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Representation of Coherency Classes for Parallel Systems 

Walter Hussak 
Department of Computer Studies, 

University of Technology, 
Loughborough, UK. 

Abstract 

Some parallel applications do not require a pre- 
cise imitation of the behaviour of the physically shared 
memory programming model. Consequently, certain 
parallel machine architectures have elected to  empha- 
sise different required coherency properties because of 
possible efficiency gains. This has led to  various defi- 
nitions of models of store coherency. These definitions 
have not been amenable t o  detailed analysis and, con- 
sequently, inconsistencies have resulted. 

In this paper a unified framework is proposed in 
which different models of store coherency are developed 
systematically by progressively relaxing the constraints 
that they have t o  satisfy. A demonstration is given of 
how formal reasoning can be cam’ed out to  compare 
different models. Some real-life systems are consid- 
ered and a definition of a version of weak coherency is 
found to  be incomplete. 

1 Introduction 

It has long been realised that physically shared 
memory parallel computers have problems of scalabil- 
ity beyond a limit of 30-50 processors [2]. This prob- 
lem arises because the memory is accessed by a com- 
munications network, usually a bus, the capacity of 
which becomes overloaded with increasing numbers of 
processors. However, the programming model of such 
machines is very convenient for programmers: asyn- 
chronous processes communicate and synchronise via 
variables residing in the shared memory. Memory ac- 
cess and location is transparent to the programmer. 

Physically distributed memory machines, that con- 
tain closely-coupled processor-store pairs, offer po- 
tentially unlimited scalability because communication 
bandwith scales with extra processors. However, such 
machines enforced a distributed memory program- 
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ming model where asynchronous processes communi- 
cate and synchronise via messagepassing. Communi- 
cation is via the content of a message and synchronisa- 
tion occurs, in that a measage must be sent before it is 
received. The programming model requires knowledge 
of memory location in the system and is more compli- 
cated than the shared memory programming model. 

In recent years, parallel computer architects have 
attempted to provide the convenience of the shared 
memory programming model with the scalability of 
physically distributed memory machines. 

To provide precisely the same programming model 
that physically shared memory machines provide, on 
a physically distributed memory machine, requires ex- 
tensive support in either hardware or software. If 
provided in hardware this usually means that the 
price/performance of the machine increases because 
the hardware is necessarily more sophisticated. If im- 
plemented in software there is necessarily much more 
co-ordination at  operating system level, and thus be- 
tween processor-store pairs and a consequent loss in 
overall performance. In both cases, the requirement 
on the communication network increases significantly 
if a shared memory model is provided. 

It has become apparent that some applications do 
not require a precise imitation of the behaviour of the 
physically shared memory programming model. Con- 
sequently, partly because of the application require- 
ments and partly because of perceived efficiency gains, 
various parallel machine architectures have elected 
to emphasis different required coherency properties of 
shared memory. So far, such required properties and 
efficiency gains have been based on intuitive archi- 
tectural tradeoffs and application areas targeted for 
the architectures. Such intuitions have been docu- 
mented in an ad hoc fashion and have not permit- 
ted detailed analysis and comparison between differ- 
ent models. This paper aims to elevate the study of 
coherency classes of parallel and distributed systems 
to the level that serializability has been studied in 
database systems. 
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A unified formal framework is given in which differ- 
ent models of store coherency are developed system- 
atically by progressively relaxing the constraints that 
the models have to satisfy. Three models of store co- 
herency, that have been found to be useful by parallel 
machine designers, are defined: strong coherency, se- 
quential consistency and weak coherency. The frame- 
work differs from existing shared memory multipro- 
cessor models, as for example in [l] and [13], in that it 
also allows for the representation of coherency classes 
for distributed memory multiprocessor systems. 

The formal framework is in section 2. Section 3 
presents store coherency in this framework, and sec- 
tion 4 sequential consistency. A definition of a weak 
coherency class is given in section 5 together with a 
demonstration of how formal reasoning is performed 
between different coherency classes. In section 6, the 
coherency properties of some real-life systems are con- 
sidered and a definition of weak coherency is shown to 
be incomplete. Conclusions are drawn in section 7. 

2 Formal Framework 

The following abstracts the essential features for 
developing and communicating ideas about coherency 
classes. A run in a system is a 4-tuple ( X ,  P, <, sees) ,  
where 

0 X is a set of variables or storage locations X ,  Y ,  
. . .  

0 P is a finite set of processes where each process 
is a sequence of events each of which is either a 
read or a write to one of these variables 

0 << is a total order on the set of all the events in all 
the processes, represented some absolute physical 
temporal ordering 

0 if RRE and WRE are the set of all read and write 
events in all the processes, sees is a function 

sees : RRE WE, 

which indicates which previous write a read event 
“sees”. This function has three basic properties, 
given below, to make the definition sensible. 

Notes 

1.  Events are simply reads or writes to variables. 
Any storage system can be represented by the 
“fetches” and “stores” to some variable or storage 
location set that occur. 

2. A read event to a variable X will be denoted 

and a write event 

This is the notation used in serializability theory 
1121. 

3. Events in a process i will be subscripted by i and 
further subscripted by consecutive numbers. The 
run will be represented by a ‘space-time) diagram 
as in [Lam78], though with ‘time’represented hor- 
izontally and ‘space’ vertically, and the definition 
of the sees function. For example, 

has R11[X] << Rzl[Z]. For process i the (irreflex- 
ive) total order of the sequence of events will be 
denoted <i. 

4. The temporal ordering << provides an external 
context or physical clock as in [9]. Here, it is 
needed to distinguish certain coherency classes. 

5. The read events correspond to reads being re- 
ceived and the write events correspond to writes 
being issued. The scenario of ‘actual’ writes tak- 
ing place in a different order to that in which they 
were issued, as for example in the PSO model 
of [13], can be accommodated by an appropriate 
choice of the sees function. 

6. A system will just be a collection of runs. This 
follows the common practice in concurrency the- 
ory of describing a system as a set of possible runs 
(or traces). 

sees function 

The three conditions needed so that the sees func- 
tion represents a meaningful storage system are: 
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e Variable consistency 
A read of a variable X can only see a write to 
that same variable 

sees(R;,[X])  = wkl[Yl + X = Y 

e Temporal consistency 
The value of a variable can only be read after it 
has been physically written 

e Local consistency 
If a read event in a process sees a write event that 
occurred in that process, it  must be the last such 
write event. 

- ( (sees(Rij[X])  = 

The different classes of coherency will be charac- 
terised by an appropriate choice for the sees function. 

3 Strong Coherency 

A strongly coherent store model corresponds most 
closely to  the behaviour of physically shared store par- 
allel machines. When a variable is to be written to  by 
a process, a write lock is obtained thus excluding any 
other processes from reading that variable until the 
write lock is given up. It is clear that a strongly co- 
herent system is one in which a write becomes visible 
to every process as soon as it  occurs. Thus, any read 
in any process always sees what is, temporally, the 
latest write. 

Definition 

A strongly coherent run is one in which if 

wkl[x] < Ri j [X]  

and 

A strongly coherent s y s t em is a set of strongly co- 
herent runs. 

The strongly coherent model arises from the phys- 
icol behaviour of physically shared store parallel ma- 
chines, i.e. a location in the physically shared mem- 
ory can only be accessed by one processor at a time, 
thus there is the notion of atomic update of a vari- 
able. Since there is only one copy of the variable in 
the system, any subsequent reads must see the new 
value written by the most recent write’. 

Since this is the model supported by shared memory 
machines, this class of coherency is seen as being the 
most obvious when shared memory is provided on a 
physically distributed memory machine. 

4 Sequential Consistency 

Lamport [lo] defines a sequentially consistent sys- 
tem: 

A system is sequentially consistent if the re- 
sult of any execution is the same as if the 
operations of all the processes were executed 
in some sequential order, and the operations 
of each individual process appear in this se- 
quence in the order specified by its program. 

The sequentially consistent model gives a statement 
about the logical behaviour rather than any physical 
behaviour, i.e. the logical behaviour that a program- 
mer might expect from a multiprocess program. 

Informally, a sequentially consistent run is one 
which has the “same effect” as a single process run- 
ning the events of the constituent processes in some 
sequential order preserving the order of events in all 
the processes, though not necessarily the overall global 
temporal order of events. Before a formal definition 
can be given the words “same effect” need to be made 
precise. 

4.1 T - equivalence 

Formally, two sequentially consistent runs have the 
“same effect” if they are equivalent in the following 
(rather technical) sense. 

Two runs 721 and 722  are r - equivalent if: 

1. 721 and 72,~  have the same processes with the same 
sequence of reads and writes. 

‘In many such systems each processor has a cache but snoopy 
caches enforce the atomic update. 
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2 .  Given: 

(a) Any value domain for the variables X ,  Y ,  

(b) Any set of initial values for the variables 
from the domains, 

(c) Every value written to a variable by a pro- 
cess in a write event is an uninterpreted func- 
tion of previous values read by that process 

then, for all processes, R1 and 7 2 2  read the same 
sequence of values. 

Put simply, the sequence of values read by a given 
process are the same in 721 and R22. The formal def- 
inition of sequential consistency is as follows. 

4.2 Definition of Sequential Consistency 

. . .  

A run 72 is sequentially consistent if it is r- 
equivalent to a strongly coherent run. A sequentially 
consistent system is a set of sequentially consistent 
runs. The following theorem gives a more amenable 
check for sequential consistency. 

5 Weak Coherency 

4.3 Theorem 

‘R is sequentially consistent if (and only if) there is 
an irreflexive total order < on all the events of all the 
processes in 72 such that: 

(i) eventl  <i event2 j eventl  < event2, 

(ii) ~ e e ~ ( R i j [ X ] )  = W k l [ X ]  3 W k / [ X ]  < &[XI, 

(iii) W k l [ X ]  < W g h [ X ]  < & j [ X ]  + s e e s ( % j [ X ] )  # 
W k / [ X I .  

4.4 Example 

The following is an example of a sequentially con- 
sistent system that is not strongly coherent 
process1 .---_--------..---. 

CXI B CXl 
I1 12 

process2 .---..-----------. 
CXl R [XI 

21 22 
> time __-_ 

2The definition is related to r - serializability from seri- 
alizability theory, and a run R with finitely many events is 
T-serializable in the sense of [15] if it is 7-equivalent to a run 
where 72’s processes have been placed ‘end-to-end’ in some se- 
rial order. The notion of 7-equivalence is a type of observational 
equivalence as in concurrency theory Ill]. 

A weakly coherent system is one in which there is 
defined a ‘happens before’ or ‘causally affects’ relation 
between events in the system, independently of the 
temporal order << of physical time. Typically, this 
would be as in [9] where a ‘happens before’ relation is 
defined on the set of events of a system where message 
passing is taking place and where the point a t  which 
the message is sent is deemed to ‘happen before’ the 
point at which the message is received. Such a system 
is represented in a space-time diagram with arrows 
representing messages. 

5.1 Definition 

A run 72 is weakly coherent if there is an irreflexive 
partial order --* on the events of R such that: 

eventl  <i  event2 event l  + event2, 

% j [ X ]  + W k / [ X ]  * s e e s ( R i j [ X ] )  # w k / [ X ] ,  

A weakly coherent s y s t em is a set of weakly co- 
herent runs. 

The condition (iii) is an extension of the local con- 
sistency condition on the sees function. It states that 
if a write ‘happens before’ a read, then the read can- 
not possibly see an earlier write. Condition (iv) is a 
consequence of 4.3 (i), (ii) and (iii) when dealing with 
sequentially consistent systems. In general, it  is possi- 
ble to  have runs satisfying conditions (i), (ii) and (iii) 
but not (iv). The idea of (iv) is that once a write 
has been seen, and a subsequent read sees a different 
write, then that previous write is an ‘old’ value and 
should not be seen again. 

It is easy to show that a sequentially consistent sys- 
tem is weakly coherent. The converse does not hold, 
so that weak coherency, logically, is a different notion. 
The advantage of having a formal framework is that 
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such supposed logical distinctions, arising from archi- 
tectural intuitions, can be proven. Proofs of equiv- 
alences of systems can also be provided. As an illus- 
tration, the following example gives a weakly coherent 
system that is not sequentially consistent. 

5.2 Example 

Consider the following system S 

p l  .________._____._-_-_.________._______._-------. 
U CY] U [ X I  I U [ X I  n [ X I  n CY1 / I \  

11 12 I 13 14 16 I 
I I 

\ I /  I 
P2 .________--.--------.--------.--I 

U CY1 n CXl  B CY1 ---- > tire 21 22 23 

The check that this is a weakly coherent system is 
straightforward and is not given here. 

Theorem 

The system S is not sequentially consistent. 

Proof 

Assume, on the contrary, that S is sequentially con- 
sistent. Choose an irreflexive total order < satisfying 
conditions (i), (ii) and (iii) of 4.3. Now, if 

Wi3[X] < R22[X], ( 5 )  

Wl2[X] <1 W13[X], (6) 

Wl2[X] < W13[X], (7) 

(8) 

sees(Rz2[X]) # W12[X] (9) 

then as 

by 4.3(i), 

and therefore 

Wiz[X] < wi3[X] < Rzz[X] 

By 4.3(iii), 

This contradicts (1) and therefore ( 5 )  cannot be true. 
Thus, 

Also, 
Rzz[X] < Wi3[X] (10) 

(11) Wll[q < W2l[y1 < Rl5[q 

cannot be the case as then R15[Y] would be required 
to see W21[Y] which contradicts (4). So, either 

W2l[y1 < WlI[y1 (12) 

R15[q < W 2 l [ q  (13) 
or 

must hold. 
Suppose (12) holds. Then, 

R23[q < Wll[q (14) 

else 
W21[y1 < Wll[q < R23[q (15) 

and 4.3(iii) would mean that sees(Rw[Y]) # Wzl[Y] 
contradicting (2). Now, 

R22[X] <2 R23[q (16) 

Thus, 

R22[X] < Rz3[q < Wii[y1by(13) < Wi2[X] (17) 

By 4.3(ii), this means that 

sees(Rzz[XI) # W12[X] (18) 

This contradicts (1) and so (12) cannot hold. 
Finally, suppose (13) holds. then, 

Wl3[X] <1 R15[q < w2l[y1 <2 R22[X] (19) 

Therefore, WI~[X]  < R22[X] contradicting (10). 
Thus, the original assumption that S is sequentially 
consistent is untenable. 0 

5.3 Remarks 

The weakly coherency model appears to be partic- 
ularly useful in parallel symbolic applications. This 
appears to be because such systems tend to have side- 
effect free computational models and thus allow im- 
plementations that do not require a totally consistent 
view of the underlying store at all times. The weakly 
coherent model reduces the amount of synchronisation 
required by a strongly coherent model, at the expense 
of making language run-time subsystems define and 
implement their own coherency models, and thus be 
slightly more complex. 

Strong coherency necessarily involves more network 
traffic, if an application does not require it then it is 
an expensive redundant feature. 

6 Case Studies 

In the following sections a parallel system that p r e  
videa a strongly coherent model, the KSRl, and a par- 
allel system that provides a weakly coherent model, 
EDS, are discussed. 
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6.1 KSR 

The KSRl parallel system [4] was designed as a 
general-purpose machine. The KSR memory system 
provides a store model where all writes to a shared 
variable are immediately seen by any subsequent read 
of that variable in any process. 

The KSR model thus provides the model of strong 
store coherency defined in section 3. As has been 
pointed out, strong coherency provides the program- 
mer with the logical behaviour expected, i.e. sequen- 
tially consistent behaviour. 

Essentially the KSR approach has been to design 
hardware that can implement strong store coherency. 
The KSR physically distributed memory system imi- 
tates a physically shared memory system. 

Because strong coherency is provided for in the 
hardware of the KSR, it does not appear possible for 
the system to provide a weakly coherent, lazy invali- 
dation store model3. 

Performance Considerations 

The KSR is a non-uniform memory access (NUMA) 
time system. Each set of 32 processors are contained 
in a search engine:O. A search engine:O provides the 
hardware that enables strong store coherency to be 
achieved across the 32 processors. In turn, a search en- 
gine:l provides the hardware that enables strong store 
coherency between each 32-processor set, i.e. across 
an entire system. 

On every write to a shared variable an invalidate 
message must be sent to ensure that all copies of 
the variable are made invalid throughout the system. 
When this invalidation has been carried out a pro- 
cessor can write to  the variable. Potentially this can 
cause a large amount of network traffic across a num- 
ber of search engines - the maximum configuration 
has 34 search engines. In the worst case, it is possible 
to  imagine the system performance being bound on 
the frequency of system-wide invalidation messages. 
KSR acknowledge this possibility but suggest that lo- 
cality within a thread and between threads on the 
same search engine:O should ensure that in the vast 
majority of cases there is no system-wide network traf- 
fic for invalidation broadcasts. 

A price/performance issue arises if it can be shown 
that an application only requires a weakly coherent 
store model then the highly sophisticated KSR hard- 
ware design becomes redundant. In addition, it is pos- 
sible that such applications will not perform as well as 

31n [5] a weakly coherent model is built, in software, on top 
of a strongly coherent model. 

they might without the extra hardware sophistication, 
as strong coherency will cause unnecessary invalida- 
tion messages to pass through the system. 

6.2 EDS 

It is recognised that to provide strongly coherent 
store in software is 2 to 3 orders of magnitude slower 
than in hardware [4]. Hence, parallel systems archi- 
tects’ have recognised that certain applications do not 
necessarily require this type of coherence and that 
a weaker model will suffice. The advantage of this 
weaker model is that it increases performance by re- 
ducing network traffic and software co-ordination. 

The EDS parallel system [14] was designed as 
a declarative system. Its aim is to run relational 
databases systems, functional languages and logic lan- 
guages efficiently. EDS has, partly because of the 
declarative system emphasis, focussed upon identify- 
ing applications that require only a weakly coherent 
model, and efficiently supporting the model. A defini- 
tion of a weaker form of coherency was produced for 
EDS. 

The EDS definition underwent several iterations 
from the first version in [SI to a final version in [3]. 
The final version is given below. A thread is just a 
process and a CES * can be assumed to be a message 
from one thread to another. The terms ‘see’, ‘can see’ 
and ‘visible’ were presented informally. 

A partial ordering of events, denoted by <<, is de- 
fined as follows: 

1.  If A and B are actions in the same thread and A 
comes before B, then A << B .  

2. If A is the initiation of a CES by one thread and 
B is the corresponding point of synchronisation 
in another (potentially waiting) thread, then A 
<< B .  

3. If A << B and B << C then A << C. 

Two events A and B are said to be concurrent, de- 
noted by 

if 
A II B ,  

- A  << B a n d - B  << A 

4 If W << R, then W must be visible to R. Vis- 
ible means that R must read the data that have 
been written at W ,  if there is no intermediate or 
concurrent access W’, i.e., if there is no W‘ with 
W << W’ << R or W 11 W’ << R. 

Coherency Establishing Synchronisation. 
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5 If R << W ,  then R must not read the data that 
are written at  W .  

6 Concurrent writer and reader: If W ( 1  R, then it 
is undefined whether or not the reader will see the 
writers modification. 

7 Concurrent writers: If W’ 11 W << R, then 

(a) R << W’ is impossible (W << R << W’ 
implies W << W’). 

(b) If W‘ 11 R then ( 6 )  applies and it is undefined 
whether R will read the value written by W 
or by W’. It will read either of those values. 

(c) If W’ << R, then it is undefined whether R 
will read the value written by W or by W’. 
It will read either of those values. 

According to the definition, the following is permitted: 
Thread t h l  performs a write Wl, after which it issues 
a CES to thread th3 ,  such that W1 << R1 (see the 
definition of th3  below). Thread th2 performs a write 
W2, after which it issues a CES to thread th3 ,  such 
that Wz << RI .  Thread th3  performs a succession 
of reads R1 << R2 << R3 . . . . Then, W1 << R I ,  
W, << R1 and W1 11 W2 (assuming that t h l  and th2  
do not communicate), and so R1 can see W1 by 7(c). 
Similarly, W1 << Rz, WZ << R2 and W1 11 Wz, and 
so Rz can see W2 by 7(c). It is possible to have R1 
see W1, R2 see W2, R3 see W1, Rq see W2, . . . . 

This is clearly not an intended behaviour of the 
system and should be disallowed. 

At this point the benefits of using a formal frame- 
work should be mentioned. Firstly, formal reasoning is 
facilitated as was demonstrated in 5.2.  Secondly, the 
actual process of formal specification forces consider- 
ation, at  an early stage, of many features that might 
escape attention in an informal specification. In the 
case of the EDS weak coherency requirements, consid- 
eration in the context of the formal framework gives 
that condition (iv) of 5.1 is a requirement. Its inclu- 
sion disallows the pathological behaviour described. 
Without the requirement, no sensible detailed reason- 
ing about the system would be possible. Use of the 
formal framework also permits needless iterations of 
requirements being produced due to inaccuracy of ex- 
pression. 

The EDS model, with the necessary addition, pro- 
vides a weakly coherent store model. The EDS coarse- 
grained Parallel Lisp system [6] makes use of the 
weakly coherent store model as does the EDS rela- 
tional database query distribution mechanism [7]. 

7 Conclusions 

The architectural design of parallel systems is a set 
of engineering tradeoffs that emphasise features that 
the architects consider paramount. The intuitions be- 
hind such emphases requires a formal framework to 
enable decisions to be evaluated prior to the extensive 
and expensive prototyping phase of design. 

This paper contributes to this aim by providing a 
formal framework in which different store coherency 
classes can be represented, and thus such architectural 
issues can be considered on a quantitative rather than 
qualitative basis. The formal framework has been used 
for a variety of different coherency models, one based 
on physical properties, one on certain observational 
properties and one applicable to a general class of 
message-passing systems. Some real-life systems have 
been analysed and the incompleteness of a definition 
of weak coherency has been identified and corrected. 

With the advent of parallel applications specifying 
minimal coherency requirements for their implemen- 
tation, the issue of comparing models of coherency of 
different parallel systems is an important one from the 
point of view of porting such applications. Questions 
of stronger or weaker forms of coherency can only be 
resolved satisfactorily if some sort of reasoning is pos- 
sible. This paper provides a demonstration of how this 
might be carried out. 
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