
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Representation of coherency classes for parallel systemsRepresentation of coherency classes for parallel systems

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© IEEE

VERSION

VoR (Version of Record)

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Hussak, Walter, and John A. Keane. 2019. “Representation of Coherency Classes for Parallel Systems”.
figshare. https://hdl.handle.net/2134/4167.

https://lboro.figshare.com/

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Representation of Coherency Classes for Parallel Systems

Walter Hussak
Department of Computer Studies,

University of Technology,
Loughborough, UK.

Abstract

Some parallel applications do not require a pre-
cise imitation of the behaviour of the physically shared
memory programming model. Consequently, certain
parallel machine architectures have elected to empha-
sise different required coherency properties because of
possible efficiency gains. This has led to various defi-
nitions of models of store coherency. These definitions
have not been amenable t o detailed analysis and, con-
sequently, inconsistencies have resulted.

In this paper a unified framework is proposed in
which different models of store coherency are developed
systematically by progressively relaxing the constraints
that they have t o satisfy. A demonstration is given of
how formal reasoning can be cam’ed out to compare
different models. Some real-life systems are consid-
ered and a definition of a version of weak coherency is
found to be incomplete.

1 Introduction

It has long been realised that physically shared
memory parallel computers have problems of scalabil-
ity beyond a limit of 30-50 processors [2]. This prob-
lem arises because the memory is accessed by a com-
munications network, usually a bus, the capacity of
which becomes overloaded with increasing numbers of
processors. However, the programming model of such
machines is very convenient for programmers: asyn-
chronous processes communicate and synchronise via
variables residing in the shared memory. Memory ac-
cess and location is transparent to the programmer.

Physically distributed memory machines, that con-
tain closely-coupled processor-store pairs, offer po-
tentially unlimited scalability because communication
bandwith scales with extra processors. However, such
machines enforced a distributed memory program-

1063-6374B3 $03.00 @ 1993 IEEE
391

John A. Keane
Centre for Novel Computing,

Department of Computer Science,
The University, Manchester, UK.

ming model where asynchronous processes communi-
cate and synchronise via messagepassing. Communi-
cation is via the content of a message and synchronisa-
tion occurs, in that a measage must be sent before it is
received. The programming model requires knowledge
of memory location in the system and is more compli-
cated than the shared memory programming model.

In recent years, parallel computer architects have
attempted to provide the convenience of the shared
memory programming model with the scalability of
physically distributed memory machines.

To provide precisely the same programming model
that physically shared memory machines provide, on
a physically distributed memory machine, requires ex-
tensive support in either hardware or software. If
provided in hardware this usually means that the
price/performance of the machine increases because
the hardware is necessarily more sophisticated. If im-
plemented in software there is necessarily much more
co-ordination at operating system level, and thus be-
tween processor-store pairs and a consequent loss in
overall performance. In both cases, the requirement
on the communication network increases significantly
if a shared memory model is provided.

It has become apparent that some applications do
not require a precise imitation of the behaviour of the
physically shared memory programming model. Con-
sequently, partly because of the application require-
ments and partly because of perceived efficiency gains,
various parallel machine architectures have elected
to emphasis different required coherency properties of
shared memory. So far, such required properties and
efficiency gains have been based on intuitive archi-
tectural tradeoffs and application areas targeted for
the architectures. Such intuitions have been docu-
mented in an ad hoc fashion and have not permit-
ted detailed analysis and comparison between differ-
ent models. This paper aims to elevate the study of
coherency classes of parallel and distributed systems
to the level that serializability has been studied in
database systems.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:16 from IEEE Xplore. Restrictions apply.

A unified formal framework is given in which differ-
ent models of store coherency are developed system-
atically by progressively relaxing the constraints that
the models have to satisfy. Three models of store co-
herency, that have been found to be useful by parallel
machine designers, are defined: strong coherency, se-
quential consistency and weak coherency. The frame-
work differs from existing shared memory multipro-
cessor models, as for example in [l] and [13], in that it
also allows for the representation of coherency classes
for distributed memory multiprocessor systems.

The formal framework is in section 2. Section 3
presents store coherency in this framework, and sec-
tion 4 sequential consistency. A definition of a weak
coherency class is given in section 5 together with a
demonstration of how formal reasoning is performed
between different coherency classes. In section 6, the
coherency properties of some real-life systems are con-
sidered and a definition of weak coherency is shown to
be incomplete. Conclusions are drawn in section 7.

2 Formal Framework

The following abstracts the essential features for
developing and communicating ideas about coherency
classes. A run in a system is a 4-tuple (X , P, <, sees) ,
where

0 X is a set of variables or storage locations X , Y ,
. . .

0 P is a finite set of processes where each process
is a sequence of events each of which is either a
read or a write to one of these variables

0 << is a total order on the set of all the events in all
the processes, represented some absolute physical
temporal ordering

0 if RRE and WRE are the set of all read and write
events in all the processes, sees is a function

sees : RRE WE,

which indicates which previous write a read event
“sees”. This function has three basic properties,
given below, to make the definition sensible.

Notes

1. Events are simply reads or writes to variables.
Any storage system can be represented by the
“fetches” and “stores” to some variable or storage
location set that occur.

2. A read event to a variable X will be denoted

and a write event

This is the notation used in serializability theory
1121.

3. Events in a process i will be subscripted by i and
further subscripted by consecutive numbers. The
run will be represented by a ‘space-time) diagram
as in [Lam78], though with ‘time’represented hor-
izontally and ‘space’ vertically, and the definition
of the sees function. For example,

has R11[X] << Rzl[Z]. For process i the (irreflex-
ive) total order of the sequence of events will be
denoted <i.

4. The temporal ordering << provides an external
context or physical clock as in [9]. Here, it is
needed to distinguish certain coherency classes.

5. The read events correspond to reads being re-
ceived and the write events correspond to writes
being issued. The scenario of ‘actual’ writes tak-
ing place in a different order to that in which they
were issued, as for example in the PSO model
of [13], can be accommodated by an appropriate
choice of the sees function.

6. A system will just be a collection of runs. This
follows the common practice in concurrency the-
ory of describing a system as a set of possible runs
(or traces).

sees function

The three conditions needed so that the sees func-
tion represents a meaningful storage system are:

392

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:16 from IEEE Xplore. Restrictions apply.

e Variable consistency
A read of a variable X can only see a write to
that same variable

sees(R;,[X]) = wkl[Yl + X = Y

e Temporal consistency
The value of a variable can only be read after it
has been physically written

e Local consistency
If a read event in a process sees a write event that
occurred in that process, it must be the last such
write event.

- ((sees(Rij[X]) =

The different classes of coherency will be charac-
terised by an appropriate choice for the sees function.

3 Strong Coherency

A strongly coherent store model corresponds most
closely to the behaviour of physically shared store par-
allel machines. When a variable is to be written to by
a process, a write lock is obtained thus excluding any
other processes from reading that variable until the
write lock is given up. It is clear that a strongly co-
herent system is one in which a write becomes visible
to every process as soon as it occurs. Thus, any read
in any process always sees what is, temporally, the
latest write.

Definition

A strongly coherent run is one in which if

wkl[x] < Ri j [X]

and

A strongly coherent s y s t em is a set of strongly co-
herent runs.

The strongly coherent model arises from the phys-
icol behaviour of physically shared store parallel ma-
chines, i.e. a location in the physically shared mem-
ory can only be accessed by one processor at a time,
thus there is the notion of atomic update of a vari-
able. Since there is only one copy of the variable in
the system, any subsequent reads must see the new
value written by the most recent write’.

Since this is the model supported by shared memory
machines, this class of coherency is seen as being the
most obvious when shared memory is provided on a
physically distributed memory machine.

4 Sequential Consistency

Lamport [lo] defines a sequentially consistent sys-
tem:

A system is sequentially consistent if the re-
sult of any execution is the same as if the
operations of all the processes were executed
in some sequential order, and the operations
of each individual process appear in this se-
quence in the order specified by its program.

The sequentially consistent model gives a statement
about the logical behaviour rather than any physical
behaviour, i.e. the logical behaviour that a program-
mer might expect from a multiprocess program.

Informally, a sequentially consistent run is one
which has the “same effect” as a single process run-
ning the events of the constituent processes in some
sequential order preserving the order of events in all
the processes, though not necessarily the overall global
temporal order of events. Before a formal definition
can be given the words “same effect” need to be made
precise.

4.1 T - equivalence

Formally, two sequentially consistent runs have the
“same effect” if they are equivalent in the following
(rather technical) sense.

Two runs 721 and 722 are r - equivalent if:

1. 721 and 72,~ have the same processes with the same
sequence of reads and writes.

‘In many such systems each processor has a cache but snoopy
caches enforce the atomic update.

393

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:16 from IEEE Xplore. Restrictions apply.

2 . Given:

(a) Any value domain for the variables X , Y ,

(b) Any set of initial values for the variables
from the domains,

(c) Every value written to a variable by a pro-
cess in a write event is an uninterpreted func-
tion of previous values read by that process

then, for all processes, R1 and 7 2 2 read the same
sequence of values.

Put simply, the sequence of values read by a given
process are the same in 721 and R22. The formal def-
inition of sequential consistency is as follows.

4.2 Definition of Sequential Consistency

. . .

A run 72 is sequentially consistent if it is r-
equivalent to a strongly coherent run. A sequentially
consistent system is a set of sequentially consistent
runs. The following theorem gives a more amenable
check for sequential consistency.

5 Weak Coherency

4.3 Theorem

‘R is sequentially consistent if (and only if) there is
an irreflexive total order < on all the events of all the
processes in 72 such that:

(i) eventl <i event2 j eventl < event2,

(ii) ~ e e ~ (R i j [X]) = W k l [X] 3 W k / [X] < &[XI,

(iii) W k l [X] < W g h [X] < & j [X] + s e e s (% j [X]) #
W k / [X I .

4.4 Example

The following is an example of a sequentially con-
sistent system that is not strongly coherent
process1 .---_--------..---.

CXI B CXl
I1 12

process2 .---..-----------.
CXl R [XI

21 22
> time __-_

2The definition is related to r - serializability from seri-
alizability theory, and a run R with finitely many events is
T-serializable in the sense of [15] if it is 7-equivalent to a run
where 72’s processes have been placed ‘end-to-end’ in some se-
rial order. The notion of 7-equivalence is a type of observational
equivalence as in concurrency theory Ill].

A weakly coherent system is one in which there is
defined a ‘happens before’ or ‘causally affects’ relation
between events in the system, independently of the
temporal order << of physical time. Typically, this
would be as in [9] where a ‘happens before’ relation is
defined on the set of events of a system where message
passing is taking place and where the point a t which
the message is sent is deemed to ‘happen before’ the
point at which the message is received. Such a system
is represented in a space-time diagram with arrows
representing messages.

5.1 Definition

A run 72 is weakly coherent if there is an irreflexive
partial order --* on the events of R such that:

eventl <i event2 event l + event2,

% j [X] + W k / [X] * s e e s (R i j [X]) # w k / [X] ,

A weakly coherent s y s t em is a set of weakly co-
herent runs.

The condition (iii) is an extension of the local con-
sistency condition on the sees function. It states that
if a write ‘happens before’ a read, then the read can-
not possibly see an earlier write. Condition (iv) is a
consequence of 4.3 (i), (ii) and (iii) when dealing with
sequentially consistent systems. In general, it is possi-
ble to have runs satisfying conditions (i), (ii) and (iii)
but not (iv). The idea of (iv) is that once a write
has been seen, and a subsequent read sees a different
write, then that previous write is an ‘old’ value and
should not be seen again.

It is easy to show that a sequentially consistent sys-
tem is weakly coherent. The converse does not hold,
so that weak coherency, logically, is a different notion.
The advantage of having a formal framework is that

394

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:16 from IEEE Xplore. Restrictions apply.

such supposed logical distinctions, arising from archi-
tectural intuitions, can be proven. Proofs of equiv-
alences of systems can also be provided. As an illus-
tration, the following example gives a weakly coherent
system that is not sequentially consistent.

5.2 Example

Consider the following system S

p l .________._____._-_-_.________._______._-------.
U CY] U [X I I U [X I n [X I n CY1 / I \

11 12 I 13 14 16 I
I I

\ I / I
P2 .________--.--------.--------.--I

U CY1 n CXl B CY1 ---- > tire 21 22 23

The check that this is a weakly coherent system is
straightforward and is not given here.

Theorem

The system S is not sequentially consistent.

Proof

Assume, on the contrary, that S is sequentially con-
sistent. Choose an irreflexive total order < satisfying
conditions (i), (ii) and (iii) of 4.3. Now, if

Wi3[X] < R22[X], (5)

Wl2[X] <1 W13[X], (6)

Wl2[X] < W13[X], (7)

(8)

sees(Rz2[X]) # W12[X] (9)

then as

by 4.3(i),

and therefore

Wiz[X] < wi3[X] < Rzz[X]

By 4.3(iii),

This contradicts (1) and therefore (5) cannot be true.
Thus,

Also,
Rzz[X] < Wi3[X] (10)

(11) Wll[q < W2l[y1 < Rl5[q

cannot be the case as then R15[Y] would be required
to see W21[Y] which contradicts (4). So, either

W2l[y1 < WlI[y1 (12)

R15[q < W 2 l [q (13)
or

must hold.
Suppose (12) holds. Then,

R23[q < Wll[q (14)

else
W21[y1 < Wll[q < R23[q (15)

and 4.3(iii) would mean that sees(Rw[Y]) # Wzl[Y]
contradicting (2). Now,

R22[X] <2 R23[q (16)

Thus,

R22[X] < Rz3[q < Wii[y1by(13) < Wi2[X] (17)

By 4.3(ii), this means that

sees(Rzz[XI) # W12[X] (18)

This contradicts (1) and so (12) cannot hold.
Finally, suppose (13) holds. then,

Wl3[X] <1 R15[q < w2l[y1 <2 R22[X] (19)

Therefore, WI~[X] < R22[X] contradicting (10).
Thus, the original assumption that S is sequentially
consistent is untenable. 0

5.3 Remarks

The weakly coherency model appears to be partic-
ularly useful in parallel symbolic applications. This
appears to be because such systems tend to have side-
effect free computational models and thus allow im-
plementations that do not require a totally consistent
view of the underlying store at all times. The weakly
coherent model reduces the amount of synchronisation
required by a strongly coherent model, at the expense
of making language run-time subsystems define and
implement their own coherency models, and thus be
slightly more complex.

Strong coherency necessarily involves more network
traffic, if an application does not require it then it is
an expensive redundant feature.

6 Case Studies

In the following sections a parallel system that p r e
videa a strongly coherent model, the KSRl, and a par-
allel system that provides a weakly coherent model,
EDS, are discussed.

395

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:16 from IEEE Xplore. Restrictions apply.

6.1 KSR

The KSRl parallel system [4] was designed as a
general-purpose machine. The KSR memory system
provides a store model where all writes to a shared
variable are immediately seen by any subsequent read
of that variable in any process.

The KSR model thus provides the model of strong
store coherency defined in section 3. As has been
pointed out, strong coherency provides the program-
mer with the logical behaviour expected, i.e. sequen-
tially consistent behaviour.

Essentially the KSR approach has been to design
hardware that can implement strong store coherency.
The KSR physically distributed memory system imi-
tates a physically shared memory system.

Because strong coherency is provided for in the
hardware of the KSR, it does not appear possible for
the system to provide a weakly coherent, lazy invali-
dation store model3.

Performance Considerations

The KSR is a non-uniform memory access (NUMA)
time system. Each set of 32 processors are contained
in a search engine:O. A search engine:O provides the
hardware that enables strong store coherency to be
achieved across the 32 processors. In turn, a search en-
gine:l provides the hardware that enables strong store
coherency between each 32-processor set, i.e. across
an entire system.

On every write to a shared variable an invalidate
message must be sent to ensure that all copies of
the variable are made invalid throughout the system.
When this invalidation has been carried out a pro-
cessor can write to the variable. Potentially this can
cause a large amount of network traffic across a num-
ber of search engines - the maximum configuration
has 34 search engines. In the worst case, it is possible
to imagine the system performance being bound on
the frequency of system-wide invalidation messages.
KSR acknowledge this possibility but suggest that lo-
cality within a thread and between threads on the
same search engine:O should ensure that in the vast
majority of cases there is no system-wide network traf-
fic for invalidation broadcasts.

A price/performance issue arises if it can be shown
that an application only requires a weakly coherent
store model then the highly sophisticated KSR hard-
ware design becomes redundant. In addition, it is pos-
sible that such applications will not perform as well as

31n [5] a weakly coherent model is built, in software, on top
of a strongly coherent model.

they might without the extra hardware sophistication,
as strong coherency will cause unnecessary invalida-
tion messages to pass through the system.

6.2 EDS

It is recognised that to provide strongly coherent
store in software is 2 to 3 orders of magnitude slower
than in hardware [4]. Hence, parallel systems archi-
tects’ have recognised that certain applications do not
necessarily require this type of coherence and that
a weaker model will suffice. The advantage of this
weaker model is that it increases performance by re-
ducing network traffic and software co-ordination.

The EDS parallel system [14] was designed as
a declarative system. Its aim is to run relational
databases systems, functional languages and logic lan-
guages efficiently. EDS has, partly because of the
declarative system emphasis, focussed upon identify-
ing applications that require only a weakly coherent
model, and efficiently supporting the model. A defini-
tion of a weaker form of coherency was produced for
EDS.

The EDS definition underwent several iterations
from the first version in [SI to a final version in [3].
The final version is given below. A thread is just a
process and a CES * can be assumed to be a message
from one thread to another. The terms ‘see’, ‘can see’
and ‘visible’ were presented informally.

A partial ordering of events, denoted by <<, is de-
fined as follows:

1. If A and B are actions in the same thread and A
comes before B, then A << B .

2. If A is the initiation of a CES by one thread and
B is the corresponding point of synchronisation
in another (potentially waiting) thread, then A
<< B .

3. If A << B and B << C then A << C.

Two events A and B are said to be concurrent, de-
noted by

if
A II B ,

- A << B a n d - B << A

4 If W << R, then W must be visible to R. Vis-
ible means that R must read the data that have
been written at W , if there is no intermediate or
concurrent access W’, i.e., if there is no W‘ with
W << W’ << R or W 11 W’ << R.

Coherency Establishing Synchronisation.

396

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:16 from IEEE Xplore. Restrictions apply.

5 If R << W , then R must not read the data that
are written at W .

6 Concurrent writer and reader: If W (1 R, then it
is undefined whether or not the reader will see the
writers modification.

7 Concurrent writers: If W’ 11 W << R, then

(a) R << W’ is impossible (W << R << W’
implies W << W’).

(b) If W‘ 11 R then (6) applies and it is undefined
whether R will read the value written by W
or by W’. It will read either of those values.

(c) If W’ << R, then it is undefined whether R
will read the value written by W or by W’.
It will read either of those values.

According to the definition, the following is permitted:
Thread t h l performs a write Wl, after which it issues
a CES to thread th3 , such that W1 << R1 (see the
definition of th3 below). Thread th2 performs a write
W2, after which it issues a CES to thread th3 , such
that Wz << RI . Thread th3 performs a succession
of reads R1 << R2 << R3 Then, W1 << R I ,
W, << R1 and W1 11 W2 (assuming that t h l and th2
do not communicate), and so R1 can see W1 by 7(c).
Similarly, W1 << Rz, WZ << R2 and W1 11 Wz, and
so Rz can see W2 by 7(c). It is possible to have R1
see W1, R2 see W2, R3 see W1, Rq see W2,

This is clearly not an intended behaviour of the
system and should be disallowed.

At this point the benefits of using a formal frame-
work should be mentioned. Firstly, formal reasoning is
facilitated as was demonstrated in 5.2. Secondly, the
actual process of formal specification forces consider-
ation, at an early stage, of many features that might
escape attention in an informal specification. In the
case of the EDS weak coherency requirements, consid-
eration in the context of the formal framework gives
that condition (iv) of 5.1 is a requirement. Its inclu-
sion disallows the pathological behaviour described.
Without the requirement, no sensible detailed reason-
ing about the system would be possible. Use of the
formal framework also permits needless iterations of
requirements being produced due to inaccuracy of ex-
pression.

The EDS model, with the necessary addition, pro-
vides a weakly coherent store model. The EDS coarse-
grained Parallel Lisp system [6] makes use of the
weakly coherent store model as does the EDS rela-
tional database query distribution mechanism [7].

7 Conclusions

The architectural design of parallel systems is a set
of engineering tradeoffs that emphasise features that
the architects consider paramount. The intuitions be-
hind such emphases requires a formal framework to
enable decisions to be evaluated prior to the extensive
and expensive prototyping phase of design.

This paper contributes to this aim by providing a
formal framework in which different store coherency
classes can be represented, and thus such architectural
issues can be considered on a quantitative rather than
qualitative basis. The formal framework has been used
for a variety of different coherency models, one based
on physical properties, one on certain observational
properties and one applicable to a general class of
message-passing systems. Some real-life systems have
been analysed and the incompleteness of a definition
of weak coherency has been identified and corrected.

With the advent of parallel applications specifying
minimal coherency requirements for their implemen-
tation, the issue of comparing models of coherency of
different parallel systems is an important one from the
point of view of porting such applications. Questions
of stronger or weaker forms of coherency can only be
resolved satisfactorily if some sort of reasoning is pos-
sible. This paper provides a demonstration of how this
might be carried out.

Acknowledgements

The authors wish to thank all their former col-
leagues in the Esprit EDS project for many helpful
discussions. Walter Hussak wishes to acknowledge
Lothar Borrmann of Siemens for discussions on for-
mal models for the EDS store coherency requirements.
John Keane wishes to acknowledge all members of the
CNC and CGU at the University of Manchester.

References

[l] S.V. Adve and M. D. Hill, Weak Ordering - A new
definition, Proceedings of 17th International Sym-
posium on Computer Architecture, 1990.

[2] G.S. Almasi and A. Gottlieb, Highly Parallel Com-
puting, Benjamin/Cummings Publishing Co., 1989.

[3] L. Borrmann and M. Herdiecekerhoff, A Co-
herency Model for Virtual Shared Memory, Pro-
ceedings of Int. Conf. on Parallel Processing, St.
Charles, Illinois, August 1990.

391

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:16 from IEEE Xplore. Restrictions apply.

[4] S. Frank, H. Burkhardt and J. Rothnie, The KSR1:
Bridging the Gap Between Shared Memory and
MPPs, Proceedings of Compcon’99, pp. 285-294, San
Francisco, CA, February 1993.

[5] W.K. Giloi, C. Hastedt, F. Schoem and W.
Schroeder-Priekschat, A Distributed Implementa-
tion of Shared Virtual Memory with Strong and
Weak Coherence, pp. 23-30, in Distributed Memory
Computing, A. Bode (Ed.), LNCS-487, Springer-
Verlag, 1991.

[6] C. Hammer and T. Henties, Using a Weak Co-
herency Model for a Parallel Lisp, pp. 32-41, in Dis-
tributed Memory Computing, A. Bode (Ed.), LNCS-
487, Springer-Verlag, 1991.

[7] N. Holt, Virtual Shared Memory in Commercial
Applications, Virtual Shared Memory Symposium,
University of Manchester, September 1992.

[8] P. Istavrinos, The Process Control Language,
EDS.DD. 1S.0007, EDS Project Document, 1989.

[9] L. Lamport, Time, Clocks and the Ordering of
Events in a Distributed System, Communication
ACM, 21, pp.558-565,1978.

[lo] L. Lamport, How to make a Multiprocessor Com-
puter that Correctly Executes Multiprocess Pro-
grams, IEEE h n s . on Computers, C-28 (9), pp.
690-691,1979.

[ll] R. Milner, Communication and Concurrency,
Prentice-Hall International, 1989.

[12] C. Papadimitriou, The Serializability of Concur-
rent Database Updates, Joumal of ACM, 26 (4),

[13] P.S. Sindhu, J-M. F’railong and M. Cekleov, For-
mal Specification of Memory Models, Palo Alto Re-
search Center, Technical Report CSL-91-11, Decem-
ber 1991.

pp. 631-653, 1979.

[14] C.J. Skelton, C. Hammer, M. Lopez, M. et al.,
EDS: A Parallel Computer System for Advanced
Information Processing, in PARLE’92, (D. Etiemble
and J.-C. Syre Eds.), pp. 3-18, LNCS-605, Springer-
Verlag.

[15] K. Vidyasankar, Generalized Theory of Serializ-
ability, Acta Informatica, 24, pp. 105-119, 1987.

398

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:16 from IEEE Xplore. Restrictions apply.

