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Fast wavelet transform domain texture synthesis

D.S.Wickramanayake, E.A .Edirisinghe, H.E.Bez
Parallelism, Algorithms and Architectures Research Centre (PARC)
Loughborough University, UK

ABSTRACT

Block based texture synthesis algorithms have shown better results than others as they help to preserve the global
structure. Previous research has proposed several approaches in the pixel domain, but little effort has been taken in the
synthesis of texture in a multiresolution domain. We propose a multiresolution framework in which coefficient-blocks of
the spatio-frequency components of the input texture are efficiently stitched together to form the corresponding
components of the output texture. We propose two algorithms to this effect. In the first, we use a constant block size
throughout the algorithm. In the second, we adaptively split blocks so as to use the largest possible block size in order to
preserve the global structure, while maintaining the mismatched error of the overlapped boundaries below a certain error
tolerance. Special consideration is given to minimization of the computational cost, throughout the algorithm designs.
We show that the adaptation of the multiresolution approach results in a fast, cost-effective, flexible texture synthesis
agorithm that is capable of being used in modern, bandwidth-adaptive, real-time imaging applications. A collection of
regular and stochastic test texturesis used to prove the effectiveness of the proposed a gorithm.

Key words: Texture synthesis, image processing, multi resolution, wavelets
1 INTRODUCTION

In adding realism to computer graphics applications, mapping natural textures into computer-generated images is vital.
Most of the mapping algorithms used today either uses a synthesized textures or directly synthesis of textures on
surfaces. Texture synthesis, where a sample is used to generate. A texture synthesis method starts from a sample image
and attempts to produce a texture with a visual appearance similar to that sample, by repeated placement of micro
patterns of texture elements on a surface so that when perceived by a human observer, it appears to be generated by the
same underlying stochastic process. Unfortunately, creating a robust and general texture synthesis algorithm has been
proven difficult.

It is expected to be widely used in texture mappings aimed at improving the realism of computer generated images,
whereby texture details are added by wrapping a given texture image around the origina surface. So far the most
common approach to texture synthesis has been to develop a statistical model, which emulates the generative process of
the texture which it is intending to mimic.

Textures have been traditionally classified as either regular or stochastic. Almost al the real world textures lie in
between these two extremes. Natural examples of such textures include fur of animals, patterns of flowers, bark on atree
etc., whereas fabric patterns, stone patterns on walls are examples of man-made textures.

The problem of synthesizing textures has been studied extensively and numerous approaches have already been
proposed. One approach that has been successful in producing good quality textures uses Markov Random Fields [1,2,3].
This approach has proven to synthesize textures, which are good approximations to a broad range of textures. However
the main drawback of these algorithms is their computational intensiveness that prevents them being used in rea time
texture synthesizing applications.

Another common approach is the physical simulation of the texture. In this method texture generation is done by directly
simulating the physical generation process of certain textures such as corrosion, weathering etc. Certain patterns such as
fur, scale and skin is modelled using reaction diffusion [4] and cellular texturing [5]. Also some weathering and mineral
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phenomena can be reproduced by detailed simulations of texture [6]. The main disadvantage of these algorithms is that
they cannot be applied to general categories.

Other commonly used approach is the statistical feature matching. In this method certain features of the input texture are
matched in constructing the resulting texture. These algorithms are more efficient than Markov Random Field
algorithms. Heeger and Bergen [9] proposed a method for modelling textures by matching marginal histograms of image
pyramids. This algorithm failed to give good results on structured textures. Simoncelli and Portilla [8] were able to
improve the synthesis results on structures by using a complicated optimisation  procedure.
De Bonet [7] synthesizes the textures from a wide variety of input images by shuffling the elements in the Laplacian
pyramid representation. Although this method is better than the [9] for structured textures it can produce boundary
artefacts in some cases.

The inspiration for our work comes form the recent algorithm proposed by Efros and Freeman [10]. Their approach is
simple and works well with most textures. As there are similarities between Efros's & Freeman’s [10] approach and
ours, we provide an overview of this algorithm in section 2, and use it as a benchmark to test the proposed al gorithm.

For clarity of presentation the rest of the paper is divided into further sections as follows. Section 3 presents the proposed
multiresolution framework for texture synthesis. Section 4 provides experimental results and a comprehensive analysis
of the results. Finally section 5 concludes, with an insight to possible improvements and future variations.

2 PIXEL BASED IMAGE QUILTING

In [10] Efros and Freeman proposed a patch based texture synthesis algorithm in the pixel domain. The algorithm could
be summarised as follows:

The output texture is formed by selectively transferring randomly selected blocks of a predefined size from the input
texture image. Thisis done in two steps, satisfying certain pre-defined criteria. Firstly, given that the top left hand corner
block of the output image has been appropriately formed, a subset of blocks from which a good candidate for the block
to it'sright (assuming araster scanned order) could be found as follows: All possible blocks of the same block size from
the input image is matched to the first block (top left hand corner) of the output image, under a certain overlap. The
quality of match between the overlapping areas of two blocks is calculated in terms of the Squared Error (SE, i.e. the L2
norm), as follows:

SE= ) (1(p) = 1,(p)’? @

pe O
Where | X( p) is the intensity value of the pixel p, O is the set representing all pixels belonging to the overlap area of

overlapping blocks, | and |, .

The typical overlap used is 1/3 rd the width of the block. The block having the best matching overlap, and all other
blocks whose matching error is within 0.1% of that of the best’s is selected as the sub-set from which subsequently a
block is picked up randomly, to be the final block selected to be used to patch the output image at the location to the
right of the top left hand corner block. This process is continued until the whole output image is formed. In selecting
non-boundary type blocks (and the last column of blocks), the overlap considered includes both the overlap with the
block in front (as discussed above) and block above. The output image formed following the above procedure is then
subjected to a second stage in which each overlapping set of blocks is combined together along a line of best fit, i.e. by
performing a minimum error boundary cut, rather than the more obvious straight edge cut.

Unfortunately the above algorithm cannot be used for rea time texture synthesis, asits efficiency is relatively low. The
use of exhaustive searching in choosing the best match causes computational power to be wasted. Due to the use of a

random picking technique (described above) in selecting the final block to be patched with the preceding block, often the
seam between the two adjacent blocks are quite visible. Even though a minimum error boundary cutting technique is
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used to smoothen off these sudden changes in texture, it involves computationally extensive methodologies such as
dynamic programming and thus would not be suitable for real time applications.

In order to resolve the problems discussed above, we propose the use of a multiresol ution-framework, which is capable
of faster texture synthesis.

3 MULTIRESOLUTION IMAGE QUILTING ALGORITHM

The process of texture synthesis can be mathematically represented by equation (2), where F is the texture synthesis

function, which tekes | o, astheinput and synthesizes atexture, |, -

F (I sample) = I output (2)

The proposed multiresolution approach starts by applying 2D discrete wavelet transform (Haar Transform) to the sample

image, | The application of single level 2D wavelet transform will result in decomposing | into a set of

sample * sample

component images.
Isample:f(lsslmlshO’lst’lsdo) (3)

Where | g, 140 ls0 g0 are the component images (coefficient matrices) corresponding respectively to low-
resolution approximation, horizontal detail, vertical detail and diagonal detail of the sample input texture. Note that

_ -1
f=DWrT e f represents the inverse discrete wavel et transform function.

Similarly 2 level and 3 level decompositions are obtained by applying 2D wavelet transform to the corresponding low-
resolution component. This could be mathematically presented as follows:

IsaO:f(Isal’Ishl’lsvl’lsdl) (4)
len = F(laoi Teos Loz T suz) ®)

The wavelet decomposition processis visually represented in Figure 1

@ (0) (© (d)

Figure 1. Transforming the sample texture into a multiresolution image representation. (a) Sample texture, (b) single level
decomposition (c) two level decomposition, (d) three level decomposition
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If awavelet decomposition strategy similar to the above is performed on the output texture, |, (which is yet to be
generated) the following set of equations can be used for its mathematical representation.

Ioutput = f(loaO"OhO"OVO’IOdO) (6)
IoaO = f(loal"ohl"ovl’lodl) (7)
Ioal = f(loa21|0h2’|ov2’|od2) (8)

At the start of the proposed method’s synthesis stage, we only consider the sample images four components at 3 level of
decomposition, i.e., | g5, 1 g0 1 g0 o2+ (Se€ Figure 1(d)). We first pick a 8x 8 block randomly from |, and place it

in the top left hand corner of the output image, | ,,. Subsequently using above block as the lowest resolution block, all

corresponding coefficient blocks of all detailed components are located from the 3-level decomposition of the sample
image. They are then transferred to the corresponding locations within appropriate components of the output texture
decomposition (see figure 2). Once the first block has been randomly selected and transferred to the output

representation, as discussed above, all possible blocks of similar size from the input sample image’s | ,, component are

picked and matched, for a good overlap with the first block. The matching procedure adapted is different to that used by
Efros and Freeman (see section 2) in that it also uses one of the three detail component images at level 3, in deciding the
best possible match.

\\

LW

L

@ (b)

Figure 2. Construction of the output texture. (a) First random block (=) and its best match () (second block) placed on top left
hand corner of the output texture together with the corresponding coefficient blocks of detail components in al three levels. (b)
Selected best match for the first block with its corresponding coefficient blocks from the input texture

The decision to select the horizontal, vertical or diagonal component image is taken by comparing the energy level of
these components. This is justified as a higher energy detail component of a particular type; say horizontal detail
component, would mean that the horizontal details of the original image would be more significant and visualy
important than the vertical or diagonal detail. In combining the two overlap errors, i.e. the overlap error between the
blocks in the low-resolution component and overlap error between the corresponding blocks in the selected detail
component, we use the sum of the squares of the square-errors (Eg. 1) of the two components, as the matching criteria.
For example, if diagonal details are prominent the comparison equation is given by the following equation.

d@Q,0)= SHoa(P~1w(P¥ Hlw®-1ue¥] (9

pinO
Once the best matching block to the first block of the output image is found and located in the output
images| ,, component, the corresponding coefficient blocks from all detail images of the sample texture image are
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transferred to the appropriate components of the output texture image. (see figure 2). This process is continued until the
whole output texture image is constructed in a three-level decomposed format. Note that when constructing blocks other
than those belonging to the first row and first column of blocks, the two overlaps, first corresponding to the overlap with
the block in front and second corresponding to the overlap with the block above, needs to be considered. Finally an
inverse DWT is performed on the output image formed, to create the output texture image.

In order to maintain the global structure of the overall texture it is important to select the block size as large as possible.
This aso accounts for the increased efficiency of the algorithm as the choice of blocks available for filling the output
texture becomes less, making the process fast. At the same time, selection of large block sizes makes it increasingly
difficult to find overlapping areas providing a good match, lowering the quality of the resulting texture. Selection of the
optimum size of the block is dependent on the repeating pattern contained in the texture to be synthesized. The use of
small block sizes will increase the synthesis time. Thus in an effective implementation of the proposed agorithm we
need to have atrade off between the image quality and efficiency in selecting the block size. Optimum trade off can be
achieved by the following procedure: We start with a block size of 64X 64 pixels. Subsequently a maximum overlap
error (mean-squared error) beyond which the visual quality is poor is defined. Vertical and horizontal overlap errors are
measured separately. If the vertical overlap error of a particular block is higher than the relevant threshold the block is
split horizontally and vice versa. (see figure 3). Finally, depending on the orientation of the split we search and match,
blocks of size 32X 64 or (64X 32) from the input texture, to fill the 64X 64 area under consideration. How ever the
processis not repeated iteratively to smaller block sizes due to the need of preserving the global structure.

@ (b)

Figure 3: Changing the block size adaptively. Hatched regions show already synthesized texture. Highlighted regions show
overlapped areas (@) If the horizontal overlap error is higher than the threshold, block size is down sized verticaly. (b) If vertical
overlap error is higher than the threshold; block size is down sized horizontally.

4 EXPERIMENTAL RESULTSAND ANALYSIS

In order to analyse the performance of the proposed agorithm, experiments were performed on a large database of
texture images, both regular and stochastic in nature. A typical set of sample images and the output textures obtainable
using the proposed texture synthesis algorithm is illustrated in figure 4. The results clearly indicate that the proposed
method is capable of providing high quality texture synthesis for awide variety of textures.

Closer inspection of resultsin figure 4 and further experiments have revealed that there are certain important factors that
are crucia in deciding the quality of the final outcome and the efficiency/computational complexity of the quilting based
texture synthesis algorithm. They are:

(1) Level and type of detail used in selecting the matching block.

(2) Size of the unit of construction used.
(8) Overlapping area used in matching.

SPIE-IS&T/ Vol. 5308 983

Downloaded from SPIE Digital Library on 24 May 2010 to 158.125.80.73. Terms of Use: http://spiedl.org/terms



4.1 Level and type of detail: In contrast to the method proposed by Effros and Freeman, we have adapted a
multiresolution matching strategy in selecting the adjacent blocks of the output texture. The use of pixel level detail [10]
would not only make the texture synthesis inefficient, but also unsuitable for real time texture synthesis capabilities
expected from modern imaging applications.

In the experiments performed we have assumed a typical three-level decomposition resulting in the lowest resolution
component image to be 1/64 times the size of the original image. The decisions about matching adjacent blocks are taken
only considering the above component and one other detail component (see section-2) from the 3 level of
decomposition. Thus the computational complexity is considerably reduced as compared to the method proposed in [10].
The exclusive use of the low-resolution component is justified due to the fact that it possesses the highest energy of all
four components at a given level of decomposition. Further experimental results indicated that the dynamic use of the
additional detail component (see section-2) resulted in better matching as compared to using only the lowest resolution
component, justifying its use. Further experiments also showed that, using detail images of higher resolution levels, does
not significantly improve the quality of the final output texture.

Figure 4: Multiresolution image quilting results. Sampl e texture and synthesized textures using proposed algorithm
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Instead of randomly picking a block from a set of blocks, which match within a certain matching error [10], the proposed
texture synthesis method selects the best possible match in terms of the overlap criteria discussed above. The
experiments carried out by us revealed that the earlier technique is ineffective if used in conjunction with the proposed
multiresolution-based approach. More importantly, this simplification also means that the proposed technique needs less
memory capacity to carry out thistask.

4.2 Block size: The size of the element used in building the overall texture accounts for the overall quality of the texture
and the efficiency of the agorithm as explained above. Selection of the best size of the block is dependent on the
repeating pattern contained in the texture to be synthesized. In order to keep the computational complexity of the
agorithm low, we have opted to use afixed block size of 8 8 pixels at the third level of resolution. Thisis equivalent to
using a 64X 64 pixel block at full pixel resolution. In the latter algorithm where we adaptively change the block size,
three different block sizes, 8 8, 4Xx 8 and 8X 4 are used. Figure 5 shows the results synthesized using adaptive block
sizes.

Figure 5: Texture Synthesis results with adaptive block sizes

4.3 Area of overlap: In selecting the matching block, the area of overlap will also account for the quality and the speed
of synthesis. Use of less number of overlapping elements (coefficients) results in increased efficiency and more visible
artefacts. Increase of Overlapping elements results in better quality with less artefacts and increased synthesis time.
However, atoo extensive increase in overlapping area will result in noticeable artefacts as it makes it more difficult for
the algorithm to make the correct decision on the perceptualy best matching block. In order to maintain a compromised
situation we have adapted an overlap of a single coefficient row (or column) at the third level of decomposition. This
amounts to an overlap of 8 pixel rows (or columns) in the pixel domain.

In genera, the use of DWT (Haar transform in our experiments, but could be any) in obtaining the multiresolution
decomposition also makes the proposed technique more adaptable to texture synthesis applications which are used in
conjunction modern image compression techniques, such as JPEG-2000. In figure 6, we illustrate the possibility of
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obtaining the texture synthesis of the output texture in a multiresolution environment. This is of critical importance to
modern and future interactive media applications, which effectively deals with progressivelinteractive image/video

transmission.

Figure 7, compares the performance of the proposed algorithm with that of Effro’s and Freeman’'s. The results illustrate

that the perceptual quality of the proposed technique is equivalent to that of [10].
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Figure 7: Comparison of performance of the purposed algorithm with Efros and Freeman algorithm. Left: Sample input textures.
Middle: Output textures generated using proposed algorithm. Right: Output texture generated using Efros and Freeman algorithm.
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5 CONCLUSION AND FUTURE WORK

In this paper we have introduced a novel approach to synthesizing textures under a multi resolution framework. We have
provided experimental results and an in-depth analysis, proving that the proposed method works remarkably well,
producing equivalent (or better) output texture quality as compared to the method proposed in [10], as a much less
computational cost. The multiresolution nature of the proposed framework also makes it easily applicable to modern
imaging applications needing progressive transmission capabilities. Figure

At present we are extending the idea further in two directions, namely, increasing the implementation efficiency and
preventing seam visibility using adaptive edge cutting techniques. Finally we aim to test the proposed algorithmin
mapping real texture onto the surfaces of modelled 3D objects.
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