
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Dynamic network function chain composition for mitigating network latencyDynamic network function chain composition for mitigating network latency

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1109/ISCC.2018.8538646

PUBLISHER

© IEEE

VERSION

AM (Accepted Manuscript)

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Hajji, Wajdi, Thiago A. Genez, Fung Po Tso, Lin Cui, and Iain W. Phillips. 2019. “Dynamic Network Function
Chain Composition for Mitigating Network Latency”. figshare. https://hdl.handle.net/2134/36912.

https://lboro.figshare.com/
https://doi.org/10.1109/ISCC.2018.8538646

Dynamic Network Function Chain Composition
for Mitigating Network Latency

Wajdi Hajji∗, Thiago Lopes Genez†, Fung Po Tso∗, Lin Cui‡, Iain Phillips∗

∗Department of Computer Science, Loughborough University, UK
†Institute of Computer Science, University of Bern, Switzerland

‡Department of Computer Science, Jinan University, Guangzhou, China
Email: w.hajji@lboro.ac.uk; genez@inf.unibe.ch; p.tso@lboro.ac.uk; tcuilin@jnu.edu.cn; i.w.phillips@lboro.ac.uk

Abstract—Network Function Virtualisation (NFV) enables
rapid deployment of new services in networks on an on-demand
basis using general purpose servers. Multiple virtual network
functions (VNFs) can be dynamically chained in an ordered
sequence for the delivery of end-to-end services. Nevertheless,
network latency caused by the sequential order of packet process-
ing on every VNF can hurt the performance of latency-sensitive
applications. To reduce such network latency, existing solutions
only consider the maximum capacity of individual virtual net-
work functions (VNFs) and do not take into account the fact
that performance of VNFs, as with any software applications, is
bottlenecked by either CPU or I/O peripheral capacity of the server
they run on and their underneath implementation such as single-
or multi-threaded.

By exploiting this knowledge, we can better determine the
number of required VNF instances and distribute the network
traffic among them for any given VNF chains. In this paper, we
formulate the VNF Scaling and Traffic Distribution problem and
prove that it is NP-hard. We then present the design and imple-
mentation of Natif, an efficient VNF-Aware VNF insTantIation
and traFfic distribution scheme. Through our OpenStack-based
testbed evaluations, we demonstrate that Natif can significantly
improve the network latency by 188% on average as compared
to other approaches. As a chain composition scheme, Natif can
effectively work with any VNF chaining algorithms.

I. INTRODUCTION

Virtual Network Functions (VNFs) (e.g., firewalls, load bal-
ancers) are often deployed in chains in between the communi-
cating hosts [1]. Being in a chain, VNFs can provoke a mutual
interference as they can change the volume of the processed
traffic [2], which can cause resource, such as network and
CPU, bottlenecks in the chain. As a result, network latency
starts to build up and degrade the application performance,
directly hurting revenue. It is reported that every 100ms of
latency cost Amazon 1% in sales [3].

Current studies tackle the latency problem through VNF
placement optimisation [4], VNF chaining [5][6] and VNF par-
allelisation [7]. These methods improve latency by shortening
end-to-end paths. However, they see VNFs as black boxes and
neglect their internal packet processing characteristics. VNFs

Corresponding author: Dr. Fung Po Tso
This work has been partially supported in part by the UK Engineering

and Physical Sciences Research Council (EPSRC) grants EP/P004407/2 and
EP/P004024/1; the Chinese National Research Fund (NSFC) No. 61772235
and 61402200; the Fundamental Research Funds for the Central Universities
(21617409).

are software applications running inside virtual environment.
While software performance is bounded by either I/O or CPU
or both of them, we argue that VNFs are no exceptions.

To demonstrate this, we have evaluated the resources usage
at three VNFs, pfSense Network Address Translator (NAT),
Snort Intrusion Detection System (IDS), and Suricata IDS.
Each one of them is deployed on a Virtual Machine (VM)
with 1Gbps vNIC, 1vCPU, and 1GB RAM. Fig. 1a depicts
a clearly distinct CPU usage and CPU interrupts activities
at pfSense NAT and Snort IDS in spite of being allocated
similar resources and handling the same network traffic. This
is because pfSense NAT is insensitive to the packet payload
since it only handles the packet header. At each packet arrival
it calls its subroutine running in the user space which results in
high CPU interrupts (interrupt-driven I/O), hence I/O-bound.
We have found that the effective computation of pfSense NAT
is only around 2% of the total CPU usage. In comparison, the
Snort IDS, using community rules1, buffers and inspects the
data carried out in the packet payloads, a CPU-intensive task,
hence CPU-bound. Interestingly, our experiments also revealed
that Suricata IDS, a multi-threaded application, efficiently
uses the CPU resources while Snort IDS, a single-threaded
implementation, only uses one core at a time.

In this paper, we propose Natif 2, a VNF-Aware VNF
insTantIation and traFfic distribution scheme, as a way to
reconcile the discrepancy of VNF requirements in the network
chains. Natif considers the correlation between traffic and
VNF category (CPU- vs. I/O-bound). For instance, when
instantiating an I/O-bound VNF, Natif determines the required
number of its instances based on the packet rate of the
total incoming/entering flows (i.e., the throughput). Then, it
implements a flow-based load balancer method that primarily
considers the packet rate of each flow in the traffic distribution
on the existing VNF instances. However, when dealing with
CPU-bound VNF, both VNF instantiation and traffic distri-
bution consider the bandwidth of the incoming flows (the
amount of received data). Also, we argue that Natif can be
seamlessly integrated into the VNF management approaches
since it does not interfere with the VNF placement or chaining

1https://www.snort.org/downloads/#rule-downloads
2Natif is a French word that means innate, original, or natural

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35

>90% CPU
interrupts

>90% CPU
interrupts

<5% CPU
interrupts

<5% CPU interrupts

C
P

U
 u

sa
ge

 (
%

)

Runtime (s)

20kpps x 1400 bytes / NAT
20kpps x 8 bytes / NAT

20kpps x 1400 bytes / IDS
20kpps x 8 bytes / IDS

(a) CPU use at pfSense NAT and Snort IDS

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70

C
P

U
 u

sa
ge

 (
%

)

Runtime (s)

Suricata/core(1)
Suricata/core(2)

Snort/core(1)
Snort/core(2)

(b) Multi-threaded Suricata IDS vs. single-
threaded implementation in Snort

Fig. 1: VNF performance bottlenecks

but it complements them. In short, our contributions are four-
fold:

• We experimentally demonstrate that an individual VNF’s
performance can be dependent on its host’s CPU and/or
I/O capacity (CPU- or I/O-bound), and their underpinning
implementation method (single- vs. multi-threaded).

• We mathematically formulate the VNF scaling and traffic
distribution problem and prove that it is NP-hard.

• We propose and implement Natif for efficiently compose
given VNF chain based on VNFs’ internal packet pro-
cessing characteristics. We also open source our imple-
mentation3 under the GNU General Public License.

• Our evaluation of Natif with OpenStack show that it can
significantly improve the network latency by 188% on
average as compared with other methods.

The remainder of this paper is structured as follows: Section
II mathematically models the problem. Section III describes
the proposed solution. Section IV presents the system design
and implementation of Natif. Section V describes the experi-
mental setup and evaluation. Section VI states the related work
and Section VII concludes the paper.

II. PROBLEM FORMULATION AND MODELLING

We consider a network that can be modelled as a directed
graph G = (V,E) such as illustrated in Fig. 2, and we define
the notations used in formulating the problem in Table I.

3https://github.com/SynNetSys/natif.git

m1

m2

m3
m5

m4

m6

b1_2

m2

m3

Fig. 2: Initially, this network chain had two branches, b1 and
b2. After scaling out m2 and m3, b1 and b2 have been split
into the sub-branches (b11, b12) and (b21, b22), respectively.

TABLE I: Notation

Symbol Description
M = {m1,m2, . . .} List of VNFs
G = (V,E) G directed graph. V ⊂M . E links

between elements of V
CH = {ch1, ch2, . . .} List of network chains
BRi List of branches of chi ∈ CH
SBi List of sub-branches of chi ∈ CH
F = {f1, f2, . . .} List of flows
P = {p1, p2, . . .} List of policies
mi.c, mi ∈M Required CPU cores for mi

mi.m Required memory for mi

mi.cat 0 if mi is I/O-bound VNF, 1 if
CPU-bound

mi.cpps mi capacity in packets per second
mi.cbps mi capacity in bits per second
mi.gdf Gain/drop factor of mi: ratio of in-

coming to outgoing traffic travers-
ing mi

mi.gdpps Gain/drop factor in packets per sec-
ond

mi.gdbps Gain/drop factor in bits per second
mi.thd 0 if mi has single-threaded imple-

mentation, 1 if multi-threaded
fi.src, fi.dst, fi.bps, fi.pps Source, destination, bandwidth,

and packet rate, respectively, of
fi ∈ F

pi.list, pi.len List of deployed VNFs by pi ∈ P
and its length, respectively.

The delay of flow when traversing a VNF is composed of a
transmission delay and a processing delay. The former depends
on the link capacity which is considered relatively stable in
data centres [8]. The latter is due to the processing time, i.e.
service time, of the incoming traffic plus the latency incurred
by the packet queuing at the VNFs, i.e., the waiting time.

Let D be the transmission delay matrix, where
D(mi,mj) = D(mj ,mi) is the delay between mi and
mj , and D(mi,mj) = −1 if the delay is unknown or mi and
mj are not reachable. We define the service time as the time
that the VNF takes to process a packet or a bit of data based
on its category. The service time of a VNF mi is given as
follows.

tis = 1/mi.cpps (1)

For simplicity, we consider M/D/1 queue at VNFs and
VNFs process packets in a First-Come-First-Service (FCFS)
discipline. We refer by λi to the arrival rate of all flows
traversing mi. λi is determined by a Poisson process and is
defined as follows.

λi =
∑

fi∈E(∗,mi)

fi.pps (2)

Given the utilisation ρi = λi × tis, the average waiting time
tiw of mi is

tiw =
tis × ρi
2(1− ρi)

=
λi × tis

2

2(1− λi × tis)
(3)

And the processing delay of mi is:

tp(mi) =

{
tis, λi ≤ mi.cpps

tiw + tis, otherwise
(4)

The packet rate (throughput) and bandwidth of the egress
flow at VNF mi are defined as follow.

fe.pps =

mi.gdpps ×

∑
fi∈E(∗,mi)

fi.pps, if λi ≤ mi.cpps

mi.gdpps ×mi.cpps, otherwise
(5)

fe.bps =

mi.gdbps ×

∑
fi∈E(∗,mi)

fi.bps, if λi ≤ mi.cpps

mi.gdbps ×mi.cdps, otherwise
(6)

where fi ∈ E(∗,mi) refers to all the flows entering mi.

A. VNF scaling and traffic distribution optimisation problem

The expected delay of a flow fi traversing a branch bi
governed by a policy pi is construed as follows.

T (pi) = D(fi.src, pi.list[1])

+

pi.len−1∑
j=1

(D(pi.list[j], pi.list[j + 1]) + tp(pi.list[j]))

+D(pi.list[pi.len], fi.dst)
(7)

Problem definition. Given the set of flows F , policies P ,
VNFs M , chains CH , their branches BR, their sub-branches
SB, and delay matrix D. We aim to determine the needed
number of instances of each VNF to ensure that all ingress
flows are accommodated. Afterwards, we map the flows on
the resultant chain sub-branches based on both flow and VNF
properties to minimise the total end-to-end delay at the chains.

Minimise
∑

pk∈P
T (pk) Subject to:

∀pk ∈ P, pk is satisfied (C1)

∀pk ∈ P, ∀mi ∈ pk.list,
∑

fi∈E(∗,mi)

fi.pps ≤
∑

mj∈Mi

mj .cpps, mi.cat = 0∑
fi∈E(∗,mi)

fi.bps ≤
∑

mj∈Mi

mj .cdps, otherwise
(C2)

∀ fi ∈ E(∗,mi), ∃mj ∈ Mi,{
fi.pps ≤ mj .cpps, mi.cat = 0

fi.bps ≤ mj .cdps, otherwise
(C3)

The constraints (C1) impose that all policies should be
satisfied. (C2) ensure that there should be |Mi| VNFs capable
of handling all the incoming flows, either for I/O-bound or
CPU-bound VNFs. (C3) highlight that in a flow-based distri-
bution scheme, we might have individual flows that cannot
be accommodated by any of the VNF instances. Hence, we
ensure that for any flow traversing a group of VNF instances,
there should be an mi that has the sufficient capacity.

The above problem can be proven to be NP-Hard.
Proof. Consider a special case that includes a chain of three

VNFs of m1, m2, and m3 (in one branch) and is processing
n flows. We suppose that initially m1 has not the sufficient
resources to handle the n flows but the other VNFs do. A
reasonable solution is to scale out m1 by at least one unit.
In this new setup, the main branch will be split into two
sub-branches. Then, the original problem becomes to find an
appropriate sub-branch for each of the n flows that results
in the overall low latency. Consider each flow to be an item,
where its requirement (throughput and bandwidth) is the item
size. Thus, each VNF can be seen as a knapsack kj with
limited capacity kj .cap. The profit of assigning flows to each
VNF is the negative of the flow delays. Then, our problem
becomes finding a path for each flow through the VNFs
that maximises the total profit. In other words, this becomes
a Multiple Knapsack Problem (MKP) [9], whose decision
version has already been proven to be NP-hard. Therefore,
the MKP problem is reducible to our problem in polynomial
time, and hence our problem is NP-hard.

III. VNF INSTANTIATING AND TRAFFIC DISTRIBUTION

In this section, we briefly describe the three principles of
our proposed solution.

A. VNF instantiation

We calculate the total packet rates and bandwidth of all
flows traversing each branch of the chain. Then, depending
on the VNF category (I/O- or CPU-bound), we determine
how many instances needed for that VNF. We calculate the
new flow attributes after traversing a VNF mi based on the
gain/drop factor. Afterwards, we run the VNF instantiation and
we carefully allocate the number of cores to each instance
(mi.c) by considering their internal implementation reflected
by the variable mi.thd (single- versus multi-threaded). In
particular case, if the VNF is single-threaded then the number
of allocated cores will be the number of needed instances.

B. VNF-aware traffic distribution

In the flow mapping against the instances of a VNF mi,
we aim to reduce the likelihood of having no accommodated
flows. Therefore, we start assigning the flows with the highest
bandwidth if mi is CPU-bound or the highest packet rate if it
is I/O-bound to the instances having the maximum remaining
capacity (either in bits per second if mi is CPU-bound or
packet per second if mi is I/O-bound). Then, the flow status
(mapped or not) and the VNF remaining capacity will be

Nova
API

Neutron
API

Ceilometer
API

Nova Neutron Ceilometer

OpenStack Controller

Compute agent 2

Interactor
Tools to act on the cloud environment via OpenStack API (subroutines

to create/delete server/port, stitch/update chain, etc.)

Orchestrator
• Call the Interactor

subroutines
• Retrieve and

forward the traffic
stats

• Launch the Engine
modules

• Read and forward
the topology info

Engine
• Determine the

needed NF
Instances

• Map flows onto
the chain branches

• Predict flow
attributes for the

next cycle.

...

Compute agent 1 Compute agent n...

SFC

Neutron

La
u

nc
h

su
br

ou
ti

ne
s

Start Engine modules
and receive feedback

Feed Engine with topology
and traffic data

Traffic
stats

Fig. 3: System design
updated, and we iterate the process with the other VNF in
the chain. For a given VNF, the mapping finishes when there
is no flow left untreated.

However, solely relying on the VNF category and the flow
attributes can lead to poor mapping decisions. For instance, if
at a CPU-bound VNF, we are receiving flows with negligible
bandwidth, relatively to the VNF capacity in bits per second,
but with high packet rate, considering only the bandwidth in
the traffic distribution may create a congestion at one of the
VNF instances. So we propose that if the flow bandwidth is
negligible comparing to the capacity in bits per second of
a CPU-bound VNF, then we consider the flow rate instead.
Also, if the flow rate is negligible relatively to an I/O-bound
VNF capacity in packets per second, we then consider the flow
bandwidth in the traffic distribution.

C. Traffic characteristics prediction

Our proposal requires the identification of flow attributes
over a period of time (e.g., a cycle). Therefore, we use the
traffic statistics logged at the forwarding devices (OVS switch)
to train a prediction algorithm to help in characterising the
coming flows. For this purpose, we use the prediction model
Arima [10] to determine the flows attributes. Without the
output of the prediction or for bursty traffic, any new flow
entering the network chain will be mapped to the set of the
VNF instances in respect to the associated policy and based
on its current attributes, i.e., at the arrival time.

Our controller makes decisions after each cycle of the traffic
prediction run. The quality and reliability of working data, as
well as their rate of change, determine the period of the cycle,
which is in the order of minutes in our implementation.

IV. SYSTEM DESIGN AND IMPLEMENTATION

A. System architecture

Natif is implemented in OpenStack4 environment. Its mod-
ules are deployed alongside the OpenStack controller. Our
source code, around 1,500 lines, is written with OpenStack
Python API. The controller has three main blocks. The Inter-
actor provides tools to instantiate VNFs, create network chains

4https://www.openstack.org/software/newton/

and perform traffic steering. The Engine implements Natif ’s
logic presented in section III. The Orchestrator synchronises
between the different modules as shown in Fig. 3.

B. Controller modules

• Chain reading and creation module reads the configura-
tion files describing the chains details and then instanti-
ates the VNFs on VMs.

• Flow mapping determines the path of each flow and
calls the Service Function Chaining (SFC) subroutines
to implement the forwarding rules.

• Chains update module updates the flow mapping by
implementing/deleting the forwarding rules after each
change on the chain topology.

• Flow attributes prediction module collects statistics on the
traffic traversing the chain to train the Arima prediction
model and then determines to flow attributes for the next
cycle.

V. EXPERIMENTAL EVALUATION

A. Testbed experiment

We deploy OpenStack (one controller, two compute, and
one storage nodes) on two servers with four 1Gbps NICs, 8
CPU cores and 32GB RAM each. The experiment involves
chains of length three composed of NAT, firewall (FW) as
representative of I/O-bound VNF and IDS for CPU-bound cat-
egory. Measurements have been taken during five consecutive
cycles of Arima prediction. We define three network traffic
flavors/profiles. Profile 1 (P1): Six flows at high packet rate
(20kpps) but low bandwidth (8-byte packet payload). Profile
2 (P2): Six flows with high bandwidth (1400-bytes payload)
but random packet rates (normal distribution from 5kpps to
20kpps). Profile 3 (P3): mixed flows from P1 and P2. We also
use two reference scenarios for the performance assessment.
Greedy: it relies on the resources overprovisioning. It scales up
all the VNFs by equally allocating all the available CPU cores
and memory to them. Stratos-based5 (StratosB) [1]: It deter-
mines the number of instances of each VNF and distributes
traffic based on the total bandwidth of the ingress flows. Thus,
StratosB ensures a network-aware traffic distribution to reduce
the likelihood of the network congestion and link saturation.
For each scenario, we apply the three profiles, and then we
measure the chain throughput (Mbps) and end-to-end delay.

B. Network metrics assessment

Fig. 4 shows how Natif has mitigated the RTT in the three
profiles. Fig. 4a illustrates how, at the 90th percentile, Natif
achieves 85% and 100% improvement compared to Greedy
and StratosB, respectively. Fig. 4b shows the RTT for P2,
StratosB outperforms Greedy, but it is still less efficient than
Natif. When we apply P3 (Fig. 4c), Natif still outperforms
StratosB as it has less RTT, 15ms compared to 30ms at 99th

percentile in StratosB, which means an improvement of nearly
100%. It also achieves better results comparing to Greedy as

5Implemented on https://github.com/wajdihajji/natif.git

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20
 40

 60
 80

 100
 120

 140
 160

 180

C
D

F

RTT (ms)

Greedy

StratosB
Natif

(a) Profile 1: high packet rate flows

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20
 40

 60
 80

 100
 120

 140
 160

 180
 200

C
D

F

RTT (ms)

Greedy

StratosB
Natif

(b) Profile 2: high throughput flows

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 20
 40

 60
 80

 100
 120

 140
 160

 180
 200

 220

C
D

F

RTT (ms)

Greedy

StratosB
Natif

(c) Profile 3: Mix of profiles 1 and 2

Fig. 4: RTT (ms)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02
 0.04

 0.06
 0.08

 0.1
 0.12

 0.14
 0.16

 0.18

C
D

F

Throughput (Mbps)

Greedy

StratosB
Natif

(a) Profile 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40
C

D
F

Throughput (Mbps)

Greedy

StratosB
Natif

(b) Profile 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

C
D

F

Throughput (Mbps)

Greedy

StratosB
Natif

(c) Profile 3

Fig. 5: Throughput (Mbps)

it decreases the latency to 10ms compared to 70ms at 90th

percentile in Greedy.
In Fig. 4a, StratosB and Greedy do not capture that the

high packet rate flows (even if it is incurring low bandwidth)
can degrade the I/O-bound VNFs performance, like the FW
and the NAT in the studied network chains. In Fig. 4b, we
apply a high bandwidth traffic. StratosB properly recognises
the needed VNF instances but it partially succeeds in making a
correct traffic distribution since it does not consider the packet
rate when dealing with flows traversing an I/O-bound VNF.
For P3, StratosB still performs well with high packet rate flows
but not better than Natif since there is still high packet rate
flows that need to be suitably distributed, thus, the results in
Fig. 4b. Greedy focuses on the horizontal scaling of the VNFs,
which does not help when the VNF has a single-threaded
implementation so it will not be able to use all the allocated
cores. Fig. 5a and 5b pick out a slightly identical behaviour of
the throughput (Mbps) in the three approaches. However, Fig.
5c shows how Natif achieves 8% better throughput compared
to Greedy and StratosB.

To conclude, Natif has mitigated the end-to-end delay
without sacrificing the network throughput (Mbps), and in
some cases, it improves both metrics simultaneously (P3).

C. Traffic distribution and Arima model evaluation

In this section, we measure the runtime of the traffic
distribution module (also called flow mapping) of the three
studied approaches, the CPU utilisation at the controller, and
the prediction model efficiency. We define three data-sets that
are the working data for the flow mapping. DS1: consisting
of 100 VNFs, 30 chains, and 1k flows. DS2: 200 VNFs, 60
chains, and 2k flows. DS3: 300 VNFs, 90 chains, and 3k flows.

In Fig. 6a, Natif outperforms StratosB, and Greedy has
the shortest runtime. The runtime evolves linearly with larger
data-sets, e.g., in Natif, it increases from 1s to 2.3s to 3.3s
and in StratosB from 1.3s to 2.8s to 3.8s, for DS1, DS2, and

DS3, respectively. To explain this, we look back at how these
approaches work. For example, Greedy distributes traffic on a
static chain so it is taking the shortest runtime. When dealing
with CPU-bound VNF, Natif and StratosB have almost a
similar behaviour. Whereas, when it comes to traffic traversing
an I/O-bound VNF, StratosB still considers the bandwidth
criterion while Natif primarily looks at the packet rates and
then the traffic bandwidth, in low priority. As a result, for
the case of I/O-bound VNF, when considering the bandwidth
rather than the packet rate, we can have more VNF instances
since an I/O-bound VNF has less sensitivity to the bandwidth
(e.g., NAT) than a CPU-bound VNF. Because spinning out
more instances in StratosB, it is taking more time than Natif.

Fig. 6b shows the effect of the different algorithms on
the CPU usage of the controller node. In DS1 and DS2,
StratosB have the most significant CPU usage, then comes
Natif, and lastly Greedy. As highlighted above, this reflects the
logic behind each approach. However, in DS3, Natif slightly
demands more computational resources than StratosB. Natif
runs more iterations than the other approaches, and this may
have a clearer repercussion especially with larger data-sets

Lastly, we have conducted a separate experiment consisting
of predicting future traffic attributes (bandwidth and packet
rate) based on past data of real traffic traversing a VNF (NAT).
First, we trained Arima model with data of past 900 seconds
(15 min) and then we measured the prediction accuracy. As
shown in Fig. 6c, Arima model performs well in predicting
the RTT of the ingress flows with an error of less than 30
packets per second.

VI. RELATED WORK

VNF-VITAL [11] has presented a framework for VNF
characterisation. The study has been based on Clearwater IMS
VNF and two IDS VNFs (Snort and Suricata). It examines the
horizontal and vertical scaling impact on the VNF performance
regarding the CPU and memory utilisation. However, the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

DS1 DS2 DS3

R
un

tim
e

(s
)

Greedy
StratosB

Natif

(a) Flow mapping module

 0

 20

 40

 60

 80

 100

 120

G-DS1

SB-DS1

N-DS1

G-DS2

SB-DS2

N-DS2

G-DS3

SB-DS3

N-DS3

C
P

U
 u

sa
ge

 (
%

)

Quartiles, CPU

(b) CPU usage at the controller node

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 220

 0 50 100 150 200 250

P
ac

ke
t

ra
te

 (
pa

ck
et

s/
s)

Runtime (s)

Predicted
Expected

(c) Prediction model evaluation

Fig. 6: Evaluation of flow mapping module, controller node CPU usage, and prediction model. G, SB, and N refer to Greedy,
StratosB, and Natif, respectively

study shows no consideration of the possible performance
interference incurred by the VNFs since the evaluation did
not cover performance of sequence of VNFs where chained,
which we have achieved in this paper.

The authors in [2] have focused on an interesting aspect
in the service chains. They have illustrated the traffic chang-
ing effects of middleboxes and formulated the middleboxes
placement problem to minimise the maximum link load ratio.
Their proposed VNF chaining is relying on the gain/drop
factor of each VNF but neglecting the fact that such chaining
should fulfill well defined requirements such as the order of the
VNF within the chain. Otherwise, this could probably lead to
breaching the network policies that should have been correctly
implemented by the chains. Our approach carefully considers
the gain/drop factor without attempting any re-ordering that
can violate policies.

Work presented in [12] has proposed a graph neural
network-based algorithm that predicts future VNF components
(VNFCs) resource requirements based on the collected CPU
and RAM utilisation data. So, it would be possible to proac-
tively allocate necessary resources to the VNFCs even before
they could experience performance degradation. However, we
believe that in some cases only considering the CPU or
memory utilisation to understand the VNF performance would
not be sufficient since the CPU usage metric can be misleading
such as in the case of pfSense NAT. In our work, we have
shown how the high CPU usage at pfSense NAT does not
reflect the real computation need but it is a consequence of
high CPU interrupts caused by the high rate of incoming
packets (only 2% effective computation of the total CPU
usage).

Other approaches such as [4][5][7] focus on the placement
problem to minimise the end-to-end delay at the chains without
considering the VNF performance. Instead, they model and
manage the VNFs as identical entities.

VII. CONCLUSION AND FUTURE WORK

NFV has facilitated the deployment and management of
VNFs, but it has deepened the virtualisation overhead which
particularly hurts the performance of latency-sensitive appli-
cations. To compensate this overhead, we have proposed a
simple but efficient solution that leverages the knowledge on
VNFs to propose a VNF qualitative categorisation and chain
composition proven useful in minimising the end-to-end delay.

However, apart from the simplified mathematical model,
some issues remain unaddressed. Therefore, we aim in future
work to answers to following questions. How to find out
the gain/drop factor of certain VNFs such as Redundancy
Eliminator since, in this case, the factor primarily depends
on the packet payload (unlike NAT or proxy where the factor
is known and static). Also, how we can tweak our approach
to be applicable for bursty traffic where the Arima prediction
algorithm would have insufficient time space to be trained.

REFERENCES

[1] A. Gember, R. Grandl, A. Anand, T. Benson, and A. Akella, “Stratos:
Virtual middleboxes as first-class entities,” UW-Madison TR1771, p. 15,
2012.

[2] W. Ma, J. Beltran, Z. Pan, D. Pan, and N. Pissinou, “Sdn-based traffic
aware placement of nfv middleboxes,” IEEE Transactions on Network
and Service Management, vol. 14, no. 3, pp. 528–542, 2017.

[3] J. Zhang, F. Ren, and C. Lin, “Survey on transport control in data center
networks,” IEEE Network, vol. 27, no. 4, pp. 22–26, 2013.

[4] A. Hirwe and K. Kataoka, “Lightchain: A lightweight optimisation
of vnf placement for service chaining in nfv,” in 2016 IEEE NetSoft
Conference and Workshops (NetSoft). IEEE, 2016, pp. 33–37.

[5] S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet, “Network service
chaining with efficient network function mapping based on service
decompositions,” in Network Softwarization (NetSoft), 2015 1st IEEE
Conference on. IEEE, 2015, pp. 1–5.

[6] L. Cui, F. P. Tso, D. P. Pezaros, W. Jia, and W. Zhao, “Plan: Joint
policy- and network-aware vm management for cloud data centers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 4,
pp. 1163–1175, April 2017.

[7] Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich, A. Shaikh,
and Z.-L. Zhang, “Parabox: Exploiting parallelism for virtual network
functions in service chaining,” in Proceedings of the Symposium on SDN
Research. ACM, 2017, pp. 143–149.

[8] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen et al., “Pingmesh: A large-scale system
for data center network latency measurement and analysis,” ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 139–
152, 2015.

[9] H. Kellerer, U. Pferschy, and D. Pisinger, “Other knapsack problems,”
in Knapsack Problems. Springer, 2004, pp. 389–424.

[10] H. Z. Moayedi and M. Masnadi-Shirazi, “Arima model for network
traffic prediction and anomaly detection,” in Information Technology,
2008. ITSim 2008. International Symposium on, vol. 4. IEEE, 2008,
pp. 1–6.

[11] L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “Nfv-vital: A framework
for characterizing the performance of virtual network functions,” in
Network Function Virtualization and Software Defined Network (NFV-
SDN), 2015 IEEE Conference on. IEEE, 2015, pp. 93–99.

[12] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba,
“Topology-aware prediction of virtual network function resource re-
quirements,” IEEE Transactions on Network and Service Management,
vol. 14, no. 1, pp. 106–120, 2017.

