, we consider all the frequent patterns for matching the
common patterns. Let a pair of users u1 and u2 have two frequent patterns
p1 and p2 with the same length obtained from their trajectories, respectively.
They can be represented as:

p1 =

〈

x1
∆t1→ x2

∆t2→ .....
∆tn−1

→ xn

〉

p2 =

〈

y1
∆t1→ y2

∆t2→ .....
∆tn−1

→ yn

〉

A pair of patterns can only be considered common if, xk = yk where, 1 ≤ k ≤
n, i.e. the locations at each position of the two patterns are the same, and
|∆tk − ∆tk| ≤ tth, 1 ≤ k ≤ n where, tth is the pattern duration threshold. The
common patterns are further used to compute similarity score between a pair
of users.

17



4.2.3. Similarity Measurement

As mentioned in Section 2.2, the similarity computation depends upon the vis-
ited locations, patterns in movement and their frequency of occurrence. Along
with them, there are certain factors such as the number of days having check-
in information and the locations checked-in on a day can also be exploited to
compute similarity score between a pair of users. Based on those factors we
propose three similarity measures for finding neighbors of a user in various GPS
applications and Location Based Social Networks (LBSN).

I. Relative Importance Based Similarity Measure (RIS)

A pattern having high support can always be treated as the most trav-
elled path for a user. So a similarity calculation on the basis of quantified
frequency of common patterns play an important role. A pattern depicts
a user’s routine movements, and its support assesses their frequencies.
Hence, we use both these elements to represent the mobility of a user. If P
is the set of all frequent patterns, then the mobility of any user u1 can be
written as Mu1

= {(p1, supu1
(p1)), (p2, supu1

(p2)), ....... , (pz , supu1
(pz))},

supu1
(pk) ≥ α and pk ∈ P where, 1 ≤ k ≤ z, α=support threshold. It can

be noted that, each of the locations mentioned in P indicates its category,
which refers to the interest of users and not the physical locations. The
importance of a pattern varies from user to user. Therefore, a common
pattern may not always be equally important to both pairs of users. In
this regard, we introduce the term relative, which first determines the im-
portance of a pattern to a user, and then computes similarity on the basis
of that.

Definition 8 (Relative Importance). The relative importance of the set
of common patterns (CP ) between two users u1 and u2 with respect to
mobility of u1 is computed as the factor of the number of locations covered
by patterns in CP to the total number of patterns obtained, both weighted
by their support values in the mobility of u1.

The Relative Importance (τ ) of common patterns CP with respect to the
mobility of u1 can thus be written as,

τ u2u1
=

∑

p∈CP

length(p) ∗ supu1
(p)

∑

p∈Mu1

length(p) ∗ supu1
(p)

(2)

Users who follow similar mobility patterns over more number of days are
believed to be close neighbors. Incidentally, RIS considers only the com-
mon patterns and their frequency between a pair of users, and hence, fails
to consider this aspect. Therefore, the neighbors identified from RIS met-
ric are termed weakly similar. To address this problem, we extend the

18



RIS metric and hence propose a new similarity metric which considers the
distribution of common patterns throughout a week.

II. Common Patterns Distribution Based Similarity Measure (PDS)

Two users which have common patterns covering maximum number of
visited locations with higher frequencies can intuitively be considered as
neighbors. As people tend to move between places frequently, the obtained
patterns identify the noted routines of their movements. In reality, the
number of days recognized for users’ mobility is scattered. In this regard,
we categorize two types of users on the basis of their mobility, frequent
travellers and occasional travellers. For frequent travellers, we obtain a
considerably higher number of check-ins distributed over number of days
compared to an occasional traveller. We provide an example in Table 6
for better understanding of the scenario. Here each column represents the
number of check-ins performed by a user on each day in a week.

It is observed that Bob has a fewer number of check-ins and mostly they
are concentrated in the weekends. Whereas, Eve is a very frequent traveller
with check-ins on all days of a week. Now if all the users have Gym as their
common place of interest, then it is obvious that Alice should be a neighbor
to Bob. As their distribution of check-ins over the number of days suggests
that they most likely visit the Gym on weekends. Hence, a similarity metric
should select Alice as a neighbor to Bob over all other users. Hereby, we
define and represent the metric for user similarity computation on the
basis of pattern distribution over the number of days in which check-ins
are observed.

Definition 9 (Pattern Distribution). Common Patterns Distribution based
Similarity (γ) between users u1 and u2 is the relative importance weighted
by the ratio of the difference between number of days checked-in by the
users and the maximum number of days checked-in by them. The similar-
ity score between the pair on basis of their distribution of common patterns
with respect to the mobility of u1 can thus be computed as,

γu2u1
= τ u2u1

∗ (1−
|daysu1

− daysu2
|

max(daysu1
, daysu2

)
) (3)

Here, τu2u1
is the relative importance of common patterns between u1 and

u2. The number of days in which check-ins of u1 and u2 are observed is
represented as daysu1

and daysu2
.

The similarity score computation using the PDS metric covers many be-
havioral aspects including the common patterns followed, their frequencies
and also the number of days in which they are distributed. However, we
believe that maximum closeness between a pair of users can be obtained if
they visit more common locations every day. This requires an estimate of

19



Table 6: Example for describing the different scenarios which the proposed metric considers.
User Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Bob 0 0 0 0 0 12 15
Eve 5 2 9 1 12 4 3
Alice 0 0 0 0 0 2 1
Maria 2 0 1 0 0 14 13

the check-ins performed on each day in a week. The PDS metric fails to
consider this aspect of user mobility in similarity computation. Therefore,
we term the neighbors obtained from PDS metric as closely similar. To
address this problem we extend the PDS metric and hence propose the
final similarity metric to identify the nearest neighbors.

III. Check-in Distribution Based Similarity Measure (CDS)

Continuing with the same example in Table 6, the number of days in
which check-ins are available makes Bob and Alice neighbors. However,
the weekend check-ins of Bob are much denser than those of Alice. Thus,
along with the common locations, Bob also visits places that are not vis-
ited by Alice. So selecting Alice as the nearest neighbor to Bob may be
inappropriate. Incidentally, if the common patterns between two users
cover the maximum length of their mobility sequence for a given day then
it is highly likely that they did not visit diverse locations on the same
day. Thus, from the given example Maria can be considered as the nearest
neighbor to Bob. Next we define the term check-in distribution along with
the similarity measure.

Definition 10 (Check-in Distribution). The Check-in Distribution based
Similarity (φ) between users u1 and u2 is computed as the weighted average
of the relative importance with the set difference of the number of common
locations visited on the same day on which the check-ins are performed.

φu2u1
= τ u2u1

∗ (1−

∑

d∈D

|Lu1
d
\Lu2

d
|

∑

d∈D

|Lu1
d
|

) (4)

Here, D is the set of days in which check-ins are recorded and Lu1d
is the

set of locations visited by user u1 on day d.

The CDS metric considers all the mobility aspects required for similarity
computation. Therefore, the neighbors identified using CDS are termed
strongly similar. Thus, the three proposed similarity metrics categorizes
the neighbors into strongly, closely and weakly similar. Next, we depict a
ranking technique for ranking the predicted neighbors.

20



Table 7: The neighbors of a user u1 identified using the proposed measures are shown here.
The neighbors are arranged in descending order of their similarity score with respect to u1.

Similarity Level Similarity Measure Selected Users Category

3 CDS u2, u3 Strongly Similar

2 PDS u4, u5, u6, u7 Closely Similar

1 RIS u8, u9, u10, u11, u12, u13, u14, u15 Weakly Similar

4.2.4. Ranking Nearest Neighbors

As mentioned earlier the CDS -metric is the strongest similarity metric among
the three proposed metrics. This is due to the fact that it considers check-ins
on individual days and not over a week as a whole. Therefore, the similarity
score between a pair of users in CDS -metric is generally less than others. This
leads to a situation where a GPS application using this CDS -metric may fail
to identify the complete set of K -nearest neighbors. However, using other pro-
posed metrics like PDS and RIS, the K -nearest neighbors can be identified. We
also categorize these users satisfying the similarity measures into three distinct
groups. Therefore, any GPS application which uses our similarity measures can
effectively select K -nearest neighbors, where the value of K may vary as per
requirement. Next we explain such a scenario with one specific example, as
depicted in Table 7.

Suppose a GPS application requires the ten (10) nearest neighbors of a user
u1. As CDS is the strongest measure with many factors considered in it, we
try to select all neighbors obtained from this metric. However, in this example
it is impossible to identify ten neighbors satisfying CDS. In such a scenario, we
employ a ranking technique. Subsequently, we start considering users with the
highest level of similarity until the required number of nearest neighbors for u1

are identified. Therefore, the application identifies a number of nearest neigh-
bors using CDS. The neighbors with more than median similarity scores are se-
lected from any similarity level. Thus, users {u2, u3} from CDS, {u4, u5, u6, u7}
from PDS and {u8, u9, u10, u11} from RIS are selected to complete the set of
K-nearest neighbors (K=10). This explains how the ranking technique can be
employed by a GPS application for identifying K -nearest neighbors.

5. Experiments

We conducted a series of experiments over a real-world dataset Geolife [31, 32,
33]. All the experiments are implemented using Matlab. Here, the proposed
similarity measures are compared with the three existing works in literature,
namely MSTP [9], MTP [10] and CPS [11]. In addition to the Geolife dataset,
we also use a synthetic trajectory data for comparison.

5.1. Dataset Description

Geolife is a GPS Trajectory dataset collected by Microsoft Research Asia for
their Geolife project. This dataset records a broad range of users’ outdoor
movements such as shopping, sightseeing, dining, hiking, cycling, etc.

21



1 2 3 4 5 6 7

# Days/Week

0

10

20

30

40

50

60

70

80

90

100

%
o
f
S
e
le
c
t
e
d
W
e
e
k
s

Figure 6: The % of selected weeks are plotted by varying the minimum number of days per
week in which check-ins were recorded. The horizontal axis shows the minimum number of
days considered starting from 1-day to a maximum of 7-days in a week. The vertical axis
shows the % of weeks selected from the dataset satisfying the condition of a minimum number
of days in the horizontal axis.

Our proposed framework finds the similarity between users on the basis of
the check-ins performed every day. We select weeks for a user with a significant
number of days in which check-ins are reported. In this regard, we analyze
the percentage of selected weeks, by varying the number of days in a week on
which check-ins were recorded (Figure 6). We observe that the percentage of
selected weeks decreases as we consider a higher number of days per week. For
experiments, we selected a week only if it has at least four days of recorded
check-in. However, with this constraint we found that the standard deviation
of the number of weeks per user is 22.62. This indicates that the distribution
of selected weeks for each user is skewed. Next, we aim to reduce the standard
deviation of the number of weeks per user. In this regard, we compute the
median of this distribution of weeks per user. Those users who have visited
(checked-in) a number of weeks more than the obtained median are selected for
analysis. Figure 7 shows the median value of the number of weeks per user,
as we vary the minimum number of days in a week. Along with it, we also
plot the selected percentage of users having number of weeks more than the
corresponding median value. We observed that 45% of the total users having
more than 4 weeks of check-in data are selected when a week with minimum four
days of check-in records are considered. These users are considered as active
and experiments are performed on them. A detailed description of the working
dataset is shown in Table 8.

22



# Da
ys/

Week

Median @

#
Weeks/User

35

8

38

41

6

44

%
of

Se
lec

ted
Us

ers

7
6

47

4 5

50

4
32

2
1

0

Figure 7: The 3D-plot shows the % of users selected by varying the minimum number of days
per week in which check-ins were recorded. First, we compute the median value of the number
of weeks per user. Subsequently, the percentage of users having number of weeks more than
the obtained median value are plotted in the graph. We work with 45% of all users having
more than 4 weeks of check-in data, where each week has atleast 4 days of check-ins.

The synthetic dataset used for comparing the similarity measures are shown
in Table 9. Each tuple in the dataset corresponds to the sequences of a user. For
example, user u2 has three sequences 〈l1 l2 l4 l8〉, 〈l2 l4 l5〉 and 〈l1〉 on Tuesday,
Saturday and Sunday, respectively. This dataset is used to find the nearest
neighbor of u1 using the existing CPS measure and our proposed measures
(RIS, PDS,CDS).

5.2. Parameter Selection

To evaluate the proposed framework we need to set certain parameters. In this
section, we specify each of those parameters used in the algorithms.

5.2.1. Stay Point Extraction

The proposed SPE-algorithm requires three user defined threshold values for
distance, time and significance score. In performing experiments on the Geolife
dataset we set the distance threshold (δD) as 200 meters, the time threshold
(δT ) as 30 minutes and the significance score threshold (ST) as 0.4. To convert
the raw stay point data into semantic locations, we use the Foursquare API.
The response from Foursquare API is further explored to extract the nearest
category along with its distance from the requested physical location.

23



Table 8: Detail description of the working dataset.

Active Users Trajectories Check-ins Weeks
81 17182 17824263 1440

Effective Days Distance(km) Duration(hr) Trajectory/User
8551 1196898 46459 212

Check-ins/User Check-ins/Week Effective Days/User Effective Days/Week
220053 12378 106 6

Distance(km)/User Distance(km)/Week Duration(hr)/User Duration(hr)/Week
14777 831 1013 57

Table 9: A synthetic dataset with check-in details of five users is shown here. Each sequence
corresponds to the day on which a check-in activity has been recorded. This dataset is used
to identify the nearest neighbor of u1.

User Monday Tuesday Wednesday Thursday Friday Saturday Sunday
u1 〈l1 l2 l3〉 〈l1〉 〈l2 l3〉 〈l1 l2 l3 l4 l5〉 〈l2 l3 l4 l5〉 〈l4〉
u2 〈l1 l2 l4 l8〉 〈l2 l4 l5〉 〈l1〉
u3 〈l1 l4 l9〉 〈l1〉 〈l2 l3〉 〈l2 l3 l9〉
u4 〈l8〉 〈l1 l2 l3 l8 l9〉 〈l1 l2 l3 l8〉 〈l9〉 〈l1 l8〉 〈l2 l3〉
u5 〈l2 l3 l9〉 〈l6 l9〉 〈l6〉 〈l2 l3 l6 l7 l9〉 〈l2 l3 l6〉

5.2.2. Sequential Pattern Extraction

In order to extract the sequential patterns from modeled trajectories of stay
points, we use the standard PrefixSpan algorithm. This sequence mining ap-
proach requires a support value that is computed for each candidate frequent
locationset. We set the support threshold for PrefixSpan algorithm as 0.3.

5.2.3. Matching Common Patterns Between Users

The similarity between the recovered sequential patterns of two users depend
upon a pattern duration threshold. As already mentioned in Section 4.2.2, two
patterns are identified as common if they satisfy certain conditions. The time
taken by people to move around places depends upon the purpose of the visit.
For example, if a user visits a work place we may expect their next movement
to be recorded after eight hours. Similarly, the same person is expected to
move from a coffee shop within 30 minutes, if it is not their workplace. So
we understand that a single parameter is not sufficient to capture the time
of stay for a user at a POI. Hence, to find the optimal threshold for pattern
duration (tth), we experimented with various time intervals over the maximal
patterns between users (Figure 8). We observed that a 15 min threshold selects
a maximum 30% of the common maximal patterns. As we increase this time
span, the percentage of acceptance for patterns gradually increases. During
experiments, the time threshold was set to 180 min. Thus, if the time difference
between any two consecutive sequential locations (l1, l2) of two patterns (p1, p2),
respectively is more than 180 min, then the patterns are not considered as
common.

24



1 2 3 4 5 6 7 8 9 10

#Common Maximal Patterns Between Users

0

10

20

30

40

50

60

70

80

90

100

%
o
f
C
o
m
m
o
n
M
a
x
im

a
l
P
a
tt
er
n
s
F
o
u
n
d 180min 120min 90min 60min 30min 15min

Figure 8: The horizontal axis shows the number of common maximal patterns between a pair
of users. Whereas, the vertical axis shows the percentage of common patterns found using the
condition mentioned in Section 4.2.2. We vary the pattern duration threshold tth over the
obtained number of common patterns. This graph depicts that a pattern duration threshold
of around 180 mins selects over 80% of the common maximal patterns.

5.3. Results and Analysis

In this section, we provide the results and their detailed analysis after extensive
experimentation on the Geolife dataset. The proposed similarity metrics are
compared with the existing metrics in literature. Subsequently, we also explore
the impact of these similarity metrics on the location prediction problem.

5.3.1. Performance of Similarity Metrics

We evaluated our proposed framework as depicted in Figure 9. Here, we select
each user and compute its similarity score with all other users. For perfor-
mance evaluation of the similarity measures in nearest neighbor prediction, the
ground truths about actual neighbors are required. To achieve this, we divide
the trajectory of a user into two equal parts. We consider each of these two
parts as trajectories of two different users. Suppose, user u1 has x number
of selected weeks having more than four days of recorded check-ins. So we
generate two users u1

∗ and u1
#, where we assign all the trajectories in week

numbers {1, 2, ...., x/2} to u1
∗ and in a similar way all trajectories in week num-

bers {(x/2) + 1, (x/2) + 2, ...., x} to u1
#. It should be noted here that, since

users u1
∗ and u1

# are actually generated from the trajectories of u1, hence
they are the nearest neighbors to each other. This procedure helped us to get
the ground truths (nearest neighbor for each user). To evaluate the proposed
approach with the existing approaches, we predict a set of neighbors, and sub-
sequently two evaluation metrics are introduced, namely Perfect Prediction and

25



Figure 9: The framework for evaluating our proposed approach.

Table 10: Percentage of Perfect Prediction obtained using proposed similarity metrics.

Performance (%)
Existing Proposed

MSTP MTP CPS RIS PDS CDS

Perfect Prediction 58.352 60.361 61.254 62.248 64.894 67.257

Successful Prediction. The Perfect Prediction is the measure of the number of
times a similarity metric correctly identified the nearest neighbor of an active
user at the 1st position in the predicted set. Whereas, Successful Prediction is
the measure of the number of times the nearest neighbor is found in the pre-
dicted set of neighbors (length of the set > 1) identified by a similarity metric.
It can be represented as:

Successful Prediction =

{

1;Actual nearestneighbor ∈ Set of predictedneighbors
0;Actual nearestneighbor /∈ Set of predictedneighbors

(5)

Table 10 shows the percentage of Perfect Prediction obtained using MSTP,
MTP, CPS, RIS, PDS and CDS similarity metrics. It is observed that our
proposed similarity measures have higher Perfect Prediction rate than the ex-
isting metrics in literature. Further, the CDS metric has the best percentage
of Perfect Prediction. We analyze the results of Successful Prediction when a
set of neighbors are identified. Figure 10 shows the observed results, where the
horizontal axis is the length of the predicted set of neighbors. Here, we vary
the number of neighbors predicted from 2 to 10. More number of Successful
Predictions are found as we increase the length of the prediction set (number of

26



2 3 4 5 10

# Neighbors Predicted

60

65

70

75

80

85

90

95

100
S
u
cc
es
sf
u
l
P
re
d
ic
ti
o
n
(%

)
MSTP MTP CPS RIS PDS CDS

Figure 10: Successful Prediction vs Number of neighbors predicted using various similarity
metrics on Geolife dataset.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 3 4 5 10

# 
F

al
se

 N
ei

gh
bo

rs
 P

re
di

ct
ed

# Neighbors Predicted

MSTP

MTP

CPS

RIS

PDS

CDS

Figure 11: Number of False Neighbors Predicted vs Length of the Predicted list for each
similarity metric on Geolife dataset.

27



predicted neighbors). CDS metric shows more consistency and a better success
rate in predicting neighbors than others. We also computed the number of false
neighbors predicted by the similarity approaches (Figure 11). Strict measures
like PDS and CDS often fail to determine the required K neighbors. In those
cases, the number of false predictions are significantly lowered. The PDS and
CDS measure is observed to have a higher rate of successful prediction than
the others.

The neighbors thus obtained from the similarity metrics are further ranked
to evaluate the proposed similarity metrics. In this regard, we describe a metric
termed as Positional Rank. If two similarity metrics S1 and S2 ranks the ground
truth at position 3 and 7, respectively in the predicted set, then S1 is favoured
as the better performing similarity metric over S2. The Positional Rank indi-
cates how the rank of the predicted neighbors are close to the ground truths.
The Positional Rank (PR) is computed as:

PR =
1

|U |

∑

i∈U

1

|G|

∑

j∈G









ORi
j
/

PRi
j
;ORi

j ≤ PRi
j and {j ∈ G} ∩ PLi 6= ∅

PRi
j
/

ORi
j
;PRi

j < ORi
j and {j ∈ G} ∩ PLi 6= ∅

0 ; {j ∈ G} ∩ PLi = ∅









(6)

where,
U = set of all the active users,
G = set of all neighbors of a user,
PLi = predicted set of neighbors,
ORi

j = original rank of the neighbor j with respect to user i,

PRi
j = predicted rank of the neighbor j in PLi.

It can be noted here that, as per our experimentation strategy the ground
truth consists of only the nearest neighbor for each user. Therefore, it is de-
sired that the ground truth should appear in first position in the predicted list.
Figure 12 shows the average Positional Rank of the nearest neighbor in the
set of neighbors predicted for each user. During experimentation, we found
that for many instances the CDS measure alone was unable to identify the
required number of neighbors to be predicted. In those scenarios, we combine
the neighbors obtained from PDS and if required from RIS to complete the
set of required neighbors. Combining the neighbors obtained from PDS and
RIS with the neighbors of CDS enhances the chance of finding the required
number of nearest neighbors. Therefore, the combined approach yields a better
result than the individual measures. For the combined approach, if a set of 10
neighbors are predicted for each user, then the average Positional Rank of their
nearest neighbor in the predicted set is found to be nearly 0.94.

Next we describe the performance of various similarity measures over the syn-
thetic dataset provided in Table 9. First, we perform the PrefixSpan sequential

28



1 2 3 4 5 10

# Neighbors Predicted

0.55

0.6

0.65

0.7

0.75

0.8

0.85

P
o
s
it
io
n
a
l
R
a
n
k

MSTP MTP CPS RIS PDS CDS CDS+PDS+RIS

Figure 12: Positional Rank vs Number of neighbors predicted using various similarity metrics
on Geolife dataset.

pattern mining algorithm over the travelled sequences of every user to extract
their frequent patterns of movement. Subsequently, the common patterns be-
tween the concerned pair of users are selected. Finally, these frequent patterns
and the common patterns in them are used to compute the similarity score
between two users. Table 11 shows the results obtained after computing the
similarity score between user u1 and others. The user with highest similar-
ity score for each measure is highlighted in bold. Working with this synthetic
dataset helps us elaborate the advantages of our proposed measure over exist-
ing works. The CPS [11] similarity measure depends upon the frequency of
pattern occurrence and the difference between the support count. Results in
Table 11 show that the CPS measure selects u3 as the nearest neighbor to
u1. Incidentally, our first metric RIS also considers the frequency of pattern
occurrence. Thus, it is observed that our RIS measure also selects u3 as a
neighbor along with u4, with the same similarity score. The user u1 has six
days of check-in, which marks him as a frequent traveller. Whereas, users u2

and u3 do not have dense check-ins, which suggests that they are not frequent
travellers. The results from all the measures rightly discards u2 as the probable
neighbor. However, CPS and RIS identifies u3 as the nearest neighbor to u1,
which is found to be inaccurate on the basis of their sequence of movement. The
RIS measure does not consider the number of days in which the check-ins have
been observed. From the sequence database mentioned in Table 9, it can be ob-
served that both u1 and u4 are frequent travellers. Therefore, the metric PDS

29



Table 11: The similarity scores between u1 and other users using the existing CPS-based
metric and our proposed similarity metrics are shown here. Similarity scores highlighted in
bold indicate the nearest neighbor found using the corresponding similarity measure.

sim(u1, u2) sim(u1, u3) sim(u1, u4) sim(u1, u5)
CPS 0.464 0.74 0.625 0.384
RIS 0.447 0.868 0.868 0.737
PDS 0.224 0.579 0.868 0.614
CDS 0.028 0.054 0.163 0.276

is found to perform better than both the existing CPS and the proposed RIS.
However, from Table 9 we also observe that user u1 prefers movement during
weekdays in contrast to u4 who has dense check-in data during the weekends.
A similarity measure should consider the set of locations visited by two users
on a given day. This aspect is considered by our proposed CDS measure. The
proposed CDS measure punishes the similarity score if two users have a higher
number of dissimilar locations visited on a common day. For example, during
similarity score computation between u1 and u4 using CDS, their sequences on
Monday, Thursday, Friday, Saturday and Sunday effect the similarity score to a
fairly large amount. Incidentally, sequences of u1 and u5 are found to be almost
equal and also on nearly similar set of days. Sequence of movement on Monday,
Thursday and Friday by users u1 and u5 contributes to the CDS similarity
score. Therefore, CDS rightly identifies u5 as the nearest neighbor to u1. It
can be noted here that, the similarity score between (u1, u5) using CDS is less
than the similarity score between (u1, u3) using CPS. However, considering the
CDS similarity scores between u1 and other users we find that u5 is rightly
identified as the nearest neighbor. Though the similarity score using CPS is
higher, it identifies u3 as the nearest neighbor to u1, which is not true from the
existing trajectory data.

5.3.2. Impact of Similarity Measures

Identifying the nearest neighbors help to solve many real world problems. Pre-
dicting the next location of visit for an active user is one such problem which is
well studied in literature. We select this location prediction problem for evalu-
ating the effectiveness of the proposed similarity metrics in real world scenarios.
The location prediction problem can be stated as follows, for an active user
u1 having historical check-ins of 〈 (l1, t1), (l2, t2), ..., (lw , tw) 〉, we need to pre-
dict the location at which it may check-in next at time tw+1. The standard
User-based Collaborative Filtering (UCF ) technique [34, 35] is one of the tradi-
tional method in predicting user ratings for an item in a recommender system.
This technique has also been successfully used in location prediction problem
by Huo et al. in [36]. It involves finding similarity scores between a pair of
active users. In this regard, we utilize the proposed metrics and the existing
MSTP, MTP and CPS metrics in UCF technique for location prediction. For
performance evaluation, we compute the Mean Average Precision (MAP) and

30



Successful Prediction of the predicted locations using all the similarity metrics.
Moreover, the absolute errors in location prediction is further compared using
the Mean Absolute Error (MAE ). The above mentioned metrics are mostly used
to evaluate the performance of a prediction model. As this work mainly focuses
on the aspect of finding K -nearest neighbors for a given user, we frame the
above scenarios in a different way. We deliberately hide 95%, 90%, 85%, 75%,
50%, and 25% random locations from the published trajectory of each user. In
this way, we generate six different training sets having 5%, 10%, 15%, 25%, 50%
and 75% of published check-ins. Our goal is to predict the deliberately hidden
locations using the UCF technique. For performance evaluation these hidden
locations are considered as the ground truth. Next, we adopt the basic terms
like UCF, MAP and MAE into our problem as follows.

(a) User-based Collaborative Filtering (UCF): It states that if a set of
selected neighbors (su) have followed the same sequence of movement as
user u1 for first c check-ins, then the next sequence of movement (c + 1)
for u1 may be analyzed using check-ins of su. As depicted in [36], if U =
{u1, u2, u3, . . . , un} is the set of users and L = {l1, l2, l3, . . . , lq} is the set
of locations checked-in by them, then the probability of a user ui to visit a
location lj is given by,

UCFui,lj =

∑

z∈U

(SIuzui
∗ Tuz,lj )

∑

z∈U

SIuzui

(7)

where,
SIuzui

= similarity measure between users ui and uz, and

Tuz,lj =

{

1; if uz has checked-in at lj
0; if uz has not checked-in at lj

(b) Mean Average Precision (MAP): The Mean Average Precision (MAP)
is a popular single score performance measure used for evaluating the quality
of a prediction model. It is the mean of the average precision of the predicted
locations for each active user. The Precision or Positive Predictive Value is
computed as the fraction of the retrieved locations that are relevant.

Precision =
#Recovered ground truths

#Predictions
(8)

(c) Mean Absolute Error (MAE): A statistical accuracy metric widely used
to measure quality of a recommender system [37, 38, 39, 40]. It is measured
by finding the average deviation of the predicted rating with the actual user
rating, in a user-item rating dataset. In our case the actual and predicted

31



5 10 15 25 50 75

% of Check–ins

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
u
c
c
e
ss
fu
l
P
re
d
ic
ti
o
n
@
5

MSTP MTP CPS RIS PDS CDS

5 10 15 25 50 75

% of Check–ins

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
A
P

@
5

Figure 13: MAP, Successful Prediction vs Percentage of check-ins for 5 locations predicted.

user rating used in MAE calculation for recommender system is replaced by
the probability with which a user visits a location in the original dataset and
the probability of its visit predicted by UCF using the proposed similarity
measure, respectively. Mean Absolute Error (MAE ) in predicting locations
for an active user u1 can thus be formulated as:

MAEu1
=

1

|N |

∑

i∈N

|prbi − ai| (9)

where, N is the set of all ground truths from the original dataset. The
probability with which an active user u1 visits a location l1 in the original
dataset is represented as prbl1 .

The UCF technique identifies the probability with which a user visits a
location. Locations with higher probability are generally selected for pre-
diction. Hence, for every instance we predict a collection of locations. The
term ai in Equation (9) is the mean of the probabilities with which the
predicted locations are visited by u1. The MAE for all the active users U
is the average of MAE of the active users.

MAE =
1

|U |

∑

i∈U

MAEui
(10)

Next we discuss the results obtained after using the similarity metrics in
the location prediction problem. Figure 13, 14 and 15 show the performance of
the predicted locations using various similarity metrics in terms of MAP and
Successful Prediction. From our experiments, it was observed that the MAP
increases to a considerable amount as the number of predicted locations are

32



5 10 15 25 50 75

% of Check–ins

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
u
c
c
e
ss
fu
l
P
re
d
ic
ti
o
n
@
1
0

5 10 15 25 50 75

% of Check–ins

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
A
P

@
1
0

MSTP MTP CPS RIS PDS CDS

Figure 14: MAP, Successful Prediction vs Percentage of check-ins for 10 locations predicted.

5 10 15 25 50 75

% of Check–ins

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
u
c
c
e
ss
fu
l
P
re
d
ic
ti
o
n
@
1
5

5 10 15 25 50 75

% of Check–ins

0

0.05

0.1

0.15

0.2

0.25

0.3

M
A
P

@
1
5

MSTP MTP CPS RIS PDS CDS

Figure 15: MAP, Successful Prediction vs Percentage of check-ins for 15 locations predicted.

33



5 10 15 25 50 75

% of Check–ins

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

M
A
E

@
5

MSTP MTP CPS RIS PDS CDS

Figure 16: MAE vs Percentage of check-ins for 5 locations predicted.

5 10 15 25 50 75

% of Check–ins

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
A
E

@
1
0

MSTP MTP CPS RIS PDS CDS

Figure 17: MAE vs Percentage of check-ins for 10 locations predicted.

34



5 10 15 25 50 75

% of Check–ins

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
M
A
E

@
1
5

MSTP MTP CPS RIS PDS CDS

Figure 18: MAE vs Percentage of check-ins for 15 locations predicted.

increased from 5 to 15. Our proposed CDS metric produces consistently high
MAP for 5, 10 and 15 predictions.

The Successful Prediction is computed in a similar way as depicted in Equa-
tion (5). In this case, if the ground truth is found in the predicted set of locations
then the Successful Prediction is 1 else 0. The rate of Successful Prediction for
all the metrics increase as we use more number of check-ins for predicting the
next location. This shows that higher percentage of historical data carries more
information on user mobility. The CPS and RIS methods utilize the common
patterns and their frequencies for similarity computation. Therefore, their per-
formance is found to be close for all the three evaluation metrics. As we increase
the number of predictions with the number of historical check-ins, the rate of
Successful Prediction produced by CDS outperforms others.

Figure 16, 17 and 18 show the error in location prediction in terms of MAE.
With increase in the percentage of check-ins, the absolute error (MAE ) is re-
duced considerably for all the similarity metrics. However, for the MSTP and
MTP metrics, we observed less difference in the error metric as the percentage
of check-ins are increased. In CPS metric, the MAE values are significantly
reduced as the number of predictions are increased. Incidentally, noticeable
changes are observed for our proposed CDS metric as we increase the num-
ber of predictions. It can be noted here that the CDS approach considers the
check-in distribution on each day of a week.

6. Conclusion

In this work, we studied the identification of the nearest neighbors by mod-
eling user mobility patterns. The proposed framework first identifies signifi-
cant locations in a trajectory where a user have stayed instead of passing by.

35



Subsequently, the neighbors are identified using three proposed similarity met-
rics. Finally, a ranking technique is used to rank the neighbors on the basis of
their similarity scores. The obtained results justify that the proposed metrics
can effectively be used in user similarity computation. The proposed approach
towards identifying similarity between a pair of users can be used in various
real-world problems like recommender services, behavior analysis from spatio-
temporal data, community detection in a social network, identification of hid-
den social links in a network, etc. In future, we plan to extend this work on
Geosocial network dataset where users share locations along with their real-time
experiences.

7. References

[1] F. Hopfgartner, J. M. Jose, Semantic user profiling techniques for per-
sonalised multimedia recommendation, Multimedia systems 16 (4) (2010)
255–274.

[2] L. Backstrom, E. Sun, C. Marlow, Find me if you can: improving geo-
graphical prediction with social and spatial proximity, in: Proceedings of
the 19th International Conference on World Wide Web, 2010, pp. 61–70.

[3] F. Giannotti, M. Nanni, F. Pinelli, D. Pedreschi, Trajectory pattern mining,
in: Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2007, pp. 330–339.

[4] J. J.-C. Ying, W.-C. Lee, V. S. Tseng, Mining geographic-temporal-
semantic patterns in trajectories for location prediction, ACM Transactions
on Intelligent Systems and Technology 5 (1) (2014) 1–33.

[5] H. Gao, J. Tang, H. Liu, Addressing the cold-start problem in location
recommendation using geo-social correlations, Data Mining and Knowledge
Discovery 29 (2) (2015) 299–323.

[6] M. Fire, L. Tenenboim-Chekina, R. Puzis, O. Lesser, L. Rokach, Y. Elovici,
Computationally efficient link prediction in a variety of social networks,
ACM Transactions on Intelligent Systems and Technology 5 (1) (2014) 1–
25.

[7] Z. Wang, J. Liao, Q. Cao, H. Qi, Friendbook: a semantic-based friend
recommendation system for social networks, IEEE Transactions on Mobile
Computing 14 (3) (2015) 538–551.

[8] H. Lu, Q. Zhao, Z. Gan, A community detection algorithm based on the
similarity sequence, in: Proceedings of the 15th International Conference
on Web Information Systems Engineering, 2014, pp. 63–78.

[9] J. J.-C. Ying, E. H.-C. Lu, W.-C. Lee, T.-C. Weng, V. S. Tseng, Mining
user similarity from semantic trajectories, in: Proceedings of the 2nd ACM
SIGSPATIAL International Workshop on Location Based Social Networks,
2010, pp. 19–26.

36



[10] X. Chen, J. Pang, R. Xue, Constructing and comparing user mobility pro-
files for location-based services, in: Proceedings of the 28th Annual ACM
Symposium on Applied Computing, 2013, pp. 261–266.

[11] X. Chen, R. Lu, X. Ma, J. Pang, Measuring user similarity with trajectory
patterns: Principles and new metrics, in: Proceedings of the 16th Asia-
Pacific Web Conference, 2014, pp. 437–448.

[12] X. Cao, G. Cong, C. S. Jensen, Mining significant semantic locations from
gps data, in: Proceedings of the VLDB Endowment 3 (1-2) (2010) 1009–
1020.

[13] F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, Mining sequences with
temporal annotations, in: Proceedings of the 2006 ACM symposium on
Applied computing, 2006, pp. 593–597.

[14] Y. Zheng, L. Liu, L. Wang, X. Xie, Learning transportation mode from
raw gps data for geographic applications on the web, in: Proceedings of
the 17th International Conference on World Wide Web, 2008, pp. 247–256.

[15] Z. Li, J. Han, B. Ding, R. Kays, Mining periodic behaviors of object move-
ments for animal and biological sustainability studies, Data Mining and
Knowledge Discovery 24 (2) (2012) 355–386.

[16] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, Path prediction and predictive
range querying in road network databases, The VLDB Journal 19 (4) (2010)
585–602.

[17] L. Chen, M. Lv, G. Chen, A system for destination and future route pre-
diction based on trajectory mining, Pervasive and Mobile Computing 6 (6)
(2010) 657–676.

[18] L. Chen, M. Lv, Q. Ye, G. Chen, J. Woodward, A personal route predic-
tion system based on trajectory data mining, Information Sciences 181 (7)
(2011) 1264–1284.

[19] Y. Zheng, L. Zhang, Z. Ma, X. Xie, W.-Y. Ma, Recommending friends and
locations based on individual location history, ACM Transactions on the
Web 5 (1) (2011) 1–44.

[20] M. Lv, L. Chen, G. Chen, Mining user similarity based on routine activities,
Information Sciences 236 (2013) 17–32.

[21] J. Bao, Y. Zheng, D. Wilkie, M. Mokbel, Recommendations in location-
based social networks: a survey, GeoInformatica 19 (3) (2015) 525–565.

[22] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, W.-Y. Ma, Mining user similarity
based on location history, in: Proceedings of the 16th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems,
2008, pp. 1–10.

37



[23] X. Xiao, Y. Zheng, Q. Luo, X. Xie, Finding similar users using category-
based location history, in: Proceedings of the 18th SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems, 2010,
pp. 442–445.

[24] J. R. Bray, J. T. Curtis, An ordination of the upland forest communities
of southern wisconsin, Ecological monographs 27 (4) (1957) 325–349.

[25] X. Xiao, Y. Zheng, Q. Luo, X. Xie, Inferring social ties between users with
human location history, Journal of Ambient Intelligence and Humanized
Computing 5 (1) (2014) 3–19.

[26] H. Ma, H. Cao, Q. Yang, E. Chen, J. Tian, A habit mining approach for
discovering similar mobile users, in: Proceedings of the 21st International
Conference on World Wide Web, 2012, pp. 231–240.

[27] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, M.-C.
Hsu, Prefixspan: mining sequential patterns efficiently by prefix-projected
pattern growth, in: Proceedings of the 17th International Conference on
Data Engineering, 2001, pp. 215–224.

[28] R. Agrawal, R. Srikant, Mining sequential patterns: Generalizations and
performance improvements, in: Proceedings of the 5th International Con-
ference on Extending Database Technology, 1996, pp. 1–17.

[29] M. J. Zaki, Spade: An efficient algorithm for mining frequent sequences,
Machine learning 42 (1) (2001) 31–60.

[30] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.-C. Hsu, Freespan:
frequent pattern-projected sequential pattern mining, in: Proceedings of
the 6th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2000, pp. 355–359.

[31] Y. Zheng, Q. Li, Y. Chen, X. Xie, W.-Y. Ma, Understanding mobility
based on gps data, in: Proceedings of the 10th International Conference on
Ubiquitous Computing, 2008, pp. 312–321.

[32] Y. Zheng, L. Zhang, X. Xie, W.-Y. Ma, Mining interesting locations and
travel sequences from gps trajectories, in: Proceedings of the 18th Interna-
tional Conference on World Wide Web, 2009, pp. 791–800.

[33] Y. Zheng, X. Xie, W.-Y. Ma, Geolife: A collaborative social networking
service among user, location and trajectory., IEEE Data Eng. Bull. 33 (2)
(2010) 32–39.

[34] J. Wang, A. P. De Vries, M. J. Reinders, Unifying user-based and item-
based collaborative filtering approaches by similarity fusion, in: Proceed-
ings of the 29th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2006, pp. 501–508.

38



[35] V. W. Zheng, Y. Zheng, X. Xie, Q. Yang, Collaborative location and ac-
tivity recommendations with gps history data, in: Proceedings of the 19th
International Conference on World Wide Web, 2010, pp. 1029–1038.

[36] Z. Huo, X. Meng, R. Zhang, Feel free to check-in: Privacy alert against
hidden location inference attacks in geosns, in: Proceedings of the 18th
International Conference on Database Systems for Advanced Applications,
2013, pp. 377–391.

[37] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filter-
ing recommendation algorithms, in: Proceedings of the 10th International
Conference on World Wide Web, 2001, pp. 285–295.

[38] R. Jin, J. Y. Chai, L. Si, An automatic weighting scheme for collaborative
filtering, in: Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2004,
pp. 337–344.

[39] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, Z. Chen, Scalable
collaborative filtering using cluster-based smoothing, in: Proceedings of
the 28th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2005, pp. 114–121.

[40] J. Wang, A. P. De Vries, M. J. Reinders, Unifying user-based and item-
based collaborative filtering approaches by similarity fusion, in: Proceed-
ings of the 29th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2006, pp. 501–508.

[41] M. Á. Garćıa-Cumbreras, A. Montejo-Ráez, M. C. Dı́az-Galiano, Pessimists
and optimists: Improving collaborative filtering through sentiment analy-
sis, Expert Systems with Applications 40 (17) (2013) 6758–6765.

[42] S. Dooms, T. De Pessemier, L. Martens, Online optimization for user-
specific hybrid recommender systems, Multimedia Tools and Applications
74 (24) (2015) 11297–11329.

39


	Introduction
	Related Work
	Modeling User Behavior
	Finding Nearest Neighbors

	Motivation and Problem Statement
	Proposed Framework
	Modeling User Trajectory
	Stay Point Extraction
	Semantic Location Identification

	Identifying Nearest Neighbors
	Sequential Pattern Extraction
	Matching Common Patterns Between Users
	Similarity Measurement
	Ranking Nearest Neighbors


	Experiments
	Dataset Description
	Parameter Selection
	Stay Point Extraction
	Sequential Pattern Extraction
	Matching Common Patterns Between Users

	Results and Analysis
	Performance of Similarity Metrics
	Impact of Similarity Measures


	Conclusion
	References

