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Abstract. The Dual Post Correspondence Problem asks whether, for
a given word α, there exists a pair of distinct morphisms σ, τ , one of
which needs to be non-periodic, such that σ(α) = τ(α) is satisfied. This
problem is important for the research on equality sets, which are a vital
concept in the theory of computation, as it helps to identify words that
are in trivial equality sets only.
Little is known about the Dual PCP for words α over larger than binary
alphabets. In the present paper, we address this question in a way that
simplifies the usual method, which means that we can reduce the intri-
cacy of the word equations involved in dealing with the Dual PCP. Our
approach yields large sets of words for which there exists a solution to
the Dual PCP as well as examples of words over arbitrary alphabets for
which such a solution does not exist.

Keywords: Morphisms; Equality sets; Dual Post Correspondence Prob-
lem; Periodicity forcing sets; Word equations; Ambiguity of morphisms

1 Introduction

The equality set E(σ, τ) of two morphisms σ, τ is the set of all words α that satisfy
σ(α) = τ(α). Equality sets were introduced by A. Salomaa [13] and Engelfriet
and Rozenberg [4], and they can be used to characterise crucial concepts in the
theory of computation, such as the recursively enumerable set (see Culik II [1])
and the complexity classes P and NP (see Mateescu et al. [10]). Furthermore,
since the famous undecidable Post Correspondence Problem (PCP) by Post [11]
asks whether, for given morphisms σ, τ , there exists a word α satisfying σ(α) =
τ(α), it is simply the emptiness problem for equality sets.

Culik II and Karhumäki [2] study an alternative problem for equality sets,
called the Dual Post Correspondence Problem (Dual PCP or DPCP for short):
they ask whether, for any given word α, there exist a pair of distinct morphisms
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σ, τ (called a solution to the DPCP) such that σ(α) = τ(α). Note that, in order
for this problem to lead to a rich theory, at least one of the morphisms needs
to be non-periodic. If a word does not have such a pair of morphisms, then it is
called periodicity forcing, since the only solutions to the corresponding instance
of the DPCP are periodic.

The Dual Post Correspondence Problem is of particular interest for the re-
search on equality sets as it helps to identify words that can only occur in trivial
equality sets (i. e., equality sets E(σ, τ) where σ or τ are periodic). The exis-
tence of these words (namely the periodicity forcing ones) is a rather peculiar
property of equality sets when compared to other types of formal languages, and
it illustrates their combinatorial intricacy. In addition, the DPCP shows close
connections to a special type of word equations, since a word α has a solution to
the DPCP if and only there exists a non-periodic solution to the word equation
α = α′, where α′ is renaming of α. A further related concept is the ambiguity of
morphisms (see, e. g., Freydenberger et al. [6, 5], Schneider [14]). Research on this
topic mainly asks whether, for a given word α, there exists a morphism σ that
is unambiguous for it, i. e., there is no other morphism τ satisfying σ(α) = τ(α).
Using this terminology, a word does not have a solution to the DPCP if every
non-periodic morphism is unambiguous for it.

Previous research on the DPCP has established its decidability and numerous
insights into words over binary alphabets that do or do not have a solution. In
contrast to this, for larger alphabets, it is not even known whether the problem is
nontrivial, i. e., whether there are periodicity forcing words, and if so, what they
look like. It is the purpose of the present paper to study the DPCP for words over
arbitrary alphabets. Our main results shall, firstly, establish an approach to the
problem that reduces the complexity of the word equations involved, secondly,
demonstrate that most words are not periodicity forcing and why that is the
case and, thirdly, prove that the DPCP is nontrivial for all alphabet sizes.

Due to space constraints, all proofs have been omitted from this paper.

2 Definitions and Basic Observations

Let N := {1, 2, . . .} be the set of natural numbers, and let N0 := N ∪ {0}. We
often use N as an infinite alphabet of symbols. In order to distinguish between a
word over N and a word over a (possibly finite) alphabet Σ, we call the former
a pattern. Given a pattern α ∈ N∗, we call symbols occurring in α variables
and denote the set of variables in α by var(α). Hence, var(α) ⊆ N. We use
the symbol · to separate the variables in a pattern, so that, for instance, 1 ·
1 · 2 is not confused with 11 · 2. For a set X, the notation |X| refers to the
cardinality of X, and for a word X, |X| stands for the length of X. By |α|x,
we denote the number of occurrences of the variable x in the pattern α. Let
α ∈ {x1, x2, . . . , xn}∗ be a pattern. The Parikh vector of α, denoted by P(α), is
the vector (|α|x1

, |α|x2
, . . . , |α|xn

).
Given arbitrary alphabets A,B, a morphism is a mapping h : A∗ → B∗ that

is compatible with the concatenation, i. e., for all v, w ∈ A∗, h(vw) = h(v)h(w).



Hence, h is fully defined for all v ∈ A∗ as soon as it is defined for all symbols
in A. Such a morphism h is called periodic if and only if there exists a v ∈ B∗
such that h(a) ∈ v∗ for every a ∈ A. For the composition of two morphisms
g, h : A∗ → A∗, we write g ◦ h, i. e., for every w ∈ A∗, g ◦ h(w) = g(h(w)).
In this paper, we usually consider morphisms σ : N∗ → {a, b}∗ and morphisms
ϕ : N∗ → N∗. For a set N ⊆ N, the morphism πN : N∗ → N∗ is defined by
πN (x) := x if x ∈ N and πN (x) := ε if x 6∈ N . Thus, for a pattern α ∈ N+,
πN (α) is the projection of α to its subpattern πN (α) consisting of variables in
N only. Let ∆ ⊂ N be a set of variables and Σ be an alphabet. Then two
morphisms σ, τ : ∆∗ → Σ∗ are distinct if and only if there exists an x ∈ ∆ such
that σ(x) 6= τ(x).

Let α ∈ N+. We call α morphically imprimitive if and only if there exist a
pattern β with |β| < |α| and morphisms ϕ,ψ : N∗ → N∗ satisfying ϕ(α) = β and
ψ(β) = α. If α is not morphically imprimitive, we call α morphically primitive.
As demonstrated by Reidenbach and Schneider [12], the partition of the set of
all patterns into morphically primitive and morphically imprimitive ones is vital
in several branches of combinatorics on words and formal language theory, and
some of our results in the main part of the present paper shall again be based
on this notion.

We now formally define the Dual PCP as a set:

Definition 1. Let Σ be an alphabet. DPCP is the set of all α ∈ N+ such that
there exist a non-periodic morphism σ : N∗ → Σ∗ and an (arbitrary) morphism
τ : N∗ → Σ∗ satisfying σ(α) = τ(α) and σ(x) 6= τ(x) for an x ∈ var(α).

We wish to investigate what patterns α ∈ N+ are contained in DPCP, and what
patterns are not. Since all morphisms with unary target alphabets are periodic
and since we can encode any Σ, |Σ| ≥ 2, over {a, b}, we choose Σ := {a, b} from
now on.

The following proposition explains why in the definition of DPCP at least
one morphism must be non-periodic.

Proposition 2. For every α ∈ N+ with | var(α)| ≥ 2, there exist (periodic)
morphisms σ, τ : N∗ → {a, b}∗ satisfying σ(α) = τ(α).

Hence, allowing periodic morphisms would turn the Dual PCP into a trivial
problem. Note that for patterns α with | var(α)| = 1, every morphism is unam-
biguous.

In the literature, patterns not in DPCP are called periodicity forcing since
they force every pair of morphisms that agree on the pattern to be periodic. This
notion can be extended to sets of patterns in a natural way: Let ∆ ⊂ N be a set
of variables, and let β1, β2, ..., βn ∈ ∆+ be patterns. The set {β1, β2, ..., βn} is
periodicity forcing if, for every pair of distinct morphisms σ, τ : ∆∗ → {a, b}∗
which agree on every βi for 1 ≤ i ≤ n, σ and τ are periodic.

From Culik II and Karhumäki [2] it is known that DPCP is decidable. Fur-
thermore, the following specific results on two-variable patterns that are or are
not in DPCP can be derived from the literature on word equations and binary
equality sets:



Proposition 3 ([2]). Every two-variable pattern of length 4 or less is in DPCP.
Every renaming or mirrored version of the patterns 1 · 2 · 1 · 1 · 2, 1 · 2 · 1 · 2 · 2
is not in DPCP. These are the only patterns of length 5 that are not in DPCP.
In particular, the (morphically primitive) patterns 1 · 1 · 2 · 2 · 2, 1 · 2 · 1 · 2 · 1,
1 · 2 · 2 · 1 · 1 and 1 · 2 · 2 · 2 · 1 are in DPCP.

Furthermore, we have the following examples of longer patterns.

Proposition 4 ([7]). For any i ∈ N, (1 · 2)i · 1 ∈ DPCP.

Proposition 5 ([2]). For any i, j ∈ N, 1i · 2j ∈ DPCP.

Proposition 6 ([8]). For any i ∈ N, 1 · 2i · 1 ∈ DPCP.

Note that, for i, j > 1, the three propositions above give morphically primi-
tive example patterns. Thus, the results are not trivially achievable by applying
Corollary 18 in Section 4.

Proposition 7 ([3]). 12 · 23 · 12 /∈ DPCP.

It is worth noting that the proof of the latter proposition takes about 9 pages.
This illustrates how difficult it can be to show that certain example patterns do
not belong to DPCP.

In [2], Culik II and Karhumäki state without proof that any ratio-primitive
pattern α ∈ (13 ·1∗ ·23 ·2∗)2 is not in DPCP. A pattern α ∈ {1, 2}+ is called ratio-
primitive if and only if, for every proper prefix β of α, it is |β|1/|β|2 6= |α|1/|α|2.
Otherwise, α is called ratio-imprimitive.

While the above examples are partly hard to find, some general statements
on DPCP and its complement can be obtained effortlessly:

Proposition 8. If α ∈ DPCP, then, for every k, αk ∈ DPCP. If α /∈ DPCP,
then, for every k, αk /∈ DPCP.

Proposition 9. If α, β ∈ DPCP with var(α) ∩ var(β) = ∅, then αβ ∈ DPCP.

If we apply Proposition 8 to existing examples, then we can state the following
insight:

Corollary 10. There are patterns of arbitrary length in DPCP. There are pat-
terns of arbitrary length not in DPCP.

The existing literature on the Dual PCP mainly studies two-variable patterns.
In contrast to this, as mentioned in Section 1, we wish to investigate the structure
of DPCP for patterns over any numbers of variables. In this regard, we can state
a number of immediate observations:

Proposition 11. Let α ∈ N+, | var(α)| = 1. Then α /∈ DPCP.

It is easy to give example patterns with three or more variables that belong to
DPCP. Proposition 19 in Section 4 gives a construction principle. Furthermore,
as soon as a pattern α is projectable to a subpattern β ∈ DPCP, also α ∈ DPCP.



Proposition 12. Let α ∈ N+ and V ⊆ var(α) with πV (α) ∈ DPCP. Then
α ∈ DPCP.

On the other hand, this implies that every α 6∈ DPCP must not be projectable
to a subpattern from DPCP.

Corollary 13. Let α 6∈ DPCP. Then for every V ⊆ var(α), πV (α) 6∈ DPCP.

Consequently, on the one hand, the discovery of one pattern not in DPCP directly
leads to a multitude of patterns not in DPCP (namely, all of its subpatterns).
On the other hand, this situation makes it very difficult to find such example
patterns since arbitrary patterns easily contain subpatterns from DPCP.

3 A Characteristic Condition

The most direct way to decide on whether a pattern α is in DPCP is to solve the
word equation α = α′, where α′ is a renaming of α such that var(α)∩var(α′) = ∅.
Indeed, the set of solutions corresponds exactly to the set of all pairs of mor-
phisms which agree on α. The pattern α is in DPCP if and only if there
exists such a solution which is non-periodic. This explains why Culik II and
Karhumäki [2] use Makanin’s Algorithm for demonstrating the decidability of
DPCP. Furthermore, it demonstrates why, in many respects, the more challeng-
ing questions often concern patterns not in DPCP. For such patterns, it is not
enough to simply find a single non-periodic solution, but instead every single
solution to the equation α = α′ must be accounted for. It is generally extremely
difficult to determine the complete solution set to such an equation, and as a
result, only a limited class of examples is known.

This section presents an alternative approach which attempts to reduce the
difficulties associated with such equations. To this end, we apply a morphism
ϕ : N∗ → N∗ to a pattern α /∈ DPCP, and we identify conditions that, if satisfied,
yield ϕ(α) /∈ DPCP.

The main result of this section characterises such morphisms ϕ:

Theorem 14. Let α ∈ N+ be a pattern that is not in DPCP, and let ϕ :
var(α)∗ → N∗ be a morphism. The pattern ϕ(α) is not in DPCP if and only
if

(i) for every periodic morphism ρ : var(α)∗ → {a, b}∗ and for all distinct mor-
phisms σ, τ : var(ϕ(α))∗ → {a, b}∗ with σ ◦ ϕ(α) = ρ(α) = τ ◦ ϕ(α), σ and
τ are periodic and

(ii) for every non-periodic morphism ρ : var(α)∗ → {a, b}∗ and for all mor-
phisms σ, τ : var(ϕ(α))∗ → {a, b}∗ with σ ◦ ϕ = ρ = τ ◦ ϕ, σ = τ .

As briefly mentioned above, Theorem 14 shows that insights into the struc-
ture of DPCP can be gained in a manner that partly circumvents the solution
of word equations. Instead, we can make use of prior knowledge on patterns
that are not in DPCP, which mainly exists for patterns over two variables, and



expand this knowledge by studying the existence of morphisms ϕ that preserve
non-periodicity (i. e., if certain morphisms σ are non-periodic, then σ ◦ ϕ needs
to be non-periodic; see Condition (i)) and preserve distinctness (i. e., if certain
morphisms σ, τ are distinct, then σ ◦ ϕ and τ ◦ ϕ need to be distinct; see Con-
dition (ii)).

Theorem 14 can be used to characterise the patterns in DPCP, but it is
mainly suitable as a tool to find patterns that are not in DPCP. We shall study
this option in Section 5, where we, due to our focus on the if direction of The-
orem 14, can drop the additional conditions on non-periodicity and distinctness
preserving morphisms ϕ that are postulated by the Theorem. In addition to re-
ducing the need for studying word equations, the use of morphisms to generate
examples not in DPCP shall prove to have another key benefit; since morphisms
can be applied to infinitely many pre-image patterns, the construction of a sin-
gle morphism automatically produces an infinite set of examples. This process
can be applied iteratively – with morphisms providing new examples of patterns
which can then potentially be used as the pre-images for the same, or other
morphisms. Before we study this in more details, we wish to consider patterns
that are in DPCP in the next section.

4 On Patterns in DPCP

In the present section, we wish to establish major sets of patterns over arbitrarily
many variables that are in DPCP. Our first criterion is based on so-called am-
biguity factorisations, which are a generalisation of imprimitivity factorisations
used by Reidenbach and Schneider [12] to characterise the morphically primitive
patterns.

Definition 15. Let α ∈ N+. An ambiguity factorisation (of α) is a mapping f :
N+ → Nn × (N+)n, n ∈ N, such that, for f(α) = (x1, x2, . . . , xn; γ1, γ2, . . . , γn),
there exist β0, β1, . . . , βn ∈ N∗ satisfying α = β0 γ1 β1 γ2 β2 . . . γn βn and

(i) for every i ∈ {1, 2, . . . , n}, |γi| ≥ 2,
(ii) for every i ∈ {0, 1, . . . , n} and for every j ∈ {1, 2, . . . , n}, var(βi)∩var(γj) =
∅,

(iii) for every i ∈ {1, 2, . . . , n}, |γi|xi
= 1 and if xi ∈ var(γi′) for an i′ ∈

{1, 2, . . . , n}, γi = δ1 xi δ2 and γ′i = δ′1 xi δ
′
2, then |δ1| = |δ′1| and |δ2| = |δ′2|.

Using this concept, we now can give a strong sufficient condition for patterns
in DPCP:

Theorem 16. Let α ∈ N+. If there exists an ambiguity factorisation of α, then
α ∈ DPCP.

The following example illustrates Definition 15 and Theorem 16:

Example 17. Let the pattern α be given by

α := 1 · 2 · 2︸ ︷︷ ︸
γ1

· 3 · 2 · 4 · 5 · 2︸ ︷︷ ︸
γ2

· 5 · 4 · 2 · 5︸ ︷︷ ︸
γ3

· 3 · 1 · 2 · 2︸ ︷︷ ︸
γ4



This pattern has an ambiguity partition, as is implied by the marked γ parts
and the variables in bold face, which stand for the xi.

We now consider two distinct non-periodic morphisms σ and τ , given by
σ(1) = σ(4) = a, σ(2) = σ(5) = bb, σ(3) = ε and τ(1) = abb, τ(4) = babb,
τ(2) = τ(5) = b, τ(3) = ε. It can be verified with limited effort that σ and τ
agree on α. ♦

Since ambiguity partitions are more general than imprimitivity partitions, we
can immediately conclude that a natural set of patterns is included in DPCP:

Corollary 18. Let α ∈ N+. If α is morphically imprimitive, then α ∈ DPCP.

Since most patterns are morphically imprimitive (see Reidenbach and Schnei-
der [12]), this implies that most patterns are in DPCP, which confirms our
intuitive considerations at the beginning of Section 3.

While ambiguity partitions are a powerful tool, they are technically rather
involved. In this respect, our next sufficient condition on patterns in DPCP is
much simpler, since it merely asks whether a pattern can be split in two factors
that do not have any variables in common:

Proposition 19. Let α ∈ N+, | var(α)| ≥ 3. If, for some α1, α2 ∈ N+ with
var(α1) ∩ var(α2) = ∅, α = α1 α2, then α ∈ DPCP.

Note that it is possible to extend Proposition 19 quite substantially since the
same technique can be applied to, e g., the pattern α := α1α2α1α2 and much
more sophisticated types of patterns where certain factors have disjoint variable
sets and can therefore be allocated to different periodic morphisms each. The
following proposition is such an extension of Proposition 19.

Proposition 20. Let x, y, z ∈ N, and let α ∈ {x, y, z}+ be a pattern such that
α = α0zα1z . . . αn−1zαn, n ∈ N. If,

– for every i ∈ {0, 1, . . . , n}, αi = ε or var(αi) = {x, y}, and

– for every i, j ∈ {0, 1, . . . , n} with αi 6= ε 6= αj,
|αi|x
|αi|y =

|αj |x
|αj |y ,

then α ∈ DPCP.

The following example pattern is covered by Proposition 20: 1 · 1 · 2 · 2 · 2 · 3 · 1 ·
2 · 2 · 1 · 2 · 3 · 1 · 1 · 1 · 1 · 2 · 2 · 2 · 2 · 2 · 2. Although Proposition 20 is restricted to
three-variable patterns, it is worth mentioning that we can apply it to arbitrary
patterns that have a three-variable subpattern of this structure. This is a direct
consequence of Proposition 12.

5 On Patterns not in DPCP

As a result of the intensive research on binary equality sets, several examples of
patterns over two variables are known not to be in DPCP (see Section 2). Hence,
the most obvious question to ask is whether or not there exist such examples
with more than two variables (and more generally, whether there exist examples



for any given set of variables). The following results develop a structure for mor-
phisms which map patterns not in DPCP to patterns with more variables which
are also not in DPCP, ultimately allowing for the inductive proof of Theorem 33,
which provides a strong positive answer.

As discussed in Section 3, this is accomplished by simplifying the conditions of
Theorem 14, so that they ask the morphism ϕ to be (i) non-periodicity preserving
and (ii) distinctness-preserving :

Lemma 21. Let ∆1, ∆2 be sets of variables. Let ϕ : ∆1
∗ → ∆2

∗ be a morphism
such that for every x ∈ ∆2, there exists a y ∈ ∆1 such that x ∈ var(ϕ(y)), and

(i) for every non-periodic morphism σ : ∆2
∗ → {a, b}∗, σ ◦ ϕ is non-periodic,

and
(ii) for all distinct morphisms σ, τ : ∆2

∗ → {a, b}∗, where at least one is non-
periodic, σ ◦ ϕ and τ ◦ ϕ are distinct.

Then for any α /∈ DPCP with var(α) = ∆1, ϕ(α) /∈ DPCP.

Remark 22. Condition (i) of Lemma 21 is identical to asking that σ◦ϕ is periodic
if and only if σ is periodic, since if σ is periodic, then σ◦ϕ will always be periodic
as well.

While Lemma 21 provides a clear proof technique for demonstrating that
a given pattern is not in DPCP, the conditions are abstract, and it does not
directly lead to any new examples. The next step, therefore, is to investigate the
existence and nature of morphisms ϕ which satisfy both conditions.

Since the main focus of the following results is concerned with properties of
compositions of morphisms, the following two facts are included formally.

Fact 23. Let ∆1, ∆2 be sets of variables. let ϕ : ∆1
∗ → ∆2

∗ and σ : ∆2
∗ →

{a, b}∗ be morphisms. The morphism σ ◦ϕ is periodic if and only if there exists
a (primitive) word w ∈ Σ∗ such that for each i ∈ ∆1, there exists an n ∈ N0

with σ(ϕ(i)) = wn.

Fact 24. Let ∆1, ∆2 be sets of variables. let ϕ : ∆1
∗ → ∆2

∗ and σ : ∆2
∗ →

{a, b}∗ be morphisms. The morphisms σ ◦ϕ and τ ◦ϕ are distinct if and only if
there exists a variable i ∈ ∆1 such that σ(ϕ(i)) 6= τ(ϕ(i)).

Facts 23 and 24 highlight how properties such as periodicity and distinctness
of a composition of two morphisms can be determined by observing certain
properties of specific sets of patterns. Since the conditions in Lemma 21 rely only
on these properties, it is apparent that, further than requiring that α /∈ DPCP,
the structure of α is not relevant. It is instead dependent on var(α).

Each condition from Lemma 21 is relatively independent from the other,
so it is appropriate to first establish classes of morphisms satisfying each one
separately. Condition (i) is considered first. The satisfaction of Fact 23, and
therefore Condition (i) of Lemma 21 relies on specific systems of word equations
having only periodic solutions. The following proposition provides a tool for
demonstrating exactly that.



Proposition 25. (Lothaire [9]) All non-trivial, terminal-free word equations in
two unknowns have only periodic solutions.

In order to determine the satisfaction of Condition (i) of Lemma 21 for a
particular morphism ϕ : ∆1

∗ → ∆2
∗, it is necessary to identify which mor-

phisms σ : ∆2
∗ → {a, b}∗ result in the composition σ ◦ ϕ being periodic. The

next proposition gives the required characteristic condition on σ for σ ◦ ϕ to be
periodic. Each term σ(γi) in equality (1) below corresponds directly to a word
σ ◦ϕ(j), for some j ∈ ∆1. The satisfaction of the system of equalities is identical
to each word σ ◦ϕ(i) sharing a primitive root, allowing the relationship between
σ and the periodicity of σ ◦ ϕ to be expressed formally.

Proposition 26. Let ∆1 and ∆2 be sets of variables and let ϕ : ∆1
∗ → ∆2

∗,
σ : ∆2

∗ → {a, b}∗ be morphisms. For every i ∈ ∆1, let ϕ(i) := βi, and let
{γ1, γ2, ... γn} be the set of all patterns βj such that σ(βj) 6= ε. If n < 2, the
composition σ ◦ ϕ is trivially periodic. For n ≥ 2, σ ◦ ϕ is periodic if and only if
there exist k1, k2, ... kn ∈ N such that

σ(γ1)k1 = σ(γ2)k2 = · · · = σ(γn)kn . (1)

Corollary 27. Let ∆1 and ∆2 be sets of variables, let ϕ : ∆1
∗ → ∆2

∗ be a
morphism, and let ϕ(i) := βi for every i ∈ ∆1. The morphism ϕ satisfies
Condition (i) of Lemma 21 if and only if, for every non-periodic morphism
σ : ∆2

∗ → {a, b}∗,

(i) There are at least two patterns βi such that σ(βi) 6= ε, and
(ii) there do not exist k1, k2, ..., kn ∈ N such that

σ(γ1)k1 = σ(γ2)k2 = · · · = σ(γn)kn (2)

where {γ1, γ2, ..., γn} is the set of all patterns βi such that σ(βi) 6= ε.

Corollary 27 also provides a proof technique. Since there are finitely many
combinations of β1, β2, ..., βm, it is clear that the satisfaction of Condition (ii) of
Corollary 27 will always rely on finitely many cases. By considering all possible
sets {γ1, γ2, ....γn}, infinitely many morphisms can be accounted for in a finite
and often very concise manner. Thus, it becomes much simpler to demonstrate
that there cannot exist a non-periodic morphism σ such that σ◦ϕ is periodic, and
therefore that Condition (i) of Lemma 21 is satisfied. We now give an example
of such an approach.

Example 28. Let ∆1 := {1, 2, 3, 4} and let ∆2 := {5, 6, 7, 8}∗. Let ϕ : ∆1
∗ → ∆2

∗

be the morphism given by ϕ(1) := 5 · 6, ϕ(2) := 6 · 5, ϕ(3) := 5 · 6 · 7 · 7 and
ϕ(4) := 6 ·8 ·8 ·5. Consider all non-periodic morphisms σ : {5, 6, 7, 8}∗ → {a, b}∗.
Note that if σ(5 · 6) 6= ε then σ(6 · 5) 6= ε and vice-versa. Also note that since
σ is non-periodic, there must be at least two variables x such that σ(x) 6= ε.
So if either σ(5 · 6 · 7 · 7) 6= ε, or σ(6 · 8 · 8 · 5) 6= ε, there must be at least one
other pattern βj with σ(βj) 6= ε. Therefore, for any non-periodic morphism σ,



there exists a minimum of two patterns βi such that σ(βi) 6= ε. Now consider all
possible cases.

Assume first that σ(5 · 6) = ε. Clearly σ(5) = σ(6) = ε, so σ(6 · 5) = ε.
Since σ is non-periodic, σ(7) 6= ε and σ(8) 6= ε. By Proposition 26, σ ◦ ϕ is
periodic if and only if there exist k1, k2 ∈ N such that σ(7 · 7)k1 = σ(8 · 8)k2 . By
Proposition 25, this is the case only if σ is periodic and this is a contradiction,
so σ ◦ ϕ is non-periodic.

Assume σ(5 · 6) 6= ε (so σ(6 · 5) 6= ε, σ(6 · 8 · 8 · 5) 6= ε, and σ(5 · 6 · 7 · 7) 6= ε),
then by Proposition 26, the composition σ ◦ ϕ is periodic if and only if there
exist k1, k2, k3, k4 ∈ N such that

σ(5 · 6)k1 = σ(6 · 5)k2 = σ(6 · 8 · 8 · 5)k3 = σ(5 · 6 · 7 · 7)k4 (3)

By Proposition 25, the first equality only holds if there exist a word w ∈
{a, b}∗ and numbers p, q ∈ N0 such that σ(5) = wp and σ(6) = wq. Thus,
equality (3) is satisfied if and only if wk1(p+q) = (wq ·σ(8·8)·wp)k3 and wk1(p+q) =
(wp+q · σ(7 · 7))k4 . By Proposition 25, this is only the case if there exist r, s ∈ N
such that σ(7) = ws and σ(8) = wr. Thus, σ is periodic, which is a contradiction,
so the composition σ ◦ ϕ is non-periodic.

All possibilities for non-periodic morphisms σ have been exhausted, so for
any non-periodic morphism σ : {5, 6, 7, 8}∗ → {a, b}∗, the composition σ ◦ ϕ is
also non-periodic and ϕ satisfies Condition (i) of Lemma 21. ♦

Condition (ii) of Lemma 21 is now considered. Fact 24 shows that it relies
on the (non-)existence of distinct, non-periodic morphisms which agree on a set
of patterns (more precisely, the set of morphic images of single variables). The
following proposition provides a characterisation for morphisms which satisfy
the condition.

Proposition 29. Let ∆1, ∆2 be sets of variables, and let ϕ : ∆1
∗ → ∆2

∗ be
a morphism. For every i ∈ ∆1, let ϕ(i) := βi. The morphism ϕ satisfies Con-
dition (ii) of Lemma 21 if and only if {β1, β2, . . . , βn} is a periodicity forcing
set.

Proposition 29 facilitates a formal comparison of the word equations involved
in directly finding patterns not in DPCP and the word equations that need to
be considered when using Lemma 21. Furthermore, it shows the impact of the
choice of α on the complexity of applying the Lemma. However, it does not
immediately provide a nontrivial morphism ϕ that satisfies Condition (ii) of
Lemma 21. Therefore, we consider the following technical tool:

Proposition 30. Let ∆1, ∆2 be sets of variables, and let ϕ : ∆1
∗ → ∆2

∗ be
a morphism. For every k ∈ ∆1, let ϕ(k) := βk and let βi /∈ DPCP for some
i ∈ ∆1. For every x ∈ ∆2\ var(βi), let there exist βj and patterns γ1, γ2, such
that βj = γ1 · γ2 and

(i) x ∈ var(γ1), and for every y ∈ var(γ1) with y 6= x, y ∈ var(βi),
(ii) γ1 /∈ DPCP with | var(γ1)| ≥ | var(βi)|,



(iii) P(γ2) and P(βi) are linearly dependent.

Then ϕ satisfies Condition (ii) of Lemma 21.

The following example demonstrates the structure given in Proposition 30.
It is chosen such that it also satisfies Corollary 27, allowing for the construction
given in Proposition 32.

Example 31. Let ∆1 := {4, 5}, and let ∆2 := {1, 2, 3}. Let ϕ : ∆1
∗ → ∆2

∗ be
the morphism given by ϕ(4) = β4 := 1 · 2 · 1 · 1 · 2 and ϕ(5) := γ1 · γ2 where
γ1 := 1 ·3 ·1 ·1 ·3 and γ2 := 2 ·1 ·1 ·2 ·1. Notice that β4 and γ1 are not in DPCP.
Let σ, τ : {1, 2, 3}∗ → {a, b}∗ be distinct morphisms, at least one of which is
non-periodic, that agree on β4. By definition of DPCP, this is only possible if σ
and τ agree on, or are periodic over {1, 2}.

If σ and τ agree on {1, 2}, then they agree on γ2. This means that σ(γ1 ·γ2) =
τ(γ1 · γ2) if and only if σ(1 · 3 · 1 · 1 · 3) = τ(1 · 3 · 1 · 1 · 3). Furthermore σ and τ
are distinct, so cannot agree on 3. However, since σ(1) = τ(1) but σ(3) 6= τ(3),
this cannot be the case, therefore σ ◦ ϕ and τ ◦ ϕ are distinct.

Note that if σ and τ agree on exactly one variable in {1, 2}, then they cannot
agree on β4. Consider the case that σ and τ do not agree on 1 or 2. Then they
must be periodic over {1, 2}, so σ(2 ·1 ·1 ·2 ·1) = σ(1 ·2 ·1 ·1 ·2) (and likewise for
τ). It follows that σ(2 · 1 · 1 · 2 · 1) = τ(2 · 1 · 1 · 2 · 1) and, as a consequence, σ and
τ agree on γ1 · γ2 if and only if they agree on γ1 = 1 · 3 · 1 · 1 · 3. However, due to
the non-periodicity of σ or τ , σ(3) or τ(3) must have a different primitive root
to σ(1) or τ(1), respectively. This means that σ and τ are distinct over {1, 3},
and at least one of them must be non-periodic over {1, 3}. This implies that σ
and τ cannot agree on γ1, and therefore σ ◦ ϕ and τ ◦ ϕ are distinct.

Hence, there do not exist two distinct morphisms, at least one of which is
non-periodic, that agree on 1 · 2 · 1 · 1 · 2 and 1 · 3 · 1 · 1 · 3 · 2 · 1 · 1 · 2 · 1.
These patterns, thus, form a periodicity forcing set, and, by Proposition 29, the
morphism ϕ satisfies Condition (ii) of Lemma 21. ♦

The next proposition introduces a pattern over three variables which is not
in DPCP. This not only demonstrates that this is possible for patterns over
more than two variables, but provides the basis for the construction given in
Theorem 33, which shows that there are patterns of arbitrarily many variables
not in DPCP.

Proposition 32. The pattern 1 · 2 · 1 · 1 · 2 · 1 · 3 · 1 · 1 · 3 · 2 · 1 · 1 · 2 · 1 · 1 · 2 · 1 ·
1 · 2 · 1 · 2 · 1 · 1 · 2 · 1 · 3 · 1 · 1 · 3 · 2 · 1 · 1 · 2 · 1 is not in DPCP.

It is now possible to state the following theorem, the proof of which provides
a construction for a pattern not in DPCP over an arbitrary number of variables.
This is achieved by considering, for any n ≥ 2, the morphism ϕn : {1, 2, ... ,
n}∗ → {1, 2, ... , n + 1}∗, given by ϕn(1) := 1 · 2 · 1 · 1 · 2, and for 2 ≤ x ≤ n,
ϕn(x) := 1 · (x + 1) · 1 · 1 · (x + 1) · 2 · 1 · 1 · 2 · 1. This morphisms satisfies
the conditions for Lemma 21, i. e., it maps any n-variable pattern that is not in
DPCP to an n + 1-variable pattern that is also not in DPCP. It follows that if



there exists a pattern with n variables not in DPCP, then there exists a pattern
with n variables not in DPCP. Thus, by induction, there exist such patterns for
any number of variables.

Theorem 33. There are patterns of arbitrarily many variables not in DPCP.

Hence, we may conclude that the Dual PCP is nontrivial for all alphabets with
at least two variables, and we can show this in a constructive manner.
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3. E. Czeizler, Š. Holub, J. Karhumäki, and M. Laine. Intricacies of simple word
equations: An example. International Journal of Foundations of Computer Science,
18:1167–1175, 2007.

4. J. Engelfriet and G. Rozenberg. Equality languages and fixed point languages.
Information and Control, 43:20–49, 1979.

5. D.D. Freydenberger, H. Nevisi, and D. Reidenbach. Weakly unambiguous mor-
phisms. Theoretical Computer Science, 448:21–40, 2012.

6. D.D. Freydenberger, D. Reidenbach, and J.C. Schneider. Unambiguous morphic
images of strings. International Journal of Foundations of Computer Science,
17:601–628, 2006.
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