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Abstract 

The work presented in this thesis mainly concerns the analysis of parallel 

algorithms for the solution of tridiagonal linear systems and the design of 

a new tridiagonal equation solver, which can be run on a MIMD (Multiple 

Instruction Multiple Data stream) type parallel computer, in particular the 

Balance 8000 Sequent system at Loughborough University of Technology. 

In the first chapter, an introduction to the existing computer models IS 

given, together with a brief description of the process that has led from the 

uniprocessor machine to the development of different parallel architectures. 

Enhancement is given to MIMD shared memory systems. In this respect, 

the main characteristics of the Sequent system are presented, as well as the 

main programming features supported by the Balance Operating System, the 

Dynix. 

The second chapter presents the fundamentals of parallel programmmg 

on the Balance 8000 computer. Terms and concepts that are specific to 

multitasking programs are introduced. Also, the two multitasking methods, 

data partitioning and function partitioning, are outlined. In the same 

chapter, we investigate problems (such as program dependencies, sharing of 

data, synchronization of concurrent process) arising from the adaptation of 

an application to parallel versions, and the related programming techniques. 

Some of the parallel programming tools are described, with particular 

attention to the so-called "data partitioning with Sequent Fortran" and "data 

partitioning with Dynix". 

Chapter 3 starts with an outline of the most well known algorithms for the 

solution of tridiagonal systems, one of which is analysed in more detail in 

chapter 4. Parameters used to evaluate performance are defined, such as 



speed-up, efficiency and computational complexity, together with the basic 

principles of Parallel Numerical Analysis. 

In the fourth chapter, the Wang tridiagonal system solver is presented. We 

have considered a variant of this partitioning method suitable for MIMD 

architectures, and we have modified it to run on the Balance 8000. 

Test matrices have then been used, in order to evaluate the performance 

of the Wang routine on the Balance computer and to form a comparison with 

the new Recursive Decoupling routine of chapter 5. 

The fifth chapter constitutes the core of the whole thesis. The new 

algorithm also belongs to the class of partitioning methods, since it 

is based on repeated partitioning of the coefficient matrix into 2x2 

submatricesj this strategy, together with a rank-one updating procedure, 

allows us to calculate the solution explicitly, by solving independent sets 

of subsystems. Furthermore, the methods turns out to be intrinsically 

parallel and suitable for solution on multiprocessor architectures. 

The performance of the Recursive Decoupling routine on the Balance 8000 

computer has been tested by using the same example matrices as those used 

to test the Wang method. 

The thesis concludes with a chapter summanzmg the mam results and 

suggestions for further research. 

Keywords 

Tridiagonal Linear Equations; Shared Memory Parallel Computers; Sequent 

Balance 8000 Multiprocessor; Partition Method; Recursive Decoupling 

Method; Parallel Numerical Analysis. 
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1. Introduction to Parallel Computers 



1.1. Introduction 

In the last few years we have seen an explosion in the interest In parallel 

processors and parallel programming. 

The scope of parallel processing is to reduce the elapsed time to complete a 

job. 

This time will basically depend on the coding style, the architecture of the 

machine and the hardware implementation. 

The job of everybody in charge of software development (system designers, 

compiler and library writers, programmers) is to get the actual time required 

by the calculations as close as possible to the ideal. 

Tools have been developed to express the parallelism explicitly, either in the 

form of subroutine libraries or language extensions; furthermore, studies are 

still in progress, concerning the automatic parallelization of sequential code. 

To date, the only automatic system available is limited to individual loops. 

Parallelism at a higher level must still be specified by the programmer. 

1.2. A Classification of Computer Models 

A knowledge of the computer architecture and the hardware implementation 

is not essential to the programmer. However, when performance becomes 

critical, a good understanding of the hardware parallelism can be fundamental 

to the program's tuning. 

In spite of all the efforts made to write portable programs, some algorithms 

will run efficiently on certain architectures, poorly on others. 

The situation is worse for parallel processors than for uniprocessors, due to 

the wider variety of architectures. 
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We can state a classification of different computer models, based on those 

aspects in the hardware implementation of parallelism that most affect the 

coding style [16]: 

1) shared memory systems (figure1.1); 

2) distributed memory systems, also called message passmg systems 

(figure 1. 2 & figure 1.4); 

3) hybrid systems (figure1.3). 

We are mostly interested in the first type of computer architecture, therefore 

we shall present a brief study of this kind of parallel machine. 

I CPU I I CPU I I CPU I 

I MEMORY I 

FIGURE 1.1. Schematic of a shared memory system. 

CPU 

I MEMORY 

CPU C P 1! 
MEMORY MEMORY 

I CPU JI 
MEMORY 

FIGURE 1.2. Schematic of a distributed memory system: fully 
interconnected message passing machine. 

CPU CPU CPU 
MEMORY MEMORY MEMORY 

CONNECTION NETWORK 

FIGURE 1.3. Schematic of a hybrid machine. 
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FIGURE 1.4. Distributed memory systems. (a) Ring connection machine. 
(b) Star connection machine. (c) Mesh machine. (d) Hypercube of order 3. 
(M: memory). 
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1.3. Shared Memory Systems 

A shared memory machine has a single global memory accessible to all 

processors. 

Each processor may have some local memory (such as "registers" on the 

Cray X-MP or the "cache" on the IBM 3090). 

The data organization inside the memory (global and local memory) is totally 

transparent to the user. 

The data access time is independent of the processor making the request. 

This is not to say that there is no memory contention. Problems like page 

faults, memory bank conflicts, etc., still affect the performance. 

Algorithms are easy to design for shared memory systems. 

The data input on these machines is done as if running on a uniprocessor. 

On the other hand, programs are hard to debug. 

The most common type of error involves picking up wrong data from a global 

variable. 

There is no indication of when the error occurred, so that the computing 

process continues, producing an erroneous final result. Data organization, 

therefore, is a key to parallel algorithms, even on a shared memory computer. 

Unfortunately, the most commonly used language for scientific purposes 

(Fortran) only allows quite simple data structures (just scalars and arrays), 

inducing the programmer to concentrate on program flow rather than on data 

management. The latest version of Fortran language permits the use of a 

wider variety of structures and mechanisms. The data sharing specifications, 

though, still constitutes a fundamental problem on shared memory systems, 

a problem that becomes even more critical when the parallelism is nested. 
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To simplify the programmer's job, in this last case, most parallel processors 

provide only a single level of parallelism; that is to say that a master process 

is allowed to spawn subprocesses, while the subprocesses may not themselves 

spawn processes. 

Data is either known to all the created processes or is private. 

As a consequence of everything that has been said so far, the shared memory 

systems need a few language extensions. 

Firstly, the need to declare which data is private to each processor (local 

da:ta) and which is known to all processors (global data) arises. 

Secondly, synchronization is needed to prevent out-of-sequence access of 

different processors to the shared memory. 

The following considerations answer the above mentioned problems. 

The work in a shared memory machine is usually divided up in a so-called 

"fork-join" style: one process spawns the subprocesses (fork) and waits for 

them to finish (join). 

A means to restrict access to the code is needed and obtained, introducing 

the concept of a "critical section"; this is a section of code executed by all 

processors, one at a time (such as in the case of a reduction variable). 

The concept of a "sequential section" is also introduced, which is a part of 

the code that has to be executed by only one processor and skipped by all 

the others. A sequential section is typically used to initialise global data. 

The easiest way of obtaining synchronization is the JOIN construct. When 

this is not possible, other constructs have to be used, such as "barriers" or 

5 



"semaphores". All these concepts will be more precisely illustrated in the 

following paragraphs. 

Finally, smce the cost of sharing data is very small in shared memory 

machines, programmers often tend to parallelize the code at the Do-loop 

level. In the case of independent loop iterations, each processor can run a 

different subset of the loop index range, providing that each index value is 

used exactly once. 

There are basically two ways of parallelizing a Do-loop. One way is to assign 

the first loop index value to the first arrived processor, the second index value 

to the second processor, and so on. Whenever a processor has completed its 

task (its loop iteration), it returns to the top to get more work. In this way, 

an automatic load balancing is realized. On the other hand, this way of 

obtaining a parallel Do-loop requires some form of synchronization, to assure 

that each processor gets a unique value of the loop index. 

A second way to parallelize a Do-loop is to partition it so that each processor 

will do a certain set of loop iterations. This way of proceeding is to 

be preferred if the work is naturally load balanced, and expecially if the 

synchronization cost is high. 

1.4. Parallel Numerical Analysis and the 

Flynn Classification of Computer Models 

In classical numerical analysis, a universal computer model is represented 

by the Von Neumann machine; this can be schematized as follows 

(figure 1.5): 
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PROCESSOR MEMORY 

INPUT ... 
" L. A. U. lA .. 

I" " 
OUTPUT I PROGRAM 

C. u. 14 ... 
I' " 

FIGURE 1.5. Scheme of the Von Neumann machine. 
L. A. U. LogiC & Arithmetic Unit. 
C. U. Control Unit. 

The main features of this universal computer are: 

a) digital representation of variables; 

I 

b) serial processing, carried out according to the basic operations of 

arithmetic and logic; 

c) the program is a coded version of the algorithm to be implemented; 

d) data are held in the main memory. 

The algorithms of classical numerical analysis are then based on the 

Von Neumann model and entail a large number of elementary operations. 

This basic serial model has been taken as the starting point for all further 

developments, until the concept of "parallelism" began to be discussed. 

Parallelism was to be interpreted in the widest sense, that is not just to build a 

parallel digital computer, but also to create a body of numerical mathematics 
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which exploits the possibilities offered by parallel computers. Furthermore, 

the question arose as to whether there exists a maximal parallelism for a 

given range of problems. 

All these facts led to the need for a "parallel numerical analysis". Connected 

to this need was the problem of formulating a standard machine model for 

parallel numerical methods. 

During the last thirty years, the performance of serial machines has been 

improved greatly, due to the use of a new technology and new design. 

Parallel features have been introduced: 

in the organization of input/output channels; 

by overlapping the execution of instructions; 

by using interleaved storage techniques. 

Starting from these ones, new developments have been realized, leading to a 

truly parallel machine. Gains have been obtained, such as: 

1) increase of computing speed; 

2) possibility of solving problems too complex for serial computers; 

3) exploitation of the inherent parallelism of some problems; 

4) possibility of calculation of a solution in real time. 

On the other hand, parallel computers present new difficulties, due to a 

complicated organization of the data and also due to machine dependent 

optimization for efficiency. 

At present, there is still no standard model for parallel systems. Such a model 

could be represented as shown in the following figure: 

8 



control 

network 

Decoding of 
instructions and 

control unit 

.... , . 

control 

network 2 

FIGURE 1.6. General configuration of a parallel computer with 
different levels of parallelism (M: memory; P: processor). 

In the above diagram parallelism is possible at different levels: 

within the control unit; 

among processors; 

among the stores; 

in the data network. 

The above figure, though, is too general both for the building of a 

functioning computer and the development of algorithms. Such a standard 

diagram can only be taken as a theoretical basis for parallel numerical analysis 

and parallel computers. 
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Depending on which level of parallelism is implemented in the diagram 

of figure 1.6, we can state the following classification of computer (this 

classification is due to Flynn [13]): 

1) SISD machines: it is the Von Neumann model (Single Instruction - Single 

Data stream); 

2) SIMD machines: array processors, pipeline processors and associative 

machines belong to this class (Single Instruction - Multiple Data stream); 

3) MIMD machines: computers with several data processors and multiple 

processor systems belong to this class (Multiple Instruction - Multiple 

Data stream); 

4) MISD machines: it has been proven that this type of organization 

(Multiple Instruction - Single Data stream) is equivalent to that of a 

Von Neumann machine. Therefore the MISD class is considered empty. 

Control unit 

Processor 

Memory 

10 

FIGURE!.7. 

Scheme of a 

SI50 computer. 



Data Organisation Network 

Data Organisation Network 

NOTE. C: control unit; P: processor; M: memory. 
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FIGURE I.B. 

Scheme of a 

SIMO computer. 

FIGURE 1.9. 

Scheme of a 

MISO computer. 

FIGURE 1.10. 

Scheme of a 

MIMO computer. 



In the context of parallel numerical analysis, all these computer models 

involve problems of rounding errors and their propagation, together with 

questions of numerical stability of the algorithm used. 

The SIMD organization, in particular, is suitable for classes of numerical 

problems such as: 

matrix operations; 

numerical integration of differential equations; 

MonteCarlo methods; 

pattern recognitions. 

MIMD machines consist of a certain number m of independent processors PI, 

P2, .. , Pm, each having its own control unit (Cl, C2, .. , Cm respectively). 

All these processors share, among other things, a number of input/output 

units and a main memory. 

·At every instant each processor can carry out different instructions in 

parallel, that is to say all processors can operate simultaneously. Unlike the 

SIMD machines, the MIMD computers are considered as "general purpose" 

computers, because they are much more flexible than the SIMD ones and a 

greater variety of problems can be solved through them. 

As mentioned before, in this work we are only concerned with true 

multiprocessor shared memory machines; an example of this kind of machine 

is represented by the Balance 8000 computer. 

In the following paragraph we will briefly introduce the Balance architecture 

and the parallel programming capabilities of this system. 
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1.5. The Balance 8000 Parallel Processing 
System 

The Balance 8000 Sequent system is a multiprocessor shared memory machine 

and therefore it belongs to the MIMD class. Its main features are the following 

ones [24]: 

a) it is a true multiprocessor, consisting of multiple identical processors 

(CPUs); each CPU is a general purpose 32 bit microprocessor; 

b) it is a shared memory machine, i.e. there is a single common memory; 

an application can consist of multiple processes, all accessing shared data 

held in the memory; 

c) it is a tightly coupled machine, i.e. all processors share a single pool of 

memory; sharing memory is a natural way for two processes (running on 

different processors) to communicate with each other. 

Note that a tightly coupled multiprocessor can do more than assign 

non-interacting processes to a different processor. It can also distribute 

a single process among many processors, so that each processor only 

executes part of the calculation. This is done, as we will see in the 

following chapter, to get a "speed-up" (that is if a process takes time t to 

run on an uniprocessor, it could take time tin to run on n processors); 

d) the Balance system has a symmetric architecture, since all processors are 

identical and can execute both user code and operating system code; 

e) there is a single high-speed Common Bus, used by all the processors, 

the memory modules and the input/output controllers: this is done to 

simplify the adding of processors, memory and input/output bandwidth; 

f) programs written for a uniprocessor system can run on the Balance system 

in such a way that it appears transparent to the user; that is programs do 
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r-

not need to be modified for multiprocessing support. Processors can be 

added or removed, with no need of modifying either the operating system 

applications or the user applications; 

g) dynamic load balancing is provided automatically by the processors, to 

ensure that all processors are kept busy (in the most efficient possible 

way) as long as there are executable processes available; 

h) hardware support for mutual exclusion is provided, to enable the user 

to lock any section of physical memory, whenever there is the need for 

exclusive access to shared data structures. 

The following figure illustrate the components of a typical Balance 8000 

system (taken from Sequent Computer System, "Balance 8000 Sy~tem 

Technical Summary ",(26)): 
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Processors 

The Balance 8000 computer is designed to employ from two to twelve 32 bit 

CPUs, in a tightly coupled multiprocessing architecture. 

The CPUs are packaged two per board. 

To change the number of CPUs in the system it is necessary only to shut 

down the system and add or remove one or more dual-processor boards. No 

changes to the operating system or user applications are required. 

Memory 

The Balance 8000 can employ from 2 to 28 Megabytes of primary memory 

and it can provide 16 Megabytes of virtual address space per process. 

Memory is packaged in one-board or two-board memory modules. 

Memory can be added or removed in much the same way as the CPU s. 

SCSI bus 

The SCSI bus (Small Computer System Interface bus) is used to connect 

block-oriented devices, such as disk drivers or tape drivers to the system. 

It supports high-speed, high-volume data transfer between memory and 

peripherals (disks, tape units). 

SCED board 

A Balance 8000 system can include from 1 to 4 SCED boards (SCSI Ethernet 

Diagnostic controller boards). Each SCED board can serve as host adaptor 

on a SCSI bus. 

In any Balance 8000 system one SCED board is designated the "master" 

SCED board: this master board connects to the system console and provides 

15 



power-up diagnostics. It also provides a power-up monitor for any program 

running on the main CPU, such as programs to boot the operating system. 

M ultibus interface 

A Balance 8000 system can include up to 4 Multibus interfaces: they enable 

the system to incorporate any of a variety of peripherals and custom devices. 

The Balance 8000 System bus 

It is a high-performance data bus, tailored to multiprocessing in the sense 

that it provides the high bus bandwidth needed to support multiple CPUs. 

The Balance System bus is a 64 bit system bus which carries data among the 

CPUs, the memory modules and the peripheral subsystems. 

Network interfaces 

A Balance 8000 can connect to up to 4 other systems both in local area 

networks (one per SCED board), using Ethernet, and in wide-area networks, 

using ordinary telephone lines. 

The connection in local area networks facilitates communication among users 

as well as the sharing of files and devices. 

Each of the four connectable Ethernet local area networks can connect 

hundreds of systems, over distances of one mile or more. 

Furthermore, the Balance system networking capabilities include those 

common to all modern Unix systems. 

Terminal multiplexor 

This is a two-board module that resides on the Multibus and can connect to 

a terminal, printer, modem or other compatible device. 
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There can be up to 4 terminal multiplexors per multibus. 

Operating system: the Dynix 

The Dynix operating system is a version of Unix 4.2BSD modified to exploit 

the Balance parallel architecture; differences between Dynix and Unix 4.2BSD 

are transparent to the user. 

Dynix also supports most utilities, libraries and system calls provided by 

Unix System V and, like other versions of Unix, it is a multi-user operating 

system. Two or more users can use the system simultaneously, while each 

user seems to have the system's undivided attention. 

This is achieved through an operating system technique called multi

programming: a CPU moves from one process to another many times per 

second, so that the computer system is allowed to execute multiple unrelated 

processes (programs) concurrently. All the executable processes wait in a 

"run queue": when the CPU suspends or terminates the execution of one 

process, it switches to the process at the head of the run queue. 

The Dynix operating system uses the same technique, except that 

multiprogramming on Dynix is enhanced by the Balance multiprocessing 

architecture: in a Balance system a pool of processors is available to execute 

processes from the run queue. Dynix balances the system load among the 

available processors, keeping all processors busy as long as there is enough 

work available. 

Note that the Dynix operating system does multiprogramming for all the 

users automatically. 

Along with the multiprogramming technique, the Balance system also 

supports another kind of parallel programming: multitasking. 
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Multitasking is a programming technique that allows a single application to 

consist of multiple closely co-operating processes [9]. 

As a consequence of multitasking and multiprogramming, we can make the 

following considerations. 

By definition, parallel programs execute concurrently, meamng that at 

any instant the system is executing multiple programs. On a Balance 

system, parallel programs execute simultaneously: at any instant, the 

Dynix operating system can be executing multiple instructions from multiple 

processes (one process per CPU). 

Thus, parallel programming on a Balance system has two special benefits: 

multiprogramming yields improved "system throughput" for multiple 

unrelated programs. That is, each program finishes in about the time 

it would take on a uniprocessor (which is running that program alone); 

multitasking yields improved "execution speed" for individual programs, 

that is the owner of an application (consisting of multiple processes) sees 

an improvement in the execution speed of the application itself, beyond 

what would be possible on a uniprocessor. 

In the following chapter we will analyze parallel programmmg on the 

Balance 8000, using the multitasking technique. 

18 



2. Principles of Parallel Programming 

on the Balance 8000 



2.1. Introduction to Parallel Programming on 
the Balance 8000 

As illustrated in section 1.5, the two basic kinds of parallel programmmg 

are multitasking and multiprogramming. This chapter is primarily about 

multitasking, since the Dynix operating system of the Balance 8000 does 

multiprogramming for all users automatically. 

Many applications can be converted from sequential algorithms to parallel 

algorithms with relative ease, yielding linear or quasi-linear performance 

improvements, as more CPUs are dedicated to the task. 

In addition, certain types of applications can be designed specifically to 

exploit the Balance multiprocessing architecture. 

The gam m the execution speed, that can be achieved by means of the 

multitasking technique, is determined by the following factors: 

the percentage of the program's time that can be spent executing parallel 

code (a great number of applications need to spend less than 2-3% of 

their time executing sequential code); 

the number of processors available to the application; 

the hardware contention imposed by multiple processors competing for 

the same resources (such as the system bus, the system common memory, 

etc.). Note that on a Balance system the overhead due to this hardware 

contention is negligible, since most CPU memory operations access cache 

memory, not the system bus; 

the overhead in creating multiple processes; 

the overhead in synchronization and communication among multiple 

processes. 
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In adapting an application for multitasking, therefore, we will aim to run 

as much of the program in parallel as possible; at the same time, we will 

aim to balance the computational load as evenly as possible among parallel 

processes. 

2.2. Parallelizable Applications: Homogeneous 

and Heterogeneous M ultitasking 

We also have to determine whether an application can benefit from 

parallelization and which kind of multitasking technique is the most suitable. 

A parallel application, in fact, consists of two or more processes executing 

simultaneously. These processes can be multiple instances of the same 

program ("homogeneous multitasking" or "data partitioning") or they may 

be distinct but co-operating programs ("heterogeneous multitasking" or 

"function partitioning"). 

Homogeneous multitasking basically consists of running the same code on 

each CPU. 

Multiple identical processes are created and work on different portions of the 

data structure simultaneously. 

Data partitioning, therefore, applies to applications performing many 

iterations on large data structures (e.g. matrix multiplications, Fourier 

transformations) . 

The entire data structure can be divided up evenly among processes, before 

they start work (static load balancing), or each process can work on one 

portion at a time, going back for more work when it finishes (dynamic load 

balancing). 
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Heterogeneous multitasking, on the contrary, asSignS different code to each 

CPU; that is, all the processes work simultaneously on a shared data set but 

each process handles a different task. 

Applications performing many different operations on the same data set 

are candidates for function partitioning (e.g. flight simulation, program 

compilation ). 

While some applications require function partitioning or a combination of 

data and function partitioning, most problems adapt more easily to data 

partitioning. 

This last method offers some advantages over function partitioning, such as 

less programming effort is required to convert a serial program to a parallel 

algorithm. Furthermore, with data partitioning it is easier to achieve an 

even load balancing among processors; it is also easier to adapt the programs 

automatically to the number of available processors. 

In the remaining part of this chapter, we will only refer to the homogeneous 

multitasking technique. 

As far as it concerns the decision whether to parallelize a program, we can 

point out that many programs spend the majority of their time executing in 

very few routines (usually just one or two). When converting a program to a 

parallel version, it is often possible to achieve maximum gain in execution 

speed simply by parallelizing these few routines. Furthermore, a typical 

fraction of code that cannot be parallelized turns out to be just 2-3% for 

most programs (as already been mentioned). 

Typical sections of code that have to be performed serially are those related 

to initialisation phases and input/output operations. 
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2.3. Program Dependencies 

Once the portions of parallel code have been identified, the next step is 

to analyse all the possible program dependencies, for any program unit 

[2, 3, 24]. 

Some program operations, in fact, may depend on previous operations, while 

some may be executed in any order. Program Dependence Analysis, therefore, 

is needed to carry out all the ordering necessary to guarantee correct results. 

When a program unit has no dependencies, the statements in that unit can 

be executed in any order or even simultaneously. 

Most of the time, this is not the case; we can group the kinds of dependencies 

into two classes: data dependencies and control dependencies. 

Within the data dependencies class, we separate: 

flow dependence; 

anti dependence; 

output dependence. 

Flow dependence occurs when one operation sets a data value that is used by 

a subsequent operation: 

1) A=B+C 

II) D=3xA 

Statement (ll) depends on the result of statement (1). 

Antidependence occurs when one operation uses a memory location that is 

loaded by a subsequent operation: 
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I) A = B + C 

H) C=3xB 

Statement (I) must execute before statement (H), since the first statement 

uses the current value of the variable C. 

Output dependence occurs when one operation loads a memory location which 

is also loaded in a subsequent operation: 

I) A = B + C 

H) A=D-3 

Statement (H) must execute after statement (I), or A will contain the wrong 

value at the end of this program unit. 

The second class of program dependencies is the control dependencies class; . . 

it includes dependencies due to the required flow of control in a program: 

I) IF (X.GT.O) 

H) A OB + 3 ' 

Statement (H) is conditionally executed, depending on the result of the test 

in statement (I). 

It is necessary' to identify all the program dependen'cies within a program 

unit (and for all program units), in order to transform a given program, loop 

or subroutine, to correctly run in parallel. It is also necessary to corr'ectly 

organise the data structure (shared or private) and to get synchronization 

points and locking mechanisms for all the processes. 
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2.4. Elements of Parallel Programming 

The remaining section introduces some elements of parallel programming that 

are not common in sequential programming. 

We have already discussed the multitasking technique and the program 

dependence analysis. 

What we still need to consider is: 

the creation of shared and private data; 

the creation and termination of multiple processes; 

the division of computing tasks among parallel processes ("scheduling"); 

the synchronization of parallel processes; 

the mutual exclusion of parallel processes (locks mechanisms). 

Let us study all these subjects, one at a time, in the above order. 

Shared memory and shared data 

The Dynix operating system allows any number of processes to share a 

common region of system memory. 

Any process that has access to a shared-memory region can read or write in 

that region, in the same way it reads and writes in ordinary memory. 

Shared memory provides a direct and efficient method for co-operating 

processes to share data. It also simplifies the conversion of sequential 

algorithms to parallel (and it simplifies this conversion much more than 

message-passing mechanisms or network-based machines). 

Multitasking programs include both shared and private data. Shared data is 

accessible by all the processes, while private data is accessible by only one 

process. 
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The following figure 2.1 illustrates the virtual memory contents of a process 

(16 Megabytes of virtual memory are allocated for each process): 
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FIGURE 2. 1. Comparison of virtual memory contents, 

If the process forks any child processes (as we will see later), each child process 

inherits access to the parent's shared memory area and shared stack. Both 

the parent and the child processes can then access the shared data. 

This mechanism (besides providing an efficient way of interprocess 

communication) uses less memory than having multiple copies of shared data; 

it also avoids the overhead of making such copies of shared data. 
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Process creation, scheduling and termination 

In Dynix, as in other Unix-based operating systems, a new process is created 

by using a system call called a FORK. The new process (child) is a duplicate 

of the old process (parent): the child process shares the same files and shared 

memory accessible to the parent process. 

A process identification number (process id) distinguishes the parent process 

from all the created child processes: when some child processes are forked, 

the process id number 0 (zero) is assigned to the parent, while the process 

id number 1 is assigned to the first child process, the process id number 2 is 

assigned to the second child process, and so on. From this point on (until 

reaching the JOIN phase), they are separate entities. 

The fork operation is relatively expensive. Therefore, a parallel application 

should fork as many processes as it is likely to need at the beginning of the 

program and terminate them at the end of the program (on completion of the 

program itself). If a process is not needed during certain code sequences, the 

process can wait in a busy loop (spinning) or it can relinquish its processors 

to other applications (until it is needed again). 

In multitasking programming, tasks can be scheduled among all the processes 

created using three different techniques: 

prescheduling; 

static scheduling; 

dynamic scheduling. 

In prescheduling the task division is determined by the programmer before 

the program is compiled. The programmer assigns a specific task to each 

process. 
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Automatic load balancing, therefore, is not allowed by the prescheduling 

technique (that only applies to heterogeneous multitasking). 

In static scheduling the tasks are scheduled by the processes at run time, but 

they are divided in some predetermined (static) way. 

The static scheduling procedure for one process is as follows: 

1st step) it works out all the tasks that it will do; 

2nd step) it does all its tasks; 

3rd step) it waits until all other processes finish their work. 

Static scheduling produces static load balancing: since the division of tasks 

is statically determined, some processors may stand idle while one processor 

completes its work. 

This static technique only applies to homogeneous multitasking. 

In dynamic scheduling the tasks are scheduled by the processes at run time 

and they are taken from a task queue. 

The dynamic scheduling procedure for one process is: 

1st step) it waits until there are some tasks to execute; 

2nd step) it removes the first task from the task queue and executes it; 

3rd step) if there are any more tasks to execute, it goes on to the second 

step. Otherwise, it goes back to the first step. 

Dynamic scheduling produces dynamic load balancing: all the processes are 

kept busy as long as there is work to be done; the work-load is evenly 

distributed among the processes. 
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This dynamic technique applies to both homogeneous and heterogeneous 

multitasking. 

Dynamic scheduling, though, entails more overhead than static scheduling: 

each time a process schedules a task for itself, it must check the shared task 

queue (to make sure that there is more work to do) and it must remove that 

task from the queue. 

Process synchronization, loop scheduling and lock mechanisms 

Synchronization is fundamental to ensure that each process performs its work 

without interfering with the other processes. 

It is not unusual for a looping subprogram (to be executed in parallel) to 

contain a code section which depends on all the processes having completed 

execution of the preceding code. 

All real application programs contain the program dependencies we have 

studied in section 2.3. 

We then need some synchronization mechanisms to ensure the correct 

execution of multiple co-operating processes; these mechanisms are basically: 

barriers; 

locks and semaphores. 

A barrier is a synchronization point: on reaching a barrier, one process marks 

itself as "present"; then it waits for all the other processes to arrive. 

There are two kinds of barriers. 

It is possible to synchronise all processes at a single pre-initialised barrier. 
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With the second type of barrier, the programmer is allowed to set more than 

one barrier or to synchronise just a subset of the processes. 

A lock is the simplest kind of semaphore in the Balance Dynix system. It 

ensures that only one process at a time can access a shared data structure. 

A lock has two values: locked or unlocked. Before attempting to access 

a shared data structure, a process waits until the lock associated with the 

data structure is unlocked (indicating that no other process is accessing the 

structure). The process then locks the lock, accesses the shared data and 

finally unlocks the lock. 

While a process is waiting for a lock to become unlocked, it "spins" in a loop, 

producing no work. 

It is impossible for two processes to acquire a lock at the same time. Even 

when a few processes attempt the same lock immediately, only one succeeds, 

while all the others have to wait (until the first process has released the lock). 

Semaphore8 are synchronization mechanisms based on the locking/unlocking 

principle; they are used to protect order-dependent sections of code and to 

manage queues. 

"Counting/queueing" semaphores, for example, are useful for queue 

management. When several processes are waiting for a lock, the lock will 

go to the first process that tries to acquire it right after it is unlocked. 

Counting/queueing semaphores can ensure that the lock is assigned (instead) 

to the process that has waited the longest for it. 

If a barrier is used for synchronization, one process is delayed in a spinning 

state (called "busy-wait" state) until a set number of processes have reached 

the barrier. 
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When using a lock or a semaphore the situation is more complex; in this 

case, in fact, there exist four possibilities concerning what a process should 

do while it is waiting for its turn to access the locked code section. These 

four possibilities are: 

1) the process does not wait; it performs a different task and checks the lock 

again later; 

2) the process spins in a "busy-wait" state; 

3) the process "blocks", that is to say it relinquishes its processors to another 

job; 

4) the process spins for a specified period of time, then it blocks. 

We complete this paragraph with a consideration affecting input/output 

handling. 

Input/output, in parallel programming, is complicated by the need for caution 

when multiple processes write to the same file. These complications can 

usually be reduced by performing input/output only during sequential phases 

or by designating one process as a server to perform the input/output 

operations. 

This chapter is concluded by introducing the parallel programming tools 

supported by the Balance system. 
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2.5. Parallel Programming Tools 

The applications that can be adapted for parallel programming vary 

greatly in their requirements for data sharing, interprocess communications, 

synchronization, etc. [4]. To gain optimum speed-up, the programmer must 

develop an algorithm that meets these requirements (while still exploiting the 

application's inherent parallelism). 

To aid in this effort, the Balance system supports programming tools that 

adapt to the needs of a wide range of applications. 

We are mostly interested in two of these parallel programming tools: 

the Fortran Parallel Programming Directives (Sequent Fortran); 

the Parallel Programming Library (Dynix). 

We illustrate these two tools in more detail in the following sections and we 

show how to employ them for data partitioning. 

Fortran Parallel Programming Directives: data partitioning with 

Sequent Fortran 

The Fortran Parallel Programming Directives support parallel execution of 

Fortran Do-loops. By interpreting these directives, the Sequent Fortran 

compiler can restructure a Do-loop for parallel execution. 

The user prepares the program for the preprocessor by inserting a set of 

directives: these directives identify the loops to be executed in parallel; they 

also identify the shared and private data within each loop and any critical 

sections of the loop under consideration. Furthermore, the Fortran Parallel 

Programming Directives allow the user to control the scheduling of loop 

iterations among processes and the data division among all processes. 
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Ideally, the loop to be chosen for parallel execution should be an 

"independent" loop (i.e. a loop in which no iteration depends on the 

operations in any other iteration). 

Otherwise, it is reasonable to choose a loop which accounts for a large portion 

of the computation. 

Finally, in the case of nested loops, choose the outermost loop (if possible). 

Once it has been determined which loop to prepare for parallel execution, it 

is necessary to analyse all the variables in that loop and to classify them into 

one of the following categories: 

shared variables; 

local variables; 

reduction variables; 

shared ordered variables; 

shared locked variables. 

After this analysis phase, the user is ready to use the Fortran Parallel 

Programming Directives, to prepare the loop under consideration for parallel 

execution; these directives are listed in the following table (Table 2.2): 
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TABLE 2.2 

DIRECTIVES DESCRIPTIONS 

C$DOACROSS Identify Do-loop for parallel execution 

C$ORDER Start loop section which contains a shared 

ordered variable 

C$ENDORDER End loop section which contains a shared 

ordered variable 

C$ Add Fortran statement for conditional compilation 

C$& Continue parallel programming directive 

Parallel Programming Directives. 

At this point, the preprocessor handles all the low-level tasks of data 

partitioning. By interpreting the directives, the preprocessor produces a 

program that performs the following features: 

sets up shared data structures; 

creates a set of identical processes; 

schedules tasks among processes; 

handles mutual exclusion and process synchronization. 

All this is done in a way that is totally transparent to the user. 

For more detailed information about the loop variables classification and the 

use of the Parallel Programming Directives refer to [24]. 
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If necessary, the user is allowed to call the Dynix Parallel Programming 

Library routines (see the next section), in order to preserve the correct data 

flow within the loop. 

Parallel Programming Library: data partitioning with Dynix 

The Sequent Parallel Programming Library is a collection of C routines which 

allow the programmer to perform parallel Fortran programs (as well as C and 

Pascal programs). 

This library includes three sets of routines: 

1) microtasking routines (microtasking library); 

2) routines for general use with data partitioning programs (data 

partitioning library); 

3) routines for memory allocation in data partitioning programs (memory 

allocation library). 

By means of them, the user is able to: 

create sets of processes to execute subprograms in parallel; 

schedule tasks among processes; 

synchronise processes among tasks; 

allocate memory for shared data. 

As a result, programs that use the Parallel Programming Library can be made 

to balance loads automatically among processors and to adjust the division of 

tasks at run time (basing the division on the number of available processors). 
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Data partitioning with Dynix consists of the creation of multiple independent 

processes to execute iteration loops in parallel. This is done as follows: 

a) each loop to be executed in parallel is contained in a subroutine; 

b) for each loop, the program calls a special function (m_fork), which 

forks a set of child processes and assigns a copy of the subroutine to 

each process; 

c) each forked process executes some of the loop iterations (either static 

or dynamic scheduling can be used); 

d) when necessary, the subroutine may contain calls to synchronization 

routines (m_sync, m_lock, m_unlock, etc.); 

e) when all the loop iterations have been executed, control returns from 

the subroutine to the main program. 

At this point, the program either terminates the parallel processes (by means 

of the m_kilLprocs routine), or it suspends their execution until they are 

needed again (m_park_procs and m_rele_procs routines), or it leaves the 

parallel processes to spin in a busy-wait state and then uses them later. 

A complete list of all the routines available in the microtasking library, in the 

data partitioning library and in the memory allocation library is given in the 

following three tables (Tables 2.3, 2.4, 2.5). 
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TABLE 2.9 

ROUTINES DESCRIPTIONS 

m_fork Execute a subprogram in parallel 

m_geLmyid Return process identification number 

m_get_numprocs Return number of child processes 

m_kilLprocs Terminate child processes 

m_lock Lock a lock 

m_multi End single-process code section 

m_next Increment global counter 

m_park_procs Suspend child process execution 

m_rele_proces Resume child process execution 

m_set_procs Set number of child processes 

m_single Begin single-process code section 

m_sync Check in at barrier 

m_unlock Unlock a lock 

Parallel Programming Library Microtasking Routines. 

Note: the microtasking library is designed "around" the m_fork routine; any 

other routine belonging to this library should only be used in combination with 

the m_fork routine. 
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TABLE 2.4 

ROUTINES DESCRIPTIONS 

cpus_online Return number of CPUs on-line 

s_init_barrier Ini tialise a barrier 

S_INIT_BARRIER C Macro 

s-iniLlock Initialise a lock 

S_INIT_LOCK C macro 

s_lock, s_clock Lock a lock 

S_LOCK, S_CLOCK C macro 

s_unlock Unlock a lock 

S_UNLOCK C macro 

s_ wait_ barrier Wait at a barrier 

S_ WAIT_BARRIER C macro 

Parallel Programming Library Data Partitioning Routines. 

Note: the data partitioning library includes a routine to determine the number 

of available processors; it also includes several synchronization routines and 

their analogous C preprocessor macros (these macros are faster than the 

normal function calls, but they can add to the code size). 
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TABLE 2.5 

ROUTINES DESCRIPTIONS 

brk, sbrk Change private data segment size 

shbrk, shsbrk Change shared data segment size 

shfree De-allocate shared data memory 

shmalloc Allocate shared data memory 

Parallel Programming Library Memory Allocation Routines. 

Note: the memory allocation library consists of routines that allow data 

partitioning programs to allocate or de-allocate shared memory; these routines 

also permit a change in the amount of shared and private memory assigned 

to a process. 

For more detailed information concerning the Parallel Programming Library 

usage, refer to the Sequent Guide To Parallel Programming [24]. 

Data partitioning with Dynix, as well as data partitioning with Sequent 

Fortran, requires an analysis of all the variables concerned with the section 

of code (Do-loop) to be performed in parallel. It is necessary to identify: 

shared variables, i.e. "read-only" arrays and scalars or arrays whose 

elements are referenced by only one loop iteration; 

private variables, i.e. variables that are initialised in each loop iteration 

before their values are used; 

dependent variables (reduction variables, ordered variables, locked 

variables ). 
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After the analysis phase, the users can structure their microtasking program, 

using the following: 

decide how many parallel processes have to be forked, by means of 

the m_set_procs parallel programming routine or by usmg a default 

value computed by the Parallel Programming Library (the number of 

processors that are currently on line can be obtained through a call to 

the cpuLonline routine); 

call the m_fork routine to execute each looping subprogram in parallel; 

suspend or terminate parallel processes between calls to looping 

subprograms; 

terminate all parallel processes after the last looping subprogram has been 

executed. 

By usmg the parallel programmmg tools, the user is allowed to perform 

either static or dynamic scheduling, to handle all the dependent variables, 

to synchronise all the co-operating processes, etc.; as already mentioned, the 

user is also allowed to allocate or de-allocate shared memory. 

The final phases of program compiling, executing and debugging follows. 

We only mention the Dynix parallel symbolic debugger PDBX: if the prograrn 

produces incorrect results, it is possible to use this Dynix debugger, based on 

DBX( a debugger widely used on Unix systems). 

We conclude by mentioning the Dynix GPROF profiler. This utility creates 

a program execution profile, that is to say a listing that shows which 

subprograms account for most of the program execution time. Since these 

subprograms are best to execute in parallel, the gprof option turns out to be 

a very useful tool. 
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3. Parallel Numerical Analysis: the 

Tridiagonal Linear Systems Problem 



3.1. Introduction 

The solution of tridiagonal systems of linear equations appears very frequently 

as the nucleus of many scientific computational problems. 

These same problems are generally well suited for solution on both parallel 

and vector architectures; consequently, parallel algorithms have been designed 

for multiprocessor systems (MIMD) and pipeline vector computers (SIMD) 

[21, Evans 7, 10, 11, Stone 28, 29]. 

A tridiagonal system solution, however, involves recurrence relations that 

represent a severe difficulty for the implementation of efficient parallel code. 

The aim of this work is to review and analyse the main techniques for solving 

tridiagonal linear equations on parallel computers, with particular attention 

to the Wang algorithm, and to present a new technique of solution, the 

Recursive Decoupling algorithm. 

In sections 3.2 and 3.3, we briefly introduce some fundamental principles for 

the construction of parallel methods and the related techniques for solving 

the above-mentioned problems of recurrence relations. 

In chapter 4, we present a more detailed analysis of the Wang algorithm 

for the solution of tridiagonal linear systems. This algorithm will constitute 

a term of comparison for the Recursive Decoupling method described in 

chapter 5. 
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3.2. Performance evaluation parameters: 

speed-up and computational complexity 

Speed-up 

In parallel numerical analysis, it is important to be able to estimate the speed 

gain expected from the operation of p processors working in parallel. This is 

done by introducing the so-called "speed-up" ratio 

S ( ) = T.(n) 
p n Tp(n) 

where n is the dimension of the problem, 

T. (n) is the time required for serial program execution, 

Tp(n) is the time required for parallel version execution. 

The maximum speed-up possible is always equal to the number of processes 

used. However, in practice, the speed-up is often less than this. 

According to Stone [30], there are four possible forms for Sp(n): 

1) Sp(n) = k * l' in problems such as matrix calculations, finite 

difference/ element discretisation, etc. 

2) Sp(n) = k * p/log2(p) III tridiagonal linear system solving, linear 

recurrence formulae, evaluation of polynomials, sorting problems, etc. 

3) Sp(n) = k * log2(p) in searching problems, etc. 

4) Sp(n) = k III some nonlinear recurrence relations, III compiler 

operation, etc. 
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The constant k IS a machine dependent quantity such that 0 < k < 1 

and k ~ 1. 

The speed-up parameter describes how efficiently one is usmg multiple 

processes: the closer Sp(n) is to the number of processes used, the more 

efficient the parallel algorithm is and vice-versa. 

Note that the discussion of speed-up is in terms of processes and 

not processors [2]. This is done under the assumption that the number of 

processors available is greater than or equal to the number of processes. 

In the case that, during a program run, the number of processes 

(usually stored in the variable NPROC) is greater than the number of physical 

processes, the speed-up ratio obtained may be less than the ideal maximum 

speed-up inherent to the program. 

At this point, we want to analyse the parallelization of a single loop (since, 

in practice, this is mostly the case) and the related speed-up. 

For a single loop, the time required for parallel execution is gIven by the 

summation of the following addends: 

time to create processes; 

time to execute loop; 

other overheads; 

time to destroy the child processes. 

The time required to generate child processes from a single parent process 

depends on the implementation of the FORK function. In Dynix, a fork 
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operation takes about 55 milliseconds (although this varies with the size of 

the process). 

The "other overhead" involves synchronization and any sequential section 

needed to consolidate all the partial results obtained by the processes created. 

Note that this part of the calculation has no analogue in the single-process 

version; therefore it is "overhead". 

In order to calculate the time to execute the loop, we can make use of the 

following table 3.1 and also consider that in Dynix one iteration through a 

Fortran loop takes about 4.0 microseconds. 

TABLE S.l 

Fortran Language Operand 

Operation 4 byte integer 8 byte real 

Addition 2.8p.s .. ", 11. 7psec 

Multiplication 1O.3f'sec 1l.5f5eC 

Division 14.8f',ec 13.7 ps« 

Execution times for standard arithmetic operations, usmg 92 bit integers 

and 64 bit reals, performed in Fortran parallel programs, using the Balance 

Parallel Programming Library. 

It is useful to consider the parallelized loop "in isolation", that is ignoring 

the other overheads in the program. In this way, programmers can get an 

idea of how effectively they have parallelized the core of the program. 
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The speed-up calculated in this way is called "ideal speed-up", while the 

speed-up measured by considering all overheads is called "true speed-up" . 

The ideal speed-up assumes that the execution time of the parallel program 

is determined only by the number of operations performed in the parallelized 

core loop. 

On the contrary, the true speed-up is measured directly from the execution 

times, rather than from counting the operations in the parallel loop. 

Even if the core loop has been efficiently parallelized, it is normal for the true 

speed-up to be less than the ideal one, because of overheads. 

However, in practical applications, it is the true speed-up that is of interest. 

Note that the speed-up is a measure of how effectively processes are utilized, 

and not necessarily a measure of the actual speed of execution. 

For example, consider the following loop with NPROC = 2: 

Do 10 i = 1 + id, 5, N P ROe 

task 

10 continue 

Jom processes 

The first process (id = 0) does iterations i = 1,3,5, while the second process 

(id = 1) does iterations i = 2,4. If these processes are doing the same amount 

of work on each iteration, when the first process performs its task for i = 5, 

the second process will do nothing. 

If T is the time required for a single iteration through the loop, then the 

parallelized program will require a time of 3T to execute the loop. 
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The sequential versIOn will execute the loop in time 5T, so that 

the ideal speed-up for this loop execution (ignoring any other overhead) IS 

5T/3T = 5/3, less than the number of processes. 

Now we consider the following loop: 

do 10 i = 1 + id, 6, NPROC 

task 

10 continue 

JOIn processes 

again with NPROC = 2, then the parallel execution time is still 3T, while 

the sequential execution time is 6T. The ideal speed-up is now 6T /3T = 2, 

equal to the number of processes. 

Note, however, that the inefficiency due to the uneven distribution of work 

becomes less important as the size of the loop increases. 

Normally, the larger is the dimension n of the problem, the more the speed-up 

approaches its maximum. 

On the other hand, it IS necessary to be aware of the fact that 

increasing the number of parallel executing processes may result III a 

relative performance degradation, particularly if the size of the problem is 

small. 

Computational complexity 

Another way of comparing two parallel algorithms is obtained by means of 

the computational complexity parameter [22, 23]. 
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The computational complexity of an algorithm is defined as the total number 

of operations related to the algorithm itself. 

In the case of vector/parallel algorithms, analogous definitions of 

vector/parallel computational complexity hold, involving vector/parallel 

operations respectively. 

Algorithms designed for a vector architecture are often applicable to a parallel 

computer with a limited number of processors and vice-versa. 

However, there are important differences between the two types of machines 

that usually make the computational complexity parameter not sufficient for 

a correct comparison of performances. 

The timing considerations for a parallel computer are very different to those 

for a vector computer. 

Also, the characteristics of each individual machine, such as the sIze 

of central memory available, the data accessibility, the instruction set, and 

so on, can greatly influence the port ability of a particular algorithm. 

In the case of vector architectures, for example, it is very important 

to consider the length of vectors involved in an operation: this length gives 

the so-called grade 0/ parallelism of the vector operation. 

If two vector algorithms A and B present the same vector computational 

complexity, with A having a grade of parallelism equal to nand B equal to 

n/2, then A is less efficient than B. 

In the case of a parallel architecture, it is usual to assess theoretical time and 

processor bounds for a given algorithm. 
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For this purpose, it is convenient to introduce the idealised notion that during 

each time step unit (needed to perform a parallel algorithm) exactly one 

arithmetical operation can be carried out in parallel. 

Let A be the algorithm under consideration. We then introduce the following 

notation: 

N(A) is the least number of processors required to obtain a maXimum 

speed-up; 

T(A) is the number of time unit steps required when using N(A) processors; 

Tp( A) is the number of time unit steps required when the number of processors 

available is restricted to p < N(A). 

Finally, we define an arithmetic expression as a string consisting of the four 

arithmetic operations (+, -, *, I), left-hand brackets, right-hand brackets, 

"atoms" consisting of constants and variable operands. 

The symbol A(n} will denote an arithmetic expression containing n atoms. 

The time requested to evaluate A(n} using a single processor is equal to n-1 

time units. 

With an arbitrary number of processors, A(n} can be evaluated in log2(n) 

time units. 

Generally, the following result holds: 

where "fjog2(n)1" denotes the smallest integer greater than or equal 

to log2(n). 
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This result represents a lower limit for the parallel algorithm A (while using 

N(A) processors). 

On the other hand, we can notice that by exploiting properties such 

as associativity, commutativity and distributivity, it may be possible to 

transform the given expression A(n} into a form still equivalent but showing 

a better evaluation capability. 

To best illustrate these concepts, let us consider the following example: 

where a, b, c, d are real numbers. 

The analysis of this expression can be effected by the use of parse trees. The 

straightforward parse tree for A(n} involves three steps: 

STEP 3 + 

STEP 2 / 
+ 

STEP 1 /\." 
a b c d 

By exploitation of the commutative property of addition, A(n} can be 

rewritten as follows: 

A(n} = a + d + h c. 

Now a tree height of two is obtainable (see following figure): 
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STEP 2 

STEP 1 

a d b c 

To complete our considerations on complexity, we now mention a second 

result (proved by Kuck and Muraoka [19]), which gives an upper bound for 

a parallel algorithm: 

if A (n, d) is an arithmetic expreSSIOn, with n atoms and d nested 

brackets, then the properties of associativity and commutativity permit 

the transformation A(n, d} so that 

with p :::: r n/2 - ell· 

Other parameters 

Speed-up and computational complexity give a way to measure the 

assessment of a parallel algorithm. For the same purpose, other parameters 

may be introduced. 

If p processors are available and n is the dimension of the problem, the 

efficiency parameter is defined (by means of the speed-up factor) as 
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Ep( n) measures the utilisation of the parallel machine: the longer 

the processors are idle (or perform extra calculations due to the 

parallelization of the program), the smaller Ep(n) becomes. 

The effectiveness parameter Fp( n) can be given as the ratio 

F. ( ) = Ep(n) * Sp(n) 
p n T.(n) 

and therefore it is a measure both of speed-up and efficiency. A parallel 

algorithm can then be regarded as effective if it maximises Fp(n). 

To conclude this section, we mention the fact that there are other aspects 

to be considered, such as stability and error analysis (rounding errors, 

propagation errors). 

It may happen that parallel processing leads to numerically inferior results, 

but in most cases the parallel version of an algorithm actually leads to better 

results than the serial version [8J. 

3.3. Fundamentals 

Analysis 

of Parallel Numerical 

It is of the greatest importance to recognise which problems already possess 

a parallel character, and which can be parallelized. 

It is a common procedure to start with a serial algorithm and then convert it 

into a routine operating on vectors, the reason being that vector operations 

can be carried out in parallel. 

This way of proceeding can be considered as a first principle in the 

construction of parallel algorithms (expecially for SIMD machines). 
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By applying this principle, the solution of an n x n triangular linear system, 

for example, can be achieved in about 3n steps, if n processors are available. 

The same system is solved on a serial computer with n 2 arithmetic operations. 

The speed-up in this hypotetical case is equal to 

n 2 n 
Sn(n) = - =-

3n 3 

and the efficiency is En(n) = 1/3. 

However usually n processors are not available. 

If k < n processors are available, [n/kJ parallel steps are necessary, 

corresponding to n serial steps ([n/kJ denotes the integer part of the real 

number n/k). Therefore, by using k processors the solution can be achieved 

in 0(n2/k) steps. The speed-up is now, 

and the efficiency is Ek(n) = 0(1). 

A 8econd principle for the con8truction of parallel algorithm8 is the method 

of "Vector Iteration". 

This essentially consists of substituting an iterative parallel algorithm for a 

direct serial algorithm. 

A simple application of this second principle is given by the triangular 

decomposition of a tridiagonal matrix suggested by Heller [15J. 
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Let us denote: 

bI Cl 0 
a2 b2 c2 

a3 b3 C3 
A= 

Cn-l 

0 an bn 

1 0 Ul Cl 0 

12 1 IL2 C2 

IL3 C3 

L= 13 1 u= 

Un_l Cn-l 

0 In 1 0 Un 

where 

i = 2, ... ,n 

and 

i=2, ... ,n. 

The li quantities can be calculated in parallel. 

The Ui calculations constitute a direct serial procedure (it is a linear 

recurrence formula of first order) that can be parallelized by the iteration: 

{ 

uIO) = bi 

(j) (j-I) 
ILi = bi - ai * ci-I!u i _ l i=1,2, ... ,n 

where the symbol IL(j) denotes the ph iterate. 
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Obviously, this parallelization is only reasonable if the computer is able to 

perform one vector operation with vectors of n components faster than n 

scalar operations. 

Furthermore, the number of iterations required must be significantly 

less than n. 

A third principle for the construction of parallel algorithms is given by the 

method of "Recursive Doubling" (due to Kogge [17]). 

In order to generally describe this method, consider a set of N = 2n elements: 

and consider an arbitrary associative operation @ defined on M. 

The expression: 

can be performed both serially and in parallel. 

This can be illustrated by means of the following tree representations 

(suppose N = 4): 

SERIAL MODE 

STEP 1 
@ 

STEP 2' 
/ @ 

STEP 3 
@/ 

/'" ml m2 m3 m4 
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PARALLEL MODE 

STEP 2 

STEP 1 

ml m2 m3 m4 

In general, recursive doubling requires n = log2(N) parallel steps, while serial 

implementation requires N - 1 steps. 

Both the vector iteration and recursive doubling methods (second and 

third principles) constitute a means of solving linear recurrence formulae of 

first and second order in parallel (such as those involved in the solution of 

tridiagonal systems). 
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4. The Wang Partitioning Method 



4.1. Introduction 

On the basis of efficient serial algorithms for the solution of tridiagonallinear 

systems there lie some fundamental numerical methods, such as: 

1) the LU factorisation of a matrix with Gauss transformations (where L is 

lower triangular and U is upper triangular); 

2) the method of Cramer; 

3) the QR factorisation of a matrix (where Q is orthogonal and R is upper 

triangular) . 

In particular, by introducing parallelism into the first class of methods, 

parallel solution techniques are obtained, such as the odd-even cyclic 

reduction, the recursive doubling method, the Wang algorithm [1, 31]. 

We are mostly interested in the latter as a partition method to be compared 

with the Recursive Decoupling algorithm (see next chapter). 

4.2. The Wang algorithm 

Let us consider, then, an nxn system of tridiagonal linear equations: 

b;X;-l + a;x; + C;XHl = d; i = 1, .... , n 

with Xo = b1 = Cn = xn+l = O. 

In matrix notation, the same system is represented as Ax = cl, that is 

C3 

bn - 1 an-l Cn-l 

o bn an 
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A umque solution x exists for a given right-hand side d and nonsingular 

coefficient matrix A. 

Given n = p' k, where p is the number of processors available and k is an 

integer, the system under consideration is partitioned in p x p square blocks 

of dimension k. Each diagonal block is a k x k tridiagonal matrix, while all 

the subdiagonal (superdiagonal) blocks are k x k null matrices, except for one 

single non-zero element on its upper right (lower left) corner. 

By applying elementary row transformations (Gaussian elimination) on 

all the p diagonal blocks simultaneously, the coefficient matrix A can be 

diagonalized in four steps. 

Since the same partitioning process and Gaussian transformations have to be 

performed on the right-hand side vector d, we will work on the augmented 

matrix [Aid] . 

Note that the hypothesis "k is an integer" is not essential in order to 

implement the Wang algorithm on an MIMD machine [18]: it only simpli

fies our notation, while illustrating the algorithm. Also note that we work 

under the assumption that the number of equations n is much larger than 

the number of processors p, and that pivoting (during the elementary row 

transformations) for numerical stability is not required. 

For a clearer representation of the elimination pattern, we choose 

n = 12 and p = 3. 

The initial augmented matrix IS therefore partitioned as shown III the 

following figure 4.1. 
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~ Cl dl 
b2 ~ C2 d2 first 

b3 lI:! c3 ~ processor 

b4 a4 c4 d4 
bs ~ Cs ds 

b6 a6 c6 d6 second 
b7 ~ c7 ~ processor 

bs ag Cs ds 

D9 ~ "9 d9 
blo ~o cIO dlo third 

bn ~I cII dll 
processor 

bl2 ~2 dl2 

FIGURE 4.1. Initial augmented matrix. 

After this partitioning phase, the first step (step 1) consists in applying 

elementary row transformations on all the p diagonal blocks simultaneously, 

so that each block is transformed into an upper triangular matrix. 

This process creates fill-ins in the subdiagonal blocks: the right most 

column of each subdiagonal block is now completely filled (see elements Ji in 

figure 4.2). 

During the second step (step 2), elimination continues on the superdiagonals 

of the diagonal blocks; the non-zero elements of the superdiagonal blocks 

are also eliminated. This process again creates fill-ins (the 9i elements in 

figure 4.2). Now the entire matrix is diagonal, except for the fill-ins (the 

so-called "fish-bone" form). 
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~ g) a) 

il2 g2 a2 

~ 
A first 

~ d3 processor 
il4 g4 ~ 
fs ~ gs 

A 
ds 

f6 il6 ~ i\; 

~ 
second 

~ ~ lry processor 
f8 iig 8g a8 

f9 ~ ~ a9 

flO illO glO a lO third 

fl1 ill1 811 a l1 
processor 

f)2 iI)2 a)2 

FIGURE 4.2. Augmented matrix after steps I and 2 (first way of performing 
Gaussian elimination). 

The third and the fourth steps (step 3 and step 4) consist of eliminating 

the non-zero elements below and above the main diagonal (Gauss-Jordan 

elimination) respectively; this process creates no new fill-ins. The coefficient 

matrix thus obtained is now diagonal and the solution can be computed by: 

JI 
X· --' 

I - "'1 a i 
i = 1, ... ,n; 

A J I1 
(t.:1. Vi 

(. .. 

Alternatively, steps 3 and 4 can be substituted by the following procedure: 

step 3') for i = k, k + 1, 2k, 2k + 1, 3k, 3k + 1, .... , p. k, solve 2p - 1 

tridiagonal equations of the form 
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where Jk = gp.k = 0; at the end of this process the system is decomposed 

into p separate subsystems that can be solved independently; 

step 4'} calculate the remaining variables Xi by solving the independent 

subsystems. 

Using a slightly more sophisticated elimination (Wang elimination), the. 

augmented matrix obtained after the first two steps is of the form shown in 

the following figure: 

ill gl ~ 
~ g2 a2 

113 g3 a3 
first 
processor 

34 g4 ~ 

fs as gs as 

f6 a6 g6 ~ 

~ ~ a7 
second 

S, processor 
fs Ag gs as 

f9 1ig g9 a9 

flO 1110 glO alO third 

f11 811 gll all processor 

f12 Al2 a12 

FIGURE 4.3. Augmented matrix after steps I and 2 (second way of performing 
Gaussian elimination). 

In the above case of figure 4.3, only p tridiagonal equations need to be solved 

during the third phase; more precisely, the third step (step Sj becomes the 

following: 
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for i = k, 2k, 3k, .... , p. k, solve p tridiagonal equations of the form 

!;X.io-l + aixi + giXi-+{= di 
0, _I{ L'" 

where fk = gp.k = Oj at the end of this process the system is decomposed 

into p separate subsystems that can be solved independently. 

The fourth step (step 4 ~remains invariant. 

The elimination process leading to the matrix form of figure 4.3 was first used 

by Wang as part of a different method for SIMD computer. 

We now illustrate a version of the Wang algorithm suitable for an 

MIMD machine. 

4.3. The Wang Fortran routine 

Let a, b, c be the n-dimensional vectors containing the initial coefficient 

matrix A. 

Let x and d be the unknown and known vectors, respectively, both of 

dimension n. 

To perform the program's parallel sections, we need an additional array, rn, 

of dimension n + 1. 

Vectors f and g, both of dimension n, store the fill-in elements created by 

the algorithm. 

Finally, five more work-arrays are utilised, each one of dimension equal 

to the number of processors available: let these arrays be called aa, xx, 

dd, ff, gg. They are used during a sequential part of the program, in 

order to correctly perform a call to the subroutine that solves the tridiagonal 

equations of step [1 '. 
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The Wang routine starts with the initialisation of all the above mentioned 

variables and with the inputs concerning the number p of processors available 

and the number k of subsystems into which the entire system is partitioned. 

As mentioned before, we set n = p. k, where n, p and k are all integers. 

In the case that n does not satisfy this condition, it is possible to add equations 

of the following type: 

Xi = 1 i = n + 1, n + 2, ...... , p. k, 

so that the order of the tridiagonal system is increased to dimension p. k. 

At this point, we are ready to perform the four steps of the Wang process. 

STEP 1 

p processors run in parallel. 

We use the Doacross Parallel Programming directive to prepare a section of 

code for parallel execution, as shown below: 

C$Doacross share (k, p,J, b, m, a, c, d), local (j) 

Do i = 1, p 

if (i =I 1) f(i-I).k+1 := b(i-I).k+1 

Do j = (i - 1)· k + 2, i· k 

mj := bj/aj_1 

d j := dj - mj . dj-I 

if (i =I 1) /i := -mj . /i-I 

continue 

continue 
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STEP 2 

p processors run in parallel. 

Again, we use the Doacross directive to perform the following Fortran code 

in parallel.. 

Note that there is no need for synchronization between steps 1 and 2, since 

the Doacross directive supports both the fork construct and the join construct 

(at the beginning and at the end of the loop, respectively)" 

C$Doacross share (k,p, 9, c, m, a, d, I), local (j) 

Do i = 1, p 

9i"k-I := Ci"k-I 

Do j = i " k - 2, (i - 1) " k + 1, -1 

mj := Cj/aj+I 

9j := -mj " 9j+I 

d j := d j - mj " dj+I 

if (i =11) h := h - mj"fj+I 

continue 

if (i =11) then 

endif 

continue 

mi := C(i-I)"k/a(i-I)"HI 

9(i-I)"k := -mi " 9(i-I)"k+I 

a(i-I)"k := a(i-I)"k - mi " f(i-I)"k+I 

d(i-I)"k := d(i-I)"k - mi " d(i-I)"HI 
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STEP 3 

The third phase of the Wang method is performed serially and consists of 

solving p tridiagonal equations: 

fixi-/+ aiXi + 9iXi+/= di 

I< " 

for i = k, p' k, k (Jk = 9p·k = 0). 

This is done by calling a subroutine which solves the ith equation, giving the 

solution Xi. 
In order to avoid modifications in the vectors a, x, d, f and g, the 

subroutine call is preceded and followed by saving the components concerned 

in the work-arrays aa, xx, dd, ff and gg (respectively). 

STEP 4 

p processors run in parallel. 

The Doacross directive is utilized to prepare the loops for parallel execution. 

C$Doacross share (k,p,d'!,9,a,x), local (j) 

Do i = 1, p 

Do j = (i - 1) . k + 1, i· k - 1 

if (i i- 1) then 

else 

X j := ~j - /j . X(i-l)·k - 9j . xi'1;a j 

continue 

continue 

At this point, the complete solution vector x is obtained. Again, there IS no 

need for synchronization at the end of step 4, since the Doacross statement 

provides it. 

63 



4.4. Numerical Experiments and Remarks 

In this paragraph numerical results are reported, concerning the solution of 

tridiagonallinear systems by means of the Wang routine, on the Balance 8000 

parallel machine. 

The following tables group together the execution timing (both for the 

sequential and the parallel versions of the Wang algorithm), the experimental 

speed-up (to be compared with the expected speed-up) and the efficiency 

parameters. 

The maximum error E max , average error Eav and maximum relative error Er 

obtained are also presented, in order to study the degree of accuracy reached 

by the method. These error measurement have been calculated according to 

the following formulae: 

l:~l IXi - xii Eav = ='='-'--'--"":"!' 
n 

( 4.4) 

where x = (Xl, .... , Xi, .... , Xn)T is the exact solution of the system 

and X = (Xl, .... , Xj, .... , xn)T is the calculated solution. 

All the results shown are related to two test tridiagonal systems (with known 

solution), whose coefficient matrices satisfy the condition: 

bj > aj +Cj Vi = 1,2, .. ,n 

where bl , .... , bi , .... , bn are the elements on the main diagonal; 

aI, .... , ai, .... , an are the elements on the sub-diagonal (with al = 0); 

Cl, •••. , ci, .... , Cn are the elements on the super-diagonal (with C n = 0). 
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The two example systems chosen are as described below. 

First test system 

The first tridiagonal linear system considered (14) is 

2 -1 0 Xl 1 
-1 2 -1 X2 0 

-1 2 -1 X3 0 
- (4.5) 

-1 2 -1 Xn-l 0 
0 -1 2 Xn 0 

whose exact solution is an n-dimensional vector x with components: 

n+l-i 
Xi = 

n+l 
Vi = 1, .. ,n. 

Second test system 

The coefficient matrix in this second example is a tridiagonal matrix of the 

form: 
TB 

TB 

TB 

where each submatrix TB is an 8 x 8 tridiagonal matrix 

2 -1 0 
-3 5 -2 

-2 3 -1 

TB = 
-2 4 -1 

(4.6). -1 4 -3 
-4 6 -1 

-7 8 -1 
0 -1 3 

According to the block structure of the coefficient matrix, the known vector 

d has the form: 

d = (ds,ds, .... ,dsl 
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where each subvector d s has dimension 8 and components: 

1 
0 
0 

ds= 
1 

(4.7). 
0 
1 
0 
2 

The exact solution vector to this second test system is an n-dimensional vector 

x, whose components are all equal to 1. 

If we choose the dimension n = 16 , for example, the tridiagonal coefficient 

matrix will be (in this second example): 

2 -1 
-3 5 -2 

-2 3 -1 
-2 4 -1 

-1 4 -3 
-4 6 -1 

-7 8 -1 
-1 3 0 

0 2 -1 
-3 5 -2 

-2 3 -1 
-2 4 

-1 
o 

and the corresponding known vector d will be: 

( 1,0,0,1,0,1,0,2,1,0,0,1,0,1,0,2)T . 

The solution vector x we are looking for, in this case, is: 

( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, l)T . 
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Tables 4.8 and 4.9 show the execution timings obtained when running the 

Wang routine on the two test examples mentioned. The speed-up and 

efficiency parameters are also calculated and reported in the same tables. 

In these experiments the Parallel System overheads introduced by the 

operating system proved to be too great to ensure a speed-up of the algorithm. 

Consequently, it was necessary to evaluate reclaimed times for the Wang 

algorithm; that is to say, the elapsed execution times minus the cost of 

forking child processes and child page table build up (child processes do 

not automatically inherit the parent's page table when created) was used 

in evaluating the speed-up. 

The notation adopted in all the table is as follows: 

n: is the dimension of the tridiagonal linear system under consideration; 

q: is the exponent (power of 2) so that n = 2q; 

p: is the number of processors used. 

The accuracy results are given in tables 4.10 and 4.11 for the parallel version 

and the sequential version of the Wang algorithm respectively. 

Some slight discrepancy in the accuracy results do occur, and this is probably 

due to favourable partitioning which reduces rounding errors. 

Note that these results only concern the solution of the first test system, 

since in the case of the second test system 100 % accuracy is obtained. This 

is probably due to the fact that the solution vector x (in the second example) 

can be regarded as having all integer components (they are all equal to 1). 

Therefore, no rounding error is involved. 
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TABLE 4.8 

T, Tp Obtained Sp(n) Expected Sp(n) Efficiency Ep( n) 

n=128 

q=7 .02650 .0280 .9464 1.8824 .2366 

p=4 

n=256 

q=8 .05200 .0330 1.5758 1.9394 .3939 

p=4 

n=512 

q=9 .10350 .0600 1.7250 1.9692 .4313 

p=4 

n=1024 

q=lO .20600 .1000 2.0600 1.9845 .5150 

p=4 

T, Tp Obtained Sp(n) Expected Sp(n) Efficiency Ep( n) 

n=128 

q=7 .02650 .0210 1.2619 3.2000 .1577 

p=8 

n=256 

q=8 .05200 .0280 1.8571 3.5556 .2321 

p=8 

n=512 

q=9 .10350 .0420 2.4643 3.7647 .3080 

p=8 

Reclaimed times (in seconds), speed-up and efficiency obtained when using the Wang routine to 
solve the first example system (4.5). 
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TABLE ./.g 

T. Tp Obtained Sp(n) Expected S.( n) Efficiency Ep( n) 

n=128 

q=7 .025000000 .032999990 .7576 1.8824 .1894 

p=4 

n=256 

q=8 .050000000 .042000010 1.1905 1.9394 .2976 

p=4 

n=512 

q=9 .099500030 .059000000 1.6864 1.9692 .4216 

p=4 

n=1024 

q=1O .199000000 .100000000 1.9900 1.9845 .4975 

p=4 

T. Tp Obtained Sp(n) Expected S p( n ) Efficiency Ep( n) 

n=128 

q=7 .025000000 .02150 1.1628 3.2000 .1453 

p=8 

n=256 

q=8 .050000000 .02800 1.7857 3.5556 .2232 

p=8 

n=512 

q=9 .099500030 .05200 1.9135 3.7647 .2392 

p=8 

Reclaimed times (in seconds), speed-up and efficiency obtained when using the Wang routine to 
solve the second example system (./.6) fj (./.7). 
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TABLE .{10 

Maximum Error Em.", Average Error E •• Maximum Relative Error Er 

n=128 

q=7 .0000018477 .0000011250 .0000018621 

p=4 

n=256 

q=8 .0000088215 .0000054081 .0000088560 

p=4 

n=512 

q=9 .0000028610 .0000007448 .0000028666 

p=4 

n=1024 

q=10 .0001227856 .0000744966 .0001229055 

p=4 

Maximum Error Em.", Average Error E •• Maximum Relative Error Er 

n=128 

q=7 .0000030994 .0000019837 .0000031236 

p=8 

n=256 

q=8 .0000064969 .0000042093 .0000065223 

p=8 

n=512 

q=9 .0000324249 .00000209412 .0000324882 

p=8 

Accuracy results obtained when using the parallel version of the Wang routine to solve the first 
example system (.1- 5). 
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TABLE -1.11 

Maximum Error E ma", Average Error Ea. Maximum Relative Error Er 

n=128 

q=7 .0000013709 .0000006365 .0000013816 

n=256 

q-8 .0000044703 .0000019153 .0000044878 

n=512 

q-9 .0000141859 .0000066210 .0000142136 

n=1024 

q=1O .0001955032 .0001060939 .0001956941 

Accuracy results obtained when using the sequential version of the Wang routine to solve the first 
example system (-1.5). 

, ~ 

-~ --~---- --~---

. , 

Note. 
In tables 4.8,4.9, obtained and expected speed-ups are given according to the following formulae: 

ObtainedSp(n) = T.ITp 

ExpectedSp( n) = nl(2k + p) 

where n is the problem dimension, p is the number of processors, k = nip. 
The Efficiency parameter is Ep(n) = Sp(n)lp . 
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5. The Recursive Decoupling Method 



5.1. Introduction to the Recursive Decoupling 

Method 

In this chapter we describe a new tridiagonal equation solver, based on a rank-

one updating strategy and the repeated partitioning of the system matrix into 

2x2 submatrices. On these bases, a recursive decoupling method is developed, 

which operates on the tridiagonal linear system, enabling the solution to 

be expressed in explicit form and solved independently on a multiprocessor 

system. We will show, in fact, that the Recursive Decoupling Method is 

intrinsically parallel and can be implemented as an efficient parallel algorithm 

[5, 6]. 

5.2. The Partitioning Process 

We consider a set of n linear equations in n unknowns 

Au=d (5.1) 

where A is an nxn tridiagonal matrix of the form 

bl Cl 

a2 b2 C2 o 
A= 

a3 b3 C3 
with bi>ai+ci, Vi=1,2, .. ,n 

0 

(5.2) 

We denote d and u as the n-dimensional known and unknown vectors 

respectively. 

To illustrate the algorithm, we assume that n is an integer power of 2, 

i.e. n = 2q (with m = nj2 = 2Q-
I ). This assumption is not restrictive: 

the method can be generalized. The choice n = 2m simplifies our notation. 
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The initial coefficient matrix A IS now rearranged into the following 

partitioned form 

Xl 
(j) 

YI 
(j)T 

o X2 Y2 

m-I X3 Y3 

+L X4 Y4 

j=l 

o Xn-l Yn-l 

Xn Yn 
(5.3) 

where 

when j = 2, ... , m 
(5.4) 

when j = 1, ... , m-I 

and where vectors x(j), y(j) have only non-zero elements in the 2jth and 

(2j + 1 )th positions, 

I.e. 

{ 

Xk = 1 

Xk = 0 

when k = 2j,2j + 1 

otherwise 

when k = 2j 

when k = 2j + 1 

Yk = 0 otherwise 

that is 

(.) T 
x] = (0, ... ,0,1,1,0, ... ,0) (5.5) 

y(j) = (0, ... ,0, a2j+l, C2j, 0, ... ,O)T (5.6) 

with j ranging from 1 to m-I and n = 2m. 
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In matrix notation, therefore, the above partitioning of the matrix A can be 

represented as 
m-I 

A = J + L X(j)y(j)T 

j=1 

where J is a block diagonal matrix of the form 

J= 

Each block in J is a 2x2 submatrix J i of the following type 

with i = 1,2, ... ,m 

The elements of Ji are defined as in (5.4). 

(5.7) 

(5.8) 

(5.9) 

The basic idea, underlying the choice of this particular partitioning, is given 

by the Sherman-Morrison formula. 

Suppose that we have computed the inverse matrix J-1 for some matrix J of 

dimension nxn. Then, suppose that J is modified into a matrix A as follows 

A = J +xyT (5.10) 

where x, y are n-dimensional vectors. 

According to Sherman-Morrison [27], the inverse A-I can be computed as 

where O! = 1/(1 + yT r
1x) (5.11) 

To compute the new inverse directly would cost O(n3
) arithmetic operations, 

while the use offormula (5.11) only implies O(n2
) operations. 

The Sherman-Morrison formula also applies if linear equations are being 

solved, so that the solution of Ju' = d must be converted to the solution 

of Au = d. 
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From formula (5.10), we have 

u = A -Id = (J-I - a(J-Ix)(yT rI))d 

= rId _ a(J-Ix)(yT rI)d 
(5.12) 

Suppose we have a routine that can solve linear systems involving matrices J 

or J- I
. The solution of the modified system Au = d can then be obtained 

from the following sequence 

(i) solve Ju' = d for u', so that u' = J-Id is known; 
<>:>, fl) 

(ii) solve J€)= x for w, so that 8~ J-Ix is known; 

(iii) solve JT z = y for z, so that zT = yT J- I is known; 
0), 

(iv) form a = 1/(1 + yT®); 

~ 
(v) form u = u' - a~;zTd, the solution of Au = d. 

This process requires back-substitutions and inner-products, so that the cost 

is only Q( n ) operations. It also avoids the explicit computation of the inverse 

matrix. 

In order to apply the Sherman-Morrison formula, therefore, all we need to 

know is a matrix J which only differs by a few elements from our coefficient 

matrix A and whose inverse J- I is known. 

If we now go back to our original problem of solving the tridiagonal system 

Au = d and consider again the partitioning formula (5.7), we can notice 

the similarities with the Sherman-Morrison expressIOn. Our partitioning 

form (5.7) can be considered as a recursive application of formula (5.10). 

Besides, our coefficient matrix A only differs by a few elements from a block 

diagonal matrix J, whose blocks Ji are of dimension 2x2 and are therefore 

immediately invertible. 
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For every index i ranging from 1 to rn, in fact, we have 

(5.13) 

It is then possible for us to use the Sherman-Morrison formula. 

In the next paragraph, we show how a process, based on similar ideas to the 

ones described in (5.12), have been developed into the Recursive Decoupling 

Method. 

5.3. The Recursive Decoupling Process 

Given the tridiagonallinear system Au = d, where A is rewritten as in (5.7), 

we now want to partition the two vectors u and d in an analogous way to 

the matrix J. 

To this purpose, we consider vectors u and d to be written as follows 

Ul d1 

U2 d2 

U3 d3 

U4 
u= - d= 

d4 
- (5.14) 

We can now derive the solution of system (5.1) by applying the rank-one 

updating procedure of Sherman-Morrison recursively to (5.7). The result is 

m-I m-I 

U = (J + L x(i)y(j)T)-ld = (r I - <]rl L x(ilyU)T rl)d 

i=1 i=1 
m-I m-I 

with 0<. = 1/(1 + L y(j)T r 1 L x(i» 
J . . 

1=1 1=1 

(5.15) 

and j = 1,2, ... , rn - 1 
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By denoting ]-Id = u' and ]-IXU) = g{j), the expressions (5.15) can be 

simplified to 

u = (1 _ agU)yU)T)-l u' 

with a = 1/(1 + yU)T gU) 

and j = 1,2, ... ,m - 1 

(5.16) 

The expressions (5.16) give a description of the rank-one updating procedure. 

Once we have applied the partitioning process (5.7), in order to obtain the 

final solution u, we then need 

- to start with an approximated solution vector u' given by u' = ]-Id; 

- to calculate vectors gU) from g(j) = ]-IX(j); 

- to perform the rank-one updating procedure (5.16). 

In particular, the updating step implies the recursive use of vectors x(j) 

and yU) and the recursive updating of vector u and vectors g(j). 

Note that, for each index j ranging from 1 to m -1, the form of vectors x(j) 

and yU) are such that they only contain 2 non-zero elements. Therefore the 

expressions (5.16) can be calculated independently and recursively using a 

Parallel Fan-in Algorithm, as follows 
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1 
_____ (1) 

2 ___ UI-2,gI_2 

5 ____ (5) 

6 ............... US-6, gS-6 

_______ (2) 
___________ UI-4, gI-4 

(6) 
us-s,gs_s 

\ 
\ , 

\ 

\ 
\ 

UI-m = U 
/ 

m-3 / 
" (m-3) /U(m-3)-(m-2), g(m-3)-(m-2) / 

m - 2 ___. (m-2) / 
~ U(m-3)-m, g(m-3)-m 

m-I" (m-I) _____ 

m 
~ U(m-I)-m, g(m-I)-m 

(5.17) 

The notation adopted in figure (5.17) uses the subscript index of vectors U and 

g(j) to indicate the number of components involved in the current calculation. 

For example, the writing g~~2 means that we are considering components 1 

and 2 of vector g(I), while g~~s means that we are considering components 

. 5, 6, 7, 8 of vector g(6). 

More specifically: 

Ui-(i+k) is a vector of 2k components, namely components 2i, 2i+ 1, ... , 2i+2k 

of vector U 

gl~(i+k) is a vector of 2k components, namely components from 2i to 2i + 2k 

of vector g(j). 
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Therefore: 

(j) 
- at the 18t level of the above tree structure, vectors Ui-(i+l) and gi-(i+l) 

are composed of 4 components, with the index i ranging from 1 to m and 

j = 1,3, '" m-I; 

- at the 2nd level, vectors Ui-(i+3) and g~~(i+3) are composed of 8 components, 

with the index i ranging from 1 to m and j = 2,6, .. , m - 2, 

- at the 3rd level, vectors Ui-(i+7) and g~~(i+7) are composed of 16 elements, 

with the index i ranging from 1 to m and j = 4,12, '" m - 4, 

These observations apply in an analogous way to each level. The last level 

gives the final solution U = Ul-m , which is a vector of 2m = n components. 

The tree structure depicted in (5.17) enables as many as possible of the 

matrix updating strategies to be performed in parallel. The calculations of 

(j) 
vectors Ui-(i+k) and gi-(i+k) are, in fact, non overlapping and independent 

of each other. 

The Fan-in graph represented in figure (5.17) has a depth equal to log2 m, 

and it is composed of log2 m levels. The whole algorithm, implementing 

the Recursive Decoupling Method, exhibits an average degree of parallelism 

of Q( mj log2 m). This result only applies to systems of order n = 2q and is 

likely to be degraded for systems whose order n is not an integer power of 2, 

due to imperfect load balancing. 
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5.4. The Recursive Decoupling Algorithm 

In this section we present the solution procedure in algorithmic form, when 

the coefficient matrix A is partitioned as in (5.3) and the unknown and known 

vectors u and d are partitioned as in (5.14). As already said, we discuss the 

case for n = 2Q, but the process is equally valid for n not equal to a power of 

2 and can easily be adapted. 

We will refer to the above mentioned partitioning of matrix A and vectors 

u and d as the Preliminary Stage or Pre-stage. After this Pre-stage, the 

solution routine is formulated into three different sections, respectively called 

Stage 1, Stage 2 and Stage 3. 

Stage 1. 

This first stage of the algorithm consists of finding the solution of Ju = d, 

that is obtaining 

u= d (5.18) 

This is equivalent to solving m systems of the form 

(5.19) 

Since we know the expressions for matrices Ji-
1 

( see formulae (5.13) ), the 

solution u of system (5.18) can be explicitly expressed as 

u= 

(e 2 d1 - c1 d2 )/6.1 

(-a2dl + e1d2)/6.1 

(e2i d2i-l - C2i-l d2i)/6.i 
(-a2id2i-l + e2i-l d2i)/6.i 

(e2m d2m-l - C2m-l d2m)/6.m 
(-a2m d2m-l + e2m-l d2m)/6.m 

(5.20) 

Note that each one of the m subsystems (5.19) can be solved independently 

on a multiprocessor. 
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Stage 2. 

In an analogous way to the previous section, the second stage consists of 

finding the solution of Jg(j) = x(j) for j = 1,2, .. , m-I, that is obtaining 

(5.21) 

for j = 1,2, .. , m - 1. 

As before, this is equivalent to solving m systems of the form 

( Ul) (Ul) 92;-1 _ J-1 X 2;_1 
(j) -; Ul 

92; x 2; 
(5.22) 

where j ranges from 1 to m - 1. 

Again, since matrices Jj-
1 are known, we can express the sol~tion gUl of each 

one of the m-I systems (5.21) as follows 

-

o 
o 

(e2; - c2;-d/6.; 
(-a2; + e2i_l)/6.; 

o 
o 

(5.23) 

where the only two non-zero elements appear in the (2j)'h and (2j + l)th 

positions. 
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Furthermore, the m-I systems (5.21) can also be evaluated in parallel, by 

applying the structure shown in the following figure: 

( g~l») _ rl (0) 
(1) - 1 1 

g2 

( (1) (2») ( g3 g3 _ ,-I 1 
(1 ) (2) - 2 0 

g4 g4 

( (2) (3) ) ( g5 g5 _ J-1 1 
(2) (3) - 3 0 

g6 g6 

( 

(m-2) 
gn-3 

(m-2) 
gn-2 

gn-3 _ J-1 1 (m-I») ( 
(m-I) - m-I 0 

gn-2 

( m-I») ( ) gn-l = J-1 1 
(m-I) m 0 

gn 

n 
n 

(5.24) 

The process described in figure (5.24) relies on the fact that, before starting 

the updating Stage 3, the vectors g(j) contain only two non-zero elements, 

since they are derived from vectors x(j). 

Stage 3. 

Finally, during this last stage, vectors u and g(j) are updated, by recursively 

using the Sherman-Morrison formula. 
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The rank-one updating step procedure can be described as follows 

for k = 1,2, .. ,q-1 

£ . - 2k - 1 2q- 1 2k - 1 2k orJ- , - , 

O!j = 1/(1 + y(j)T g(j») 

u = (I - O!jg(ily(j)T)-lU 

(5.25) 

end 

end 

end 

The final solution is obtained and stored in vector u. 
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5.5. An Analytical Example 

Before describing the Fortran routine which implements the Recursive 

Decoupling Algorithm, we give an example to illustrate the solution strategy. 

Consider a 16x16 tridiagonal linear system, whose coefficient matrix A is 

given by 

b1 Cl 

a2 b2 C2 

a3 b3 C3 

a4 b4 C4 

a5 b5 C5 o 
a6 b6 C6 

a7 br C7 

A= aa ba 
a9 

Ca 

b9 C9 

a10 b10 CI0 

all bll Cll 

0 a12 b12 C12 

a13 b13 C13 

a14 b14 

a15 

We then have n=16, m=8, q=log2n. The matrix A can be rewritten in the 

partitioned form given in (5.3). 

In other words, we will rewrite the coefficient matrix A as the sum of a block 

diagonal matrix J with the summation of the products 

Vectors x(j) and y(j) are all of dimension n=16 and of the type described 

in (5.5) and (5.6) respectively. 
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el Cl 

a2 e2 

e3 C3 

a4 e4 

e5 C5 0 
a6 e6 

E7 C7 

A= as es 

eg Cg 

alO elO 

Ell Cll 

0 al2 el2 

El3 el3 

al4 el4 

el5 Cl5 

al6 El6 

0 0 (j)T 0 0 (j)T 0 0 (j)T 0 0 (j)T 

1 a3 0 0 0 0 0 0 
1 C2 0 0 0 0 0 0 
0 0 1 a5 0 0 0 0 
0 0 1 C4 0 0 0 0 
0 0 0 0 1 a7 0 0 
0 0 0 0 1 C6 0 0 
0 0 0 0 0 0 1 ag + 0 0 + 0 0 + 0 0 + 1 Cs 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 (j)T 0 0 (j)T 0 0 (j)T 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

+ 0 0 + 0 0 + 0 0 
1 all 0 0 0 0 
1 CIO 0 0 0 0 
0 0 1 al3 0 0 
0 0 1 Cl2 0 0 
0 0 0 0 1 al5 

0 0 0 0 1 C14 

0 0 0 0 0 0 
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The new elements in matrix J are given by 

el = bl , e2 == b2 - aa , ea = ba - C2 , e4 == b4 - a5 , 

e5 = b5 - C4 , e6 = b6 - a7 , e7 = b7 - C6 , es = bs - a9 , 

e9 == b9 - Cs , elO = blO - all , ell = bu - C10 , e12 = b12 - a13 , 

e13 = b13 - C12 , el4 = b14 - a15 , e15 = b15 - CH , e16 == b16 • 

The block diagonal matrix J is formed by m = 8 blocks, of which each one 

is a 2x2 matrix and therefore is directly invertible, i.e. 

J l = ( el 
a2 

Cl ) 
e2 ' 

J 1l = .6.11 ( e2 
-a2 

-Cl) 
e1 

where .6.1 = (e2el - a2cd 

J 2 = ( e3 
a4 

ca) , 
e4 

J:;l == .6.21 ( e4 
-a4 

-ca) 
ea 

where .6.2 == (e4ea - a4Ca) 

We continue this process for all the remaining matrices up to and including Js. 

Let us now partition vectors U and d as required in (5.14): 

U1 d1 
U2 U1 d

2 
d 1 

U3 
U2 

d3 d2 
U4 d4 

U5 
Ua 

d5 d 3 
U6 d6 

U7 d7 d 4 
Us 

U4 
ds 

U= - d= -
U9 

U5 
d9 d 5 

U10 dlO 

Ull 
U6 

dll 
d 6 

Un d12 

U1a 
U7 

d13 d 7 
U14 d14 

U15 d15 d s 
u16 

Us d16 
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We have now completed the Preliminary Stage and are ready to start Stage 1, 

that is solve 8 subsystems of the form 

JjUj = dj as i ranges from 1 to 8. 

We obtain 

Analogous calculations are to be performed in order to obtain U3, U4, Us, U6, 

U7, Us. We have then completed Stage 1, obtaining the vector u. 

The subsystems in Stage 2, i.e. 

with i = 1,2, .. ,8 and j = 1,2,3 

can also be evaluated explicitly. 
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The solutions are 

(1) J-1 (1) 1 ( e2 gl = 1 Xl =-
ill -a2 

There is no need to calculate g~l), gi1), g;l), g~l), g~l), g;l), smce their 

resulting components are clearly all equal to zero. 

Then 
(1) 

gl -Cl/ill 

(1) 
g2 

el/ill 
e4/ il2 

(1) 
-a4/il2 

ga 0 
0 

(1) 
g4 0 

g(l) = 0 
(1) 0 g5 

0 
(1) 

g6 0 
0 

(1) 
g7 0 

0 
(1) 

gs 0 
0 
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The same observations hold for g(2), i.e. 

(2) J- 1 (2) 1 ( e4 
g2 = 2 X 2 =-

~2 -a4 

1 
( e4 -~:) (n -

(e3e4 - a4 c3) -a4 

1 (-~: ) -
(e3e4 - a4c3) 

(2) J- 1 (2) 1 ( es 
g3 = 3 X3 =-

~3 -as 
-cs) (2) 

X3 
es 

1 
( es -~;) 0) -

(eses - ascs) -as 

1 ( -::) -
(eSe6 - ascs) 

J: h . (2) (2) (2) (2) (2) (2) . 
As belore, t ere IS no need to calculate gl ,g4 ,gs ,gs ,g7 ,g8 ,smce 

their components are equal to zero. 

Then we obtain 
(2) 

gl 0 
0 

(2) 
g2 -C3/ ~2 

(2) 
g3 

e3/~2 
eS/~3 

(2) 
g4 

-as/ ~3 
0 

g(2) = 
(2) 

gs 

0 
0 
0 

(2) 
gs 0 

0 
(2) 

g7 0 
0 

(2) 
g8 0 

0 
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completes Stage 2. 

Finally, the third stage of the algorithm gives the required solution u, after 

a recursive series of updating operations. More specifically, during the first 

iteration of Stage 3, vector U is updated by applying the Sherman-Morrison 

formula to successive subsets of its components; this is done by using the 

corresponding components of vectors g(l), g(3), g(S), g(7), y(l), y(3), y(S), 

y(7). We can represent this process as follows 

U 

( (S) (5)T) (US) 
U5-6 = I - C¥5g5_6Y 5-6 U6 

( (7) (7)T) (U7) 
U7-S = I - C¥7g7-SY7-S Us 

The graph above can be read in the following way: 

components from 1 to 4 of vector U are updated 

components from 5 to 8 of vector U are updated 
U 

components from 9 to 12 of vector U are updated 

components from 13 to 16 of vector u are updated 
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Vectors g(2), g(4), g(6) are also updated by an identical process, that is to 

say by using the corresponding components of g{l), g(3), g(5), g(7). 

To first update vector g(2), for example, we calculate: 

that means 

components from 1 to 4 of vector g(2) are updated 

components from 5 to 8 of vector g(2) are updated 

components from 9 to 12 of vector g(2) are updated 

components from 13 to 16 of vector g(2) are updated 

We complete the first iteration by calculating the updated values of vectors 

g(4) and g(6) in an analogous way as g(2). Then, we again update vector u, 

starting the second iteration of the recursive process. This time, u is updated 

by using the corresponding components of vectors g(2) and g(6), along with 

y(2) and y(6): 

u 

(I (6) (6)T) (UO- 6 ) 
u5-S = - Q6gs-sys-s U7-S 

As before, the graph above can be read in the following way: 

u { components from 1 to 8 of vector u are updated 

components from 9 to 16 of vector u are updated 
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The vector g(4) is also updated by using the corresponding components of 

g(2) and g(6): 

that means 

{

components from 1 to 8 of vector g(4) are updated 
g(4) 

components from 9 to 16 of vector g(4) are updated 

This ends the second iteration. 

By performing the third iteration, we finally obtain the solution vector Uj 

this time, we update all the 16 components of u by using the corresponding 

components of vector g(4): 

Note that in this example we have required q - 1 = 3 iterations to complete 

Stage 3 and to obtain the final solution vector u. 
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5.6. A Numerical Example 

The Recursive Decoupling procedure can be further illustrated by the 

following simple numerical example [14], involving the 8x8 linear system 

2 -1 Ul 1 
-1 2 -1 0 U2 0 

-1 2 -1 U3 0 
-1 2 -1 U4 0 

-1 2 -1 = 
Us 0 

-1 2 -1 U6 0 
0 -1 2 -1 U7 0 

-1 2 Us 1 

The system matrix can be de coupled into the form 

as follows 

2 -1 
-1 3 0 

3 -1 
-1 3 

3 -1 
-1 3 

0 3 -1 
-1 2 

0 0 T 0 0 T 0 0 T 

1 -1 0 0 0 0 
1 -1 0 0 0 0 

+ 0 0 
+ 

1 -1 0 0 
0 0 1 -1 + 0 0 
0 0 0 0 1 -1 
0 0 0 0 1 -1 
0 0 0 0 0 0 

This concludes our Pre-stage. 
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We continue with an illustration of the following three stages. 

Stage 1. Find the solution to the system Ju = d, that is, solve the 4 

subsystems: 

J - 1d 1 (3 U2 = 2 2 =-
6.2 1 

1) (d7
) 1 (2 1) (0) (1/5) 3 ds = (6 - 1) 1 3 1 = 3/5 

Therefore u, at the end of stage 1, is given by 

U1 

U2 

U - -
U3 

U4 

Stage 2. Find the solution to the systems 

J gO) _ X(l) 

J g(2) X(2) 

J g(3) _ x(3) 
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For each of the three systems, this is equivalent to solving 4 subsystems 

(1) J- 1 (1) 1 (3 
gl = 1 Xl = b.

1 
1 

(1) J-1 (1) 1 (3 
g2 = 1 X2 = b.

2 
1 

We do not calculate g~l) and gi
1
), since their components are zero. 

(2) _ J-1 (2) _ 1 (3 
g3 - 3 X3 --b.3 1 

As before, we have not calculated some zero-valued components gi
2

) and gi
2

) . 

Components gi
3

) and g~3) are zero in the third system and we have 

(3) _ J-1 (3) _ 1 (3 
g3 - 3 X3 --b.3 1 

(4) -J- 1 (3) _ 1 (2 
g3 - 4 X4 --b.4 1 

At the end of stage 2, we have obtained: 

1/5 0 
2/5 0 
3/8 1/8 

g(l) = 1/8 g(2) = 3/8 
0 3/8 
0 1/8 
0 0 
0 0 
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Stage 3. The updating stage can now be carried out: 

1 1 
(\'1 - -- (1 + y(l)T g(l») - (1 + ,,8 (l)T (1») 

L...=1 Y. g. 

1 40 
= (I+C-IH+C-l)f) = "9 

o -1/5 
o -2/5 
o -3/8 
o -1/8 
o 0 
o 0 
o 0 
o 0 

o -8/9 
o -16/9 
o -15/9 
o -5/9 
o 0 
o 0 
o 0 
o 0 

1 8/9 
o 25/9 
o 15/9 
o 5/9 
o 0 
o 0 
o 0 
o 0 

-1/5 0 0 0 0 0 
-2/5 0 0 0 0 0 
-3/8 0 0 0 0 0 
-1/8 0 0 0 0 0 

o 0 0 0 0 0 
000 000 
000 000 
o 0 0 000 

-8/9 0 0 0 0 0 
-16/9 0 0 0 0 0 
-15/9 0 0 0 0 0 
-5/9 0 0 0 0 0 
000000 
000000 
000000 
000000 

8/9 0 0 0 0 0 
16/9 0 0 0 0 0 
24/9 0 0 0 0 0 
5/9 1 0 0 0 0 
001000 
000100 
000010 
000001 

- (~ - 0 
o 

8/9 8/9 
25/9 16/9 
15/9 24/9 
5/9 5/9 

0) (3/5) (7/9) o 1/5 5/9 
o 0 = 3/9 
o 0 1/9 
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1 1 40 
Q3 - (1 + y(3)T g(3)) = ... = (1- ~ -~) = 9 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

g(3) y(3)T = 0 0 0 0 0 0 0 0 
0 0 0 0 0 -1/8 -1/8 0 
0 0 0 0 0 -3/8 -3/8 0 
0 0 0 0 0 -2/5 -2/5 0 
0 0 0 0 0 -1/5 -1/5 0 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

Q3 g(3) y(3)T = 0 0 0 0 0 0 0 0 
0 0 0 0 0 -5/9 -5/9 0 
0 0 0 0 0 -15/9 -15/9 0 
0 0 0 0 0 -16/9 -16/9 0 
0 0 0 0 0 -8/9 -8/9 0 

1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 

I - Q3 g(3) y(3)T = 0 0 0 1 0 0 0 0 
0 0 0 0 1 5/9 5/9 0 
0 0 0 0 0 24/9 15/9 0 
0 0 0 0 0 16/9 25/9 0 
0 0 0 0 0 8/9 8/9 1 

U3-4 - (I _ Q (3) (3)T) (U3 ) 
3 g3-4 Y3-4 U4 

~(l 
5/9 5/9 l)( 1~5 ) ~ (:;:) 

24/9 15/9 
16/9 25/9 
8/9 8/9 1 3/5 7/9 
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The updated vector u is then: 

u 

7/9 
5/9 
3/9 
1/9 
1/9 
3/9 
5/9 
7/9 

To complete iteration 1 of stage 3, we still have to update vector g(2): 

- (~ - 0 

o 

8/9 8/9 0) ( 0) (1/9) 25/9 16/9 0 0 _ 2/9 
15/9 24/9 0 1/8 - 3/9 
5/9 5/9 1 3/8 4/9 

5/9 
24/9 
16/9 
8/9 

5/9 
15/9 
25/9 
8/9 

0) (3/8) (4/9) o 1/8 _ 3/9 
o 0 - 2/9 
1 0 1/9 

The updated vector g(2) is then: 

This completes iteration 1. 
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Iteration 2 of stage 3 consists of updating vectors u by means of g(2) . 

1 1 
U2 -

(1 + y(2)T g(2)) 
= ... = 

( 4 4) = 9 1- 9 - 9 

0 0 0 -1/9 -1/9 0 0 0 
0 0 0 -2/9 -2/9 0 0 0 
0 0 0 -3/9 -3/9 0 0 0 

g(2) y(2)T = 0 0 0 -4/9 -4/9 0 0 0 
0 0 0 -4/9 -4/9 0 0 0 
0 0 0 -3/9 -3/9 0 0 0 
0 0 0 -2/9 -2/9 0 0 0 
0 0 0 -1/9 -1/9 0 0 0 

0 0 0 -1 -1 0 0 0 
0 0 0 -2 -2 0 0 0 
0 0 0 -3 -3 0 0 0 

U2 g(2) y(2)T = 0 0 0 -4 -4 0 0 0 
0 0 0 -4 -4 0 0 0 
0 0 0 -3 -3 0 0 0 
0 0 0 -2 -2 0 0 0 
0 0 0 -1 -1 0 0 0 
1 0 0 1 1 0 0 0 
0 1 0 2 2 0 0 0 
0 0 1 3 3 0 0 0 

I - U2 g(2) y(2)T = 0 0 0 5 4 0 0 0 
0 0 0 4 5 0 0 0 
0 0 0 3 3 1 0 0 
0 0 0 2 2 0 1 0 
0 0 0 1 1 0 0 1 

u = Ul-4 (I - (2) (2)T) (Ul-2 ) - U2 gl-4 Yl-4 U 
3-4 

7/9 1 
5/9 1 
3/9 1 

(I - U2 g(2) y(2)T) 1/9 1 
1/9 

- 1 
3/9 1 
5/9 1 
7/9 1 

This is the final solution. 

Note that we required q - 1 = 2 iterations during stage 3, in order to obtain 

the solution vector u. 
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5.7. The Recursive Decoupling Routine 

In this section we will describe the Fortran routine implementing the 

Recursive Decoupling Algorithm [12, 25J. 

Since our coefficient matrix A is a sparse matrix of tridiagonal form, we have 

used three n-dimensional vectors to store its elements, which are given by: 

a which is used to store the sub-diagonal values; 

b which is used to store the main diagonal values; 

c which is used to store the upper diagonal values. 

The arrays u and d, both of dimension n, are used to store the unknown and 

known vectors. As the routine is completed, the calculated solution vector is 

stored in u. 

The partitioning matrix J is also a sparse matrix of the form given III 

formula (5.3) (see also the matrix notation given in (5.8». To initialise the 

matrix J we need only to introduce one further n-dimensional vector e, whose 

values are defined by expressions (5.4). Note that there is no need to obtain 

an explicit initialisation of the matrix J: we are only interested in finding the 

inverses Ji-
I of each 2x2 block matrix Ji to form the inverse of the partitioning 

matrix itself. This is done by applying formulae (5.13), 

i.e as index i ranges from 1 to m 

we calculate each real number b.i ; 

then we store its inverse value in a work variable called Tee; 

then we initialise each 2x2 matrix Ji-
I using (5.13) 

In order to retain a parallel structure during the algorithmic stages, we have 

grouped all the matrices Ji-
1 into a single array JJl of dimension 2x2xm. 

The last index i of the array JJl ranges from 1 to m and gives the current 

submatrix Ji-
1

• 
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To complete the Pre-Stage section we still have to define a memory structure 

to retain vectors xCi), yCi) and gCi). In an analogous way to array JJ1, we 

have chosen to store these n-dimensional vectors in three different matrices, 

each one of dimension nx(q - 1). The vectors xCi) are stored in the first of 

these nx(q - 1) matrices, the vectors yCi) are stored into the second matrix 

and the third nx( q - 1) matrix is used to store the vectors g(j). As in the 

array J J 1, the second index j of each matrix ranges from 1 to q - 1 and gi ves 

the current vector x(j) (or y(j), or g(j), depending upon which of the three 

matrices we are considering). 

To explain why the three matrices have been used in this way and to explain 

why the second index j only varies from 1 to q - 1 in particular (instead of 

varying from 1 to m-1as we would expect), we need to make some observations. 

The main problems we have met in implementing this routine were related 

to maintaining the intrinsic parallel nature of the Recursive Decoupling 

Algorithm. We had to study a storage structure that was best suited to 

performing Stage 1, Stage 2 and Stage 3 in parallel. 

Fortran was the chosen programming language, that does not allow the 

explicit use of any kind of tree structure, unlike other computer languages 

such as Pascal or C. Particular care is needed in the implementation of 

the Fan-in graph shown in figure (5.17) and the main problem, therefore, 

consisted of finding some way to simulate the tree graph. 

Storing all the vectors x(j) in an nx(q - 1) matrix X and all the vectors g(j) 

in an nx(q -1) matrix G appeared to be the best way to simulate the Fan-in 

figure. We will show later on that it is possible to obtain a saving of memory 

allocation, by using the same nx(q - 1) matrix X to overwrite the values of 

vectors y(i) . 
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Let us justify the above choice. 

The tree structure (5.17) is made of q - 1 = log2 m levels. At each level, 

only a few components of the vectors u, x(j), y(j) and g(j) are involved in 

the calculations (refer again to figure (5.17». Let us follow what happens 

to these vectors during the three stages of the algorithm, and in particular 

during Stage 3. 

As we have already mentioned, in Stage 1 we obtain the vector u by 

partitioning u and d according to (5.14) and solving the m subsystems (5.19). 

At the end of this first stage, vector u then contains n values, giving an initial 

approximate solution to our original problem. This initial value is given by 

the solution of Ju = d. 

In Stage 2, we obtain each vector g(j), after defining the corresponding 

vector x(j) as in (5.5) and solving the m subsystems (5.22). This is done 

for each of the m-I vectors g{j). At the end of the second stage, however, 

each g(j) contains only 2 non-zero elements (in the (2j)th and the (2j + l)th 

posi tions ). 

It might now be possible to store all the non-zero values of the vectors g{j), 

in one array G(1) of dimension n as follows 

d1) (1) 
1 g2 

G~l) (1) 
g3 

G~1) (2) 
g4 

d1) (2) 
4 gs 

d 1) (3) 
S g6 

d 1 ) (3) 
6 g7 

G(l) = d 1) (4) 
7 - gs 

d1) (4) 
s g9 

d1) (m-2) 
n-3 gn-4 

d 1) (m-2) 
n-2 gn-3 

d 1) (m-i) 
n-l gn-2 

G~l) (m-i) 
gn-l 

102 



Better still, in order to maintain the correspondence between suffixes, we 

could have stored all the non-zero values of vectors g{j) in two arrays G(l), 

G(2) of dimension n as follows 

d l ) (1) d 2 ) 1 gl 1 0 dl) (1) d 2 ) 0 2 g2 2 d l ) (1) d 2 ) (2) 
3 g3 3 g3 dl) (1) d 2 ) (2) 
4 g4 4 g4 

d l ) (3) d 2 ) (2) 
S gs s gs 

G~l) (3) d 2 ) (2) 
g6 6 g6 

G(l) = d l ) (3) G(2) = G~2) (4) 
7 g7 = g7 dl) (3) d 2) (4) 
S gs S gs 

dl) (m-i) d 2 ) (m-2) 
n-3 gn-3 n-3 gn-3 

d l ) (m-l) d 2) (m-2) 
n-2 gn-2 n-2 gn-2 

d l ) (m-l) d 2) 0 n-l gn-l n-l 
0 G~l) (m-l) G~2) gn 

It turns out that neither of these methods permits us to maintain the parallel 

structure of the algorithm during the third stage. 

Stage 3, in fact, is composed of q - 1 iterations, corresponding to the q - 1 

levels of the tree structure (5.17). At each iteration, the number of non-zero 

components of vectors g{j) varies; in fact the number of non-zero components 

doubles. 

This only affects some of the vectors g{j) and can be illustrated with the 

following diagram 
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(I) 
gl 

(2) 
g3 

(3) 
g5 

(4) 
g7 

(5) 
gg 

(6) 
gll 

(7) 
gl3 

(I) (2) (3) (4) (5) (6) (7) 
g2 g4 g6 gg glo gl2 g14 

(I) (2) (3) (4) (5 ) (6) (7) 
g3 g5 g7 gg gll gl3 gl5 

(I) 
g4 

(2) 
g6 

(3) 
gg 

(4) 
glo 

(5) 
gl2 

(6) 
gl4 

(7) 
gl6 

ITERATION 1 

(2) 
gl 

(4) 
g5 

(6) 
gg 

(2) 
g2 

(4) 
g6 

(6) 
glo 

(I) (2) (3) (4) (5) (6) (7) 
gl g3 g5 g7 gg gll gl3 

(I) (2) (3) (4) (5) (6) (7) 
g2 g4 g6 gg glo gl2 gl4 (5.26) (I) (2) (3) (4) (5) (6) (7) 
g3 gs g7 g9 gll gl3 gl5 

(I) (2) (3) (4) (5) (6) (7) 
g4 g6 gg glo gl2 gl4 gl6 

(2) (4) (6) 
g7 gll gl5 

(2) (4) (6) gg gl2 gl6 

ITERATION 2 

(4) 
gl 

(4) 
g2 

(4) 
g3 

(4) 
g4 

(2) 
gl 

(4) 
g5 

(6) 
gg 

(2) (4) (6) 
g2 g6 glo 

(I) (2) (3) (4) (5) (6) (7) 
gl g3 g5 g7 g9 gll gl3 

(I) (2) (3) (4) (5) (6) (7) 
g2 g4 g6 gg glo gl2 g14 

(I) (2) (3) (4) (5) (6) (7) 
g3 g5 g7 gg gll gl3 gl5 

(I) (2) (3) (4) (5) (6) (7) 
g4 g6 gg glo gl2 gl4 gl6 

(2) (4) (6) 
g7 gll gl5 

(2) 
gg 

(4) 
gl2 

(6) 
gl6 

(4) 
gl3 

(4) 
g14 

(4) 
gl5 

(4) 
gl6 
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As a result of (5.26), we start iteration 1 of the third stage working on 

4-dimensional vectors. In particular, vectors g(j) with odd index j are used 

to update the remaining vectors gW with j even. The vectors with even 

index double in size according to the above diagram. 

We start iteration 2 working on 8-dimensional vectors. This time, the 

vectors gW where j = 2,6, 10, ... are used to update vectors g(j} with j = 
4,8,12, .... As before, these last vectors again double in size, and are now of 

dimension 16. 

This process continues in a similar manner for each iteration step. 

At the same time, the components of vector u are also updated as follows 

Us J [ Ug 

ITERATION 1 

Us J [ Ug 

ITERATION 2 

Ul2 J [ U13 ••. Ul6 J ... 

Ul6 J ..• (5.27) 

As a consequence of figures (5.26) and (5.27), we make the following 

observations: 

- a single n-dimensional array is sufficient to store vector u throughout all 

the updating iterations, since the variations only affect the size of the 

subsets of components. 

- in order to avoid the risk of overlapping between the old and the new 

components, we need more than the two vectors G(l) and G(2) to store 

vectors g(j} . 

To solve the component overlapping problem, let us consider q - 1 arrays of 

the same type as G(l) and G(2). Each one has dimension n; they store the 

values of vectors g(j} as shown in the following figure 
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(I) 
gl 

0 (I) 0 g2 
0 (I) 0 g3 (2) 

0 (I) g3 
g4 (2) 

0 (3) g4 
g5 (2) 0 (3) g5 
g6 (2) 0 

(3) g6 ( 4) 
g7 0 g7 

(3) 
0 

(4) 
gs gs 

G(I) = (5) G(2) = 0 G(3) = (4) 
... (5.28) g9 g9 

(5) 0 (4) 
glo (6) glo 

(5) gll 0 gll (6) 
0 (5) gl2 gl2 (6) 0 (7) gl3 gl3 (6) 0 (7) g14 

gl4 0 0 (7) 
gl5 0 0 

(7) 
gl6 

Starting the first iteration, we will use G(I) to update G(2), G(3) " ", G(q-I). 

At the end of iteration 1, G(!) remains unchanged, while the remaining 

vectors G(j) are given by 
(2) 

gl 
(2) 

g2 
(2) 

g3 
(2) 

g4 
(2) 

g5 
(2) 

g6 
g~2) 

(2) 
gs 

G(2) = g~6) 
(6) 

glo 
(6) 

gll 
(6) 

gl2 
(6) 

gl3 
(6) 

g14 
(6) 

gl5 
(6) 

gl6 

( 5.29) 
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All the old zero elements in the array G(2) have been replaced with the new 

non-zero components of g(2), g(6), g(lO), etc. There is no risk of overlapping, 

since the vector G(2) will remain unchanged throughout all the successive 

iterations. 

We start the second iteration, using G(2) to update G(3), G(4), ... , G(q-l). 

At the end of iteration 2, vector G(3) will be filled by the new non-zero 

components of g(4), g(12), etc. Again, there is no risk of overlapping, since the 

vector G(3) will remain unchanged throughout all the successive iterations. 

During the third iteration, the values stored in G(3) are used to update all 

the following G(j) for j = 4,5, ... , q - 1. The whole process is repeated until 

the (q - l)th iteration has been completed. 

With each iteration of Stage 3, while updating the vectors G(j), we will also 

have updated the component values of u, by updating the corresponding 

subvectors Ui-(iH) (see figure (5.17». After the last iteration, therefore, we 

will have built the final solution U = Ul-m , as a vector of n components. 

Finally, let us consider each vector G(j) as the ph column of a single matrix G 

of dimension nx( q - 1) 

(5.30) 

In this way we have built a structure that avoids the above mentioned 

overlapping of components. The matrix G also simulates the Fan-in tree 

graph, enabling us to perform the updating calculations in parallel. The 

form of matrix G explains the reason why the iteration index j ranges from 

1 to q - 1, instead of ranging from 1 to m-I: by introducing G, in fact, 

we have in some way replaced vectors g(j) where j = 1,2, ... , m-I with 

vectors G(j) where j = 1,2, . .. , q - 1. 

Since vectors x(j) and y(j) are used respectively to define and update 

vectors g(j), we have chosen to store them in a structure similar to the 

matrix G. Therefore, all the vectors x(j) are stored in a matrix of 

dimension nx( q - 1), as shown in the following figure 
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0 0 0 
1 0 0 
1 0 0 
0 1 0 
0 1 0 
1 0 0 
1 0 0 
0 0 1 

X 0 0 1 (5.31) 
1 0 0 
1 0 0 
0 1 0 
0 1 0 
1 0 0 
1 0 0 
0 0 0 

Since the values of vectors x(j) are not needed any longer after the end of 

Stage 2, the same matrix X is used to overwrite the values of vectors y(j). 

During Stage 3, X is then defined as follows: 

0 0 0 
a3 0 0 
C2 0 0 
0 as 0 
0 C4 0 

a7 0 0 
C6 0 0 
0 0 ag 

X - 0 0 Cs (5.32) 
all 0 0 
ClO 0 0 
0 al3 0 
0 Cl2 0 

alS 0 0 
CH 0 0 
0 0 0 
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Now that we have justified the use of the two particular structures G and X, 

we carry on with the description of the Recursive Decoupling routine. 

After reading the input data (i.e. the exponent q defining the system ~ze and 

the number of processors we want to use), all the arrays and the matrices 

are initialised either to zero or to their current values. Note that, in the 

Fortran program, G and X are respectively memorized in the two equivalent 

matrices 9 and x. 

The Preliminary Stage follows this initialisation section, performing the 

requested partitioning (5.3) of the coefficient matrix. In practice, during 

the Pre-stage we explicity calculate the 2x2 submatrices J i-
1 • 

After this, Stage 1, Stage 2, Stage 3 implement all the operations and 

calculations described in the paragraph 5.3. 

Note that the matrix x, initialized to zero, is assigned to store the values 

of vectors x(j) during Stage 2, and then to store the values of vectors y{j) 

during Stage 3. There is no actual initialisation of the matrix x to the values 

of the x(j). As a consequence of the definition of the same vectors x(j), in 

fact, the operations described in formula (5.22) can be carried out by using 

directly the values of matrices Ji-
1 , as shown below: 

( 
(j) ) ( (j) ) 92i-1 _ J-1 x2i - 1 _ J-1 (0) _ 2nd I f J-1 
(j) - i (j) - i 1 - co umn 0 i 

92i x 2 i 

In order to perform the operations (4.2) and initialise the vectors g(j) during 

Stage 2, therefore, we simply work on the columns of matrices Ji-
1 . At the 

end of this second stage, we directly assign to the matrix x the values of 

vectors y(j). 
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At this point, having taken account of all the above considerations and 

observations and having chosen the described structures of arrays and 

matrices, the parallelism in the implemented Fortran program is easily 

exploited. 

Since the Recursive Decoupling routine is intended to be run on the 

Balance 8000 multiprocessor, we have made use of the programming tools 

available on the Sequent systems [12J. More specifically, we have used both 

the Fortran Parallel Programming Directives and the Parallel Programming 

Library. 

After the initialisation phase and before starting the Pre-stage, we use 

the m-seLprocs microtasking routine to declare the number of processors 

assigned to our task (up to 9 processors). The Pre-stage, Stage 1 and Stage 2 

can be parallelized by simply using the Doacross parallel directive, since 

they consist of an independent loop, namely a loop in which no iteration 

depends the calculations in any other iteration. Since Stage 3 shows a higher 

complexity, we need to use the routines from the Parallel Programming 

Library, organizing all the operations into a subroutine (stage 3) that will 

be performed in parallel. 

We call the m_fork microtasking routine to fork the set number of child 

processes and assign them to the subroutine stage 3. Depending on which 

iteration of the third stage we are considering, each forked child process 'calls' 

the subroutine stage 3 and performs the updating of array u and matrix g, 

working on different subsets of components of the same u and g. The size of 

these subsets varies according to the current iteration number, namely 

sIze = 2(k+ 1) during the eh iteration 
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Different child processes work on different subsets of components, so that 

the operations performed by one process are totally independent from the 

calculations done by another process, though all of them are updating the 

same array u and matrix g. 

For example, during iteration k 

equal to 4 and therefore: 

1 the size of each components subset is 

- the first child process updates the first 4 elements of u and the first 4 

rows of g; 

- the second child process updates components from 5 to 8 of u and rows 

from 5 to 8 of g; 

- and so on. 

The index of the current component (or row) where each single child process 

has to start updating is given by the subroutine partition. According to the 

values of two logical variables go and var, the subroutine partition assigns 

the appropriate value of the updating starting index; this value is stored in 

the integer variable begin. 

The variable go states whether there are more components to be updated (go 

= true) or if the work concerning the current iteration has been completed 

(go = falBe). 

The logical variable var is a flag control for the particular case: begin = 1. 

The use of var is necessary to re-initialise to 1 the value of begin at the 

beginning of each new iteration. Starting one iteration, we have var = true. 

After the first child process has called the subroutine partition and initialised 

begin = 1, the logical value of var becomes falBe and it remains false for each 

successive calling processes, until the iteration has been completed. 
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The subroutine partition is written inside a 'locked region', to avoid the 

possibility of two child processes calling this subroutine at the same time and 

therefore accessing the same shared value of begin. To create this protected 

region in the Fortran code, we have used the m-Iock and the m_unlock 

microtasking routines. 

Since the number of the current kth iteration is essential to decide the value 

of variables begin and size, the iteration number k is given as an argument of 

the subroutine stage 3. 

We can schematize the parallel operations performed in Stage 3 as follows: 

- a set number of child processes is created and the current iteration 

number k is passed to subroutine stage 3j 

- each child process 'goes' to the subroutine partition and is given its own 

updating starting indexj 

- each process performs all the operations on the appropriate subset of 

components of vector u and of matrix gj 

- when its task is finished, each child process '~oes' again to subroutine 

partition to find out if there is more work to dOj 

- when the kth iteration has been completed, we call the m_sync 

microtasking routine, to synchronize all the processes and to assure they 

have all finished the tasks related to iteration kj 

- finally, when all the q - 1 iterations have been terminated, we 'kill' all 

the forked processes by using the m_kilLprocs routine from the Parallel 

Programming Library. 

At this point, we write all the output data, i.e. the dimension problem 

parameters, the obtained solution u, the error between the exact solution 

and u, the computing time (given in seconds). 
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The routine used to time our program is the _clock_time routine, written in 

C language. 

The two subroutines dmatvet and matvet, in our Fortran program, are 

used respectively during Stage 1 and Stage 3 to perform matrix/vector 

multiplications. 

Before concluding this description of the Recursive Decoupling routine, we 

need to make one more observation. 

The last iteration of Stage 3 is performed serially, by using the subroutine 

stage 33. During this final iteration, in fact, the following values 

k=q-l szze = 2q = n 

are assigned. This means that, even if performing this iteration in parallel, all 

the work is done by only one process, since the current subset of components 

of u and g coincides with the whole vector u and the whole matrix g. 

Since the implemented Fortran routine is synchronous and no matter what 

the dimension of the tridiagonal linear system, the calculations involved in 

the last iteration are carried out by only one processor. Therefore, we can 

proceed in two ways: 

i) perform q-2 iterations in parallel and then the last one serially, using two 

different subroutines (stage 3 and stage 33), to implement the parallel 

code and the serial code; 

ii) perform all the q - 1 iterations in parallel, using the subroutine stage 3 

only, but leaving all the child processes except one in a spinning state 

during the last iteration. 
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The above mentioned two ways have been implemented in two different 

versions (version Parallel.f and version Paralleli.f respectively) of the 

Recursive Decoupling routine. By testing them on different coefficient 

matrices, it has been proved that choice (i) is slightly less efficient than 

choice (ii) in terms of elapsed time (see tables of results in the next 

paragraph). 

There is a third possible way of performing the iterations of Stage 3, which 

is based on the following observation: no matter what the dimension of the 

system, the second last iteration is always performed by 2 child processes and 

the third last iteration by 4 child processes. Therefore we can: 

- use a maximum number of processors to perform iterations from 1 

to q - 4; 

- use 4 processors during the (q - 3)th iteration; 

- use 2 processors during the (q - 2)th iteration; 

- use 1 processor during the (q - 1 )th iteration (the last one). 

The above scheme, though, involves several calls to the m-seLprocs, m_fork 

and m_kilLprocs routines. This is relatively expensive in terms of the overall 

computational cost. Thus, the version of the Recursive Decoupling routine 

implementing this third choice (version Parallelo.f), therefore, is more time 

consuming than the previous two versions. 

These results are shown in more detail in the following paragraph 5.S. 
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5.B. Numerical Experiments and Remarks 

In this paragraph numerical results are reported, concerning the solution of 

tridiagonallinear systems by means of the Recursive Decoupling routine, on 

the Balance 8000 parallel machine. 

Similar to the Wang routine (see paragraph 4.4), the following tables group 

together the execution timing (both for the sequential and the parallel 

versions of the algorithm), the experimental speed-up (to be compared with 

the expected speed-up) and the efficiency parameters. 

The maximum error E max , average error Eav and maximum relative error 

Er are also presented, in order to study the degree of accuracy obtained 

by the Recursive Decoupling method. These error measurements have been 

calculated according to formulae (4.4). 

All the results shown are related to the two test tridiagonal systems presented 

in paragraph 4.4 (see figure 4.5 and figures 4.6 & 4.7). 

First of all, the accuracy results are shown in the following table 5.33. These 

results are general to all the versions of the Recursive Decoupling Fortran 

program, including the sequential version. Unlike the Wang routine, the 

accuracy obtained when using the Recursive Decoupling routine to solve the 

first example does not depend on the number of processors used. In this case 

the random properties observed in the accuracy results of the Wang program 

does not occur. 
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TABLE 5 .. ~.~ 

Maximum Error E ma, Average Error Ea. Maximum Relative Error Er 

n=64 

q=6 .0000005364 .0000001230 .0000005448 

n=128 

q=7 .0000021458 .0000011813 .0000021626 

n=256 

q=8 .0000027418 .00000122282 .0000027525 

n=512 

q=9 .0000067949 .0000036428 .0000068082 

n=1024 

q=10 .0000085235 .0000038184 .0000085318 

Accuracy results obtained when using any versIOn of the Recursive Decoupling 

routine to solve the first example system (4.5). 

As in the case of the Wang method, 100% accuracy is reached by the Recursive 

Decoupling routine in the solution of the second test system. 

The following tables show the execution times obtained when running the 

R. D. routine on the two test examples. The speed-up and efficiency 

parameters are also calculated and reported in the same tables. Both the 

elapsed times and the reclaimed times are given in different sets of tables for 

each one of the three versions of the Recursive Decoupling routine (for the 

definition of "reclaimed time" see paragraph 4.4 ). 

The notation adopted is as for the Wang algorithmic results.- Fot' what 
COhcel-l'Il> acc"l"'a c >, l1'Ieas,:, l"etM enl: s. Spe.e.d- \If and Efficiency 
ot'e comrl.ll:e.d. a", clesc"'lbed in cnepl:.e.I-'~. 

A slight variation occurs in the results which is probably due to overheads 

arising from manipulation and allocation of different stack sizes. 
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TABLE 5.34 

T. Tp Obtained Sp ( n) Expected S.(n) Efficiency E.(n) 

n=64 

q=6 1.3620 1.636000 .8325 2.00 .2081 

p=4 

n=128 

q=7 5.4500 4.396000 1.2398 2.00 .3099 

p=4 

n=256 

q=8 23.6990 15.278500 1.5511 2.00 .3878 

p=4 

n=512 

q=9 112.2330 58.438510 1.9205 2.00 .4801 

p=4 

n=1024 

q=10 493.0700 230.670000 1.9035 2.00 .4759 

p=4 

T. T. Obtained Sp( n) Expected S. (n) Efficiency Ep( n) 

n=64 

q=6 1.3620 2.229000 .6110 2.6667 .0764 

p=8 

n=128 

q=7 5.4500 4.932500 1.1049 2.6667 .1381 

p=8 

n=256 

q=8 23.6990 15.612500 1.5180 2.6667 .1897 

p=8 

n=512 

q=9 112.2330 57.832990 1.9406 2.6667 .2426 

p=8 

Elapsea times (in seconas), speea-up ana efficiency obtained when using the Recursive 

Decoupling routine, version Parallel.f, to solve the first example system (.I.5). 
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TABLE 5.35 

T, To Obtained So(n) Expected Sp (n) Efficiency Ep(n) 

n=64 

q=6 1.3620 .91250 1.4926 2.00 .3732 

p=4 

n=128 

q=7 5.4500 3.60000 1.5139 2.00 .3785 

p=4 

n=256 

q=8 23.6990 14.23700 1.6646 2.00 .4162 

p=4 

n=512 

q=9 112.2330 57.39000 1.9556 2.00 .4889 

p=4 

n=1024 

q=10 439.0700 228.78000 1.9192 2.00 .4798 

p=4 

T, Tp Obtained Sp( n) Expected Sp (n) Efficiency Ep( n) 

n=64 

q=6 1.3620 .89650010 1.5192 2.6667 .1899 

p=8 

n=128 

q=7 5.4500 3.49500000 1.5594 2.6667 .1949 

p=8 

n=256 

q=8 23.6990 13.66250000 1.7346 2.6667 .2168 

p=8 

n=512 

q=9 112.2330 55.30500000 2.0293 2.6667 .2537 

p=8 

Reclaimed times (in seconds), speed-up and efficiency obtained when using the Recursive 

Decoupling routine, version Parallel.J, to solve the first example system (4-5). 
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TABLE 5.36 

T, Tp Obtained Sp(n) Expected Sp(n) Efficiency Ep( n) 

n=64 

q=6 1.3620 1.6320 .8346 2.00 .2086 

p=4 

n=128 

q=7 5.4500 4.3940 1.2403 2.00 .3101 

p=4 

n=256 

q=8 23.6990 15.2640 1.5526 2.00 .3882 

p=4 

n=512 

q=9 112.2330 58.4970 1.9186 2.00 .4797 

p=4 

n=1024 

q=1O 439.0700 230.4500 1.9053 2.00 .4763 

p=4 

T, Tp Obtained Sp(n) Expected Sp(n) Efficiency Ep( n) 

n=64 

q=6 1.3620 2.2230000 .6127 2.6667 .0766 

p=8 

n=128 

q=7 5.4500 4.9309990 1.1053 2.6667 .1382 

p=8 

n=256 

q=8 23.6990 15.5980000 1.5194 2.6667 .1899 

p=8 

n=512 

q=9 112.2330 57.9010000 1.9384 2.6667 .2423 

p=8 

Elapsed times (in seconds), speed-up and efficiency obtained when using the Recursive 

Decoupling routine, version Paral/elI, to solve the second example system (4-6 fj 4-7). 
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TABLE 5.37 

T. Tp Obtained Sp(n) Expected Sp( n) Efficiency Ep( n) 

n=64 

q=6 1.3620 .908000000 1.5000 2.00 .3750 

p=4 

n=128 

q=7 5.4500 3.594000000 1.5164 2.00 .3791 

p=4 

n=256 

q=8 23.6990 14.215000010 1.6672 2.00 .4168 

p=4 

n=512 

q=9 112.2330 57.327000000 1.9578 2.00 .4894 

p=4 

n=1024 

q=1O 439.0700 228.430000000 1.9221 2.00 .4805 

p=4 

T. Tp Obtained Sp(n) Expected Sp (n) Efficiency Ep (n) 

n=64 

q=6 1.3620 .88000020 1.5477 2.6667 .1935 

p=8 

n=128 

q=7 5.4500 3.47900100 1.5665 2.6667 .1958 

p=8 

n=256 

q=8 23.6990 13.77000000 1.7211 2.6667 .2151 

p=8 

n=512 

q=9 112.2330 55.39700000 2.0260 2.6667 .2532 

p=8 

Reclaimed times (in seconds), speed-up and efficiency obtained when usmg the Recursive 

Decoupling routine, version Paral/elJ, to solve the second example system (i.6 f3 .{.7). 
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TABLE 5.42 

T. Tp Obtained Sp(n) Expected Sp( n) Efficiency Ep( n) 

n=64 

q=6 1.3620 1.9460000 .6999 2.00 .1750 

p=4 

n=128 

q=7 5.4500 4.7220010 1.1542 2.00 .2885 

p=4 

n=256 

q=8 23.6990 15.7430000 1.5054 2.00 .3763 

p=4 

n=512 

q=9 112.2330 59.927500 1.8728 2.00 .4682 

p=4 

n=1024 

q=lO 493.0700 234.7800000 1.8701 2.00 .46750 

p=4 

T. Tp Obtained Sp(n) Expected Sp (n) Efficiency Ep( n) 

n=64 

q=6 1.3620 2.539000 .5364 2.6667 .0671 

p=8 

n=128 

q=7 5.4500 5.262000 1.0357 2.6667 .1295 

p=8 

n=256 

q=8 23.6990 16.006000 1.4806 2.6667 .1851 

p=8 

n=512 

q=9 112.2330 59.172010 1.8967 2.6667 .2371 

p=8 

Elapsed times (in seconds), speed-up and efficiency obtained when using the Recursive 

Decoupling routine, version Parallelo.!, to solve the first example system (4.5). 
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TABLE 5.43 

T, Tp Obtained Sp( n) Expected ~(n) Efficiency Ep( n) 

n=64 

q=6 1.3620 .91000010 1.4967 2.00 .3742 

p=4 

n=128 

q=7 5.4500 3.60500000 1.5118 2.00 .3779 

p=4 

n=256 

q=8 23.6990 14.37000000 1.6492 2.00 .4123 

p=4 

n=512 

q=9 112.2330 57.49000000 1.9522 2.00 .4881 

p=4 

n=1024 

q=lO 439.0700 227.89000000 1.9267 2.00 .4817 

p=4 

T, Tp Obtained Sp(n) Expected Sp (n) Efficiency Ep( n) 

n=64 

q=6 1.3620 .89000030 1.5303 2.6667 .1913 

p=8 

n=128 

q=7 5.4500 3.49800000 1.5580 2.6667 .1948 

p=8 

n=256 

q=8 23.6990 13.88400000 1.7069 2.6667 .2134 

p=8 

n=512 

q=9 112.2330 55.42699000 2.0249 2.6667 .2531 

p=8 

Reclaimed times (in seconds), speed-up and efficiency obtained when uSIng the Recursive 

Decoupling routine, version ParalleloJ, to solve the first example system (4.5). 

126 



TABLE 5.44 

T, Tp Obtained Sp( n) Expected Sp(n) Efficiency Ep( n) 

n=64 

q=6 1.3620 1.9400 .7021 2.00 .1755 

p=4 
. 

n=128 

q=7 5.4500 4.7280 1.1527 2.00 .2882 

p=4 

n=256 

q=8 23.6990 15.6560 1.5137 2.00 .3784 

p=4 

n=512 

q=9 112.2330 59.8620 1.8749 2.00 .4687 

p=4 

n=1024 

q=lO 439.0700 234.1900 1.8748 2.00 .4687 

p=4 

T. Tp Obtained Sp(n) Expected Sp ( n ) Efficiency Ep( n) 

n=64 

q=6 1.3620 2.5300 .5383 2.6667 .0673 

p=8 

n=128 

q=7 5.4500 5.2560 1.03691 2.6667 .1296 

p=8 

n=256 

q=8 23.6990 15.9860 1.4825 2.6667 .1853 

p=8 

n=512 

q=9 112.2330 59.1970 1.8959 2.6667 .2370 

p=8 

Elapsed times (in seconds), speed-up and efficiency obtained when using the Recursive 

Decoupling routine, version ParalleloI, to solve the second example system (1.6 81.7). 
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TABLE 5.45 

T. Tp Obtained Sp{ n) Expected Sp (n) Efficiency Ep{n) 

n=64 

q=6 1.3620 .918000100 1.4837 2.00 .37090 

p=4 

n=128 

q=7 5.4500 3.610000000 1.5097 2.00 .3774 

p=4 

n=256 

q=8 23.6990 14.233000010 1.6651 2.00 .4163 

p=4 

n=512 

q=9 112.2330 57.390000000 1.9556 2.00 .4889 

p=4 

n=1024 

q=10 439.0700 228.360000000 1.92270 2.00 .4807 

p=4 

T. Tp Obtained Sp{n) Expected Sp{ n) Efficiency Ep{ n) 

n=64 

q=6 1.3620 .8980 1.5167 2.6667 .1896 

p=8 

n=128 

q=7 5.4500 3.4990 1.5576 2.6667 .1947 

p=8 

n=256 

q=8 23.6990 13.7700 1.7211 2.6667 .2151 

p=8 

n=512 

q=9 112.2330 55.4100 2.0255 2.6667 .2532 

p=8 

Reclaimed times (in seconds), speed-up and efficiency obtained when using the Recursive 

Decoup/ing routine, version Paralle/o,f, to solve the second example system (,{.6 8 4.7). 
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6. Conclusions and Further Work 



6.1. Conclusions and Suggestions for Further 

Work 

In this thesis we have presented a new method for solving tridiagonal systems 

of linear equations and we have used the Wang method as a term of reference. 

Both algorithms belong to the "partitioning" class methods, but they have 

very different behaviour. 

The Wang routine, though extremely fast in term of execution times, shows 

negative characteristics, such as a rapid decrease in accuracy results as the 

dimension of the problem increases. 

This is due to the amount of data transferred between. the processors of a 

parallel computer (as in the Balance 8000). The partitioning process in the 

Wang method, in fact, is such that the elimination process inside one group 

of k rows (k = n/ p) requires more than just one processor. That is to say, 

the p subsytems created by the partitioning process are not independent from 

each other (we recall that n indicates the dimension of the problem, while p 

is the number of processors used) [20]. 

The Recursive Decoupling routine cannot compete with the Wang routine in 

terms of execution times: the new method we presented is much slower than 

that of Wang. 

On the other hand, the Recursive Decoupling method shows better 

behaviour in terms of accuracy, the decrease in accuracy being much less as 

the dimension increases. 

The memory allocation requirement for the Recursive Decoupling routine 

is not favourable, compared to the same requirement in the Wang routine. 
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This is due to the problem discussed in paragraph 5.7, concermng the 

implementation of the tree structure of figure 5.17. 

We suggest that an implementation of the Recursive Decoupling method in 

other programming languages, such as Pascal or C, would probably result 

in an improvement in the memory allocation requirements. The same 

improvement would probably be possible by using the new version of Fortran 

compiler ("Fortran 90"), which allows the programmer to allocate memory 

dynamically and permits direct operations on data structures; such as direct 

matrix multiplication and scalar product of vectors. 

In terms of speed-up and efficiency, the two methods under comparison can 

be considered equivalent. 

We would like to underline that the main characteristic of the Recursive 

Decoupling method is given by its partitioning process, which leads to 

independent subsystems (that is to say, it leads to independent sets of data 

to be assigned to each single processor). 

The relative simplicity of the formulae involved should also be considered. 

The partitioning of the original linear system into 2 x 2 independent 

subsystems allows the immediate and explicit expression of the inverse matrix. 

On the other hand, the same partitioning process results in high execution 

times; the reason being that the calculation performed by each processor 

is too small, compared to the overhead involved in the creation of multiple 

processes. 

As a consequence of all these considerations, a suggestion for further research 

could consist of increasing the size of the subsystems into which the original 
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system is partitioned. By recursively partitioning the given tridiagonal 

system into 4 x 4 or even higher dimension independent subsystems, the 

calculation performed by each processor becomes more substantial; that is to 

say, the overhead due to multiple process creation becomes less relevant. 

This different way of performing the partitioning process (in the Recursive 

Decoupling algorithm) will certainly lead to a loss in the simplicity of the 

formulae involved. 

The balance between positive and negative aspects of this possible 

partitioning process is currently under investigation; this development of 

the Recursive Decoupling method can be considered as the core for further 

research. 

Other possible developments of the method presented are represented by the 

adaptation of the routine to special cases, such as the solution of tridiagonal 

linear systems with constant sub-diagonal, constant main diagonal and 

constant upper diagonal matrix elements (i.e. Toeplitz systems). 

To conclude, we mention the fact that, often, many independent tridiagonal 

linear systems need to be solved. We can then take advantage of the 

independence of the systems, as well as the independent characteristics of 

the partitioning process, and apply the Recursive Decoupling algorithm to a 

single large tridiagonal system. 

131 



For example, if we need to solve two systems of dimension 3 x 3 and 4 x 4 

respectively, we can consider the solution of a single system of dimension 

7 x 7, as follows: 

bl Cl 

a2 b2 C2 

aa ba 0 
0 Bl Cl 

A2 B2 C2 
Aa Ba Ca 

A4 B4 

When considering this "linking" of parallel systems, the balance between 

the performance gain (which is directly proportional to the increase of 

the problem dimension) and the memory allocation requirement must be 

investigated. 
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Appendix. Further Numerical Experiments 

In the following pages additional results are obtained by testing the Recursive 

Decoupling routine on further tridiagonal linear systems Ax = d. 

Since the exact solution x is, in general, not known, the solution accuracy 

is studied by means of "residual" results, that is to say once the computed 

solution u has been obtained, we form the residual vector 

r = d - Au. (A.l) 

The following tables show respectively the quantities: 

U max . 11 u 11= 

Resmax =11 r 11= (A.2) 

R 2::7-1 hi es av = 
n 

where n is the problem dimension (n = 4,8,16, ... , 1024). 

Results in brackets are obtained by testing the Wang routine on the same 

tridiagonallinear systems considered in this appendix. Note that in the case 

of the Wang routine, results depend on the number p of processors used (also 

shown in brackets) unlike the Recursive Decoupling routine results, which are 

independent of p. 



Test system 3 

The third tridiagonal linf'JII system c.onsidererl is 

2.05 -1 0 '''1 1 
-1 2.05 -1 X2 2 

-1 2.05 -1 Xa 3 
(A. 3) 

-1 2.05 -1 Xn-l n -1 
0 -1 2.05 Xn n 

TABLE EXAMPLE 9 

Calcula.ted SoL Max. Residual Average Residual 

ll max R.e'~max Re.'i av 

n=4, q=2 7.096779 .0000019073 .0000007153 

(p=2) (7.096777) ( .0000009537) (.0000002384) 

n=8, q=3 32.98121 .0000095367 .0000038147 

(p=2) (32.98119) (.0000038147) (.0000014305) 

n=16, q=4 131.4839 .0000457764 .0000162125 

(p=4) (131.4838) (.0000152588) (.0000076294) 

n=32, q=5 391.4189 .0000915527 .0000259876 

(p=8) (391.4184) ( .0000915527) ( . 0000230074) 

n=64, q=6 970.6665 .0002441406 .0000594854 

(p=8) (970.6656) ( . 0002441406) (.0000512004) 

n=128, q=7 2189.229 .0009765625 .0001681149 

(p=8) (2189.226) ( .0004882812) (.0001171231 ) 

n=256, q=8 4687.417 .0019531250 .0003601462 

(p=8) (4687.410) ( .0019531250) ( . 0003023446) 

n=512, q=9 9745.392 .0039062500 .0007368997 

(p=8) (9745.369) (.0039062500) ( . 0004862323) 

n=1024, q=lO 19923.24 .0097656250 .0015076140 

(p=8) (19923.19) ( .0068359370) (.0007717274) 



Test system 4 

Th" fourth tridiagonal linear system considered is 

2.05 1 0 Xl 1 
-1 2.05 1 Xz 2 

-1 2.05 1 X3 3 
- (A. 4) 

-1 2.05 1 Xn_l n -1 
0 -1 2.05 Xn n 

TABLE EXAMPLE -4 

Calculated Sol. Max. Residu"l Average Residl11l1 

'lJ. max Re'~ma:r: R,p..·c;av 

n=4, q=2 2.28882 .0000002384 .0000000596 

(p=2) (2.28882) (.0000004768) ( .0000001788) 

n=8, q=3 5.020085 .0000004768 .0000001564 

(p=2) (5.020085) ( .0000009537) ( .0000002086) 

n=16, q=4 10.5104 .0000019073 .0000004582 

(p=4) (10.5104) ( .0000019073) ( . 0000006407) 

n=32, q=5 21.49187 .0000038147 .0000012945 

(p=8) (21.49187) ( .0000057220) ( . 000001 0058) 

n=64, q=6 43.4548 .0000114441 .0000029271 

(p=8) ( 43.4548) (.0000076294) ( .0000015572) 

n=128, q=7 87.38066 .0000228882 .0000057551 

(p=8) (87.38067) ( .0000305176) (.0000037495) 

n=256, q=8 175.2324 .0000610352 .0000100897 

(p=8) (175.2324) ( .0000610352) ( .0000068760) 

n=512, q=9 350.9358 .0001220703 .0000187539 

(p=8) (350.9358) ( .0000915527) (.0000120304) 

n=1024, q=1O 702.3428 .0002441406 .0000362289 

(p=8) (702.3428) ( .0001831055) ( .0000258710) 



Test system 5 

The fifth tridiagonal Iinf'.ar system r.onsidered is 

2.02 -2 0 Xl 1 
-2 2.02 -2 X2 2 

-2 2.02 -2 X3 3 
= (A. 5) 

-2 2.02 -2 Xn_l n -1 

o -2 2.02 Xn n 

TABLE EXAMPLE 5 

Caknlated Sol. M~x. Residnal A verage Residn~l 

'lJ. max Re'';max Re·';av 

n=4, q=2 3.511341 .0000009537 .0000004172 

(p=2) (3.511341) ( .0000009537) ( .0000003576) 

n=8, q=3 79.42160 .00000324249 .00000214875 

(p=2) (79.42368) ( .0002746582) (.0000411421 ) 

n=16, q=4 15.58781 .0000114441 .0000049174 

(p=4) (15.58777) ( .0000801086) ( .0000123680) 

n=32, q=5 97.00327 .0000915527 .0000297353 

(p=8) (97.00712) (.0004806519) ( .0000590049) 

n=64, q=6 64.05173 .0000762939 .0000200570 

(p=8) (64.05173) (.0004043579) (.0000373274) 

n=128, q=7 157.22079 .0001373291 .0000356380 

(p=8) (157.22080) (.0011291500) ( .0000651926) 

n=256, q=8 354.9340 .0003356934 .0000830218 

(p=8) (354.9276) (.0027465820) ( .0000877231 ) 

n=512, q=9 1721.093 .0021972660 .0005718022 

(p=8) (1720.767) ( .0129394500) ( . 0005405098) 

n=1024, q=10 1319.145 .0068359370 .0006879344 

(p=8) (1319.226) ( .0086669940) ( .0002056956) 



Test system 6 

The sixth t.ridiagonru linp.ar system mnsidered is 

2 -2 0 Xl 1 
-1 2 -1 X2 2 

-1 2 -1 Xa 3 
- (A. 6) 

-1 2 -1 ·T.n-l n-l 
0 -1 2 Xn n 

" TABLE EXAMPLE 6 

Calculat.ed So!. MaJ{. Residual Average Residual 

?J. max Re/~max Re.~av 

n=4, q=2 18.0 .000009537 .0000007153 

(p=2) (18.0) ( .000000000) ( . 0000000000) 

n=8, q=3 115.9999 .000076294 .0000014305 

(p=2) (116.0000) (.000038147) ( . 0000004 768) 

n=16, q=4 807.9993 .0001220703 .0000343323 

(p=4) (808.0008) ( .0001220703) ( .0000238419) 

n=32, q=5 5968.004 .0014648440 .0002326966 

(p=8) (5968.032) ( .000976525) (.0002727509) 

n=64, q=6 45727.85 .0039062500 .0010986330 

(p=8) (45727.98) ( .0078125000) (.0015106200) 

n=128, q=7 357695.6 .0937500000 .0106124900 

(p=8) (357702.8) ( .0937500000) (.0222244300) 

n=256, q=8 2828965.0 .5000000000 .0536651600 

(p=8) (2828835.0) (.7500000000) (.1765747000) 

n=512, q=9 22500730.0 5.0000000000 1.0875240000 

(p=8) (22496650.0) (8.0000000000) (1. 5995480000) 

n=1024, q=lO 



From the given examples we can see that for matrices with reasonable P 

condition number (e.g. test system 4) the accuracy given by the Recursive 

Decoupling algorithm is 10-4 ~ 10-6 , even for 9 levels of recursions. 

However for the ill conditioned examples 3,5,6 it is clear that the rounding 

errors do increase dramatically with increasing recursion levels; this affects 

the obtained accuracy, suggesting that in these cases the maximum number 

of recursion levels is 4 -;- 5 in order to achieve solution accuracy of 10-4 . 

In these cases it would be advisable to stop the recursion at level 4 (or 5) and 

proceed to solve smaller tridiagonal subsystems by the Gaussian elimination 

algorithm (version for tridiagonal systems). 

In order to achieve solution accuracy in the case of ill conditioned or quasi

singular systems, it could also be necessary to perform the calculations in 

double/multiple precision arithmetic. This would account for more costs in 

terms of memory requirements and computing time. 

The numerical results contained in this appendix confirm all the conclusions 

in the thesis concerning the Wang algorithm and the Recursive Decoupling 

algori thtl). 



Appendix. Programs Listings 



Program Decoupling. Version Parallel.f 

This program solves tridiagonal linear systems Au = d using a recursive 

decoupling technique. The system considered is of the form 

bl Cl Ul ~ 
a2 b2 C2 0 U2 d2 

a3 b3 C3 Ua d3 

o 

This solution routine is formulated into a preliminary stage and then into 

three different sections. 

Preliminary Stage or Pre-stage 

The coefficient matrix A is rearranged into the following form 

(j) 

a2 e2 0 X2 

e3 C3 m-I X3 

a4 e4 +2:: X4 

j~l 

0 en-l Cn-l Xn-l 

an en Xn 

where 
el = bl 

e2j-l = b2j - l - C2j-2 when j = 2, ... , m 

Yl 
Y2 

Y3 

Y4 

Yn-l 

Yn 

e2j = b2j - a2j+l when j = 1, . .. , m-I 

en = bn 

and 
when k = 2j, 2j + 1 

Xk = 0 otherwise 

when k = 2j 

when k = 2j + 1 

Yk = 0 otherwise 

(j)T 

that is x(j) = (0, ... ,0,1,1,0, . .. ,O)T, y(j) = (0, ... ,0, a2j+l, C2j, 0, ... ,O)T. 



In matrix notation, A is then written as follows 

J1 Xl 
(j) 

Y1 
(j)T 

J2 
m-I 

X2 Y2 +2: 
j=1 

Jm Xm Ym 

where n = 2m. 

The 2x2 matrices Jj are immediately invertible, by inspection 

I.e. 

if 

then J-:- 1 = _1_ ( e2j 
] ~. -a2· ] ] 

Stage 1 

m systems of the form 
(

U2 j -l) _ J-1 (d2j - 1) I d -]. d aresove. 
U2j 2j 

Stage 2 

m systems of the form 
( 

92j-l 'k) = J-:-1 
92· k ] ], 

( 
X2j-l k) , are solved, where k 

X2j,k 

ranges from 1 to q - 1 and q = log2 n. 

Stage 3 

Matrices 9j,k and vector u are updated using the Sherman-Morrison formula. 

The final solution u is obtained. 



Description of variables used 

ndim : max problem dimension. 

mdim : ndim/2. 

qdim : max exponent (to give max problem dimension ndim = 2qdim ). 

n current problem dimension. 

m: n/2. 

q : exponent (to give problem dimension n = 2q). 

a, b, c : three n-dimensional vectors, storing coefficient matrix A. 

u : n-dimensional vector, storing unknown vector (and solution vector, at 

last step). 

d n-dimensional vector, storing data vector. 

e : n-dimensional vector, used to initialise matrices Jj. 

g : rectangular matrix of dimension nx( q - 1), initialised in stage 2, used 

and updated in stage 3, in order to update solution vector u. 

x : rectangular matrix of dimension nx( q - 1), used to factorise coefficient 

matrix A and to update matrix 9 and vector u during stage 3 (the 

variable x is also used to store values of factor array y so that it is 

no longer necessary to use y). 

delta: rn-dimensional vector, storing values of 6.;. 

jjl : array of dimension 2x2xm, storing inverses of matrices Jj . 

ill : 2x2 work matrix, used in stage 1. 



uu work vector of dimension 2, used in stage l. 

dd as uu. 

sol: n-dimensional vector, storing exact solution. 

rsol : real value used to calculate exact solution. 

rec : real value used to calculate 1/ D.j. 

timel, time2 : integers used to calculate elapsed time. 

iniz, ifine : integers used in stage 2 to give first, last and step values of do 

loop indices. 

begin, size integers used in stage 3 to give first and last step of calculation 

in do loops. 

var, go logical variables, used in stage 3 to signal end-of-work to child 

processes. 

nprocs : number of processors used. 

mJiet_procs : parallel directive to set number of processors. 

m_fork : parallel directive to fork child processes. 

Subroutines used 

stage3 : to perform calculations required during stage 3 in parallel. 

stage33 : to perform last step of stage 3. 

partition: returns the updated value of integer variable begin to each 

calling processor, so that a defined part of the total work is 

assigned to each processor. 

dmatvet : to perform matrix/vector multiplication during stage l. 

matvet : to perform matrix/vector multiplication during stage 3. 



Description of variables used in subroutines stage3 and stage33 

n, rn, q : as in main program. 

u : as in main program. 

. . 
g, x : as In main program. 

yg : real, work variable used to store the summation of products x j,k gj,k, 

as required in the Sherman-Morrison formula. 

alfa : real, storing value of 1/(1 + yg). 

u2, u3 : n-dimensional work vectors, used to update vector u. 

g2, g3 : n-dimensional work vectors, used to update matrix g. 

rngy : square work matrix of dimension nxn, used to store products 

alfa gj,k Xj,k> as required in the Sherman-Morrison formula. 

begin, size : as in main program. 

. . 
var, go : as In main program. 

Note 

The above specifications and notation apply to all the three Fortran versions 

of the Recursive Decoupling method (Parallel.J, Paralleli.J, Parallelo./), with 

the only exception that subroutine Stage SS is not used in version Paralleli.f. 

In the following, the Fortran code for the three mentioned versions is given 

(related to the first test system). 

In addition, we include two more the Fortran listings of version Parallel.J, 

related to the second test system and to the calculation of "reclaimed times" 

respectively. 

In order to calculate the reclaimed times, it has been necessary to parallelize 

the Pre-stage, Stage 1 and Stage 2 by using the mJork microtasking routine, 

instead of using the Doacross parallel directive. 

For consistency reasons, all the Fortran listings contains the mJork construct 

to perform all the stages required by the algorithm. 



Version Parallel.f 

(first example) 



$system 
c Parallel.f 
c Giulia Spaletta - Dept.of Computer studies - L.U.T. - Sept.l99l 

program decoupling 

c 

c 

c 

c 

c 

c 

c 

c 

c 

:: 

:: 
:: 

integer ndim,mdim,qdim 
parameter(ndim=1024,mdim=5l2,qdim=lO) 

EXTERNAL prestage 
EXTERNAL stagel 
EXTERNAL stage2 
EXTERNAL stage3 

COMMON/constl/n,m,q 
COMMON/const2/a,c 
COMMON/const22/e 
COMMON/const3/jjl 
COMMON/const4/d 

COMMON/shar20/u 
COMMON/shar3/g,x 

COMMON/logi/var,go 
COMMON/misura/size 

real a(ndim),b(ndim),c(ndim) 
real u(ndim) 
real d(ndim) 
real e(ndim) 
real g(ndim,qdim-l) 
real x(ndim,qdim-l) 
real jj1(2,2,mdim) 

real sol(ndim) 
real rso1 

integer i,j,k,l 
integer n,m,q 
integer time,time1,time2 
integer iniz,ifine 

integer*4 nprocs 
integer*4 m_set-procs 
integer*4 m_fork 

integer begin, size 
logical var, go 

EQUIVALENCE(sol,e) 

open(4,file='Paralleldat',status='new') 

write(4,*) 
write(4,*) 'program Decoupling (Version Parallel.f -
write(4,*) , data file Paralleldat) , 
write(4,*) 'Number of used processors is as follows:' 
write(4,*)' for iterations 1,2,. ,q-2 .•.•.. 
write(4,*)' for iteration q-l ...••. 
write(4,*) 

~99 continue 

~ reading input data 
write(*,*) 

nprocs procs. ' 
1 processor' 

write(*,*) 'exponent q, where n=2**q or n=2*m (2 <= q <= 9 )' 



read(*,*) q 
n=2**q 
m=nj2 
write(*,*) 
write(*,*) 'num of 
write(*,*) , 
write(*,*) , 
write(*,*) , 
write(*,*) , 
read(*,*) nprocs 

processors I 

n.b. q=2 •.•••. nprocs=l' 
q=3 •.•••• nprocs=2 ' 
q=4 •.•••• nprocs=4 ' 
q>=5 .•.•• nprocs=8 ' 

c 
c initialising time variables 

timel=O 
time2=O 
time=O 

c 
c initialising coefficient matrix A, unknowns vector u, data vector d 

do 2 i=l,n 
b(i)=2.0 
d(i)=O.O 
u(i)=O.O 

2 continue 
d(l)=l.O 
do 3 i=l,n 

a(i)=-l.O 
c(i)=-l.O 

3 continue 
c 
c initialising arrays xj, gj 

do 4 j=l,q-l 
do 4 i=l,n 

x(i,j)=O.O 
g(i,j)=O.O 

4 continue 
c 
c 

(n.b. yj is not necessary) 

c initialising inverses of matrices Jj 
e(l)=b(l) 
e(n)=b(n) 
do 7 j=2,m 

e(2*j-l)=b(2*j-l)-c(2*j-2) 
7 continue 

do 8 j=l,m-l 
e(2*j)=b(2*j)-a(2*j+l) 

B continue 

c 

: setting number of processors 
il=m_set-procs(nprocs) 

: PRESTAGE: 
: calculating delta(j) 
: calculating inverses of matrices Jj 
: 

: 
: 
: 
::: 
::: 

call 
call 

STAGE 1: 

call 

m fork(prestage) 
m=kill-procs 

m_fork (stagel) 



c 
c 
c 
c STAGE 2: 
c 

iniz=l 
do 10 k=1,q-1 

ifine=2*iniz 
call m fork(stage2,k,iniz,ifine) 
iniz=i*"iniz 

10 continue 

c 
c 
c 

call m_kill-procs 

c STAGE 3: 
c Number of used processors is 
c for iterations 1,2,.,q-2 
c for iteration q-1 
c 

do 12 k=1,q-2 
begin=l 
go=.true. 
size=2** (k+1) 
var=.true. 

as follows:' 

call m_fork(stage3,k) 
call m_sync 

12 continue 

c 

c 

call m_kill-procs 

k=q-1 
begin=l 
go=.true. 
size=2**(k+1) 
var=.true. 

call stage33 (k) 

2001 continue 

c 

c 

call _clock_time(time2) 

time=time2-time1 

rsol=real (n+1) 
do 18 l=l,n 

sol (l)=real (n+1-l)/rsol 
18 continue 
:: 

write(4,*) 
write(4,20) (i,sol(i),i=l,n) 

20 format(2x, 'sol(',i4,') :',f20.10) 

write(4,*) 
write(4,30) (i,u(i),i=l,n) 

30 format(2x,'u(',i4, '):',f20.10) 

do 40 l=l,n 
sol(l)=sol(l)-u(l) 

10 continue 
; 

write(4,*) 
write(4,60) (i,sol(i) ,i=l,n) 

50 format (2x, 'diff(' ,i4, '):' ,f20.10) 

write(4,*) 
write(4,70)n,m,q 

nprocs procs. 
1 processor 



70 format(2X, 'dimension n:' ,i4,2x, 'factor m:' ,i4,2x, 'exponent q:' ,i4) 
c 

write(4, *) 
write(4,80)nprocs 

80 format(2X, 'number of processors nprocs:',i4) 
c 

write(4,*) 
write(4, 90) time/lOO. 0 
write(*,*) 
write(*,90)time/lOO.0 

90 format (2X, 'time in sec.:', f20.l0) 
c 

c 

c 
c 
c 

c 

c 

c 

c 

c 
c 

c 

write(*,*) 
write(4,*) '*************************************************' 
write(*,*) 
write(*,*) 'continue? (O=NO, l=YES) , 
write(*,*) 
read(*,*)num 
if(num.ne.O) go to 999 

close(4) 
stop 
end 

subroutine prestage 
integer ndim,mdim 
parameter(ndim=l024,mdim=5l2) 

COMMON/constl/n,m,q 
COMMON/const2/a,c 
COMMON/const22/e 
COMMON/const3/jjl 

real a(ndim),c(ndim) 
real e(ndim) 
real jjl(2,2,mdim) 

real delta(mdim) 
real rec 

integer n,m,q 

do 1 j=l,m 
delta(j)=e(2*j)*e(2*j-l)-a(2*j)*c(2*j-l) 

rec=l.O/delta(j) 
jjl(l,l,j)=e(2*j)*rec 
jjl(l,2,j)=-c(2*j-l)*rec 
jjl(2,l,j)=-a(2*j)*rec 
jjl(2,2,j)=e(2*j-l)*rec 

1 continue 

c 
c 
c 

return 
end 

subroutine stagel 
integer ndim,mdim 
parameter(ndim=1024,mdim=5l2) 

COMMON/constl/n,m,q 
COMMON/const3/jjl 
COMMON/const4/d 



c 

c 

c 
c 

COMMON/shar20/u 

real u(ndim) 
real d(ndim) 
real jjl(2,2,mdim) 
real jjj(2,2),uu(2),dd(2) 

integer n,m,q 

do 10 j=l,m 
dd(1)=d(2*j-l) 
dd(2)=d(2*j) 
jjj(l,l)=jjl(l,l,j) 
jjj(1,2)=jjl(1,2,j) 
jjj(2,1)=jjl(2,1,j) 
jjj(2,2)=jjl(2,2,j) 
call dmatvet(jjj,dd,uu) 
U(2*j-l)=UU(1) 
u(2*j )=uu(2) 

10 continue 

c 
c 
c 

c 

c 

c 

c 

c 
c 

return 
end 

subroutine stage2(k,iniz,ifine) 
integer ndim,mdim,qdim 
parameter(ndim=1024,mdim=5l2,qdim=10) 

COMMON/constl/n,m,q 
COMMON/const2/a,c 
COMMON/const3/jjl 

COMMON/shar3/g,x 

real a(ndim),c(ndim) 
real g(ndim,qdim-l) 
real x(ndim,qdim-l) 
real jjl(2,2,mdim) 

integer n,m,q 
integer iniz,ifine 

do 20 j=iniz,m-iniz,ifine 
g(2*j-l,k)=jjl(1,2,j) 
g(2*j,k)=jjl(2,2,j) 
g(2*j+l,k)=jjl(1,1,j+l) 
g(2*j+2,k)=jjl(2,1,j+l) 
x(2*j,k)=a(2*j+l) 
x(2*j+l,k)=c(2*j) 

20 continue 

:: 

:: 

:: 

return 
end 

subroutine stage3(k) 
integer nndim,mmdim,qqdim 
parameter(nndim=1024,mmdim=5l2,qqdim=10) 

COMMON/constl/n,m,q 
COMMON/shar20/u 
COMMON/shar3/g,x 



c 

c 

c 

c 

COMMON/logi/var, go 
COMMON/misura/size 

real u (nndim) 
real g(nndim,qqdim-1) 
real x(nndim,qqdim-1) 
real alfa,yg 
real u2(nndim) ,u3(nndim) ,g2(nndim) ,g3(nndim),g4(nndim) 
real mgy(nndim,nndim) 

integer ir,ic,kk 
integer n,m,q,k 
integer iriga,icol 

integer begin,size 
logical gO,var 

EQUIVALENCE(u2,g2) 
EQUlVALENCE(U3,g3) 

B88 continue 

:: 

:: 

14 

:: 

15 
:: 

16 
:: 

:: 

116 
:: 

17 

call m_lock() 
call partition(begin) 
call m_unlock() 

if (go) then 

yg=O.O 
do 14 ir=begin,begin+size-1 

yg=yg+x(ir,k)*g(ir,k) 
continue 
alfa=1.O/(1.0+yg) 

do 15 ir=begin,begin+size-1 
iriga=ir-begin+1 

do 15 ic=begin,begin+size-1 
icol=ic-begin+1 
mgy(iriga,icol)=g(ir,k) *x(ic,k) *alfa 
if (ir.eq.ic) then 

mgy(iriga,icol)=1.0-mgy(iriga,icol) 
else 

mgy(iriga,icol)=-mgy(iriga,icol) 
endif 

continue 

do 16 ir=begin,begin+size-1 
iriga=ir-begin+1 
u2(iriga)=u(ir) 

continue 

call matvet(mgy,u2,u3,size) 

do 116 ir=begin,begin+size-1 
iriga=ir-begin+1 
u(ir)=u3(iriga) 

continue 

do 177 kk=k+1,q-1 
do 17 ir=begin,begin+size-1 

iriga=ir-begin+1 
g2(iriga)=g(ir,kk) 

continue 

call matvet(mgy,g2,g3,size) 



117 
177 
c 

c 

c 
c 
c 

c 

c 

c 

c 

c 

c 

c 
c 

else 

endif 

do 117 ir=begin,begin+size-1 
iriga=ir-begin+1 
g(ir,kk)=g3(iriga) 

continue 
continue 

return 

go to 888 

end 

subroutine stage33(k) 
integer nndim,mmdim,qqdim 
parameter(nndim=1024,mmdim=512,qqdim=10) 

COMMON/const1/n,m,q 
COMMON/shar20/u 
COMMON/shar3/g,x 

COMMON/1ogi/var, go 
COMMON/misura/size 

real u (nndim) 
real g(nndim,qqdim-1) 
real x(nndim,qqdim-1) 
real alfa,yg 
real u2(nndim) ,u3(nndim),g2(nndim) ,g3(nndim) ,g4(nndim) 
real mgy(nndim,nndim) 

integer ir,ic,kk 
integer n,m,q,k 
integer iriga,icol 

integer begin,size 
logical go, var 

EQUIVALENCE(u2,g2) 
EQUIVALENCE(u3,g3) 

888 continue 

c 

c 

14 

15 

call partition(begin) 

if (go) then 

yg=o.o 
do 14 ir=begin,begin+size-1 

yg=yg+x(ir,k)*g(ir,k) 
continue 
alfa=1.0/(1.0+yg) 

do 15 ir=begin,begin+size-1 
iriga=ir-begin+1 

do 15 ic=begin,begin+size-1 
icol=ic-begin+l 
mgy(iriga,icol)=g(ir,k)*x(ic,k)*alfa 
if (ir.eq.ic) then 

mgy(iriga,icol)=1.0-mgy(iriga,icol) 
else 

mgy(iriga,icol)=-mgy(iriga,icol) 
endif 

continue 



c 

16 
c 

c 

116 
c 

17 
c 

c 

117 
177 
c 

c 

c 
c 
c 

c 

c 
c 

c 
c 
c 

else 

endif 

do 16 ir=begin,begin+size-1 
iriga=ir-begin+1 
u2(iriga)=u(ir) 

continue 

call matvet(mgy,u2,u3,size) 

do 116 ir=begin,begin+size-1 
iriga=ir-begin+1 
u(ir)=u3(iriga) 

continue 

do 177 kk=k+1,q-1 
do 17 ir=begin,begin+size-1 

iriga=ir-begin+1 
g2(iriga)=g(ir,kk) 

continue 

call matvet(mgy,g2,g3,size) 

do 117 ir=begin,begin+size-1 
iriga=ir-begin+1 
g(ir,kk)=g3(iriga) 

continue 
continue 

return 

go to 888 

end 

subroutine partition(pbegin) 
COMMON/const1/n,m,q 
COMMON/logi/var,go 
COMMON/misura/size 

logical go, var 
integer begin,size,pbegin 

save begin 
if (var) then 

else 

begin=1 
var=.false. 

if (begin.ge.(n-size» then 
go=.false. 

else 

endif 
endif 

pbegin=begin 
return 
end 

begin=begin+size 

subroutine dmatvet(a,x,y) 
real a(2,2) 
real x(2) ,y(2) 
integer i,k 



c 
do 20 i=1,2 

y(i)=O.O 
do 10 k=1,2 

y(i)=y(i)+a(i,k)*x(k) 
10 continue 
20 continue 
c 

c 
c 
c 

c 

c 

return 
end 

subroutine matvet(a,v,c,nn) 
integer ndim 
parameter (ndim=1024) 

real a(ndim,nn) 
real v(nn),c(nn) 
real sum 
integer ii, j j 

do 10 ii=l,nn 
sum=O.O 
do 9 jj=l,nn 

sum=sum+a(ii,jj)*v(jj) 
9 continue 

c(ii)=sum 
10 continue 
c 

c 

return 
end 



Version Parallel.f 

(reclaimed time) 



$system 
c Paralleltime.f 
c Giulia Spaletta - Dept.of Computer Studies - L.U.T. - Sept.199l 

program decoupling 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 
c 

integer ndim,mdim,qdim 
parameter (ndim=1024 ,mdim=5l2 ,qdim=lO) 

EXTERNAL prestage 
EXTERNAL stagel 
EXTERNAL stage2 
EXTERNAL stage3 

COMMON/constl/n,m,q 
COMMON/const2/a,c 
COMMON/const22/e 
COMMON/const3/jjl 
COMMON/const4/d 

COMMON/shar20/u 
COMMON/shar3/g,x 

COMMON/logi/var, go 
COMMON/misura/size 

real a (ndim) ,b(ndim) ,c(ndim) 
real u(ndim) 
real d(ndim) 
real e(ndim) 
real g(ndim,qdim-l) 
real x(ndim,qdim-l) 
real jjl(2,2,mdim) 

real sol(ndim) 
real rsol 

integer i,j,k,l 
integer n,m,q 
integer time,timel(2*qdim) ,time2(2*qdim) ,time3(2*qdim) 
integer iniz, ifine. 

integer*4 nprocs 
integer*4 m_set-Frocs 
integer*4 m_fork 

integer begin,size 
logical var,go 

EQUIVALENCE (sol,e) 

open(4,file='Paralleltimedat',status='new') 

write(4,*) 
write(4,*) 'Program Decoupling (Version Paralleltime.f -
write(4,*)' data file Paralleltimedat)' 
write(4,*) 'Number of used processors is as follows:' 
write(4,*)' for iterations l,2,.,q-2 ••.••• 
write(4,*)' for iteration q-l .•••.• 
write(4,*) 

c 
c 
999 continue 
c 
c ·reading input data 

write(*,*) 
write(*,*) 'exponent q, where n=2**q or n=2*m 

nprocs procs. ' 
1 processor' 

( 2 <= q <= 9 )' 



read(*,*) q 
n=2**q 
m=n/2 
write(*,*) 
write(*,*) 'num of 
write(*,*) , 
write(*,*) , 
write(*,*) , 
write(*,*) , 
read(*,*) nprocs 

processors ' 
n.b. q=2 ..•••• nprocs=1' 

q=3 •••••• nprocs=2 ' 
q=4 ••.••• nprocs=4 ' 
q>=5 •.••• nprocs=8 ' 

c 
c initialising time arrays, in order to obtain reclaimed time 

do 1 k=1,2*q 
time1(k)=0 
time2(k)=0 
time3 (k)=O 

1 continue 
c 
c initialising coefficient matrix A, unknowns vector u, data vector d 

do 2 i=l,n 
b(i)=2.0 
d(i)=O.O 
u(i)=O.O 

2 continue 
d(1)=1.0 
do 3 i=l,n 

a(i)=-1.0 
c(i)=-1.0 

3 continue 
c 
c initialising arrays xj, gj 

do 4 j=1,q-1 
do 4 i=l,n 

x(i,j)=O.O 
g(i, j) =0. 0 

4 continue 
c 
c 

(n.b. yj is not necessary) 

c initialising inverses of matrices Jj 
e(l)=b(l) 
e(n)=b(n) 
do 7 j=2,m 

e(2*j-1)=b(2*j-1)-C(2*j-2) 
7 continue 

do 8 j=1,m-1 
e(2*j)=b(2*j)-a(2*j+1) 

8 continue 
c 
c 
c 
c setting number of processors 

i1=m_set-Frocs(nprocs) 
c 
c 
c 
c PRESTAGE: 
c calculating delta(j) 
c calculating inverses of matrices Jj 
c 

c 
c 
c 

call 
call 
call 

c STAGE 1: 

m fork(prestage,time1(1» 
clock time(time2(1» 

m_kil(::procs 



c 

c 
c 
C 

call 
call 
call 

m fork(stage1,time1(2» 
clock time (time2 (2» 

m_kill J>rocs 

c STAGE 2: 
c 

iniz=l 
do 10 k=1,q-1 

ifine=2*iniz 
call m_fork(stage2,k,iniz,ifine,time1(k+2» 
call clock time(time2(k+2» 

iniz=2*iniz -
10 continue 

c 
c 
c 

call m_kill-procs 

c STAGE 3: 
c Number of used processors is 
c for iterations 1,2,.,q-2 
c for iteration q-1 
c 

do 12 k=1,q-2 
begin=l 
go=.true. 
size=2** (k+1) 
var=.true. 

as follows:' 
nprocs procs. 
1 processor 

call m_fork(stage3,k,time1(k+q+1» 
call _clock_time(time2(k+q+1» 
call m sync 

12 continue -
call m_kill-procs 

c 

c 

k=q-1 
begin=l 
go=.true. 
size=2**(k+1) 
var=.true. 

call clock time(time1(k+q+1» 
call stage33(k) 

2001 continue 

c 
c 

call _clock_time(time2(k+q+1» 

rsol=real (n+1) 
do 18 l=l,n 

sol (l)=real (n+1-l)/rsol 
18 continue 
c 

do 19 k=1,2*q 
time3(k)=time2(k)-timel(k) 

19 continue 
time=O 
do 20 k=1,2*q 

time=time+time3(k) 
20 continue 
c 
c 

write(4,*) 
write(4,21) (i,sol(i),i=l,n) 

21 format(2x, 'sol(',i4,'):',f20.l0) 
c 



write(4,*) 
write(4,30) (i,u(i),i=l,n) 

30 format (2x, 'u(',i4, '):',f20.10) 
c 

do 40 l=l,n 
sol(l)=sol(l)-u(l) 

40 continue 
write(4,50) (i,sol(i),i=l,n) 

50 format (2x, 'diff(',i4,'): ',f20.10) 
c 

write(4,*) 
write(4,60)n,m,q 

60 format(2x, 'dimension n: ',i4,2x, 'factor m:' ,i4,2x, 'exponent q:' ,i4) 
write(4,*) 
write(4,70)nprocs 

70 format (2x, 'number of processors nprocs:',i4) 
c 

write(4,*) 
write(4,80)time/lOO.0 
write(*,*) 
write(*,80)time/lOO.0 

80 format (2x, 'reclaimed time in sec.: ',f20.10) 
c 

c 

c 
c 
c 

c 

c 

c 

c 

c 

c 

c 

write(*,*) 
write(4,*) ,******.**.***.*********************.*************. 
write(*,*) 
write(*,*) 'continue? (O=NO, l=YES)' 
write(*,*) 
read(*,*)num 
if (num.ne. 0) go to 999 

close(4) 
stop 
end 

subroutine prestage(timel) 
integer ndim,mdim 
parameter(ndim=1024,mdim=512) 

COMMON/constl/n,m,q 
COMMON/const2/a,c 
COMMON/const22/e 
COMMON/const3/jjl 

real a(ndim),c(ndim) 
real e(ndim) 
real jjl(2,2,mdim) 

real delta(mdim) 
real rec 

integer n,m,q 
integer j, time 1 

call m single() 
call clock time(timel) 

call m multi () -

do 1 j=l,m 
delta(j)=e(2*j)*e(2*j-l)-a(2*j)*c(2*j-l) 

rec=l.O/delta(j) 
jjl(l,l,j)=e(2*j)*rec 
jjl(l,2,j)=-c(2*j-l)*rec 



jjl(2,1,j)=-a(2*j)*rec 
jjl(2,2,j)=e(2*j-l)*rec 

1 continue 

c 
c 
c 

c 

c 

c 

c 

c 

return 
end 

subroutine stagel(timel) 
integer ndim,mdim 
parameter(ndim=1024,mdim=512) 

COMMON/constl/n,m,q 
COMMON/const3/jjl 
COMMON/const4/d 
COMMON/shar20/u 

real u(ndim) 
real d(ndim) 
real jjl(2,2,mdim) 
real jjj(2,2),uU(2),dd(2) 

integer n,m,q 
integer timel, j 

call m_single() 
call clock time(timel) 

call m multi() -

do 10 j=l,m 
dd(1)=d(2*j-l) 
dd(2) =d(2*j) 
jjj(l,l)=jjl(l,l,j) 
jjj(1,2)=jjl(1,2,j) 
jjj(2,1)=jjl(2,1,j) 
jjj(2,2)=jjl(2,2,j) 
call dmatvet(jjj,dd,uu) 
u(2*j-l)=uU(1) 
u(2*j)=uu(2) 

10 continue 

c 
c 
c 

c 

c 

c 

c 

c 

return 
end 

subroutine stage2(k,iniz,ifine,timel) 
integer ndim,mdim,qdim 
parameter(ndim=1024,mdim=512,qdim=10) 

COMMON/constl/n,m,q 
COMMON/const2/a,c 
COMMON/const3/jjl 

COMMON/shar3/g,x 

real a (ndim) ,c(ndim) 
real g(ndim,qdim-l) 
real x(ndim,qdim-l) 
real jjl(2,2,mdim) 

integer n,m,q 
integer timel 
integer iniz,ifine 

call m_single() 
call _clock_time(timel) 



c 
do 20 j=iniz,m-iniz,ifine 

g(2*j-1,k)=jj1(1,2,j) 
g(2*j,k)=jj1(2,2,j) 
g(2*j+1,k)=jj1(1,1,j+1) 
g(2*j+2,k)=jj1(2,1,j+1) 
X(2*j,k)=a(2*j+1) 
x(2*j+1,k)=c(2*j) 

20 continue 

c 
c 
c 

c 

c 

c 

c 

c 

c 

c 

c 

return 
end 

subroutine stage3(k,time1) 
integer nndim,mmdim,qqdim 
parameter(nndim=1024,mmdim=512,qqdim=10) 

OOMMON/const1/n,m,q 
OOMMON/shar20/u 
OOMMON/shar3/g,x 

OOMMON/1ogi/var,go 
OOMMON/misura/size 

real u(nndim) 
real g(nndim,qqdim-1) 
real x(nndim,qqdim-1) 
real alfa,yg 
real u2(nndim) ,u3(nndim),g2(nndim) ,g3(nndim) ,g4(nndim) 
real mgy(nndim,nndim) 

integer ir,ic,kk 
integer n,m,q,k 
integer iriga,icol 
integer timel 

integer begin,size 
logical go, var 

EQUIVALENCE(u2,g2) 
EQUIVALENCE(u3,g3) 

call m single () 
call clock time(time1) 

call m multi Cl -

888 continue 
c 

c 

c 

14 

c 

call m lock() 
call partition (begin) 

call m_unlockCl 

if (go) then 

yg=O.O 
do 14 ir=begin,begin+size-1 

yg=yg+x(ir,k)*g(ir,k) 
continue 
alfa=1.0/(1.0+yg) 

do 15 ir=begin,begin+size-1 
iriga=ir-begin+1 

do 15 ic=begin,begin+size-1 
icol=ic-begin+l 



15 
c 

16 
c 

c 

116 
c 

17 
c 

c 

117 
177 
c 

c 

c 
c 
c 

c 

c 

c 

c 

c 

else 

mgy(iriga,icol)=g(ir,k)*x(ic,k)*alfa 
if (ir.eq.ic) then 

mgy(iriga,icol)=I. o-mgy(iriga, icol) 
else 

mgy(iriga, icol)=-mgy(iriga, icol) 
endif 

continue 

do 16 ir=begin,begin+size-l 
iriga=ir-begin+l 
u2(iriga)=u(ir) 

continue 

call matvet(mgy,u2,u3,size) 

do 116 ir=begin,begin+size-l 
iriga=ir-begin+l 
u(ir)=u3(iriga) 

continue 

do 177 kk=k+l,q-l 
do 17 ir=begin,begin+size-l 

iriga=ir-begin+l 
g2(iriga)=g(ir,kk) 

continue 

call matvet(mgy,g2,g3,size) 

do 117 ir=begin,begin+size-l 
iriga=ir-begin+l 
g(ir,kk)=g3(iriga) 

continue 
continue 

return 
endif 
go to 888 

end 

subroutine stage33(k) 
integer nndim,mmdim,qqdim 
parameter (nndim=1024 ,mmdim=512 ,qqdim=10) 

COMMON/constl/n,m,q 
COMMON/shar20/u 
COMMON/shar3/g,x 

COMMON/logi/var,go 
COMMON/misura/size 

real u (nndim) 
real g(nndim,qqdim-l) 
real x(nndim,qqdim-l) 
real alfa,yg 
real u2(nndim) ,u3(nndim) ,g2(nndim) ,g3(nndim) ,g4(nndim) 
real mgy(nndim,nndim) 

integer ir,ic,kk 
integer n,m,q,k 
integer iriga,icol 

integer begin, size 



c 

c 
c 

logical go, var 

EQUIVALENCE (u2,g2) 
EQUIVALENCE (u3,g3) 

888 continue 
c 

c 

c 

14 

c 

15 
c 

16 
c 

c 

116 
c 

17 
c 

c 

117 
177 
c 

c 

c 
c 
c 

call partition (begin) 

if (go) then 

else 

endif 

yg=O.O 
do 14 ir=begin,begin+size-1 

yg=yg+x(ir,k)*g(ir,k) 
continue 
alfa=1.0/(1.0+yg) 

do 15 ir=begin,begin+size-1 
iriga=ir-begin+1 

do 15 ic=begin,begin+size-1 
icol=ic-begin+1 
mgy(iriga, icol)=g(ir,k)*x(ic,k) *alfa 
if (ir.eq.ic) then 

mgy(iriga,icol)=1.0-mgy(iriga,icol) 
else 

mgy(iriga,icol)=-mgy(iriga,icol) 
endif 

continue 

do 16 ir=begin,begin+size-1 
iriga=ir-begin+1 
u2(iriga)=u(ir) 

continue 

call matvet(mgy,u2,u3,size) 

do 116 ir=begin,begin+size-1 
iriga=ir-begin+1 
u(ir)=u3(iriga) 

continue 

do 177 kk=k+1,q-1 
do 17 ir=begin,begin+size-1 

iriga=ir-begin+1 
g2(iriga)=g(ir,kk) 

continue 

call matvet(mgy,g2,g3,size) 

do 117 ir=begin,begin+size-1 
iriga=ir-begin+1 
g(ir,kk)=g3(iriga) 

continue 
continue 

return 

go to 888 

end 

subroutine partition(pbegin) 



c 

c 
c 

c 
c 
c 

c 

COMMON/const1/n,m,q 
COMMON/logi/var,go 
COMMON/misura/size 

logical go,var 
integer begin,size,pbegin 

save begin 
if (var) then 

else 

begin=l 
var=.false. 

if (begin.ge.(n-size» then 
go=.false. 

else 

endif 
endif 

pbegin=begin 
return 
end 

begin=begin+size 

subroutine dmatvet(a,x,y) 
real a(2,2) 
real x(2) ,y(2) 
integer i,k 

do 20 i=1,2 
y(i)=O.O 
do 10 k=1,2 

y(i)=y(i)+a(i,k)*x(k) 
10 continue 
20 continue 
c 

c 
c 
c 

c 

c 

return 
end 

subroutine matvet(a,v,c,nn) 
integer ndim 
parameter (ndim=1024) 

real a(ndim,nn) 
real v(nn),c(nn) 
real sum 
integer ii, j j 

do 10 ii=l,nn 
sum=O.O 
do 9 jj=l,nn 

sum=sum+a(ii,jj)*v(jj) 
9 continue 

c(ii)=sum 
10 continue 
c 

c 

return 
end 



Version Parallel.f 

(second example) 



$system 
c Paralle12.f 
c Giulia Spaletta - Dept.of Computer Studies - L.U.T. - Sept.1990 

program decoupling 

c 

c 

c 

c 

c 

c 
c 

c 

c 

c 
c 

c 
c 

integer ndim,mdim,qdim 
parameter (ndim=1024 ,mdim=512 ,qdim=10) 

EXTERNAL prestage 
EXTERNAL stage 1 
EXTERNAL stage2 
EXTERNAL stage3 

COMMON/const1/n,m,q 
COMMON/const2/a,c 
COMMON/const22/e 
COMMON/const3/jj1 
COMMON/const4/d 

COMMON/shar20/u 
COMMON/shar3/g,x 

COMMON/logi/var,go 
COMMON/misura/size 

real a (ndim) ,b(ndim) ,c(ndim) 
real u(ndim) 
real d(ndim) 
real e(ndim) 
real g(ndim,qdim-1) 
real x(ndim,qdim-1) 
real jj1(2,2,mdim) 

integer i,j,k,l 
integer n,m,q 
integer time,time1,time2 
integer iniz,ifine 

integer*4 nprocs 
integer*4 m_set-procs 
integer*4 m_fork 

integer begin,size 
logical var,go 

open(4,file='Paralle12dat',status='new') 

write(4,*) 
write(4,*) 'Program Decoupling (Version Paralle12.f -
write(4,*) , data file Paralle12dat) , 
write(4,*) 'Number of used processors is as follows:' 
write(4, *) , for iterations 1,2,. ,q-2 .•.••• 
write(4,*)' for iteration q-1 ..•••. 

c 
c 

write (4 ,*) 

999 continue 
c 
c reading input data 

write(*,*) 
write(*,*) 'exponent q, 
read(*,*) q 
n=2**q 
m=n/2 

where n=2**q or n=2*m 

nprocs procs. ' 
1 processor' 

( 2 <= q <= 9 )' 



write(*,*) 
write(*,*) 'num of 
write(*,*) , 
write(*,*) , 
write(*,*) , 
write(*,*) , 
read(*,*) nprocs 

processors ' 
n.b. q=2 ...... nprocs=l' 

c 
c initialising time variables 

timel=O 
time2=O 
time=O 

c 

q=3 ...... nprocs=2 ' 
q=4 ...... nprocs=4 ' 
q>=5 ..... nprocs=8 ' 

c initialising coefficient matrix A, unknowns vector u, data vector d 
do 2 i=l,n 

u(i)=o.o 
2 continue 

c 

c 

c 

do 28 i=1,n-l,8 
a(i)=O.O 
a(i+l)=3.0 
a(i+2)=2.0 
a(i+3)=2.0 
a(i+4)=l.O 
a(i+5)=4.0 
a(i+6)=7.0 
a(i+7)=l.O 

b(i)=2.0 
b(i+l)=5.0 
b(i+2)=3.0 
b(i+3)=4.0 
b(i+4)=4.0 
b(i+5)=6.0 
b(i+6)=8.0 
b(i+7)=3.0 

c(i)=l.O 
c(i+l)=2.0 
c(i+2)=l.O 
c(i+3)=l.O 
c(i+4)=3.0 
c(i+5)=l.O 
c(i+6)=l.O 
c(i+7)=O.O 

d(i)=l.O 
d(i+l)=O.O 
d(i+2)=O.O 
d(i+3)=l.O 
d(i+4)=O.O 
d(i+5)=l.O 
d(i+6)=O.O 
d(i+7)=2.0 

28 continue 
do 3 i=l,n 

a(i)=-a(i) 
c(i)=-c(i) 

3 continue 
c 
c initialising arrays xj, gj 

do 4 j=l,q-l 
do 4 i=l,n 

x(i,j)=O.O 
g(i,j)=o.O 

4 continue 
::: 

(n.b. yj is not necessary) 



c 
c initialising inverses of matrices Jj 

e(l)=b(l) 
e(n)=b(n) 
do 7 j=2,m 

e(2*j-1)=b(2*j-1)-C(2*j-2) 
7 continue 

do 8 j=l,m-1 
e(2*j)=b(2*j)-a(2*j+1) 

8 continue 
c 
c 

call clock time(tirne1) - -c 
c setting number of processors 

i1=rn_set-procs(nprocs) 
c 
c 
c 
c PRESTAGE: 
c calculating delta(j) 
c calculating inverses of matrices Jj 
c 

c 
c 
c 

call m fork(prestage) 
call m:kill-procs 

c STAGE 1: 
c 

c 
c 
c 

call m fork (stage1) 
call m:kill-procs 

c STAGE 2: 
c 

iniz=l 
do 10 k=1,q-1 

ifine=2*iniz 
call m_fork(stage2,k,iniz,ifine) 
iniz=2*iniz 

10 continue 

c 
c 
c 

call m_kill-procs 

c STAGE 3: 
c Number of used processors is 
c for iterations 1,2,.,q-2 
c for iteration q-1 
c 

do 12 k=1,q-2 
begin=l 
go=.true. 
size=2** (k+1) 
var=.true. 

as follows: I 

call m_fork(stage3,k) 
call m sync 

12 continue -
call m kill-procs 

c 
k=q-1 
begin=l 
go=.true. 
size=2**(k+1) 

nprocs procs. 
·1 processor 



var=.true. 
call stage33 (k) 

c 
2001 continue 

call _clock_time(time2) 
c 

time=time2-time1 
c 

write(4,*) 
write(4,70) (i,u(i),i=1,n) 

70 format(2x, 'u(',i4, '):',f20.10) 
c 

write(4,*) 
write(4,72)n,m,q 

72 format (2X, 'dimension n: ' , i4, 2x, 'factor m: ' , i4, 2x, 'exponent q: ' , i4) 
c 

write(4,*) 
write(4,73)nprocs 

73 format(2x, 'number of processors nprocs: ',i4) 
c 

write(4, *) 
write(4,74)time/100.0 
write(*,*) 
write(*,74)time/100.0 

74 format (2X, 'time in sec.:',f20.10) 
c 

c 

c 
c 
c 

c 

c 

c 

c 

c 
c 

c 

write(*,*) 
write(4,*) '*************************************************' 
write(*,*) 
write(*,*) 'continue? (O=NO, 1=YES)' 
write(*, *) 
read(*,*)num 
if(num.ne.O) go to 999 

close(4) 
stop 
end 

subroutine prestage 
integer ndim,mdim 
parameter(ndim=1024,mdim=512) 

COMMON/const1/n,m,q 
COMMoN/const2/a,c 
COMMON/const22/e 
COMMON/const3/jj1 

real a(ndim),c(ndim) 
real e(ndim) 
real jj1(2,2,mdim) 

real delta(mdim) 
real rec 

integer n,m,q 

do 1 j=1,m 
delta(j)=e(2*j)*e(2*j-1)-a(2*j)*c(2*j-1) 

rec=1.0/delta(j) 
jj1(1,1,j)=e(2*j)*rec 
jj1(1,2,j)=-c(2*j-1)*rec 
jj1(2,1,j)=-a(2*j)*rec 



jjl(2,2,j)=e(2*j-l)*rec 
1 continue 

c 
c 
c 

c 

c 

c 

c 
c 

return 
end 

subroutine stagel 
integer ndim,mdim 
parameter(ndim=1024,mdim=5l2) 

COMMON/constl/n,m,q 
COMMON/constJ/jjl 
COMMON/const4/d 
COMMON/shar20/u 

real u (ndim) 
real d(ndim) 
real jjl(2,2,mdim) 
real jjj(2,2),uu(2),dd(2) 

integer n,m,q 

do 10 j=l,m 
dd(1)=d(2*j-l) 
dd(2)=d(2*j) 
jjj(l,l)=jjl(l,l,j) 
jjj(l,2)=jjl(l,2,j) 
jjj(2,l)=jjl(2,l,j) 
jjj(2,2)=jjl(2,2,j) 
call dmatvet(jjj,dd,uu) 
u(2*j-l)=uu(1) 
u(2*j)=uu(2) 

10 continue 

c 
c 
c 

c 

c 

c 

c 

c 
c 

return 
end 

subroutine stage2(k,iniz,ifine) 
integer ndim,mdim,qdim 
parameter(ndim=1024,mdim=5l2,qdim=10) 

COMMON/constl/n,m,q 
COMMON/const2/a,c 
COMMON/constJ/jjl 

COMMON/sharJ/g,x 

real a(ndim),c(ndim) 
real g(ndim,qdim-l) 
real x(ndim,qdim-l) 
real jjl(2,2,mdim) 

integer n,m,q 
integer iniz,ifine 

do 20 j=iniz,m-iniz,ifine 
g(2*j-l,k)=jjl(l,2,j) 
g(2*j,k)=jjl(2,2,j) 
g(2*j+l,k)=jjl(l,l,j+l) 
g(2*j+2,k)=jjl(2,l,j+l) 
x(2*j,k)=a(2*j+l) 
x(2*j+l,k)=c(2*j) 



20 continue 

c 
c 
c 

c 

c 

c 

c 

c 

c 

c 
c 

return 
end 

subroutine stage3(k) 
integer nndim,mmdim,qqdim 
parameter(nndim=1024,mmdim=512,qqdim=10) 

OOMMON/const1/n,m,q 
OOMMON/shar20/u 
OOMMON/shar3/g,x 

OOMMON/logi/var,go 
OOMMON/misura/size 

real u (nndim) 
real g(nndim,qqdim-1) 
real x(nndim,qqdim-1) 
real alfa,yg 
real u2(nndim),u3(nndim),g2(nndim) ,g3(nndim),g4(nndim) 
real mgy(nndim,nndim) 

integer ir,ic,kk 
integer n,m,q,k 
integer iriga,icol 

integer begin, size 
logical go,var 

EQUIVALENCE(u2,g2) 
EQUIVALENCE(u3,g3) 

888 continue 

c 

c 

14 

c 

15 
c 

16 
c 

call m lockO 
call partition(begin) 

call m unlockO 

if (go) then 

yg=O.O 
do 14 ir=begin,begin+size-1 

yg=yg+x(ir,k)*g(ir,k) 
continue 
alfa=1.0/(1.0+yg) 

do 15 ir=begin,begin+size-1 
iriga=ir-begin+1 

do 15 ic=begin,begin+size-l 
icol=ic-begin+1 
mgy(iriga,icol)=g(ir,k)*x(ic,k)*alfa 
if (ir.eq.ic) then 

mgy(iriga,icol)=1.0-mgy(iriga,icol) 
else 

mgy(iriga,icol)=-mgy(iriga,icol) 
endif 

continue 

do 16 ir=begin,begin+size-l 
iriga=ir-begin+1 
u2(iriga)=u(ir) 

continue 

call matvet(mgy,u2,u3,size) 



c 

116 
c 

17 
c 

c 

117 
177 
c 

c 

c 
c 
c 

c 

c 

c 

c 

c 

c 

c 
c 

else 

endif 

do 116 ir=begin,begin+size-1 
iriga=ir-begin+1 
u(ir)=u3(iriga) 

continue 

do 177 kk=k+1,q-1 
do 17 ir=begin,begin+size-1 

iriga=ir-begin+1 
g2(iriga)=g(ir,kk) 

continue 

call matvet(mgy,g2,g3,size) 

do 117 ir=begin,begin+size-l 
iriga=ir-begin+1 
g(ir,kk)=g3(iriga) 

continue 
continue 

return 

go to 888 

end 

subroutine stage33(k) 
integer nndim,mmdim,qqdim 
parameter(nndim=1024,mmdim=512,qqdim=10) 

COMMON/const1/n,m,q 
COMMON/shar20/u 
COMMON/shar3/g,x 

COMMON/logi/var,go 
COMMON/misura/size 

real u(nndim) 
real g(nndim,qqdim-1) 
real x(nndim,qqdim-l) 
real alfa,yg 
real u2(nndim),U3(nndim),g2(nndim),g3(nndim),g4(nndim) 
real mgy(nndim,nndim) 

integer ir,ic,kk 
integer n,m,q,k 
integer iriga,icol 

integer begin, size 
logical go, var 

EQUIVALENCE(u2,g2) 
EQUIVALENCE(u3,g3) 

888 continue 

c 

c 

call partition(begin) 

if (go) then 

yg=O.O 
do 14 ir=begin,begin+size-1 

yg=yg+x(ir,k)*g(ir,k) 



14 

c 

15 
c 

16 
c 

c 

116 
c 

17 
c 

c 

117 
177 
c 

c 

c 
c 
c 

c 

c 
c 

else 

endif 

continue 
alfa=I.0/(1.0+yg) 

do 15 ir=begin,begin+size-l 
iriga=ir-begin+l 

do 15 ic=begin,begin+size-l 
icol=ic-begin+l 
mgy(iriga,icol)=g(ir,k)*x(ic,k)*alfa 
if (ir.eq.ic) then 

mgy(iriga, icol) =1. O-mgy(iriga, icol) 
else 

mgy(iriga,icol)=-mgy(iriga,icol) 
endif 

continue 

do 16 ir=begin,begin+size-l 
iriga=ir-begin+l 
u2 (iriga) =ut ir) 

continue 

call matvet(mgy,u2,u3,size) 

do 116 ir=begin,begin+size-l 
iriga=ir-begin+l 
u(ir)=u3(iriga) 

continue 

do 177 kk=k+l,q-l 
do 17 ir=begin,begin+size-l 

iriga=ir-begin+l 
g2(iriga)=g(ir,kk) 

continue 

call matvet(mgy,g2,g3,size) 

do 117 ir=begin,begin+size-l 
iriga=ir-begin+l 
g(ir,kk)=g3(iriga) 

continue 
continue 

return 

go to 888 

end 

subroutine partition(pbegin) 
COMMON/constl/n,m,q 
COMMON/logi/var,go 
COMMON/misura/size 

logical go, var 
integer begin,size,pbegin 

save begin 
if (var) then 

else 

begin=1 
var=.false. 

if (begin.ge. (n-size» then 
go=.false. 



c 
c 
c 

c 

else 

endif 
endif 

pbegin=begin 
return 
end 

begin=begin+size 

subroutine dmatvet(a,x,y) 
real a(2,2) 
real x(2) ,y(2) 
integer i,k 

do 20 i=1,2 
y(i)=O.O 
do 10 k=1,2 

y(i)=y(i)+a(i,k)*x(k) 
10 continue 
20 continue 
c 

c 
c 
c 

c 

c 

return 
end 

subroutine matvet(a,v,c,nn) 
integer ndim 
parameter (ndim=1024) 

real a (ndim, nn) 
real v(nn),c(nn) 
real sum 
integer ii,jj 

do 10 ii=l, nn 
sum=O.O 
do 9 jj=l,nn 

sum=sum+a(ii,jj)*v(jj) 
9 continue 

c(ii)=sum 
10 continue 
c 

c 

return 
end 



Version Paralleli.f 

(first example) 



$system 
c Paralleli. f 
c Giulia Spaletta - Dept.of Computer Studies - L.U.T. - Sept.l990 

program decoupling 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 
c 

integer ndim,mdim,qdim 
parameter (ndim=1024 ,mdim=5l2 ,qdim=lO) 

EXTERNAL prestage 
EXTERNAL stagel 
EXTERNAL stage2 
EXTERNAL stage3 

COMMON/constl/n,m,q 
COMMON/const2/a,c 
COMMON/const22/e 
COMMON/const3/jjl 
COMMON/const4/d 

COMMON/shar20/u 
COMMON/shar3/g,x 

COMMON/logi/var,go 
COMMON/misura/size 

real a (ndim) ,b(ndim) ,c(ndim) 
real u(ndim) 
real d(ndim) 
real e(ndim) 
real g(ndim,qdim-l) 
real x(ndim,qdim-l) 
real jjl(2,2,mdim) 

real sol(ndim) 
real rsol 

integer i,j,k,l 
integer n,m,q 
integer time,timel,time2 
integer iniz,ifine 

integer*4 nprocs 
integer*4 m_set-procs 
integer*4 m_fork 

integer begin,size 
logical var,go 

EQUIVALENCE(sol,e) 

open(4,file='Parallelidat',status='new') 

write(4,*) 
write(4,*) 'Program Decoupling (Version Paralleli.f -
write(4,*)' data file Parallelidat), 
write(4,*) 'Number of used processors is as follows:' 
write(4,*)' for iterations l,2,.,q-l •..... nprocs procs.' 

c 
c 

write(4,*) 

999 continue 
c 
c reading input data 

write(*,*) 
write(*,*) 'exponent q, 
read(*,*) q 

where n=2**q or n=2*m ( 2 <= q <= 9 )' 



n=2**q 
m=n/2 
write(*,*) 
write(*,*) 'num of 
write(*,*) , 
write(*,*) , 
write(*,*) , 
write(*,*) , 
read(*,*) nprocs 

processors ' 
n.b. q=2 •.•..• nprocs=l' 

q=3 ..•... nprocs=2 ' 
q=4 ..•.•• nprocs=4 ' 
q>=5 .•.•• nprocs=8 ' 

c 
c initialising time variables 

timel=O 
time2=O 
time=O 

c 
c initialising coefficient matrix A, unknowns vector u, data vector d 

do 2 i=l,n 
b(i)=2.0 
d(i)=O.O 
u(i)=O.O 

2 continue 
d(l) =1. 0 
do 3 i=l,n 

a(i)=-1.0 
c(i)=-1.0 

3 continue 
c 
c initialising arrays xj, 90 

do 4 j=1,q-1 
do 4 i=l,n 

x(i, j )=0. 0 
g(i, j )=0. 0 

4 continue 
c 
c 

(n.b. yj is not necessary) 

c initialising inverses of matrices Jj 
e(l)=b(l) 
e(n)=b(n) 
do 7 j=2,m 

e(2*j-1)=b(2*j-1)-C(2*j-2) 
7 continue 

do 8 j=1,m-1 
e(2*j)=b(2*j)-a(2*j+1) 

8 continue 
c 
c 

c 
c setting number of processors 

i1=m_set-Frocs(nprocs) 
c 
c 
c 
c PRESTAGE: 
c calculating delta(j) 
c calculating inverses of matrices Jj 
c 

c 
c 
c 
c 

call m_fork(prestage) 
call m_kill-Frocs 

c STAGE 1: 
c 

call m_fork(stage1) 



c 
c 
c 
c STAGE 2: 
c 

iniz=l 
do 10 k=1,q-1 

ifine=2*iniz 
call m_fork(stage2,k,iniz,ifine) 
iniz=2*iniz 

10 continue 

c 
c 
c 

call m_kill-procs 

c STAGE 3: 
c Number of used processors is as follows:' 
c for iterations 1,2,.,q-1 ••..•• nprocs procs. 
c 

do 12 k=1,q-1 
begin=l 
go=.true. 
size=2** (k+1) 
va=.true. 

call m_fork(stage3,k) 
call m sync 

12 continue -
call m_kill-procs 

c 
c 
2001 continue 

c 

c 

call _clock_time(time2) 

time=time2-time1 

rsol=real (n+1) 
do 18 l=l,n 

sol (l)=real (n+1-1)/rsol 
18 continue 
c 

write(4,*) 
write(4,20) (i,sol(i) ,i=l,n) 

20 format(2x, 'sol(',i4,'):',f20.10) 
c 

write(4,*) 
write(4,30) (i,u(i),i=l,n) 

30 format (2x, 'u(',i4,'):',f20.10) 
c 

do 40 l=l,n 
sol(l)=sol(l)-u(l) 

40 continue 
c 

write(4,*) 
write(4,50) (i,sol(i),i=l,n) 

50 format (2x, 'diff (' ,i4, ') : ' ,f20.10) 
c 

write(4,*) 
write(4,60)n,m,q 

60 format (2x, 'dimension n:' ,i4,2x, 'factor m:' ,i4,2x, 'exponent q:' ,i4) 
c 

write(4,*) 
write(4,70)nprocs 

70 format(2x,'number of processors nprocs:',i4) 
c 

write ( 4, *) 



write(4, 80) time/lOO. 0 
write(*,*) 
write(*, 80) time/lOO. 0 

80 format(2x, 'time in sec.: ',f20.l0) 
c 

c 

c 
c 
c 

c 

c 

c 

c 

c 
c 

c 

write(*,*) 
write(4,*) '*************************************************' 
write(*,*) 
write(*,*) 'continue? (O=NO, l=YES) , 
write(*,*) 
read(*,*)num 
if(num.ne.O) go to 999 

close(4) 
stop 
end 

subroutine prestage 
integer ndim,mdim 
parameter(ndim=l024,mdim=5l2) 

COMMON/constl/n,m,q 
COMMON/const2/a,c 
COMMON/const22/e 
COMMON/const3/jjl 

real a(ndim),c(ndim) 
real e(ndim) 
real jjl(2,2,mdim) 

real delta(mdim) 
real rec 

integer n,m,q 

do 1 j=l,m 
delta(j)=e(2*j)*e(2*j-l)-a(2*j)*c(2*j-l) 

rec=l.O/delta(j) 
jjl(l,l,j)=e(2*j)*rec 
jjl(l,2,j)=-c(2*j-l)*rec 
jjl(2,l,j)=-a(2*j)*rec 
jjl(2,2,j)=e(2*j-l)*rec 

1 continue 

c 
c 
c 

c 

c 

c 

return 
end 

subroutine stagel 
integer ndim,mdim 
parameter(ndim=l024,mdim=5l2) 

COMMON/constl/n,m,q 
COMMON/const3/jjl 
COMMON/const4/d 
COMMON/shar20/u 

real u(ndim) 
real d(ndim) 
real jjl(2,2,mdim) 
real jjj(2,2),uU(2),dd(2) 



c 
c 

integer n,m,q 

do 10 j=l,m 
dd(1)=d(2*j-l) 
dd(2)=d(2*j) 
jjj(l,l)=jjl(l,l,j) 
jjj(1,2)=jjl(1,2,j) 
jjj(2,1)=jjl(2,1,j) 
jjj(2,2)=jjl(2,2,j) 
call dmatvet(jjj,dd,uu) 
u(2*j-l)=uu(1) 
u(2*j)=uu(2) 

10 continue 

c 
c 
c 

c 

c 

c 

c' 

c 
c 

return 
end 

subroutine stage2(k,iniz,ifine) 
integer ndim,mdim,qdim 
parameter(ndim=1024,mdim=5l2,qdim=10) 

COMMON/constl/n,m,q 
COMMON/const2/a,c 
COMMON/const3/jjl 

COMMON/shar3/g,x 

real a(ndim),c(ndim) 
real g(ndim,qdim-l) 
real x(ndim,qdim-l) 
real jjl(2,2,mdim) 

integer n,m,q 
integer iniz,ifine 

do 20 j=iniz,m-iniz,ifine 
g(2*j-l,k)=jjl(1,2,j) 
g(2*j,k)=jjl(2,2,j) 
g(2*j+l,k)=jjl(1,1,j+l) 
g(2*j+2,k)=jjl(2,1,j+l) 
x(2*j,k)=a(2*j+l) 
x(2*j+l,k)=c(2*j) 

20 continue 

c 
c 
c 

c 

c 

c 

return 
end 

subroutine stage3(k) 
integer nndim,mrndim,qqdim 
parameter(nndim=1024,mmdim=5l2,qqdim=10) 

COMMON/constl/n,m,q 
COMMON/shar20/u 
COMMON/shar3/g,x 

COMMON/logi/var,go 
COMMON/misura/size 

real u(nndim) 
real g(nndim,qqdim-l) 
real x (nndim,qqdim-l) 
real alfa,yg 



c 

c 

c 

c 
c 

real u2(nndim),u3(nndim) ,g2(nndim) ,g3(nndim) ,g4(nndim) 
real mgy(nndim,nndim) 

integer ir,ic,kk 
integer n,m,q,k 
integer iriga,icol 

integer begin,size 
logical gO,var 

EQUIVALENCE(U2,g2) 
EQUIVALENCE(U3,g3) 

888 continue 

c 

c 

14 

c 

15 
c 

16 
c 

c 

116 
c 

17 
c 

c 

117 
177 
c 

call m lock() 
call partition(begin) 

call m unlock() 

if (go) then 

else 

yg=O.O 
do 14 ir=begin,begin+size-l 

yg=yg+x(ir,k)*g(ir,k) 
continue 
alfa=I.0/(1.0+yg) 

do 15 ir=begin,begin+size-l 
iriga=ir-begin+l 

do 15 ic=begin,begin+size-l 
icol=ic-begin+l 
mgy(iriga,icol)=g(ir,k) *x(ic,k) *alfa 
if (ir.eq.ic) then 

mgy(iriga,icol)=1.0-mgy(iriga,icol) 
else 

mgy(iriga,icol)=-mgy(iriga,icol) 
endif 

continue 

do 16 ir=begin,begin+size-l 
iriga=ir-begin+l 
u2(iriga)=u(ir) 

continue 

call matvet(mgy,u2,u3,size) 

do 116 ir=begin,begin+size-l 
iriga=ir-begin+l 
u(ir)=u3(iriga) 

continue 

do 177 kk=k+l,q-l 
do 17 ir=begin,begin+size-l 

iriga=ir-begin+l 
g2(iriga)=g(ir,kk) 

continue 

call matvet(mgy,g2,g3,size) 

do 117 ir=begin,begin+size-l 
iriga=ir-begin+l 
g(ir,kk)=g3(iriga) 

continue 
continue 



c 

c 
c 
c 

c 

c 
c 

c 
c 
c 

c 

return 
endif 
go to 888 

end 

subroutine partition(pbegin) 
OOMMON/const1/n,m,q 
OOMMON/logi/var,go 
OOMMON/misura/size 

logical go,var 
integer begin,size,pbegin 

save begin 
if (var) then 

else 

begin=l 
var=.false. 

if (begin.ge. (n-size» then 
go=.false. 

else 

endif 
end if 

pbegin=begin 
return 
end 

begin=begin+size 

subroutine dmatvet(a,x,y) 
real a(2,2) 
real x(2) ,y(2) 
integer i,k 

do 20 i=1,2 
y(i)=O.o 
do 10 k=1,2 

y(i)=y(i)+a(i,k)*x(k) 
10 continue 
20 continue 
c 

c 
c 
c 

c 

c 

return 
end 

subroutine matvet(a,v,c,nn) 
integer ndim 
parameter (ndim=1024) 

real a(ndim,nn) 
real v (nn) , c (nn) 
real sum 
integer ii, j j 

do 10 ii=l,nn 
sum=O.O 
do 9 jj=l,nn 

sum=sum+a(ii,jj)*v(jj) 
9 continue 

c(ii) = sum 



10 continue 
c 

c 

return 
end 



Version Parallelo.f 
(first example) 



$system 
c Parallelo.f 
c Giulia Spaletta - Dept.of Computer studies - L.U.T. - Sept.1991 

program decoupling 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 
c 

integer ndim,mdim,qdim 
parameter(ndim=1024,mdim=512,qdim=10) 

EXTERNAL prestage 
EXTERNAL stage1 
EXTERNAL stage2 
EXTERNAL stage3 

ODMMON/const1/n,m,q 
ODMMON/const2/a,c 
ODMMON/const22/e 
ODMMON/const3/jj1 
COMMON/const4/d 

ODMMON/shar20/u 
ODMMON/shar3/g,x 

ODMMON/logi/var,go 
ODMMON/misura/size 

real a(ndim),b(ndim),c(ndim) 
real u (ndim) 
real d (ndim) 
real e (ndim) 
real g(ndim,qdim-l) 
real x(ndim,qdim-1) 
real jj1(2,2,mdim) 

real sol(ndim) 
real rsol 

integer i,j,k,l 
integer n,m,q 
integer time,time1,time2 
integer iniz,ifine 

integer*4 nprocs 
integer*4 m_set-procs 
integer*4 m_fork 

integer begin, size 
logical var, go 

EQUIVALENCE (sol, e) 

open(4,file='Parallelodat',status='new') 

write(4,*) 
write(4,*) 'Program Decoupling (Version Parallelo.f -
write(4,*)' data file Parallelodat) , 
write(4,*) 'Number of used processors is as follows:' 
write(4,*)' for iterations 1,2,. ,q-4 •.•.•• 
write(4,*)' for iteration q-3 •••.•• 
write(4,*)' for iteration q-2 •••••. 
write(4,*)' for iteration q-1 •...•. 
write(4,*) 

c 
c 
999 continue 
c 
c reading input data 

nprocs procs. ' 
4 processor' 
2 processor' 
1 processor' 



c 

write(*,*) 
write(*,*) 
write(*,*) 'exponent q, where n=2**q or n=2*m 
read(*,*) q 
n=2**q 
IIFn/2 
write(*, *) 
write(*,*) 
write(*,*) 'num of processors' 
write(*,*)' n.b. q=2 ...... nprocs=l' 
write (*, *) , q=3 ...... nprocs=2 ' 
write(*,*)' q=4 ...... nprocs=4 ' 
write(*,*)' q>=5 ..... nprocs=8 ' 
read(*,*) nprocs 

c initialising time variables 
timel=O 
time2=0 
time=O 

c 

( 2 <= q <= 9 ) I 

c initialising coefficient matrix A, unknowns vector u, data vector d 
do 2 i=l,n 

b(i)=2.0 
d(i)=O.O 
u(i)=O.O 

2 continue 
d(l)=1.0 
do 3 i=l,n 

a(i)=-1.0 
c(i)=-1.0 

3 continue 
c 
c initialising arrays xj, 90 

do 4 j=l,q-l 
do 4 i=l,n 

x(i, j )=0. 0 
g(i, j )=0. 0 

4 continue 
c 
c 

(n.b. yj is not necessary) 

c initialising inverses of matrices Jj 
e(l)=b(l) 
e(n)=b(n) 
do 7 j=2,m 

e(2*j-l)=b(2*j-l)-c(2*j-2) 
7 continue 

do 8 j=l,m-l 
e(2*j)=b(2*j)-a(2*j+l) 

8 continue 
c 
c 

c 
c setting number of processors 

il=m_set-procs(nprocs) 
c 
c 
c 
c PRESTAGE: 
c calculating delta(j) 
c calculating inverses of matrices Jj 
c 

c 
c 

call m fork (prestage) 
call m:kill-procs 



c 
c STAGE 1: 
c 

c 
c 
c 

call m_fork(stagel) 
call m_kill-procs 

c STAGE 2: 
c 

iniz=l 
do 10 k=l,q-l 

ifine=2*iniz 
call m_fork(stage2,k,iniz,ifine) 
iniz=2*iniz 

10 continue 

c 
c 
c 

call m_kill-procs 

c STAGE 3: 
c Number of used processors is 
c for iterations 1,2,.,q-4 
c for iteration q-3 
c for iteration q-2 
c for iteration q-l 
c 

if (q.le.4) go to 303 
do 12 k=l, q-4 

begin=l 
go=.true. 
size=2** (k+l) 
va=.true. 

as follows: I 

call m fork(stage3,k) 
call m-sync 

12 continue -
call m_kill-procs 

c 
303 continue 

c 

if (q.le.3) go to 302 
k=q-3 
il=m_set-procs(4) 
begin=l 
go=.true. 
size=2**(k+l) 
va=.true. 

call m fork(stage3,k) 
call m_kilI-procs 

302 continue 

c 

if (q.le.2) go to 301 
k=q-2 
il=m_set-procs(2) 
begin=1 
go=.true. 
size=2**(k+1) 
va=.true. 

call m_fork(stage3,k) 
call m_kill-procs 

301 continue 
k=q-l 
begin=1 
go=.true. 
size=2** (k+l) 
va=.true. 

nprocs procs. 
nprocs processors 
nprocs processors 
1 processor 



call stage33 (k) 
c 
2001 continue 

c 

c 

call _clock_time(time2) 

time=time2-timel 

rsol=real (n+ 1) 
do 18 l=l,n 

sol (l)=real (n+l-l)/rsol 
18 continue 
c 

write(4,*) 
write(4,20) (i,sol(i),i=l,n) 

20 format(2x,'sol(',i4, '):',f20.10) 
c 

write(4,*) 
write(4,30) (i,u(i),i=l,n) 

30 format (2x, 'u(',i4, '):',f20.10) 
c 

do 40 l=l,n 
sol(l)=sol(l)-u(l) 

40 continue 
c 

write(4,*) 
write(4,50) (i,sol(i),i=l,n) 

50 format (2x, 'diff(',i4,'): ',f20.10) 
c 

write(4,*) 
write(4,60)n,m,q 

60 format (2x, 'dimension n:',i4,2x,'factor m: ',i4,2x, 'exponent q:',i4) 
c 

write(4,*) 
write(4,70)nprocs 

70 format (2x, 'number of processors nprocs:',i4) 
c 

write(4,*) 
write(4, 80) time/lOO. 0 
write(*,*) 
write(*, 80) time/lOO. 0 

80 format (2x, 'time in sec.:',f20.10) 
c 

c 

c 
c 
c 

c 

c 

write(*,*) 
write(4,*) '*************************************************' 
write(*,*) 
write(*,*) 'continue? (O=NO, l=YES) , 
write(*,'*) 
read(*,*)num 
if (num.ne.0) go to 999 

close(4) 
stop 
end 

subroutine prestage 
integer ndim,mdim 
parameter(ndim=1024,mdim=512) 

COMMON/constl/n,m,q 
COMMON/const2/a,c 
COMMON/const22/e 
COMMON/const3/jjl 

real a(ndim),c(ndim) 



c 

c 

c 
c 

c 

real e(ndim) 
real jj1(2,2,mdim) 

real delta (mdim) 
real rec 

integer n,m,q 

do 1 j=l,m 
delta(j)=e(2*j)*e(2*j-1)-a(2*j)*C(2*j-1) 

rec=1.0/delta(j) 
jj1(1,1,j)=e(2*j)*rec 
jj1(1,2,j)=-c(2*j-1)*rec 
jj1(2,1,j)=-a(2*j)*rec 
jj1(2,2,j)=e(2*j-1)*rec 

1 continue 

c 
c 
c 

c 

c 

c 

c 
c 

return 
end 

subroutine stage1 
integer ndim,mdim 
parameter(ndim=1024,mdim=512) 

COMMON/const1/n,m,q 
COMMON/const3/jj1 
COMMON/const4/d 
COMMON/shar20/u 

real u(ndim) 
real d(ndim) 
real jj1(2,2,mdim) 
real jjj(2,2),uu(2),dd(2) 

integer n,m,q 

do 10 j=l,m 
dd(1)=d(2*j-l) 
dd(2)=d(2*j) 
jjj(l,l)=jjl(l,l,j) 
jjj(1,2)=jj1(1,2,j) 
jjj(2,1)=jjl(2,1,j) 
jjj(2,2)=jjl(2,2,j) 
call dmatvet(jjj,dd,uu) 
u (2*j -1) =uu(l) 
u(2*j)=uu(2) 

10 continue 

c 
c 
c 

c 

c 

c 

return 
end 

subroutine stage2(k,iniz,ifine) 
integer ndim,mdim,qdim 
parameter(ndim=1024,mdim=512,qdim=10) 

COMMON/constl/n,m,q 
COMMoN/const2/a,c 
COMMON/const3/jjl 

COMMoN/shar3/g,x 



c 

c 
c 

real a(ndim),c(ndim) 
real g(ndim,qdim-l) 
real x(ndim,qdim-l) 
real jjl(2,2,mdim) 

integer n,m,q 
integer iniz,ifine 

do 20 j=iniz,m-iniz,ifine 
g(2*j-l,k)=jjl(I,2,j) 
g(2*j,k)=jjl(2,2,j) 
g(2*j+l,k)=jjl(I,I,j+l) 
g(2*j+2,k)=jjl(2,I,j+l) 
x(2*j,k)=a(2*j+l) 
x(2*j+l,k)=C(2*j) 

20 continue 

c 
c 
c 

c 

c 

c 

c 

c 

c 

c 
c 

return 
end 

subroutine stage3(k) 
integer nndim,mmdim,qqdim 
parameter (nndim=1024 ,mmdim=512 ,qqdim=10) 

COMMON/constl/n,m,q 
COMMON/shar20/u 
COMMON/shar3/g,x 

COMMON/logi/var, go 
COMMON/misura/size 

real u(nndim) 
real g(nndim,qqdim-l) 
real x (nndim,qqdim-l) 
real alfa,yg 
real u2(nndim) ,u3(nndim) ,g2(nndim) ,g3(nndim) ,g4(nndim) 
real mgy(nndim,nndim) 

integer ir,ic,kk 
integer n,m,q,k 
integer iriga,icol 

integer begin,size 
logical gO,var 

EQUIVALENCE(u2,g2) 
EQUIVALENCE(u3,g3) 

888 continue 

c 

c 

14 

c 

call m lockO 
call partition(begin) 

call m_unlockO 

if (go) then 

yg=O.O 
do 14 ir=begin,begin+size-l 

yg=yg+x(ir,k)*g(ir,k) 
continue 
alfa=I.0/(1.0+yg) 

do 15 ir=begin,begin+size-l 
iriga=ir-begin+l 



15 
c 

16 
c 

c 

116 
c 

17 
c 

c 

117 
177 
c 

c 

c 
c 
c 

c 

c 

c 

c 

else 

endif 

do 15 ic=begin,begin+size-l 
icol=ic-begin+l 
mgy(iriga,icol)=g(ir,k)*x(ic,k)*alfa 
if (ir.eq.ic) then 

mgy(iriga,icol)=l.O-mgy(iriga,icol) 
else 

mgy(iriga,icol)=-mgy(iriga,icol) 
endif 

continue 

do 16 ir=begin,begin+size-l 
iriga=ir-begin+l 
u2(iriga)=u(ir) 

continue 

call matvet(mgy,u2,u3,size) 

do 116 ir=begin,begin+size-l 
iriga=ir-begin+l 
u(ir)=u3(iriga) 

continue 

do 177 kk=k+l,q-l 
do 17 ir=begin,begin+size-l 

iriga=ir-begin+l 
g2(iriga)=g(ir,kk) 

continue 

call matvet(mgy,g2,g3,size) 

do 117 ir=begin,begin+size-l 
iriga=ir-begin+l 
g(ir,kk)=g3(iriga) 

continue 
continue 

return 

go to 888 

end 

subroutine stage33(k) 
integer nndim,mmdim,qqdim 
parameter(nndim=1024,mmdim=5l2,qqdim=lO) 

COMMON/constl/n,m,q 
COMMON/shar20/u 
COMMON/shar3/g,x 

COMMON/logi/var,go 
COMMON/misura/size 

real u (nndim) 
real g(nndim,qqdim-l) 
real x(nndim,qqdim-l) 
real alfa,yg 
real u2(nndim),u3(nndim),g2(nndim) ,g3(nndim),g4(nndim) 
real mgy(nndim,nndim) 

integer ir,ic,kk 
integer n,m,q,k 
integer iriga,icol 



c 

c 

c 
c 

integer begin, size 
logical go, var 

EQUIVALENCE (u2,g2) 
EQUIVALENCE(u3,g3) 

888 continue 

c 

c 

14 

c 

15 
c 

16 
c 

c 

116 
c 

17 
c 

c 

117 
177 
c 

c 

c 
c 
c 

call partition(begin) 

if (go) then 

yg=O.O 

else 

endif 

do 14 ir=begin,begin+size-1 
yg=yg+x(ir,k)*g(ir,k) 

continue 
alfa=1.0/(1.0+yg) 

do 15 ir=begin,begin+size-1 
iriga=ir-begin+1 

do 15 ic=begin,begin+size-1 
icol=ic-begin+1 
mgy(iriga,icol)=g(ir,k)*x(ic,k)*alfa 
if (ir.eq.ic) then 

mgy(iriga,icol)=1.0-mgy(iriga,icol) 
else 

mgy(iriga, icol) =-mgy (iriga, icol) 
endif 

continue 

do 16 ir=begin,begin+size-1 
iriga=ir-begin+1 
u2(iriga)=u(ir) 

continue 

call matvet(mgy,u2,u3,size) 

do 116 ir=begin,begin+size-1 
iriga=ir-begin+1 
u(ir)=u3(iriga) 

continue 

do 177 kk=k+1,q-1 
do 17 ir=begin,begin+size-1 

iriga=ir-begin+1 
g2(iriga)=g(ir,kk) 

continue 

call matvet(mgy,g2,g3,size) 

do 117 ir=begin,begin+size-1 
iriga=ir-begin+1 
g(ir,kk)=g3(iriga) 

continue 
continue 

return 

go to 888 

end 



c 

c 
c 

c 
c 
c 

c 

subroutine partition(pbegin) 
COMMON/const1/n,m,q 
COMMON/logi/var,go 
COMMON/misura/size 

logical go,var 
integer begin,size,pbegin 

save begin 
if (var) then 

else 

begin=l 
var=.false. 

if (begin.ge.(n-size» then 
go=.false. 

else 

end if 
endif 

pbegin=begin 
return 
end 

begin=begin+size 

subroutine dmatvet(a,x,y) 
real a(2,2) 
real x(2) ,y(2) 
integer i,k 

do 20 i=1,2 
y(i)=O.o 
do 10 k=1,2 

y(i)=y(i)+a(i,k)*x(k) 
10 continue 
20 continue 
c 

c 
c 
c 

c 

c 

return 
end 

subroutine matvet(a,v,c,nn) 
integer ndim 
parameter (ndim=1024) 

real a(ndim,nn) 
real v(nn),c(nn) 
real sum 
integer ii,jj 

do 10 ii=l, nn 
sum=O.O 
do 9 jj=l,nn 

sum=sum+a(ii,jj)*v(jj) 
9 continue 

c(ii)=sum 
10 continue 
c 

c 

return 
end 




