

This item was submitted to Loughborough University as an MPhil thesis by
the author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE

S (.l ,!\L" rr A G-
--------------------------~-------------------

--.., -- - -- --- --- -------------- -- -- --- ----- - - -------~
·ACCESSION/COPY NO.

J~~.s.G_~_Q_Q$.':t:·=L~ _________ _
VOL. NO. CLASS MARK

036000347 8

11

•

.,

•

The Recursive Decoupling Method

for Solving Tridiagonal Linear Systems

by

GIULIA SPALETTA, Dott.

A Master's Thesis

Submitted in partial fulfilment of the requirements

for the award of Master of Philosophy

of the Loughborough University of Technology

September, 1991

Supervisor: Professor D. J. EVANS, D.Sc.

© by Giulia Spaletta, 1991

LOtlghborough Unrvel1llty
of Technol."y Library - ".~~"L

(.1:1. :.

A"" 03booo3't7 No

Declaration

I declare that this thesis is a record of research work carried out by me,

and that is my own composition. I also certify that neither this thesis nor

the original work contained therein has been submitted to this or any other

institution for a higher degree.

G.SPALETTA

Acknowledgements

I wish to express my deepest and most sincere gratitude to Professor

D. J. Evans for giving me the opportunity to carry out this work, in the first

instance; and subsequently for his friendly and unfailing guidance, continuous

help and inspiring enthusiasm throughout this research. Finally, for his

invaluable advice and infinite patience during the writing of this thesis.

Thanks to Professor Evans, I can consider the period I spent studying under

his supervision as one of the most fruitful experiences both in my academic

career and life.

I also wish to thank:

- Mrs. J. Poulton for her professional help and constant, friendly presence;

- Mr. M. Sofroniou for his interest and fruitful collaboration, for many

stimulating discussions, not to mention his typing of the whole of

chapter 5 (core of this thesis) and the improvements he has brought

to the original manuscript. Most of all, I wish to express to him my

special indebtedness for being such a patient, true friend;

- Miss. H. Y. Sanossian, Mr. N. M. Bahoshy and Dr. A. Osbaldestin for

their active co-operation and constant support as colleagues, but most

of all as very good friends;

- Dr. W. S. Yousif and Mr. G. S. Samra for all their technical advice (and

their infinite patience);

- Miss. L. Howard for her help in typing part of this thesis;

- all my colleagues and the staff of the Department of Computer Studies.

Finally, I thank my family for their love and understanding.

Abstract

Abstract

The work presented in this thesis mainly concerns the analysis of parallel

algorithms for the solution of tridiagonal linear systems and the design of

a new tridiagonal equation solver, which can be run on a MIMD (Multiple

Instruction Multiple Data stream) type parallel computer, in particular the

Balance 8000 Sequent system at Loughborough University of Technology.

In the first chapter, an introduction to the existing computer models IS

given, together with a brief description of the process that has led from the

uniprocessor machine to the development of different parallel architectures.

Enhancement is given to MIMD shared memory systems. In this respect,

the main characteristics of the Sequent system are presented, as well as the

main programming features supported by the Balance Operating System, the

Dynix.

The second chapter presents the fundamentals of parallel programmmg

on the Balance 8000 computer. Terms and concepts that are specific to

multitasking programs are introduced. Also, the two multitasking methods,

data partitioning and function partitioning, are outlined. In the same

chapter, we investigate problems (such as program dependencies, sharing of

data, synchronization of concurrent process) arising from the adaptation of

an application to parallel versions, and the related programming techniques.

Some of the parallel programming tools are described, with particular

attention to the so-called "data partitioning with Sequent Fortran" and "data

partitioning with Dynix".

Chapter 3 starts with an outline of the most well known algorithms for the

solution of tridiagonal systems, one of which is analysed in more detail in

chapter 4. Parameters used to evaluate performance are defined, such as

speed-up, efficiency and computational complexity, together with the basic

principles of Parallel Numerical Analysis.

In the fourth chapter, the Wang tridiagonal system solver is presented. We

have considered a variant of this partitioning method suitable for MIMD

architectures, and we have modified it to run on the Balance 8000.

Test matrices have then been used, in order to evaluate the performance

of the Wang routine on the Balance computer and to form a comparison with

the new Recursive Decoupling routine of chapter 5.

The fifth chapter constitutes the core of the whole thesis. The new

algorithm also belongs to the class of partitioning methods, since it

is based on repeated partitioning of the coefficient matrix into 2x2

submatricesj this strategy, together with a rank-one updating procedure,

allows us to calculate the solution explicitly, by solving independent sets

of subsystems. Furthermore, the methods turns out to be intrinsically

parallel and suitable for solution on multiprocessor architectures.

The performance of the Recursive Decoupling routine on the Balance 8000

computer has been tested by using the same example matrices as those used

to test the Wang method.

The thesis concludes with a chapter summanzmg the mam results and

suggestions for further research.

Keywords

Tridiagonal Linear Equations; Shared Memory Parallel Computers; Sequent

Balance 8000 Multiprocessor; Partition Method; Recursive Decoupling

Method; Parallel Numerical Analysis.

Contents

Acknowledgements

Abstract

Contents

1. Introduction to Parallel Computers

1.1. Introduction

1.2. A Classification of Computer Models

1.3. Shared Memory Systems

1.4. Parallel Numerical Analysis and the Flynn Classification

of Computer Models

1.5. The Balance 8000 Parallel Processing System

2. Principles of Parallel Programming on the Balance 8000

Page

1

1

4

6

13

2.1. Introduction to Parallel Programming on the Balance 8000 19

2.2. Parallelizable applications: Homogeneous and Heterogeneous

Multitasking 20

2.3. Program Dependencies 22

2.4. Elements of Parallel Programming 24

2.5. Parallel Programming Tools 31

3. Parallel Numerical Analysis: the Tridiagonal Linear

Systems Problem

3.1. Introduction

3.2. Performance Evaluation Parameters: Speed-up and

Computational Complexity

3.3. Fundamentals of Parallel Numerical Analysis

40

41

50

4. The Wang Partitioning Method

4.1. Introduction 55

4.2. The Wang Algorithm 55

4.3. The Wang Fortran Routine 60

4.4. Numerical Experiments and Remarks 64

5. The Recursive Decoupling Method

5.1. Introduction to the Recursive Decoupling Method 72

5.2. The Partitioning Process 72

5.3. The Recursive Decoupling Process 76

5.4. The Recursive Decoupling Algorithm 80

5.5. An Analytical Example 84

5.6. A Numerical Example 93

5.7. The Recursive Decoupling Routine 100

5.8. Numerical Experiments and Remarks 115

6. Conclusions and Further Work

6.1. Conclusions and Suggestions for Further Work 129

References

Appendix. Programs Listings

1. Introduction to Parallel Computers

1.1. Introduction

In the last few years we have seen an explosion in the interest In parallel

processors and parallel programming.

The scope of parallel processing is to reduce the elapsed time to complete a

job.

This time will basically depend on the coding style, the architecture of the

machine and the hardware implementation.

The job of everybody in charge of software development (system designers,

compiler and library writers, programmers) is to get the actual time required

by the calculations as close as possible to the ideal.

Tools have been developed to express the parallelism explicitly, either in the

form of subroutine libraries or language extensions; furthermore, studies are

still in progress, concerning the automatic parallelization of sequential code.

To date, the only automatic system available is limited to individual loops.

Parallelism at a higher level must still be specified by the programmer.

1.2. A Classification of Computer Models

A knowledge of the computer architecture and the hardware implementation

is not essential to the programmer. However, when performance becomes

critical, a good understanding of the hardware parallelism can be fundamental

to the program's tuning.

In spite of all the efforts made to write portable programs, some algorithms

will run efficiently on certain architectures, poorly on others.

The situation is worse for parallel processors than for uniprocessors, due to

the wider variety of architectures.

1

We can state a classification of different computer models, based on those

aspects in the hardware implementation of parallelism that most affect the

coding style [16]:

1) shared memory systems (figure1.1);

2) distributed memory systems, also called message passmg systems

(figure 1. 2 & figure 1.4);

3) hybrid systems (figure1.3).

We are mostly interested in the first type of computer architecture, therefore

we shall present a brief study of this kind of parallel machine.

I CPU I I CPU I I CPU I

I MEMORY I

FIGURE 1.1. Schematic of a shared memory system.

CPU

I MEMORY

CPU C P 1!
MEMORY MEMORY

I CPU JI
MEMORY

FIGURE 1.2. Schematic of a distributed memory system: fully
interconnected message passing machine.

CPU CPU CPU
MEMORY MEMORY MEMORY

CONNECTION NETWORK

FIGURE 1.3. Schematic of a hybrid machine.

2

(al

(bl

(cl

(dl

FIGURE 1.4. Distributed memory systems. (a) Ring connection machine.
(b) Star connection machine. (c) Mesh machine. (d) Hypercube of order 3.
(M: memory).

3

1.3. Shared Memory Systems

A shared memory machine has a single global memory accessible to all

processors.

Each processor may have some local memory (such as "registers" on the

Cray X-MP or the "cache" on the IBM 3090).

The data organization inside the memory (global and local memory) is totally

transparent to the user.

The data access time is independent of the processor making the request.

This is not to say that there is no memory contention. Problems like page

faults, memory bank conflicts, etc., still affect the performance.

Algorithms are easy to design for shared memory systems.

The data input on these machines is done as if running on a uniprocessor.

On the other hand, programs are hard to debug.

The most common type of error involves picking up wrong data from a global

variable.

There is no indication of when the error occurred, so that the computing

process continues, producing an erroneous final result. Data organization,

therefore, is a key to parallel algorithms, even on a shared memory computer.

Unfortunately, the most commonly used language for scientific purposes

(Fortran) only allows quite simple data structures (just scalars and arrays),

inducing the programmer to concentrate on program flow rather than on data

management. The latest version of Fortran language permits the use of a

wider variety of structures and mechanisms. The data sharing specifications,

though, still constitutes a fundamental problem on shared memory systems,

a problem that becomes even more critical when the parallelism is nested.

4

To simplify the programmer's job, in this last case, most parallel processors

provide only a single level of parallelism; that is to say that a master process

is allowed to spawn subprocesses, while the subprocesses may not themselves

spawn processes.

Data is either known to all the created processes or is private.

As a consequence of everything that has been said so far, the shared memory

systems need a few language extensions.

Firstly, the need to declare which data is private to each processor (local

da:ta) and which is known to all processors (global data) arises.

Secondly, synchronization is needed to prevent out-of-sequence access of

different processors to the shared memory.

The following considerations answer the above mentioned problems.

The work in a shared memory machine is usually divided up in a so-called

"fork-join" style: one process spawns the subprocesses (fork) and waits for

them to finish (join).

A means to restrict access to the code is needed and obtained, introducing

the concept of a "critical section"; this is a section of code executed by all

processors, one at a time (such as in the case of a reduction variable).

The concept of a "sequential section" is also introduced, which is a part of

the code that has to be executed by only one processor and skipped by all

the others. A sequential section is typically used to initialise global data.

The easiest way of obtaining synchronization is the JOIN construct. When

this is not possible, other constructs have to be used, such as "barriers" or

5

"semaphores". All these concepts will be more precisely illustrated in the

following paragraphs.

Finally, smce the cost of sharing data is very small in shared memory

machines, programmers often tend to parallelize the code at the Do-loop

level. In the case of independent loop iterations, each processor can run a

different subset of the loop index range, providing that each index value is

used exactly once.

There are basically two ways of parallelizing a Do-loop. One way is to assign

the first loop index value to the first arrived processor, the second index value

to the second processor, and so on. Whenever a processor has completed its

task (its loop iteration), it returns to the top to get more work. In this way,

an automatic load balancing is realized. On the other hand, this way of

obtaining a parallel Do-loop requires some form of synchronization, to assure

that each processor gets a unique value of the loop index.

A second way to parallelize a Do-loop is to partition it so that each processor

will do a certain set of loop iterations. This way of proceeding is to

be preferred if the work is naturally load balanced, and expecially if the

synchronization cost is high.

1.4. Parallel Numerical Analysis and the

Flynn Classification of Computer Models

In classical numerical analysis, a universal computer model is represented

by the Von Neumann machine; this can be schematized as follows

(figure 1.5):

6

PROCESSOR MEMORY

INPUT ...
" L. A. U. lA ..

I" "
OUTPUT I PROGRAM

C. u. 14 ...
I' "

FIGURE 1.5. Scheme of the Von Neumann machine.
L. A. U. LogiC & Arithmetic Unit.
C. U. Control Unit.

The main features of this universal computer are:

a) digital representation of variables;

I

b) serial processing, carried out according to the basic operations of

arithmetic and logic;

c) the program is a coded version of the algorithm to be implemented;

d) data are held in the main memory.

The algorithms of classical numerical analysis are then based on the

Von Neumann model and entail a large number of elementary operations.

This basic serial model has been taken as the starting point for all further

developments, until the concept of "parallelism" began to be discussed.

Parallelism was to be interpreted in the widest sense, that is not just to build a

parallel digital computer, but also to create a body of numerical mathematics

7

which exploits the possibilities offered by parallel computers. Furthermore,

the question arose as to whether there exists a maximal parallelism for a

given range of problems.

All these facts led to the need for a "parallel numerical analysis". Connected

to this need was the problem of formulating a standard machine model for

parallel numerical methods.

During the last thirty years, the performance of serial machines has been

improved greatly, due to the use of a new technology and new design.

Parallel features have been introduced:

in the organization of input/output channels;

by overlapping the execution of instructions;

by using interleaved storage techniques.

Starting from these ones, new developments have been realized, leading to a

truly parallel machine. Gains have been obtained, such as:

1) increase of computing speed;

2) possibility of solving problems too complex for serial computers;

3) exploitation of the inherent parallelism of some problems;

4) possibility of calculation of a solution in real time.

On the other hand, parallel computers present new difficulties, due to a

complicated organization of the data and also due to machine dependent

optimization for efficiency.

At present, there is still no standard model for parallel systems. Such a model

could be represented as shown in the following figure:

8

control

network

Decoding of
instructions and

control unit

.... , .

control

network 2

FIGURE 1.6. General configuration of a parallel computer with
different levels of parallelism (M: memory; P: processor).

In the above diagram parallelism is possible at different levels:

within the control unit;

among processors;

among the stores;

in the data network.

The above figure, though, is too general both for the building of a

functioning computer and the development of algorithms. Such a standard

diagram can only be taken as a theoretical basis for parallel numerical analysis

and parallel computers.

9

Depending on which level of parallelism is implemented in the diagram

of figure 1.6, we can state the following classification of computer (this

classification is due to Flynn [13]):

1) SISD machines: it is the Von Neumann model (Single Instruction - Single

Data stream);

2) SIMD machines: array processors, pipeline processors and associative

machines belong to this class (Single Instruction - Multiple Data stream);

3) MIMD machines: computers with several data processors and multiple

processor systems belong to this class (Multiple Instruction - Multiple

Data stream);

4) MISD machines: it has been proven that this type of organization

(Multiple Instruction - Single Data stream) is equivalent to that of a

Von Neumann machine. Therefore the MISD class is considered empty.

Control unit

Processor

Memory

10

FIGURE!.7.

Scheme of a

SI50 computer.

Data Organisation Network

Data Organisation Network

NOTE. C: control unit; P: processor; M: memory.

11

FIGURE I.B.

Scheme of a

SIMO computer.

FIGURE 1.9.

Scheme of a

MISO computer.

FIGURE 1.10.

Scheme of a

MIMO computer.

In the context of parallel numerical analysis, all these computer models

involve problems of rounding errors and their propagation, together with

questions of numerical stability of the algorithm used.

The SIMD organization, in particular, is suitable for classes of numerical

problems such as:

matrix operations;

numerical integration of differential equations;

MonteCarlo methods;

pattern recognitions.

MIMD machines consist of a certain number m of independent processors PI,

P2, .. , Pm, each having its own control unit (Cl, C2, .. , Cm respectively).

All these processors share, among other things, a number of input/output

units and a main memory.

·At every instant each processor can carry out different instructions in

parallel, that is to say all processors can operate simultaneously. Unlike the

SIMD machines, the MIMD computers are considered as "general purpose"

computers, because they are much more flexible than the SIMD ones and a

greater variety of problems can be solved through them.

As mentioned before, in this work we are only concerned with true

multiprocessor shared memory machines; an example of this kind of machine

is represented by the Balance 8000 computer.

In the following paragraph we will briefly introduce the Balance architecture

and the parallel programming capabilities of this system.

12

1.5. The Balance 8000 Parallel Processing
System

The Balance 8000 Sequent system is a multiprocessor shared memory machine

and therefore it belongs to the MIMD class. Its main features are the following

ones [24]:

a) it is a true multiprocessor, consisting of multiple identical processors

(CPUs); each CPU is a general purpose 32 bit microprocessor;

b) it is a shared memory machine, i.e. there is a single common memory;

an application can consist of multiple processes, all accessing shared data

held in the memory;

c) it is a tightly coupled machine, i.e. all processors share a single pool of

memory; sharing memory is a natural way for two processes (running on

different processors) to communicate with each other.

Note that a tightly coupled multiprocessor can do more than assign

non-interacting processes to a different processor. It can also distribute

a single process among many processors, so that each processor only

executes part of the calculation. This is done, as we will see in the

following chapter, to get a "speed-up" (that is if a process takes time t to

run on an uniprocessor, it could take time tin to run on n processors);

d) the Balance system has a symmetric architecture, since all processors are

identical and can execute both user code and operating system code;

e) there is a single high-speed Common Bus, used by all the processors,

the memory modules and the input/output controllers: this is done to

simplify the adding of processors, memory and input/output bandwidth;

f) programs written for a uniprocessor system can run on the Balance system

in such a way that it appears transparent to the user; that is programs do

13

-
f-

-

I
r-

not need to be modified for multiprocessing support. Processors can be

added or removed, with no need of modifying either the operating system

applications or the user applications;

g) dynamic load balancing is provided automatically by the processors, to

ensure that all processors are kept busy (in the most efficient possible

way) as long as there are executable processes available;

h) hardware support for mutual exclusion is provided, to enable the user

to lock any section of physical memory, whenever there is the need for

exclusive access to shared data structures.

The following figure illustrate the components of a typical Balance 8000

system (taken from Sequent Computer System, "Balance 8000 Sy~tem

Technical Summary ",(26)):

ITHIANn

CUIT"I* . - SYSTEII
CONIOU

0 IlULn • .,. IIULn • .,. -
INTlAI'ACI AI)A~A

Iotl - ICe
II-IIT CfIUo HI 80AIID IOAIID - _na

:::::::::.... • I

~I I l I I IL, I:: :J DIll! Oil.

l --
I

00 TAN a TAN 00
_ •• &Sw. J 0 - -

- '-- 0

14

Processors

The Balance 8000 computer is designed to employ from two to twelve 32 bit

CPUs, in a tightly coupled multiprocessing architecture.

The CPUs are packaged two per board.

To change the number of CPUs in the system it is necessary only to shut

down the system and add or remove one or more dual-processor boards. No

changes to the operating system or user applications are required.

Memory

The Balance 8000 can employ from 2 to 28 Megabytes of primary memory

and it can provide 16 Megabytes of virtual address space per process.

Memory is packaged in one-board or two-board memory modules.

Memory can be added or removed in much the same way as the CPU s.

SCSI bus

The SCSI bus (Small Computer System Interface bus) is used to connect

block-oriented devices, such as disk drivers or tape drivers to the system.

It supports high-speed, high-volume data transfer between memory and

peripherals (disks, tape units).

SCED board

A Balance 8000 system can include from 1 to 4 SCED boards (SCSI Ethernet

Diagnostic controller boards). Each SCED board can serve as host adaptor

on a SCSI bus.

In any Balance 8000 system one SCED board is designated the "master"

SCED board: this master board connects to the system console and provides

15

power-up diagnostics. It also provides a power-up monitor for any program

running on the main CPU, such as programs to boot the operating system.

M ultibus interface

A Balance 8000 system can include up to 4 Multibus interfaces: they enable

the system to incorporate any of a variety of peripherals and custom devices.

The Balance 8000 System bus

It is a high-performance data bus, tailored to multiprocessing in the sense

that it provides the high bus bandwidth needed to support multiple CPUs.

The Balance System bus is a 64 bit system bus which carries data among the

CPUs, the memory modules and the peripheral subsystems.

Network interfaces

A Balance 8000 can connect to up to 4 other systems both in local area

networks (one per SCED board), using Ethernet, and in wide-area networks,

using ordinary telephone lines.

The connection in local area networks facilitates communication among users

as well as the sharing of files and devices.

Each of the four connectable Ethernet local area networks can connect

hundreds of systems, over distances of one mile or more.

Furthermore, the Balance system networking capabilities include those

common to all modern Unix systems.

Terminal multiplexor

This is a two-board module that resides on the Multibus and can connect to

a terminal, printer, modem or other compatible device.

16

There can be up to 4 terminal multiplexors per multibus.

Operating system: the Dynix

The Dynix operating system is a version of Unix 4.2BSD modified to exploit

the Balance parallel architecture; differences between Dynix and Unix 4.2BSD

are transparent to the user.

Dynix also supports most utilities, libraries and system calls provided by

Unix System V and, like other versions of Unix, it is a multi-user operating

system. Two or more users can use the system simultaneously, while each

user seems to have the system's undivided attention.

This is achieved through an operating system technique called multi

programming: a CPU moves from one process to another many times per

second, so that the computer system is allowed to execute multiple unrelated

processes (programs) concurrently. All the executable processes wait in a

"run queue": when the CPU suspends or terminates the execution of one

process, it switches to the process at the head of the run queue.

The Dynix operating system uses the same technique, except that

multiprogramming on Dynix is enhanced by the Balance multiprocessing

architecture: in a Balance system a pool of processors is available to execute

processes from the run queue. Dynix balances the system load among the

available processors, keeping all processors busy as long as there is enough

work available.

Note that the Dynix operating system does multiprogramming for all the

users automatically.

Along with the multiprogramming technique, the Balance system also

supports another kind of parallel programming: multitasking.

17

Multitasking is a programming technique that allows a single application to

consist of multiple closely co-operating processes [9].

As a consequence of multitasking and multiprogramming, we can make the

following considerations.

By definition, parallel programs execute concurrently, meamng that at

any instant the system is executing multiple programs. On a Balance

system, parallel programs execute simultaneously: at any instant, the

Dynix operating system can be executing multiple instructions from multiple

processes (one process per CPU).

Thus, parallel programming on a Balance system has two special benefits:

multiprogramming yields improved "system throughput" for multiple

unrelated programs. That is, each program finishes in about the time

it would take on a uniprocessor (which is running that program alone);

multitasking yields improved "execution speed" for individual programs,

that is the owner of an application (consisting of multiple processes) sees

an improvement in the execution speed of the application itself, beyond

what would be possible on a uniprocessor.

In the following chapter we will analyze parallel programmmg on the

Balance 8000, using the multitasking technique.

18

2. Principles of Parallel Programming

on the Balance 8000

2.1. Introduction to Parallel Programming on
the Balance 8000

As illustrated in section 1.5, the two basic kinds of parallel programmmg

are multitasking and multiprogramming. This chapter is primarily about

multitasking, since the Dynix operating system of the Balance 8000 does

multiprogramming for all users automatically.

Many applications can be converted from sequential algorithms to parallel

algorithms with relative ease, yielding linear or quasi-linear performance

improvements, as more CPUs are dedicated to the task.

In addition, certain types of applications can be designed specifically to

exploit the Balance multiprocessing architecture.

The gam m the execution speed, that can be achieved by means of the

multitasking technique, is determined by the following factors:

the percentage of the program's time that can be spent executing parallel

code (a great number of applications need to spend less than 2-3% of

their time executing sequential code);

the number of processors available to the application;

the hardware contention imposed by multiple processors competing for

the same resources (such as the system bus, the system common memory,

etc.). Note that on a Balance system the overhead due to this hardware

contention is negligible, since most CPU memory operations access cache

memory, not the system bus;

the overhead in creating multiple processes;

the overhead in synchronization and communication among multiple

processes.

19

In adapting an application for multitasking, therefore, we will aim to run

as much of the program in parallel as possible; at the same time, we will

aim to balance the computational load as evenly as possible among parallel

processes.

2.2. Parallelizable Applications: Homogeneous

and Heterogeneous M ultitasking

We also have to determine whether an application can benefit from

parallelization and which kind of multitasking technique is the most suitable.

A parallel application, in fact, consists of two or more processes executing

simultaneously. These processes can be multiple instances of the same

program ("homogeneous multitasking" or "data partitioning") or they may

be distinct but co-operating programs ("heterogeneous multitasking" or

"function partitioning").

Homogeneous multitasking basically consists of running the same code on

each CPU.

Multiple identical processes are created and work on different portions of the

data structure simultaneously.

Data partitioning, therefore, applies to applications performing many

iterations on large data structures (e.g. matrix multiplications, Fourier

transformations) .

The entire data structure can be divided up evenly among processes, before

they start work (static load balancing), or each process can work on one

portion at a time, going back for more work when it finishes (dynamic load

balancing).

20

Heterogeneous multitasking, on the contrary, asSignS different code to each

CPU; that is, all the processes work simultaneously on a shared data set but

each process handles a different task.

Applications performing many different operations on the same data set

are candidates for function partitioning (e.g. flight simulation, program

compilation).

While some applications require function partitioning or a combination of

data and function partitioning, most problems adapt more easily to data

partitioning.

This last method offers some advantages over function partitioning, such as

less programming effort is required to convert a serial program to a parallel

algorithm. Furthermore, with data partitioning it is easier to achieve an

even load balancing among processors; it is also easier to adapt the programs

automatically to the number of available processors.

In the remaining part of this chapter, we will only refer to the homogeneous

multitasking technique.

As far as it concerns the decision whether to parallelize a program, we can

point out that many programs spend the majority of their time executing in

very few routines (usually just one or two). When converting a program to a

parallel version, it is often possible to achieve maximum gain in execution

speed simply by parallelizing these few routines. Furthermore, a typical

fraction of code that cannot be parallelized turns out to be just 2-3% for

most programs (as already been mentioned).

Typical sections of code that have to be performed serially are those related

to initialisation phases and input/output operations.

21

2.3. Program Dependencies

Once the portions of parallel code have been identified, the next step is

to analyse all the possible program dependencies, for any program unit

[2, 3, 24].

Some program operations, in fact, may depend on previous operations, while

some may be executed in any order. Program Dependence Analysis, therefore,

is needed to carry out all the ordering necessary to guarantee correct results.

When a program unit has no dependencies, the statements in that unit can

be executed in any order or even simultaneously.

Most of the time, this is not the case; we can group the kinds of dependencies

into two classes: data dependencies and control dependencies.

Within the data dependencies class, we separate:

flow dependence;

anti dependence;

output dependence.

Flow dependence occurs when one operation sets a data value that is used by

a subsequent operation:

1) A=B+C

II) D=3xA

Statement (ll) depends on the result of statement (1).

Antidependence occurs when one operation uses a memory location that is

loaded by a subsequent operation:

22

I) A = B + C

H) C=3xB

Statement (I) must execute before statement (H), since the first statement

uses the current value of the variable C.

Output dependence occurs when one operation loads a memory location which

is also loaded in a subsequent operation:

I) A = B + C

H) A=D-3

Statement (H) must execute after statement (I), or A will contain the wrong

value at the end of this program unit.

The second class of program dependencies is the control dependencies class; . .

it includes dependencies due to the required flow of control in a program:

I) IF (X.GT.O)

H) A OB + 3 '

Statement (H) is conditionally executed, depending on the result of the test

in statement (I).

It is necessary' to identify all the program dependen'cies within a program

unit (and for all program units), in order to transform a given program, loop

or subroutine, to correctly run in parallel. It is also necessary to corr'ectly

organise the data structure (shared or private) and to get synchronization

points and locking mechanisms for all the processes.

23

2.4. Elements of Parallel Programming

The remaining section introduces some elements of parallel programming that

are not common in sequential programming.

We have already discussed the multitasking technique and the program

dependence analysis.

What we still need to consider is:

the creation of shared and private data;

the creation and termination of multiple processes;

the division of computing tasks among parallel processes ("scheduling");

the synchronization of parallel processes;

the mutual exclusion of parallel processes (locks mechanisms).

Let us study all these subjects, one at a time, in the above order.

Shared memory and shared data

The Dynix operating system allows any number of processes to share a

common region of system memory.

Any process that has access to a shared-memory region can read or write in

that region, in the same way it reads and writes in ordinary memory.

Shared memory provides a direct and efficient method for co-operating

processes to share data. It also simplifies the conversion of sequential

algorithms to parallel (and it simplifies this conversion much more than

message-passing mechanisms or network-based machines).

Multitasking programs include both shared and private data. Shared data is

accessible by all the processes, while private data is accessible by only one

process.

24

The following figure 2.1 illustrates the virtual memory contents of a process

(16 Megabytes of virtual memory are allocated for each process):

16Mb

Virtual
Memory

o

Convent iona I
UNIX model

Stack

~

~
Data

Text (shared)

DYNIX Parallel
Programming model

Stack ,
t

Shared Data

~
Private Data

Text (shared)

FIGURE 2. 1. Comparison of virtual memory contents,

If the process forks any child processes (as we will see later), each child process

inherits access to the parent's shared memory area and shared stack. Both

the parent and the child processes can then access the shared data.

This mechanism (besides providing an efficient way of interprocess

communication) uses less memory than having multiple copies of shared data;

it also avoids the overhead of making such copies of shared data.

25

Process creation, scheduling and termination

In Dynix, as in other Unix-based operating systems, a new process is created

by using a system call called a FORK. The new process (child) is a duplicate

of the old process (parent): the child process shares the same files and shared

memory accessible to the parent process.

A process identification number (process id) distinguishes the parent process

from all the created child processes: when some child processes are forked,

the process id number 0 (zero) is assigned to the parent, while the process

id number 1 is assigned to the first child process, the process id number 2 is

assigned to the second child process, and so on. From this point on (until

reaching the JOIN phase), they are separate entities.

The fork operation is relatively expensive. Therefore, a parallel application

should fork as many processes as it is likely to need at the beginning of the

program and terminate them at the end of the program (on completion of the

program itself). If a process is not needed during certain code sequences, the

process can wait in a busy loop (spinning) or it can relinquish its processors

to other applications (until it is needed again).

In multitasking programming, tasks can be scheduled among all the processes

created using three different techniques:

prescheduling;

static scheduling;

dynamic scheduling.

In prescheduling the task division is determined by the programmer before

the program is compiled. The programmer assigns a specific task to each

process.

26

Automatic load balancing, therefore, is not allowed by the prescheduling

technique (that only applies to heterogeneous multitasking).

In static scheduling the tasks are scheduled by the processes at run time, but

they are divided in some predetermined (static) way.

The static scheduling procedure for one process is as follows:

1st step) it works out all the tasks that it will do;

2nd step) it does all its tasks;

3rd step) it waits until all other processes finish their work.

Static scheduling produces static load balancing: since the division of tasks

is statically determined, some processors may stand idle while one processor

completes its work.

This static technique only applies to homogeneous multitasking.

In dynamic scheduling the tasks are scheduled by the processes at run time

and they are taken from a task queue.

The dynamic scheduling procedure for one process is:

1st step) it waits until there are some tasks to execute;

2nd step) it removes the first task from the task queue and executes it;

3rd step) if there are any more tasks to execute, it goes on to the second

step. Otherwise, it goes back to the first step.

Dynamic scheduling produces dynamic load balancing: all the processes are

kept busy as long as there is work to be done; the work-load is evenly

distributed among the processes.

27

This dynamic technique applies to both homogeneous and heterogeneous

multitasking.

Dynamic scheduling, though, entails more overhead than static scheduling:

each time a process schedules a task for itself, it must check the shared task

queue (to make sure that there is more work to do) and it must remove that

task from the queue.

Process synchronization, loop scheduling and lock mechanisms

Synchronization is fundamental to ensure that each process performs its work

without interfering with the other processes.

It is not unusual for a looping subprogram (to be executed in parallel) to

contain a code section which depends on all the processes having completed

execution of the preceding code.

All real application programs contain the program dependencies we have

studied in section 2.3.

We then need some synchronization mechanisms to ensure the correct

execution of multiple co-operating processes; these mechanisms are basically:

barriers;

locks and semaphores.

A barrier is a synchronization point: on reaching a barrier, one process marks

itself as "present"; then it waits for all the other processes to arrive.

There are two kinds of barriers.

It is possible to synchronise all processes at a single pre-initialised barrier.

28

With the second type of barrier, the programmer is allowed to set more than

one barrier or to synchronise just a subset of the processes.

A lock is the simplest kind of semaphore in the Balance Dynix system. It

ensures that only one process at a time can access a shared data structure.

A lock has two values: locked or unlocked. Before attempting to access

a shared data structure, a process waits until the lock associated with the

data structure is unlocked (indicating that no other process is accessing the

structure). The process then locks the lock, accesses the shared data and

finally unlocks the lock.

While a process is waiting for a lock to become unlocked, it "spins" in a loop,

producing no work.

It is impossible for two processes to acquire a lock at the same time. Even

when a few processes attempt the same lock immediately, only one succeeds,

while all the others have to wait (until the first process has released the lock).

Semaphore8 are synchronization mechanisms based on the locking/unlocking

principle; they are used to protect order-dependent sections of code and to

manage queues.

"Counting/queueing" semaphores, for example, are useful for queue

management. When several processes are waiting for a lock, the lock will

go to the first process that tries to acquire it right after it is unlocked.

Counting/queueing semaphores can ensure that the lock is assigned (instead)

to the process that has waited the longest for it.

If a barrier is used for synchronization, one process is delayed in a spinning

state (called "busy-wait" state) until a set number of processes have reached

the barrier.

29

When using a lock or a semaphore the situation is more complex; in this

case, in fact, there exist four possibilities concerning what a process should

do while it is waiting for its turn to access the locked code section. These

four possibilities are:

1) the process does not wait; it performs a different task and checks the lock

again later;

2) the process spins in a "busy-wait" state;

3) the process "blocks", that is to say it relinquishes its processors to another

job;

4) the process spins for a specified period of time, then it blocks.

We complete this paragraph with a consideration affecting input/output

handling.

Input/output, in parallel programming, is complicated by the need for caution

when multiple processes write to the same file. These complications can

usually be reduced by performing input/output only during sequential phases

or by designating one process as a server to perform the input/output

operations.

This chapter is concluded by introducing the parallel programming tools

supported by the Balance system.

30

2.5. Parallel Programming Tools

The applications that can be adapted for parallel programming vary

greatly in their requirements for data sharing, interprocess communications,

synchronization, etc. [4]. To gain optimum speed-up, the programmer must

develop an algorithm that meets these requirements (while still exploiting the

application's inherent parallelism).

To aid in this effort, the Balance system supports programming tools that

adapt to the needs of a wide range of applications.

We are mostly interested in two of these parallel programming tools:

the Fortran Parallel Programming Directives (Sequent Fortran);

the Parallel Programming Library (Dynix).

We illustrate these two tools in more detail in the following sections and we

show how to employ them for data partitioning.

Fortran Parallel Programming Directives: data partitioning with

Sequent Fortran

The Fortran Parallel Programming Directives support parallel execution of

Fortran Do-loops. By interpreting these directives, the Sequent Fortran

compiler can restructure a Do-loop for parallel execution.

The user prepares the program for the preprocessor by inserting a set of

directives: these directives identify the loops to be executed in parallel; they

also identify the shared and private data within each loop and any critical

sections of the loop under consideration. Furthermore, the Fortran Parallel

Programming Directives allow the user to control the scheduling of loop

iterations among processes and the data division among all processes.

31

Ideally, the loop to be chosen for parallel execution should be an

"independent" loop (i.e. a loop in which no iteration depends on the

operations in any other iteration).

Otherwise, it is reasonable to choose a loop which accounts for a large portion

of the computation.

Finally, in the case of nested loops, choose the outermost loop (if possible).

Once it has been determined which loop to prepare for parallel execution, it

is necessary to analyse all the variables in that loop and to classify them into

one of the following categories:

shared variables;

local variables;

reduction variables;

shared ordered variables;

shared locked variables.

After this analysis phase, the user is ready to use the Fortran Parallel

Programming Directives, to prepare the loop under consideration for parallel

execution; these directives are listed in the following table (Table 2.2):

32

TABLE 2.2

DIRECTIVES DESCRIPTIONS

C$DOACROSS Identify Do-loop for parallel execution

C$ORDER Start loop section which contains a shared

ordered variable

C$ENDORDER End loop section which contains a shared

ordered variable

C$ Add Fortran statement for conditional compilation

C$& Continue parallel programming directive

Parallel Programming Directives.

At this point, the preprocessor handles all the low-level tasks of data

partitioning. By interpreting the directives, the preprocessor produces a

program that performs the following features:

sets up shared data structures;

creates a set of identical processes;

schedules tasks among processes;

handles mutual exclusion and process synchronization.

All this is done in a way that is totally transparent to the user.

For more detailed information about the loop variables classification and the

use of the Parallel Programming Directives refer to [24].

33

If necessary, the user is allowed to call the Dynix Parallel Programming

Library routines (see the next section), in order to preserve the correct data

flow within the loop.

Parallel Programming Library: data partitioning with Dynix

The Sequent Parallel Programming Library is a collection of C routines which

allow the programmer to perform parallel Fortran programs (as well as C and

Pascal programs).

This library includes three sets of routines:

1) microtasking routines (microtasking library);

2) routines for general use with data partitioning programs (data

partitioning library);

3) routines for memory allocation in data partitioning programs (memory

allocation library).

By means of them, the user is able to:

create sets of processes to execute subprograms in parallel;

schedule tasks among processes;

synchronise processes among tasks;

allocate memory for shared data.

As a result, programs that use the Parallel Programming Library can be made

to balance loads automatically among processors and to adjust the division of

tasks at run time (basing the division on the number of available processors).

34

Data partitioning with Dynix consists of the creation of multiple independent

processes to execute iteration loops in parallel. This is done as follows:

a) each loop to be executed in parallel is contained in a subroutine;

b) for each loop, the program calls a special function (m_fork), which

forks a set of child processes and assigns a copy of the subroutine to

each process;

c) each forked process executes some of the loop iterations (either static

or dynamic scheduling can be used);

d) when necessary, the subroutine may contain calls to synchronization

routines (m_sync, m_lock, m_unlock, etc.);

e) when all the loop iterations have been executed, control returns from

the subroutine to the main program.

At this point, the program either terminates the parallel processes (by means

of the m_kilLprocs routine), or it suspends their execution until they are

needed again (m_park_procs and m_rele_procs routines), or it leaves the

parallel processes to spin in a busy-wait state and then uses them later.

A complete list of all the routines available in the microtasking library, in the

data partitioning library and in the memory allocation library is given in the

following three tables (Tables 2.3, 2.4, 2.5).

35

TABLE 2.9

ROUTINES DESCRIPTIONS

m_fork Execute a subprogram in parallel

m_geLmyid Return process identification number

m_get_numprocs Return number of child processes

m_kilLprocs Terminate child processes

m_lock Lock a lock

m_multi End single-process code section

m_next Increment global counter

m_park_procs Suspend child process execution

m_rele_proces Resume child process execution

m_set_procs Set number of child processes

m_single Begin single-process code section

m_sync Check in at barrier

m_unlock Unlock a lock

Parallel Programming Library Microtasking Routines.

Note: the microtasking library is designed "around" the m_fork routine; any

other routine belonging to this library should only be used in combination with

the m_fork routine.

36

TABLE 2.4

ROUTINES DESCRIPTIONS

cpus_online Return number of CPUs on-line

s_init_barrier Ini tialise a barrier

S_INIT_BARRIER C Macro

s-iniLlock Initialise a lock

S_INIT_LOCK C macro

s_lock, s_clock Lock a lock

S_LOCK, S_CLOCK C macro

s_unlock Unlock a lock

S_UNLOCK C macro

s_ wait_ barrier Wait at a barrier

S_ WAIT_BARRIER C macro

Parallel Programming Library Data Partitioning Routines.

Note: the data partitioning library includes a routine to determine the number

of available processors; it also includes several synchronization routines and

their analogous C preprocessor macros (these macros are faster than the

normal function calls, but they can add to the code size).

37

TABLE 2.5

ROUTINES DESCRIPTIONS

brk, sbrk Change private data segment size

shbrk, shsbrk Change shared data segment size

shfree De-allocate shared data memory

shmalloc Allocate shared data memory

Parallel Programming Library Memory Allocation Routines.

Note: the memory allocation library consists of routines that allow data

partitioning programs to allocate or de-allocate shared memory; these routines

also permit a change in the amount of shared and private memory assigned

to a process.

For more detailed information concerning the Parallel Programming Library

usage, refer to the Sequent Guide To Parallel Programming [24].

Data partitioning with Dynix, as well as data partitioning with Sequent

Fortran, requires an analysis of all the variables concerned with the section

of code (Do-loop) to be performed in parallel. It is necessary to identify:

shared variables, i.e. "read-only" arrays and scalars or arrays whose

elements are referenced by only one loop iteration;

private variables, i.e. variables that are initialised in each loop iteration

before their values are used;

dependent variables (reduction variables, ordered variables, locked

variables).

38

After the analysis phase, the users can structure their microtasking program,

using the following:

decide how many parallel processes have to be forked, by means of

the m_set_procs parallel programming routine or by usmg a default

value computed by the Parallel Programming Library (the number of

processors that are currently on line can be obtained through a call to

the cpuLonline routine);

call the m_fork routine to execute each looping subprogram in parallel;

suspend or terminate parallel processes between calls to looping

subprograms;

terminate all parallel processes after the last looping subprogram has been

executed.

By usmg the parallel programmmg tools, the user is allowed to perform

either static or dynamic scheduling, to handle all the dependent variables,

to synchronise all the co-operating processes, etc.; as already mentioned, the

user is also allowed to allocate or de-allocate shared memory.

The final phases of program compiling, executing and debugging follows.

We only mention the Dynix parallel symbolic debugger PDBX: if the prograrn

produces incorrect results, it is possible to use this Dynix debugger, based on

DBX(a debugger widely used on Unix systems).

We conclude by mentioning the Dynix GPROF profiler. This utility creates

a program execution profile, that is to say a listing that shows which

subprograms account for most of the program execution time. Since these

subprograms are best to execute in parallel, the gprof option turns out to be

a very useful tool.

39

3. Parallel Numerical Analysis: the

Tridiagonal Linear Systems Problem

3.1. Introduction

The solution of tridiagonal systems of linear equations appears very frequently

as the nucleus of many scientific computational problems.

These same problems are generally well suited for solution on both parallel

and vector architectures; consequently, parallel algorithms have been designed

for multiprocessor systems (MIMD) and pipeline vector computers (SIMD)

[21, Evans 7, 10, 11, Stone 28, 29].

A tridiagonal system solution, however, involves recurrence relations that

represent a severe difficulty for the implementation of efficient parallel code.

The aim of this work is to review and analyse the main techniques for solving

tridiagonal linear equations on parallel computers, with particular attention

to the Wang algorithm, and to present a new technique of solution, the

Recursive Decoupling algorithm.

In sections 3.2 and 3.3, we briefly introduce some fundamental principles for

the construction of parallel methods and the related techniques for solving

the above-mentioned problems of recurrence relations.

In chapter 4, we present a more detailed analysis of the Wang algorithm

for the solution of tridiagonal linear systems. This algorithm will constitute

a term of comparison for the Recursive Decoupling method described in

chapter 5.

40

3.2. Performance evaluation parameters:

speed-up and computational complexity

Speed-up

In parallel numerical analysis, it is important to be able to estimate the speed

gain expected from the operation of p processors working in parallel. This is

done by introducing the so-called "speed-up" ratio

S () = T.(n)
p n Tp(n)

where n is the dimension of the problem,

T. (n) is the time required for serial program execution,

Tp(n) is the time required for parallel version execution.

The maximum speed-up possible is always equal to the number of processes

used. However, in practice, the speed-up is often less than this.

According to Stone [30], there are four possible forms for Sp(n):

1) Sp(n) = k * l' in problems such as matrix calculations, finite

difference/ element discretisation, etc.

2) Sp(n) = k * p/log2(p) III tridiagonal linear system solving, linear

recurrence formulae, evaluation of polynomials, sorting problems, etc.

3) Sp(n) = k * log2(p) in searching problems, etc.

4) Sp(n) = k III some nonlinear recurrence relations, III compiler

operation, etc.

41

The constant k IS a machine dependent quantity such that 0 < k < 1

and k ~ 1.

The speed-up parameter describes how efficiently one is usmg multiple

processes: the closer Sp(n) is to the number of processes used, the more

efficient the parallel algorithm is and vice-versa.

Note that the discussion of speed-up is in terms of processes and

not processors [2]. This is done under the assumption that the number of

processors available is greater than or equal to the number of processes.

In the case that, during a program run, the number of processes

(usually stored in the variable NPROC) is greater than the number of physical

processes, the speed-up ratio obtained may be less than the ideal maximum

speed-up inherent to the program.

At this point, we want to analyse the parallelization of a single loop (since,

in practice, this is mostly the case) and the related speed-up.

For a single loop, the time required for parallel execution is gIven by the

summation of the following addends:

time to create processes;

time to execute loop;

other overheads;

time to destroy the child processes.

The time required to generate child processes from a single parent process

depends on the implementation of the FORK function. In Dynix, a fork

42

operation takes about 55 milliseconds (although this varies with the size of

the process).

The "other overhead" involves synchronization and any sequential section

needed to consolidate all the partial results obtained by the processes created.

Note that this part of the calculation has no analogue in the single-process

version; therefore it is "overhead".

In order to calculate the time to execute the loop, we can make use of the

following table 3.1 and also consider that in Dynix one iteration through a

Fortran loop takes about 4.0 microseconds.

TABLE S.l

Fortran Language Operand

Operation 4 byte integer 8 byte real

Addition 2.8p.s .. ", 11. 7psec

Multiplication 1O.3f'sec 1l.5f5eC

Division 14.8f',ec 13.7 ps«

Execution times for standard arithmetic operations, usmg 92 bit integers

and 64 bit reals, performed in Fortran parallel programs, using the Balance

Parallel Programming Library.

It is useful to consider the parallelized loop "in isolation", that is ignoring

the other overheads in the program. In this way, programmers can get an

idea of how effectively they have parallelized the core of the program.

43

The speed-up calculated in this way is called "ideal speed-up", while the

speed-up measured by considering all overheads is called "true speed-up" .

The ideal speed-up assumes that the execution time of the parallel program

is determined only by the number of operations performed in the parallelized

core loop.

On the contrary, the true speed-up is measured directly from the execution

times, rather than from counting the operations in the parallel loop.

Even if the core loop has been efficiently parallelized, it is normal for the true

speed-up to be less than the ideal one, because of overheads.

However, in practical applications, it is the true speed-up that is of interest.

Note that the speed-up is a measure of how effectively processes are utilized,

and not necessarily a measure of the actual speed of execution.

For example, consider the following loop with NPROC = 2:

Do 10 i = 1 + id, 5, N P ROe

task

10 continue

Jom processes

The first process (id = 0) does iterations i = 1,3,5, while the second process

(id = 1) does iterations i = 2,4. If these processes are doing the same amount

of work on each iteration, when the first process performs its task for i = 5,

the second process will do nothing.

If T is the time required for a single iteration through the loop, then the

parallelized program will require a time of 3T to execute the loop.

44

The sequential versIOn will execute the loop in time 5T, so that

the ideal speed-up for this loop execution (ignoring any other overhead) IS

5T/3T = 5/3, less than the number of processes.

Now we consider the following loop:

do 10 i = 1 + id, 6, NPROC

task

10 continue

JOIn processes

again with NPROC = 2, then the parallel execution time is still 3T, while

the sequential execution time is 6T. The ideal speed-up is now 6T /3T = 2,

equal to the number of processes.

Note, however, that the inefficiency due to the uneven distribution of work

becomes less important as the size of the loop increases.

Normally, the larger is the dimension n of the problem, the more the speed-up

approaches its maximum.

On the other hand, it IS necessary to be aware of the fact that

increasing the number of parallel executing processes may result III a

relative performance degradation, particularly if the size of the problem is

small.

Computational complexity

Another way of comparing two parallel algorithms is obtained by means of

the computational complexity parameter [22, 23].

45

The computational complexity of an algorithm is defined as the total number

of operations related to the algorithm itself.

In the case of vector/parallel algorithms, analogous definitions of

vector/parallel computational complexity hold, involving vector/parallel

operations respectively.

Algorithms designed for a vector architecture are often applicable to a parallel

computer with a limited number of processors and vice-versa.

However, there are important differences between the two types of machines

that usually make the computational complexity parameter not sufficient for

a correct comparison of performances.

The timing considerations for a parallel computer are very different to those

for a vector computer.

Also, the characteristics of each individual machine, such as the sIze

of central memory available, the data accessibility, the instruction set, and

so on, can greatly influence the port ability of a particular algorithm.

In the case of vector architectures, for example, it is very important

to consider the length of vectors involved in an operation: this length gives

the so-called grade 0/ parallelism of the vector operation.

If two vector algorithms A and B present the same vector computational

complexity, with A having a grade of parallelism equal to nand B equal to

n/2, then A is less efficient than B.

In the case of a parallel architecture, it is usual to assess theoretical time and

processor bounds for a given algorithm.

46

For this purpose, it is convenient to introduce the idealised notion that during

each time step unit (needed to perform a parallel algorithm) exactly one

arithmetical operation can be carried out in parallel.

Let A be the algorithm under consideration. We then introduce the following

notation:

N(A) is the least number of processors required to obtain a maXimum

speed-up;

T(A) is the number of time unit steps required when using N(A) processors;

Tp(A) is the number of time unit steps required when the number of processors

available is restricted to p < N(A).

Finally, we define an arithmetic expression as a string consisting of the four

arithmetic operations (+, -, *, I), left-hand brackets, right-hand brackets,

"atoms" consisting of constants and variable operands.

The symbol A(n} will denote an arithmetic expression containing n atoms.

The time requested to evaluate A(n} using a single processor is equal to n-1

time units.

With an arbitrary number of processors, A(n} can be evaluated in log2(n)

time units.

Generally, the following result holds:

where "fjog2(n)1" denotes the smallest integer greater than or equal

to log2(n).

47

This result represents a lower limit for the parallel algorithm A (while using

N(A) processors).

On the other hand, we can notice that by exploiting properties such

as associativity, commutativity and distributivity, it may be possible to

transform the given expression A(n} into a form still equivalent but showing

a better evaluation capability.

To best illustrate these concepts, let us consider the following example:

where a, b, c, d are real numbers.

The analysis of this expression can be effected by the use of parse trees. The

straightforward parse tree for A(n} involves three steps:

STEP 3 +

STEP 2 /
+

STEP 1 /\."
a b c d

By exploitation of the commutative property of addition, A(n} can be

rewritten as follows:

A(n} = a + d + h c.

Now a tree height of two is obtainable (see following figure):

48

STEP 2

STEP 1

a d b c

To complete our considerations on complexity, we now mention a second

result (proved by Kuck and Muraoka [19]), which gives an upper bound for

a parallel algorithm:

if A (n, d) is an arithmetic expreSSIOn, with n atoms and d nested

brackets, then the properties of associativity and commutativity permit

the transformation A(n, d} so that

with p :::: r n/2 - ell·

Other parameters

Speed-up and computational complexity give a way to measure the

assessment of a parallel algorithm. For the same purpose, other parameters

may be introduced.

If p processors are available and n is the dimension of the problem, the

efficiency parameter is defined (by means of the speed-up factor) as

49

Ep(n) measures the utilisation of the parallel machine: the longer

the processors are idle (or perform extra calculations due to the

parallelization of the program), the smaller Ep(n) becomes.

The effectiveness parameter Fp(n) can be given as the ratio

F. () = Ep(n) * Sp(n)
p n T.(n)

and therefore it is a measure both of speed-up and efficiency. A parallel

algorithm can then be regarded as effective if it maximises Fp(n).

To conclude this section, we mention the fact that there are other aspects

to be considered, such as stability and error analysis (rounding errors,

propagation errors).

It may happen that parallel processing leads to numerically inferior results,

but in most cases the parallel version of an algorithm actually leads to better

results than the serial version [8J.

3.3. Fundamentals

Analysis

of Parallel Numerical

It is of the greatest importance to recognise which problems already possess

a parallel character, and which can be parallelized.

It is a common procedure to start with a serial algorithm and then convert it

into a routine operating on vectors, the reason being that vector operations

can be carried out in parallel.

This way of proceeding can be considered as a first principle in the

construction of parallel algorithms (expecially for SIMD machines).

50

By applying this principle, the solution of an n x n triangular linear system,

for example, can be achieved in about 3n steps, if n processors are available.

The same system is solved on a serial computer with n 2 arithmetic operations.

The speed-up in this hypotetical case is equal to

n 2 n
Sn(n) = - =-

3n 3

and the efficiency is En(n) = 1/3.

However usually n processors are not available.

If k < n processors are available, [n/kJ parallel steps are necessary,

corresponding to n serial steps ([n/kJ denotes the integer part of the real

number n/k). Therefore, by using k processors the solution can be achieved

in 0(n2/k) steps. The speed-up is now,

and the efficiency is Ek(n) = 0(1).

A 8econd principle for the con8truction of parallel algorithm8 is the method

of "Vector Iteration".

This essentially consists of substituting an iterative parallel algorithm for a

direct serial algorithm.

A simple application of this second principle is given by the triangular

decomposition of a tridiagonal matrix suggested by Heller [15J.

51

Let us denote:

bI Cl 0
a2 b2 c2

a3 b3 C3
A=

Cn-l

0 an bn

1 0 Ul Cl 0

12 1 IL2 C2

IL3 C3

L= 13 1 u=

Un_l Cn-l

0 In 1 0 Un

where

i = 2, ... ,n

and

i=2, ... ,n.

The li quantities can be calculated in parallel.

The Ui calculations constitute a direct serial procedure (it is a linear

recurrence formula of first order) that can be parallelized by the iteration:

{

uIO) = bi

(j) (j-I)
ILi = bi - ai * ci-I!u i _ l i=1,2, ... ,n

where the symbol IL(j) denotes the ph iterate.

52

Obviously, this parallelization is only reasonable if the computer is able to

perform one vector operation with vectors of n components faster than n

scalar operations.

Furthermore, the number of iterations required must be significantly

less than n.

A third principle for the construction of parallel algorithms is given by the

method of "Recursive Doubling" (due to Kogge [17]).

In order to generally describe this method, consider a set of N = 2n elements:

and consider an arbitrary associative operation @ defined on M.

The expression:

can be performed both serially and in parallel.

This can be illustrated by means of the following tree representations

(suppose N = 4):

SERIAL MODE

STEP 1
@

STEP 2'
/ @

STEP 3
@/

/'" ml m2 m3 m4

53

PARALLEL MODE

STEP 2

STEP 1

ml m2 m3 m4

In general, recursive doubling requires n = log2(N) parallel steps, while serial

implementation requires N - 1 steps.

Both the vector iteration and recursive doubling methods (second and

third principles) constitute a means of solving linear recurrence formulae of

first and second order in parallel (such as those involved in the solution of

tridiagonal systems).

54

4. The Wang Partitioning Method

4.1. Introduction

On the basis of efficient serial algorithms for the solution of tridiagonallinear

systems there lie some fundamental numerical methods, such as:

1) the LU factorisation of a matrix with Gauss transformations (where L is

lower triangular and U is upper triangular);

2) the method of Cramer;

3) the QR factorisation of a matrix (where Q is orthogonal and R is upper

triangular) .

In particular, by introducing parallelism into the first class of methods,

parallel solution techniques are obtained, such as the odd-even cyclic

reduction, the recursive doubling method, the Wang algorithm [1, 31].

We are mostly interested in the latter as a partition method to be compared

with the Recursive Decoupling algorithm (see next chapter).

4.2. The Wang algorithm

Let us consider, then, an nxn system of tridiagonal linear equations:

b;X;-l + a;x; + C;XHl = d; i = 1, , n

with Xo = b1 = Cn = xn+l = O.

In matrix notation, the same system is represented as Ax = cl, that is

C3

bn - 1 an-l Cn-l

o bn an

55

Xn-l

Xn

A umque solution x exists for a given right-hand side d and nonsingular

coefficient matrix A.

Given n = p' k, where p is the number of processors available and k is an

integer, the system under consideration is partitioned in p x p square blocks

of dimension k. Each diagonal block is a k x k tridiagonal matrix, while all

the subdiagonal (superdiagonal) blocks are k x k null matrices, except for one

single non-zero element on its upper right (lower left) corner.

By applying elementary row transformations (Gaussian elimination) on

all the p diagonal blocks simultaneously, the coefficient matrix A can be

diagonalized in four steps.

Since the same partitioning process and Gaussian transformations have to be

performed on the right-hand side vector d, we will work on the augmented

matrix [Aid] .

Note that the hypothesis "k is an integer" is not essential in order to

implement the Wang algorithm on an MIMD machine [18]: it only simpli

fies our notation, while illustrating the algorithm. Also note that we work

under the assumption that the number of equations n is much larger than

the number of processors p, and that pivoting (during the elementary row

transformations) for numerical stability is not required.

For a clearer representation of the elimination pattern, we choose

n = 12 and p = 3.

The initial augmented matrix IS therefore partitioned as shown III the

following figure 4.1.

56

~ Cl dl
b2 ~ C2 d2 first

b3 lI:! c3 ~ processor

b4 a4 c4 d4
bs ~ Cs ds

b6 a6 c6 d6 second
b7 ~ c7 ~ processor

bs ag Cs ds

D9 ~ "9 d9
blo ~o cIO dlo third

bn ~I cII dll
processor

bl2 ~2 dl2

FIGURE 4.1. Initial augmented matrix.

After this partitioning phase, the first step (step 1) consists in applying

elementary row transformations on all the p diagonal blocks simultaneously,

so that each block is transformed into an upper triangular matrix.

This process creates fill-ins in the subdiagonal blocks: the right most

column of each subdiagonal block is now completely filled (see elements Ji in

figure 4.2).

During the second step (step 2), elimination continues on the superdiagonals

of the diagonal blocks; the non-zero elements of the superdiagonal blocks

are also eliminated. This process again creates fill-ins (the 9i elements in

figure 4.2). Now the entire matrix is diagonal, except for the fill-ins (the

so-called "fish-bone" form).

57

~ g) a)

il2 g2 a2

~
A first

~ d3 processor
il4 g4 ~
fs ~ gs

A
ds

f6 il6 ~ i\;

~
second

~ ~ lry processor
f8 iig 8g a8

f9 ~ ~ a9

flO illO glO a lO third

fl1 ill1 811 a l1
processor

f)2 iI)2 a)2

FIGURE 4.2. Augmented matrix after steps I and 2 (first way of performing
Gaussian elimination).

The third and the fourth steps (step 3 and step 4) consist of eliminating

the non-zero elements below and above the main diagonal (Gauss-Jordan

elimination) respectively; this process creates no new fill-ins. The coefficient

matrix thus obtained is now diagonal and the solution can be computed by:

JI
X· --'

I - "'1 a i
i = 1, ... ,n;

A J I1
(t.:1. Vi

(. ..

Alternatively, steps 3 and 4 can be substituted by the following procedure:

step 3') for i = k, k + 1, 2k, 2k + 1, 3k, 3k + 1, , p. k, solve 2p - 1

tridiagonal equations of the form

58

where Jk = gp.k = 0; at the end of this process the system is decomposed

into p separate subsystems that can be solved independently;

step 4'} calculate the remaining variables Xi by solving the independent

subsystems.

Using a slightly more sophisticated elimination (Wang elimination), the.

augmented matrix obtained after the first two steps is of the form shown in

the following figure:

ill gl ~
~ g2 a2

113 g3 a3
first
processor

34 g4 ~

fs as gs as

f6 a6 g6 ~

~ ~ a7
second

S, processor
fs Ag gs as

f9 1ig g9 a9

flO 1110 glO alO third

f11 811 gll all processor

f12 Al2 a12

FIGURE 4.3. Augmented matrix after steps I and 2 (second way of performing
Gaussian elimination).

In the above case of figure 4.3, only p tridiagonal equations need to be solved

during the third phase; more precisely, the third step (step Sj becomes the

following:

59

for i = k, 2k, 3k, , p. k, solve p tridiagonal equations of the form

!;X.io-l + aixi + giXi-+{= di
0, _I{ L'"

where fk = gp.k = Oj at the end of this process the system is decomposed

into p separate subsystems that can be solved independently.

The fourth step (step 4 ~remains invariant.

The elimination process leading to the matrix form of figure 4.3 was first used

by Wang as part of a different method for SIMD computer.

We now illustrate a version of the Wang algorithm suitable for an

MIMD machine.

4.3. The Wang Fortran routine

Let a, b, c be the n-dimensional vectors containing the initial coefficient

matrix A.

Let x and d be the unknown and known vectors, respectively, both of

dimension n.

To perform the program's parallel sections, we need an additional array, rn,

of dimension n + 1.

Vectors f and g, both of dimension n, store the fill-in elements created by

the algorithm.

Finally, five more work-arrays are utilised, each one of dimension equal

to the number of processors available: let these arrays be called aa, xx,

dd, ff, gg. They are used during a sequential part of the program, in

order to correctly perform a call to the subroutine that solves the tridiagonal

equations of step [1 '.

60

The Wang routine starts with the initialisation of all the above mentioned

variables and with the inputs concerning the number p of processors available

and the number k of subsystems into which the entire system is partitioned.

As mentioned before, we set n = p. k, where n, p and k are all integers.

In the case that n does not satisfy this condition, it is possible to add equations

of the following type:

Xi = 1 i = n + 1, n + 2, , p. k,

so that the order of the tridiagonal system is increased to dimension p. k.

At this point, we are ready to perform the four steps of the Wang process.

STEP 1

p processors run in parallel.

We use the Doacross Parallel Programming directive to prepare a section of

code for parallel execution, as shown below:

C$Doacross share (k, p,J, b, m, a, c, d), local (j)

Do i = 1, p

if (i =I 1) f(i-I).k+1 := b(i-I).k+1

Do j = (i - 1)· k + 2, i· k

mj := bj/aj_1

d j := dj - mj . dj-I

if (i =I 1) /i := -mj . /i-I

continue

continue

61

STEP 2

p processors run in parallel.

Again, we use the Doacross directive to perform the following Fortran code

in parallel..

Note that there is no need for synchronization between steps 1 and 2, since

the Doacross directive supports both the fork construct and the join construct

(at the beginning and at the end of the loop, respectively)"

C$Doacross share (k,p, 9, c, m, a, d, I), local (j)

Do i = 1, p

9i"k-I := Ci"k-I

Do j = i " k - 2, (i - 1) " k + 1, -1

mj := Cj/aj+I

9j := -mj " 9j+I

d j := d j - mj " dj+I

if (i =11) h := h - mj"fj+I

continue

if (i =11) then

endif

continue

mi := C(i-I)"k/a(i-I)"HI

9(i-I)"k := -mi " 9(i-I)"k+I

a(i-I)"k := a(i-I)"k - mi " f(i-I)"k+I

d(i-I)"k := d(i-I)"k - mi " d(i-I)"HI

62

STEP 3

The third phase of the Wang method is performed serially and consists of

solving p tridiagonal equations:

fixi-/+ aiXi + 9iXi+/= di

I< "

for i = k, p' k, k (Jk = 9p·k = 0).

This is done by calling a subroutine which solves the ith equation, giving the

solution Xi.
In order to avoid modifications in the vectors a, x, d, f and g, the

subroutine call is preceded and followed by saving the components concerned

in the work-arrays aa, xx, dd, ff and gg (respectively).

STEP 4

p processors run in parallel.

The Doacross directive is utilized to prepare the loops for parallel execution.

C$Doacross share (k,p,d'!,9,a,x), local (j)

Do i = 1, p

Do j = (i - 1) . k + 1, i· k - 1

if (i i- 1) then

else

X j := ~j - /j . X(i-l)·k - 9j . xi'1;a j

continue

continue

At this point, the complete solution vector x is obtained. Again, there IS no

need for synchronization at the end of step 4, since the Doacross statement

provides it.

63

4.4. Numerical Experiments and Remarks

In this paragraph numerical results are reported, concerning the solution of

tridiagonallinear systems by means of the Wang routine, on the Balance 8000

parallel machine.

The following tables group together the execution timing (both for the

sequential and the parallel versions of the Wang algorithm), the experimental

speed-up (to be compared with the expected speed-up) and the efficiency

parameters.

The maximum error E max , average error Eav and maximum relative error Er

obtained are also presented, in order to study the degree of accuracy reached

by the method. These error measurement have been calculated according to

the following formulae:

l:~l IXi - xii Eav = ='='-'--'--"":"!'
n

(4.4)

where x = (Xl, , Xi, , Xn)T is the exact solution of the system

and X = (Xl, , Xj, , xn)T is the calculated solution.

All the results shown are related to two test tridiagonal systems (with known

solution), whose coefficient matrices satisfy the condition:

bj > aj +Cj Vi = 1,2, .. ,n

where bl , , bi , , bn are the elements on the main diagonal;

aI, , ai, , an are the elements on the sub-diagonal (with al = 0);

Cl, •••. , ci, , Cn are the elements on the super-diagonal (with C n = 0).

64

The two example systems chosen are as described below.

First test system

The first tridiagonal linear system considered (14) is

2 -1 0 Xl 1
-1 2 -1 X2 0

-1 2 -1 X3 0
- (4.5)

-1 2 -1 Xn-l 0
0 -1 2 Xn 0

whose exact solution is an n-dimensional vector x with components:

n+l-i
Xi =

n+l
Vi = 1, .. ,n.

Second test system

The coefficient matrix in this second example is a tridiagonal matrix of the

form:
TB

TB

TB

where each submatrix TB is an 8 x 8 tridiagonal matrix

2 -1 0
-3 5 -2

-2 3 -1

TB =
-2 4 -1

(4.6). -1 4 -3
-4 6 -1

-7 8 -1
0 -1 3

According to the block structure of the coefficient matrix, the known vector

d has the form:

d = (ds,ds, ,dsl

65

where each subvector d s has dimension 8 and components:

1
0
0

ds=
1

(4.7).
0
1
0
2

The exact solution vector to this second test system is an n-dimensional vector

x, whose components are all equal to 1.

If we choose the dimension n = 16 , for example, the tridiagonal coefficient

matrix will be (in this second example):

2 -1
-3 5 -2

-2 3 -1
-2 4 -1

-1 4 -3
-4 6 -1

-7 8 -1
-1 3 0

0 2 -1
-3 5 -2

-2 3 -1
-2 4

-1
o

and the corresponding known vector d will be:

(1,0,0,1,0,1,0,2,1,0,0,1,0,1,0,2)T .

The solution vector x we are looking for, in this case, is:

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, l)T .

66

o

-1
4 -3

-4 6
-7

-1
8

-1
-1

3

Tables 4.8 and 4.9 show the execution timings obtained when running the

Wang routine on the two test examples mentioned. The speed-up and

efficiency parameters are also calculated and reported in the same tables.

In these experiments the Parallel System overheads introduced by the

operating system proved to be too great to ensure a speed-up of the algorithm.

Consequently, it was necessary to evaluate reclaimed times for the Wang

algorithm; that is to say, the elapsed execution times minus the cost of

forking child processes and child page table build up (child processes do

not automatically inherit the parent's page table when created) was used

in evaluating the speed-up.

The notation adopted in all the table is as follows:

n: is the dimension of the tridiagonal linear system under consideration;

q: is the exponent (power of 2) so that n = 2q;

p: is the number of processors used.

The accuracy results are given in tables 4.10 and 4.11 for the parallel version

and the sequential version of the Wang algorithm respectively.

Some slight discrepancy in the accuracy results do occur, and this is probably

due to favourable partitioning which reduces rounding errors.

Note that these results only concern the solution of the first test system,

since in the case of the second test system 100 % accuracy is obtained. This

is probably due to the fact that the solution vector x (in the second example)

can be regarded as having all integer components (they are all equal to 1).

Therefore, no rounding error is involved.

67

TABLE 4.8

T, Tp Obtained Sp(n) Expected Sp(n) Efficiency Ep(n)

n=128

q=7 .02650 .0280 .9464 1.8824 .2366

p=4

n=256

q=8 .05200 .0330 1.5758 1.9394 .3939

p=4

n=512

q=9 .10350 .0600 1.7250 1.9692 .4313

p=4

n=1024

q=lO .20600 .1000 2.0600 1.9845 .5150

p=4

T, Tp Obtained Sp(n) Expected Sp(n) Efficiency Ep(n)

n=128

q=7 .02650 .0210 1.2619 3.2000 .1577

p=8

n=256

q=8 .05200 .0280 1.8571 3.5556 .2321

p=8

n=512

q=9 .10350 .0420 2.4643 3.7647 .3080

p=8

Reclaimed times (in seconds), speed-up and efficiency obtained when using the Wang routine to
solve the first example system (4.5).

68

TABLE ./.g

T. Tp Obtained Sp(n) Expected S.(n) Efficiency Ep(n)

n=128

q=7 .025000000 .032999990 .7576 1.8824 .1894

p=4

n=256

q=8 .050000000 .042000010 1.1905 1.9394 .2976

p=4

n=512

q=9 .099500030 .059000000 1.6864 1.9692 .4216

p=4

n=1024

q=1O .199000000 .100000000 1.9900 1.9845 .4975

p=4

T. Tp Obtained Sp(n) Expected S p(n) Efficiency Ep(n)

n=128

q=7 .025000000 .02150 1.1628 3.2000 .1453

p=8

n=256

q=8 .050000000 .02800 1.7857 3.5556 .2232

p=8

n=512

q=9 .099500030 .05200 1.9135 3.7647 .2392

p=8

Reclaimed times (in seconds), speed-up and efficiency obtained when using the Wang routine to
solve the second example system (./.6) fj (./.7).

69

TABLE .{10

Maximum Error Em.", Average Error E •• Maximum Relative Error Er

n=128

q=7 .0000018477 .0000011250 .0000018621

p=4

n=256

q=8 .0000088215 .0000054081 .0000088560

p=4

n=512

q=9 .0000028610 .0000007448 .0000028666

p=4

n=1024

q=10 .0001227856 .0000744966 .0001229055

p=4

Maximum Error Em.", Average Error E •• Maximum Relative Error Er

n=128

q=7 .0000030994 .0000019837 .0000031236

p=8

n=256

q=8 .0000064969 .0000042093 .0000065223

p=8

n=512

q=9 .0000324249 .00000209412 .0000324882

p=8

Accuracy results obtained when using the parallel version of the Wang routine to solve the first
example system (.1- 5).

70

TABLE -1.11

Maximum Error E ma", Average Error Ea. Maximum Relative Error Er

n=128

q=7 .0000013709 .0000006365 .0000013816

n=256

q-8 .0000044703 .0000019153 .0000044878

n=512

q-9 .0000141859 .0000066210 .0000142136

n=1024

q=1O .0001955032 .0001060939 .0001956941

Accuracy results obtained when using the sequential version of the Wang routine to solve the first
example system (-1.5).

, ~

-~ --~---- --~---

. ,

Note.
In tables 4.8,4.9, obtained and expected speed-ups are given according to the following formulae:

ObtainedSp(n) = T.ITp

ExpectedSp(n) = nl(2k + p)

where n is the problem dimension, p is the number of processors, k = nip.
The Efficiency parameter is Ep(n) = Sp(n)lp .

71

5. The Recursive Decoupling Method

5.1. Introduction to the Recursive Decoupling

Method

In this chapter we describe a new tridiagonal equation solver, based on a rank-

one updating strategy and the repeated partitioning of the system matrix into

2x2 submatrices. On these bases, a recursive decoupling method is developed,

which operates on the tridiagonal linear system, enabling the solution to

be expressed in explicit form and solved independently on a multiprocessor

system. We will show, in fact, that the Recursive Decoupling Method is

intrinsically parallel and can be implemented as an efficient parallel algorithm

[5, 6].

5.2. The Partitioning Process

We consider a set of n linear equations in n unknowns

Au=d (5.1)

where A is an nxn tridiagonal matrix of the form

bl Cl

a2 b2 C2 o
A=

a3 b3 C3
with bi>ai+ci, Vi=1,2, .. ,n

0

(5.2)

We denote d and u as the n-dimensional known and unknown vectors

respectively.

To illustrate the algorithm, we assume that n is an integer power of 2,

i.e. n = 2q (with m = nj2 = 2Q-
I). This assumption is not restrictive:

the method can be generalized. The choice n = 2m simplifies our notation.

72

The initial coefficient matrix A IS now rearranged into the following

partitioned form

Xl
(j)

YI
(j)T

o X2 Y2

m-I X3 Y3

+L X4 Y4

j=l

o Xn-l Yn-l

Xn Yn
(5.3)

where

when j = 2, ... , m
(5.4)

when j = 1, ... , m-I

and where vectors x(j), y(j) have only non-zero elements in the 2jth and

(2j + 1)th positions,

I.e.

{

Xk = 1

Xk = 0

when k = 2j,2j + 1

otherwise

when k = 2j

when k = 2j + 1

Yk = 0 otherwise

that is

(.) T
x] = (0, ... ,0,1,1,0, ... ,0) (5.5)

y(j) = (0, ... ,0, a2j+l, C2j, 0, ... ,O)T (5.6)

with j ranging from 1 to m-I and n = 2m.

73

In matrix notation, therefore, the above partitioning of the matrix A can be

represented as
m-I

A = J + L X(j)y(j)T

j=1

where J is a block diagonal matrix of the form

J=

Each block in J is a 2x2 submatrix J i of the following type

with i = 1,2, ... ,m

The elements of Ji are defined as in (5.4).

(5.7)

(5.8)

(5.9)

The basic idea, underlying the choice of this particular partitioning, is given

by the Sherman-Morrison formula.

Suppose that we have computed the inverse matrix J-1 for some matrix J of

dimension nxn. Then, suppose that J is modified into a matrix A as follows

A = J +xyT (5.10)

where x, y are n-dimensional vectors.

According to Sherman-Morrison [27], the inverse A-I can be computed as

where O! = 1/(1 + yT r
1x) (5.11)

To compute the new inverse directly would cost O(n3
) arithmetic operations,

while the use offormula (5.11) only implies O(n2
) operations.

The Sherman-Morrison formula also applies if linear equations are being

solved, so that the solution of Ju' = d must be converted to the solution

of Au = d.

74

From formula (5.10), we have

u = A -Id = (J-I - a(J-Ix)(yT rI))d

= rId _ a(J-Ix)(yT rI)d
(5.12)

Suppose we have a routine that can solve linear systems involving matrices J

or J- I
. The solution of the modified system Au = d can then be obtained

from the following sequence

(i) solve Ju' = d for u', so that u' = J-Id is known;
<>:>, fl)

(ii) solve J€)= x for w, so that 8~ J-Ix is known;

(iii) solve JT z = y for z, so that zT = yT J- I is known;
0),

(iv) form a = 1/(1 + yT®);

~
(v) form u = u' - a~;zTd, the solution of Au = d.

This process requires back-substitutions and inner-products, so that the cost

is only Q(n) operations. It also avoids the explicit computation of the inverse

matrix.

In order to apply the Sherman-Morrison formula, therefore, all we need to

know is a matrix J which only differs by a few elements from our coefficient

matrix A and whose inverse J- I is known.

If we now go back to our original problem of solving the tridiagonal system

Au = d and consider again the partitioning formula (5.7), we can notice

the similarities with the Sherman-Morrison expressIOn. Our partitioning

form (5.7) can be considered as a recursive application of formula (5.10).

Besides, our coefficient matrix A only differs by a few elements from a block

diagonal matrix J, whose blocks Ji are of dimension 2x2 and are therefore

immediately invertible.

75

For every index i ranging from 1 to rn, in fact, we have

(5.13)

It is then possible for us to use the Sherman-Morrison formula.

In the next paragraph, we show how a process, based on similar ideas to the

ones described in (5.12), have been developed into the Recursive Decoupling

Method.

5.3. The Recursive Decoupling Process

Given the tridiagonallinear system Au = d, where A is rewritten as in (5.7),

we now want to partition the two vectors u and d in an analogous way to

the matrix J.

To this purpose, we consider vectors u and d to be written as follows

Ul d1

U2 d2

U3 d3

U4
u= - d=

d4
- (5.14)

We can now derive the solution of system (5.1) by applying the rank-one

updating procedure of Sherman-Morrison recursively to (5.7). The result is

m-I m-I

U = (J + L x(i)y(j)T)-ld = (r I - <]rl L x(ilyU)T rl)d

i=1 i=1
m-I m-I

with 0<. = 1/(1 + L y(j)T r 1 L x(i»
J . .

1=1 1=1

(5.15)

and j = 1,2, ... , rn - 1

76

By denoting]-Id = u' and]-IXU) = g{j), the expressions (5.15) can be

simplified to

u = (1 _ agU)yU)T)-l u'

with a = 1/(1 + yU)T gU)

and j = 1,2, ... ,m - 1

(5.16)

The expressions (5.16) give a description of the rank-one updating procedure.

Once we have applied the partitioning process (5.7), in order to obtain the

final solution u, we then need

- to start with an approximated solution vector u' given by u' =]-Id;

- to calculate vectors gU) from g(j) =]-IX(j);

- to perform the rank-one updating procedure (5.16).

In particular, the updating step implies the recursive use of vectors x(j)

and yU) and the recursive updating of vector u and vectors g(j).

Note that, for each index j ranging from 1 to m -1, the form of vectors x(j)

and yU) are such that they only contain 2 non-zero elements. Therefore the

expressions (5.16) can be calculated independently and recursively using a

Parallel Fan-in Algorithm, as follows

77

1
_____ (1)

2 ___ UI-2,gI_2

5 ____ (5)

6 US-6, gS-6

_______ (2)
___________ UI-4, gI-4

(6)
us-s,gs_s

\
\ ,

\

\
\

UI-m = U
/

m-3 /
" (m-3) /U(m-3)-(m-2), g(m-3)-(m-2) /

m - 2 ___. (m-2) /
~ U(m-3)-m, g(m-3)-m

m-I" (m-I) _____

m
~ U(m-I)-m, g(m-I)-m

(5.17)

The notation adopted in figure (5.17) uses the subscript index of vectors U and

g(j) to indicate the number of components involved in the current calculation.

For example, the writing g~~2 means that we are considering components 1

and 2 of vector g(I), while g~~s means that we are considering components

. 5, 6, 7, 8 of vector g(6).

More specifically:

Ui-(i+k) is a vector of 2k components, namely components 2i, 2i+ 1, ... , 2i+2k

of vector U

gl~(i+k) is a vector of 2k components, namely components from 2i to 2i + 2k

of vector g(j).

78

Therefore:

(j)
- at the 18t level of the above tree structure, vectors Ui-(i+l) and gi-(i+l)

are composed of 4 components, with the index i ranging from 1 to m and

j = 1,3, '" m-I;

- at the 2nd level, vectors Ui-(i+3) and g~~(i+3) are composed of 8 components,

with the index i ranging from 1 to m and j = 2,6, .. , m - 2,

- at the 3rd level, vectors Ui-(i+7) and g~~(i+7) are composed of 16 elements,

with the index i ranging from 1 to m and j = 4,12, '" m - 4,

These observations apply in an analogous way to each level. The last level

gives the final solution U = Ul-m , which is a vector of 2m = n components.

The tree structure depicted in (5.17) enables as many as possible of the

matrix updating strategies to be performed in parallel. The calculations of

(j)
vectors Ui-(i+k) and gi-(i+k) are, in fact, non overlapping and independent

of each other.

The Fan-in graph represented in figure (5.17) has a depth equal to log2 m,

and it is composed of log2 m levels. The whole algorithm, implementing

the Recursive Decoupling Method, exhibits an average degree of parallelism

of Q(mj log2 m). This result only applies to systems of order n = 2q and is

likely to be degraded for systems whose order n is not an integer power of 2,

due to imperfect load balancing.

79

5.4. The Recursive Decoupling Algorithm

In this section we present the solution procedure in algorithmic form, when

the coefficient matrix A is partitioned as in (5.3) and the unknown and known

vectors u and d are partitioned as in (5.14). As already said, we discuss the

case for n = 2Q, but the process is equally valid for n not equal to a power of

2 and can easily be adapted.

We will refer to the above mentioned partitioning of matrix A and vectors

u and d as the Preliminary Stage or Pre-stage. After this Pre-stage, the

solution routine is formulated into three different sections, respectively called

Stage 1, Stage 2 and Stage 3.

Stage 1.

This first stage of the algorithm consists of finding the solution of Ju = d,

that is obtaining

u= d (5.18)

This is equivalent to solving m systems of the form

(5.19)

Since we know the expressions for matrices Ji-
1

(see formulae (5.13)), the

solution u of system (5.18) can be explicitly expressed as

u=

(e 2 d1 - c1 d2)/6.1

(-a2dl + e1d2)/6.1

(e2i d2i-l - C2i-l d2i)/6.i
(-a2id2i-l + e2i-l d2i)/6.i

(e2m d2m-l - C2m-l d2m)/6.m
(-a2m d2m-l + e2m-l d2m)/6.m

(5.20)

Note that each one of the m subsystems (5.19) can be solved independently

on a multiprocessor.

80

Stage 2.

In an analogous way to the previous section, the second stage consists of

finding the solution of Jg(j) = x(j) for j = 1,2, .. , m-I, that is obtaining

(5.21)

for j = 1,2, .. , m - 1.

As before, this is equivalent to solving m systems of the form

(Ul) (Ul) 92;-1 _ J-1 X 2;_1
(j) -; Ul

92; x 2;
(5.22)

where j ranges from 1 to m - 1.

Again, since matrices Jj-
1 are known, we can express the sol~tion gUl of each

one of the m-I systems (5.21) as follows

-

o
o

(e2; - c2;-d/6.;
(-a2; + e2i_l)/6.;

o
o

(5.23)

where the only two non-zero elements appear in the (2j)'h and (2j + l)th

positions.

81

Furthermore, the m-I systems (5.21) can also be evaluated in parallel, by

applying the structure shown in the following figure:

(g~l») _ rl (0)
(1) - 1 1

g2

((1) (2») (g3 g3 _ ,-I 1
(1) (2) - 2 0

g4 g4

((2) (3)) (g5 g5 _ J-1 1
(2) (3) - 3 0

g6 g6

(

(m-2)
gn-3

(m-2)
gn-2

gn-3 _ J-1 1 (m-I») (
(m-I) - m-I 0

gn-2

(m-I») () gn-l = J-1 1
(m-I) m 0

gn

n
n

(5.24)

The process described in figure (5.24) relies on the fact that, before starting

the updating Stage 3, the vectors g(j) contain only two non-zero elements,

since they are derived from vectors x(j).

Stage 3.

Finally, during this last stage, vectors u and g(j) are updated, by recursively

using the Sherman-Morrison formula.

82

The rank-one updating step procedure can be described as follows

for k = 1,2, .. ,q-1

£ . - 2k - 1 2q- 1 2k - 1 2k orJ- , - ,

O!j = 1/(1 + y(j)T g(j»)

u = (I - O!jg(ily(j)T)-lU

(5.25)

end

end

end

The final solution is obtained and stored in vector u.

83

5.5. An Analytical Example

Before describing the Fortran routine which implements the Recursive

Decoupling Algorithm, we give an example to illustrate the solution strategy.

Consider a 16x16 tridiagonal linear system, whose coefficient matrix A is

given by

b1 Cl

a2 b2 C2

a3 b3 C3

a4 b4 C4

a5 b5 C5 o
a6 b6 C6

a7 br C7

A= aa ba
a9

Ca

b9 C9

a10 b10 CI0

all bll Cll

0 a12 b12 C12

a13 b13 C13

a14 b14

a15

We then have n=16, m=8, q=log2n. The matrix A can be rewritten in the

partitioned form given in (5.3).

In other words, we will rewrite the coefficient matrix A as the sum of a block

diagonal matrix J with the summation of the products

Vectors x(j) and y(j) are all of dimension n=16 and of the type described

in (5.5) and (5.6) respectively.

84

el Cl

a2 e2

e3 C3

a4 e4

e5 C5 0
a6 e6

E7 C7

A= as es

eg Cg

alO elO

Ell Cll

0 al2 el2

El3 el3

al4 el4

el5 Cl5

al6 El6

0 0 (j)T 0 0 (j)T 0 0 (j)T 0 0 (j)T

1 a3 0 0 0 0 0 0
1 C2 0 0 0 0 0 0
0 0 1 a5 0 0 0 0
0 0 1 C4 0 0 0 0
0 0 0 0 1 a7 0 0
0 0 0 0 1 C6 0 0
0 0 0 0 0 0 1 ag + 0 0 + 0 0 + 0 0 + 1 Cs

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 (j)T 0 0 (j)T 0 0 (j)T

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

+ 0 0 + 0 0 + 0 0
1 all 0 0 0 0
1 CIO 0 0 0 0
0 0 1 al3 0 0
0 0 1 Cl2 0 0
0 0 0 0 1 al5

0 0 0 0 1 C14

0 0 0 0 0 0

85

The new elements in matrix J are given by

el = bl , e2 == b2 - aa , ea = ba - C2 , e4 == b4 - a5 ,

e5 = b5 - C4 , e6 = b6 - a7 , e7 = b7 - C6 , es = bs - a9 ,

e9 == b9 - Cs , elO = blO - all , ell = bu - C10 , e12 = b12 - a13 ,

e13 = b13 - C12 , el4 = b14 - a15 , e15 = b15 - CH , e16 == b16 •

The block diagonal matrix J is formed by m = 8 blocks, of which each one

is a 2x2 matrix and therefore is directly invertible, i.e.

J l = (el
a2

Cl)
e2 '

J 1l = .6.11 (e2
-a2

-Cl)
e1

where .6.1 = (e2el - a2cd

J 2 = (e3
a4

ca) ,
e4

J:;l == .6.21 (e4
-a4

-ca)
ea

where .6.2 == (e4ea - a4Ca)

We continue this process for all the remaining matrices up to and including Js.

Let us now partition vectors U and d as required in (5.14):

U1 d1
U2 U1 d

2
d 1

U3
U2

d3 d2
U4 d4

U5
Ua

d5 d 3
U6 d6

U7 d7 d 4
Us

U4
ds

U= - d= -
U9

U5
d9 d 5

U10 dlO

Ull
U6

dll
d 6

Un d12

U1a
U7

d13 d 7
U14 d14

U15 d15 d s
u16

Us d16

86

We have now completed the Preliminary Stage and are ready to start Stage 1,

that is solve 8 subsystems of the form

JjUj = dj as i ranges from 1 to 8.

We obtain

Analogous calculations are to be performed in order to obtain U3, U4, Us, U6,

U7, Us. We have then completed Stage 1, obtaining the vector u.

The subsystems in Stage 2, i.e.

with i = 1,2, .. ,8 and j = 1,2,3

can also be evaluated explicitly.

87

The solutions are

(1) J-1 (1) 1 (e2 gl = 1 Xl =-
ill -a2

There is no need to calculate g~l), gi1), g;l), g~l), g~l), g;l), smce their

resulting components are clearly all equal to zero.

Then
(1)

gl -Cl/ill

(1)
g2

el/ill
e4/ il2

(1)
-a4/il2

ga 0
0

(1)
g4 0

g(l) = 0
(1) 0 g5

0
(1)

g6 0
0

(1)
g7 0

0
(1)

gs 0
0

88

The same observations hold for g(2), i.e.

(2) J- 1 (2) 1 (e4
g2 = 2 X 2 =-

~2 -a4

1
(e4 -~:) (n -

(e3e4 - a4 c3) -a4

1 (-~:) -
(e3e4 - a4c3)

(2) J- 1 (2) 1 (es
g3 = 3 X3 =-

~3 -as
-cs) (2)

X3
es

1
(es -~;) 0) -

(eses - ascs) -as

1 (-::) -
(eSe6 - ascs)

J: h . (2) (2) (2) (2) (2) (2) .
As belore, t ere IS no need to calculate gl ,g4 ,gs ,gs ,g7 ,g8 ,smce

their components are equal to zero.

Then we obtain
(2)

gl 0
0

(2)
g2 -C3/ ~2

(2)
g3

e3/~2
eS/~3

(2)
g4

-as/ ~3
0

g(2) =
(2)

gs

0
0
0

(2)
gs 0

0
(2)

g7 0
0

(2)
g8 0

0

89

completes Stage 2.

Finally, the third stage of the algorithm gives the required solution u, after

a recursive series of updating operations. More specifically, during the first

iteration of Stage 3, vector U is updated by applying the Sherman-Morrison

formula to successive subsets of its components; this is done by using the

corresponding components of vectors g(l), g(3), g(S), g(7), y(l), y(3), y(S),

y(7). We can represent this process as follows

U

((S) (5)T) (US)
U5-6 = I - C¥5g5_6Y 5-6 U6

((7) (7)T) (U7)
U7-S = I - C¥7g7-SY7-S Us

The graph above can be read in the following way:

components from 1 to 4 of vector U are updated

components from 5 to 8 of vector U are updated
U

components from 9 to 12 of vector U are updated

components from 13 to 16 of vector u are updated

90

Vectors g(2), g(4), g(6) are also updated by an identical process, that is to

say by using the corresponding components of g{l), g(3), g(5), g(7).

To first update vector g(2), for example, we calculate:

that means

components from 1 to 4 of vector g(2) are updated

components from 5 to 8 of vector g(2) are updated

components from 9 to 12 of vector g(2) are updated

components from 13 to 16 of vector g(2) are updated

We complete the first iteration by calculating the updated values of vectors

g(4) and g(6) in an analogous way as g(2). Then, we again update vector u,

starting the second iteration of the recursive process. This time, u is updated

by using the corresponding components of vectors g(2) and g(6), along with

y(2) and y(6):

u

(I (6) (6)T) (UO- 6)
u5-S = - Q6gs-sys-s U7-S

As before, the graph above can be read in the following way:

u { components from 1 to 8 of vector u are updated

components from 9 to 16 of vector u are updated

91

The vector g(4) is also updated by using the corresponding components of

g(2) and g(6):

that means

{

components from 1 to 8 of vector g(4) are updated
g(4)

components from 9 to 16 of vector g(4) are updated

This ends the second iteration.

By performing the third iteration, we finally obtain the solution vector Uj

this time, we update all the 16 components of u by using the corresponding

components of vector g(4):

Note that in this example we have required q - 1 = 3 iterations to complete

Stage 3 and to obtain the final solution vector u.

92

5.6. A Numerical Example

The Recursive Decoupling procedure can be further illustrated by the

following simple numerical example [14], involving the 8x8 linear system

2 -1 Ul 1
-1 2 -1 0 U2 0

-1 2 -1 U3 0
-1 2 -1 U4 0

-1 2 -1 =
Us 0

-1 2 -1 U6 0
0 -1 2 -1 U7 0

-1 2 Us 1

The system matrix can be de coupled into the form

as follows

2 -1
-1 3 0

3 -1
-1 3

3 -1
-1 3

0 3 -1
-1 2

0 0 T 0 0 T 0 0 T

1 -1 0 0 0 0
1 -1 0 0 0 0

+ 0 0
+

1 -1 0 0
0 0 1 -1 + 0 0
0 0 0 0 1 -1
0 0 0 0 1 -1
0 0 0 0 0 0

This concludes our Pre-stage.

93

We continue with an illustration of the following three stages.

Stage 1. Find the solution to the system Ju = d, that is, solve the 4

subsystems:

J - 1d 1 (3 U2 = 2 2 =-
6.2 1

1) (d7
) 1 (2 1) (0) (1/5) 3 ds = (6 - 1) 1 3 1 = 3/5

Therefore u, at the end of stage 1, is given by

U1

U2

U - -
U3

U4

Stage 2. Find the solution to the systems

J gO) _ X(l)

J g(2) X(2)

J g(3) _ x(3)

94

3/5
1/5

0
0
0
0

1/5
3/5

For each of the three systems, this is equivalent to solving 4 subsystems

(1) J- 1 (1) 1 (3
gl = 1 Xl = b.

1
1

(1) J-1 (1) 1 (3
g2 = 1 X2 = b.

2
1

We do not calculate g~l) and gi
1
), since their components are zero.

(2) _ J-1 (2) _ 1 (3
g3 - 3 X3 --b.3 1

As before, we have not calculated some zero-valued components gi
2

) and gi
2

) .

Components gi
3

) and g~3) are zero in the third system and we have

(3) _ J-1 (3) _ 1 (3
g3 - 3 X3 --b.3 1

(4) -J- 1 (3) _ 1 (2
g3 - 4 X4 --b.4 1

At the end of stage 2, we have obtained:

1/5 0
2/5 0
3/8 1/8

g(l) = 1/8 g(2) = 3/8
0 3/8
0 1/8
0 0
0 0

95

0
0
0

g(3)= 0
1/8
3/8
2/5
1/5

Stage 3. The updating stage can now be carried out:

1 1
(\'1 - -- (1 + y(l)T g(l») - (1 + ,,8 (l)T (1»)

L...=1 Y. g.

1 40
= (I+C-IH+C-l)f) = "9

o -1/5
o -2/5
o -3/8
o -1/8
o 0
o 0
o 0
o 0

o -8/9
o -16/9
o -15/9
o -5/9
o 0
o 0
o 0
o 0

1 8/9
o 25/9
o 15/9
o 5/9
o 0
o 0
o 0
o 0

-1/5 0 0 0 0 0
-2/5 0 0 0 0 0
-3/8 0 0 0 0 0
-1/8 0 0 0 0 0

o 0 0 0 0 0
000 000
000 000
o 0 0 000

-8/9 0 0 0 0 0
-16/9 0 0 0 0 0
-15/9 0 0 0 0 0
-5/9 0 0 0 0 0
000000
000000
000000
000000

8/9 0 0 0 0 0
16/9 0 0 0 0 0
24/9 0 0 0 0 0
5/9 1 0 0 0 0
001000
000100
000010
000001

- (~ - 0
o

8/9 8/9
25/9 16/9
15/9 24/9
5/9 5/9

0) (3/5) (7/9) o 1/5 5/9
o 0 = 3/9
o 0 1/9

96

1 1 40
Q3 - (1 + y(3)T g(3)) = ... = (1- ~ -~) = 9

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

g(3) y(3)T = 0 0 0 0 0 0 0 0
0 0 0 0 0 -1/8 -1/8 0
0 0 0 0 0 -3/8 -3/8 0
0 0 0 0 0 -2/5 -2/5 0
0 0 0 0 0 -1/5 -1/5 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Q3 g(3) y(3)T = 0 0 0 0 0 0 0 0
0 0 0 0 0 -5/9 -5/9 0
0 0 0 0 0 -15/9 -15/9 0
0 0 0 0 0 -16/9 -16/9 0
0 0 0 0 0 -8/9 -8/9 0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

I - Q3 g(3) y(3)T = 0 0 0 1 0 0 0 0
0 0 0 0 1 5/9 5/9 0
0 0 0 0 0 24/9 15/9 0
0 0 0 0 0 16/9 25/9 0
0 0 0 0 0 8/9 8/9 1

U3-4 - (I _ Q (3) (3)T) (U3)
3 g3-4 Y3-4 U4

~(l
5/9 5/9 l)(1~5) ~ (:;:)

24/9 15/9
16/9 25/9
8/9 8/9 1 3/5 7/9

97

The updated vector u is then:

u

7/9
5/9
3/9
1/9
1/9
3/9
5/9
7/9

To complete iteration 1 of stage 3, we still have to update vector g(2):

- (~ - 0

o

8/9 8/9 0) (0) (1/9) 25/9 16/9 0 0 _ 2/9
15/9 24/9 0 1/8 - 3/9
5/9 5/9 1 3/8 4/9

5/9
24/9
16/9
8/9

5/9
15/9
25/9
8/9

0) (3/8) (4/9) o 1/8 _ 3/9
o 0 - 2/9
1 0 1/9

The updated vector g(2) is then:

This completes iteration 1.

98

1/9
2/9
3/9
4/9
4/9
3/9
2/9
1/9

Iteration 2 of stage 3 consists of updating vectors u by means of g(2) .

1 1
U2 -

(1 + y(2)T g(2))
= ... =

(4 4) = 9 1- 9 - 9

0 0 0 -1/9 -1/9 0 0 0
0 0 0 -2/9 -2/9 0 0 0
0 0 0 -3/9 -3/9 0 0 0

g(2) y(2)T = 0 0 0 -4/9 -4/9 0 0 0
0 0 0 -4/9 -4/9 0 0 0
0 0 0 -3/9 -3/9 0 0 0
0 0 0 -2/9 -2/9 0 0 0
0 0 0 -1/9 -1/9 0 0 0

0 0 0 -1 -1 0 0 0
0 0 0 -2 -2 0 0 0
0 0 0 -3 -3 0 0 0

U2 g(2) y(2)T = 0 0 0 -4 -4 0 0 0
0 0 0 -4 -4 0 0 0
0 0 0 -3 -3 0 0 0
0 0 0 -2 -2 0 0 0
0 0 0 -1 -1 0 0 0
1 0 0 1 1 0 0 0
0 1 0 2 2 0 0 0
0 0 1 3 3 0 0 0

I - U2 g(2) y(2)T = 0 0 0 5 4 0 0 0
0 0 0 4 5 0 0 0
0 0 0 3 3 1 0 0
0 0 0 2 2 0 1 0
0 0 0 1 1 0 0 1

u = Ul-4 (I - (2) (2)T) (Ul-2) - U2 gl-4 Yl-4 U
3-4

7/9 1
5/9 1
3/9 1

(I - U2 g(2) y(2)T) 1/9 1
1/9

- 1
3/9 1
5/9 1
7/9 1

This is the final solution.

Note that we required q - 1 = 2 iterations during stage 3, in order to obtain

the solution vector u.

99

5.7. The Recursive Decoupling Routine

In this section we will describe the Fortran routine implementing the

Recursive Decoupling Algorithm [12, 25J.

Since our coefficient matrix A is a sparse matrix of tridiagonal form, we have

used three n-dimensional vectors to store its elements, which are given by:

a which is used to store the sub-diagonal values;

b which is used to store the main diagonal values;

c which is used to store the upper diagonal values.

The arrays u and d, both of dimension n, are used to store the unknown and

known vectors. As the routine is completed, the calculated solution vector is

stored in u.

The partitioning matrix J is also a sparse matrix of the form given III

formula (5.3) (see also the matrix notation given in (5.8». To initialise the

matrix J we need only to introduce one further n-dimensional vector e, whose

values are defined by expressions (5.4). Note that there is no need to obtain

an explicit initialisation of the matrix J: we are only interested in finding the

inverses Ji-
I of each 2x2 block matrix Ji to form the inverse of the partitioning

matrix itself. This is done by applying formulae (5.13),

i.e as index i ranges from 1 to m

we calculate each real number b.i ;

then we store its inverse value in a work variable called Tee;

then we initialise each 2x2 matrix Ji-
I using (5.13)

In order to retain a parallel structure during the algorithmic stages, we have

grouped all the matrices Ji-
1 into a single array JJl of dimension 2x2xm.

The last index i of the array JJl ranges from 1 to m and gives the current

submatrix Ji-
1

•

100

To complete the Pre-Stage section we still have to define a memory structure

to retain vectors xCi), yCi) and gCi). In an analogous way to array JJ1, we

have chosen to store these n-dimensional vectors in three different matrices,

each one of dimension nx(q - 1). The vectors xCi) are stored in the first of

these nx(q - 1) matrices, the vectors yCi) are stored into the second matrix

and the third nx(q - 1) matrix is used to store the vectors g(j). As in the

array J J 1, the second index j of each matrix ranges from 1 to q - 1 and gi ves

the current vector x(j) (or y(j), or g(j), depending upon which of the three

matrices we are considering).

To explain why the three matrices have been used in this way and to explain

why the second index j only varies from 1 to q - 1 in particular (instead of

varying from 1 to m-1as we would expect), we need to make some observations.

The main problems we have met in implementing this routine were related

to maintaining the intrinsic parallel nature of the Recursive Decoupling

Algorithm. We had to study a storage structure that was best suited to

performing Stage 1, Stage 2 and Stage 3 in parallel.

Fortran was the chosen programming language, that does not allow the

explicit use of any kind of tree structure, unlike other computer languages

such as Pascal or C. Particular care is needed in the implementation of

the Fan-in graph shown in figure (5.17) and the main problem, therefore,

consisted of finding some way to simulate the tree graph.

Storing all the vectors x(j) in an nx(q - 1) matrix X and all the vectors g(j)

in an nx(q -1) matrix G appeared to be the best way to simulate the Fan-in

figure. We will show later on that it is possible to obtain a saving of memory

allocation, by using the same nx(q - 1) matrix X to overwrite the values of

vectors y(i) .

101

Let us justify the above choice.

The tree structure (5.17) is made of q - 1 = log2 m levels. At each level,

only a few components of the vectors u, x(j), y(j) and g(j) are involved in

the calculations (refer again to figure (5.17». Let us follow what happens

to these vectors during the three stages of the algorithm, and in particular

during Stage 3.

As we have already mentioned, in Stage 1 we obtain the vector u by

partitioning u and d according to (5.14) and solving the m subsystems (5.19).

At the end of this first stage, vector u then contains n values, giving an initial

approximate solution to our original problem. This initial value is given by

the solution of Ju = d.

In Stage 2, we obtain each vector g(j), after defining the corresponding

vector x(j) as in (5.5) and solving the m subsystems (5.22). This is done

for each of the m-I vectors g{j). At the end of the second stage, however,

each g(j) contains only 2 non-zero elements (in the (2j)th and the (2j + l)th

posi tions).

It might now be possible to store all the non-zero values of the vectors g{j),

in one array G(1) of dimension n as follows

d1) (1)
1 g2

G~l) (1)
g3

G~1) (2)
g4

d1) (2)
4 gs

d 1) (3)
S g6

d 1) (3)
6 g7

G(l) = d 1) (4)
7 - gs

d1) (4)
s g9

d1) (m-2)
n-3 gn-4

d 1) (m-2)
n-2 gn-3

d 1) (m-i)
n-l gn-2

G~l) (m-i)
gn-l

102

Better still, in order to maintain the correspondence between suffixes, we

could have stored all the non-zero values of vectors g{j) in two arrays G(l),

G(2) of dimension n as follows

d l) (1) d 2) 1 gl 1 0 dl) (1) d 2) 0 2 g2 2 d l) (1) d 2) (2)
3 g3 3 g3 dl) (1) d 2) (2)
4 g4 4 g4

d l) (3) d 2) (2)
S gs s gs

G~l) (3) d 2) (2)
g6 6 g6

G(l) = d l) (3) G(2) = G~2) (4)
7 g7 = g7 dl) (3) d 2) (4)
S gs S gs

dl) (m-i) d 2) (m-2)
n-3 gn-3 n-3 gn-3

d l) (m-l) d 2) (m-2)
n-2 gn-2 n-2 gn-2

d l) (m-l) d 2) 0 n-l gn-l n-l
0 G~l) (m-l) G~2) gn

It turns out that neither of these methods permits us to maintain the parallel

structure of the algorithm during the third stage.

Stage 3, in fact, is composed of q - 1 iterations, corresponding to the q - 1

levels of the tree structure (5.17). At each iteration, the number of non-zero

components of vectors g{j) varies; in fact the number of non-zero components

doubles.

This only affects some of the vectors g{j) and can be illustrated with the

following diagram

103

(I)
gl

(2)
g3

(3)
g5

(4)
g7

(5)
gg

(6)
gll

(7)
gl3

(I) (2) (3) (4) (5) (6) (7)
g2 g4 g6 gg glo gl2 g14

(I) (2) (3) (4) (5) (6) (7)
g3 g5 g7 gg gll gl3 gl5

(I)
g4

(2)
g6

(3)
gg

(4)
glo

(5)
gl2

(6)
gl4

(7)
gl6

ITERATION 1

(2)
gl

(4)
g5

(6)
gg

(2)
g2

(4)
g6

(6)
glo

(I) (2) (3) (4) (5) (6) (7)
gl g3 g5 g7 gg gll gl3

(I) (2) (3) (4) (5) (6) (7)
g2 g4 g6 gg glo gl2 gl4 (5.26) (I) (2) (3) (4) (5) (6) (7)
g3 gs g7 g9 gll gl3 gl5

(I) (2) (3) (4) (5) (6) (7)
g4 g6 gg glo gl2 gl4 gl6

(2) (4) (6)
g7 gll gl5

(2) (4) (6) gg gl2 gl6

ITERATION 2

(4)
gl

(4)
g2

(4)
g3

(4)
g4

(2)
gl

(4)
g5

(6)
gg

(2) (4) (6)
g2 g6 glo

(I) (2) (3) (4) (5) (6) (7)
gl g3 g5 g7 g9 gll gl3

(I) (2) (3) (4) (5) (6) (7)
g2 g4 g6 gg glo gl2 g14

(I) (2) (3) (4) (5) (6) (7)
g3 g5 g7 gg gll gl3 gl5

(I) (2) (3) (4) (5) (6) (7)
g4 g6 gg glo gl2 gl4 gl6

(2) (4) (6)
g7 gll gl5

(2)
gg

(4)
gl2

(6)
gl6

(4)
gl3

(4)
g14

(4)
gl5

(4)
gl6

104

As a result of (5.26), we start iteration 1 of the third stage working on

4-dimensional vectors. In particular, vectors g(j) with odd index j are used

to update the remaining vectors gW with j even. The vectors with even

index double in size according to the above diagram.

We start iteration 2 working on 8-dimensional vectors. This time, the

vectors gW where j = 2,6, 10, ... are used to update vectors g(j} with j =
4,8,12, As before, these last vectors again double in size, and are now of

dimension 16.

This process continues in a similar manner for each iteration step.

At the same time, the components of vector u are also updated as follows

Us J [Ug

ITERATION 1

Us J [Ug

ITERATION 2

Ul2 J [U13 ••. Ul6 J ...

Ul6 J ..• (5.27)

As a consequence of figures (5.26) and (5.27), we make the following

observations:

- a single n-dimensional array is sufficient to store vector u throughout all

the updating iterations, since the variations only affect the size of the

subsets of components.

- in order to avoid the risk of overlapping between the old and the new

components, we need more than the two vectors G(l) and G(2) to store

vectors g(j} .

To solve the component overlapping problem, let us consider q - 1 arrays of

the same type as G(l) and G(2). Each one has dimension n; they store the

values of vectors g(j} as shown in the following figure

105

(I)
gl

0 (I) 0 g2
0 (I) 0 g3 (2)

0 (I) g3
g4 (2)

0 (3) g4
g5 (2) 0 (3) g5
g6 (2) 0

(3) g6 (4)
g7 0 g7

(3)
0

(4)
gs gs

G(I) = (5) G(2) = 0 G(3) = (4)
... (5.28) g9 g9

(5) 0 (4)
glo (6) glo

(5) gll 0 gll (6)
0 (5) gl2 gl2 (6) 0 (7) gl3 gl3 (6) 0 (7) g14

gl4 0 0 (7)
gl5 0 0

(7)
gl6

Starting the first iteration, we will use G(I) to update G(2), G(3) " ", G(q-I).

At the end of iteration 1, G(!) remains unchanged, while the remaining

vectors G(j) are given by
(2)

gl
(2)

g2
(2)

g3
(2)

g4
(2)

g5
(2)

g6
g~2)

(2)
gs

G(2) = g~6)
(6)

glo
(6)

gll
(6)

gl2
(6)

gl3
(6)

g14
(6)

gl5
(6)

gl6

(5.29)

106

All the old zero elements in the array G(2) have been replaced with the new

non-zero components of g(2), g(6), g(lO), etc. There is no risk of overlapping,

since the vector G(2) will remain unchanged throughout all the successive

iterations.

We start the second iteration, using G(2) to update G(3), G(4), ... , G(q-l).

At the end of iteration 2, vector G(3) will be filled by the new non-zero

components of g(4), g(12), etc. Again, there is no risk of overlapping, since the

vector G(3) will remain unchanged throughout all the successive iterations.

During the third iteration, the values stored in G(3) are used to update all

the following G(j) for j = 4,5, ... , q - 1. The whole process is repeated until

the (q - l)th iteration has been completed.

With each iteration of Stage 3, while updating the vectors G(j), we will also

have updated the component values of u, by updating the corresponding

subvectors Ui-(iH) (see figure (5.17». After the last iteration, therefore, we

will have built the final solution U = Ul-m , as a vector of n components.

Finally, let us consider each vector G(j) as the ph column of a single matrix G

of dimension nx(q - 1)

(5.30)

In this way we have built a structure that avoids the above mentioned

overlapping of components. The matrix G also simulates the Fan-in tree

graph, enabling us to perform the updating calculations in parallel. The

form of matrix G explains the reason why the iteration index j ranges from

1 to q - 1, instead of ranging from 1 to m-I: by introducing G, in fact,

we have in some way replaced vectors g(j) where j = 1,2, ... , m-I with

vectors G(j) where j = 1,2, . .. , q - 1.

Since vectors x(j) and y(j) are used respectively to define and update

vectors g(j), we have chosen to store them in a structure similar to the

matrix G. Therefore, all the vectors x(j) are stored in a matrix of

dimension nx(q - 1), as shown in the following figure

107

0 0 0
1 0 0
1 0 0
0 1 0
0 1 0
1 0 0
1 0 0
0 0 1

X 0 0 1 (5.31)
1 0 0
1 0 0
0 1 0
0 1 0
1 0 0
1 0 0
0 0 0

Since the values of vectors x(j) are not needed any longer after the end of

Stage 2, the same matrix X is used to overwrite the values of vectors y(j).

During Stage 3, X is then defined as follows:

0 0 0
a3 0 0
C2 0 0
0 as 0
0 C4 0

a7 0 0
C6 0 0
0 0 ag

X - 0 0 Cs (5.32)
all 0 0
ClO 0 0
0 al3 0
0 Cl2 0

alS 0 0
CH 0 0
0 0 0

108

\

Now that we have justified the use of the two particular structures G and X,

we carry on with the description of the Recursive Decoupling routine.

After reading the input data (i.e. the exponent q defining the system ~ze and

the number of processors we want to use), all the arrays and the matrices

are initialised either to zero or to their current values. Note that, in the

Fortran program, G and X are respectively memorized in the two equivalent

matrices 9 and x.

The Preliminary Stage follows this initialisation section, performing the

requested partitioning (5.3) of the coefficient matrix. In practice, during

the Pre-stage we explicity calculate the 2x2 submatrices J i-
1 •

After this, Stage 1, Stage 2, Stage 3 implement all the operations and

calculations described in the paragraph 5.3.

Note that the matrix x, initialized to zero, is assigned to store the values

of vectors x(j) during Stage 2, and then to store the values of vectors y{j)

during Stage 3. There is no actual initialisation of the matrix x to the values

of the x(j). As a consequence of the definition of the same vectors x(j), in

fact, the operations described in formula (5.22) can be carried out by using

directly the values of matrices Ji-
1 , as shown below:

(
(j)) ((j)) 92i-1 _ J-1 x2i - 1 _ J-1 (0) _ 2nd I f J-1
(j) - i (j) - i 1 - co umn 0 i

92i x 2 i

In order to perform the operations (4.2) and initialise the vectors g(j) during

Stage 2, therefore, we simply work on the columns of matrices Ji-
1 . At the

end of this second stage, we directly assign to the matrix x the values of

vectors y(j).

109

At this point, having taken account of all the above considerations and

observations and having chosen the described structures of arrays and

matrices, the parallelism in the implemented Fortran program is easily

exploited.

Since the Recursive Decoupling routine is intended to be run on the

Balance 8000 multiprocessor, we have made use of the programming tools

available on the Sequent systems [12J. More specifically, we have used both

the Fortran Parallel Programming Directives and the Parallel Programming

Library.

After the initialisation phase and before starting the Pre-stage, we use

the m-seLprocs microtasking routine to declare the number of processors

assigned to our task (up to 9 processors). The Pre-stage, Stage 1 and Stage 2

can be parallelized by simply using the Doacross parallel directive, since

they consist of an independent loop, namely a loop in which no iteration

depends the calculations in any other iteration. Since Stage 3 shows a higher

complexity, we need to use the routines from the Parallel Programming

Library, organizing all the operations into a subroutine (stage 3) that will

be performed in parallel.

We call the m_fork microtasking routine to fork the set number of child

processes and assign them to the subroutine stage 3. Depending on which

iteration of the third stage we are considering, each forked child process 'calls'

the subroutine stage 3 and performs the updating of array u and matrix g,

working on different subsets of components of the same u and g. The size of

these subsets varies according to the current iteration number, namely

sIze = 2(k+ 1) during the eh iteration

110

Different child processes work on different subsets of components, so that

the operations performed by one process are totally independent from the

calculations done by another process, though all of them are updating the

same array u and matrix g.

For example, during iteration k

equal to 4 and therefore:

1 the size of each components subset is

- the first child process updates the first 4 elements of u and the first 4

rows of g;

- the second child process updates components from 5 to 8 of u and rows

from 5 to 8 of g;

- and so on.

The index of the current component (or row) where each single child process

has to start updating is given by the subroutine partition. According to the

values of two logical variables go and var, the subroutine partition assigns

the appropriate value of the updating starting index; this value is stored in

the integer variable begin.

The variable go states whether there are more components to be updated (go

= true) or if the work concerning the current iteration has been completed

(go = falBe).

The logical variable var is a flag control for the particular case: begin = 1.

The use of var is necessary to re-initialise to 1 the value of begin at the

beginning of each new iteration. Starting one iteration, we have var = true.

After the first child process has called the subroutine partition and initialised

begin = 1, the logical value of var becomes falBe and it remains false for each

successive calling processes, until the iteration has been completed.

111

The subroutine partition is written inside a 'locked region', to avoid the

possibility of two child processes calling this subroutine at the same time and

therefore accessing the same shared value of begin. To create this protected

region in the Fortran code, we have used the m-Iock and the m_unlock

microtasking routines.

Since the number of the current kth iteration is essential to decide the value

of variables begin and size, the iteration number k is given as an argument of

the subroutine stage 3.

We can schematize the parallel operations performed in Stage 3 as follows:

- a set number of child processes is created and the current iteration

number k is passed to subroutine stage 3j

- each child process 'goes' to the subroutine partition and is given its own

updating starting indexj

- each process performs all the operations on the appropriate subset of

components of vector u and of matrix gj

- when its task is finished, each child process '~oes' again to subroutine

partition to find out if there is more work to dOj

- when the kth iteration has been completed, we call the m_sync

microtasking routine, to synchronize all the processes and to assure they

have all finished the tasks related to iteration kj

- finally, when all the q - 1 iterations have been terminated, we 'kill' all

the forked processes by using the m_kilLprocs routine from the Parallel

Programming Library.

At this point, we write all the output data, i.e. the dimension problem

parameters, the obtained solution u, the error between the exact solution

and u, the computing time (given in seconds).

112

The routine used to time our program is the _clock_time routine, written in

C language.

The two subroutines dmatvet and matvet, in our Fortran program, are

used respectively during Stage 1 and Stage 3 to perform matrix/vector

multiplications.

Before concluding this description of the Recursive Decoupling routine, we

need to make one more observation.

The last iteration of Stage 3 is performed serially, by using the subroutine

stage 33. During this final iteration, in fact, the following values

k=q-l szze = 2q = n

are assigned. This means that, even if performing this iteration in parallel, all

the work is done by only one process, since the current subset of components

of u and g coincides with the whole vector u and the whole matrix g.

Since the implemented Fortran routine is synchronous and no matter what

the dimension of the tridiagonal linear system, the calculations involved in

the last iteration are carried out by only one processor. Therefore, we can

proceed in two ways:

i) perform q-2 iterations in parallel and then the last one serially, using two

different subroutines (stage 3 and stage 33), to implement the parallel

code and the serial code;

ii) perform all the q - 1 iterations in parallel, using the subroutine stage 3

only, but leaving all the child processes except one in a spinning state

during the last iteration.

113

The above mentioned two ways have been implemented in two different

versions (version Parallel.f and version Paralleli.f respectively) of the

Recursive Decoupling routine. By testing them on different coefficient

matrices, it has been proved that choice (i) is slightly less efficient than

choice (ii) in terms of elapsed time (see tables of results in the next

paragraph).

There is a third possible way of performing the iterations of Stage 3, which

is based on the following observation: no matter what the dimension of the

system, the second last iteration is always performed by 2 child processes and

the third last iteration by 4 child processes. Therefore we can:

- use a maximum number of processors to perform iterations from 1

to q - 4;

- use 4 processors during the (q - 3)th iteration;

- use 2 processors during the (q - 2)th iteration;

- use 1 processor during the (q - 1)th iteration (the last one).

The above scheme, though, involves several calls to the m-seLprocs, m_fork

and m_kilLprocs routines. This is relatively expensive in terms of the overall

computational cost. Thus, the version of the Recursive Decoupling routine

implementing this third choice (version Parallelo.f), therefore, is more time

consuming than the previous two versions.

These results are shown in more detail in the following paragraph 5.S.

114

5.B. Numerical Experiments and Remarks

In this paragraph numerical results are reported, concerning the solution of

tridiagonallinear systems by means of the Recursive Decoupling routine, on

the Balance 8000 parallel machine.

Similar to the Wang routine (see paragraph 4.4), the following tables group

together the execution timing (both for the sequential and the parallel

versions of the algorithm), the experimental speed-up (to be compared with

the expected speed-up) and the efficiency parameters.

The maximum error E max , average error Eav and maximum relative error

Er are also presented, in order to study the degree of accuracy obtained

by the Recursive Decoupling method. These error measurements have been

calculated according to formulae (4.4).

All the results shown are related to the two test tridiagonal systems presented

in paragraph 4.4 (see figure 4.5 and figures 4.6 & 4.7).

First of all, the accuracy results are shown in the following table 5.33. These

results are general to all the versions of the Recursive Decoupling Fortran

program, including the sequential version. Unlike the Wang routine, the

accuracy obtained when using the Recursive Decoupling routine to solve the

first example does not depend on the number of processors used. In this case

the random properties observed in the accuracy results of the Wang program

does not occur.

115

TABLE 5 .. ~.~

Maximum Error E ma, Average Error Ea. Maximum Relative Error Er

n=64

q=6 .0000005364 .0000001230 .0000005448

n=128

q=7 .0000021458 .0000011813 .0000021626

n=256

q=8 .0000027418 .00000122282 .0000027525

n=512

q=9 .0000067949 .0000036428 .0000068082

n=1024

q=10 .0000085235 .0000038184 .0000085318

Accuracy results obtained when using any versIOn of the Recursive Decoupling

routine to solve the first example system (4.5).

As in the case of the Wang method, 100% accuracy is reached by the Recursive

Decoupling routine in the solution of the second test system.

The following tables show the execution times obtained when running the

R. D. routine on the two test examples. The speed-up and efficiency

parameters are also calculated and reported in the same tables. Both the

elapsed times and the reclaimed times are given in different sets of tables for

each one of the three versions of the Recursive Decoupling routine (for the

definition of "reclaimed time" see paragraph 4.4).

The notation adopted is as for the Wang algorithmic results.- Fot' what
COhcel-l'Il> acc"l"'a c >, l1'Ieas,:, l"etM enl: s. Spe.e.d- \If and Efficiency
ot'e comrl.ll:e.d. a", clesc"'lbed in cnepl:.e.I-'~.

A slight variation occurs in the results which is probably due to overheads

arising from manipulation and allocation of different stack sizes.

116

TABLE 5.34

T. Tp Obtained Sp (n) Expected S.(n) Efficiency E.(n)

n=64

q=6 1.3620 1.636000 .8325 2.00 .2081

p=4

n=128

q=7 5.4500 4.396000 1.2398 2.00 .3099

p=4

n=256

q=8 23.6990 15.278500 1.5511 2.00 .3878

p=4

n=512

q=9 112.2330 58.438510 1.9205 2.00 .4801

p=4

n=1024

q=10 493.0700 230.670000 1.9035 2.00 .4759

p=4

T. T. Obtained Sp(n) Expected S. (n) Efficiency Ep(n)

n=64

q=6 1.3620 2.229000 .6110 2.6667 .0764

p=8

n=128

q=7 5.4500 4.932500 1.1049 2.6667 .1381

p=8

n=256

q=8 23.6990 15.612500 1.5180 2.6667 .1897

p=8

n=512

q=9 112.2330 57.832990 1.9406 2.6667 .2426

p=8

Elapsea times (in seconas), speea-up ana efficiency obtained when using the Recursive

Decoupling routine, version Parallel.f, to solve the first example system (.I.5).

117

TABLE 5.35

T, To Obtained So(n) Expected Sp (n) Efficiency Ep(n)

n=64

q=6 1.3620 .91250 1.4926 2.00 .3732

p=4

n=128

q=7 5.4500 3.60000 1.5139 2.00 .3785

p=4

n=256

q=8 23.6990 14.23700 1.6646 2.00 .4162

p=4

n=512

q=9 112.2330 57.39000 1.9556 2.00 .4889

p=4

n=1024

q=10 439.0700 228.78000 1.9192 2.00 .4798

p=4

T, Tp Obtained Sp(n) Expected Sp (n) Efficiency Ep(n)

n=64

q=6 1.3620 .89650010 1.5192 2.6667 .1899

p=8

n=128

q=7 5.4500 3.49500000 1.5594 2.6667 .1949

p=8

n=256

q=8 23.6990 13.66250000 1.7346 2.6667 .2168

p=8

n=512

q=9 112.2330 55.30500000 2.0293 2.6667 .2537

p=8

Reclaimed times (in seconds), speed-up and efficiency obtained when using the Recursive

Decoupling routine, version Parallel.J, to solve the first example system (4-5).

118

TABLE 5.36

T, Tp Obtained Sp(n) Expected Sp(n) Efficiency Ep(n)

n=64

q=6 1.3620 1.6320 .8346 2.00 .2086

p=4

n=128

q=7 5.4500 4.3940 1.2403 2.00 .3101

p=4

n=256

q=8 23.6990 15.2640 1.5526 2.00 .3882

p=4

n=512

q=9 112.2330 58.4970 1.9186 2.00 .4797

p=4

n=1024

q=1O 439.0700 230.4500 1.9053 2.00 .4763

p=4

T, Tp Obtained Sp(n) Expected Sp(n) Efficiency Ep(n)

n=64

q=6 1.3620 2.2230000 .6127 2.6667 .0766

p=8

n=128

q=7 5.4500 4.9309990 1.1053 2.6667 .1382

p=8

n=256

q=8 23.6990 15.5980000 1.5194 2.6667 .1899

p=8

n=512

q=9 112.2330 57.9010000 1.9384 2.6667 .2423

p=8

Elapsed times (in seconds), speed-up and efficiency obtained when using the Recursive

Decoupling routine, version Paral/elI, to solve the second example system (4-6 fj 4-7).

119

TABLE 5.37

T. Tp Obtained Sp(n) Expected Sp(n) Efficiency Ep(n)

n=64

q=6 1.3620 .908000000 1.5000 2.00 .3750

p=4

n=128

q=7 5.4500 3.594000000 1.5164 2.00 .3791

p=4

n=256

q=8 23.6990 14.215000010 1.6672 2.00 .4168

p=4

n=512

q=9 112.2330 57.327000000 1.9578 2.00 .4894

p=4

n=1024

q=1O 439.0700 228.430000000 1.9221 2.00 .4805

p=4

T. Tp Obtained Sp(n) Expected Sp (n) Efficiency Ep (n)

n=64

q=6 1.3620 .88000020 1.5477 2.6667 .1935

p=8

n=128

q=7 5.4500 3.47900100 1.5665 2.6667 .1958

p=8

n=256

q=8 23.6990 13.77000000 1.7211 2.6667 .2151

p=8

n=512

q=9 112.2330 55.39700000 2.0260 2.6667 .2532

p=8

Reclaimed times (in seconds), speed-up and efficiency obtained when usmg the Recursive

Decoupling routine, version Paral/elJ, to solve the second example system (i.6 f3 .{.7).

120

TABLE 5.42

T. Tp Obtained Sp(n) Expected Sp(n) Efficiency Ep(n)

n=64

q=6 1.3620 1.9460000 .6999 2.00 .1750

p=4

n=128

q=7 5.4500 4.7220010 1.1542 2.00 .2885

p=4

n=256

q=8 23.6990 15.7430000 1.5054 2.00 .3763

p=4

n=512

q=9 112.2330 59.927500 1.8728 2.00 .4682

p=4

n=1024

q=lO 493.0700 234.7800000 1.8701 2.00 .46750

p=4

T. Tp Obtained Sp(n) Expected Sp (n) Efficiency Ep(n)

n=64

q=6 1.3620 2.539000 .5364 2.6667 .0671

p=8

n=128

q=7 5.4500 5.262000 1.0357 2.6667 .1295

p=8

n=256

q=8 23.6990 16.006000 1.4806 2.6667 .1851

p=8

n=512

q=9 112.2330 59.172010 1.8967 2.6667 .2371

p=8

Elapsed times (in seconds), speed-up and efficiency obtained when using the Recursive

Decoupling routine, version Parallelo.!, to solve the first example system (4.5).

125

TABLE 5.43

T, Tp Obtained Sp(n) Expected ~(n) Efficiency Ep(n)

n=64

q=6 1.3620 .91000010 1.4967 2.00 .3742

p=4

n=128

q=7 5.4500 3.60500000 1.5118 2.00 .3779

p=4

n=256

q=8 23.6990 14.37000000 1.6492 2.00 .4123

p=4

n=512

q=9 112.2330 57.49000000 1.9522 2.00 .4881

p=4

n=1024

q=lO 439.0700 227.89000000 1.9267 2.00 .4817

p=4

T, Tp Obtained Sp(n) Expected Sp (n) Efficiency Ep(n)

n=64

q=6 1.3620 .89000030 1.5303 2.6667 .1913

p=8

n=128

q=7 5.4500 3.49800000 1.5580 2.6667 .1948

p=8

n=256

q=8 23.6990 13.88400000 1.7069 2.6667 .2134

p=8

n=512

q=9 112.2330 55.42699000 2.0249 2.6667 .2531

p=8

Reclaimed times (in seconds), speed-up and efficiency obtained when uSIng the Recursive

Decoupling routine, version ParalleloJ, to solve the first example system (4.5).

126

TABLE 5.44

T, Tp Obtained Sp(n) Expected Sp(n) Efficiency Ep(n)

n=64

q=6 1.3620 1.9400 .7021 2.00 .1755

p=4
.

n=128

q=7 5.4500 4.7280 1.1527 2.00 .2882

p=4

n=256

q=8 23.6990 15.6560 1.5137 2.00 .3784

p=4

n=512

q=9 112.2330 59.8620 1.8749 2.00 .4687

p=4

n=1024

q=lO 439.0700 234.1900 1.8748 2.00 .4687

p=4

T. Tp Obtained Sp(n) Expected Sp (n) Efficiency Ep(n)

n=64

q=6 1.3620 2.5300 .5383 2.6667 .0673

p=8

n=128

q=7 5.4500 5.2560 1.03691 2.6667 .1296

p=8

n=256

q=8 23.6990 15.9860 1.4825 2.6667 .1853

p=8

n=512

q=9 112.2330 59.1970 1.8959 2.6667 .2370

p=8

Elapsed times (in seconds), speed-up and efficiency obtained when using the Recursive

Decoupling routine, version ParalleloI, to solve the second example system (1.6 81.7).

127

TABLE 5.45

T. Tp Obtained Sp{ n) Expected Sp (n) Efficiency Ep{n)

n=64

q=6 1.3620 .918000100 1.4837 2.00 .37090

p=4

n=128

q=7 5.4500 3.610000000 1.5097 2.00 .3774

p=4

n=256

q=8 23.6990 14.233000010 1.6651 2.00 .4163

p=4

n=512

q=9 112.2330 57.390000000 1.9556 2.00 .4889

p=4

n=1024

q=10 439.0700 228.360000000 1.92270 2.00 .4807

p=4

T. Tp Obtained Sp{n) Expected Sp{ n) Efficiency Ep{ n)

n=64

q=6 1.3620 .8980 1.5167 2.6667 .1896

p=8

n=128

q=7 5.4500 3.4990 1.5576 2.6667 .1947

p=8

n=256

q=8 23.6990 13.7700 1.7211 2.6667 .2151

p=8

n=512

q=9 112.2330 55.4100 2.0255 2.6667 .2532

p=8

Reclaimed times (in seconds), speed-up and efficiency obtained when using the Recursive

Decoup/ing routine, version Paralle/o,f, to solve the second example system (,{.6 8 4.7).

128

6. Conclusions and Further Work

6.1. Conclusions and Suggestions for Further

Work

In this thesis we have presented a new method for solving tridiagonal systems

of linear equations and we have used the Wang method as a term of reference.

Both algorithms belong to the "partitioning" class methods, but they have

very different behaviour.

The Wang routine, though extremely fast in term of execution times, shows

negative characteristics, such as a rapid decrease in accuracy results as the

dimension of the problem increases.

This is due to the amount of data transferred between. the processors of a

parallel computer (as in the Balance 8000). The partitioning process in the

Wang method, in fact, is such that the elimination process inside one group

of k rows (k = n/ p) requires more than just one processor. That is to say,

the p subsytems created by the partitioning process are not independent from

each other (we recall that n indicates the dimension of the problem, while p

is the number of processors used) [20].

The Recursive Decoupling routine cannot compete with the Wang routine in

terms of execution times: the new method we presented is much slower than

that of Wang.

On the other hand, the Recursive Decoupling method shows better

behaviour in terms of accuracy, the decrease in accuracy being much less as

the dimension increases.

The memory allocation requirement for the Recursive Decoupling routine

is not favourable, compared to the same requirement in the Wang routine.

129

This is due to the problem discussed in paragraph 5.7, concermng the

implementation of the tree structure of figure 5.17.

We suggest that an implementation of the Recursive Decoupling method in

other programming languages, such as Pascal or C, would probably result

in an improvement in the memory allocation requirements. The same

improvement would probably be possible by using the new version of Fortran

compiler ("Fortran 90"), which allows the programmer to allocate memory

dynamically and permits direct operations on data structures; such as direct

matrix multiplication and scalar product of vectors.

In terms of speed-up and efficiency, the two methods under comparison can

be considered equivalent.

We would like to underline that the main characteristic of the Recursive

Decoupling method is given by its partitioning process, which leads to

independent subsystems (that is to say, it leads to independent sets of data

to be assigned to each single processor).

The relative simplicity of the formulae involved should also be considered.

The partitioning of the original linear system into 2 x 2 independent

subsystems allows the immediate and explicit expression of the inverse matrix.

On the other hand, the same partitioning process results in high execution

times; the reason being that the calculation performed by each processor

is too small, compared to the overhead involved in the creation of multiple

processes.

As a consequence of all these considerations, a suggestion for further research

could consist of increasing the size of the subsystems into which the original

130

system is partitioned. By recursively partitioning the given tridiagonal

system into 4 x 4 or even higher dimension independent subsystems, the

calculation performed by each processor becomes more substantial; that is to

say, the overhead due to multiple process creation becomes less relevant.

This different way of performing the partitioning process (in the Recursive

Decoupling algorithm) will certainly lead to a loss in the simplicity of the

formulae involved.

The balance between positive and negative aspects of this possible

partitioning process is currently under investigation; this development of

the Recursive Decoupling method can be considered as the core for further

research.

Other possible developments of the method presented are represented by the

adaptation of the routine to special cases, such as the solution of tridiagonal

linear systems with constant sub-diagonal, constant main diagonal and

constant upper diagonal matrix elements (i.e. Toeplitz systems).

To conclude, we mention the fact that, often, many independent tridiagonal

linear systems need to be solved. We can then take advantage of the

independence of the systems, as well as the independent characteristics of

the partitioning process, and apply the Recursive Decoupling algorithm to a

single large tridiagonal system.

131

For example, if we need to solve two systems of dimension 3 x 3 and 4 x 4

respectively, we can consider the solution of a single system of dimension

7 x 7, as follows:

bl Cl

a2 b2 C2

aa ba 0
0 Bl Cl

A2 B2 C2
Aa Ba Ca

A4 B4

When considering this "linking" of parallel systems, the balance between

the performance gain (which is directly proportional to the increase of

the problem dimension) and the memory allocation requirement must be

investigated.

132

References

1. Bekakos, M. P., "Design and Analysis of Parallel Algorithms", Thesis

for the Degree of Master of Science in Theory and Application of

Computation, Supervisor Prof. D. J. Evans, Loughborough University

of Technology, Loughborough, Leics., U.K., September 1981.

2. Brawer, S., "Introduction to Parallel Programming", Encore Computer

Corporation, Marlborough, Massachussetts, Academic Press Inc., 1989.

3. Cowell, W. R., "User's Guide to Toolpack/1. Tools for Data

Dependency Analysis and Program Transformation", Preprint ANL-88-

17, Mathematics and Computer Science Division, Argonne National

Laboratory, University of Chicago, Chicago, U.S.A., September 1988.

4. Cowell, W. R., Thompson, C. P., "Tools to Aid in Discovering

Parallelism and Localising Arithmetic in Fortran Programs", Preprint

MCS-P6-1088, Mathematics and Computer Science Division, Argonne

National Laboratory, University of Chicago, Chicago, U.S.A., October

1988.

5. Evans, D. J., "A Recursive Decoupling Method for Solving Tridiagonal

Linear Systems", International Journal Comp. Maths., 33,1990, pp.95-

102.

6. Evans, D. J., "Parallel Algorithm Design", Computer Studies report 463,

Dept. of Computer Studies, Loughborough University of Technology,

Loughborough, Leics., U.K., November 1988.

7. Evans, D. J., "Parallel Numerical Algorithms for Linear Systems", in

Parallel Processing Systems, ed. D. J. Evans, Cambridge University

Press, 1982, pp.357-383.

8. Evans, D. J., "A Comparison of Sequential and Parallel Elimination

Methods for Tridiagonal Matrices", Computer Studies report 436,

Dept. of Computer Studies, Loughborough University of Technology,

Loughborough, Leics., U.K., May 1988.

9. Evans, D. J., "Multitasking Strategies in Parallel Computing", Computer

Studies report 557, Parallel Algorithms Research Centre, Loughborough

University of Technology, Loughborough, Leics., U.K., October 1990.

10. Evans, D. J., Forrington, C. V. D., "Note on the Solution of Certain

Tridiagonal Systems of Linear Equations", Computer Journal, 5, 1963,

pp.327-328.

11. Evans, D. J., Hatzpopoulos, "A parallel Linear System Solver",

International Journal Comp. Maths., 7, 1979, pp.227-238.

12. Evans, D. J., Wheat, M., "Parallel Processing on the Balance 8000

Computer", P.A.R.C. Internal Memoranda, Dept. of Computer Studies,

Loughborough University of Technology, Loughborough, Leics., U.K.,

1989.

13. Flynn, M. J., "Very High Speed Computing Systems", Proc. I.E.E.E.,

14,1966, in [23], p.17.

14. Gregory, R. T., Karney, D. L., "A Collection of Matrices for Testing

Computational Algorithms ", Wiley-Interscience, a division of John Wiley

& Sons, 1969, pp.40-52.

15. Heller, D., "A Survey of Parallel Algorithms in Numerical Linear

Algebra", S.I.A.M. Review, 20, 4, October 1978, in [23], p. 35.

16. Karp, A. H., "Programming for Parallelism", Computer, 23, May 1987,

pp.43-57.

17. Kogge, P. M., " Parallel Solution of Recurrence Problems", IBM J. Res.

Develop., 18, March 1974, pp.138-148, in [23J, p.36.

18. Kowalik, J. S., Lord, R. E., Kumar, S. P., "Design and Performance

of Algorithms for MIMD Parallel Computers. Tridiagonal Linear

Equations", High-Speed Computation, ed. J. S. Kowalik, NATO

A.S.l. Series, Springer-Verlag Berlin/Heidelberg/New York/Tokio, 1984,

pp.267 -275.

19. Kuck, D. J., Muraoka, Y., "Bounds on the Parallel Evaluation of

Arithmetic Expressions using Associativity and Commutativity", Acta

Informatica, 3, 3, 1974, pp.203-216, in [23J, p.31.

20. Michielse, P. H., Van Der Vorst, H. A., "Data Transport in Wang's

Partition Method", Report 86-32, Dept. of Mathematics and Informatics,

Delft University of Technology, Delft, The Netherlands, 1986.

21. Reuter, R., Zecca, V., "A Parallel Method for Solving Tridiagonal

Systems of Linear Equations on the IBM 3090 Vector Multiprocessor",

High Performance Computing, J. L. Delhaye & E. Gelenbe editors,

Elsevier Science Publishers B. V. (North Holland), 1989, pp.33-43.

22. Ruggiero, V., Duri', F., "Analisi di Algoritmi per la Risoluzione di

Sistemi Tridiagonali su un Calcolatore Vettoriale", Atti dell'Accademia

delle Scienze dell'Istituto di Bologna, Bologna, Italia, 1989.

23. Schendel, U., "Introduction to Numerical Methods for Parallel

Computers", Ellis Horwood Ltd., 1984.

24. Sequent Computer Systems, "Guide to Parallel Programming on Sequent

Computer Systems", 1987.

25. Sequent Computer Systems, "Dynix Fortran Compiler User's Manual",

Man-051O-00, March, 21, 1986.

26. Sequent Computer Systems, "Balance 8000 System Technical

Summary", Man-OllO-00, December 12, 1985.

27. Sherman, J., Morrison, W. J., "Adjustment of an Inverse Matrix

Corresponding to Changes in a Given Column or a Given Row of the

Original Matrix", Ann. Math. Stal., 20, 1949, pp.621.

28. Stone, H. S., "An Efficient Parallel Algorithm for the Solution of a

Tridiagonal Linear System of Equations", J.A. C.M., 20, 1, January 1973,

pp.27-38.

29. Stone, H. S., "Parallel Tridiagonal Equations Solvers", A. C.M.

Transactions on Mathematical Software, 1, 4, December 1975, pp.289-

307.

30. Stone, H. S., "Problems of Parallel Computation", Complexity of

Sequential and Parallel Numerical Algorithms, ed. J. F. Traub, Academic

Press, 1973, in [23], p.13.

31. Wang, H. H., "A Parallel Method for Tridiagonal Equations", A. C.M.

Transactions on Mathematical Software, 57, 2, June 1981, pp.170-183.

Appendix. Further Numerical Experiments

In the following pages additional results are obtained by testing the Recursive

Decoupling routine on further tridiagonal linear systems Ax = d.

Since the exact solution x is, in general, not known, the solution accuracy

is studied by means of "residual" results, that is to say once the computed

solution u has been obtained, we form the residual vector

r = d - Au. (A.l)

The following tables show respectively the quantities:

U max . 11 u 11=

Resmax =11 r 11= (A.2)

R 2::7-1 hi es av =
n

where n is the problem dimension (n = 4,8,16, ... , 1024).

Results in brackets are obtained by testing the Wang routine on the same

tridiagonallinear systems considered in this appendix. Note that in the case

of the Wang routine, results depend on the number p of processors used (also

shown in brackets) unlike the Recursive Decoupling routine results, which are

independent of p.

Test system 3

The third tridiagonal linf'JII system c.onsidererl is

2.05 -1 0 '''1 1
-1 2.05 -1 X2 2

-1 2.05 -1 Xa 3
(A. 3)

-1 2.05 -1 Xn-l n -1
0 -1 2.05 Xn n

TABLE EXAMPLE 9

Calcula.ted SoL Max. Residual Average Residual

ll max R.e'~max Re.'i av

n=4, q=2 7.096779 .0000019073 .0000007153

(p=2) (7.096777) (.0000009537) (.0000002384)

n=8, q=3 32.98121 .0000095367 .0000038147

(p=2) (32.98119) (.0000038147) (.0000014305)

n=16, q=4 131.4839 .0000457764 .0000162125

(p=4) (131.4838) (.0000152588) (.0000076294)

n=32, q=5 391.4189 .0000915527 .0000259876

(p=8) (391.4184) (.0000915527) (. 0000230074)

n=64, q=6 970.6665 .0002441406 .0000594854

(p=8) (970.6656) (. 0002441406) (.0000512004)

n=128, q=7 2189.229 .0009765625 .0001681149

(p=8) (2189.226) (.0004882812) (.0001171231)

n=256, q=8 4687.417 .0019531250 .0003601462

(p=8) (4687.410) (.0019531250) (. 0003023446)

n=512, q=9 9745.392 .0039062500 .0007368997

(p=8) (9745.369) (.0039062500) (. 0004862323)

n=1024, q=lO 19923.24 .0097656250 .0015076140

(p=8) (19923.19) (.0068359370) (.0007717274)

Test system 4

Th" fourth tridiagonal linear system considered is

2.05 1 0 Xl 1
-1 2.05 1 Xz 2

-1 2.05 1 X3 3
- (A. 4)

-1 2.05 1 Xn_l n -1
0 -1 2.05 Xn n

TABLE EXAMPLE -4

Calculated Sol. Max. Residu"l Average Residl11l1

'lJ. max Re'~ma:r: R,p..·c;av

n=4, q=2 2.28882 .0000002384 .0000000596

(p=2) (2.28882) (.0000004768) (.0000001788)

n=8, q=3 5.020085 .0000004768 .0000001564

(p=2) (5.020085) (.0000009537) (.0000002086)

n=16, q=4 10.5104 .0000019073 .0000004582

(p=4) (10.5104) (.0000019073) (. 0000006407)

n=32, q=5 21.49187 .0000038147 .0000012945

(p=8) (21.49187) (.0000057220) (. 000001 0058)

n=64, q=6 43.4548 .0000114441 .0000029271

(p=8) (43.4548) (.0000076294) (.0000015572)

n=128, q=7 87.38066 .0000228882 .0000057551

(p=8) (87.38067) (.0000305176) (.0000037495)

n=256, q=8 175.2324 .0000610352 .0000100897

(p=8) (175.2324) (.0000610352) (.0000068760)

n=512, q=9 350.9358 .0001220703 .0000187539

(p=8) (350.9358) (.0000915527) (.0000120304)

n=1024, q=1O 702.3428 .0002441406 .0000362289

(p=8) (702.3428) (.0001831055) (.0000258710)

Test system 5

The fifth tridiagonal Iinf'.ar system r.onsidered is

2.02 -2 0 Xl 1
-2 2.02 -2 X2 2

-2 2.02 -2 X3 3
= (A. 5)

-2 2.02 -2 Xn_l n -1

o -2 2.02 Xn n

TABLE EXAMPLE 5

Caknlated Sol. M~x. Residnal A verage Residn~l

'lJ. max Re'';max Re·';av

n=4, q=2 3.511341 .0000009537 .0000004172

(p=2) (3.511341) (.0000009537) (.0000003576)

n=8, q=3 79.42160 .00000324249 .00000214875

(p=2) (79.42368) (.0002746582) (.0000411421)

n=16, q=4 15.58781 .0000114441 .0000049174

(p=4) (15.58777) (.0000801086) (.0000123680)

n=32, q=5 97.00327 .0000915527 .0000297353

(p=8) (97.00712) (.0004806519) (.0000590049)

n=64, q=6 64.05173 .0000762939 .0000200570

(p=8) (64.05173) (.0004043579) (.0000373274)

n=128, q=7 157.22079 .0001373291 .0000356380

(p=8) (157.22080) (.0011291500) (.0000651926)

n=256, q=8 354.9340 .0003356934 .0000830218

(p=8) (354.9276) (.0027465820) (.0000877231)

n=512, q=9 1721.093 .0021972660 .0005718022

(p=8) (1720.767) (.0129394500) (. 0005405098)

n=1024, q=10 1319.145 .0068359370 .0006879344

(p=8) (1319.226) (.0086669940) (.0002056956)

Test system 6

The sixth t.ridiagonru linp.ar system mnsidered is

2 -2 0 Xl 1
-1 2 -1 X2 2

-1 2 -1 Xa 3
- (A. 6)

-1 2 -1 ·T.n-l n-l
0 -1 2 Xn n

" TABLE EXAMPLE 6

Calculat.ed So!. MaJ{. Residual Average Residual

?J. max Re/~max Re.~av

n=4, q=2 18.0 .000009537 .0000007153

(p=2) (18.0) (.000000000) (. 0000000000)

n=8, q=3 115.9999 .000076294 .0000014305

(p=2) (116.0000) (.000038147) (. 0000004 768)

n=16, q=4 807.9993 .0001220703 .0000343323

(p=4) (808.0008) (.0001220703) (.0000238419)

n=32, q=5 5968.004 .0014648440 .0002326966

(p=8) (5968.032) (.000976525) (.0002727509)

n=64, q=6 45727.85 .0039062500 .0010986330

(p=8) (45727.98) (.0078125000) (.0015106200)

n=128, q=7 357695.6 .0937500000 .0106124900

(p=8) (357702.8) (.0937500000) (.0222244300)

n=256, q=8 2828965.0 .5000000000 .0536651600

(p=8) (2828835.0) (.7500000000) (.1765747000)

n=512, q=9 22500730.0 5.0000000000 1.0875240000

(p=8) (22496650.0) (8.0000000000) (1. 5995480000)

n=1024, q=lO

From the given examples we can see that for matrices with reasonable P

condition number (e.g. test system 4) the accuracy given by the Recursive

Decoupling algorithm is 10-4 ~ 10-6 , even for 9 levels of recursions.

However for the ill conditioned examples 3,5,6 it is clear that the rounding

errors do increase dramatically with increasing recursion levels; this affects

the obtained accuracy, suggesting that in these cases the maximum number

of recursion levels is 4 -;- 5 in order to achieve solution accuracy of 10-4 .

In these cases it would be advisable to stop the recursion at level 4 (or 5) and

proceed to solve smaller tridiagonal subsystems by the Gaussian elimination

algorithm (version for tridiagonal systems).

In order to achieve solution accuracy in the case of ill conditioned or quasi

singular systems, it could also be necessary to perform the calculations in

double/multiple precision arithmetic. This would account for more costs in

terms of memory requirements and computing time.

The numerical results contained in this appendix confirm all the conclusions

in the thesis concerning the Wang algorithm and the Recursive Decoupling

algori thtl).

Appendix. Programs Listings

Program Decoupling. Version Parallel.f

This program solves tridiagonal linear systems Au = d using a recursive

decoupling technique. The system considered is of the form

bl Cl Ul ~
a2 b2 C2 0 U2 d2

a3 b3 C3 Ua d3

o

This solution routine is formulated into a preliminary stage and then into

three different sections.

Preliminary Stage or Pre-stage

The coefficient matrix A is rearranged into the following form

(j)

a2 e2 0 X2

e3 C3 m-I X3

a4 e4 +2:: X4

j~l

0 en-l Cn-l Xn-l

an en Xn

where
el = bl

e2j-l = b2j - l - C2j-2 when j = 2, ... , m

Yl
Y2

Y3

Y4

Yn-l

Yn

e2j = b2j - a2j+l when j = 1, . .. , m-I

en = bn

and
when k = 2j, 2j + 1

Xk = 0 otherwise

when k = 2j

when k = 2j + 1

Yk = 0 otherwise

(j)T

that is x(j) = (0, ... ,0,1,1,0, . .. ,O)T, y(j) = (0, ... ,0, a2j+l, C2j, 0, ... ,O)T.

In matrix notation, A is then written as follows

J1 Xl
(j)

Y1
(j)T

J2
m-I

X2 Y2 +2:
j=1

Jm Xm Ym

where n = 2m.

The 2x2 matrices Jj are immediately invertible, by inspection

I.e.

if

then J-:- 1 = _1_ (e2j
] ~. -a2·]]

Stage 1

m systems of the form
(

U2 j -l) _ J-1 (d2j - 1) I d -]. d aresove.
U2j 2j

Stage 2

m systems of the form
(

92j-l 'k) = J-:-1
92· k]],

(
X2j-l k) , are solved, where k

X2j,k

ranges from 1 to q - 1 and q = log2 n.

Stage 3

Matrices 9j,k and vector u are updated using the Sherman-Morrison formula.

The final solution u is obtained.

Description of variables used

ndim : max problem dimension.

mdim : ndim/2.

qdim : max exponent (to give max problem dimension ndim = 2qdim).

n current problem dimension.

m: n/2.

q : exponent (to give problem dimension n = 2q).

a, b, c : three n-dimensional vectors, storing coefficient matrix A.

u : n-dimensional vector, storing unknown vector (and solution vector, at

last step).

d n-dimensional vector, storing data vector.

e : n-dimensional vector, used to initialise matrices Jj.

g : rectangular matrix of dimension nx(q - 1), initialised in stage 2, used

and updated in stage 3, in order to update solution vector u.

x : rectangular matrix of dimension nx(q - 1), used to factorise coefficient

matrix A and to update matrix 9 and vector u during stage 3 (the

variable x is also used to store values of factor array y so that it is

no longer necessary to use y).

delta: rn-dimensional vector, storing values of 6.;.

jjl : array of dimension 2x2xm, storing inverses of matrices Jj .

ill : 2x2 work matrix, used in stage 1.

uu work vector of dimension 2, used in stage l.

dd as uu.

sol: n-dimensional vector, storing exact solution.

rsol : real value used to calculate exact solution.

rec : real value used to calculate 1/ D.j.

timel, time2 : integers used to calculate elapsed time.

iniz, ifine : integers used in stage 2 to give first, last and step values of do

loop indices.

begin, size integers used in stage 3 to give first and last step of calculation

in do loops.

var, go logical variables, used in stage 3 to signal end-of-work to child

processes.

nprocs : number of processors used.

mJiet_procs : parallel directive to set number of processors.

m_fork : parallel directive to fork child processes.

Subroutines used

stage3 : to perform calculations required during stage 3 in parallel.

stage33 : to perform last step of stage 3.

partition: returns the updated value of integer variable begin to each

calling processor, so that a defined part of the total work is

assigned to each processor.

dmatvet : to perform matrix/vector multiplication during stage l.

matvet : to perform matrix/vector multiplication during stage 3.

Description of variables used in subroutines stage3 and stage33

n, rn, q : as in main program.

u : as in main program.

. .
g, x : as In main program.

yg : real, work variable used to store the summation of products x j,k gj,k,

as required in the Sherman-Morrison formula.

alfa : real, storing value of 1/(1 + yg).

u2, u3 : n-dimensional work vectors, used to update vector u.

g2, g3 : n-dimensional work vectors, used to update matrix g.

rngy : square work matrix of dimension nxn, used to store products

alfa gj,k Xj,k> as required in the Sherman-Morrison formula.

begin, size : as in main program.

. .
var, go : as In main program.

Note

The above specifications and notation apply to all the three Fortran versions

of the Recursive Decoupling method (Parallel.J, Paralleli.J, Parallelo./), with

the only exception that subroutine Stage SS is not used in version Paralleli.f.

In the following, the Fortran code for the three mentioned versions is given

(related to the first test system).

In addition, we include two more the Fortran listings of version Parallel.J,

related to the second test system and to the calculation of "reclaimed times"

respectively.

In order to calculate the reclaimed times, it has been necessary to parallelize

the Pre-stage, Stage 1 and Stage 2 by using the mJork microtasking routine,

instead of using the Doacross parallel directive.

For consistency reasons, all the Fortran listings contains the mJork construct

to perform all the stages required by the algorithm.

Version Parallel.f

(first example)

$system
c Parallel.f
c Giulia Spaletta - Dept.of Computer studies - L.U.T. - Sept.l99l

program decoupling

c

c

c

c

c

c

c

c

c

::

::
::

integer ndim,mdim,qdim
parameter(ndim=1024,mdim=5l2,qdim=lO)

EXTERNAL prestage
EXTERNAL stagel
EXTERNAL stage2
EXTERNAL stage3

COMMON/constl/n,m,q
COMMON/const2/a,c
COMMON/const22/e
COMMON/const3/jjl
COMMON/const4/d

COMMON/shar20/u
COMMON/shar3/g,x

COMMON/logi/var,go
COMMON/misura/size

real a(ndim),b(ndim),c(ndim)
real u(ndim)
real d(ndim)
real e(ndim)
real g(ndim,qdim-l)
real x(ndim,qdim-l)
real jj1(2,2,mdim)

real sol(ndim)
real rso1

integer i,j,k,l
integer n,m,q
integer time,time1,time2
integer iniz,ifine

integer*4 nprocs
integer*4 m_set-procs
integer*4 m_fork

integer begin, size
logical var, go

EQUIVALENCE(sol,e)

open(4,file='Paralleldat',status='new')

write(4,*)
write(4,*) 'program Decoupling (Version Parallel.f -
write(4,*) , data file Paralleldat) ,
write(4,*) 'Number of used processors is as follows:'
write(4,*)' for iterations 1,2,. ,q-2 .•.•..
write(4,*)' for iteration q-l ...••.
write(4,*)

~99 continue

~ reading input data
write(*,*)

nprocs procs. '
1 processor'

write(*,*) 'exponent q, where n=2**q or n=2*m (2 <= q <= 9)'

read(*,*) q
n=2**q
m=nj2
write(*,*)
write(*,*) 'num of
write(*,*) ,
write(*,*) ,
write(*,*) ,
write(*,*) ,
read(*,*) nprocs

processors I

n.b. q=2 •.•••. nprocs=l'
q=3 •.•••• nprocs=2 '
q=4 •.•••• nprocs=4 '
q>=5 .•.•• nprocs=8 '

c
c initialising time variables

timel=O
time2=O
time=O

c
c initialising coefficient matrix A, unknowns vector u, data vector d

do 2 i=l,n
b(i)=2.0
d(i)=O.O
u(i)=O.O

2 continue
d(l)=l.O
do 3 i=l,n

a(i)=-l.O
c(i)=-l.O

3 continue
c
c initialising arrays xj, gj

do 4 j=l,q-l
do 4 i=l,n

x(i,j)=O.O
g(i,j)=O.O

4 continue
c
c

(n.b. yj is not necessary)

c initialising inverses of matrices Jj
e(l)=b(l)
e(n)=b(n)
do 7 j=2,m

e(2*j-l)=b(2*j-l)-c(2*j-2)
7 continue

do 8 j=l,m-l
e(2*j)=b(2*j)-a(2*j+l)

B continue

c

: setting number of processors
il=m_set-procs(nprocs)

: PRESTAGE:
: calculating delta(j)
: calculating inverses of matrices Jj
:

:
:
:
:::
:::

call
call

STAGE 1:

call

m fork(prestage)
m=kill-procs

m_fork (stagel)

c
c
c
c STAGE 2:
c

iniz=l
do 10 k=1,q-1

ifine=2*iniz
call m fork(stage2,k,iniz,ifine)
iniz=i*"iniz

10 continue

c
c
c

call m_kill-procs

c STAGE 3:
c Number of used processors is
c for iterations 1,2,.,q-2
c for iteration q-1
c

do 12 k=1,q-2
begin=l
go=.true.
size=2** (k+1)
var=.true.

as follows:'

call m_fork(stage3,k)
call m_sync

12 continue

c

c

call m_kill-procs

k=q-1
begin=l
go=.true.
size=2**(k+1)
var=.true.

call stage33 (k)

2001 continue

c

c

call _clock_time(time2)

time=time2-time1

rsol=real (n+1)
do 18 l=l,n

sol (l)=real (n+1-l)/rsol
18 continue
::

write(4,*)
write(4,20) (i,sol(i),i=l,n)

20 format(2x, 'sol(',i4,') :',f20.10)

write(4,*)
write(4,30) (i,u(i),i=l,n)

30 format(2x,'u(',i4, '):',f20.10)

do 40 l=l,n
sol(l)=sol(l)-u(l)

10 continue
;

write(4,*)
write(4,60) (i,sol(i) ,i=l,n)

50 format (2x, 'diff(' ,i4, '):' ,f20.10)

write(4,*)
write(4,70)n,m,q

nprocs procs.
1 processor

70 format(2X, 'dimension n:' ,i4,2x, 'factor m:' ,i4,2x, 'exponent q:' ,i4)
c

write(4, *)
write(4,80)nprocs

80 format(2X, 'number of processors nprocs:',i4)
c

write(4,*)
write(4, 90) time/lOO. 0
write(*,*)
write(*,90)time/lOO.0

90 format (2X, 'time in sec.:', f20.l0)
c

c

c
c
c

c

c

c

c

c
c

c

write(*,*)
write(4,*) '***'
write(*,*)
write(*,*) 'continue? (O=NO, l=YES) ,
write(*,*)
read(*,*)num
if(num.ne.O) go to 999

close(4)
stop
end

subroutine prestage
integer ndim,mdim
parameter(ndim=l024,mdim=5l2)

COMMON/constl/n,m,q
COMMON/const2/a,c
COMMON/const22/e
COMMON/const3/jjl

real a(ndim),c(ndim)
real e(ndim)
real jjl(2,2,mdim)

real delta(mdim)
real rec

integer n,m,q

do 1 j=l,m
delta(j)=e(2*j)*e(2*j-l)-a(2*j)*c(2*j-l)

rec=l.O/delta(j)
jjl(l,l,j)=e(2*j)*rec
jjl(l,2,j)=-c(2*j-l)*rec
jjl(2,l,j)=-a(2*j)*rec
jjl(2,2,j)=e(2*j-l)*rec

1 continue

c
c
c

return
end

subroutine stagel
integer ndim,mdim
parameter(ndim=1024,mdim=5l2)

COMMON/constl/n,m,q
COMMON/const3/jjl
COMMON/const4/d

c

c

c
c

COMMON/shar20/u

real u(ndim)
real d(ndim)
real jjl(2,2,mdim)
real jjj(2,2),uu(2),dd(2)

integer n,m,q

do 10 j=l,m
dd(1)=d(2*j-l)
dd(2)=d(2*j)
jjj(l,l)=jjl(l,l,j)
jjj(1,2)=jjl(1,2,j)
jjj(2,1)=jjl(2,1,j)
jjj(2,2)=jjl(2,2,j)
call dmatvet(jjj,dd,uu)
U(2*j-l)=UU(1)
u(2*j)=uu(2)

10 continue

c
c
c

c

c

c

c

c
c

return
end

subroutine stage2(k,iniz,ifine)
integer ndim,mdim,qdim
parameter(ndim=1024,mdim=5l2,qdim=10)

COMMON/constl/n,m,q
COMMON/const2/a,c
COMMON/const3/jjl

COMMON/shar3/g,x

real a(ndim),c(ndim)
real g(ndim,qdim-l)
real x(ndim,qdim-l)
real jjl(2,2,mdim)

integer n,m,q
integer iniz,ifine

do 20 j=iniz,m-iniz,ifine
g(2*j-l,k)=jjl(1,2,j)
g(2*j,k)=jjl(2,2,j)
g(2*j+l,k)=jjl(1,1,j+l)
g(2*j+2,k)=jjl(2,1,j+l)
x(2*j,k)=a(2*j+l)
x(2*j+l,k)=c(2*j)

20 continue

::

::

::

return
end

subroutine stage3(k)
integer nndim,mmdim,qqdim
parameter(nndim=1024,mmdim=5l2,qqdim=10)

COMMON/constl/n,m,q
COMMON/shar20/u
COMMON/shar3/g,x

c

c

c

c

COMMON/logi/var, go
COMMON/misura/size

real u (nndim)
real g(nndim,qqdim-1)
real x(nndim,qqdim-1)
real alfa,yg
real u2(nndim) ,u3(nndim) ,g2(nndim) ,g3(nndim),g4(nndim)
real mgy(nndim,nndim)

integer ir,ic,kk
integer n,m,q,k
integer iriga,icol

integer begin,size
logical gO,var

EQUIVALENCE(u2,g2)
EQUlVALENCE(U3,g3)

B88 continue

::

::

14

::

15
::

16
::

::

116
::

17

call m_lock()
call partition(begin)
call m_unlock()

if (go) then

yg=O.O
do 14 ir=begin,begin+size-1

yg=yg+x(ir,k)*g(ir,k)
continue
alfa=1.O/(1.0+yg)

do 15 ir=begin,begin+size-1
iriga=ir-begin+1

do 15 ic=begin,begin+size-1
icol=ic-begin+1
mgy(iriga,icol)=g(ir,k) *x(ic,k) *alfa
if (ir.eq.ic) then

mgy(iriga,icol)=1.0-mgy(iriga,icol)
else

mgy(iriga,icol)=-mgy(iriga,icol)
endif

continue

do 16 ir=begin,begin+size-1
iriga=ir-begin+1
u2(iriga)=u(ir)

continue

call matvet(mgy,u2,u3,size)

do 116 ir=begin,begin+size-1
iriga=ir-begin+1
u(ir)=u3(iriga)

continue

do 177 kk=k+1,q-1
do 17 ir=begin,begin+size-1

iriga=ir-begin+1
g2(iriga)=g(ir,kk)

continue

call matvet(mgy,g2,g3,size)

117
177
c

c

c
c
c

c

c

c

c

c

c

c
c

else

endif

do 117 ir=begin,begin+size-1
iriga=ir-begin+1
g(ir,kk)=g3(iriga)

continue
continue

return

go to 888

end

subroutine stage33(k)
integer nndim,mmdim,qqdim
parameter(nndim=1024,mmdim=512,qqdim=10)

COMMON/const1/n,m,q
COMMON/shar20/u
COMMON/shar3/g,x

COMMON/1ogi/var, go
COMMON/misura/size

real u (nndim)
real g(nndim,qqdim-1)
real x(nndim,qqdim-1)
real alfa,yg
real u2(nndim) ,u3(nndim),g2(nndim) ,g3(nndim) ,g4(nndim)
real mgy(nndim,nndim)

integer ir,ic,kk
integer n,m,q,k
integer iriga,icol

integer begin,size
logical go, var

EQUIVALENCE(u2,g2)
EQUIVALENCE(u3,g3)

888 continue

c

c

14

15

call partition(begin)

if (go) then

yg=o.o
do 14 ir=begin,begin+size-1

yg=yg+x(ir,k)*g(ir,k)
continue
alfa=1.0/(1.0+yg)

do 15 ir=begin,begin+size-1
iriga=ir-begin+1

do 15 ic=begin,begin+size-1
icol=ic-begin+l
mgy(iriga,icol)=g(ir,k)*x(ic,k)*alfa
if (ir.eq.ic) then

mgy(iriga,icol)=1.0-mgy(iriga,icol)
else

mgy(iriga,icol)=-mgy(iriga,icol)
endif

continue

c

16
c

c

116
c

17
c

c

117
177
c

c

c
c
c

c

c
c

c
c
c

else

endif

do 16 ir=begin,begin+size-1
iriga=ir-begin+1
u2(iriga)=u(ir)

continue

call matvet(mgy,u2,u3,size)

do 116 ir=begin,begin+size-1
iriga=ir-begin+1
u(ir)=u3(iriga)

continue

do 177 kk=k+1,q-1
do 17 ir=begin,begin+size-1

iriga=ir-begin+1
g2(iriga)=g(ir,kk)

continue

call matvet(mgy,g2,g3,size)

do 117 ir=begin,begin+size-1
iriga=ir-begin+1
g(ir,kk)=g3(iriga)

continue
continue

return

go to 888

end

subroutine partition(pbegin)
COMMON/const1/n,m,q
COMMON/logi/var,go
COMMON/misura/size

logical go, var
integer begin,size,pbegin

save begin
if (var) then

else

begin=1
var=.false.

if (begin.ge.(n-size» then
go=.false.

else

endif
endif

pbegin=begin
return
end

begin=begin+size

subroutine dmatvet(a,x,y)
real a(2,2)
real x(2) ,y(2)
integer i,k

c
do 20 i=1,2

y(i)=O.O
do 10 k=1,2

y(i)=y(i)+a(i,k)*x(k)
10 continue
20 continue
c

c
c
c

c

c

return
end

subroutine matvet(a,v,c,nn)
integer ndim
parameter (ndim=1024)

real a(ndim,nn)
real v(nn),c(nn)
real sum
integer ii, j j

do 10 ii=l,nn
sum=O.O
do 9 jj=l,nn

sum=sum+a(ii,jj)*v(jj)
9 continue

c(ii)=sum
10 continue
c

c

return
end

Version Parallel.f

(reclaimed time)

$system
c Paralleltime.f
c Giulia Spaletta - Dept.of Computer Studies - L.U.T. - Sept.199l

program decoupling

c

c

c

c

c

c

c

c

c

c

c

c
c

integer ndim,mdim,qdim
parameter (ndim=1024 ,mdim=5l2 ,qdim=lO)

EXTERNAL prestage
EXTERNAL stagel
EXTERNAL stage2
EXTERNAL stage3

COMMON/constl/n,m,q
COMMON/const2/a,c
COMMON/const22/e
COMMON/const3/jjl
COMMON/const4/d

COMMON/shar20/u
COMMON/shar3/g,x

COMMON/logi/var, go
COMMON/misura/size

real a (ndim) ,b(ndim) ,c(ndim)
real u(ndim)
real d(ndim)
real e(ndim)
real g(ndim,qdim-l)
real x(ndim,qdim-l)
real jjl(2,2,mdim)

real sol(ndim)
real rsol

integer i,j,k,l
integer n,m,q
integer time,timel(2*qdim) ,time2(2*qdim) ,time3(2*qdim)
integer iniz, ifine.

integer*4 nprocs
integer*4 m_set-Frocs
integer*4 m_fork

integer begin,size
logical var,go

EQUIVALENCE (sol,e)

open(4,file='Paralleltimedat',status='new')

write(4,*)
write(4,*) 'Program Decoupling (Version Paralleltime.f -
write(4,*)' data file Paralleltimedat)'
write(4,*) 'Number of used processors is as follows:'
write(4,*)' for iterations l,2,.,q-2 ••.•••
write(4,*)' for iteration q-l .•••.•
write(4,*)

c
c
999 continue
c
c ·reading input data

write(*,*)
write(*,*) 'exponent q, where n=2**q or n=2*m

nprocs procs. '
1 processor'

(2 <= q <= 9)'

read(*,*) q
n=2**q
m=n/2
write(*,*)
write(*,*) 'num of
write(*,*) ,
write(*,*) ,
write(*,*) ,
write(*,*) ,
read(*,*) nprocs

processors '
n.b. q=2 ..•••• nprocs=1'

q=3 •••••• nprocs=2 '
q=4 ••.••• nprocs=4 '
q>=5 •.••• nprocs=8 '

c
c initialising time arrays, in order to obtain reclaimed time

do 1 k=1,2*q
time1(k)=0
time2(k)=0
time3 (k)=O

1 continue
c
c initialising coefficient matrix A, unknowns vector u, data vector d

do 2 i=l,n
b(i)=2.0
d(i)=O.O
u(i)=O.O

2 continue
d(1)=1.0
do 3 i=l,n

a(i)=-1.0
c(i)=-1.0

3 continue
c
c initialising arrays xj, gj

do 4 j=1,q-1
do 4 i=l,n

x(i,j)=O.O
g(i, j) =0. 0

4 continue
c
c

(n.b. yj is not necessary)

c initialising inverses of matrices Jj
e(l)=b(l)
e(n)=b(n)
do 7 j=2,m

e(2*j-1)=b(2*j-1)-C(2*j-2)
7 continue

do 8 j=1,m-1
e(2*j)=b(2*j)-a(2*j+1)

8 continue
c
c
c
c setting number of processors

i1=m_set-Frocs(nprocs)
c
c
c
c PRESTAGE:
c calculating delta(j)
c calculating inverses of matrices Jj
c

c
c
c

call
call
call

c STAGE 1:

m fork(prestage,time1(1»
clock time(time2(1»

m_kil(::procs

c

c
c
C

call
call
call

m fork(stage1,time1(2»
clock time (time2 (2»

m_kill J>rocs

c STAGE 2:
c

iniz=l
do 10 k=1,q-1

ifine=2*iniz
call m_fork(stage2,k,iniz,ifine,time1(k+2»
call clock time(time2(k+2»

iniz=2*iniz -
10 continue

c
c
c

call m_kill-procs

c STAGE 3:
c Number of used processors is
c for iterations 1,2,.,q-2
c for iteration q-1
c

do 12 k=1,q-2
begin=l
go=.true.
size=2** (k+1)
var=.true.

as follows:'
nprocs procs.
1 processor

call m_fork(stage3,k,time1(k+q+1»
call _clock_time(time2(k+q+1»
call m sync

12 continue -
call m_kill-procs

c

c

k=q-1
begin=l
go=.true.
size=2**(k+1)
var=.true.

call clock time(time1(k+q+1»
call stage33(k)

2001 continue

c
c

call _clock_time(time2(k+q+1»

rsol=real (n+1)
do 18 l=l,n

sol (l)=real (n+1-l)/rsol
18 continue
c

do 19 k=1,2*q
time3(k)=time2(k)-timel(k)

19 continue
time=O
do 20 k=1,2*q

time=time+time3(k)
20 continue
c
c

write(4,*)
write(4,21) (i,sol(i),i=l,n)

21 format(2x, 'sol(',i4,'):',f20.l0)
c

write(4,*)
write(4,30) (i,u(i),i=l,n)

30 format (2x, 'u(',i4, '):',f20.10)
c

do 40 l=l,n
sol(l)=sol(l)-u(l)

40 continue
write(4,50) (i,sol(i),i=l,n)

50 format (2x, 'diff(',i4,'): ',f20.10)
c

write(4,*)
write(4,60)n,m,q

60 format(2x, 'dimension n: ',i4,2x, 'factor m:' ,i4,2x, 'exponent q:' ,i4)
write(4,*)
write(4,70)nprocs

70 format (2x, 'number of processors nprocs:',i4)
c

write(4,*)
write(4,80)time/lOO.0
write(*,*)
write(*,80)time/lOO.0

80 format (2x, 'reclaimed time in sec.: ',f20.10)
c

c

c
c
c

c

c

c

c

c

c

c

write(*,*)
write(4,*) ,******.**.***.*********************.*************.
write(*,*)
write(*,*) 'continue? (O=NO, l=YES)'
write(*,*)
read(*,*)num
if (num.ne. 0) go to 999

close(4)
stop
end

subroutine prestage(timel)
integer ndim,mdim
parameter(ndim=1024,mdim=512)

COMMON/constl/n,m,q
COMMON/const2/a,c
COMMON/const22/e
COMMON/const3/jjl

real a(ndim),c(ndim)
real e(ndim)
real jjl(2,2,mdim)

real delta(mdim)
real rec

integer n,m,q
integer j, time 1

call m single()
call clock time(timel)

call m multi () -

do 1 j=l,m
delta(j)=e(2*j)*e(2*j-l)-a(2*j)*c(2*j-l)

rec=l.O/delta(j)
jjl(l,l,j)=e(2*j)*rec
jjl(l,2,j)=-c(2*j-l)*rec

jjl(2,1,j)=-a(2*j)*rec
jjl(2,2,j)=e(2*j-l)*rec

1 continue

c
c
c

c

c

c

c

c

return
end

subroutine stagel(timel)
integer ndim,mdim
parameter(ndim=1024,mdim=512)

COMMON/constl/n,m,q
COMMON/const3/jjl
COMMON/const4/d
COMMON/shar20/u

real u(ndim)
real d(ndim)
real jjl(2,2,mdim)
real jjj(2,2),uU(2),dd(2)

integer n,m,q
integer timel, j

call m_single()
call clock time(timel)

call m multi() -

do 10 j=l,m
dd(1)=d(2*j-l)
dd(2) =d(2*j)
jjj(l,l)=jjl(l,l,j)
jjj(1,2)=jjl(1,2,j)
jjj(2,1)=jjl(2,1,j)
jjj(2,2)=jjl(2,2,j)
call dmatvet(jjj,dd,uu)
u(2*j-l)=uU(1)
u(2*j)=uu(2)

10 continue

c
c
c

c

c

c

c

c

return
end

subroutine stage2(k,iniz,ifine,timel)
integer ndim,mdim,qdim
parameter(ndim=1024,mdim=512,qdim=10)

COMMON/constl/n,m,q
COMMON/const2/a,c
COMMON/const3/jjl

COMMON/shar3/g,x

real a (ndim) ,c(ndim)
real g(ndim,qdim-l)
real x(ndim,qdim-l)
real jjl(2,2,mdim)

integer n,m,q
integer timel
integer iniz,ifine

call m_single()
call _clock_time(timel)

c
do 20 j=iniz,m-iniz,ifine

g(2*j-1,k)=jj1(1,2,j)
g(2*j,k)=jj1(2,2,j)
g(2*j+1,k)=jj1(1,1,j+1)
g(2*j+2,k)=jj1(2,1,j+1)
X(2*j,k)=a(2*j+1)
x(2*j+1,k)=c(2*j)

20 continue

c
c
c

c

c

c

c

c

c

c

c

return
end

subroutine stage3(k,time1)
integer nndim,mmdim,qqdim
parameter(nndim=1024,mmdim=512,qqdim=10)

OOMMON/const1/n,m,q
OOMMON/shar20/u
OOMMON/shar3/g,x

OOMMON/1ogi/var,go
OOMMON/misura/size

real u(nndim)
real g(nndim,qqdim-1)
real x(nndim,qqdim-1)
real alfa,yg
real u2(nndim) ,u3(nndim),g2(nndim) ,g3(nndim) ,g4(nndim)
real mgy(nndim,nndim)

integer ir,ic,kk
integer n,m,q,k
integer iriga,icol
integer timel

integer begin,size
logical go, var

EQUIVALENCE(u2,g2)
EQUIVALENCE(u3,g3)

call m single ()
call clock time(time1)

call m multi Cl -

888 continue
c

c

c

14

c

call m lock()
call partition (begin)

call m_unlockCl

if (go) then

yg=O.O
do 14 ir=begin,begin+size-1

yg=yg+x(ir,k)*g(ir,k)
continue
alfa=1.0/(1.0+yg)

do 15 ir=begin,begin+size-1
iriga=ir-begin+1

do 15 ic=begin,begin+size-1
icol=ic-begin+l

15
c

16
c

c

116
c

17
c

c

117
177
c

c

c
c
c

c

c

c

c

c

else

mgy(iriga,icol)=g(ir,k)*x(ic,k)*alfa
if (ir.eq.ic) then

mgy(iriga,icol)=I. o-mgy(iriga, icol)
else

mgy(iriga, icol)=-mgy(iriga, icol)
endif

continue

do 16 ir=begin,begin+size-l
iriga=ir-begin+l
u2(iriga)=u(ir)

continue

call matvet(mgy,u2,u3,size)

do 116 ir=begin,begin+size-l
iriga=ir-begin+l
u(ir)=u3(iriga)

continue

do 177 kk=k+l,q-l
do 17 ir=begin,begin+size-l

iriga=ir-begin+l
g2(iriga)=g(ir,kk)

continue

call matvet(mgy,g2,g3,size)

do 117 ir=begin,begin+size-l
iriga=ir-begin+l
g(ir,kk)=g3(iriga)

continue
continue

return
endif
go to 888

end

subroutine stage33(k)
integer nndim,mmdim,qqdim
parameter (nndim=1024 ,mmdim=512 ,qqdim=10)

COMMON/constl/n,m,q
COMMON/shar20/u
COMMON/shar3/g,x

COMMON/logi/var,go
COMMON/misura/size

real u (nndim)
real g(nndim,qqdim-l)
real x(nndim,qqdim-l)
real alfa,yg
real u2(nndim) ,u3(nndim) ,g2(nndim) ,g3(nndim) ,g4(nndim)
real mgy(nndim,nndim)

integer ir,ic,kk
integer n,m,q,k
integer iriga,icol

integer begin, size

c

c
c

logical go, var

EQUIVALENCE (u2,g2)
EQUIVALENCE (u3,g3)

888 continue
c

c

c

14

c

15
c

16
c

c

116
c

17
c

c

117
177
c

c

c
c
c

call partition (begin)

if (go) then

else

endif

yg=O.O
do 14 ir=begin,begin+size-1

yg=yg+x(ir,k)*g(ir,k)
continue
alfa=1.0/(1.0+yg)

do 15 ir=begin,begin+size-1
iriga=ir-begin+1

do 15 ic=begin,begin+size-1
icol=ic-begin+1
mgy(iriga, icol)=g(ir,k)*x(ic,k) *alfa
if (ir.eq.ic) then

mgy(iriga,icol)=1.0-mgy(iriga,icol)
else

mgy(iriga,icol)=-mgy(iriga,icol)
endif

continue

do 16 ir=begin,begin+size-1
iriga=ir-begin+1
u2(iriga)=u(ir)

continue

call matvet(mgy,u2,u3,size)

do 116 ir=begin,begin+size-1
iriga=ir-begin+1
u(ir)=u3(iriga)

continue

do 177 kk=k+1,q-1
do 17 ir=begin,begin+size-1

iriga=ir-begin+1
g2(iriga)=g(ir,kk)

continue

call matvet(mgy,g2,g3,size)

do 117 ir=begin,begin+size-1
iriga=ir-begin+1
g(ir,kk)=g3(iriga)

continue
continue

return

go to 888

end

subroutine partition(pbegin)

c

c
c

c
c
c

c

COMMON/const1/n,m,q
COMMON/logi/var,go
COMMON/misura/size

logical go,var
integer begin,size,pbegin

save begin
if (var) then

else

begin=l
var=.false.

if (begin.ge.(n-size» then
go=.false.

else

endif
endif

pbegin=begin
return
end

begin=begin+size

subroutine dmatvet(a,x,y)
real a(2,2)
real x(2) ,y(2)
integer i,k

do 20 i=1,2
y(i)=O.O
do 10 k=1,2

y(i)=y(i)+a(i,k)*x(k)
10 continue
20 continue
c

c
c
c

c

c

return
end

subroutine matvet(a,v,c,nn)
integer ndim
parameter (ndim=1024)

real a(ndim,nn)
real v(nn),c(nn)
real sum
integer ii, j j

do 10 ii=l,nn
sum=O.O
do 9 jj=l,nn

sum=sum+a(ii,jj)*v(jj)
9 continue

c(ii)=sum
10 continue
c

c

return
end

Version Parallel.f

(second example)

$system
c Paralle12.f
c Giulia Spaletta - Dept.of Computer Studies - L.U.T. - Sept.1990

program decoupling

c

c

c

c

c

c
c

c

c

c
c

c
c

integer ndim,mdim,qdim
parameter (ndim=1024 ,mdim=512 ,qdim=10)

EXTERNAL prestage
EXTERNAL stage 1
EXTERNAL stage2
EXTERNAL stage3

COMMON/const1/n,m,q
COMMON/const2/a,c
COMMON/const22/e
COMMON/const3/jj1
COMMON/const4/d

COMMON/shar20/u
COMMON/shar3/g,x

COMMON/logi/var,go
COMMON/misura/size

real a (ndim) ,b(ndim) ,c(ndim)
real u(ndim)
real d(ndim)
real e(ndim)
real g(ndim,qdim-1)
real x(ndim,qdim-1)
real jj1(2,2,mdim)

integer i,j,k,l
integer n,m,q
integer time,time1,time2
integer iniz,ifine

integer*4 nprocs
integer*4 m_set-procs
integer*4 m_fork

integer begin,size
logical var,go

open(4,file='Paralle12dat',status='new')

write(4,*)
write(4,*) 'Program Decoupling (Version Paralle12.f -
write(4,*) , data file Paralle12dat) ,
write(4,*) 'Number of used processors is as follows:'
write(4, *) , for iterations 1,2,. ,q-2 .•.•••
write(4,*)' for iteration q-1 ..•••.

c
c

write (4 ,*)

999 continue
c
c reading input data

write(*,*)
write(*,*) 'exponent q,
read(*,*) q
n=2**q
m=n/2

where n=2**q or n=2*m

nprocs procs. '
1 processor'

(2 <= q <= 9)'

write(*,*)
write(*,*) 'num of
write(*,*) ,
write(*,*) ,
write(*,*) ,
write(*,*) ,
read(*,*) nprocs

processors '
n.b. q=2 nprocs=l'

c
c initialising time variables

timel=O
time2=O
time=O

c

q=3 nprocs=2 '
q=4 nprocs=4 '
q>=5 nprocs=8 '

c initialising coefficient matrix A, unknowns vector u, data vector d
do 2 i=l,n

u(i)=o.o
2 continue

c

c

c

do 28 i=1,n-l,8
a(i)=O.O
a(i+l)=3.0
a(i+2)=2.0
a(i+3)=2.0
a(i+4)=l.O
a(i+5)=4.0
a(i+6)=7.0
a(i+7)=l.O

b(i)=2.0
b(i+l)=5.0
b(i+2)=3.0
b(i+3)=4.0
b(i+4)=4.0
b(i+5)=6.0
b(i+6)=8.0
b(i+7)=3.0

c(i)=l.O
c(i+l)=2.0
c(i+2)=l.O
c(i+3)=l.O
c(i+4)=3.0
c(i+5)=l.O
c(i+6)=l.O
c(i+7)=O.O

d(i)=l.O
d(i+l)=O.O
d(i+2)=O.O
d(i+3)=l.O
d(i+4)=O.O
d(i+5)=l.O
d(i+6)=O.O
d(i+7)=2.0

28 continue
do 3 i=l,n

a(i)=-a(i)
c(i)=-c(i)

3 continue
c
c initialising arrays xj, gj

do 4 j=l,q-l
do 4 i=l,n

x(i,j)=O.O
g(i,j)=o.O

4 continue
:::

(n.b. yj is not necessary)

c
c initialising inverses of matrices Jj

e(l)=b(l)
e(n)=b(n)
do 7 j=2,m

e(2*j-1)=b(2*j-1)-C(2*j-2)
7 continue

do 8 j=l,m-1
e(2*j)=b(2*j)-a(2*j+1)

8 continue
c
c

call clock time(tirne1) - -c
c setting number of processors

i1=rn_set-procs(nprocs)
c
c
c
c PRESTAGE:
c calculating delta(j)
c calculating inverses of matrices Jj
c

c
c
c

call m fork(prestage)
call m:kill-procs

c STAGE 1:
c

c
c
c

call m fork (stage1)
call m:kill-procs

c STAGE 2:
c

iniz=l
do 10 k=1,q-1

ifine=2*iniz
call m_fork(stage2,k,iniz,ifine)
iniz=2*iniz

10 continue

c
c
c

call m_kill-procs

c STAGE 3:
c Number of used processors is
c for iterations 1,2,.,q-2
c for iteration q-1
c

do 12 k=1,q-2
begin=l
go=.true.
size=2** (k+1)
var=.true.

as follows: I

call m_fork(stage3,k)
call m sync

12 continue -
call m kill-procs

c
k=q-1
begin=l
go=.true.
size=2**(k+1)

nprocs procs.
·1 processor

var=.true.
call stage33 (k)

c
2001 continue

call _clock_time(time2)
c

time=time2-time1
c

write(4,*)
write(4,70) (i,u(i),i=1,n)

70 format(2x, 'u(',i4, '):',f20.10)
c

write(4,*)
write(4,72)n,m,q

72 format (2X, 'dimension n: ' , i4, 2x, 'factor m: ' , i4, 2x, 'exponent q: ' , i4)
c

write(4,*)
write(4,73)nprocs

73 format(2x, 'number of processors nprocs: ',i4)
c

write(4, *)
write(4,74)time/100.0
write(*,*)
write(*,74)time/100.0

74 format (2X, 'time in sec.:',f20.10)
c

c

c
c
c

c

c

c

c

c
c

c

write(*,*)
write(4,*) '***'
write(*,*)
write(*,*) 'continue? (O=NO, 1=YES)'
write(*, *)
read(*,*)num
if(num.ne.O) go to 999

close(4)
stop
end

subroutine prestage
integer ndim,mdim
parameter(ndim=1024,mdim=512)

COMMON/const1/n,m,q
COMMoN/const2/a,c
COMMON/const22/e
COMMON/const3/jj1

real a(ndim),c(ndim)
real e(ndim)
real jj1(2,2,mdim)

real delta(mdim)
real rec

integer n,m,q

do 1 j=1,m
delta(j)=e(2*j)*e(2*j-1)-a(2*j)*c(2*j-1)

rec=1.0/delta(j)
jj1(1,1,j)=e(2*j)*rec
jj1(1,2,j)=-c(2*j-1)*rec
jj1(2,1,j)=-a(2*j)*rec

jjl(2,2,j)=e(2*j-l)*rec
1 continue

c
c
c

c

c

c

c
c

return
end

subroutine stagel
integer ndim,mdim
parameter(ndim=1024,mdim=5l2)

COMMON/constl/n,m,q
COMMON/constJ/jjl
COMMON/const4/d
COMMON/shar20/u

real u (ndim)
real d(ndim)
real jjl(2,2,mdim)
real jjj(2,2),uu(2),dd(2)

integer n,m,q

do 10 j=l,m
dd(1)=d(2*j-l)
dd(2)=d(2*j)
jjj(l,l)=jjl(l,l,j)
jjj(l,2)=jjl(l,2,j)
jjj(2,l)=jjl(2,l,j)
jjj(2,2)=jjl(2,2,j)
call dmatvet(jjj,dd,uu)
u(2*j-l)=uu(1)
u(2*j)=uu(2)

10 continue

c
c
c

c

c

c

c

c
c

return
end

subroutine stage2(k,iniz,ifine)
integer ndim,mdim,qdim
parameter(ndim=1024,mdim=5l2,qdim=10)

COMMON/constl/n,m,q
COMMON/const2/a,c
COMMON/constJ/jjl

COMMON/sharJ/g,x

real a(ndim),c(ndim)
real g(ndim,qdim-l)
real x(ndim,qdim-l)
real jjl(2,2,mdim)

integer n,m,q
integer iniz,ifine

do 20 j=iniz,m-iniz,ifine
g(2*j-l,k)=jjl(l,2,j)
g(2*j,k)=jjl(2,2,j)
g(2*j+l,k)=jjl(l,l,j+l)
g(2*j+2,k)=jjl(2,l,j+l)
x(2*j,k)=a(2*j+l)
x(2*j+l,k)=c(2*j)

20 continue

c
c
c

c

c

c

c

c

c

c
c

return
end

subroutine stage3(k)
integer nndim,mmdim,qqdim
parameter(nndim=1024,mmdim=512,qqdim=10)

OOMMON/const1/n,m,q
OOMMON/shar20/u
OOMMON/shar3/g,x

OOMMON/logi/var,go
OOMMON/misura/size

real u (nndim)
real g(nndim,qqdim-1)
real x(nndim,qqdim-1)
real alfa,yg
real u2(nndim),u3(nndim),g2(nndim) ,g3(nndim),g4(nndim)
real mgy(nndim,nndim)

integer ir,ic,kk
integer n,m,q,k
integer iriga,icol

integer begin, size
logical go,var

EQUIVALENCE(u2,g2)
EQUIVALENCE(u3,g3)

888 continue

c

c

14

c

15
c

16
c

call m lockO
call partition(begin)

call m unlockO

if (go) then

yg=O.O
do 14 ir=begin,begin+size-1

yg=yg+x(ir,k)*g(ir,k)
continue
alfa=1.0/(1.0+yg)

do 15 ir=begin,begin+size-1
iriga=ir-begin+1

do 15 ic=begin,begin+size-l
icol=ic-begin+1
mgy(iriga,icol)=g(ir,k)*x(ic,k)*alfa
if (ir.eq.ic) then

mgy(iriga,icol)=1.0-mgy(iriga,icol)
else

mgy(iriga,icol)=-mgy(iriga,icol)
endif

continue

do 16 ir=begin,begin+size-l
iriga=ir-begin+1
u2(iriga)=u(ir)

continue

call matvet(mgy,u2,u3,size)

c

116
c

17
c

c

117
177
c

c

c
c
c

c

c

c

c

c

c

c
c

else

endif

do 116 ir=begin,begin+size-1
iriga=ir-begin+1
u(ir)=u3(iriga)

continue

do 177 kk=k+1,q-1
do 17 ir=begin,begin+size-1

iriga=ir-begin+1
g2(iriga)=g(ir,kk)

continue

call matvet(mgy,g2,g3,size)

do 117 ir=begin,begin+size-l
iriga=ir-begin+1
g(ir,kk)=g3(iriga)

continue
continue

return

go to 888

end

subroutine stage33(k)
integer nndim,mmdim,qqdim
parameter(nndim=1024,mmdim=512,qqdim=10)

COMMON/const1/n,m,q
COMMON/shar20/u
COMMON/shar3/g,x

COMMON/logi/var,go
COMMON/misura/size

real u(nndim)
real g(nndim,qqdim-1)
real x(nndim,qqdim-l)
real alfa,yg
real u2(nndim),U3(nndim),g2(nndim),g3(nndim),g4(nndim)
real mgy(nndim,nndim)

integer ir,ic,kk
integer n,m,q,k
integer iriga,icol

integer begin, size
logical go, var

EQUIVALENCE(u2,g2)
EQUIVALENCE(u3,g3)

888 continue

c

c

call partition(begin)

if (go) then

yg=O.O
do 14 ir=begin,begin+size-1

yg=yg+x(ir,k)*g(ir,k)

14

c

15
c

16
c

c

116
c

17
c

c

117
177
c

c

c
c
c

c

c
c

else

endif

continue
alfa=I.0/(1.0+yg)

do 15 ir=begin,begin+size-l
iriga=ir-begin+l

do 15 ic=begin,begin+size-l
icol=ic-begin+l
mgy(iriga,icol)=g(ir,k)*x(ic,k)*alfa
if (ir.eq.ic) then

mgy(iriga, icol) =1. O-mgy(iriga, icol)
else

mgy(iriga,icol)=-mgy(iriga,icol)
endif

continue

do 16 ir=begin,begin+size-l
iriga=ir-begin+l
u2 (iriga) =ut ir)

continue

call matvet(mgy,u2,u3,size)

do 116 ir=begin,begin+size-l
iriga=ir-begin+l
u(ir)=u3(iriga)

continue

do 177 kk=k+l,q-l
do 17 ir=begin,begin+size-l

iriga=ir-begin+l
g2(iriga)=g(ir,kk)

continue

call matvet(mgy,g2,g3,size)

do 117 ir=begin,begin+size-l
iriga=ir-begin+l
g(ir,kk)=g3(iriga)

continue
continue

return

go to 888

end

subroutine partition(pbegin)
COMMON/constl/n,m,q
COMMON/logi/var,go
COMMON/misura/size

logical go, var
integer begin,size,pbegin

save begin
if (var) then

else

begin=1
var=.false.

if (begin.ge. (n-size» then
go=.false.

c
c
c

c

else

endif
endif

pbegin=begin
return
end

begin=begin+size

subroutine dmatvet(a,x,y)
real a(2,2)
real x(2) ,y(2)
integer i,k

do 20 i=1,2
y(i)=O.O
do 10 k=1,2

y(i)=y(i)+a(i,k)*x(k)
10 continue
20 continue
c

c
c
c

c

c

return
end

subroutine matvet(a,v,c,nn)
integer ndim
parameter (ndim=1024)

real a (ndim, nn)
real v(nn),c(nn)
real sum
integer ii,jj

do 10 ii=l, nn
sum=O.O
do 9 jj=l,nn

sum=sum+a(ii,jj)*v(jj)
9 continue

c(ii)=sum
10 continue
c

c

return
end

Version Paralleli.f

(first example)

$system
c Paralleli. f
c Giulia Spaletta - Dept.of Computer Studies - L.U.T. - Sept.l990

program decoupling

c

c

c

c

c

c

c

c

c

c

c

c
c

integer ndim,mdim,qdim
parameter (ndim=1024 ,mdim=5l2 ,qdim=lO)

EXTERNAL prestage
EXTERNAL stagel
EXTERNAL stage2
EXTERNAL stage3

COMMON/constl/n,m,q
COMMON/const2/a,c
COMMON/const22/e
COMMON/const3/jjl
COMMON/const4/d

COMMON/shar20/u
COMMON/shar3/g,x

COMMON/logi/var,go
COMMON/misura/size

real a (ndim) ,b(ndim) ,c(ndim)
real u(ndim)
real d(ndim)
real e(ndim)
real g(ndim,qdim-l)
real x(ndim,qdim-l)
real jjl(2,2,mdim)

real sol(ndim)
real rsol

integer i,j,k,l
integer n,m,q
integer time,timel,time2
integer iniz,ifine

integer*4 nprocs
integer*4 m_set-procs
integer*4 m_fork

integer begin,size
logical var,go

EQUIVALENCE(sol,e)

open(4,file='Parallelidat',status='new')

write(4,*)
write(4,*) 'Program Decoupling (Version Paralleli.f -
write(4,*)' data file Parallelidat),
write(4,*) 'Number of used processors is as follows:'
write(4,*)' for iterations l,2,.,q-l •..... nprocs procs.'

c
c

write(4,*)

999 continue
c
c reading input data

write(*,*)
write(*,*) 'exponent q,
read(*,*) q

where n=2**q or n=2*m (2 <= q <= 9)'

n=2**q
m=n/2
write(*,*)
write(*,*) 'num of
write(*,*) ,
write(*,*) ,
write(*,*) ,
write(*,*) ,
read(*,*) nprocs

processors '
n.b. q=2 •.•..• nprocs=l'

q=3 ..•... nprocs=2 '
q=4 ..•.•• nprocs=4 '
q>=5 .•.•• nprocs=8 '

c
c initialising time variables

timel=O
time2=O
time=O

c
c initialising coefficient matrix A, unknowns vector u, data vector d

do 2 i=l,n
b(i)=2.0
d(i)=O.O
u(i)=O.O

2 continue
d(l) =1. 0
do 3 i=l,n

a(i)=-1.0
c(i)=-1.0

3 continue
c
c initialising arrays xj, 90

do 4 j=1,q-1
do 4 i=l,n

x(i, j)=0. 0
g(i, j)=0. 0

4 continue
c
c

(n.b. yj is not necessary)

c initialising inverses of matrices Jj
e(l)=b(l)
e(n)=b(n)
do 7 j=2,m

e(2*j-1)=b(2*j-1)-C(2*j-2)
7 continue

do 8 j=1,m-1
e(2*j)=b(2*j)-a(2*j+1)

8 continue
c
c

c
c setting number of processors

i1=m_set-Frocs(nprocs)
c
c
c
c PRESTAGE:
c calculating delta(j)
c calculating inverses of matrices Jj
c

c
c
c
c

call m_fork(prestage)
call m_kill-Frocs

c STAGE 1:
c

call m_fork(stage1)

c
c
c
c STAGE 2:
c

iniz=l
do 10 k=1,q-1

ifine=2*iniz
call m_fork(stage2,k,iniz,ifine)
iniz=2*iniz

10 continue

c
c
c

call m_kill-procs

c STAGE 3:
c Number of used processors is as follows:'
c for iterations 1,2,.,q-1 ••..•• nprocs procs.
c

do 12 k=1,q-1
begin=l
go=.true.
size=2** (k+1)
va=.true.

call m_fork(stage3,k)
call m sync

12 continue -
call m_kill-procs

c
c
2001 continue

c

c

call _clock_time(time2)

time=time2-time1

rsol=real (n+1)
do 18 l=l,n

sol (l)=real (n+1-1)/rsol
18 continue
c

write(4,*)
write(4,20) (i,sol(i) ,i=l,n)

20 format(2x, 'sol(',i4,'):',f20.10)
c

write(4,*)
write(4,30) (i,u(i),i=l,n)

30 format (2x, 'u(',i4,'):',f20.10)
c

do 40 l=l,n
sol(l)=sol(l)-u(l)

40 continue
c

write(4,*)
write(4,50) (i,sol(i),i=l,n)

50 format (2x, 'diff (' ,i4, ') : ' ,f20.10)
c

write(4,*)
write(4,60)n,m,q

60 format (2x, 'dimension n:' ,i4,2x, 'factor m:' ,i4,2x, 'exponent q:' ,i4)
c

write(4,*)
write(4,70)nprocs

70 format(2x,'number of processors nprocs:',i4)
c

write (4, *)

write(4, 80) time/lOO. 0
write(*,*)
write(*, 80) time/lOO. 0

80 format(2x, 'time in sec.: ',f20.l0)
c

c

c
c
c

c

c

c

c

c
c

c

write(*,*)
write(4,*) '***'
write(*,*)
write(*,*) 'continue? (O=NO, l=YES) ,
write(*,*)
read(*,*)num
if(num.ne.O) go to 999

close(4)
stop
end

subroutine prestage
integer ndim,mdim
parameter(ndim=l024,mdim=5l2)

COMMON/constl/n,m,q
COMMON/const2/a,c
COMMON/const22/e
COMMON/const3/jjl

real a(ndim),c(ndim)
real e(ndim)
real jjl(2,2,mdim)

real delta(mdim)
real rec

integer n,m,q

do 1 j=l,m
delta(j)=e(2*j)*e(2*j-l)-a(2*j)*c(2*j-l)

rec=l.O/delta(j)
jjl(l,l,j)=e(2*j)*rec
jjl(l,2,j)=-c(2*j-l)*rec
jjl(2,l,j)=-a(2*j)*rec
jjl(2,2,j)=e(2*j-l)*rec

1 continue

c
c
c

c

c

c

return
end

subroutine stagel
integer ndim,mdim
parameter(ndim=l024,mdim=5l2)

COMMON/constl/n,m,q
COMMON/const3/jjl
COMMON/const4/d
COMMON/shar20/u

real u(ndim)
real d(ndim)
real jjl(2,2,mdim)
real jjj(2,2),uU(2),dd(2)

c
c

integer n,m,q

do 10 j=l,m
dd(1)=d(2*j-l)
dd(2)=d(2*j)
jjj(l,l)=jjl(l,l,j)
jjj(1,2)=jjl(1,2,j)
jjj(2,1)=jjl(2,1,j)
jjj(2,2)=jjl(2,2,j)
call dmatvet(jjj,dd,uu)
u(2*j-l)=uu(1)
u(2*j)=uu(2)

10 continue

c
c
c

c

c

c

c'

c
c

return
end

subroutine stage2(k,iniz,ifine)
integer ndim,mdim,qdim
parameter(ndim=1024,mdim=5l2,qdim=10)

COMMON/constl/n,m,q
COMMON/const2/a,c
COMMON/const3/jjl

COMMON/shar3/g,x

real a(ndim),c(ndim)
real g(ndim,qdim-l)
real x(ndim,qdim-l)
real jjl(2,2,mdim)

integer n,m,q
integer iniz,ifine

do 20 j=iniz,m-iniz,ifine
g(2*j-l,k)=jjl(1,2,j)
g(2*j,k)=jjl(2,2,j)
g(2*j+l,k)=jjl(1,1,j+l)
g(2*j+2,k)=jjl(2,1,j+l)
x(2*j,k)=a(2*j+l)
x(2*j+l,k)=c(2*j)

20 continue

c
c
c

c

c

c

return
end

subroutine stage3(k)
integer nndim,mrndim,qqdim
parameter(nndim=1024,mmdim=5l2,qqdim=10)

COMMON/constl/n,m,q
COMMON/shar20/u
COMMON/shar3/g,x

COMMON/logi/var,go
COMMON/misura/size

real u(nndim)
real g(nndim,qqdim-l)
real x (nndim,qqdim-l)
real alfa,yg

c

c

c

c
c

real u2(nndim),u3(nndim) ,g2(nndim) ,g3(nndim) ,g4(nndim)
real mgy(nndim,nndim)

integer ir,ic,kk
integer n,m,q,k
integer iriga,icol

integer begin,size
logical gO,var

EQUIVALENCE(U2,g2)
EQUIVALENCE(U3,g3)

888 continue

c

c

14

c

15
c

16
c

c

116
c

17
c

c

117
177
c

call m lock()
call partition(begin)

call m unlock()

if (go) then

else

yg=O.O
do 14 ir=begin,begin+size-l

yg=yg+x(ir,k)*g(ir,k)
continue
alfa=I.0/(1.0+yg)

do 15 ir=begin,begin+size-l
iriga=ir-begin+l

do 15 ic=begin,begin+size-l
icol=ic-begin+l
mgy(iriga,icol)=g(ir,k) *x(ic,k) *alfa
if (ir.eq.ic) then

mgy(iriga,icol)=1.0-mgy(iriga,icol)
else

mgy(iriga,icol)=-mgy(iriga,icol)
endif

continue

do 16 ir=begin,begin+size-l
iriga=ir-begin+l
u2(iriga)=u(ir)

continue

call matvet(mgy,u2,u3,size)

do 116 ir=begin,begin+size-l
iriga=ir-begin+l
u(ir)=u3(iriga)

continue

do 177 kk=k+l,q-l
do 17 ir=begin,begin+size-l

iriga=ir-begin+l
g2(iriga)=g(ir,kk)

continue

call matvet(mgy,g2,g3,size)

do 117 ir=begin,begin+size-l
iriga=ir-begin+l
g(ir,kk)=g3(iriga)

continue
continue

c

c
c
c

c

c
c

c
c
c

c

return
endif
go to 888

end

subroutine partition(pbegin)
OOMMON/const1/n,m,q
OOMMON/logi/var,go
OOMMON/misura/size

logical go,var
integer begin,size,pbegin

save begin
if (var) then

else

begin=l
var=.false.

if (begin.ge. (n-size» then
go=.false.

else

endif
end if

pbegin=begin
return
end

begin=begin+size

subroutine dmatvet(a,x,y)
real a(2,2)
real x(2) ,y(2)
integer i,k

do 20 i=1,2
y(i)=O.o
do 10 k=1,2

y(i)=y(i)+a(i,k)*x(k)
10 continue
20 continue
c

c
c
c

c

c

return
end

subroutine matvet(a,v,c,nn)
integer ndim
parameter (ndim=1024)

real a(ndim,nn)
real v (nn) , c (nn)
real sum
integer ii, j j

do 10 ii=l,nn
sum=O.O
do 9 jj=l,nn

sum=sum+a(ii,jj)*v(jj)
9 continue

c(ii) = sum

10 continue
c

c

return
end

Version Parallelo.f
(first example)

$system
c Parallelo.f
c Giulia Spaletta - Dept.of Computer studies - L.U.T. - Sept.1991

program decoupling

c

c

c

c

c

c

c

c

c

c

c

c
c

integer ndim,mdim,qdim
parameter(ndim=1024,mdim=512,qdim=10)

EXTERNAL prestage
EXTERNAL stage1
EXTERNAL stage2
EXTERNAL stage3

ODMMON/const1/n,m,q
ODMMON/const2/a,c
ODMMON/const22/e
ODMMON/const3/jj1
COMMON/const4/d

ODMMON/shar20/u
ODMMON/shar3/g,x

ODMMON/logi/var,go
ODMMON/misura/size

real a(ndim),b(ndim),c(ndim)
real u (ndim)
real d (ndim)
real e (ndim)
real g(ndim,qdim-l)
real x(ndim,qdim-1)
real jj1(2,2,mdim)

real sol(ndim)
real rsol

integer i,j,k,l
integer n,m,q
integer time,time1,time2
integer iniz,ifine

integer*4 nprocs
integer*4 m_set-procs
integer*4 m_fork

integer begin, size
logical var, go

EQUIVALENCE (sol, e)

open(4,file='Parallelodat',status='new')

write(4,*)
write(4,*) 'Program Decoupling (Version Parallelo.f -
write(4,*)' data file Parallelodat) ,
write(4,*) 'Number of used processors is as follows:'
write(4,*)' for iterations 1,2,. ,q-4 •.•.••
write(4,*)' for iteration q-3 •••.••
write(4,*)' for iteration q-2 •••••.
write(4,*)' for iteration q-1 •...•.
write(4,*)

c
c
999 continue
c
c reading input data

nprocs procs. '
4 processor'
2 processor'
1 processor'

c

write(*,*)
write(*,*)
write(*,*) 'exponent q, where n=2**q or n=2*m
read(*,*) q
n=2**q
IIFn/2
write(*, *)
write(*,*)
write(*,*) 'num of processors'
write(*,*)' n.b. q=2 nprocs=l'
write (*, *) , q=3 nprocs=2 '
write(*,*)' q=4 nprocs=4 '
write(*,*)' q>=5 nprocs=8 '
read(*,*) nprocs

c initialising time variables
timel=O
time2=0
time=O

c

(2 <= q <= 9) I

c initialising coefficient matrix A, unknowns vector u, data vector d
do 2 i=l,n

b(i)=2.0
d(i)=O.O
u(i)=O.O

2 continue
d(l)=1.0
do 3 i=l,n

a(i)=-1.0
c(i)=-1.0

3 continue
c
c initialising arrays xj, 90

do 4 j=l,q-l
do 4 i=l,n

x(i, j)=0. 0
g(i, j)=0. 0

4 continue
c
c

(n.b. yj is not necessary)

c initialising inverses of matrices Jj
e(l)=b(l)
e(n)=b(n)
do 7 j=2,m

e(2*j-l)=b(2*j-l)-c(2*j-2)
7 continue

do 8 j=l,m-l
e(2*j)=b(2*j)-a(2*j+l)

8 continue
c
c

c
c setting number of processors

il=m_set-procs(nprocs)
c
c
c
c PRESTAGE:
c calculating delta(j)
c calculating inverses of matrices Jj
c

c
c

call m fork (prestage)
call m:kill-procs

c
c STAGE 1:
c

c
c
c

call m_fork(stagel)
call m_kill-procs

c STAGE 2:
c

iniz=l
do 10 k=l,q-l

ifine=2*iniz
call m_fork(stage2,k,iniz,ifine)
iniz=2*iniz

10 continue

c
c
c

call m_kill-procs

c STAGE 3:
c Number of used processors is
c for iterations 1,2,.,q-4
c for iteration q-3
c for iteration q-2
c for iteration q-l
c

if (q.le.4) go to 303
do 12 k=l, q-4

begin=l
go=.true.
size=2** (k+l)
va=.true.

as follows: I

call m fork(stage3,k)
call m-sync

12 continue -
call m_kill-procs

c
303 continue

c

if (q.le.3) go to 302
k=q-3
il=m_set-procs(4)
begin=l
go=.true.
size=2**(k+l)
va=.true.

call m fork(stage3,k)
call m_kilI-procs

302 continue

c

if (q.le.2) go to 301
k=q-2
il=m_set-procs(2)
begin=1
go=.true.
size=2**(k+1)
va=.true.

call m_fork(stage3,k)
call m_kill-procs

301 continue
k=q-l
begin=1
go=.true.
size=2** (k+l)
va=.true.

nprocs procs.
nprocs processors
nprocs processors
1 processor

call stage33 (k)
c
2001 continue

c

c

call _clock_time(time2)

time=time2-timel

rsol=real (n+ 1)
do 18 l=l,n

sol (l)=real (n+l-l)/rsol
18 continue
c

write(4,*)
write(4,20) (i,sol(i),i=l,n)

20 format(2x,'sol(',i4, '):',f20.10)
c

write(4,*)
write(4,30) (i,u(i),i=l,n)

30 format (2x, 'u(',i4, '):',f20.10)
c

do 40 l=l,n
sol(l)=sol(l)-u(l)

40 continue
c

write(4,*)
write(4,50) (i,sol(i),i=l,n)

50 format (2x, 'diff(',i4,'): ',f20.10)
c

write(4,*)
write(4,60)n,m,q

60 format (2x, 'dimension n:',i4,2x,'factor m: ',i4,2x, 'exponent q:',i4)
c

write(4,*)
write(4,70)nprocs

70 format (2x, 'number of processors nprocs:',i4)
c

write(4,*)
write(4, 80) time/lOO. 0
write(*,*)
write(*, 80) time/lOO. 0

80 format (2x, 'time in sec.:',f20.10)
c

c

c
c
c

c

c

write(*,*)
write(4,*) '***'
write(*,*)
write(*,*) 'continue? (O=NO, l=YES) ,
write(*,'*)
read(*,*)num
if (num.ne.0) go to 999

close(4)
stop
end

subroutine prestage
integer ndim,mdim
parameter(ndim=1024,mdim=512)

COMMON/constl/n,m,q
COMMON/const2/a,c
COMMON/const22/e
COMMON/const3/jjl

real a(ndim),c(ndim)

c

c

c
c

c

real e(ndim)
real jj1(2,2,mdim)

real delta (mdim)
real rec

integer n,m,q

do 1 j=l,m
delta(j)=e(2*j)*e(2*j-1)-a(2*j)*C(2*j-1)

rec=1.0/delta(j)
jj1(1,1,j)=e(2*j)*rec
jj1(1,2,j)=-c(2*j-1)*rec
jj1(2,1,j)=-a(2*j)*rec
jj1(2,2,j)=e(2*j-1)*rec

1 continue

c
c
c

c

c

c

c
c

return
end

subroutine stage1
integer ndim,mdim
parameter(ndim=1024,mdim=512)

COMMON/const1/n,m,q
COMMON/const3/jj1
COMMON/const4/d
COMMON/shar20/u

real u(ndim)
real d(ndim)
real jj1(2,2,mdim)
real jjj(2,2),uu(2),dd(2)

integer n,m,q

do 10 j=l,m
dd(1)=d(2*j-l)
dd(2)=d(2*j)
jjj(l,l)=jjl(l,l,j)
jjj(1,2)=jj1(1,2,j)
jjj(2,1)=jjl(2,1,j)
jjj(2,2)=jjl(2,2,j)
call dmatvet(jjj,dd,uu)
u (2*j -1) =uu(l)
u(2*j)=uu(2)

10 continue

c
c
c

c

c

c

return
end

subroutine stage2(k,iniz,ifine)
integer ndim,mdim,qdim
parameter(ndim=1024,mdim=512,qdim=10)

COMMON/constl/n,m,q
COMMoN/const2/a,c
COMMON/const3/jjl

COMMoN/shar3/g,x

c

c
c

real a(ndim),c(ndim)
real g(ndim,qdim-l)
real x(ndim,qdim-l)
real jjl(2,2,mdim)

integer n,m,q
integer iniz,ifine

do 20 j=iniz,m-iniz,ifine
g(2*j-l,k)=jjl(I,2,j)
g(2*j,k)=jjl(2,2,j)
g(2*j+l,k)=jjl(I,I,j+l)
g(2*j+2,k)=jjl(2,I,j+l)
x(2*j,k)=a(2*j+l)
x(2*j+l,k)=C(2*j)

20 continue

c
c
c

c

c

c

c

c

c

c
c

return
end

subroutine stage3(k)
integer nndim,mmdim,qqdim
parameter (nndim=1024 ,mmdim=512 ,qqdim=10)

COMMON/constl/n,m,q
COMMON/shar20/u
COMMON/shar3/g,x

COMMON/logi/var, go
COMMON/misura/size

real u(nndim)
real g(nndim,qqdim-l)
real x (nndim,qqdim-l)
real alfa,yg
real u2(nndim) ,u3(nndim) ,g2(nndim) ,g3(nndim) ,g4(nndim)
real mgy(nndim,nndim)

integer ir,ic,kk
integer n,m,q,k
integer iriga,icol

integer begin,size
logical gO,var

EQUIVALENCE(u2,g2)
EQUIVALENCE(u3,g3)

888 continue

c

c

14

c

call m lockO
call partition(begin)

call m_unlockO

if (go) then

yg=O.O
do 14 ir=begin,begin+size-l

yg=yg+x(ir,k)*g(ir,k)
continue
alfa=I.0/(1.0+yg)

do 15 ir=begin,begin+size-l
iriga=ir-begin+l

15
c

16
c

c

116
c

17
c

c

117
177
c

c

c
c
c

c

c

c

c

else

endif

do 15 ic=begin,begin+size-l
icol=ic-begin+l
mgy(iriga,icol)=g(ir,k)*x(ic,k)*alfa
if (ir.eq.ic) then

mgy(iriga,icol)=l.O-mgy(iriga,icol)
else

mgy(iriga,icol)=-mgy(iriga,icol)
endif

continue

do 16 ir=begin,begin+size-l
iriga=ir-begin+l
u2(iriga)=u(ir)

continue

call matvet(mgy,u2,u3,size)

do 116 ir=begin,begin+size-l
iriga=ir-begin+l
u(ir)=u3(iriga)

continue

do 177 kk=k+l,q-l
do 17 ir=begin,begin+size-l

iriga=ir-begin+l
g2(iriga)=g(ir,kk)

continue

call matvet(mgy,g2,g3,size)

do 117 ir=begin,begin+size-l
iriga=ir-begin+l
g(ir,kk)=g3(iriga)

continue
continue

return

go to 888

end

subroutine stage33(k)
integer nndim,mmdim,qqdim
parameter(nndim=1024,mmdim=5l2,qqdim=lO)

COMMON/constl/n,m,q
COMMON/shar20/u
COMMON/shar3/g,x

COMMON/logi/var,go
COMMON/misura/size

real u (nndim)
real g(nndim,qqdim-l)
real x(nndim,qqdim-l)
real alfa,yg
real u2(nndim),u3(nndim),g2(nndim) ,g3(nndim),g4(nndim)
real mgy(nndim,nndim)

integer ir,ic,kk
integer n,m,q,k
integer iriga,icol

c

c

c
c

integer begin, size
logical go, var

EQUIVALENCE (u2,g2)
EQUIVALENCE(u3,g3)

888 continue

c

c

14

c

15
c

16
c

c

116
c

17
c

c

117
177
c

c

c
c
c

call partition(begin)

if (go) then

yg=O.O

else

endif

do 14 ir=begin,begin+size-1
yg=yg+x(ir,k)*g(ir,k)

continue
alfa=1.0/(1.0+yg)

do 15 ir=begin,begin+size-1
iriga=ir-begin+1

do 15 ic=begin,begin+size-1
icol=ic-begin+1
mgy(iriga,icol)=g(ir,k)*x(ic,k)*alfa
if (ir.eq.ic) then

mgy(iriga,icol)=1.0-mgy(iriga,icol)
else

mgy(iriga, icol) =-mgy (iriga, icol)
endif

continue

do 16 ir=begin,begin+size-1
iriga=ir-begin+1
u2(iriga)=u(ir)

continue

call matvet(mgy,u2,u3,size)

do 116 ir=begin,begin+size-1
iriga=ir-begin+1
u(ir)=u3(iriga)

continue

do 177 kk=k+1,q-1
do 17 ir=begin,begin+size-1

iriga=ir-begin+1
g2(iriga)=g(ir,kk)

continue

call matvet(mgy,g2,g3,size)

do 117 ir=begin,begin+size-1
iriga=ir-begin+1
g(ir,kk)=g3(iriga)

continue
continue

return

go to 888

end

c

c
c

c
c
c

c

subroutine partition(pbegin)
COMMON/const1/n,m,q
COMMON/logi/var,go
COMMON/misura/size

logical go,var
integer begin,size,pbegin

save begin
if (var) then

else

begin=l
var=.false.

if (begin.ge.(n-size» then
go=.false.

else

end if
endif

pbegin=begin
return
end

begin=begin+size

subroutine dmatvet(a,x,y)
real a(2,2)
real x(2) ,y(2)
integer i,k

do 20 i=1,2
y(i)=O.o
do 10 k=1,2

y(i)=y(i)+a(i,k)*x(k)
10 continue
20 continue
c

c
c
c

c

c

return
end

subroutine matvet(a,v,c,nn)
integer ndim
parameter (ndim=1024)

real a(ndim,nn)
real v(nn),c(nn)
real sum
integer ii,jj

do 10 ii=l, nn
sum=O.O
do 9 jj=l,nn

sum=sum+a(ii,jj)*v(jj)
9 continue

c(ii)=sum
10 continue
c

c

return
end

