
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Factorization in formal languages

PLEASE CITE THE PUBLISHED VERSION

http://dx.doi.org/10.1007/978-3-319-21500-6

PUBLISHER

© Springer International Publishing

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Bell, Paul C., Daniel Reidenbach, and J.O. Shallit. 2019. “Factorization in Formal Languages”. figshare.
https://hdl.handle.net/2134/18859.

https://lboro.figshare.com/
http://dx.doi.org/10.1007/978-3-319-21500-6

Factorization in Formal Languages

Paul C. Bell1, Daniel Reidenbach1, and Jeffrey Shallit2

1 Department of Computer Science, Loughborough University, Loughborough,
Leicestershire, LE11 3TU, United Kingdom

P.Bell@lboro.ac.uk

D.Reidenbach@lboro.ac.uk
2 School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1,

Canada
shallit@cs.uwaterloo.ca

Abstract. We consider several language-theoretic aspects of unique fac-
torization in formal languages. We reprove the familiar fact that the set
uf(L) of words having unique factorization into elements of L is regular
if L is regular, and from this deduce an quadratic upper and lower bound
on the length of the shortest word not in uf(L). We observe that uf(L)
need not be context-free if L is context-free.

Next, we consider some variations on unique factorization. We define a
notion of “semi-unique” factorization, where every factorization has the
same number of terms, and show that, if L is regular or even finite, the set
of words having such a factorization need not be context-free. Finally,
we consider additional variations, such as unique factorization “up to
permutation” and “up to subset”. Although all these variations have
been considered before, it appears that the languages of words having
these properties have not been positioned in the Chomsky hierarchy up
to now. We also consider the length of the shortest word not having the
desired property.

1 Introduction

Let L be a formal language. We say x ∈ L∗ has unique factorization if whenever

x = y1y2 · · · ym = z1z2 · · · zn

for y1, y2, . . . , ym, z1, z2, . . . , zn ∈ L then m = n and yi = zi for 1 ≤ i ≤ m. If
every element of L∗ has unique factorization into elements of L, then L is called
a code.

Although codes have been studied extensively (see, for example, [8, 1]), in
this paper we look at some novel aspects of unique factorization. Namely, we
look at some variations of unique factorization, consider the language of words
possessing this type of unique factorization, and position the resulting language
in the Chomsky hierarchy. We also consider the length of the shortest word not
having the desired property, if it exists.

II Paul C. Bell, Daniel Reidenbach, and Jeffrey Shallit

2 Unique factorizations

Given L, we define uf(L) to be the set of all elements of L∗ having unique
factorization into elements of L. So L is a code iff L∗ = uf(L). We recall the
following familiar fact:

Proposition 1. If L is regular, then so is uf(L).

Proof. If L contains the empty word ε then no elements of L∗ have unique
factorization, and so uf(L) = ∅. So, without loss of generality we can assume
ε 6∈ L.

To prove the result, we show that the relative complement L∗ − uf(L) is
regular. Let L be accepted by a deterministic finite automaton (DFA) M . On
input x ∈ L∗, we build a nondeterministic finite automaton (NFA) M ′ to guess
two different factorizations of x and verify they are different. The machine M ′

maintains the single state of the DFA M for L as it scans the elements of x,
until M ′ reaches a final state q. At this point M ′ moves, via an ε-transition, to a
new kind of state that records pairs. Transitions on these “doubled” states still
follow M ’s transition function in both coordinates, with the exception that if
either state is in F , we allow a “reset” implicitly to q0. Each implicit return to
q0 marks, in a factorization, the end of a term. The final states of M ′ are the
“doubled” states with both elements in F .

More precisely, assume M = (Q,Σ, δ, q0, F). Since ε 6∈ L(M), we know q0 6∈
F . We create the machine M ′ = (Q′, Σ, δ′, q0, F

′) as follows:

δ′(q, a) =

{
{δ(q, a)}, if q 6∈ F ;

{δ(q0, a), [δ(q0, a), δ(q, a)]}, if q ∈ F .

Writing r = δ(p, a), s = δ(q, a), t = δ(q0, a), we also set

δ′([p, q], a) =


{[r, s]}, if p 6∈ F , q 6∈ F ;

{[r, s], [t, s]}, if p ∈ F , q 6∈ F ;

{[r, s], [r, t]}, if p 6∈ F , q ∈ F ;

{[r, s], [t, s], [r, t], [t, t]}, if p ∈ F , q ∈ F .

Finally, we set F ′ = F × F . To see that the construction works, suppose that
x ∈ L∗ has two different factorizations

x = y1y2 · · · yjyj+1 · · · yk = y1y2 · · · yjzj+1 · · · z`

with yj+1 a proper prefix of zj+1. Then an accepting path starts with singleton
sets until the end of yj . The next transition goes to a pair having first element
δ(q0, a) with a the first letter of yj+1. Subsequent transitions eventually lead to
a pair in F × F .

On the other hand, if x is accepted, then two different factorizations are
traced out by the accepting computation in each coordinate. The factorizations
are guaranteed to be different because of the transition to [δ(q0, a), δ(q, a)]. ut

Factorization in Formal Languages III

Remark 2. There is a shorter and more transparent proof of this result, as fol-
lows. Given a DFA for L, create an NFA A for L∗ by adding ε-transitions from
every final state back to the initial state, and then removing the ε-transitions us-
ing the familiar method (e.g., [6, Theorem 2.2]). Next, using the Boolean matrix
interpretation of finite automata (e.g., [15] and [12, §3.8]), we can associate an
adjacency matrix Ma with the transitions of A on the letter a. Then, on input
x = a1a2 · · · ai, a DFA can compute the matrix Mx = Ma1Ma2 · · ·Mai using
ordinary integer matrix multiplication, with the proviso that any entry that is
2 or more is changed to 2 after each matrix multiplication. This can be done by
a DFA since the number of such matrices is at most 3n

2

where n is the number
of states of M . Then, accepting if and only if the entry in the row and column
corresponding to the initial state of A is 1, we get a DFA accepting exactly those
x having unique factorization into elements of L. While this proof is much sim-
pler, the state bound it provides is quite extravagant compared to our previous
proof.

Corollary 3. Suppose L is accepted by a DFA with n states. If L is not a code,
then there exists a word x ∈ L∗ with at least two distinct factorizations into
elements of L, with |x| < n2 + n.

Proof. Our construction in the proof of Proposition 1 gives an NFA M ′ accepting
all words with at least two different factorizations, and it has n2 + n states. If
M ′ accepts anything at all, it accepts a word of length at most n2 + n− 1. ut

Proposition 4. For all n ≥ 2, there exists an O(n)-state DFA accepting a
language L that is not a code, such that the shortest word in L∗ having two
factorizations into elements of L is of length Ω(n2).

Proof. Consider the language Ln = b(an)∗ ∪ (an+1)∗b. It is easy to see that
Ln can be accepted by a DFA with 2n + 5 states, but the shortest word in L∗n
having two distinct factorizations into elements of Ln is b an(n+1) b, of length
n2 + n+ 2. ut

In fact, there are even examples of finite languages with the same property.

Proposition 5. For all n ≥ 2, there exists an O(n)-state DFA accepting a
finite language L that is not a code, such that the shortest word in L∗ having
two factorizations is of length Ω(n2).

Proof. Let Σ = {b, a1, a2, . . . , an} be an alphabet of size n + 1, and let Ln be
the language of 2n words

{a1, an} ∪ {biai+1 : 1 ≤ i < n} ∪ {aibi : 1 ≤ i < n}

defined over Σ.
Then it is easy to see that Ln can be accepted with a DFA of 2n+ 2 states,

while the shortest word having two distinct factorizations is

a1ba2b
2a3b

3 · · · an−1bn−1an,

which is of length n(n+ 1)/2. ut

IV Paul C. Bell, Daniel Reidenbach, and Jeffrey Shallit

Remark 6. The previous example can be recoded over a three-letter alphabet by
mapping each ai to the base-2 representation of i, padded, if necessary, to make
it of length `, where ` = dlog2 ne. With some reasonably obvious reuse of states
this can still be accepted by a DFA using O(n) states, and the shortest word
with two distinct factorizations is still of length Ω(n2).

Theorem 7. If L is a context-free language, then uf(L) need not be context-free.

Proof. Our example is based on two languages (see, for example, [10]):

(a) PALSTAR, the set of all strings over the alphabet Σ = {0, 1} that are the
concatenation of one or more even-length palindromes; and

(b) PRIMEPALSTAR, the set of all elements of PALSTAR that cannot be written as
the concatenation of two or more elements of PALSTAR.

Clearly PALSTAR is a context-free language (CFL). We see that uf(PALSTAR) =
PRIMEPALSTAR, which was proven in [10] to be non-context-free. ut

3 Semi-unique factorizations

We now consider a variation on unique factorization. We say that x ∈ L∗ has
semi-unique factorization if all factorizations of x into elements of L consist of
the same number of factors. More precisely, x has semi-unique factorization if
whenever

x = y1y2 · · · ym = z1z2 · · · zn
for y1, y2, . . . , ym, z1, z2, . . . , zn ∈ L, then m = n.

Given a language L, we define su(L) to be the set of all elements of L∗

having semi-unique factorization over L. This concept was previously studied by
Weber and Head [14], where a language L was called numerically decipherable if
L = su(L), and an efficient algorithm was proposed for testing this property.

Example 8. Let L = {a, ab, aab}. Then su(L) = (ab)∗a∗.

Theorem 9. If L is regular, then su(L) is a co-CFL (and hence a context-
sensitive language).

Proof. To see that su(L) is a co-CFL, mimic the proof of Proposition 1. We use
a stack to keep track of the difference between the number of terms in the two
guessed factorizations, and another flag in the state to say which, the “top”,
or the “bottom” state, has more terms (since the stack can’t hold negative
counters). We accept if we guess two factorizations having different numbers of
terms.

It now follows immediately that su(L) is a context-sensitive language (CSL),
by the Immerman-Szelepcsényi theorem [7, 13]. ut

Corollary 10. Given a regular language L, it is decidable if there exist elements
x ∈ L∗ lacking semi-unique factorization.

Factorization in Formal Languages V

Proof. Given L, we can construct a pushdown automaton (PDA) accepting L∗−
su(L). We convert this PDA to a context-free grammar G generating the same
language (e.g., [6, Theorem 5.4]). Finally, we use well-known techniques (e.g., [6,
Theorem 6.6]) to determine whether L(G) is empty. ut

Theorem 11. If L is regular then su(L) need not be a CFL.

Proof. Let

L = a0+b+ 1 + c(23)+ + 23d+ a+ 0 + b1+c(23)+ + a0+b1+c2 + 32 + 3d.

Consider su(L) and intersect with the regular language a0+b1+c(23)+d.
Then there are only three possible factorizations for a given word here. They

look like (using parens to indicate factors)

(a0ib)1 · 1 · 1 · · · 1(c(23)k)(23d), which has j + 3 terms if j is the number of
1’s;

(a)0 · 0 · · · 0(b1jc(23)k)(23d), which has i+ 3 terms if i is the number of 0’s;
and

(a0ib1jc2)(32)(32) · · · (32)(3d), which has k + 2 terms, if k is the number of
(32)’s.

So if all three factorizations have the same number of terms we must have
i = j = k − 1, giving us

{a0nb1nc(23)n−1d : n ≥ 1},

which is not a CFL. ut

There are even examples, as in Theorem 11, where L is finite. For expository
purposes, we give an example over the 21-letter alphabet

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, a, b, c, d, e, f, g, h, i, j, k, l}.

Theorem 12. If L is finite, then su(L) need not be a CFL.

Proof. Define

L1 = {0ab, cd, ab, cd127, efgh, efgh3, 4ijkl, ijkl, 5, 68}
L2 = {0abc, dabc, d1, 27e, fg, he, h34ij, klij, kl568}
L3 = {0a, bcda, bcd12, 7ef, ghef, gh34i, jk, li, jkl56, 8}

and set L := L1 ∪ L2 ∪ L3.
Consider possible factorizations of words of the form

0(abcd)m127(efgh)n34(ijkl)p568

for some integers m,n, p ≥ 1. Any factorization of such a word into elements of
L must begin with either 0ab, 0abc, or 0a. There are three cases to consider:

VI Paul C. Bell, Daniel Reidenbach, and Jeffrey Shallit

Case 1: the first word is 0ab. Then the next word must begin with c, and there
are only two possible choices: cd and cd127. If the next word is cd then since no
word begins with 1 the only choice is to pick a word starting with a, and there
is only one: ab. After picking this, we are back in the same situation, and can
only choose between cd followed by ab, or cd127. Once cd127 is picked we must
pick a word that begins with e. However, there are only two: efgh and efgh3.
If we pick efgh we are left in the same situation. Once we pick efgh3 we must
pick a word starting with 4, but there is only one: 4ijkl. After this we can either
pick 5 and then 68, or we can pick ijkl a number of times, followed by 568.

This gives the factorization

(0ab)((cd)(ab))m−1(cd127)(efgh)n−1(efgh3)(4ijkl)(ijkl)p−1(5)(68)

having 1 + 2(m − 1) + 1 + (n − 1) + 1 + 1 + (p − 1) + 1 + 1 = 2m + n + p + 2
terms.

Case 2: the first word is 0abc. Then the next word must begin with d, and there
are only two choices: dabc and d1. If we pick dabc we are back in the same
situation. If we pick d1 then the next word must begin with 2, but there is only
one such word: 27e. Then the next word must begin with f , but there is only
one: fg. Then the next word must begin with h, but there are only two: he and
h34ij. If we pick he we are back in the same situation. Otherwise we must have
a word beginning with k, but there are only two: klij and kl568. This gives the
factorization

(0abc)(dabc)m−1(d1)(27e)((fg)(he))n−1(fg)(h34ij)(klij)p−1(kl568)

having 1 + (m− 1) + 2 + 2(n− 1) + 1 + 1 + (p− 1) + 1 = m+ 2n+ p+ 2 terms.

Case 3: the first word is 0a. Then only bcda and bcd12 start with b, so we must
choose bcda over and over until we choose bcd12. Only one word starts with 7 so
we must choose 7ef . Now we must choose ghef again and again until we choose
gh34i. We now choose jk and li alternately until jkl56. Finally, we pick 8.

This gives us a factorization

(0a)(bcda)m−1(bcd12)(7ef)(ghef)n−1(gh34i)((jk)(li))p−1(jkl56)(8)

with 1 + (m− 1) + 2 + (n− 1) + 1 + 2(p− 1) + 2 = m+ n+ 2p+ 2.

So for all these three factorizations to have the same number of terms, we
must have

2m+ n+ p+ 2 = m+ 2n+ p+ 2 = m+ n+ 2p+ 2.

Eliminating variables we get that m = n = p. So when we compute su(L) and
intersect with the regular language 0(abcd)+127(efgh)+34(ijkl)+568 we get

{0(abcd)n127(efgh)n34(ijkl)n568 : n ≥ 1},

which is clearly a non-CFL. ut

Factorization in Formal Languages VII

Remark 13. The previous two examples can be recoded over a binary alphabet,
by mapping the i’th letter to the string baib.

4 Permutationally unique factorization

In this section we consider yet another variation on unique factorization, which
are factorizations that are unique up to permutations of the factors. This concept
was introduced by Lempel [9] under the name “multiset decipherable codes”. For
other work on these codes, see [11, 5, 2].

Formally, given a language L we say x ∈ L∗ has permutationally unique
factorization if whenever x = y1y2 · · · ym = z1z2 · · · zn for

y1, y2, . . . , ym, z1, z2, . . . , zn ∈ L,

then m = n and there exists a permutation σ of {1, . . . , n} such that yi = zσ(i)
for 1 ≤ i ≤ n. In other words, we consider two factorizations that differ only in
the order of the factors to be the same. We define ufp(L) to be the set of x ∈ L∗
having permutationally unique factorization.

Example 14. Consider L = {a3, a4}. Then

ufp(L) = {a3, a4, a6, a7, a8, a9, a10, a11, a13, a14, a17}.

Theorem 15. If L is finite then ufp(L) is a co-CFL and hence a CSL.

Proof. We sketch the construction of a PDA accepting ufp(L). If a word is in
L∗ but has two permutationally distinct factorizations, then there has to be
some factor appearing in the factorizations a different number of times. Our
PDA nondeterministically guesses two different factorizations and a factor t ∈ L
that appears a different number of times in the factorizations, then verifies the
factorizations and checks the number. It uses the stack to hold the absolute value
of the difference between the number of times t appears in the first factorization
and the second. It accepts if both factorizations end properly and the stack is
nonempty. ut

Theorem 16. If L is finite then ufp(L) need not be a CFL.

Proof. Let Σ = {a, b, c}. Define L = {A,B, S1, S2, T1, T2} ⊆ Σ+ as follows:

A = aa, B = aaa, S1 = ab, S2 = ac, T1 = ba, T2 = ca.

Let R = aa(ab)+(ac)+aa(ba)+(ca)+aaa, and consider words of the form

w := aa(ab)r(ac)saa(ba)t(ca)qaaa ∈ ufp(L) ∩R

with r, s, t, q ≥ 1 and the following two factorizations of w:

ASr1S
s
2AT

t
1T

q
2B = aa · (ab)r · (ac)s · aa · (ba)t · (ca)q · aaa (1)

BT r1 T
s
2S

t
1S

q
2AA = aaa · (ba)r · (ca)s · (ab)t · (ac)q · aa · aa (2)

VIII Paul C. Bell, Daniel Reidenbach, and Jeffrey Shallit

It is not difficult to see that w must be of one of these two forms. Since w has
prefix aaab, it must start with either AS1 or BT1. If it starts with AS1 = aa ·ab,
the next factors must be Sr−11 to match (ab)r, so we have ASr1 . We then see
(ac)s, which can only match with Ss2 . Next, we see ‘aaba’, thus we must choose
AT1 = aa · ba. We then have (ba)t−1, which can only match with T t−11 , and then
(ca)q, matching only with T q2 . Finally the suffix is ‘aaa’ which can only match
with B as required.

If w starts with BT1 = aaa · ba, the next part is (ba)r−1, which only matches
with T r−11 . Then we see (ca)s, so we must use factors T s2 . We then see (ab)t and
(ac)q, matching with St1 and Sq2 respectively. Finally we have ‘aaaa’ matching
only with AA as required.

If r = t and s = q, then the number of each factor (A,B, S1, S2, T1, T2)
in factorizations (1) and (2) is identical. Therefore, w always has more than
one factorization (of type (1) or (2)); however, that factorization is only non-
permutationally equivalent if r 6= t or s 6= q. Therefore

ufp(L) ∩R = {aa · (ab)r · (ac)s · aa · (ba)t · (ca)q · aaa | (r = t) ∧ (s = q)}
= {ASr1Ss2AT r1 T s2B : r, s ≥ 1},

which is not a context-free language. ut

5 Subset-invariant factorization

In this section we consider yet another variation on unique factorization, pre-
viously studied under the name “set-decipherable code” by Blanchet-Sadri and
Morgan [2].

We say a word x ∈ L∗ has subset-invariant factorization (into elements of
L) if there exists a subset S ⊆ L with the property that every factorization
of x into elements of L uses exactly the elements of S – no more, no less –
although each element may be used a different number of times. More precisely,
x has subset-invariant factorization if there exists S = S(x) such that whenever
x = y1y2 · · · ym with y1, y2, . . . , ym ∈ L, then S = {y1, y2, . . . , ym}. We let ufs(L)
denote the set of those x ∈ L∗ having such a factorization.

Theorem 17. If L is finite then ufs(L) is regular.

Proof. The proof is similar to the proof of Theorem 15 above. On input x we
nondeterministically attempt to construct two different factorizations into ele-
ments of L, recording which elements of L we have seen so far. We accept if we
are successful in constructing two different factorizations (which will be different
if and only if some element was chosen in one factorization but not the other).
This NFA accepts L∗ − ufs(L). So if L is finite, it follows that ufs(L) is regular.

In more detail, here is the construction. States of our NFA are 6-tuples of
the form [w1, s1, v1, w2, s2, v2] where w1, w2 are the words of L we are currently
trying to match; s1, s2 are, respectively, the suffixes of w1, w2 we have yet to
see, and v1, v2 are binary characteristic vectors of length |L|, specifying which

Factorization in Formal Languages IX

elements of L have been seen in the factorization so far (including w1 and w2,
although technically they may not have been seen yet). Letting C(z) denote the
vector with all 0’s except a 1 in the position corresponding to the word z ∈ L,
the initial states are [w,w,C(w), x, x, C(x)] for all words w, x ∈ L. The final
states are of the form [w, ε, v1, x, ε, v2] where v1 6= v2. Transitions on a letter a
look like δ([w1, as1, v1, w2, as2, v2], a) = [w1, s1, v1, w2, s2, v2]. In addition there
are ε-transitions that update the corresponding vectors if s1 or s2 equals ε, and
that “reload” the new w1 and w2 we are expecting to see:

δ([w1, ε, v1, w2, s2, v2], ε) = {[w,w, v1 ∨ C(w), w2, s2, v2] : w ∈ L}
δ([w1, s1, v1, w2, ε, v2], ε) = {[w1, s1, v1, w, w, v2 ∨ C(w)] : w ∈ L}.

ut

The preceding proof also shows that the shortest word failing to have subset-
invariant factorization is bounded polynomially:

Corollary 18. Suppose |L| = n and the length of the longest word of L is m.
Then if some word of L∗ fails to have subset-invariant factorization, there is a
word with this property of length ≤ 2m2n2.

Proof. Let u ∈ L+ be a minimal length word such that u ∈ L+−ufs(L). Consider
the states of the NFA traversed in processing u. Let S0 := [w,w,C(w), x, x, C(x)]
be the initial state and SF := [wF , ε, vF , xF , ε, v

′
F] the final state, where vF 6= v′F

and C(w), C(x) are defined as in the proof of Theorem 17. By definition, there

must exist some z ∈ L such that vF and v′F differ on C(z), i.e., vTF ·C(z) + v′F
T ·

C(z) = 1.
Initially the characteristic vectors have a single 1, and once an element is set

to 1 in a characteristic vector in the NFA, it is never reset to 0. Thus, there
exists some 1 ≤ k ≤ |u| such that u = u1 · · ·uk−1 · uk · uk+1 · · ·u|u| where
Sk−1 = δ(S0, u1 · · ·uk−1) has a 0 in the characteristic vectors at position z, and
δ(Sk−1, uk) has a 1 in exactly one of the two characteristic vectors at position
z. We shall now prove that |u1 · · ·uk−1|, |uk+1 · · ·u|u|| ≤ m2n2, which proves the
result.

We prove the result for the word v = u1 · · ·uk−1; a similar analysis holds
for uk+1 · · ·u|u|. Let S0, S1, . . . Sk−1 be the states of the NFA visited as we
process v. We prove that there does not exist 0 ≤ i < j ≤ k − 1 such that
Si = [w1, s1, v1, w2, s2, v2] and Sj = [w1, s1, v

′
1, w2, s2, v

′
2]. We proceed by con-

tradiction. Assume that such an i and j exist. Then ui+1 · · ·uj is such that
δ(Si, ui+1 · · ·uj) = Sj . However, δ(Si, uj+1 · · ·uk) and δ(Sj , uj+1 · · ·uk) can only
differ in their binary characteristic vectors, since the transition function does not
depend upon the characteristic vectors when we update the words w1, s1, w2, s2.
Thus, we can remove the factor ui+1 · · ·uj from u and still reach a final state
of the form SF2

:= [wF , ε, vF2
, xF , ε, v

′
F2

], for which we still have that vF2
6= v′F2

,
since they differ on element z due to letter uk. Continuing this idea iteratively,
the maximal number of states k is bounded by m2n2. Doubling this bound gives
the result. ut

X Paul C. Bell, Daniel Reidenbach, and Jeffrey Shallit

The next result shows that we can achieve a quadratic lower bound.

Proposition 19. There exist examples with |L| = 2n and longest word of length
n for which the shortest word of L∗ failing to have subset-invariant factorization
is of length n(n+ 1)/2.

Proof. We just use the example of Proposition 5. ut

Theorem 20. If L is regular then ufs(L) need not be a CFL.

Proof. We use a variation of the construction in the proof of Theorem 16. Let
L = (ab)+(ac)+aa + (ba)+(ca)+ + aa + aaa. Then (using the notation in the
proof of Theorem 16), if

w := aa(ab)r(ac)saa(ba)t(ca)qaaa ∈ ufs(L) ∩R

with r, s, t, q ≥ 1 then there are two different factorizations of w:

w = aa · (ab)r(ac)saa · (ba)t(ca)q · aaa
= aaa · (ba)r(ca)s · (ab)t(ac)qaa · aa

which are subset-invariant if and only if r = t and s = q. So

ufs(L) ∩ R = {aa(ab)r(ac)saa(ba)r(ca)saaa : r, s ≥ 1},

which is not a CFL. ut

6 Acknowledgments

The idea of considering semi-unique factorization was inspired by a talk of Nasir
Sohail at the University of Waterloo in April 2014.

We are very grateful to the referees for pointing out relevant citations to the
literature that we did not know about.

References

1. J. Berstel, D. Perrin, and C. Reutenauer. Codes and Automata. Encyclopedia of
Mathematics and Its Applications, Vol. 129. Cambridge University Press, 2010.

2. F. Blanchet-Sadri and C. Morgan. Multiset and set decipherable codes. Computers
and Mathematics with Applications 41 (2001), 1257–1262.

3. F. Burderi and A. Restivo. Coding partitions. Discrete Mathematics and Theoretical
Computer Science 9 (2007), 227–240.

4. T. Head and A. Weber. Deciding code related properties by means of finite trans-
ducers. In R. Capocelli, A. De Santis, and U. Vaccaro, eds., Sequences II: Methods in
Communication, Security, and Computer Science, Springer-Verlag, 1993, pp. 260–
272.

5. T. Head and A. Weber. Deciding multiset decipherability. IEEE Trans. Info. Theory
41 (1995), 291–297.

Factorization in Formal Languages XI

6. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

7. N. Immerman. Nondeterministic space is closed under complementation. SIAM J.
Comput. 17 (1988), 935–938.

8. H. Jürgensen and S. Konstantinidis. Codes. In G. Rozenberg and A. Salomaa, eds.,
Handbook of Formal Languages, Vol. 1: Word, Language, Grammar, Springer-Verlag,
1991, pp. 511–607.

9. A. Lempel. On multiset decipherable codes. IEEE Trans. Info. Theory 32 (1986),
714–716.

10. N. Rampersad, J. Shallit, and M.-w. Wang. Inverse star, borders, and palstars.
Info. Proc. Letters 111 (2011), 420–422.

11. A. Restivo. A note on multiset decipherable codes. IEEE Trans. Info. Theory 35
(1989), 662–663.

12. J. Shallit. A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, 2009.

13. R. Szelepcsényi. The method of forcing for nondeterministic automata. Bull.
EATCS 33 (1987), 96–100.

14. A. Weber and T. Head. The finest homophonic partition and related code concepts.
In I. Pŕıvara, B. Rovan, and P. Ruzicka, eds., Proc. 19th International Symposium
on Mathematical Foundations of Computer Science, MFCS’94, Lecture Notes in
Computer Science, Vol. 841, Springer, 1994, pp. 618–628.

15. G.-Q. Zhang. Automata, Boolean matrices, and ultimate periodicity. Inf. Comput.
152 (1999), 138–154.

