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Abstract—Virtual Machine (VM) management is a powerful
mechanism for providing elastic services over Cloud Data Centers
(DC)s. At the same time, the resulting network congestion has
been repeatedly reported as the main bottleneck in DCs, even
when the overall resource utilization of the infrastructure remains
low. However, most current VM management strategies are
traffic-agnostic, while the few that are traffic-aware only concern
a static initial allocation, ignore bandwidth oversubscription, or
do not scale.

In this paper we present S-CORE, a scalable VM migration al-
gorithm to dynamically reallocate VMs to servers while minimiz-
ing the overall communication footprint of active traffic flows. We
formulate the aggregate VM communication as an optimization
problem and we then define a novel distributed migration scheme
that iteratively adapts to dynamic traffic changes. Through
extensive simulation and implementation results, we show that
S-CORE achieves significant (up to 87%) communication cost
reduction while incurring minimal overhead and downtime.

Index Terms—Virtual Machine, Migration, Consolidation,
Communication Cost, Scalable, Traffic-Aware, Data Center Net-
work

I. INTRODUCTION

Elastic resource provisioning in Cloud Data Centers (DC)s

is managed by a number of control loops at the routing [1][2],

transport [3], and Virtual Machine (VM) [4][5] layers. Unlike

routing and transport mechanisms that typically concern the ef-

ficient utilization of the underlying network, VM management

through initial placement [6], consolidation [7], or migration

of live VMs [8] has been employed to optimize a range of

diverse objectives, such as, e.g., server resource (CPU, RAM,

net I/O) usage [9] and energy efficiency [10], that are often

in direct conflict with each other. In particular, virtualization

itself has significant impact on network congestion [11][12]

especially at the core layers of DC topologies which in turn

becomes the main bottleneck throughout the infrastructure

[1], hindering efficient resource usage and Cloud providers’

revenue [13].

A limited number of studies have proposed traffic-aware

VM management schemes that try to minimize the impact

of virtualization on the DC network. However, the proposed

algorithms are either centralized and therefore do not scale

well to the full size of today’s DCs [14][15], concern the initial

placement of VMs and do not deal with maintaining steady-

state throughout the system’s evolution [16], or they only

consider bandwidth allocation at the lower host-to-network

layers [17][16] overlooking congestion that happens in a

significant fraction of the core links [18] even when parts of

the DC infrastructure remain underutilized [19].

In this paper, we present S-CORE, a Scalable communi-

cation COst REduction scheme for intra-DC workloads that

dynamically re-allocates VMs through live migration and

minimizes the communication cost incurred by the resulting

traffic dynamics in an always-on manner, while adhering to

server-side resource capacity boundaries. By assigning distinct

link weights at the different layers of the DC infrastructure and

accounting for the temporal traffic routed over these links, a

function of the network-wide communication cost is defined

that can then be minimized in terms of the contributing pair-

wise aggregate VM traffic load. S-CORE adopts a distributed

approach based on information available locally at each VM

to inform migration decisions rather than using in-network

statistics, a property that makes it scalable and realistically

implementable over large-scale DC infrastructures. It deals

with the dynamic evolution of DC workloads by iteratively

localizing pairwise VM traffic to lower-layer links where

bandwidth is not as over-subscribed as in the core, and

where interconnection switches are cheaper to upgrade [3]. We

have formulated the distributed algorithm and implemented

S-CORE on the Xen hypervisor. Through simulation and

testbed experiments we show that S-CORE can significantly

reduce traffic over the high-cost links at the core of the

topology that are prone to congestion [19][11] while incurring

minimal migration overhead and system downtime. S-CORE

can achieve an overall communication cost reduction of as

high as 87% of the optimal allocation, as this is approximated

by centralized algorithms that assume global traffic knowledge

but are prohibitively expensive to implement in practice.

The remainder of this paper is structured as follows. Section

II provides the formulation of communication cost and Section

III derives the network-wide optimal VM allocation and its

complexity. Section IV introduces S-CORE, a distributed VM

migration scheme that reduces the overall communication cost

of the topology based on information available locally at each

VM. Section V discusses the implementation of S-CORE on

Xen with two alternative migration prioritization policies. An

extensive evaluation of S-CORE over simulated and testbed

environments over diverse topologies and under realistic DC

traffic patterns is presented in Section VI. Section VII outlines

related work, and Section VIII concludes the paper.
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Fig. 1: (a) Canonical tree and (b) Fat-tree DC topologies

II. SYSTEM DEFINITIONS
Let V be the set of VMs in the DC hosted by the set of

all servers S, such that every VM u ∈ V and every server

x̂ ∈ S. Each VM u in the DC is unique and it is assigned

a unique identifier IDu. Furthermore, each VM is hosted by

a particular server and let A denote an allocation of VMs to

servers within the DC. Let σ̂A(u) be the server that hosts VM

u for allocation A, u ∈ V and σ̂A(u) ∈ S. Let Vu denote the

set of VMs that exchange data with VM u.

DCs typically employ a layered tree topology with multi-

ple redundant paths that try to increase bisection bandwidth

between any pair of servers. However, due to equipment

and energy costs bandwidth is typically oversubscribed in

the higher layers of such topologies [13]. Without loss of

generality, we assume three distinct communication layers,

Top-of-Rack (ToR), aggregation, and core, as depicted in Fig

1. Network links that connect servers to ToR switches are

referred to as 1-level links, those between ToR and aggregation

switches as 2-level links, etc.

Let h(x̂, ŷ) > 0 denote the number of hops between server

x̂ and server ŷ along a shortest path. Let ℓA(u, v) denote

the communication level between VM u and VM v for a

given allocation A. Obviously, if the servers hosting VMs u

and v are collocated, then ℓA(u, v) = 0. If communication

is established over 1-level links, then ℓA(u, v) = 1, etc. In

general, ℓA(u, v) = h(σ̂A(u),σ̂A(v))
2 . Let ℓA(u) denote the

highest communication level for VM u for allocation A, or

ℓA(u) = max∀v∈Vu
ℓA(u, v).

Not all DC links are equal, and their cost depends on the

particular layer they interconnect. For example, high-speed

router interfaces are much more expensive than lower-level

ToR switches. Therefore, in order to accommodate a large

number of VMs in the DC and at the same time keep invest-

ment costs low from a provider’s perspective, utilization of

the “lower cost” switch links is preferable to utilization of the

“more expensive” router links. In order to reflect the increasing

cost of high-density, high-speed (10 Gb/s) switches and links at

the upper layers of the DC tree topologies, and their increased

over-subscription ratio, we assign a representative link weight

ci for an i-level link per data unit (e.g., byte). Without loss

of generality, in this case c1 < c2 < c3. However, in the

general case, link weight assignment can be based on DC

operator policy to reflect diverse metrics, such as, e.g., energy

consumption, performance, fault tolerance, etc.

III. COMMUNICATION COST ANALYSIS

Link utilization is dictated by the intensity of pairwise traffic

between VMs and the objective here is to utilize links of small

weights when possible. Let λ(u, v) denote the traffic load (or

rate) per time unit exchanged between VMs u and v (incoming

and outgoing). Note that the traffic load is expected to vary

in such highly dynamic environments. Therefore, λ(u, v) will

denote the average rate over a certain time window, suitable

to capture the dynamism of the environment.

The focus of this work is on communication levels

ℓA(u, v) > 0, i.e., traffic routed over at least one ToR switch.

For communication level ℓA(u, v) = 1, data are exchanged

over two links (i.e., h(σ̂A(u), σ̂A(v)) = 2); the corresponding

link weight for using each link being c1. For each of the

links, the product λ(u, v)c1 corresponds to a (weighted)

communication cost for utilizing the particular 1-level link.

If the communication is through level 2 of the hierarchy (i.e.,

ℓA(u, v) = 2), data exchanges take place over four links, two

being 2-level (weight c2) and two 1-level (weight c1) links.

Eventually, the communication cost in this case corresponds to

2λ(u, v)(c1+c2). In general, when the communication among

two VMs u and v is of level ℓA(u, v), the communication cost

corresponds to 2λ(u, v)
∑ℓA(u,v)

i=1 ci.

Given that any VM u communicates with all VMs in set Vu,

there is a communication cost, denoted by CA(u), attributed

to VM u, for allocation A,

CA(u) = 2
∑

∀v∈Vu

λ(u, v)

ℓA(u,v)
∑

i=1

ci. (1)

It is now possible to derive an expression with respect to the

overall communication cost for all VM-to-VM communication

over the DC. Let CA denote this cost for allocation A.

Obviously, CA = 1
2

∑

∀u∈V
CA(u) ( 12 is inserted since each

link is accounted for twice). Eventually,

CA =
∑

∀u∈V

∑

∀v∈Vu

λ(u, v)

ℓA(u,v)
∑

i=1

ci. (2)

Note that Eq. (2) does not take into account traffic in or

out of the DC. For this case, any shortest path is along ToR,

aggregation and core switches for any allocation A.

From Eq. (2) it becomes evident that different allocations

A correspond to different overall communication costs. The

objective here is to derive a particular allocation for which the

overall communication cost is minimized (i.e., optimal). Let

Aopt denote an optimal allocation, such that CAopt ≤ CA,

for any possible A (note that there might be more than one

allocations that minimize the overall communication cost). The

objective is to derive the optimal allocation for a given DC

environment and most importantly, to be able to adapt to any



dynamic changes in this environment. In special cases, the

optimal allocation can be easily derived. For example, if all

active VMs can be accommodated within a single rack, then

this allocation minimizes the overall communication cost. This

observation is confirmed by Eq. (2), however, it is a reduced

case since DCs are built to support a large number of VMs that

are initially allocated either at random or in a load-balanced

manner. In the general case, deriving the optimal allocation

is a hard optimization problem due to (i) its high complexity

(given the number of permutations that must be considered in

an exhaustive search approach) and (ii) the global knowledge

required in a highly dynamic environment like a DC. Every

time the traffic dynamics change, there is a need to gather

that information and recompute the optimal values in short

timescales. Obviously, such a centralized approach does not

scale with the number of VMs and the size of current DC

topologies. In fact, optimal VM allocation does not have

a polynomial time solution. We have shown in appendix

that the NP-complete Graph Partitioning (GP) problem with

vertex weight 1 can be reduced to the optimal VM allocation,

and therefore the latter is also NP-complete [20]. These

observations motivate S-CORE, a distributed approach under

which a VM unilaterally decides whether to migrate based on

information available locally.

IV. SCALABLE COMMUNICATION COST REDUCTION

(S-CORE)

The approach and analysis presented in the sequel assumes

the presence of a token in the network and that the VM holding

the token at a given time is the one that decides whether

to migrate or not. Then, the token is passed on to another

VM according to the adopted token policy. Token policies are

discussed in Section V.

Let migration of a VM u from its current location (server

σ̂A(u)) to some other server x̂ be denoted by u → x̂

for allocation A. If migration takes place, then allocation

A changes; let Au→x̂ denote the new allocation. Assum-

ing that migration u → x̂ did take place, there is a new

communication cost CAu→x̂(u) corresponding to allocation

Au→x̂. Let ∆CA
u→x̂(u) = CA(u) − CAu→x̂(u) denote the

communication cost difference that is attributed to migration

u → x̂. The aim next is to determine the condition under

which ∆CA
u→x̂(u) > 0 is satisfied.

Lemma 1: Given migration u→ x̂, there is a communica-

tion cost difference,

∆CA
u→x̂(u) =

∑

∀z∈Vu

CA(z)− CAu→x̂(z). (3)

Proof: Migration u→ x̂ affects the communication of all

VMs z ∈ Vu, in addition to that of VM u. The rest of the

VMs (i.e., V \Vu ∪ {u}) are not affected and therefore, there

is no change in their corresponding communication costs. For

any z ∈ Vu, the difference CA(z)−CAu→x̂(z) corresponds to

the contribution of this particular VM z to the communication

cost difference ∆CA
u→x̂(u). The lemma is proved by summing

up CA(z)− CAu→x̂(z), ∀z ∈ Vu.

Lemma 2: Given migration u→ x̂, there is a communica-

tion cost difference,

∆CA
u→x̂(u) = 2

∑

∀z∈Vu

λ(z, u)





ℓA(z,u)
∑

i=1

ci −

ℓAu→x̂ (z,u)
∑

i=1

ci



 .

(4)

Proof: As stated above, migration u → x̂ affects

the communication of all VMs z ∈ Vu. Given allocation

A (before migration), then according to Eq. (1), for any

z ∈ Vu, CA(z) = 2
∑

∀v∈Vz
λ(z, v)

∑ℓA(z,v)
i=1 ci, which can

be written as CA(z) = 2
∑

∀v∈Vz\{u}
λ(z, v)

∑ℓA(z,v)
i=1 ci +

2λ(z, u)
∑ℓA(z,u)

i=1 ci.

Suppose that migration u→ x̂ does take place. Considering

the new allocation Au→x̂, the corresponding communication

cost for any VM z ∈ Vu can be written as follows (similarly as

before), CAu→x̂(z) = 2
∑

∀v∈Vz\{u}
λ(z, v)

∑ℓAu→x̂ (z,v)
i=1 ci+

2λ(z, u)
∑ℓAu→x̂ (z,u)

i=1 ci.

At the same time, migration u → x̂ does not affect

VMs z ∈ Vz \ {u}. Consequently, ℓA(z, v) = ℓAu→x̂(z, v),
∀z ∈ Vz \ {u}. Eventually, CA(z) − CAu→x̂(z) =

2λ(z, u)
(

∑ℓA(z,u)
i=1 ci −

∑ℓAu→x̂ (z,u)
i=1 ci

)

, for any z ∈ Vu.

Based on Lemma 1, by summing up Eq. (3) ∀z ∈ Vu, the

lemma is proved.

The following lemma derives an expression with respect

to the overall communication cost difference CA − CAu→x̂ ,

denoted by ∆CA
u→x̂.

Lemma 3: Given a migration u → x̂, the overall commu-

nication cost difference is given by,

∆CA
u→x̂ = 2

∑

∀z∈Vu

λ(z, u)





ℓA(z,u)
∑

i=1

ci −

ℓAu→x̂ (z,u)
∑

i=1

ci



 .

(5)

Proof: Given that the overall communication cost CA

can be expressed as CA = 1
2

∑

∀z∈V
CA(z), it can

also be written as, CA = 1
2

∑

∀z∈V\Vu∪{u} C
A(z) +

1
2

∑

∀z∈Vu
CA(z)+ 1

2C
A(u). Similarly, when migration u→

x̂ takes place, CAu→x̂ = 1
2

∑

∀z∈V\Vu∪{u} C
Au→x̂(z) +

1
2

∑

∀z∈Vu
CAu→x̂(z) + 1

2C
Au→x̂(u).

Since migration u → x̂ does not affect the communication

of VMs v ∈ V \ Vu ∪ {u}, there is no change in the

communication level or communication costs for these VMs,

and therefore CA(z) = CAu→x̂(z), ∀v ∈ V \ Vu ∪ {u}.

Consequently, ∆CA
u→x̂ can be expressed by CA−CAu→x̂ =

1
2

∑

∀z∈Vu
CA(z) + 1

2C
A(u) − 1

2

∑

∀z∈Vu
CAu→x̂(z) −

1
2C

Au→x̂(u) = 1
2

(
∑

∀z∈Vu
CA(z)−

∑

∀z∈Vu
CAu→x̂(z)

)

+
1
2

(

CA(u)− CAu→x̂(u)
)

. It is derived that ∆CA
u→x̂ =

1
2

(
∑

∀z∈Vu
CA(z)− CAu→x̂(z)

)

+ 1
2

(

CA(u)− CAu→x̂(u)
)

.

Based on Eq. (3), and (4), CA − CAu→x̂ =

2
∑

∀z∈Vu
λ(z, u)

(

∑ℓA(z,u)
i=1 ci −

∑ℓAu→x̂(z,u)
i=1 ci

)

, and

the lemma is proved.

Live migration of VMs can itself incur data transfer and

configuration overheads for DC operators. We capture such



overheads in the migration cost, cm, which should be com-

pensated by the gain of the network-wide communication cost

reduction, i.e., ∆CA
u→x̂ > cm. In the next section, we present

an implementation of S-CORE that keeps such overheads as

well as VM downtime low. The following theorem provides

the fundamental condition that needs to be satisfied for a

migration u→ x̂ to take place and its proof is straight forward

from Eq. (5).

Theorem 1: When migration u → x̂ takes

place, the overall communication cost compensates

for the migration cost cm, if and only if,

2
∑

∀z∈Vu
λ(z, u)

(

∑ℓA(z,u)
i=1 ci −

∑ℓAu→x̂ (z,u)
i=1 ci

)

> cm.

Based on the condition of Theorem 1, the following

migration policy for virtual machines is proposed.

The S-CORE Migration Policy: A VM u migrates

from server σ̂A(u) to another server x̂, provided that

2
∑

∀z∈Vu
λ(z, u)

(

∑ℓA(z,u)
i=1 ci −

∑ℓAu→x̂ (z,u)
i=1 ci

)

> cm is

satisfied.

Apart from the token policy that will be discussed in

the following section, there are some important features of

VM migration that need to be highlighted. In particular, the

condition of Theorem 1 relies on information that is available

locally at a given VM u. First, communication level ℓA(z, u)
for z ∈ Vu requires knowledge of the physical location of u

and any VM z ∈ Vu exchanging data with it. This is achieved

by assigning servers IP addresses from a subnet associated

with each rack. A VM u can then use a combination of static

topology information and active probing to identify the number

of hops to any other VM. Link weights ci and migration cost

cm can be readily available locally to each VM. Traffic load

λ(u, v) can be captured dynamically by monitoring incoming

and outgoing traffic between VMs u and v, averaged over

a given time interval. Even though subject to the accuracy of

periodical estimations, this approach can adapt to the dynamic

changes of DC traffic depending on the size of the temporal

window. At the same time, the measurement interval needs

to capture steady-state and avoid reacting to instantaneous

fluctuations in traffic dynamics. To address this, the size of

the time window can be set on the order of minutes to hours

over which traffic load is averaged before a VM is migrated.

If a VM migrates, Theorem 1 ensures that the overall

communication cost will be reduced. This local decision that

requires local information and eventually reduces a global cost

metric, is a scalable alternative to the centralized approach

presented in the previous section.

V. IMPLEMENTATION

A. Token Policies

An important part for the coordination and execution of

the distributed migration algorithm is the order in which

VMs make a unilateral decision on whether to migrate to a

different physical host. This is achieved through maintaining

and passing a token that contains information for all VMs.

This consists of a VM ID and a communication level value,

identifying the communication cost incurred by the VM’s

current traffic load. A token is a message formed as an array

of entries.capable of representing over 4 billion IDs before

recycling, and an 8-bit communication level. Entries are stored

in ascending order by VM ID. The size of the message is of the

order of the number of VMs (i.e., |V|) in the network. VM ID

allocation is handled by a centralized VM instance placement

manager, which is part of the underlying DC network fabric.

A VM currently holding the token can identify the next VM

that the token should be passed onto based on some policy. We

have implemented a number of distinct token passing policies

in [21]. Due to space limitations, in this paper we focus on two

policies which are straight-forward to implement and incur the

least instrumentation and real-time measurement overhead.

1) Round-Robin (RR): As a first approach for a token pol-

icy, a basic round-robin token passing mechanism is employed.

The round-robin token policy passes the token among VMs

based on their IDs in an ascending order, assuming each

VM has a unique and totally ordered identifier. In particular,

starting from the VM with lowest ID, denoted as v0, the token

then passes to VM u such that IDv0 < IDu < IDz , for any

z ∈ V \ {v0, u}. Let u← v ⊕ 1 denote that VM u is the one

that follows VM v, or that there is no other VM x such that

IDu > IDx > IDv.

2) Highest-Level First (HLF): Although RR is trivial to

implement, it can be wasteful since not all VMs will need

to migrate at any given time nor will all VM migrations

equally reduce the network-wide communication cost. A token

passing policy that can prioritize VMs which are likely to

migrate and substantially improve communication cost would

therefore be more efficient. We have defined a highest-level

first policy that passes the token amongst VMs whose traffic

load is routed through the highest-layer links of the network

topology. Links are most costly and more likely to experience

congestion at this level, and is therefore reasonable to assume

that migration is likely to take place, greatly reducing the

overall communication cost. The highest communication level

is initialized at zero for all VMs. When the token is held by

VM u then lu can be updated since VM u is aware of its

own highest communication level ℓAu . VM u is also aware of

the communication level of those VMs it communicates with

(i.e., v ∈ Vu). Therefore, it can update the corresponding

entries lv ← ℓA(u, v) accordingly. This update takes place

only if the existing estimation lv is smaller than the new

value ℓA(u, v). The token is passed on to the next VM at

this communication level, otherwise the token is passed to a

VM at the next lowest level. If no VM suitable for migration

is found, the policy restarts from the VM belonging to the

highest communication level with the lowest ID. The policy

uses this simple heuristic and exploits the partial distributed

state stored at each VM instead of requiring global state which

would make prioritization more efficient albeit with significant

overhead. The details of the HLF token policy are presented

in Algorithm 1.



Algorithm 1 HLF Token Policy

1: cl← lu ⊲ cl maintains the current value of lu
2: found← FALSE ⊲ Flag regarding next VM

3: for ∀v ∈ Vu do ⊲ Update VMs connected to u

4: if lv < ℓA(u, v) then

5: lv ← ℓA(u, v)

6: z ← u⊕ 1 ⊲ Pick the next VM after u

7: while cl ≥ 0 && !found do

8: while lz 6= cl do

9: z ← z ⊕ 1 ⊲ Pick the following VM

10: if lz ← cl then

11: found← TRUE ⊲ Next node is found

12: else ⊲ Next node is not found at this level

13: cl← cl− 1 ⊲ Go to a lower level

14: z ← v0 ⊲ and start from the beginning

15: if !found then ⊲ No unchecked VMs are left

16: Pick VM z : minIDx{∀x ∈ V : lx = max∀v∈V(lv)}

17: Send token to VM z

B. S-CORE Implementation on Xen

S-CORE relies on VMs passing the token amongst them-

selves and the token holder making a unilateral migration de-

cision. In practical deployment however, system virtualization

is transparent; virtual host are not aware that they run inside a

VM and do not interact explicitly with the hypervisor. We have

implemented the distributed S-CORE migration algorithm, the

token policies and the required traffic measurement modules

within dom0 of the Xen hypervisor [22].Ubuntu 12.04 was

used for dom0 (domain zero, the initial domain started by

Xen on boot), and the Python-based xm [22] was used as the

management interface. In order to better integrate S-CORE

with xm, we have implemented S-CORE in Python. We have

also enabled Open vSwitch in Xen as it provides flow-level

access for monitoring at the hypervisor level for all local

VMs, rather than on a per-VM basis. Although S-CORE solely

considers communication cost initially, we note that it can be

easily extended to add more constraints such an individual

host’s CPU, RAM, and bandwidth availability.

1) Flow Monitoring: In order for VMs to maintain flow-

level statistics, we have implemented our own flow table

supporting the following operations: fast addition of new flows;

updating existing flows; retrieval of a subset of flows, by

IP address; access to the number of bytes transmitted per

flow; access to flow duration, for calculation of throughput.

The flow table is periodically updated through polling Open

vSwitch for datapath statistics allowing for the storage of flows

for as long as it is required. Flows are stored from when they

start and until a migration decision is made for a VM.

2) Token Passing: We have used the IPv4 address of a VM

as the 32-bit VM ID carried in each token. As all VMs must
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Fig. 2: Ratio of migrated VMs in 5 consecutive iterations.

have a unique IP address, this provides a unique identifier

simplifying the token passing process, as the token can be sent

directly to the IP address of the next VM. To efficiently pack

the token for network transmission, it is stored and transmitted

as a block of 32-bit unsigned integers. Similarly, for the HLF

token policy that requires an additional highest communication

level entry, we have specified an 8-bit value that follows the

VM ID. To facilitate token passing, a token listening server

runs on a known port in dom0 of each hypervisor. For the

token server to receive the token, a NAT redirect is installed

in dom0’s iptables, redirecting messages for a particular port

to dom0 itself. When dom0 holds the token for a VM it hosts,

it is then able to conduct the migration decision process on

behalf of the VM, before passing the token.

3) Throughput Calculation: When dom0 receives the token

for a colocated VM, the first step is to calculate the aggregate

load between that VM and all the neighbors it communicates

with. This is achieved by looking up S-CORE’s flow table

for the source and destination flows associated with that IP

address, and calculating the total number of bytes transmitted.

As each flow stores a timestamp of when it was started, these

timestamps can be used to deduce the length of time for which

the flow statistics have been gathered since last being cleared,

allowing calculation of the aggregate throughput in the form

of bytes-per-second.

4) Location Identification: To compute the communication

cost we have to first determine the communication level. As we

store a flow table of the IP addresses each VM communicates

with, we can probe neighboring VMs to find out the IP

address of their dom0. Similar to the token passing method,

we can send a custom location request to the IP address of

each communicating VM. A NAT redirect in dom0 of each

hypervisor will then pass it to dom0, which can send a location

response containing dom0’s static address back to the VM.

With that information, the dom0 currently holding the token

can make a lookup into a precomputed location cost mapping

with its own IP address and the IP address of the underlying

dom0 of each communicating VMs.

5) Migration Location Identification: Since we now have

the IP addresses of each hypervisor, after probing for the

communication cost, we can rank neighboring VMs from

highest to lowest communication levels and probe each server

to see if it is able to host the current VM. A capacity request

packet is sent to the hypervisor of the neighboring VM with the

highest communication cost, which responds with a capacity

response packet, detailing how many more VMs it is able to

host and the amount of RAM it has available (to account for



VMs with heterogeneous RAM requirements).

C. Load Balancing Considerations

The S-CORE algorithm takes both topology and link load

into consideration. For topology-load awareness, S-CORE

ultimately reduces congestion through traffic localization. Op-

erators often oversubscribe their network (even with fat-tree

topology [2]) in order to lower the total cost of the design.

As a result, the oversubscription ratio increases dramatically

from edge to core layers, limiting host bandwidth to less-than-

line-rate for distant VM communication. Nevertheless, this

essentially implies that the edge (lower) part of the topologies

where hosts attached to rack switches have significantly more

provisioned bandwidth between one another than they do with

hosts in other racks. For example, when communicating VMs

are in the same host servers or racks, they can communicate

at full NIC speed.

On the other hand, S-CORE can detect VMs that exchange

large flows, which are often the root cause of network con-

gestion and impair short flows, and migrate them to exploit

highest rack-level bandwidth. Cloud DC traffic patterns have

been shown to exhibit a long tail distribution. Mice flows

dominate the DC workload, yet most bytes are transferred

across the network in a relatively small set of very large

flows (elephants). [18][1][23][19]. One important feature of

S-CORE is that it measures the number of bytes exchanged

between communicating VMs periodically. Since large flows

will contribute significantly to the average number of bytes per

unit time per communicating VM pair, they will be picked

up by S-CORE which will subsequently migrate VMs that

emit these large flows to the same server or rack to leverage

the highest possible available bandwidth provided by the edge

layer, and avoid congesting aggregation/core layers where

network bandwidth is sparse and congestion happens most

often [1][2].

S-CORE also incorporates link load thresholds in its

decision-making algorithm. As mentioned in Section VI, a

heuristic is used that explicitly considers end-host resource

limitations which include network bandwidth. Hence, if the

target host does not have sufficient bandwidth to accommodate

the requesting VM, the next best choice with adequate band-

width will be considered. The actual bandwidth threshold used

can be set according to overall network utilization policies over

the topology.

VI. EVALUATION

We have conducted extensive simulation and testbed exper-

iments to evaluate S-CORE’s scale properties and implemen-

tation overhead. We have used ns-3 to construct representative

canonical (2560 physical hosts; 128 ToR switches; 20 hosts

per rack) and fat-tree (k =16; 1024 hosts) DC topologies (cf.

Fig. 1). Each host can accommodate up to 16 VMs to model

a typical DC server’s capacity. A single VM is modeled as

a socket application which communicates with one or more

other VMs in the network. Similar to actual virtualization, each

server has a VM hypervisor network application to manage a

collective number of VMs, supporting in-migration (when one

or more VMs move into a server) as well as out-migration

(when one or more VMs move out of a server).

We have built a DC traffic generator to evaluate S-CORE

under realistic DC load patterns at increasing intensities, as

these have been reported in a number of DC measurement

studies [18][1][23][19]. The sample of a 10s Traffic Matrix

(TM) of all ToR switches is given in Fig.3a, exhibiting

properties in accordance to those unveiled in [23]. Similar with

traffic patterns used in previous works on traffic-aware virtual

machine management [16][17][14][15], the TM is sparse and

only a handful of ToRs become hotspots. Still, a significant

fraction of traffic is routed over the upper layers of the

topology hierarchy, resulting in episodes of congestion and

incurring high communication cost. We have scaled the initial

TM by a factor of 10 and 50, respectively, in order to evaluate

S-CORE under increased load stress.

We have considered the maximum number of VMs that

can be accommodated in a single physical host, and therefore

a VM migrates only when Theorem 1 is satisfied and the

target host has sufficient system resources (e.g., residual CPU,

memory and host bandwidth) available. We have set the link

weight cost, ci, to grow exponentially for each layer, hence

c1 = e0, c2 = e1, c3 = e3, etc. Migration (overhead) cost

cm was initially set to zero to allow for a fair comparison

between a centralized approximate-optimal approach and S-

CORE. However, since a DC operator may wish to limit, e.g.,

the number of MV migrations over a temporal interval, we

have also experimented with different cm values which are

presented later.

A. Computation of Centralized Optimal Values

As discussed in section III, centrally calculating the optimal

VM allocation is computationally infeasible. In order to evalu-

ate the performance of the distributed S-CORE VM migration,

we have employed a tractable heuristic-search alternative,

using a genetic algorithm (GA). Our GA has been imple-

mented as part of the ns-3 library to compute approximate

values for different simulation scenarios. The GA starts with

a population of 1, 000 individuals representing densely-packed

VM distributions, each of which may or may not be an

optimal solution (of VM assignments). The crossover operator

has been implemented using edge assembly crossover (EAX),

and the replacement of individuals is based on tournament

selection. Mutation happens by swapping a random number of

VMs between racks. The GA stops when there is no significant

improvement in communication cost reduction (< 1%) in 10

consecutive generations. Execution time over a medium-load

simulation setup is circa 12 hours using a 2.66 GHz, 8GB

RAM quad-core system. In the following, we assume results

achieved by GA approximation are optimal.

B. Simulation Results

Based on the TM depicted from Fig. 3a, Fig. 2 shows that,

when using S-CORE, the ratio of migrated VMs plummets

after the second token-passing iteration. This demonstrates
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Fig. 3: Communication cost reduction ratio over GA-optimal approximation for different token policies under (a) sparse, (b) medium, and
(c) dense Traffic Matrices for canonical tree ((d), (e), (f)) and fat-tree ((g), (h), (i)) topologies, respectively.

that S-CORE quickly converges to a stable VM distribution

within two token-passing iterations and very few VMs need

to migrate after that. S-CORE reduces communication cost

by migrating VMs to a resulting allocation that contains

pairwise traffic flows within the lower layers of the network.

Fig. 3 shows the ratios of communication cost achieved by

S-CORE and GA-optimal respectively. Clearly we can see

that S-CORE significantly reduces communication cost by

as much as 72%-87% of the GA-optimal in all scenarios,

using only VM-local load information. This figure also reveals

that the ratio of network-wide communication cost reduction

(with respect to the optimal cost) achieved under sparse,

medium, and dense TMs for both topologies is rapid and

substantial. In all scenarios, using the Highest-Level First

token passing policy exhibits better performance than Round-

Robin in terms of communication cost reduction speed and

proximity to the optimal cost regardless of the topology. It is

hence evident that maintaining the additional (communication

level) state required by HLF makes a significant difference in

the algorithm’s efficiency.

Comparing results from canonical (Fig. 3d, 3e, 3f) and fat-

tree topologies (Fig. 3g, 3h, 3i), we see that while S-CORE

achieves similar proximity to the GA-optimal allocation, there

is a smaller reduction ratio for fat-tree. This difference is due

to fat-tree’s increased path diversity at the lower layers, which

alleviates the need for using core layer links. Furthermore, S-

CORE deviates more from the GA-optimal as TM becomes

denser. Nevertheless, deviation from the GA-optimal merely

increases from 13% to 28% even when TM density is dras-

tically increased by a factor of 50. These results demonstrate

that S-CORE is a topology-neutral scheme and that it can

efficiently optimize network usage through reshaping traffic

condition over the network.

VM stability is crucial for dynamic VM migration algo-

rithms since oscillations can potentially have a big impact

on the network and the servers. While the possibility of

VM oscillations cannot be completely eliminated, S-CORE

is insensitive to short-term oscillations for two reasons. First,

the algorithm uses average pairwise traffic rates over a certain

temporal interval, which can be set suitably long to match

the dynamism of the environment while not responding to

instantaneous traffic bursts. Moreover, existing DC measure-

ment studies suggest that DC traffic exhibits fixed-set hotspots

that change slowly over time. We have shown that S-CORE
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Fig. 4: (a) Comparison of resulting link utilization at core, aggrega-
tion and ToR layers between S-CORE and Remedy at stable state;
(b) Comparison of communication cost reduction.

captures these characteristics and cluster VMs accordingly. So

long as hot destination servers do not change rapidly over time,

VMs do not oscillate under S-CORE. Second, VMs do not

consider migrating arbitrarily nor do they measure individual

flow arrivals and completion. Rather, they only consider migra-

tion periodically, when they receive the migration token, and

their computation is based on aggregate traffic load over that

period. Therefore, the short-term effects of sudden arrivals of

mice flows are canceled out when averaged over one iteration

of the algorithm. Fig. 2 also shows that when VMs are densely

clustered into racks, there are no more migrations, even at the

onset of bursty dynamic flows.

To better reflect the performance of S-CORE, it is important

to compare it with existing network-aware VM management

works. Among these works, [16][17] only consider initial

VM placement and host-level bandwidth constraint. Work in

[14] describes a VM location optimization problem based

in the topological network bandwidth, CPU, and memory

resources. Their formulation is complex, taking 3000 seconds

to compute VM allocations for 343 hosts. Obviously, their

approach does not scale to the size of data centers which

often consists of hundreds of thousands of servers. We have

directly compared S-CORE with Remedy [15], a network-

aware VM management sharing some common characteristics.

Even though S-CORE is the first distributed formalization of

traffic-aware VM migration, both systems monitor and collect

link traffic statistics and try to adapt to link conditions through

migrating VMs and take pairwise VM traffic into account for

reducing communication cost. In addition, they both model

and consider communication cost associated with each indi-

vidual migration. Nevertheless, the most important feature is

that both approaches take topological network capacity into

account.

We have implemented Remedy alongside S-CORE in ns-

3 and used a sparse TM under which Remedy achieves best

results [15]. For a fair comparison, we have used Remedy’s

migration cost model which estimates the number of migrated

bytes as a function of page dirty rate, and set S-CORE’s cm
accordingly. Evaluation results are shown in Fig. 4. Fig. 4a

demonstrates that S-CORE greatly reduces link utilization

on core and aggregation links, whereas Remedy marginally

alleviates core link utilization and slightly reduces aggregation

link utilization. This is because Remedy tries to balance

network traffic as much as possible while S-CORE takes

the topology into consideration and explicitly avoids links in

higher layers which are often oversubscribed. In addition to

link utilization, Fig. 4b shows that while S-CORE significantly

improves overall communication cost by 40%, Remedy only

reduces it by 10%. This means that Remedy’s momentary load

balancing approach does not optimize topological capacity

utilization. These comparisons demonstrate that S-CORE is

more efficient in network resource management with greater

potential for providing the operators with increased network

capacity headroom in the long run. Remedy, on the other

hand, due to its centralized global link monitoring, is more

responsive to transient network congestion.

C. Testbed Results

We evaluated S-CORE implementation over a testbed envi-

ronment to assess the algorithm’s footprint and the perfor-

mance of actual VM migrations. We have used Intel’s P4

3GHz servers with 2GB RAM running Xen hypervisor ver.

4.1 with Ubuntu server 12.04 as dom0. VMs are ubuntu 10.04

with 196MB RAM allocated. In the experiments, initially we

started two VMs on each server. Each VM hosts a HTTP

server as well as an iperf server and client. We have also set-

up a Network File System (NFS) server since live migration

requires VM images to reside on shared storage. Hosting

VM images on shared storage is a commonly used set up in

Cloud DC as it has one prominent benefit - only transferring

of memory state is needed while keeping the actual file

system intact to reduce network usage. Typical VM images

are hundreds of MB to tens of GB big in size depends services

that they run. Migrating these VM images over the network

can impose significant amount of traffic overhead in the DC

network and hence should be avoided.

A key module in S-CORE is the flow table, which maintains

state for adding, updating, retrieving and removing flows. In

order to stress-test the resource consumption of adding flows to

the flow table, experiments were conducted for up to 1 million

simultaneous flows. We defined two different sets of flows:

The first set is 1 million flows with all source IP addresses

being unique (type 1). The other set is 1 million unique

flows, where groups of 1000 flows share the same source IP

address (type 2). Fig.5a shows that flow addition, lookup and

deletion operations all require less time on a flow table with

a type 2 flow set. Nevertheless, addition, lookup and deletion

operations will not need more than 100ms for a realistic DC

production workload of 100 concurrent flows. These results

evidently demonstrate that S-CORE can run efficiently inside

individual machine without incurring computation slowdown.

We have measured over 100 actual migrations and illustrated

in Fig. 5b the probability distribution of the number of

migrated bytes for each VM migration. The spread appears

flat and wide due to the highly varying memory dirty rate at

the time when a VM is being migrated. However, the VM

memory size to migrate are all below 150MB. The mean and

standard deviation of migrated bytes are 127MB and 11MB
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Fig. 5: (a) Flow table operations for Type 1 and Type2 flows (b) Distribution of migrated bytes per migration; (c) Virtual machine migration
time and (d) Down-time under increasing traffic load. Background network traffic is the ratio of 1Gb/s CBR.

respectively. Given today’s Cloud DC networks, this additional

control load is negligible (1-second’s worth of transmission

time over a 1 Gb/s link).

Next, we examined whether migration over busier links

will impact machine down-time. We set up an experiment

where S-CORE operates under background CBR traffic of

increasing intensity. We have measured the total migration

time, and we used (fping) with 1ms interval to determine

the VM’s actual down-time, as shown in Fig.5c and Fig.5d,

respectively. The mean total migration time increases from

2.94s for no background traffic to 4.29s with 100Mb/s of

background traffic. With background traffic approaching 100%

of link capacity, migration time increases sub-linearly from

4.29s to 9.34s. Arguably, a more important measure is server’s

down-time, the period during which the VM is unable to

service user requests. This happens in the stop-and-copy stage

[8] of the live migration process when a VM is suspended, and

its CPU state and any remaining inconsistent memory pages

are transferred to another server. As shown in Fig. 5d, down-

time is an order of magnitude smaller and stays well below 50

ms when link utilization approaches 100%. Hence, although

higher link load does have an impact on VM down-time, S-

CORE remains efficient even under adverse load conditions.

VII. RELATED WORK

Virtual Machine migration [24][8], placement and consoli-

dation [4][5] have been considered mainly to improve server

resource usage and power consumption. Consolidation has also

been suggested for reducing the number of network switches

that must be power on at any given time [10]. A limited

number of studies have focused on traffic-aware initial VM

placement [16] or dynamic migration to satisfy traffic demands

[14][25] or to meet SLA requirements [26]. Initial placement

studies do not take the current state of the network into

consideration, while the rest assume a pre-computed Traffic

Matrix that reduces the dynamism and adaptivity of their

approaches.

Most relevant to our work, Remedy [15] ranks VMs viable

for migration based on the network cost of migrating and

temporal VM traffic load. Remedy uses aggregate traffic statis-

tics collected from network switches through a centralized

OpenFlow-based algorithm, while S-CORE is fully distributed

and allows VMs to make migration decisions unilaterally using

data collected locally. We have compared the two systems in

section VI-B.

VIII. CONCLUSION

VM management is a powerful control loop for the provi-

sioning of elastic services over Cloud DC infrastructures that

can capture the dynamism and exploit the recourse redundancy

of such environments. However, the traffic-agnostic placement

of VMs to servers has been reported to result in sub-optimal

dynamics that lead to congestion in the core and hinder the

overall efficiency of resource usage.

In this paper, we have presented S-CORE: a scalable,

traffic-aware VM migration scheme that reduces the topology-

wide communication cost in a fully distributed manner, using

information available locally at each VM. Through explicitly

assigning cost weights to links at different layers of tree

topologies, S-CORE can contain traffic at the lower layers,

significantly revealing higher-level links that are significantly

oversubscribed and prone to congestion. At the same time,

through the assignment of different cost weights, the algorithm

can be exploited to optimise different performance objectives

according to DC operator policy. We have implemented S-

CORE and evaluated it extensively over simulated and ex-

perimental testbed environments. We have shown that it can

achieve up to 87% communication cost reduction compared

to an approximate optimal approach and that it is equally

applicable to diverse DC network architectures under realistic

DC load conditions. S-CORE outperforms centralized VM

migration algorithms, while incurring a maximum of circa

40ms VM downtime at extreme load conditions.
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APPENDIX

We show that the Optimal VM Allocation (OVMA) prob-

lem at hand does not have a polynomial time solution. OVMA

is not a decision problem but rather a typical optimization

one, where the optimization goal is to compute whether there

is a quantity A so that Eq. 2 is less than or equal to a

target value J . We simplify the problem by considering only

one communication link with cost c1. In the sequel, we will

show that OVMA ∈ NP and then we reduce a known NP-

Complete problem to OVMA in polynomial time [20] (or in

logarithmic space [27]).

In order to show that an optimization problem is in NP ,

the traditional way is to show that the following property is

satisfied: for each “yes” instance there exists a “proof” or

“certificate” of polynomial size, whereas “no” instances have

no polynomial “certificates”. OVMA has this property since

the certificate is an allocation A which is polynomial in the

size of the input and it exists if and only if this allocation

achieves the goal J .

The next step is to reduce a known NP-complete problem

to OVMA. Note that a problem X is at least as hard as

problem Y , if Y reduces to X , [20], [27]. We will consider the

Graph Partitioning (GP ) problem [20] which will be reduced

to OVMA. For completeness, GP is stated below:

INSTANCE: Graph G = (V,E), weights w(v) ∈ Z+ for

each v ∈ V and l(e) ∈ Z+ for each e ∈ E, positive integers

K and J .

QUESTION: Is there a partition of V into disjoint sets

V1, V2, . . . , Vm such that
∑

v∈Vi

w(v) ≤ K

for 1 ≤ i ≤ m and such that if E′ ⊆ E is the set of edges

that have their two endpoints in two different sets Vi, then
∑

e∈E′

l(e) ≤ J ?

In our reduction we shall use the version of GP with vertex

weight 1, which is still NP-Complete for K ≥ 3 (can be solved

in polynomial time when K = 2 by matching [20]). Consider

the following straightforward reduction:

• the set of VMs V is V , i.e., V = V = {v1, v2, . . . , vn},
• the traffic load λ(u, v) between VMs u and v is defined

as follows: λ(vi, vj) = l(e), if in the undirected graph G

there exists an edge e between u and v and is taken to

be 0 if there is no edge between u and v in G,

• K ∈ Z+ is the rack capacity, i.e., how many virtual

machines a rack may accommodate,

• the fact that the vertex weights are taken to be 1 satisfies

the assumption that all VMs are equivalent in weight,

• the goal J ∈ Z+ for OVMA is precisely the goal J of

the GP , and

• the original question whether there is a partition of V into

disjoint sets V1, V2, . . . , Vm now becomes the question

whether there is an allocation of virtual machines to racks

r1, r2, . . . , rm.

The above reduction is trivial and can be carried in poly-

nomial time. Therefore, GP with vertex weight 1 reduces

polynomially to OVMA, which completes the proof that

OVMA is NP-Complete.

http://xen.org/
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